
João Carlos Santágueda dos Santos Claro

Licenciado em Engenharia Informática

Tool for Spatial and Dynamic Representation
of Artistic Performances

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientadores : Fernando Pedro Reino da Silva Birra,
Prof. Auxiliar, Universidade Nova de Lisboa
Nuno Manuel Robalo Correia,
Prof. Catedrático, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Dra. Ana Maria Dinis Moreira

Arguente: Prof. Dr. João António Madeiras Pereira

Vogal: Prof. Dr. Fernando Pedro Reino da Silva Birra

Dezembro, 2014

iii

Tool for Spatial and Dynamic Representation of Artistic Performances

Copyright c© João Carlos Santágueda dos Santos Claro, Faculdade de Ciências e Tecnolo-
gia, Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Àquilo que mais gostamos e que nos torna naquilo que somos.

vi

Acknowledgements

As this document represents entering a new stage of my life, I would like to give out a
few words of acknowledgment to show my gratitude.

First and foremost, I would like to thank my advisers, Fernando Birra and Nuno Cor-
reia, for their trust in me and their support throughout this dissertation’s development.

Then, I would like to thank the Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa (FCT/UNL), for housing me for six years. I met great people here and
had so many good times I will never forget, which helped me create much of the person I
am today. I also have to thank the IT Department (DI) for providing me the much needed
tools needed to develop this project.

I would also like to thank my colleagues for letting me experiment most of my work
with them, helping me and laughing with me along the way.

I am forever grateful to my close friends, with whom many nights were spent after
work, allowing me to relieve most of this stress inducing process called academic life.
Thank you for sharing my life with you.

The most important thanks goes to my family, especially to my parents and brother.
It is because of them I was able to get as far as I am today. I know many sacrifices were
made, many hard times we went through together, but we proved we can do anything if
we believe and never give up.

Finally I would like to thank coffee and Coca-Cola for being the best drinks in the
world, Video Games for simply existing and Music for making the world go ’round.

vii

viii

Abstract

This proposal aims to explore the use of available technologies for video representa-
tion of sets and performers in order to serve as support for composition processes and
artistic performer rehearsals, while focusing in representing the performer’s body and
its movements, and its relation with objects belonging to the three-dimensional space of
their performances.

This project’s main goal is to design and develop a system that can spatially repre-
sent the performer and its movements, by means of capturing processes and reconstruc-
tion using a camera device, as well as enhance the three-dimensional space where the
performance occurs by allowing interaction with virtual objects and by adding a video
component, either for documentary purposes, or for live performances effects (for ex-
ample, using video mapping video techniques in captured video or projection during a
performance).

Keywords: Video, three-dimensional reconstruction, three-dimensional modelling, mo-
tion capture.

ix

x

Resumo

Esta proposta visa explorar a utilização de tecnologias disponíveis para a represen-
tação digital de cenários e autores das artes performativas de modo a servirem de apoio
a processos de composição e ensaios, focando em especial na representação do corpo
dos artistas e seus movimentos e na sua relação com objetos pertencentes ao espaço tri-
dimensional das atuações.

A proposta visa o desenvolvimento dum sistema que permita representar espacial-
mente o artista e os seus movimentos, por processos de captura e reconstrução, assim
como aumentar o espaço tridimensional onde o artista atua permitindo-o interagir com
objetos virtuais e adicionando uma componente vídeo, quer para efeitos documentais,
quer para efeitos de atuações ao vivo (por exemplo, através da utilização de técnicas de
video mapping no vídeo capturado ou projeção durante uma atuação).

Palavras-chave: Vídeo, reconstrução tri-dimensional, modelação tri-dimensional, cap-
tura de movimentos.

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Presented Solution . 2
1.4 Document Structure . 3

2 Related Work 5
2.1 Digital Tools for Artistic Performance Representation 5

2.1.1 Virtual Reality Theatrical Performing 5
2.1.2 Virtual Reality Dance Performing 7
2.1.3 Virtual Avatar Automatic Rigging 9

2.2 Motion Capture Cameras . 10
2.2.1 Microsoft Kinect . 10
2.2.2 Microsoft Kinect Version 2.0 . 13

2.3 Motion Capture and 3D Representation Assisting Tools 14
2.3.1 Kinect Fusion . 14
2.3.2 Skanect . 17
2.3.3 Brekel Kinect . 17
2.3.4 NI Mate . 18

2.4 3D Simulation Engines . 19
2.4.1 Blender . 19
2.4.2 Unity . 21

2.5 Discussion . 22

3 System Model and Features 25
3.1 Data Acquisition and Representation . 25

3.1.1 Data Acquisition . 25
3.1.2 Data Representation . 28
3.1.3 Initial Data Simulation . 32

xiii

xiv CONTENTS

3.2 Simulation Environment . 37
3.3 Discussion . 39

4 System Development 41
4.1 Architecture . 41
4.2 Data Input System . 42
4.3 Final Data Simulation . 44
4.4 Discussion . 48

5 Conclusions and Future Work 49
5.1 Evaluation . 49
5.2 Conclusion . 50
5.3 Future Work . 52

List of Figures

1.1 Diagram of the project’s initial architecture. 3

2.1 More elements are added to the virtual stage as a triggered response to the
performer’s actions [4]. 6

2.2 A performer using a full body suit for capturing dance movements for the
virtual avatar to perform [8]. 8

2.3 Project RAM’s different visual effects created from the previous move-
ments done by the performer [10]. 8

2.4 Using a static character mesh and skeleton as input, a moving animation
is automatically created [11]. 9

2.5 A rotation value was inserted in the selected node, rotating the model’s
arm. The node’s position (Location), however, is locked and cannot be
modified. 10

2.6 An example of the Kinect basics: color stream data (a), depth stream data
(b), infrared stream data (c) and the corresponding skeleton tracking (d). . 12

2.7 Comparison between the images provided by the depth sensors of the
Kinect v1 (left) and the Kinect v2 (right) [24]. 14

2.8 An example of bilateral filtering application: a picture with no filtering (a)
and with bilateral filtering (b), smoothing the differences between pixels
[18]. 16

2.9 The model starts being unrefined, but after continuous updates a state of
good definition is achieved [29]. 17

2.10 A reconstructed 3D mesh of a room using Skanect [33]. 18

2.11 Brekel’s main menu. We can observe the computed point cloud originated
from the depth and color images captured [38]. 19

2.12 One of the developers at Delicode using NI Mate to animate an existing rig
in Blender [40]. 20

2.13 Kinect & Blender: demonstrating the skeleton tracking capabilities [51]. . 21

xv

xvi LIST OF FIGURES

3.1 Kinect Common Bridge’s Skeleton example graphical display. 26
3.2 Kinect skeleton node positions and orientations [56]. 27
3.3 A tree representation of the Kinect v1.8 joints’ hierarchy. 28
3.4 Results of inanimate object reconstruction: the floor is captured along with

chair (a), a small metal bar linking the handle and the main chair pillar is
missing (b) and a final successful chair reconstruction (c). 29

3.5 Results of human body reconstruction: full scale body reconstruction in a
casual pose (a) and T-pose attempt ends in a partial reconstruction of the
arms due to the camera distance to the target (b). 30

3.6 Gimbal Lock example, two axes are pointing in exactly the same direction
[57]. 31

3.7 MoCapPlay’s graphical environment. 33
3.8 Displaying a skeleton’s rest pose and its first frame of animation, taken

from the jumpkick.bvh file, in MoCapPlay. 33
3.9 Still frame shots of the jumpkick.bvh animation file. 34
3.10 A tree representation of the Rigify created rig joints’ hierarchy. 35
3.11 The 3D model skeleton does not match the BVH skeleton because of the

faulty chest node values. 35
3.12 Representation of armature bones with different orientations. 36
3.13 Prototype of the virtual performing stage created in Blender. 37
3.14 Using MoCapPlay to animate the 3D model to knock down the red box. . 38
3.15 Video being displayed on the wall in the back of the stage while the per-

former dances. 39

4.1 Diagram of the project’s final prototype architecture. 42
4.2 Final armatures used for creating a rig with Rigify. 43
4.3 Final rigs created with their respective models and armatures. 43
4.4 Kinect Studio’s window display, after loading a file containing Kinect stream

data. 47
4.5 Representation of a theatrical play recorded with Kinect Studio (a), en-

acted in a Blender created stage (b). 48

List of Tables

3.1 Alignment quaternions used for jumpkick.bvh file. All joint names are the
Kinect’s equivalent joints, already referenced in figure 3.2(a). 37

4.1 Kinect to T-pose rotation conversion table, in quaternions. Figure 3.2(a)
displays where each node is placed, according to the node names. 45

xvii

xviii LIST OF TABLES

Listings

3.1 Kinect SDK v1.8 NUI_SKELETON_BONE_ORIENTATION structure 27
3.2 Kinect SDK v2 JointOrientation structure . 28
4.1 Code excerpt of the <nodes> group in the Kinect XML configuration file. . 46
4.2 Code excerpt of the <alignments> group in the Kinect XML configuration

file. 46
4.3 Code excerpt of the <rotations> group in the Kinect XML configuration file. 46

xix

xx LISTINGS

1
Introduction

This dissertation addresses virtual representation of body movements and the surround-
ing space in a performance over time in the context of using software for artistic re-
hearsals purposes. This is a fairly recent concept, due to the rise of low cost motion
capture cameras, and although there are already some experiments in this field it is cur-
rently under-explored.

In this chapter, we further detail the main motivations and context surrounding this
dissertation, pointing out the different options and limitations in this field, and present
the overall layout of this document.

1.1 Motivation

The field of artistic performances has been evolving over time, incorporating digital sys-
tems, making way for several applications to be created, either just to give a way for
performers to study a routine or to give the viewers a richer experience with what is
currently happening on stage.

The core of most performing arts is their routines, repeatedly performed procedures,
and there are mainly two ways to learn them. The first way is through lessons, where
a teacher can point out mistakes and give advice on how performers can improve their
skills. The second way is through self-learning, which involves more time and effort. This
is when digital information can come in handy by, for example, capturing performer’s
routine movements and simulating them on a virtual stage, making it possible by de-
tecting all unwanted movements and correcting them on the spot, without any external
help.

1

1. INTRODUCTION 1.2. Context

1.2 Context

Moore’s Law1 states that in the course of time the number of transistors on integrated
circuits doubles approximately every 18 months, meaning that powerful electronic de-
vices will become smaller in size over time. This rapid increase in technology allows
for the creation of several capture methods where, as an example, performers can attach
various small motion capture devices to their limbs, capturing their performance with
good precision, while still making the performer feel comfortable. As an alternative, by
using motion sensor cameras it is also possible to capture these movements in a non in-
trusive way, without the need to attach any peripherals to the performer, although the
movements captured will probably be less accurate. The ability to record and analyze
body movements can be very useful in several fields, such as artistic or theatrical perfor-
mances, but can also be useful in other fields that require body movement analysis, such
as sports.

By using 3D reconstruction methods, it is possible to recreate a stage where the per-
formance can occur in virtual form. However, this process is not straightforward and
requires complex algorithms and the use of very specific input devices, such as the Mi-
crosoft Kinect, a low budget motion sensor camera [1].

Motion sensor devices can also be used for gesture recognition. This means that by
performing specific gestures, performers can trigger certain events on a virtual stage,
such as materialize objects, stretch them, make them appear or disappear, and several
other visual effects. This allows for a different play on traditional performances, mixing
both real world and virtual world by enabling real world human movements to influence
what happens on a virtual stage.

By blending these concepts we can accurately capture the performers’ movements,
the stage where they are performing and define their interactions with the stage elements.

1.3 Presented Solution

As mentioned before, there exists an inherent challenge in both capturing and depicting
the routine movements in an accurate and precise way. Therefore, this project’s goal is
to create a software tool that allows users to interact with a virtual stage using only a 3D
virtual model, making use of a specific input device, such as the Microsoft Kinect, for
motion sensor purposes. This software will serve as a support for composition processes
or rehearsals, where the user can focus on specific body movements done by either a real
or a virtual performer.

The tool is developed in C++ using the openFrameworks platform [2], a library ded-
icated to creative graphical programming, specifically using the Kinect Common Bridge
[3] add-on, which is a wrapper for the official Kinect Libraries. In order to accomplish
the 3D graphical simulation our tool will communicate with Blender (section 2.4.1), a 3D

1http://www.mooreslaw.org/

2

http://www.mooreslaw.org/

1. INTRODUCTION 1.4. Document Structure

modeling software with an internal game engine, through add-ons developed in Python
language.

Our initial system design is divided into two main systems, the motion capture sys-
tem and the 3D representation system, as represented in figure 1.1. The motion capture
system focuses on capturing and interpreting the performer’s movements, being capable
of detecting performers in front of a camera and represent their performance in some
data format in real time. It also allows for playing recorded animation files instead, that
follow the same movement data format. The 3D reconstructing system focuses on rep-
resenting the performer’s body and the stage where the performance occurs in a virtual
environment. The emulated 3D model is able to interact with any virtual objects in the
virtual stage it is represented in. Video input is also used as part of the 3D represen-
tation system. When combining the two systems, a simulation can happen, in which a
previously created 3D model mimics the performer’s body movements, either detected
through skeleton tracking in real time, or through animation files instead.

Figure 1.1: Diagram of the project’s initial architecture.

1.4 Document Structure

This document is divided into five main chapters - introduction, related work, concept
and initial prototype, final prototype and conclusions and future work.

The first chapter, Introduction, presents an overview of the dissertation, addressing
several issues such as the main motivation and context for this dissertation, and our
presented solution.

The second chapter, Related Work, focuses on systems and tools similar to the pro-
posed solution, where some of their features or techniques are relevant to the solution.

The third chapter, System Model and Features, details the system model and how

3

1. INTRODUCTION 1.4. Document Structure

each of the features is implemented. The initial steps of the development cycle are also
defined in this chapter.

Then, in the System Development chapter, a final prototype is presented. All of the
final intricacies regarding the development cycle are explained here.

Finally, the Conclusions and Future Work chapter presents the overall conclusions
regarding this project, combined with evaluation aspects, followed by the future work
possibilities regarding our work.

4

2
Related Work

This chapter presents concepts and techniques used in the development of the proposed
solution. In the following sections, several tools, techniques and systems relevant to the
solution will be presented in detail. This chapter is composed of three sections. The
first section addresses digital tools used for representing artistic performances. The sec-
ond section is dedicated to tools used for motion capture and finally the third section
discusses the several options available in 3D simulation software.

