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Abstract—We recently established that our digital potential 

function was globally stable at the point where a virtual 

liver coincided with its real counterpart. In particular, 

because three rotational degrees of freedom are frequently 

used in a surgical operation on a real liver, stability of the 

potential function concerning three rotational degrees of 

freedom was carefully verified in the laboratory, using 

fluorescent lamps and sunlight. We achieved the same 

stability for several simulated liver operations using a 3D 

printed viscoelastic liver in a surgical operating room 

equipped with two light-emitting diode shadowless lamps. 

As a result, with increasing number of lamps, stability of 

our depth-depth matching in the steepest descendent 

algorithm improved because the lamps did not emit an 

infrared spectrum such as the one emitted by our depth 

camera. Furthermore, the slower the angular velocity in a 

surgical sequence, the more overall stability improved.   

 

Index Terms—steepest descent method, virtual liver, actual 

liver, triangular polyhedron STL, liver surgery navigator, 

light-emitting diode shadowless lamps 

 

I. INTRODUCTION 

Owing to high difficulty and complex anatomical 

characteristics, liver surgical navigation should be 

developed continuously to provide safe and accurate 

treatment. However, sensing accuracy of liver shape and 

motion remains problematic despite production of many 

excellent commercial cameras for real-time surgical 

navigation.  

In contrast, Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), and Ultrasonography (US) 

have been used actively in surgery. In addition, many 

studies have been conducted to determine three-

dimensional anatomy from obtained images and to detect 

organs and lesions [1]. The liver is a large organ 

containing several types of blood vessels. It is important 

to cause as little bleeding as possible when performing 

surgery. Because liver anatomy varies from person to 
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person, a surgeon first examines preoperative images in 

detail and then performs a preoperative resection 

simulation, both of which are increasingly essential skills. 

Therefore, techniques for analyzing and applying medical 

images have advanced and are widely applied to surgical 

navigation to improve surgery safety. 

Although many surgical navigation systems use 2- or 

3D and ultrasound images [2], image resolution is low, 

and it is difficult to accurately detect actual liver position, 

direction, and shape. In addition, real-time navigation 

using projection mapping can project Indocyanine Green 

(ICG) light emission onto the hepatectomy surface, so 

although real-time navigation is possible, it cannot be 

projected into the deep surgical field [3]. The liver 

surgery navigator developed to solve these problems 

showed that a hybrid virtual whole liver including portal 

and arterial veins, a malignant tumor, and a nerve should 

overlap the real liver (i.e., liver replica) during simulated 

surgery. Therefore, we developed our depth–depth-

matching-based steepest descendent method [4]-[7]. 

The algorithm generates some situations wherein a 

virtual liver quickly follows its real counterpart. In depth–

depth matching, we always move the virtual liver to 

minimize the difference between depth images obtained 

from real and virtual livers. The real image can be 

captured by a depth camera such as Kinect v2. The virtual 

image automatically can be conveyed from the z-buffer 

of the virtual liver formed by the triangular polyhedron 

(STL) previously segmented by 3D Slicer from a 

patient’s DICOM (Digital Imaging and COmmunications 

in Medicine) captured by CT/MRI. 

Experiments were conducted in an operating room 

equipped with two Light-Emitting Diode (LED) 

shadowless lamps, simulating actual surgical lighting 

conditions. To determine influence of interference 

between infrared rays emitted from LED shadowless 

lamps and Kinect v2 on liver-tracking performance, we 

evaluated tracking performance of a virtual liver when its 

real counterpart was rotated and translated under lighting 

conditions generated using no LED shadowless lamps, 
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one LED shadowless lamp, and two LED shadowless 

lamps. For rotational movement, we changed the velocity. 

For translation, when the initial liver position was 

adjusted, we evaluated tracking performance of either the 

whole liver or part of it and consequently determined 

differences in their tracking performances. 

Section II describes experimental system components. 

In Section III, we describe our operating room and 

several experiments conducted therein, and we present 

experimental results. Section IV discusses significance of 

the main findings. Finally in Section V, we conclude by 

summarizing the main findings and their significance and 

provide direction for future research based on the 

findings of this study. 

II. EXPERIMENTAL SYSTEM COMPONENTS

Herein, we introduce several components of our 

experimental system. 

A. Virtual Liver

In this study, 3D Slicer was used to select a liver

segment from a patient’s DICOM taken before surgery, 

and a corresponding STL polyhedron was built as a 

virtual liver (Fig. 1).  

