16 research outputs found

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    Trade-off between accuracy and interpretability: Experience-oriented fuzzy modeling via reduced-set vectors

    Get PDF
    AbstractThis paper focuses on accuracy and interpretability issue of fuzzy model approaches. In order to balance the trade-off between both of the aspects, a new fuzzy model based on experience-oriented learning algorithm is proposed. Firstly, support vector regression (SVR) with presented Mercer kernels is employed to generate the initial fuzzy model and the available experience on the training data. Secondly, a bottom-up simplification algorithm is introduced to generate reduced-set vectors for simplifying the structure of the initial fuzzy model, at the same time the parameters of the simplified model derived are adjusted by a hybrid learning algorithm including linear ridge regression algorithm and gradient descent method based on a new performance measure. Finally, taking the results from two-dimensional sinc function approximation and fuzzy control of the bar and beam system, the proposed fuzzy model preserves nice accuracy and interpretability

    Hierarchical Fuzzy Systems: Interpretability and Complexity

    Get PDF
    Hierarchical fuzzy systems (HFSs) have been regarded as a useful solution for overcoming the major issues in fuzzy logic systems (FLSs), i.e., rule explosion due to the increase in the number of input variables. In HFS, the standard FLS are reformed into a low-dimensional FLS subsystem network. Moreover, the rules in HFS usually have antecedents with fewer variables than the rules in standard FLS with equivalent functions, because the number of input variables in each subsystem is less. Consequently, HFSs manage to decrease rule explosion, which minimises complexity and improves model interpretability. Nevertheless, the issues related to the question of “Does the complexity reduction of HFSs that have multiple subsystems, layers and different topologies really improve their interpretability?” are not clear and persist. In this paper, a comparison focusing on interpretability and complexity is made between two HFS’ topologies: parallel and serial. A detailed measurement of the interpretability and complexity with different configurations for both topologies is provided. This comparative study aims to examine the correlation between interpretability and complexity in HFS

    Improving the accuracy while preserving the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms

    Get PDF
    AbstractThe identification of a model is one of the key issues in the field of fuzzy system modeling and function approximation theory. An important characteristic that distinguishes fuzzy systems from other techniques in this area is their transparency and interpretability. Especially in the construction of a fuzzy system from a set of given training examples, little attention has been paid to the analysis of the trade-off between complexity and accuracy maintaining the interpretability of the final fuzzy system. In this paper a multi-objective evolutionary approach is proposed to determine a Pareto-optimum set of fuzzy systems with different compromises between their accuracy and complexity. In particular, two fundamental and competing objectives concerning fuzzy system modeling are addressed: fuzzy rule parameter optimization and the identification of system structure (i.e. the number of membership functions and fuzzy rules), taking always in mind the transparency of the obtained system. Another key aspect of the algorithm presented in this work is the use of some new expert evolutionary operators, specifically designed for the problem of fuzzy function approximation, that try to avoid the generation of worse solutions in order to accelerate the convergence of the algorithm

    Landslide Risk Assessment by Using a New Combination Model Based on a Fuzzy Inference System Method

    Get PDF
    Landslides are one of the most dangerous phenomena that pose widespread damage to property and human lives. Over the recent decades, a large number of models have been developed for landslide risk assessment to prevent the natural hazards. These models provide a systematic approach to assess the risk value of a typical landslide. However, often models only utilize the numerical data to formulate a problem of landslide risk assessment and neglect the valuable information provided by experts’ opinion. This leads to an inherent uncertainty in the process of modelling. On the other hand, fuzzy inference systems are among the most powerful techniques in handling the inherent uncertainty. This paper develops a powerful model based on fuzzy inference system that uses both numerical data and subjective information to formulate the landslide risk more reliable and accurate. The results show that the proposed model is capable of assessing the landslide risk index. Likewise, the performance of the proposed model is better in comparison with that of the conventional techniques

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    A SMS-Based Intelligent Disaster Alert System

    Get PDF
    A SMS-Based Intelligent Disaster Alert System (IDAS) is an expert system in helping geologist to predict disaster incidences. The disaster includes flood, earthquake, hurricane, drought and tsunami. If disaster is predicted, an alert based on possible disaster area will be sent to the residents via mobile device i.e. Short Messaging System (SMS). The system is developed by utilizing Artificial Intelligence (AI) techniques of Rule-Based, Decision Tree Analysis and Guided Rules Reduction System. A Microsoft Visual Studio.Net and MySQL database are used as the software development environment while SMS technology is based on Global System for Mobile Communications (GSM) connected to IDAS. The case study was done at the area of Melaka Tengah, Melaka. A resident’s information is stored in the database in order to send alert via SMS. Once disaster is predicted, SMS will be sent to their respective mobile phone

    ORTHOGONAL HYBRID-FUZZY CONTROLLERS

    Get PDF
    The main idea of this paper is to present a possibility of application of hybrid-fuzzy controllers in control systems theory. In this paper, we have described a new method оf using orthogonal functions in control of dynamical systems. These functions generate genarilzed quasi-orthogonal filter, which are used in the concluding phase of the fuzzy controllers. Proposed hybrid-fuzzy controllers of Takagi-Sugeno type has been applied to a DC servo drive system and performed experiments have verified efficiency and improvements of a new control method
    corecore