2.1 Digital Tools for Artistic Performance Representation

This section covers already existent digital tools with a similar context to our presented
approach that are considered relevant to the solution.

2.1.1 Virtual Reality Theatrical Performing

Artists in the world of traditional theatrical performing have always been looking for new
ways to entertain the viewers. One way to give viewers a new and refreshed experience
is through virtual reality, and some of the ideas explored so far include creating a fully
virtual performer avatar who acts by recognizing a performer’s actions, as seen in figure
2.1 [4], and even project holographic 3D stages [5], giving users a complete virtual theater
experience.

Besides having the full traditional theatrical experience, a virtual stage enables the
possibility of adding elements that would not be possible in the real world, for exam-
ple, imaginary or non-human characters, impossible actions like “summoning magic”,

5

2. RELATED WORK 2.1. Digital Tools for Artistic Performance Representation

or even simulating things that would be too dangerous to do on a real stage like py-
rotechnics.

However, this transition from the real world to a virtual one is not seamless, mostly
because of its need for pre-programmed actions. If these actions are to be captured by non
intrusive motion cameras, such as the Kinect, they depend on the environmental condi-
tions where the actions are captured, taking the risk of the system not working properly.
Virtual performers or avatars also usually follow a script, acting based on pre-recorded
actions, not allowing them to be spontaneous and capable of any form of improvisation.

Using gesture recognition, it is possible to simulate improvisation, making a virtual
avatar act based on what actions are performed by a real world performer, giving the illu-
sion of responsiveness [4]. In order to make the human-avatar interaction seem as spon-
taneous and human-like as possible, a large database of gestures and actions is needed.
This requires an extensive list of avatar actions that need to be previously captured or
pre-programmed, also requiring the performer to know every single gesture that makes
the virtual avatar react, just to give the illusion that the avatar is acting on its own free
will.

These approaches could also be combined into a mix between scripted sequences and
inferred sequence. These last ones could be defined through machine learning by, for
example, understanding the last movements executed by the performer and recognizing
the sequence as a trigger for executing another action in stage. With this, any performer
could define a sequence trigger, “teaching” it to the artificial intelligence system.

Figure 2.1: More elements are added to the virtual stage as a triggered response to the
performer’s actions [4].

6

2. RELATED WORK 2.1. Digital Tools for Artistic Performance Representation

2.1.2 Virtual Reality Dance Performing

As mentioned before in Chapter 1, some dances are based on routines, which define the
performer’s procedural body movements over a period of time. Along with the introduc-
tion of motion capture methods, new ways to perfect these routines started to appear. It
became possible to record performances and perform a quick analysis of what move-
ments were made, detecting and correcting all non intended movements.

This technique has previously been used to record dance routines for both solo prac-
tice or group practice. Baird et al. presents an example of how routines can be recorded
and reproduced in digital form [6]. They designed a tool that uses a library of small move-
ments that follow Laban dance notation, where users select which movements from the
library to perform and capture them wearing a motion capture suit [7]. The tool takes the
recorded movements and places them in a 3D virtual environment, where the user is free
to rearrange the order of the recorded movements to its liking, while getting feedback
through a virtual avatar performing the sequence of movements selected.

Chan et al. created a system for performers to improve movements in an interactive
way, consisting on using a virtual avatar that can teach and perform dance routines, mak-
ing users match their movements [8]. These dance routines must be previously captured,
and are performed by a professional dancer wearing a full body motion capture suit,
as seen in figure 2.2. When using the system, users must also wear a full body motion
capture suit and just follow the instructions given by the virtual teacher. The user’s per-
formance is then compared to the teacher’s and a score is given. This score is computed
based on the euclidean distance of each of the joint positions, comparing the template
posture and the student’s posture, averaged throughout all of the frames. However, dif-
ferent body types will produce different results, for example, a person that is both short
and large in stature will struggle enacting a position done by a tall skinny person. Be-
cause the score is based on an euclidean distance function, this difference in body types
will not be that impacting, but enough to make a difference, not being equal to all body
types. In the end, the point system is an interesting way of acknowledging how good the
movements are performed, and by doing so, it encourages performers to improve.

There are also systems like ChoreoGraphics by Schulz et al., that focus on solo and
group performances. Wearing a motion capture suit, dancers can perform their actions
guided by a musical track [9]. After recording, these performances can be divided into
small steps, allowing the rearrangement of the same steps in whatever sequence. In ad-
dition, by combining several performances, it is possible to represent each one of them
in a specific position on a 3D virtual stage, while performing their recorded sequences
in synchronization, due to the same musical track tempo. By doing this, it is possible to
analyze group performances as a whole, while still focusing on details of each individual
performance.

Virtual reality has also been used for adding visual effects to the performance’s ac-
tions. In project RAM visual effects are created based on what the dancer’s position on

7

2. RELATED WORK 2.1. Digital Tools for Artistic Performance Representation

Figure 2.2: A performer using a full body suit for capturing dance movements for the
virtual avatar to perform [8].

the stage is, and on their flow of movement. A tool was developed as a support for dance
creativity, where visual effects are dependent on the skeletal tracking input [10].

Using the provided toolkit, the visual effects can be modeled and simulated on a
virtual stage, based on a previously captured virtual performance, as demonstrated in
figure 2.3. These virtual effects can then later be seen on the physical stage, when the
dancers perform the rehearsed movements that trigger the modeled visual effects. This
can be achieved using a standard optical motion capture system, a Microsoft Kinect, or
Motioner, an open source system developed specifically for project RAM, consisting of
18 lightweight sensors attached to the dancer’s body.

This system promotes creating and using different types of dance movements, where
the viewers follow not only the dancer’s movements, the visual effects that appear, but
also how the effects interact around the dancer.

Figure 2.3: Project RAM’s different visual effects created from the previous movements
done by the performer [10].

8

2. RELATED WORK 2.1. Digital Tools for Artistic Performance Representation

2.1.3 Virtual Avatar Automatic Rigging

Virtual Avatars are composed of two separate structures, an external surface representa-
tion, also called skin or mesh, and the internal hierarchical set of interconnected bones,
called skeleton or rig. Because the bone connections form a hierarchy, all transformations
that occur on a parent bone node will propagate to all child bone nodes. For example,
when animating a humanoid skeleton, if a thigh bone rotates then the lower leg and all
of its children bones will also rotate.

A conventional rigging process requires manual input to make sure the body mesh
follows the skeleton movements. This requires placing the skeleton joints inside the char-
acter mesh, while specifying which parts of the surface are attached to which bone. Be-
cause this process is time consuming and tedious, some automatic tools have already
been created.

Ilya Baran et al. created a tool entitled Pinocchio that takes a character mesh, the
corresponding skeleton and a motion of that skeleton as input, obtaining the character
performing the given motion as the output, as seen in figure 2.4 [11]. The algorithm used
consists of two phases: skeleton embedding and skin attachment. In the first phase, the
skeleton’s joint positions are calculated and placed inside the character. In the second
phase bone weights are computed based on the proximity of the embedded bones, so
that the algorithm knows how to apply deformations of the skeleton to the character
mesh. To simplify the process, it is assumed that both the character and skeleton have
approximately the same orientation, pose and proportions.

Figure 2.4: Using a static character mesh and skeleton as input, a moving animation is
automatically created [11].

Several 3D modeling software options include tools specifically created for aiding in
the rigging process. Rigify is an add-on for 3D modeling software Blender created for
this purpose [12]. With it, it is possible to rig most biped characters, providing small
individual armature parts, such as legs, arms or fingers. By connecting these individual
parts in whatever way wanted, with just a button click the rig is automatically created.
Rigify only automates the creation of the rig controls and bones, so the process of attach-
ing the skeleton rig to a mesh must still be done manually. The created rig accepts only

9

2. RELATED WORK 2.2. Motion Capture Cameras

rotational values, having a rotation node for each armature bone. When finally attached
to a mesh, the effects of the rotation can be seen, as demonstrated by figure 2.5.

Figure 2.5: A rotation value was inserted in the selected node, rotating the model’s arm.
The node’s position (Location), however, is locked and cannot be modified.

2.2 Motion Capture Cameras

As mentioned before, the main motion capture device used for this project is the Mi-
crosoft Kinect, so the main focus of this section is on the device’s capabilities.

2.2.1 Microsoft Kinect

The Kinect camera was developed by Microsoft in cooperation with PrimeSense, being
introduced to the public in June 2009 during the Electronic Entertainment Expo (also
known as E3) and released in November 2010 [13]. Kinect consists of three different
components working together:

• A standard color sensor, to retrieve RGB images;

• A depth sensor, comprising an infrared (IR) laser projector which shoots IR rays
through the captured scene and a sensor that records them. The distance to the
camera is then measured by the size and the position of the recorded IR dots;

• It also includes a built-in multi-array microphone to get audio information.

2.2.1.1 Color Stream Data

The Kinect camera has a default resolution of 640x480 at 30 frames-per-second, which
can be increased, at the cost of a lower frame-per-second rate. This means that for high-
resolution images more data per frame is sent, which makes it update less frequently,

10

2. RELATED WORK 2.2. Motion Capture Cameras

while lower-resolution images update more frequently, but with some loss of image qual-
ity. These limitations are all hardware defined, because the of the infrared sensor’s char-
acteristics. The infrared image stream is a particular configuration of the color image
stream as well, meaning that both these streams are supposed to function with the same
resolution and rate. An example of the color stream data can be observed in figure 2.6(a).

The camera’s color data is also available in different formats, able to be coded as RGB,
YUV or Bayer formats, but only one resolution and format can be chosen at a time [14].

2.2.1.2 Infrared Stream Data

Infrared light is the electromagnetic radiation with lower frequencies than those of visible
light. As a result, infrared light is used in industrial, scientific, and medical applications
to illuminate and track objects without visible light.

The Kinect makes work of this feature, having a depth sensor which generates invis-
ible infrared light to determine an object’s distance (in millimeters) from the sensor [15].
An example of the depth and infrared stream data can be seen in figure 2.6(b) and 2.6(c).

In order to be able to infer depth from a scene, the infrared light is projected in a non
uniform manner. Knowing this, the camera can match the patterns of dots to hard-coded
images it has of the projected pattern. This technique is also called Structured light, and
in Kinect’s case, it is also combined with two other computer vision techniques [16].

The first technique is Depth From Focus, which is based on the principle that what
is farther away will become more blurry. The second one is called Depth From Stereo,
and it uses the parallax concept. The Kinect camera lens is astigmatic, having a different
focal length in x- and y- directions. By projecting from one position and observing it from
another, it is possible to detect the shift of the speckled pattern [17].

The Kinect’s internal processor is then able to use this information to triangulate the
three-dimensional position of the recorded points. Using this, it is possible to use depth
data to track a person’s motion or identify background objects [18].

Because the infrared image stream is a particular configuration of the color image
stream, it is not possible to have a color image stream and an infrared image stream
working at the same time on the same sensor [19].

2.2.1.3 Skeleton Tracking

Skeletal Tracking is a feature that allows Kinect to recognize people and follow their
actions. Using the infrared camera, it can recognize up to six users in the sensor’s field of
view, while up to two users at a time can be tracked in detail [20]. An internal application
can locate the joints of the tracked users in space and track their movements over time,
as demonstrated in figure 2.6(d).

This feature is optimized to recognize users standing or sitting, while facing the
Kinect. To be recognized, users simply need to be in front of the sensor, making sure

11

2. RELATED WORK 2.2. Motion Capture Cameras

the sensor can see their head and upper body. No specific pose or calibration action
needs to be taken for a user to be tracked.

Because the human body is capable of performing an enormous range of poses which
are difficult to simulate, the best way to recognize a human body’s position is to have a
large database of previously captured human actions [21]. Body parts are then inferred
using a randomized decision forest, with over 500,000 examples of specific positions like
driving, dancing, running or navigating menus.

(a) Color Stream (b) Depth Stream

(c) Infrared Stream (Enhanced) (d) Skeleton Tracking

Figure 2.6: An example of the Kinect basics: color stream data (a), depth stream data (b),
infrared stream data (c) and the corresponding skeleton tracking (d).

2.2.1.4 Official Kinect SDK

In order to make use of the Kinect’s features, Microsoft freely distributes the Kinect for
Windows Software Development Kit (SDK) and Kinect Developer Toolkit (KDT), for any-
one to use [1]. These kits contain drivers, tools, APIs1, device interfaces, and code sam-
ples in programming languages such as C++, C# and Visual Basic, necessary for building

1Application Programming Interface

12

2. RELATED WORK 2.2. Motion Capture Cameras

applications. This SDK is exclusive to Windows operating systems, but there are open
source adaptations of the Kinect SDK libraries for other systems, such as OpenNI [22]
and OpenKinect [23], for both Linux and Mac operating systems.

The first version of the Kinect SDK for non-commercial use was released in June 2011,
already including functionalities such as retrieval of color and depth sensor data, skele-
tal tracking and audio processing capabilities. Along with version 1.5, which came out
February 2012, support for new functionalities were added such as a seated skeleton
tracking mode, more speech recognition languages and the Kinect Studio application,
which allows users to record, playback and debug clips while interacting with appli-
cations which use Kinect input data. This application is particularly useful for offline
testing, since a single Kinect Studio file includes all the available data streams, including
depth and skeleton tracking data. In version 1.7 of the SDK, Kinect Fusion (mentioned
in Section 2.3.1) was released, and since then, only one more version (1.8) was released
for this device. A whole new device was released along with the 2.0 version, to go along
with Microsoft’s new home console Xbox One. The new Kinect features are specified in
section 2.2.2.

Many of the code samples provided were experimented on, focusing on obtaining
color, infrared and depth images, skeleton and face tracking and how the Kinect fusion
actually works. The color, depth and infrared streams, skeleton and face tracking code
samples are very straight forward, simply demonstrating how to use the corresponding
data streams, and how to export those same data streams into image files.

2.2.2 Microsoft Kinect Version 2.0

The recently launched Kinect for Windows v2 sensor, released in Europe in September
2014, has the same basic hardware features as the previous Kinect, but improved their
potential in all aspects [24]. Although it carries the Kinect name, it is a completely new
device, not being backwards compatible with version 1.8 of the SDK, and also requiring
Windows 8 as an operating system.