Figure 1.  STL virtual liver model. 

B. Actual Liver

From the STL liver model shown in Fig. 1, a concave

plastic liver-shaped mold was constructed by a 3D printer, 

and human skin gel was poured into the mold to produce 

the viscoelastic liver model shown in Fig. 2. In this study, 

the viscoelastic liver model was assumed to be an actual 

liver during a simulated operation.  

Figure 2.  Human skin gel liver model. 

C. Kinect for Windows v2

Fig. 3 shows Kinect v2, which captures depth images

based on the Time-of-Flight (ToF) method, which 

measures many distances passing through many pixels to 

the target object by calculating the time that infrared rays 

reach the Kinect v2 image. Because the infrared ray 

emitted by Kinect v2 is modulated, it is not affected by 

ambient light when observing reflected light [8]-[11].  

Figure 3.  Kinect for windows v2. 

D. iLED™ 7 Surgical Light (LED Shadowless Lamps)

The iLED™ 7 Surgical Light features automatically

adjust several lighting conditions around a surgical site, 

using the latest 3D sensor technology. In addition, the 

shadow management system automatically compensates 

for unwanted shadows such as those projected by a 

surgeon’s head, thereby ensuring excellent lighting at all 

times. Fig. 4 shows the iLED™ 7 surgical light. Table I 

lists corresponding technical data. 

Figure 4.  iLED™ 7 surgical light. 

TABLE I.  TECHNICAL DATA FOR ILEDTM
 7 SURGICAL LIGHT 

Maximum central illumination (Ec) at 1 m 160,000 lx 

Pattern size (d10) at 1 m 
16–30 cm 

 6.3–11.8 inches 

Color temperature 
3,500 k/4,000 k/ 

4,500 k/5,000 k 

Average LED service life 60,000 h 

E. Digital Logger

LX-2000SD is an illuminance meter that can measure

illuminance and temperature. All the measured data can 

be recorded on an SD card. Fig. 5 shows the LX-2000SD 

digital data logger illuminometer, and Table II lists 

corresponding illuminance specifications. 

Figure 5.  Digital data logger illuminance meter LX-2000SD. 
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TABLE II.  TYPE SIZES FOR LX-2000SD 

Range (lx) Display range (lx) 
Resolution 

(lx) 

Measurement 

accuracy 

2,000 0–1,999 1 

± (4% rdg. + 2 

dgt.) 
20,000 1,800–19,990 10 

100,000 18,000–99,900 100 

F. Several Liver Surgery Navigator Windows 

This section describes our liver navigator, which 

manually aligns initial positions of real and virtual liver 

depth images [7]. Fig. 6 shows several windows that 

control the liver surgery navigator. The operator displays 

a color image of the real liver (Fig. 6(a)), taken in real 

time with Kinect v2, and its corresponding depth image 

(Fig. 6(b)), and selects a region of the liver. The STL 

virtual liver is illustrated in the OpenGL window (Fig. 

6(c)), and its corresponding depth image is shown in the 

OpenGL Depth window (Fig. 6(d)). Then, we adjust the 

Diff window so that the real-liver depth image displayed 

in Kinect Depth and the STL-virtual-liver depth image 

displayed in OpenGL Depth have the same position (Fig. 

6(e)). The smaller the score (indicating the matching ratio 

of real- and virtual-liver depth images) displayed in the 

Kinect Depth window, the more the depth images of the 

real and virtual livers overlap [5]-[7]. The virtual liver 

then follows the movement of its real counterpart 

according to the algorithm. 

 

Figure 6.  Liver surgery navigator windows. 

G. Liver Tracking by Steepest Descent Method 

Steepest descent is a well-known investigation 

algorithm for digital space. In our research, digital space 

is defined by 6 degrees of freedom of the 3D liver model 

(STL-polyhedron). Intuitively speaking, this is a method 

of optimizing the first derivative (f′(x)) of function f(x); 

that is, updating points to more optimal ones by selecting 

the best neighbors around present points and then 

converging them to the best point in the digital 6D space, 

which consists of huge discrete points showing 3D 

rotational and translational degrees of freedom. First, we 

obtained an actual-liver depth image from Kinect v2 and 

compared it with that of its virtual counterpart to find the 

exact liver position and orientation. Accuracy is critically 

important for tracking liver status and displaying 

navigation information on a virtual liver. To improve 

accuracy, it is important to investigate how depth images 

of virtual and corresponding actual livers differ and to 

evaluate ability to track liver position and orientation [5], 

[6]. 