The sensor’s new color camera can now capture and display data in full 1080p res-
olution video, which is a big improvement in quality from the previous 640x480 reso-
lution. The new depth sensor allows tracking up to six people simultaneously, having
an upgraded positional recognition of the skeleton’s joints. The number of joints also
increased to 25 joints per person, allowing for a more complete body tracking. Figure
2.7 demonstrates the depth sensor differences between devices. Facial tracking is now
possible, whereas previously it was not, when using a Kinect for Xbox device.

A new Visual Gesture Builder application was introduced in this SDK version, where
a user can create and customize new gestures to be recognized by the camera. These
gestures are added to the already extensive list of gestures included in the SDK for this
purpose. This version now allows building and publishing apps using the Kinect features
in Unity’s 3D development environment. It also allows for multiple applications to access

13

2. RELATED WORK 2.3. Motion Capture and 3D Representation Assisting Tools

Figure 2.7: Comparison between the images provided by the depth sensors of the Kinect
v1 (left) and the Kinect v2 (right) [24].

a single device simultaneously, not granting exclusivity to a single application.

Instead of using Structured Light, this new device’s infrared sensor now uses the
Time-of-flight technique [25]. Cameras using this technique are able to provide a real-
time 2.5D representation of an object, since only a part of the surface can be seen by the
camera. This object is illuminated with an incoherent light signal coming from the in-
frared emitter, which is reflected on the surface of the object, only to be recaptured by the
infrared sensor. When this happens, not only depth values are acquired, but also the in-
tensity of the reflected light signal allows for a better representation of the data received.
With this technique, the device’s response time is increased from 65 milliseconds to less
than 14 milliseconds.

When comparing with Structured Light, by using Time-of-Flight it is not necessary to
use Depth From Focus or Depth From Stereo anymore, since the 2.5D object representa-
tion and light intensity values achieve what these techniques are meant to do. Also, depth
values at non-illuminated points have to be derived via interpolation, which means more
computation time spent [26]. For Structured Light devices an initial calibration is also re-
quired to be able to map the 3D point values, because of the unknown light pattern which
is emitted in a non uniform manner, as mentioned in section 2.2.1.2.

2.3 Motion Capture and 3D Representation Assisting Tools

Since we will be working specifically with Kinect devices for capturing motion data, a
research was conducted on already existing tools that specialize in creating or manipu-
lating motion capture data and 3D representation of human bodies.

2.3.1 Kinect Fusion

In March 2013, the first installment of Kinect Fusion was released with the official Kinect
for Windows SDK version 1.7. Kinect Fusion is an application which provides 3D object
scanning and model creation tools using the Kinect camera [27]. Users can take depth

14

2. RELATED WORK 2.3. Motion Capture and 3D Representation Assisting Tools

images of a scene or an object with the Kinect camera, and create a detailed 3D model
constructed in real time, being also capable of exporting the created 3D mesh in STL, OBJ
and PLY formats.

Kinect Fusion takes advantage of a process known as Simultaneous Location and
Mapping (SLAM) [28], in which it is possible to reconstruct a single dense surface model
with smooth surfaces by integrating the depth data captured from the Kinect camera
over time and from multiple viewpoints [29]. To do this, an algorithm known as Itera-
tive Closest Point (ICP) is used [30]. As the camera moves around the scene, a different
perspective is captured at every frame. The ICP algorithm then repeatedly rotates and
translates the current frame until it finds the best match with the last frame’s pose. By cal-
culating how each frame relates to the others, it is possible to stitch these frames together
into a single reconstructed voxel volume.

2.3.1.1 Simultaneous Location and Mapping Process

The SLAM process starts by receiving a depth frame from the camera. Usually this cap-
tured raw data is often noisy, so a bilateral filtering is applied to it, smoothing the noise
in the data, but still maintaining sharp transitions between pixels, as we can see in figure
2.8 [31]. This filtered image is then scaled down twice, once to half-size and another for
a quarter-size, creating three different scale images. These copies are very useful for the
ICP alignment process, using the smaller copy for a quick rough alignment and the more
detailed one for a more refined alignment.

In order to run ICP the scene must be rotated and translated and so, for mathemat-
ical purposes, the images are converted from a pixel based to a 3D coordinate based
representation, resulting in a vertex map and a normal map for each of the three depth
images. The vertex map contains a list of points where each point has 3D coordinates
that represent the surface to measure. The normal map is also a list related to the same
points, where each entry is the direction the surface is facing. These maps are always
used together so that each vertex has a position and orientation.

To give the user some feedback on the scan’s development, a Truncated Surface Dis-
tance Function (TSDF) volume (described in 2.3.1.2) is converted to an image. Finally,
points are extracted from the more refined TSDF volume for the next round of ICP. This
is done because the previous ICP alignment probably had a tiny amount of error, but if
this were not to be corrected, errors would aggravate.

The SLAM process should occur 30 times per second, at the rate the depth frames are
sent from the Kinect. If it is any lower than that, frames are going to be skipped, making
it difficult for ICP to be successful. This process requires a large computing power and
must always be running at full speed, and to do so, it is broken up into small chunks and
run in parallel on the graphics card, taking advantage of the fast instruction processing
speed done by the thousands of processor units that graphics cards contain.

15

2. RELATED WORK 2.3. Motion Capture and 3D Representation Assisting Tools

(a) Original (b) Filtered

Figure 2.8: An example of bilateral filtering application: a picture with no filtering (a)
and with bilateral filtering (b), smoothing the differences between pixels [18].

2.3.1.2 Truncated Surface Distance Function

To represent the vertex map and normal map that describes a surface in memory, an algo-
rithm known as Truncated Surface Distance Function (TSDF) is used [32]. This function
makes hand-held scanning on personal computers feasible, and allows for a continuous
refinement of the captured model.

When scanning, the real world object is reconstructed within a virtual volume con-
sisting of a grid of voxels. To each voxel is assigned a distance value and a confidence
value based on its orientation, for example, a surface facing the camera is given a higher
weight for being, most likely, more accurate than a surface at an angle.

These values are representative of an accuracy estimate for the voxel’s distance and
are generated as follows: By drawing a line from the camera through each vertex in the
voxel grid, more voxels are going to be intersected. For every intercepted voxel near the
surface, the distance value is updated, calculating the distance from the current vertex
to the center of the intercepted voxel. This process is repeated for each intercepted voxel
and for each vertex in the voxel grid. As the camera moves around, the TSDF volume
voxels are continuously updated and refined, as demonstrated in figure 2.9.

16

2. RELATED WORK 2.3. Motion Capture and 3D Representation Assisting Tools

Figure 2.9: The model starts being unrefined, but after continuous updates a state of good
definition is achieved [29].

2.3.2 Skanect

When searching for 3D reconstruction systems, Skanect was one of the first ones that was
found [33]. Using low cost motion capture cameras like the Microsoft Kinect and Asus
Xtion [34], it allows capturing full color 3D models, while also being capable of creating
and exporting 3D meshes, similar to Kinect Fusion. These meshes can be later loaded in
other 3D modeling software such as MeshLab [35] , Blender (Section 2.4.1) or Autodesk
3ds Max [36].

When starting Skanect, several options are presented. It is possible to scan a new
mesh, load a previously scanned mesh or configure settings. When scanning a new mesh,
Skanect provides feedback in real time, inside a bounding box, of what is to be scanned,
also showing the color and depth images captured in real time by the camera. There are
options to include a time delay when starting a recording, and also to limit the time of
the recording. On pressing the record button, the mesh starts to be constructed, and as
the camera is moved around the target, the mesh gets more refined.

What differentiates Skanect from Kinect Fusion is the ability to edit the recorded mesh
before exporting it, as seen in figure 2.10. Skanect supports many mesh editing options,
making it possible to reduce its number of faces, rotate and translate, remove unwanted
mesh parts, color the mesh using the corresponding color data captured and also repair
surfaces based on Convex hull algorithms [37].

2.3.3 Brekel Kinect

Brekel Kinect is a system very similar to Skanect, in the fact that it is also a 3D recon-
struction system, capable of building and exporting 3D meshes using a low cost motion
capture camera [38]. In addition, it allows recording skeleton tracking movements and

17

2. RELATED WORK 2.3. Motion Capture and 3D Representation Assisting Tools

Figure 2.10: A reconstructed 3D mesh of a room using Skanect [33].

export them in BVH (Biovision Hierarchy) format, providing skeleton hierarchical in-
formation as well as motion data, or stream it into Autodesk MotionBuilder [39] in real
time.

These features are all bundled in the free version, however, there are three more paid
versions which specialize in other features such as enhanced point-cloud recording, face
tracking or enhanced body motion capture. Unlike Skanect, that is built to be simpler
and more user friendly, Brekel allows for a more advanced tweaking of settings, as seen
through the menu options in figure 2.11. For example, when reconstructing a scene using
point-cloud, it is possible to make small tweaks to the machine’s performance by specify-
ing if the processor should work in single or multi-threaded mode, while also controlling
the minimum and maximum depth to capture and also the size of all points captured.
This performance aspect can all be monitored through the frames-per-second counter
and CPU usage percentage graphs.

Using the Kinect’s skeleton tracking feature, it can also generate a BVH animation
file, which can be used in any 3D animating tool. Being originated from the Kinect, this
BVH file contains the right amount of bones, and their hierarchy, for creating animation
rigs to use with the Kinect captured data.

2.3.4 NI Mate

NI Mate is a small but powerful piece of software, developed by Delicode, which uses real
time capture data from a low cost motion capture camera such as the Microsoft Kinect or

18

2. RELATED WORK 2.4. 3D Simulation Engines

Figure 2.11: Brekel’s main menu. We can observe the computed point cloud originated
from the depth and color images captured [38].

Asus Xtion [40]. Its main feature is the real time skeletal tracking, while also providing
additional add-ons for easy integration with other systems, and some sample files and
tutorials for fast learning purposes.

What makes this system interesting are the plug-ins provided to use in conjunction
with several 3D modeling softwares such as Autodesk Maya [41], Unity [42] or Blender
(Section 2.4.1). By rigging a skeleton, and associating Kinect’s skeleton joints in NI Mate
to the 3D model joints in the 3D modeling software, it is possible to animate a 3D model
in real time with real human movements, making it easier to give animations a reliable
human-like behavior, as demonstrated in figure 2.12.

2.4 3D Simulation Engines

Because this project will have a virtual representation of the user, the need for a 3D simu-
lation development tool is essential. This tool will have to be capable of creating a virtual
stage, create or import a human-like rig, and also have a way to integrate with the Kinect
camera data. In the following subsections, we will be discussing these aspects, consider-
ing the different available tools which integrate with the Kinect.

2.4.1 Blender

Blender is a free open-source 3D computer graphics software developed by Blender Foun-
dation used for creating 3D assets to be used in several media such as animated films or

19

2. RELATED WORK 2.4. 3D Simulation Engines

Figure 2.12: One of the developers at Delicode using NI Mate to animate an existing rig
in Blender [40].

even video games [43]. It includes a built-in game engine that works differently than the
conventional Blender engine.

When using the standard Blender engine, all images and animations are only ren-
dered once, meaning they cannot be modified, but because the game engine renders in
real time, all objects in the scene can be considered dynamic, simplifying the creation of
interactive 3D applications or simulations. The game engine also has other features such
as collision detection, dynamics engine and programmable logic. This logic uses Python
programming language and, through Blender’s API, allows scripting for tool creation
and prototyping, game logic, and other custom tools.

Blender Foundation announces approximately every two years a new creative project
to show case the tool’s potential and encourage new and innovative applications done in
Blender. These projects include short films such as “Elephants Dream” (2006) [44], “Big
Buck Bunny” (2008) [45], “Sintel” (2010) [46], “Tears of Steel” (2012) [47], but also small
video games like “Yo Frankie!” (2008) [48] and “Sintel The Game” (2010) [49].

There are already several experiments to incorporate real time motion capture directly
into Blender, taking advantage of Blender’s support for external add-ons. Some exam-
ples include László Sátori’s work, who used Blender’s engine to create projections that
respond to a Hungarian dance group’s movements captured by Kinect [50], and Techni-
cal University of Ostrava’s work “Kinect & Blender” [51], in which a small application
developed in C# uses the Kinect API to get the skeleton tracking points and transmit them
over UDP2 through the Python add-on in order to use them as an input for controlling

2User Datagram Protocol

20

2. RELATED WORK 2.4. 3D Simulation Engines

an armature in Blender, as demonstrated in figure 2.13.

Figure 2.13: Kinect & Blender: demonstrating the skeleton tracking capabilities [51].

2.4.2 Unity

Similarly to Blender, Unity is a 3D computer graphics software which specializes in cre-
ating products for specific platforms [42]. Unity supports a wide range of platforms
including operating systems, such as Windows, Linux and MacOS, most mobile systems,
such as Windows Phone, Android and iPhone, but also home consoles such as the Sony
Playstation, Nintendo Wii U and the Microsoft Xbox systems. It even was chosen as the
default SDK for Nintendo’s Wii U console, shipping the Unity Pro version free of cost
along with each Wii U developer license [52]. It also allows for created content to run in
most web browsers, through the Unity Web Player application.

Unity is currently in version 4.5.5, and it has two versions available: There is a free
Unity version for noncommercial use, and also the Unity Pro, which license is available
for a fee. The most notable differences between versions are that most CPU and GPU
optimizations, video playback and streaming tools, and tools for rig creation are only
available in the Pro version [53]. Using the free version, most users resort to using ex-
ternal rig creation tools to achieve this last one, but most of them require a money fee,
which could be a setback for educational purpose development.

As for existing external tools which support Unity, the most commonly used is Zigfu
[54]. This tool’s development kit functions as a wrapper for external devices, more specif-
ically, the Kinect camera. It was created as a way to develop Kinect based applications
using JavaScript, and it eventually expanded to work with Unity. Using this, Unity built
projects, for both desktop or browser use, can access and work with real-time Kinect cap-
tured data. The recently launched Kinect v2 SDK also advertises that it now includes API
support for Unity Pro, but, at the time of writing this document, the projects and samples

21

2. RELATED WORK 2.5. Discussion

using this feature were still in private testing, so details regarding this matter are subject
to change [55].

2.5 Discussion

As demonstrated in section 2.1, there are several ways to capture a performance. For
example, ChoreoGraphics [9] and the system developed by Chan et al. [8] use a tradi-
tional full body motion capture suit, but other capturing methods are starting to appear.
Low cost motion capture cameras like the Kinect can be used to capture performances
the same way that other more expensive systems do, at the cost of a lower fidelity of the
movements tracked. Also, more and more sophisticated motion capture peripherals are
being created specifically for motion capture purposes, like the Motioner used in project
RAM [10].