III. EXPERIMENTS CONDUCTED IN OPERATING ROOM 

EQUIPPED WITH LED SHADOWLESS LAMPS 

Fig. 7 shows our surgical room, equipped with two 

LED lamps, where we investigated our depth–depth-

matching-based algorithm by several experiments 

wherein we used a 3D-printed viscoelastic liver replica 

modeled from a patient’s STL-polyhedron real liver. We 

placed the liver replica on a 0.25-m-long × 0.25-m-wide 

× 0.02-m-thick acrylic board on a rotating turntable and 

placed it on the operating table. The actual liver was 

moved by moving the acrylic board. By attaching Kinect 

v2 to a vertically movable robot, distance from the real 

liver could be changed. Kinect v2 was placed horizontal 

to the operating table, 0.9 m above the bottom of the real 

liver, and was fixed on a metal rod and attached to the 

vertical movement robot. Distance from the vertical robot 

to Kinect v2 was 0.32 m. 

 

Figure 7.  Operating room. 

First, the real-liver-replica depth image was captured 

by Kinect v2, and the STL-polyhedron virtual-liver depth 

image was moved manually to align initial positions of 

the two images. The actual liver could be rotated 360° 

around the z-axis and translated 5 cm along the x-axis, as 

shown in Fig. 8. Accuracy was evaluated based on the 

matching index (which is the total match rate of the real- 

and virtual-liver depth images measured along the x-, y-, 

and z-axes) generated by adjustment from the initial 

position to the final rotation or translation position. Two 

previous papers [6] and [7] explain in depth how to 

calculate match rate. 

The following paragraphs explain several experimental 

results obtained for real-liver rotation and translation 

under lighting conditions generated with no LED 

shadowless lamps, one LED shadowless lamp, and two 

LED shadowless lamps. Table III shows illuminance 

around the real liver during simulated surgeries. 

TABLE III.  ILLUMINANCE OF LED SHADOWLESS LAMP 

 
No LED 

shadowless lamps 

One LED 

shadowless lamp 

Two LED 

shadowless lamps 

Illuminance 

[lx] 
320 79,200 

Exceeds display 

illuminancea 
aDisplay illuminance: 0–99,000. 
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Figure 8.  In operating room wherein LED shadowless lamps were 

turned off, virtual liver followed manually rotated real counterpart. 

Real-liver depth image (white) and virtual-liver depth image (black) are 

overlapped. Real- and virtual-liver depth images superimposed (a) 

before rotation and (b) after rotation at 6°/s and (c) before rotation and 

(d) after rotation at 9°/s. 

A. Surgical Observation of Liver Rotation 

Using the whole liver-shaped replica, initial positions 

of real- and virtual-liver depth images were aligned. The 

real liver was then manually rotated at 6, 9, or 18°/s, and 

its depth images were captured simultaneously in real 

time by Kinect v2. Our depth–depth-matching-based 

steepest descendent algorithm showed that the virtual 

liver automatically followed its real counterpart 

according to acquired depth-image data. 

The first experiment was executed in a surgical 

operating room wherein LED shadowless lamps were 

turned off. When the real liver was manually rotated at 

6°/s, the real and virtual livers rotated in tandem (Fig. 8). 

The second experiment was conducted in a surgical 

operating room wherein only one LED shadowless lamp 

was turned on. When the real liver was manually rotated 

at 9°/s, its virtual counterpart rotated in tandem (Fig. 9). 

The third experiment was performed in a surgical 

operating room wherein two LED shadowless lamps were 

turned on. When the real liver was manually rotated at 

18°/s, its virtual counterpart rotated in tandem (Fig. 10). 

As a result, in the operating room wherein LED 

shadowless lamps were turned off, when the real liver 

was rotated at 6 or 9°/s, its virtual counterpart followed, 

and the overlap ratio changed by ~200 on average and 

~250 at worst or by ~300 on average and ~500 at worst, 

respectively. Therefore, with increasing angular velocity, 

the overlap ratio worsened during the simulated operation 

(Fig. 11(a) and Fig. 11(b)). In the operating room wherein 

only one LED shadowless lamp was turned on, when the 

real liver was rotated at 9 or 18°/s, its virtual counterpart 

followed, and the overlap ratio converged to ~1,000 by 

changing ~200 on average and ~300 at worst or by ~700 

on average and ~1,400 at worst, respectively. Therefore, 

the overlap ratio worsened with increasing angular 

velocity during the simulated operation (Fig. 11(c) and 

Fig. 11(d)). In the operating room wherein two LED 

shadowless lamps were turned on, when the real liver was 

rotated at 18°/s, its virtual counterpart followed, and the 

overlap ratio converged to ~600 by changing ~700 on 

average and ~1,150 at worst during the simulated 

operation. Comparing depth images displayed in Fig. 9(d) 

with corresponding ones displayed in Fig. 10(b), liver-

following convergence obtained using two LED lamps 

was considerably better than that obtained using only one. 

 

Figure 9.  In operating room wherein only one LED shadowless lamp 

was turned on, virtual liver followed manually rotated real counterpart. 

Real-liver depth image (white) and virtual-liver depth image (black) are 

overlapped. Real- and virtual-liver depth images superimposed (a) 

before rotation and (b) after rotation at 9°/s and (c) before rotation and 

(d) after rotation at 18°/s. 

 

Figure 10.  In operating room wherein two LED shadowless lamps were 

turned on, virtual liver followed manually rotated real counterpart. Real-

liver depth image (white) and virtual-liver depth image (black) are 

overlapped. Real- and virtual-liver depth images superimposed (a) 

before rotation and (b) after rotation at 18°/s. 

 

Figure 11.  (a), (b) In operating room wherein LED shadowless lamps 

were turned off, virtual liver followed real counterpart manually rotated 

at 6 and 9°/s, respectively. (c), (d) In operating room wherein only one 

LED shadowless lamp was turned on, virtual liver followed real 

counterpart manually rotated at 9 and 18°/s, respectively. (e) In 

operating room wherein two LED shadowless lamps were turned on, 

virtual liver followed real counterpart manually rotated at 18°/s. 
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B. Surgical Observation of Liver Translation 

Fig. 12 shows initial position alignments for real- and 

virtual-liver depth images of the whole liver and part of it. 

The real liver was manually translated, and its translation 

was always captured in real time by Kinect v2. According 

to our depth–depth-matching-based steepest descendent 

method, the virtual liver automatically followed its real 

counterpart, and translation velocity was constant. 

 

Figure 12.  Initial position alignments for real- and virtual-liver depth 

images of (a) whole liver and (b) part of liver. 

The first experiment was conducted in a surgical 

operating room wherein LED shadowless lamps were 

turned off. The real and virtual livers moved parallel in 

tandem (Fig. 13(a), (b), (c), (d)). The second experiment 

was executed in a surgical operating room wherein only 

one LED shadowless lamp was turned on. The real and 

virtual livers moved parallel in tandem (Fig. 14(a), (b), 

(c), (d)). The third experiment was performed in a 

surgical operating room wherein two LED shadowless 

lamps were turned on. The real and virtual livers moved 

parallel in tandem (Fig. 15(a), (b), (c), (d)). 

 

Figure 13.  In operating room wherein LED shadowless lamps were 

turned off, virtual liver followed manually translated real counterpart. 

Real-liver depth image (white) and virtual-liver depth image (black) are 

overlapped. Real- and virtual-liver depth images superimposed (a) 

before and (b) after translation of whole liver and (c) before and (d) 

after translation of partial liver. 

Accuracy of liver following in translation was 

evaluated based on depth images of the whole liver 

translated when zero, one, or two LED shadowless lamps 

were turned on, as shown in Fig. 16(a), Fig. 16(c), and 

Fig. 16(e), respectively. Furthermore, accuracy of liver 

following in translation was also evaluated based on 

depth images of a partial liver translated when zero, one, 

or two LED shadowless lamps were turned on, as shown 

in Fig. 16(b), Fig. 16(d), and Fig. 16(f), respectively. 

Initial position alignments for real- and virtual-liver depth 

images of whole and partial livers are shown in Fig. 12(a) 

and Fig. 12(b), respectively. Initially, average matching 

indices were about 1,200, 900, and 800 and the maximum 

matching indices were about 1,800, 1,300, and 1,200, as 

shown in Fig. 16(a), Fig. 16(c), and Fig. 16(e), 

respectively. Results suggested that accuracy of liver 

following in translation improved with increasing number 

of LED lamps. Furthermore, average matching indices 

were around 450, 300, and 200 and the maximum 

matching indices were around 700, 600, and 330 for a 

partial liver translated when zero, one, or two LED 

shadowless lamps were turned on, as shown in Fig. 16(b), 

Fig. 16(d), and Fig. 16(f), respectively. 