Having a method to capture movement, a way to visualize this captured data is also
needed. The system must give the user some sort of visual aid to help understand what is
being captured by the cameras in real time. All systems mentioned in section 2.3 achieve
this in some form, for it is an essential feature to have, by having a virtual avatar in a
virtual stage.

In short, there are many different types of features already implemented in this field
such as gesture and sound recognition, performance recording and matching, and many
other real to virtual world interactions. The transition from virtual to real world, how-
ever, is not perfect. There is still the need to “humanize” all virtual movements, make
them feel natural and not forced, while also guaranteeing the reliability when capturing
all movements performed.

For this to happen, some features in this field, such as skeleton tracking and the 3D
reconstruction methods, should be further improved for a more accurate model of the
performer simulating real performances in a virtual stage. Our proposed tool gives the
user a way to capture and represent a human digitally, both in his physical body and in
the movements it can do, while also visualizing its interactions with non physical objects
inside a virtual stage. It also opens the way for future features such as 2 person local,
or remote, collaboration using multiple cameras, or even incorporate different captured
objects, not specifically human-like, into a virtual stage.

Back in 2011, when the Kinect was first released, there were no other low cost mo-
tion capture systems available. This innovative piece of hardware certainly impacted
the world of motion capture and animations, and it allowed for the creation of numer-
ous new tools that were never thought of before. The Kinect SDK is constantly being
updated, improving the existing features and integrating new tools, and with the most
recent version having much more tool support, more and more tools will be created in
the future.

Most of the researched tools mentioned in section 2.3 focus on skeleton tracking and

22

2. RELATED WORK 2.5. Discussion

some way of motion capture, either by recording the skeleton animation or by integrat-
ing it directly into an external 3D modeling software. Some of them are also capable of,
similarly to Kinect Fusion, digitally reconstruct a 3D model and allow exporting the re-
constructed mesh, which can be later used in 3D modeling software such as Blender or
Unity.

As for the researched options in 3D development software, mentioned in section 2.4,
when applied to a project such as our own, Blender is probably the best choice. Its best
trait is the accessible integration of external Python language plugins, and being Open
Source, it could be ultimately modified to operate in any way desired. Because creating
a rig with specific characteristics is an important step in our project, Unity is sadly not an
immediate option, since its free version is incapable of doing so without external help.
External rig creators could also be an option, but, out of the available free ones, many
are automated, not creating rigs with as many bones as the Kinect’s tracked skeleton.
Because of this, Blender’s Rigify plays a big part in the development of our prototype,
since it can freely create rigs for a specific set of skeleton bones connected with a specific
hierarchy, in our case, the one provided by the Kinect camera.

23

2. RELATED WORK 2.5. Discussion

24

3
System Model and Features

In this chapter, we will start to delve into the fundamentals of building a prototype,
taking in mind the notion of motion capturing, 3D model animation and 3D spatial rep-
resentation, to be used in an artistic performance context. The goal of this chapter is
to document in detail the system model and how each of the features is implemented,
explaining all of the rationale behind each decision.

3.1 Data Acquisition and Representation

The core feature of this project is the capture and representation of data portraying body
movements. This can be split into two phases, the first one being the input, represented
by the chosen data type to be captured, the other being the output, represented in a virtual
body on a virtual stage capable of acting according to the captured data. To achieve this,
several tests were executed with the camera at our disposal, the Kinect for Xbox (Model
1414). The captured data is then to be injected in a virtual model, or a rig, inside a 3D
game engine tool.

3.1.1 Data Acquisition

The first step executed for building the prototype was obviously getting the Kinect cam-
era to display information, giving the user a visual cue of the data being captured by the
camera. It was already decided that the code would be written in C++, as a direct result
of using the openFrameworks toolkit. So, for an easier integration, it was also decided
to use the Microsoft Visual Studio 2012 as the IDE1 of choice. As such, openFrameworks

1Integrated Development Environment

25

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

would facilitate developing code capable of having a graphical representation, while also
using the Kinect Common Bridge (KCB) add-on to ease the process of obtaining informa-
tion from the Kinect camera.

The KCB add-on simply functions as a wrapper, providing a simpler way to fetch
information from the Kinect camera. It also integrates several additional libraries to help
manipulate most commonly used data streams. An example of this is the capability of
obtaining not only the global rotation values, but also hierarchic values from each joint
automatically. Because of this, it is logical to say that, at this level, the tool’s limitations
in capturing data are the same as the camera’s.

Most openFrameworks add-ons provide one, or more, code samples for the user to
understand how these additional tools can be used. This was also the case for the KCB
add-on, as one of the skeleton tracking examples was studied for constructing the base
line for our tool. This code sample provides all the necessary basics for capturing body
movement, for it displays what the camera is capturing in a color and depth stream, side
by side, and can detect and display users on screen as can be seen in figure 3.1.

Figure 3.1: Kinect Common Bridge’s Skeleton example graphical display.

After analyzing the information captured by the Kinect camera it was understood
that each skeleton is represented by twenty nodes (figure 3.2(a)). The new Kinect version
2 has an improved skeleton tracking system, with the new skeleton having twenty-five
nodes, with new nodes placed in the neck area and on the hands. These nodes bring more
consistency to the whole skeleton’s orientation, since it can now easily determine how the
arm is rotated using the thumb’s position, and also allows hand gesture recognition.

These skeleton bone nodes contain position and rotation values in relation to the
camera’s position, which can be later used when injecting data in the virtual rig. All
nodes are connected in an hierarchic manner, i.e., all geometric transformations executed
on the parent node will propagate to all child nodes attached, where in our case the
HIP_CENTER node is the root of the entire skeleton. A tree representation of the skele-
ton’s hierarchy can be seen in figure 3.3. The position bone node values are stored in a
simple Vector4 structure, which is capable of storing four float variables, representing W,

26

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

(a) Kinect for Windows v1.8 (b) Kinect for Windows v2

Figure 3.2: Kinect skeleton node positions and orientations [56].

X, Y and Z values respectively. Only the X, Y and Z coordinates are really used, as they
represent the distance in meters from the origin, at the center of the camera’s field of view.
The rotation bone node values, however, are stored in a NUI_SKELETON_BONE_ORIENTATION
structure, which when represented in C++ code goes as follows:

Listing 3.1: Kinect SDK v1.8 NUI_SKELETON_BONE_ORIENTATION structure

1 typedef struct _NUI_SKELETON_BONE_ORIENTATION {

2 NUI_SKELETON_POSITION_INDEX endJoint;

3 NUI_SKELETON_POSITION_INDEX startJoint;

4 NUI_SKELETON_BONE_ROTATION hierarchicalRotation;

5 NUI_SKELETON_BONE_ROTATION absoluteRotation;

6 } NUI_SKELETON_BONE_ORIENTATION;

From the variable names and types it can be presumed that this structure gives access
to the index position of the starting and ending joint, and also some kind of rotational
values in an hierarchical or global orientation. With this, it is now known that it is pos-
sible to adjust what node data is sent, either hierarchical or absolute values, depending
on how the rig interprets the injected data. This NUI_SKELETON_BONE_ROTATION
structure contains exactly that, a rotational matrix of size 4 and a rotation quaternion. By
using KCB, it is also possible to automatically convert this rotation data into Euler angles,
for the sake of adaptability.

Euler angles work with three rotational axes (normally defined as X, Y and Z), in an
hierarchical order, where any three-dimensional object can be freely rotated upon. This
combination of successive rotations can be decomposed in three angles, each representing
an axis-angle rotation.

Quaternions expand this concept, working with four dimensions, one real dimension

27

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

Figure 3.3: A tree representation of the Kinect v1.8 joints’ hierarchy.

and three imaginary dimensions. Each of the imaginary dimensions has a unit value of
√
−1, while being mutually perpendicular to each other, and are defined as i, j and k.

The following equation 3.1 represents a quaternion in axis-angle notation, where for any
quaternion q, a is the angle of rotation and x, y and z are the vector representing the axis
of rotation.

q = cos(a/2) + i(x ∗ sin(a/2)) + j(y ∗ sin(a/2)) + k(z ∗ sin(a/2)) (3.1)

However, for Kinect version 2, most of the APIs were modified, so the structure that
stores the joint rotation values is now represented as follows:

Listing 3.2: Kinect SDK v2 JointOrientation structure

1 typedef struct _JointOrientation {

2 JointType JointType;

3 Vector4 Orientation;

4 } JointOrientation;

This structure only has two variables, where JointType is an integer enumerate value
representing the index position of the current joint, and Orientation is a rotation quater-
nion representing the absolute joint rotation values. Since the hierarchical rotation values
are not represented, in order to convert a global rotation G of joint b into a hierarchic rota-
tion H , we need to get the global rotation G of the parent joint p, and multiply its inverse
as follows:

H(b) = G(p)−1 ∗G(b) (3.2)

3.1.2 Data Representation

Having found a way to acquire motion capture data, there is a need to somehow interpret
and represent that information in a visual manner. Using a virtual avatar it is possible to

28

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

emulate those captured movements in a 3D environment, so the next questions that need
answering are “What is our environment?” and “How can we create an avatar?”. Our
answer to both questions is found using 3D simulation engines.

As mentioned in section 2.4.1, the Rigify add-on can create humanoid rigs using a
simple mesh and an armature that resembles human bones in structure. From this, the
main idea is to create a mesh, to represent the avatar body, and create an armature, to
represent the bones, so the animation rig can be created. Because we are using the Kinect
camera, and the only known skeleton model created by the Kinect is the one mentioned
in figure 3.2(a), it is only logical to create an armature that has the same amount of bones
as this one.

In a way to try to immerse the user in a more realistic experience, the idea of recon-
structing a 3D avatar mesh of the performer came to life. With the Kinect camera at our
disposal, this process is simplified, since the official SDK includes the Kinect Fusion tool
(section 2.3.1), which allows to create an OBJ file containing a 3D representation of the
captured user. Some experiments were carried on to test the potential of this tool. The
first attempts were on inanimate objects, with later attempts being on human bodies. For
the inanimate object experiments, an office chair was chosen for not being too small of an
object and having some intricate parts that would be interesting to reconstruct.

The inanimate object reconstruction experiences presented several things to consider.
One thing in particular was obvious, as the floor was always getting captured and recon-
structed along with the object, as demonstrated in figure 3.4(a). This happens because it
is required that the target stays stationary during the reconstructing process and, because
gravity affects all objects the same way, they usually stay on an elevated surface, or on
the floor. As a result, there are surfaces which are impossible to reconstruct, where the
camera does not reach, such as the bottom part of the chair wheels, or the sole of the
shoes of human bodies, which lie on the floor.

(a) Floor capture (b) Chair handle reconstruction

Figure 3.4: Results of inanimate object reconstruction: the floor is captured along with
chair (a), a small metal bar linking the handle and the main chair pillar is missing (b) and
a final successful chair reconstruction (c).

29

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

This implies that, later in the project, since we are going to rig the reconstructed hu-
man bodies for animation purposes, the floor will have to be edited out of the created OBJ
file, for it does not belong to the human body. The chair lift handle also was not accurately
recreated, for it was missing a small metal connector with the main chair pillar, seen in
figure 3.4(b). This detection mishap probably happened due to its small volume, being
too small for the Kinect Fusion to consider it as part of the object being reconstructed.

Attempts on human bodies had similar problems to the inanimate object attempts,
as the floor was also being reconstructed. The clothes the target is wearing are also an
aspect to consider. The Kinect Fusion algorithm does not differentiate between body and
clothes, so it stitches them together in the same mesh. Later, when we animate these
bodies, this factor can make the model seem fatter than it is, or worse, by having the
limbs too close to each other they can be stitched together, not accurately representing
how the human body limbs are connected. One such example is having the arms staying
too close to the torso, stitching them up together in the mesh, as seen in figure 3.5(a).

(a) Casual pose reconstruction (b) Partial T-pose reconstruction

Figure 3.5: Results of human body reconstruction: full scale body reconstruction in a
casual pose (a) and T-pose attempt ends in a partial reconstruction of the arms due to the
camera distance to the target (b).

Each of the reconstruction attempts took about 3 minutes to completely create the
mesh without any cracks or missing parts. However, this is not optimal for human
body reconstruction. The optimal pose, and also more convenient, for accurately recon-
structing human bodies for animation purposes, without having body parts incorrectly
stitched, is having the model standing straight with arms wide open, making a T-pose,
exemplified in figure 3.5(b). This requires the target to be in that same pose for that
amount of time making it too tiresome. The resulting meshes also are not optimized,
having a high number of triangles defining the mesh. This can possibly be harmful later
on, when applying Blender Game Engine physics to the whole body, forcing it to make

30

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

much more calculations per second. Due to these complications, it was decided to use a
simple free 3D model available online as our human mesh.

After loading the OBJ file containing the desired model into Blender, and knowing
the skeleton composition coming from the Kinect camera, it is possible to set up an arma-
ture that will support the triangle mesh model. However, Rigify does not automatically
perform this operation, meaning that the armature has to be previously aligned with the
mesh for it to detect what skeleton bone belongs to which body part of the model. Only
then can the armature be attached to the mesh, creating another set of armature pose
modifiers with appropriate constraints, having the bone joint position and scale locked,
but being able to change rotational values. These constraints are also configured to be
contextualized, depending on the skeleton bone joint. A quick example of this is having
the knee joint unable to bend forwards, even if the rotational values received define it as
such.

Having an armature rig, we can finally decide what type of rotational values are to
be injected into the joints. After some research and deliberation between using Euler an-
gles or quaternions, we came across a common three-dimensional phenomenon which
can occur when using Euler angles. The Gimbal Lock problem happens when two rota-
tional axes of an object are pointing in the same direction, as demonstrated in figure 3.6
[57]. These two axes, who are overlapping, now work as just one, losing one degree of
control over the rotation of a three-dimensional object. This problem is inevitable, for it
happens in all Euler angle hierarchical combinations. With quaternions, this problem is
non existent, making it the obvious choice for our rotational values.

Figure 3.6: Gimbal Lock example, two axes are pointing in exactly the same direction
[57].