 

Figure 14.  In operating room wherein only one LED shadowless lamp 

was turned on, virtual liver followed manually translated real 

counterpart. Real-liver depth image (white) and virtual-liver depth 

image (black) are overlapped. Real- and virtual-liver depth images 

superimposed (a) before and (b) after translation of whole liver and (c) 

before and (d) after translation of partial liver. 

 

Figure 15.  In operating room wherein two LED shadowless lamps were 

turned on, virtual liver followed manually translated real counterpart. 

Real-liver depth image (white) and virtual-liver depth image (black) are 

overlapped. Real- and virtual-liver depth images superimposed (a) 

before and (b) after translation of whole liver and (c) before and (d) 

after translation of partial liver. 

These results suggest that liver-following accuracy 

improved with increasing number of LED lamps. 

Furthermore, the improvement was considerably more 

pronounced for a partial liver because the other part of 

the liver was quite flat. Therefore, the difference between 

real- and virtual-liver depth images was always less when 

the whole liver was translated. 
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Figure 16.  Matching indices obtained for liver following when whole 

liver was translated while (a) zero, (c) one, or (e) two LED shadowless 

lamps were turned on and when partial liver was translated while (b) 

zero, (d) one, or (f) two shadowless lamps were turned on. Initial 

position alignments for real- and virtual-liver depth images of whole 

and partial livers are shown in Fig. 12(a) and Fig. 12(b), respectively. 

IV. DISCUSSION 

We verified convergence stability for depth–depth 

matching of steepest descent method under simulated 

surgical conditions. Experiments were executed in a 

surgical operating room equipped with two LED 

shadowless lamps. The main findings were as follows. 

1) For the LED shadowless lamps used in the 

experiments, the virtual liver tracked its real 

counterpart more accurately in both rotation and 

translation with increasing number of lamps. In an 

experiment performed with filament or halogen 

shadowless lamps, infrared rays emitted from the 

shadowless lamp should be blocked using a sharp 

cut filter to prevent interference with infrared rays 

emitted from the depth sensor. However, we need 

not consider any such interference for a depth 

camera if we use LED shadowless lamps such as 

those used in these experiments. 

2) In our algorithm, a virtual liver followed its real 

counterpart according to the difference between 

both depth images. Therefore, if a section of the 

liver is flat, the difference is always small even if 

both livers independently move. To achieve liver 

following, we should prepare a non-flat convex or 

concave shape around the livers to compare the 

whole liver and the convex part. As a result, liver-

following achieved using only the convex part was 

more accurate than that achieved using the whole 

liver showing wide flat sections, which is 

especially advantageous for adjusting incisions of 

occluded liver parts in actual open liver surgery. 

3) As shown in Fig. 10(b) and Fig. 11(e), a score of 

600 after movement is the limit beyond which the 

depth images were no longer well overlapped. In 

other words, when the score was 0 to 600, the real 

liver and its virtual counterpart were strongly 

overlapped. However, our liver-following 

algorithm was limited owing to high angular 

velocity, as shown in Fig. 10(b) and Fig. 11(e). To 

overcome this limitation, we should improve 

sampling time of the depth sensor or increase 

velocity of the steepest descendent algorithm. 

V. CONCLUSION 

We used the depth–depth-matching-based steepest 

descent method to experimentally evaluate liver tracking 

during simulated liver surgery in an operating room 

equipped with LED shadowless lamps. Because the depth 

image of the real liver was not affected by the LED 

shadowless lamp, the more LED shadowless lamps, the 

more stable the depth–depth matching with the steepest 

descent algorithm. LED shadowless lamps did not emit 

any light spectrum that interfered with infrared rays 

emitted from the depth sensor. Therefore, increasing the 

number of LED shadowless lamps greatly improved 

liver-tracking accuracy. In addition, the slower the 

angular velocity, the more stable the convergence. 

Moreover, using distinctive convex or concave features 

significantly improved liver-tracking accuracy. The liver 

showed few flat sections, and liver shape was greatly 

deformed by surgical excision, suggesting that our 

proposed liver surgery navigator is feasible for 

application to actual open liver surgery. 

In future work, rotational and parallel translational 

movements will be performed mechanically, for which 

precise and stable operation evaluation will be required. 

Furthermore, to simulate actual surgical conditions, we 

must accurately evaluate our liver surgery navigation 

system using an incised real liver and its virtual 

counterpart occluded in an artificial human body. 
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