31

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

3.1.3 Initial Data Simulation

At this point, we already have the two elements necessary to create a prototype, for we
have the skeleton rotation nodes from the Kinect camera, and a way to create 3D body
models to animate in Blender’s environment. All that is left is to link the two. For that, a
simple UDP2 connection is established, in where the C++ code which fetches the Kinect
information sends it through the connection as information gets captured, as long as there
is a skeleton detected. In Blender, a simple Python script is loaded in the Game Logic
layer, which receives the information from the established connection. It then redirects
the given values to the correspondent armature pose modifier generated through Rigify,
which it would theoretically make the 3D model move accordingly. Unfortunately, be-
cause of the order Blender executes the different layers, the Game Logic layer comes
before the Scene layer, which makes the Python script execute first than the armature
constraints, overriding them.

By running the Blender Game Engine, we come across our first big hurdle. It seems
that even after receiving the values correctly, the body would not move. This was caused
by a Blender Game Engine standard, in where all objects are rendered only once, when
they are first created. A quick workaround was devised, where we would force only
the body object to re-render every frame. This has a higher, but necessary, strain on the
tool’s performance, for the entire model triangle mesh has to be reloaded as many times
as the information is received, which is expected to be 30 frames-per-second. If we were
to use a 3D model generated with Kinect Fusion, which has a higher triangle count, and
by adding more objects to the scene, there is the possibility that the tool’s performance
quality would decrease.

The second, and more relevant, hurdle came from the Kinect camera itself. When
testing the different node rotations, one by one, it was becoming apparent that some of
the nodes did not seem to react properly to the information received. As we are using
an hierarchical approach, when the root node is not working as intended, the adjacent
nodes are going to also not work properly, which is problematic.

In an attempt to circumvent the incorrect rotation problem, a different approach was
considered. Instead of using rotation values received directly from the Kinect, we tried to
inject a full BVH animation file into our tool. These BVH files contain information refer-
ring to the skeleton hierarchical composition, node starting locations and offsets between
them, while also containing rotational values that affects each of nodes for each frame.

Developed alongside with the prototype, MoCapPlay is a BVH file visualizer, i.e., it
loads BVH animation files and displays its skeletal representation in an OpenGL3 envi-
ronment, as demonstrated in figure 3.7. The program was then modified to convert the
raw Euler rotation values from the BVH file into quaternions, and send them through an
UDP connection for our Blender Python script to receive, making the 3D model move in

2User Datagram Protocol
3http://www.opengl.org/

32

http://www.opengl.org/

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

unison with the MoCapPlay skeleton.

Figure 3.7: MoCapPlay’s graphical environment.

The most distinguished aspect from the previous approach is the skeleton composi-
tion, for it is not guaranteed that the skeletons included in the BVH files have the same
hierarchy, or even the same amount of bones, as the Kinect skeleton. The most common
way to compare skeleton compositions is by analyzing their rest poses. A skeleton is in
rest pose when every bone has no rotation in their local space, as demonstrated in figures
3.8(a) and 3.8(b). This means that the number of skeleton bones and their positioning are
what can diverge between skeletons, with the most common skeleton variations being
having the arms wide open (T-pose) or pointing down (Relaxed pose).

(a) Rest pose (b) First frame

Figure 3.8: Displaying a skeleton’s rest pose and its first frame of animation, taken from
the jumpkick.bvh file, in MoCapPlay.

The main sample BVH file used for testing purposes, appropriately named jump-
kick.bvh, included an identical skeleton structure to the Kinect skeleton, and its animation
had a dancer doing some spins, ending up its performance with a jump kick, as illus-
trated in figure 3.9. This file, and several others used for testing, were downloaded from
the Carnegie Mellon University Motion Capture Database [58].

33

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Still frame shots of the jumpkick.bvh animation file.

The first tests had some interesting results. Firstly, it appeared that the chest node
would never rotate properly, even when injecting the rotation values manually in Blender’s
properties editor. This was caused by a Rigify fault where, when creating the arma-
ture pose modifiers of the rig, the hierarchical composition of the armature is ultimately
changed. When this happens, the armature hierarchy is then divided into two totally
independent sections: an upper section, which contains all bones from the chest up, with
its root being the SHOULDER_CENTER node; and the lower section, which is ev-
erything below the chest, having the HIP_CENTER node as its root, as illustrated in
figure 3.10. This results in the upper section root node not being altered by any rotation
involving only the lower section root node, and the other way around as well. One such
example is demonstrated in figure 3.11, where the chest node does not properly rotate,
changing the way the model should be posing.

To resolve this problem, it was necessary for the SHOULDER_CENTER node to
accumulate all the rotational values propagated through the HIP_CENTER, SPINE

and SHOULDER_CENTER nodes, in that specific order. So, we took advantage of the
quaternion multiplicative and associative properties, and performed a simple multipli-
cation, exemplified in equation 3.3. Assuming Q(c) is the quaternion obtained from the
SHOULDER_CENTER node, Q(s) is the quaternion obtained from the SPINE node,
and Q(h) is the quaternion obtained from the HIP_CENTER node, representing the

34

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

Figure 3.10: A tree representation of the Rigify created rig joints’ hierarchy.

Figure 3.11: The 3D model skeleton does not match the BVH skeleton because of the
faulty chest node values.

complete hierarchical structure for quaternion Q′(c):

Q′(c) = Q(c) ∗Q(s) ∗Q(h) (3.3)

Secondly, while some of the bones rotated as intended, some seemed to be facing the
wrong direction. This happened because the joint from the BVH file and the correspond-
ing joint in our armature functioned in different coordinate systems, having different ori-
entations. An example of the difference in orientations is represented with figures 3.12(a)
and 3.12(b). These armature bones look similar, but their orientations axes are placed
differently, which changes the way these bones react to rotations. If we were to apply a
rotation of 90 degrees in the X axis on both bones, the they would rotate in different di-
rections. If bone (a) was a bone from the BVH file skeleton and bone (b) was a bone from
our armature rig, we would have a faulty representation of the same rotation values.

When faced by this problem, the most common solution is to express one of the objects
in the same coordinate system as the other. [59]. Let us assume that Mi←j is the rotation
that converts the position of a point in a coordinate system j into its position in coordinate
system i. If P (i) is the position of a point in coordinate system i, and P (j) is the position
of the same point in coordinate system j, then we have P (i) = Mi←j ∗ P (j).

35

3. SYSTEM MODEL AND FEATURES 3.1. Data Acquisition and Representation

(a) (b)

Figure 3.12: Representation of armature bones with different orientations.

Then, if Q(j) is a rotation in coordinate system j, we want to find a rotation Q(i) in
coordinate system i that when applied to a P (i) would produce the same results as if Q(j)

were applied to P (j). This relation between points is represented by Q(i) ∗ P (i) = Mi←j ∗
Q(j) ∗ P (j). Substituting P (i) = Mi←j ∗ P (j), this expression becomes Q(i) ∗Mi←j ∗ P (j) =

Mi←j ∗Q(j)∗P (j). By simplifying this equation, we are left with Q(i) = Mi←j ∗Q(j)∗M−1i←j .

This same principle can be applied to our problem, forcing the local orientation of
the current node to match the orientation of the corresponding joint in the rig armature
when in rest pose. Suppose a quaternion Q(f), with the coordinate system originated
from the BVH file data, and assuming Mr←f as the alignment rotation that converts the
representation of coordinate system f , representing the file joints data, into its represen-
tation in coordinate system r, representing the armature rig joints. Equation 3.4 shows
how the final expression for correcting the rotation values, for any quaternion Q(r), with
the coordinate system from the corresponding armature rig joint.

Q(r) = Mr←f ∗Q(f) ∗M−1r←f (3.4)

By using these corrections, all joint rotations coming from the BVH file are thus cor-
rectly displayed on both the MoCapPlay display and our 3D model in our virtual stage.
The final alignment quaternions defined for all nodes in the jumpkick.bvh file are disclosed
in table 3.1. These values were obtained by comparing each BVH bone to each rig bone,
one by one, and determining which rotation would have to happen so that they would
have the same coordinate system, giving an close approximation of the movements per-
formed.

36

3. SYSTEM MODEL AND FEATURES 3.2. Simulation Environment

Table 3.1: Alignment quaternions used for jumpkick.bvh file. All joint names are the
Kinect’s equivalent joints, already referenced in figure 3.2(a).

Kinect joint equivalent w x y z

SHOULDER_LEFT 0.500 0.500 -0.500 -0.500
ELBOW_LEFT 0.000 1.000 0.000 0.000
WRIST_LEFT 0.000 1.000 0.000 0.000
SHOULDER_RIGHT 0.500 0.500 0.500 0.500
ELBOW_RIGHT 0.000 1.000 0.000 0.000
WRIST_RIGHT 0.000 1.000 0.000 0.000
KNEE_LEFT 0.000 1.000 0.000 0.000
ANKLE_LEFT 0.000 1.000 0.000 0.000
KNEE_RIGHT 0.000 1.000 0.000 0.000
ANKLE_RIGHT 0.000 1.000 0.000 0.000

3.2 Simulation Environment

As previously mentioned, the simulation environment chosen for this project to run on
is the Blender Game Engine. In this section we explore the wide range of possibilities
provided by this engine, and how we can apply our ideas into it.

For this prototype a simple stage was created, seen in figure 3.13, where our 3D model
is able to move around and interact with objects. This performing stage is composed by
a solid floor and walls and a pole with a cube on top, which we used to do some tests for
the physics engine. All these objects are configured so, when running the physics engine,
they have different behaviors, as a sample of what can be done with the physics engine.
The initial test consists of running the jumpkick.bvh file, having the 3D model knock down
the box placed on top of the pole when performing its animation.

Figure 3.13: Prototype of the virtual performing stage created in Blender.

Already mentioned in section 2.4.1, Blender has its own built-in Game Engine that
allows creating 3D applications or simulations. The engine allows simulating content
within Blender itself, but also allows exporting a binary run-time to run in Windows,

37

3. SYSTEM MODEL AND FEATURES 3.2. Simulation Environment

Linux and MacOS. This Game Engine has a specific method in the way that it renders
the scenes. Instead of rendering the scene only once, forcing objects to stay static, the
rendering process works in real-time, allowing modifications in the objects belonging
to the scene. This property gives way to many different possible interactions, such as
integrating a real-time physics engine or including dynamic textures in objects.

The Blender Game Engine uses a system of “Logic Bricks” to manipulate the objects
running in the engine. These “Bricks” are divided into three categories: (1) sensors, (2)
controllers and (3) actuators.

Sensors are the starting point of any action, functioning as a trigger for all connected
controllers. These send a positive pulse whenever a trigger event occurs, such as a key-
board press, a timer going out or even when a collision between objects is detected. A
negative pulse is sent whenever the sensor is deactivated. The controllers are the logic
barrier between the sensors and the actuators, which specify the conditions for which
they operate. These conditions can be boolean operations between sensor pulses, user
written boolean expressions or Python scripts. The actuators are the ending stage, as
they receive the signal from the controllers to finally execute an action on an object. The
set of possible actions includes editing object properties, constraints and position and
orientation, sending signals to objects, add objects to the scene, play sounds and more.

For simulating the physics engine, Blender uses an external library named Bullet [60].
This library features several components such as 3D object collision detection, soft body
dynamics, and rigid body dynamics. Using this it is possible to define how objects inter-
act with each other, how they should react on collision, and control their mass and weight
to appropriately simulate gravity.

Figure 3.14: Using MoCapPlay to animate the 3D model to knock down the red box.

A good example of how we use this engine is with the jumpkick.bvh animation file.
We define our body mesh as a dynamic object, that does not need any additional rotation
applied to it when colliding with an object, since we are updating the mesh in real-time,
not requiring that additional computation. Meanwhile, the box is a simple rigid body
that simply reacts with the gravity and when collided with other objects. Then, when
executing the animation, the performer will collide with the box, forcing it to move from

38

3. SYSTEM MODEL AND FEATURES 3.3. Discussion

the pole and fall down to the floor, as shown in figure 3.14.

To further expand the possibilities for our tool, the option to play a video was added
into the tool. This video player can be used for different purposes, such as projecting a
video that would contribute to the performance, acting as an expansion of the stage itself.
It could also be used as a training aid, possibly projecting a dance routine that the user
would emulate, hopefully improving their performance.

Blender allows for special types of textures to be used on objects, and so, one of such
textures was used on one of the virtual stage’s objects. Our virtual stage’s back wall holds
a 2D panel object with a special dynamic texture type, which will gather data from any
chosen image or video file format covered by the FFmpeg codec framework, and display
it accordingly [61]. As so, the user is able to choose any available AVI4 file and play it on
a loop, as demonstrated in figure 3.15.

Figure 3.15: Video being displayed on the wall in the back of the stage while the per-
former dances.

3.3 Discussion

While defining the tool’s main features, we came across various obstacles. Setting up
the Kinect camera was not a trivial process, all because the Kinect support for open-
Frameworks is fairly limited. Luckily, the Kinect Common Bridge add-on facilitates this
integration with actual code samples and documentation. From there on, getting the data
wanted is very straightforward.

Analyzing the skeletal composition of the Skeleton Tracking data collected with the
Kinect was very interesting. The internal algorithm is able to detect bodies on camera
without any problems, having only some limitations related to the camera’s depth per-
ception limits and when inferring not visible nodes’ positions and rotations. One exam-
ple of this is when the body is sideways, because most body limbs cannot be correctly

4Audio Video Interleave

39

3. SYSTEM MODEL AND FEATURES 3.3. Discussion

discerned from all the nodes clumping all together. The camera is also not able to dis-
tinguish when the body has its back turned to it, creating a skeleton as if it was facing
forwards.

Several attempts were made using mesh reconstructing software to generate real life
objects in a virtual environment. We can observe that the reconstructed chair object can
be considered good in quality, but not perfect, as demonstrated by the missing handle,
and the ground getting captured as well. The attempts on reconstructing a real person
showed that this method is not optimal, for several reasons. The time it takes to accu-
rately capture a watertight mesh, with no cracks, all this while the model is in a T-pose,
can become very tiring. Also, the high triangle count in the reconstructed meshes deems
this method not usable in this context, unless for the cost of a higher processing strain
when animating the rig. We could reduce this triangle count in a processing step after
the mesh acquisition, but to keep things simple, a simple free 3D model available online
is used in the default rig for all further steps.

The rigging process was probably the most complex part of the development process.
The way the quaternion rotations function is not very intuitive, requiring thorough anal-
ysis on each and every armature bone. Building MoCapPlay was a way to fix the rotation
problems, and possibly some more underlying problems. We then discovered two Rigify
armature flaws, one where certain armature bones needed some alignments in their co-
ordinate systems to make them rotate in the right direction, and the most important of
them all, the overall hierarchical structure of the Rigify armature. Even after fixing this,
the seemingly wrong values received from the Kinect were still a problem, which will be
discussed in section 4.2.

Learning to work with Blender was also an interesting working experience, especially
the physics engine. The integration with the Python scripts for the data capture was fairly
simple, with the only really important complication being the fact that all modifications
executed through these scripts will override all defined properties performed through the
graphical editor, such as the armature constraints example. Other than that, it worked
just as expected, and it certainly was satisfactory when the 3D model knocked down the
red box when running the jumpkick.bvh file in MoCapPlay for the first time. The dynamic
video texture, however, feels like it needs to give the user access to more control options
outside of using Python scripts to control it. As it stands, it can only play, pause, stop and
resume playing the loaded video. All of these actions could only be triggered through
specific sensors or Python scripts.

40

4
System Development

For this chapter, we will be presenting the final product originated from the system’s
development cycle. The following sections will present the project’s overall architecture
and implementation details, that were not mentioned before in this document. More
focus will be given to the various skeletal compositions that appear throughout this
project, namely the skeleton armature received from the Kinect and the armature created
in Blender with Rigify, and how they interact with each other.

4.1 Architecture

From figure 1.1, representing the initial plan for this project’s development, we detailed
both initial system blocks, the Motion Capture System and 3D Representation System, as
seen in figure 4.1. It is still divided into two major sections, with the intention to represent
both the performance and also the stage in a final simulation.

For that, the Motion Capture System focuses on using a camera device to capture
a body’s skeleton data which, when interpreted, can be sent in real time to the Motion
Capture Representation module, or stored in an animation file database for later use. The
3D Representation System uses input from a device that can create 3D meshes from real
life objects in order to represent the performer’s body. This is used for constructing the
3D Avatar Model which will emulate the performance from the Motion Capture System
module. As discussed in section 3.1.2, the current methods available for creating this
mesh do not give an optimal final result for the final simulation, so the 3D avatar will
be the same for every performance. The system’s other focus relies on representing the
3D Stage Model where the virtual performer will stand. This stage will include the 3D
avatar, the stage objects themselves, some kind of video integration, all being subject to

41

4. SYSTEM DEVELOPMENT 4.2. Data Input System

the simulation environment’s physics engine. The Simulation block is where the two
systems are combined, taking all information passed out through them, such as the 3D
stage and its properties, the performer’s movements and the 3D avatar, emulating them
using the internal engine in real-time.

The machine that was used for this prototype had an Intel Core i7-3630QM proces-
sor running at 2.40 GHz, 8 GB of RAM, an Intel HD Graphics 4000 graphics card, with
Microsoft Windows 7 Professional as its operative system.

Figure 4.1: Diagram of the project’s final prototype architecture.

4.2 Data Input System

After successfully animating our 3D rig through MoCapPlay, by means of interpreting
a BVH animation file, we decided to return to the apparently erroneous Kinect skeleton
armature values issue mentioned back in section 3.1.3. The rig used with the BVH an-
imation was created from an armature composition, inspired by an armature obtained
through the Brekel Kinect application, already mentioned in section 2.3.3, which is able
to take the Kinect directives and save BVH animation files. This BVH file contained the
main bone hierarchy that the Kinect expects when sending the position and rotation val-
ues.

However, since we are required to rely on Rigify to create our rig, we could only con-
struct an armature using the representative limb armature templates included in Rigify.
With this restriction, we tried to build an armature as close as possible to the one obtained
from the Brekel application. When finalized, the only difference in structure between this
armature and the Kinect captured skeleton is the lack of the left and right hip bones.
Even so, these small bones only propagate small rotations to both legs, which are taken

42

4. SYSTEM DEVELOPMENT 4.2. Data Input System

into account for hierarchical and mathematical purposes, but are not significant enough
to display changes when animating the 3D model.

The Rigify created armature is then parented to a 3D model, automatically recogniz-
ing and assigning an armature part to a body limb. As mentioned earlier, instead of a
reconstructed mesh a sample 3D model was used. This model had much less polygons
than a reconstructed mesh created from Kinect Fusion, which will mean less computa-
tions when running the Blender Game Engine’s physics engine. The original mesh was
in a relaxed pose, and was then modified for us to have both a relaxed pose version and a
separate T-pose version. The same process was executed with the armatures, modifying
the original armature to match each model accordingly. Each of the armature composi-
tions can be seen in figures 4.2(a) and 4.2(b), while the final rig result of the models can
be seen in figures 4.3(a) and 4.3(b).

(a) Relaxed pose (b) T-pose

Figure 4.2: Final armatures used for creating a rig with Rigify.

(a) Relaxed pose (b) T-pose

Figure 4.3: Final rigs created with their respective models and armatures.

43

4. SYSTEM DEVELOPMENT 4.3. Final Data Simulation

As we converted the values acquired from the Kinect camera, from matrix into quater-
nions, a pattern started to emerge. Because it is known that the skeleton captured from
the Kinect has an hierarchical structure, it would make sense that when posing in a rest
pose, the value from any quaternion Q would also be close to identity, or Q = (1, 0, 0, 0).
However, this was not happening.

Instead, some of the skeleton joints were presenting different results. Particularly
the hips, both shoulders, both upper arms and both thigh nodes all displayed different
neutral stance rotations, with all of them being different between themselves as well.
By applying the same method used for correcting the BVH file skeleton orientation, the
Kinect joint rotation values can be equally corrected, as demonstrated in equation 3.4.

Since the rest pose for our Blender armature is in fact the T-pose, we had to account for
the additional pose rotations as well. This mean that, when in T-pose, each one of these
rotations has to be nullified, i.e., transformed into a identity quaternion. Knowing this, in
order to get the correct rotations a few tests were conducted. Let us assume a quaternion
R(k), resulted from a skeleton joint captured by the Kinect camera while performing a
T-pose. Also assume its coordinate system k is the same as coordinate system r from
its corresponding rig joint, not needing any alignment. Because it is known that any
quaternion Q multiplied by its inverse Q−1 results in an identity quaternion, if we store
this quaternion R value for later use, we can nullify any following rotation quaternion
K(k) captured by the Kinect. With this, the expression that corrects the excessive rotations
between the Kinect captured joints and the Rigify created rig joints is represented by
K(r) = K(k) ∗ R(k)−1. All correcting quaternion rotations applied to nodes are displayed
in detail in table 4.1.

As already mentioned in section 3.1.3, the Rigify chest node problem determined that
this specific node required value dependencies passed on through the bone hierarchy.
We can expand this characteristic for any quaternion, i.e., if a quaternion Q1 has a de-
pendency value on another quaternion Q2, the interaction between both quaternions is
represented by the expression Q1 = Q1 ∗Q2.

By combining these three proprieties, for any quaternion Q(k) captured from the
Kinect, having its corresponding alignment quaternion A, rest pose correction quater-
nion R and dependency quaternion D. Equation 4.1 represents how these quaternions
are combined, resulting in the final joint quaternion Q(r) that will be injected in our rig.

Q(r) = A ∗Q(k) ∗D ∗R−1 ∗A−1 (4.1)

4.3 Final Data Simulation

After defining how the rigged model created in Blender works and determining how the
information is sent from the Kinect, there is still a need to find a way to standardize the
information connecting the two ends. It is not safe to rely on always having the same type

44

4. SYSTEM DEVELOPMENT 4.3. Final Data Simulation

Table 4.1: Kinect to T-pose rotation conversion table, in quaternions. Figure 3.2(a) dis-
plays where each node is placed, according to the node names.

Kinect Node
Alignment Quaternion Rest Pose Correction

w x y z w x y z

HIP_CENTER – – – – 0.000 0.000 1.000 0.000
SHOULDER_LEFT 0.707 0.000 0.707 0.000 0.500 0.000 0.000 -0.866
ELBOW_LEFT 0.707 0.000 -0.707 0.000 0.981 0.000 0.000 0.195
WRIST_LEFT 0.707 0.000 -0.707 0.000 – – – –
HAND_LEFT 0.707 0.000 -0.707 0.000 – – – –
SHOULDER_RIGHT 0.707 0.000 -0.707 0.000 0.500 0.000 0.000 0.866
ELBOW_RIGHT 0.707 0.000 0.707 0.000 0.981 0.000 0.000 -0.195
WRIST_RIGHT 0.707 0.000 0.707 0.000 – – – –
HAND_RIGHT 0.707 0.000 0.707 0.000 – – – –
KNEE_LEFT 0.000 0.000 1.000 0.000 0.924 0.000 0.000 -0.383
ANKLE_LEFT 0.000 0.000 1.000 0.000 – – – –
FOOT_LEFT 0.000 0.000 1.000 0.000 – – – –
KNEE_RIGHT 0.000 0.000 1.000 0.000 0.924 0.000 0.000 0.383
ANKLE_RIGHT 0.000 0.000 1.000 0.000 – – – –
FOOT_RIGHT 0.000 0.000 1.000 0.000 – – – –

of input, for different systems may differ on what information is sent. For that, a simple
XML file loader was implemented. Each XML file corresponds to a certain type of input
device, containing information regarding each of the bones, how they are connected and
their rotation properties. It is assumed that the joint information is always sent with a
hierarchical structure in mind. All XML examples demonstrated below have the Kinect
camera as an input system.

Each file has a simple structure, starting with a skeleton tag, followed by three group
sub-tags:

• <nodes>, representing the expected receiving input nodes and their hierarchy de-
pendencies;

• <alignments>, representing the rig’s joints which require alignments in their coordi-
nate system;

• <rotations>, representing the rig’s joints which require correction for achieving the
T-pose identity quaternion.

Each one of these sub-tags include several tags on their own. The <nodes> group
represents how many nodes we are expecting to receive from the input system, allowing
including several <node> tags. Each one of these contain an id, and optional parent and
bone attributes, representing order in which they are processed, the id of the parent and
to which rig bone they are referring to, respectively. Listing 4.1 exemplifies the chest
node rotation problem, which has a specific set of dependencies between them, already
mentioned in sections 3.1.3 and 4.2.

45

4. SYSTEM DEVELOPMENT 4.3. Final Data Simulation

Listing 4.1: Code excerpt of the <nodes> group in the Kinect XML configuration file.

1 <nodes>

2 <node id="0" />

3 <node id="1" parent="0" bone="hips"/>

4 <node id="2" parent="1" bone="spine"/>

5 </nodes>

The <alignments> groups allows having as many <alignment> group tags as required
to represent the alignment quaternions. These <alignment> tags must include attributes
id and name, representing the number of the joint we are aligning and its armature rig
bone. The following listing 4.2 illustrates how the left arm area joints are affected by the
alignment quaternions.

Listing 4.2: Code excerpt of the <alignments> group in the Kinect XML configuration file.

1 <alignments>

2 <align id="4" name="shoulder.L">

3 <rotation w="0.707" x="0" y="0.707" z="0" />

4 </align>

5 <align id="5" name="upper_arm.fk.L">

6 <rotation w="0.707" x="0" y="-0.707" z="0" />

7 </align>

8 <align id="6" name="forearm.fk.L" >

9 <rotation w="0.707" x="0" y="-0.707" z="0" />

10 </align>

11 </alignments>

The <rotations> group can include <bone> group tags to represent the joint’s correc-
tions to produce the identity quaternion. Each <bone> tag must include id and name
attributes, also representing the number of the joint we are aligning and its armature rig
bone. Listing 4.3 demonstrates how the left arm area joints are corrected in relation to the
T-pose, after being affected by the alignment quaternions.

Listing 4.3: Code excerpt of the <rotations> group in the Kinect XML configuration file.

1 <rotations>

2 <bone id="4" name="shoulder.L">

3 <rotation w="0.500" x="0" y="0" z="-0.866" />

4 </bone>

5 <bone id="5" name="upper_arm.fk.L" >

6 <rotation w="0.981" x="0" y="0" z="0.195" />

7 </bone>

8 <bone id="6" name="forearm.fk.L"/>

9 <bone id="7" name="hand.fk.L"/>

10 </rotations>

As seen in the examples above, both <alignment> and <bone> tags can include as many
<rotation> tags as necessary, which in turn represent a quaternion rotation, with its w, x,
y and z values.

46

4. SYSTEM DEVELOPMENT 4.3. Final Data Simulation

There were two XML files created in total throughout development, one for each ver-
sion of the Kinect. For the Kinect v2 version, the SDK requirements are completely differ-
ent. One example being it requires Windows 8, while also conflicting with the v1.8 SDK.
For that, we were forced to develop a separate tool version, that handled the new Kinect
APIs, which also changed. Since our tool is accessing the Kinect APIs, we managed to test
out some skeletons in a different manner. By using Kinect Studio, we were able to load
files that were already created, presenting recorded performances in front of the Kinect
camera. This application allows “emulating” a Kinect camera in other applications using
the Kinect APIs simply by pressing a single button, playing the captured data from the
loaded files, without really needing the camera device. This is fundamental because it
provides a way to record and play the captured data as much as necessary. This method
of analyzing data is also less tedious and more efficient than having to stand up every
time we wanted to test out a scenario.

Most of the Kinect Studio files used for testing were acquired from footage of a the-
atrical play by the name of “Este corpo que me ocupa”, by João Fiadeiro. An example of
how the captured data is represented in Kinect Studio can be seen in figure 4.4, and fig-
ures 4.5(a) and 4.5(b) represent an enactment of the recorded footage.

Figure 4.4: Kinect Studio’s window display, after loading a file containing Kinect stream
data.

Because most of the APIs changed, including the skeleton tracking data, the previ-
ously build XML file had to be changed. Firstly, we had to take in account the new nodes,
and their dependencies. Then, we had to recalculate each of the joints’ alignments, so that
it matched the rig. Lastly, we had to find the new differences between the rig and the new
skeleton’s rest pose. All this resulted in a completely new file, which enabled us to work
with any Kinect v2 skeleton stream data. On the other hand, this new skeleton stream
data led to some interesting results, which will be presented in section 5.1.

47

4. SYSTEM DEVELOPMENT 4.4. Discussion

(a) Kinect Studio stage display (b) Blender stage display

Figure 4.5: Representation of a theatrical play recorded with Kinect Studio (a), enacted
in a Blender created stage (b).

4.4 Discussion

As it is shown in the sections above, all previously identified problems are now resolved.
With this, our project’s final prototype is complete, accomplishing the outlined goals.
Using a Kinect camera, the performer’s movements are interpreted and displayed on a
virtual stage, represented by a 3D model of the performer. However, our system is ready
to interpret any kind of real-time skeleton tracking input, as long as there is a XML file
to correctly represent the new input data. The video file loader can also serve different
purposes. By projecting the video on the virtual stage it could function as an extension
of the performance itself, complementing the user’s routine, or as a training aid for the
user, mimicking the routine displayed on the video.

Out of the previously defined goals, making a rigged model was probably the one
in which there were more doubts, since there was no previous knowledge of working
with Blender, much less knowing the tools to make a static model animate correctly. It is
safe to say that most of the early development cycle time was spent on making an initial
animated model. The end result is a rig that can correctly display Kinect skeleton data,
which was our objective from the start.

Part of the time spent making the model animate correctly was caused by the prob-
lem of the seemingly incorrect Kinect rotation values. These inaccurate values are also
evidenced by the MoCapPlay and the jumpkick.bvh animation file, which needed some
corrections as well. By studying how we could use quaternions to correctly represent the
rotations from the Kinect in our rig, we were able to find out the corrections necessary
for each of the skeleton nodes, and map them on a XML file. This file was our solution in
order to standardize the tool’s skeleton data input method. This way any camera capable
of performing skeleton tracking can be mapped to a XML file, and correctly animate our
rigged model. Two XML files were created, one for each Kinect device. However, since
the Kinect v2 SDK is not a final stable version, it is subject to changes, which can lead to
later corrections in its XML file.

48

5
Conclusions and Future Work

In this closing chapter we will present some final considerations concerning this disser-
tation and its development cycle. First comes a section presenting an evaluation of our
system’s prototype and results, followed up by the overall conclusions regarding our
tool. Finally we will talk about possibilities of future work surrounding this project’s
subject matter.

5.1 Evaluation

After developing and witnessing how the system prototype ended up working, we reached
some conclusions. The following paragraphs were written regarding what was deter-
mined when comparing all of our system’s data input methods.

Constructing MoCapPlay was a very important step in the development of our sys-
tem. It allowed us to understand how information could be sent to our rig, in order to
animate it. However, the skeleton presented in the jumpkick.bvh file is very similar to the
Kinect skeleton, which worked for our advantage, since our rig is prepared for to ex-
clusively receive Kinect skeleton data. This could be a problem for different files, with
different skeleton bone compositions. In order to be optimized for any BVH animation
file, some adjustments would have to be made to the whole system.

The available Kinect documentation lacks information about how each of the nodes’
rest positions is orientated, which led to more calculations on our side. This point aside,
the documentation has enough information to understand how the data can be reached
and how to use it in our virtual avatar. One thing to notice is that when capturing skele-
tons, the distance of the performer relative to the camera matters, if only to ease the

49

5. CONCLUSIONS AND FUTURE WORK 5.2. Conclusion

computations for the skeleton tracking algorithm. If the algorithm tracks part of a skele-
ton, for example, when not exposing the entire body for being too close to the camera, all
undetected node positions and rotations are going to be inferred. This can possibly lead
to incorrect data, so it is recommendable that the capturing space is unobstructed. The
camera is capable of detecting skeletons in a range of 0.5 to 4 meters, but after testing we
determined the ideal distance to the camera is about 2.5 meters for it to correctly capture
all of the skeleton nodes.

The Kinect skeleton tracking algorithm is also not defined for capturing people with
their backs turned, or standing sideways. If the performer is required to rotate its body,
it is recommendable to stand facing the camera, letting the algorithm detect all of the
nodes, and only then start rotating. With this, even if the body is sideways, since all
correct node positions and rotations were previously calculated, the inferred node data
will be close to an optimal representation of a sideways skeleton. This problem could be
minimized in the future if, instead of one camera, we used more cameras with different
placements, and triangulate the captured skeleton rotations. When applying the rotation
values to the rig, there is still a noticeable stiffness of the bones, which can be related to
how the armature was constructed. Since the Kinect skeleton detection depends on the
user’s body type and its distance to the camera, it can vary in terms of bone size and
positioning. So, for our prototype, we had to settle for a middle ground, constructing a
standard sized skeleton to use as armature.

The new detection capabilities of the Kinect v2 camera, already mentioned in sec-
tion 2.2.2, bring new potential to what can be made with it, especially in the gesture and
face tracking field. The improved depth sensors can also help in reconstructing possible
stages for the performers to act. Our system could then be capable to recreate a com-
plete stage, including objects that could be virtualized onto the stage for the performer
to interact. However, since the available Kinect v2 SDK is still not the final release ver-
sion, its APIs are preliminary and subject to change. This is evidenced by the complete
lack of documentation regarding this version. The new joint additions, notably the new
thumb joints, change how the overall arm orientation is calculated. By verifying the the
thumb’s position relative to the arm, the new arm orientation is then defined. Also, the
overall skeleton tracking algorithm still has difficulties in instantaneously figuring out
where the thumb is located, making the overall arm orientation values fluctuate, which
makes it very difficult to stabilize the arm in order to analyze the joints’ orientation.

5.2 Conclusion

The final result of this dissertation presents a tool capable of simulating a virtual per-
former doing a routine on a virtual stage, enabling the use of a reconstructed 3D model
of the user if they so desire. With that said, the user is allowed to freely perform their
routine in front of a camera, which in turn will recognize each body limb due to skeleton
tracking properties internally implemented by the camera. This skeleton information is

50

5. CONCLUSIONS AND FUTURE WORK 5.2. Conclusion

then processed and converted to values accepted by our rigged 3D model, specified by
specific XML files. These XML files are our way to standardize the values to be injected
in our rigged 3D model, in order to be able to receive any type of input, which include
BVH animation files. As a way to further aid this routine practice, the tool allows playing
video files in the virtual stage’s background.

When comparing with the studied similar systems specified in section 2.1, our tool
is different in the way that it functions within a fully functional physics engine, which
allows interacting with objects in a much more intuitive and ordinary manner. There are
systems that work in a similar way [4], but instead of reacting on triggers set up on the
objects, the triggers are in the poses the dancer performs. This requires a large database
of poses to be used for comparison, which the user must also know about, making it
more complex than a simulation of a real life physics engine. The XML file loader is
what differentiates our tool from other existent tools, such as NI Mate [40]. Our system
is capable of receiving data from any capture device, not being limited to the Kinect, and
is capable of representing it on any 3D simulation engine, not just Blender.

By falling back on a non intrusive motion capture method, namely the Kinect cam-
era, the quality of the motion tracking is not going to be anywhere near perfect. It can,
however, provide some ideas as to how the body should stand and what rotations can a
human body perform. The specific model used for testing this tool had some limitations,
particularly the inability to correctly capture a body turned sideways or even distinguish
between the front and back of a user standing before the camera. If it were a motion
capture suit or some kind of sensors attached to the body limbs, such as the ones used in
project RAM [10], the values would probably be much more reliable.

As for the choice of 3D engine to present our results, the decision to use Blender
was certainly a success, due to the different object properties available in the internal
game engine and Rigify being such a powerful tool. This add-on made the process of
rigging a model so much easier, almost in an intuitive way. The ability to individually
rig certain preset skeleton parts enables for some really interesting possibilities, due to
its building block approach. Our approach for the animation rig used a skeleton model
based of a capture performed with Brekel (section 2.3.3), which also uses Kinect as a
default capture device. The inclusion of the background video player was a goal we also
pursued. Resorting to Blender’s engine, we were able to display video using a special
texture type. This allowed for a much more reliable training method, granting the user
the choice to follow a guideline provided by the selected video.

Also mentioned in section 4.4, most of the time spent on the development cycle was
on correctly converting the values received from the Kinect into rotation values for our
3D model. To help figuring out exactly what values were needed an additional tool was
developed. This tool, MoCapPlay (section 3.1.3), loads a BVH animation file, which fol-
lows a certain skeleton hierarchy and its rotational values along the course of time. These
values are then converted into quaternions and injected in our 3D model, animating it.

Overall, we consider the project’s final result is successful, even with its flaws. We

51

5. CONCLUSIONS AND FUTURE WORK

managed to create a system which is capable of using any type of input device to sim-
ulate animated movement on a virtual environment, which was the main goal from the
beginning.

5.3 Future Work

We will conclude this document with some suggestions of directions to take from this
project’s development.

From the project’s current state, it is safe to say that some of the current features
were not completely implemented, and could be improved upon. One such feature is a
video player control panel. Actions found normally on any media player such as pause,
stop, play, forward and rewind were not implemented due to time constraints. The same
happened to sound control actions such as volume up, volume down and mute. Camera
control options could could also be implemented, giving the option to pan around the
stage and maybe zoom in and out.

The option to record performances could be also an future improvement. These
recordings could be a video recording of the performance, saved into a video file. Or
maybe a skeleton animation recording, saved into a BVH file, even though there are al-
ready tools that are capable of converting Kinect data into BVH files.

In terms of technology constraints, better capture methods could be used. Instead
of just one camera device, more could be used at the same time, calculating a single
skeleton from different points of view. This option would eliminate most of the problems
with detecting bodies not standing facing the camera. If we were to use a motion capture
suit, or a specific intrusive motion capture device optimized for body movements, better
data could be obtained. However, these options are out of the project’s budget, so they
were not considered, but they are still options to consider.

An interesting feature that could be investigated is related to the 3D models used
in Blender. A system that could detect and distinguish between different users in front
of the camera, and to those users associate a certain 3D mesh reconstructed from the
performer, could be a major improvement in simulating reality. With this, and finding
a way to instantly rig and change the performer model in real time when a body was
detected in front of the camera, it would improve the user experience.

52

Bibliography

[1] Microsoft. Kinect for Windows. Last Access: Apr. 2014. URL: http://www.microsoft.
com/en-us/kinectforwindows/.

[2] openFrameworks. Last Access: Apr. 2014. URL: http://www.openframeworks.
cc/.

[3] J. G. Joshua Noble. Kinect Common Bridge. Last Access: Apr. 2014. URL: https:
//github.com/joshuajnoble/ofxKinectCommonBridge.

[4] Q. Wu, P. Boulanger, M. Kazakevich, and R. Taylor. “A Real-time Performance Sys-
tem for Virtual Theater”. In: Proceedings of the 2010 ACM Workshop on Surreal Media
and Virtual Cloning. SMVC ’10. Firenze, Italy: ACM, 2010, pp. 3–8. ISBN: 978-1-4503-
0175-6. DOI: 10.1145/1878083.1878087. URL: http://doi.acm.org/10.
1145/1878083.1878087.

[5] Y. Fei, D. Kryze, and A. Melle. “Tavola: Holographic User Experience”. In: ACM
SIGGRAPH 2012 Emerging Technologies. SIGGRAPH ’12. Los Angeles, California:
ACM, 2012, 21:1–21:1. ISBN: 978-1-4503-1680-4. DOI: 10.1145/2343456.2343477.
URL: http://doi.acm.org/10.1145/2343456.2343477.

[6] B. Baird, O. İzmirli, and A. Joshi. “Using Motion Capture to Synthesize Dance
Movements”. In: Proceedings of the Thirteenth Biennial Symposium on Arts and Tech-
nology at Connecticut College. New London, CT, USA, 2012.

[7] C. Griesbeck. Introduction to Labanotation. Last Access: Jan. 2014. URL: http://
user.uni-frankfurt.de/~griesbec/labane.html.

[8] J. C. P. Chan, H Leung, J. K. T. Tang, and T Komura. “A Virtual Reality Dance Train-
ing System Using Motion Capture Technology”. In: IEEE Transactions on Learning
Technologies 4.2 (2011), pp. 187–195. ISSN: 1939-1382.

[9] A. Schulz and L. Velho. “ChoreoGraphics: An Authoring Environment for Dance
Shows”. In: ACM SIGGRAPH 2011 Posters. SIGGRAPH ’11. Vancouver, British Columbia,
Canada: ACM, 2011, 14:1–14:1. ISBN: 978-1-4503-0971-4. DOI: 10.1145/2037715.
2037732. URL: http://doi.acm.org/10.1145/2037715.2037732.

53

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.openframeworks.cc/
http://www.openframeworks.cc/
https://github.com/joshuajnoble/ofxKinectCommonBridge
https://github.com/joshuajnoble/ofxKinectCommonBridge
http://dx.doi.org/10.1145/1878083.1878087
http://doi.acm.org/10.1145/1878083.1878087
http://doi.acm.org/10.1145/1878083.1878087
http://dx.doi.org/10.1145/2343456.2343477
http://doi.acm.org/10.1145/2343456.2343477
http://user.uni-frankfurt.de/~griesbec/labane.html
http://user.uni-frankfurt.de/~griesbec/labane.html
http://dx.doi.org/10.1145/2037715.2037732
http://dx.doi.org/10.1145/2037715.2037732
http://doi.acm.org/10.1145/2037715.2037732

BIBLIOGRAPHY

[10] Y. C. for Arts and M. InterLab. Reactor for Awareness in Motion (RAM). Last Access:
Jan. 2014. URL: http://interlab.ycam.jp/en/projects/ram.

[11] I. Baran and J. Popović. “Automatic Rigging and Animation of 3D Characters”. In:
ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07. San Diego, California: ACM, 2007.
DOI: 10.1145/1275808.1276467. URL: http://doi.acm.org/10.1145/
1275808.1276467.

[12] N. Vegdahl. Blender Extensions: Rigify. Last Access: Apr. 2014. URL: http://wiki.
blender.org/index.php/Extensions:2.6/Py/Scripts/Rigging/

Rigify.

[13] Microsoft. Kinect for Windows Sensor Components and Specifications. Last Access: Jan.
2014. URL: http://msdn.microsoft.com/en-us/library/jj131033.
aspx.

[14] Microsoft. Color Stream. Last Access: Jan. 2014. URL: http://msdn.microsoft.
com/en-us/library/jj131027.aspx.

[15] Microsoft. Depth Stream. Last Access: Jan. 2014. URL: http://msdn.microsoft.
com/en-us/library/jj131028.aspx.

[16] K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook. “Dual-frequency pat-
tern scheme for high-speed 3-D shape measurement”. In: Opt. Express 18.5 (2010),
pp. 5229–5244. DOI: 10.1364/OE.18.005229. URL: http://www.opticsexpress.
org/abstract.cfm?URI=oe-18-5-5229.

[17] J. MacCormick. How does the Kinect work? Sept. 2011. URL: http://pages.cs.
wisc.edu/~ahmad/kinect.pdf.

[18] R. Vision. How Kinect and Kinect Fusion (Kinfu) Work. Last Access: Jan. 2014. URL:
http://razorvision.tumblr.com/post/15039827747/how-kinect-

and-kinect-fusion-kinfu-work.

[19] Microsoft. Infrared Stream. Last Access: Jan. 2014. URL: http://msdn.microsoft.
com/en-us/library/jj663793.aspx.

[20] Microsoft. Skeletal Tracking. Last Access: Jan. 2014. URL: http://msdn.microsoft.
com/en-us/library/hh973074.aspx.

[21] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
and A. Blake. “Real-time Human Pose Recognition in Parts from Single Depth
Images”. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1297–1304. ISBN: 978-1-4577-0394-2. DOI: 10.1109/CVPR.2011.5995316.
URL: http://dx.doi.org/10.1109/CVPR.2011.5995316.

[22] Structure. OpenNI 2 Download and Documentation. Last Access: Jul. 2014. URL: http:
//structure.io/openni.

54

http://interlab.ycam.jp/en/projects/ram
http://dx.doi.org/10.1145/1275808.1276467
http://doi.acm.org/10.1145/1275808.1276467
http://doi.acm.org/10.1145/1275808.1276467
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Rigging/Rigify
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Rigging/Rigify
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Rigging/Rigify
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/jj131027.aspx
http://msdn.microsoft.com/en-us/library/jj131027.aspx
http://msdn.microsoft.com/en-us/library/jj131028.aspx
http://msdn.microsoft.com/en-us/library/jj131028.aspx
http://dx.doi.org/10.1364/OE.18.005229
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-5-5229
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-5-5229
http://pages.cs.wisc.edu/~ahmad/kinect.pdf
http://pages.cs.wisc.edu/~ahmad/kinect.pdf
http://razorvision.tumblr.com/post/15039827747/how-kinect-and-kinect-fusion-kinfu-work
http://razorvision.tumblr.com/post/15039827747/how-kinect-and-kinect-fusion-kinfu-work
http://msdn.microsoft.com/en-us/library/jj663793.aspx
http://msdn.microsoft.com/en-us/library/jj663793.aspx
http://msdn.microsoft.com/en-us/library/hh973074.aspx
http://msdn.microsoft.com/en-us/library/hh973074.aspx
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://structure.io/openni
http://structure.io/openni

BIBLIOGRAPHY

[23] O. Project. OpenKinect. Last Access: Jul. 2014. URL: http://openkinect.org/
wiki/Main_Page.

[24] Microsoft. Kinect for Windows features. Last Access: Oct. 2014. URL: http://www.
microsoft.com/en- us/kinectforwindows/meetkinect/features.

aspx.

[25] Microsoft. Collaboration, expertise produce enhanced sensing in Xbox One. Last Access:
Oct. 2014. URL: http : / / blogs . microsoft . com / blog / 2013 / 10 / 02 /
collaboration- expertise- produce- enhanced- sensing- in- xbox-

one/.

[26] C. V. Online. Time-of-Flight Cameras. Last Access: Oct. 2014. URL: http://www.
computervisiononline.com/books/computer-vision/time-flight-

cameras.

[27] Microsoft. Kinect Fusion. Last Access: Jan. 2014. URL: http://msdn.microsoft.
com/en-us/library/dn188670.aspx.

[28] OpenSLAM. OpenSLAM. Last Access: Jan. 2014. URL: http://openslam.org/.

[29] V. Metric. 3D Scanning Technology Overview: Kinect Reconstruction Algorithms Ex-
plained. Last Access: Jan. 2014. URL: http://voxelmetric.com/3d-scanning-
technology-overview-kinect-reconstruction-algorithms-explained/.

[30] Z. Zhang. “Iterative point matching for registration of free-form curves and sur-
faces”. English. In: International Journal of Computer Vision 13.2 (1994), pp. 119–152.
ISSN: 0920-5691. DOI: 10.1007/BF01427149. URL: http://dx.doi.org/10.
1007/BF01427149.

[31] K. Jahrmann. Kinect Fusion - Reconstruction. Favoritenstrasse 9-11/186, A-1040 Vi-
enna, Austria, Feb. 2013. URL: http://www.cg.tuwien.ac.at/research/
publications/2013/jahrmann_klemens_KFR/.

[32] B. Curless and M. Levoy. “A Volumetric Method for Building Complex Models
from Range Images”. In: Proceedings of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996,
pp. 303–312. ISBN: 0-89791-746-4. DOI: 10.1145/237170.237269. URL: http:
//doi.acm.org/10.1145/237170.237269.

[33] ManCTL. Skanect by Occipital. Last Access: Dec. 2013. URL: http://skanect.
manctl.com/.

[34] ASUS. Multimedia - Xtion PRO. Last Access: Jan. 2014. URL: http://www.asus.
com/Multimedia/Xtion_PRO/.

[35] SourceForge. MeshLab. Last Access: Jan. 2014. URL: http://meshlab.sourceforge.
net/.

[36] Autodesk. 3ds Max 3D Modeling and Rendering Software. Last Access: Jan. 2014. URL:
http://www.autodesk.com/products/autodesk-3ds-max/overview.

55

http://openkinect.org/wiki/Main_Page
http://openkinect.org/wiki/Main_Page
http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx
http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx
http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx
http://blogs.microsoft.com/blog/2013/10/02/collaboration-expertise-produce-enhanced-sensing-in-xbox-one/
http://blogs.microsoft.com/blog/2013/10/02/collaboration-expertise-produce-enhanced-sensing-in-xbox-one/
http://blogs.microsoft.com/blog/2013/10/02/collaboration-expertise-produce-enhanced-sensing-in-xbox-one/
http://www.computervisiononline.com/books/computer-vision/time-flight-cameras
http://www.computervisiononline.com/books/computer-vision/time-flight-cameras
http://www.computervisiononline.com/books/computer-vision/time-flight-cameras
http://msdn.microsoft.com/en-us/library/dn188670.aspx
http://msdn.microsoft.com/en-us/library/dn188670.aspx
http://openslam.org/
http://voxelmetric.com/3d-scanning-technology-overview-kinect-reconstruction-algorithms-explained/
http://voxelmetric.com/3d-scanning-technology-overview-kinect-reconstruction-algorithms-explained/
http://dx.doi.org/10.1007/BF01427149
http://dx.doi.org/10.1007/BF01427149
http://dx.doi.org/10.1007/BF01427149
http://www.cg.tuwien.ac.at/research/publications/2013/jahrmann_klemens_KFR/
http://www.cg.tuwien.ac.at/research/publications/2013/jahrmann_klemens_KFR/
http://dx.doi.org/10.1145/237170.237269
http://doi.acm.org/10.1145/237170.237269
http://doi.acm.org/10.1145/237170.237269
http://skanect.manctl.com/
http://skanect.manctl.com/
http://www.asus.com/Multimedia/Xtion_PRO/
http://www.asus.com/Multimedia/Xtion_PRO/
http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/
http://www.autodesk.com/products/autodesk-3ds-max/overview

BIBLIOGRAPHY

[37] B. Chazelle. “An optimal convex hull algorithm in any fixed dimension”. English.
In: Discrete & Computational Geometry 10.1 (1993), pp. 377–409. ISSN: 0179-5376. DOI:
10.1007/BF02573985. URL: http://dx.doi.org/10.1007/BF02573985.

[38] J. Brekelmans. Brekel. Last Access: Dec. 2013. URL: http://www.brekel.com/.

[39] Autodesk. 3D Character Animation MotionBuilder Software. Last Access: Jan. 2014.
URL: http://www.autodesk.com/products/motionbuilder/overview.

[40] Delicode. NI Mate. Last Access: Dec. 2013. URL: http://www.ni-mate.com/.

[41] Autodesk. Maya 3D Animation Software Computer Animation. Last Access: Jan. 2014.
URL: http://www.autodesk.com/products/autodesk-maya/overview.

[42] U. Technologies. What is Unity. Last Access: Oct. 2014. URL: https://unity3d.
com/pages/what-is-unity.

[43] B. Institute. Home of the Blender project - Free and Open 3D Creation Software. Last
Access: Jan. 2014. URL: http://www.blender.org/.

[44] B. Institute. Elephants Dream. Last Access: Jan. 2014. URL: http://www.elephantsdream.
org/.

[45] B. Institute. Big Buck Bunny. Last Access: Jan. 2014. URL: http://www.bigbuckbunny.
org/.

[46] B. Institute. Sintel, the Durian Open Movie Project. Last Access: Jan. 2014. URL: http:
//www.sintel.org/.

[47] B. Institute. Tears of Steel | Mango Open Movie Project. Last Access: Jan. 2014. URL:
http://www.tearsofsteel.org/.

[48] B. Institute. Yo Frankie! - Apricot Open Game Project. Last Access: Jan. 2014. URL:
http://www.yofrankie.org/.

[49] B. Institute. Sintel The Game - A game based on the Blender Foundation movie: Sintel.
Last Access: Jan. 2014. URL: http://sintelgame.org/.

[50] BlenderNation. Hungarian performance uses Blender Game Engine and Kinect for live
effects. Last Access: Jan. 2014. URL: http://www.blendernation.com/2013/
10/28/hungarian-performance-uses-blender-game-engine-and-

kinect-for-live-effects/.

[51] T. U. of Ostrava. Blender & Kinect. Last Access: Jan. 2014. URL: http://blender.
vsb.cz/index.php/en/kinect-blender.

[52] Polygon. Unity for Wii U opens up GamePad hardware and more to developers. Last
Access: Oct. 2014. URL: http://www.polygon.com/2013/8/20/4641786/
unity- for- wii- u- opens- up- gamepad- hardware- and- more- to-

developers.

[53] U. Technologies. License Comparisons. Last Access: Oct. 2014. URL: https://unity3d.
com/unity/licenses.

56

http://dx.doi.org/10.1007/BF02573985
http://dx.doi.org/10.1007/BF02573985
http://www.brekel.com/
http://www.autodesk.com/products/motionbuilder/overview
http://www.ni-mate.com/
http://www.autodesk.com/products/autodesk-maya/overview
https://unity3d.com/pages/what-is-unity
https://unity3d.com/pages/what-is-unity
http://www.blender.org/
http://www.elephantsdream.org/
http://www.elephantsdream.org/
http://www.bigbuckbunny.org/
http://www.bigbuckbunny.org/
http://www.sintel.org/
http://www.sintel.org/
http://www.tearsofsteel.org/
http://www.yofrankie.org/
http://sintelgame.org/
http://www.blendernation.com/2013/10/28/hungarian-performance-uses-blender-game-engine-and-kinect-for-live-effects/
http://www.blendernation.com/2013/10/28/hungarian-performance-uses-blender-game-engine-and-kinect-for-live-effects/
http://www.blendernation.com/2013/10/28/hungarian-performance-uses-blender-game-engine-and-kinect-for-live-effects/
http://blender.vsb.cz/index.php/en/kinect-blender
http://blender.vsb.cz/index.php/en/kinect-blender
http://www.polygon.com/2013/8/20/4641786/unity-for-wii-u-opens-up-gamepad-hardware-and-more-to-developers
http://www.polygon.com/2013/8/20/4641786/unity-for-wii-u-opens-up-gamepad-hardware-and-more-to-developers
http://www.polygon.com/2013/8/20/4641786/unity-for-wii-u-opens-up-gamepad-hardware-and-more-to-developers
https://unity3d.com/unity/licenses
https://unity3d.com/unity/licenses

BIBLIOGRAPHY

[54] Zigfu. Zigfu - Kinect Development. Last Access: Oct. 2014. URL: http://zigfu.
com/.

[55] U. Armenia. KinectV2 + Unity3D Plugin July Update Testing. Last Access: Nov. 2014.
URL: http://unity3d.am/2014/07/03/kinectv2-unity3d-plugin-
july-update-testing/.

[56] Microsoft. Tracking Users with Kinect Skeletal Tracking. Last Access: Jun. 2014. URL:
http://msdn.microsoft.com/en-us/library/jj131025.aspx.

[57] S. Arietta. CS445: Graphics. Last Access: Jun. 2014. URL: http://www.cs.virginia.
edu/~gfx/Courses/2010/IntroGraphics/Lectures/29-Quaternions.

pdf.

[58] C. M. University. CMU Graphics Lab. Last Access: Nov. 2014. URL: http://mocap.
cs.cmu.edu/.

[59] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and
Practice, Second Edition in C. Addison-Wesley Professional, 1990.

[60] I. Advanced Micro Devices. Real-Time Physics Simulation. Last Access: Nov. 2014.
URL: http://bulletphysics.org/wordpress/.

[61] F. team. FFmpeg. Last Access: Aug. 2014. URL: https://www.ffmpeg.org/.

57

http://zigfu.com/
http://zigfu.com/
http://unity3d.am/2014/07/03/kinectv2-unity3d-plugin-july-update-testing/
http://unity3d.am/2014/07/03/kinectv2-unity3d-plugin-july-update-testing/
http://msdn.microsoft.com/en-us/library/jj131025.aspx
http://www.cs.virginia.edu/~gfx/Courses/2010/IntroGraphics/Lectures/29-Quaternions.pdf
http://www.cs.virginia.edu/~gfx/Courses/2010/IntroGraphics/Lectures/29-Quaternions.pdf
http://www.cs.virginia.edu/~gfx/Courses/2010/IntroGraphics/Lectures/29-Quaternions.pdf
http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://bulletphysics.org/wordpress/
https://www.ffmpeg.org/

	Introduction
	Motivation
	Context
	Presented Solution
	Document Structure

	Related Work
	Digital Tools for Artistic Performance Representation
	Virtual Reality Theatrical Performing
	Virtual Reality Dance Performing
	Virtual Avatar Automatic Rigging

	Motion Capture Cameras
	Microsoft Kinect
	Microsoft Kinect Version 2.0

	Motion Capture and 3D Representation Assisting Tools
	Kinect Fusion
	Skanect
	Brekel Kinect
	NI Mate

	3D Simulation Engines
	Blender
	Unity

	Discussion

	System Model and Features
	Data Acquisition and Representation
	Data Acquisition
	Data Representation
	Initial Data Simulation

	Simulation Environment
	Discussion

	System Development
	Architecture
	Data Input System
	Final Data Simulation
	Discussion

	Conclusions and Future Work
	Evaluation
	Conclusion
	Future Work

