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 Rule explosion related to an increase in the number of input variables has been 

recognised as a key issue in fuzzy logic systems (FLSs), and hierarchical fuzzy 

systems (HFSs) have been proposed as a viable solution. The typical FLS 

subsystem system is transformed into a low-dimensional FLS subsystem 

network in HFS. Furthermore, because the number of input variables in each 

subsystem is reduced, the rules in HFS generally contain antecedents with 

fewer variables than the rules in regular FLS with similar functions. As a 

result, HFSs can reduce rule explosion, reducing model complexity and 

improving model interpretability. Nonetheless, the concerns concerning the 

issue of “Does reducing the complexity of HFSs with various subsystems, 

layers, and diverse topologies actually increase their interpretability?” remain 

unclear. In this study, we compare two HFS topologies: parallel and serial, 

concentrating on interpretability and complexity. For both topologies, a full 

measurement of the interpretability and complexity with various 

configurations is presented. The goal of this comparative study is to see if there 

is a correlation between HFS interpretability and complexity. 
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1. INTRODUCTION  

The In a range of applications, interpretability is recognised as one of the most desirable features of 

fuzzy systems [1],  especially in those with considerable human involvement, where it is a must [2]. A fuzzy 

set is used to represent the domain values of a variable in the fuzzy system. Linguistic words, like human 

cognition, may be employed for this purpose. This property distinguishes the fuzzy system from other 

modelling systems in that, despite handling some intuitive requirements related to the collection of fuzzy sets, 

they may be simply read, making them understandable even to non-experts [3]. 

Fuzzy logic systems (FLSs) have been utilised successfully in a variety of disciplines, including 

research, industry, manufacturing, and business. They're also used in the medical industry for decision-making, 

particularly when dealing with ambiguity and inaccurate data  [4]–[7]. The curse of dimensionality, on the 

other hand, is a fundamental drawback of traditional fuzzy systems: the number of needed rules rises 

exponentially with the number of input variables [8]. This problem, also known as rule explosion, has the 

potential to reduce the openness and interpretability of FLSs [9]. 

Raju et al. [10]  play a critical role in the development of hierarchical fuzzy systems (HFSs) to address 

this issue. Rather than generating a single high-dimensional rule base for an FLS, this HFS technique will 

divide the input variables into a set of low-dimensional fuzzy subsystems. Each fuzzy low-dimensional 

subsystem is connected in a hierarchical manner. The rule explosion problem may be avoided, and the model's 

interpretability can be enhanced, by using this strategy. 
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Since interpretability is inherently subjective, complexity is frequently utilised in FLS as an indirect 

assessment of interpretability. Indeed, some researchers claim that reducing the complexity of a fuzzy system 

might improve the system's interpretability [11]–[13]. However, it is unclear if this holds for HFSs as well. 

This is due to the HFSs' structure, which includes many subsystems, layers, topologies (parallel and serial 

HFS), and subsystem interactions, as well as each subsystem's regulations. The number of rules, variables, and 

fuzzy terms, especially in FLSs, are always indicators of complexity. However, no one knows how to assess 

complexity in a hierarchical system, which includes various subsystems, levels, and topologies. In addition, 

the relationship between HFS interpretability and complexity is yet unknown and must be researched.  

In this paper, we propose a new method to systematically compare the parallel and serial topologies 

of HFSs, focusing on interpretability and complexity. This method investigates the correlation between the 

interpretability and complexity of HFSs. The method consists of six keys steps: (i) generate parallel and serial 

using an L-HFS algorithm; (ii) generate synthetic input data; (iii) perform the input-output mapping data for 

parallel and serial HFS; (iv) examine the equivalence between parallel and serial HFS using the Kolmogorov-

Smirnov test; (v) measure the interpretability and complexity of parallel and serial HFSs; and (vi) compare and 

analyse the results. intact. 

 

2. BACKGROUND 

 

2.1.  Hierarchical Fuzzy Systems 

HFSs are identified by grouping input variables into subsystems, which are low-dimensional FLS 

subsystems [10], [14]. Furthermore, as illustrated in Fig. 2, HFS may be represented as a cascade structure in 

which each layer's output is recognised as input to subsequent levels. HFS may also be thought of as a 

decomposition of FLS' function [15]. From a functional standpoint, FLS and HFS, as shown in Figs. 1 and 2, 

respectively, can be done as follows: 

 

𝑦 = 𝐹(𝑥1, 𝑥2, 𝑥3)     ≡     𝑦 =  𝑓2(𝑥3, 𝑓1(𝑥2, 𝑥1)) 

 

A system that moves from one layer to two layers has fewer rules than one-in-one layers, as shown in 

Figs. 1 and 2, respectively. The most extreme rule reduction is if the HFS structure has two input variables for 

each low-dimensional FLS and has (𝑛 − 1) layers [10]. Suppose we define 𝑚 fuzzy sets for each input variable, 

including an intermediate output variable 𝑦1, … , 𝑦𝑛−2,. In that case, the total of rules (𝑅) is a linear function 

[16] of the total of the input variables 𝑛 and can be represented as: 

 

𝑅 = (𝑛 − 1)𝑚2 (1) 

 

 
Figure 1. Fuzzy Logic Systems 

 

 
Figure 2. Hierarchical Fuzzy Systems 

 

Despite its success in dealing with rule explosion, the HFS has some concerns with its intermediate 

output that must be solved before HFSs may be designed. The output of FLs in the previous layer, known as 

intermediate output, is utilised as the input linguistic variable of the following layer in the traditional HFS. This 
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intermediate output, on the other hand, has no physical meaning. As a result, when the output is used as an 

input variable for the following layer, the fuzzy rule involved loses its physical meaning and becomes more 

complex to design [17]. Furthermore, as HFS expands, this issue will become increasingly critical. Several 

researchers [18]–[24] have proposed novel techniques to creating HFSs in order to address this problem. 

Among these approaches, only limpid-hierarchical fuzzy systems will be discussed in detail in the following 

section.  

 

2.2.  Limpid-Hierarchical Fuzzy Systems (L-HFS) 

Lee et al. suggested a new approach for dealing with the problem of an intermediate output in the 

middle layer that has no physical meaning [19]. To obtain the HFS rule base, they implemented a new mapping 

rule base called L-HFS. To illustrate this method, an HFS, as in Fig. 2, is used that consists of three input 

variables: 𝑥1, 𝑥2 and 𝑥3. FLSA and FLSB are subsystems for this HFS at layer 1 and layer 2, respectively. 

By defining each variable using three linguistic terms, where N is negative, Z is zero and P is positive, 

the complete rules for an FLS consist of 27 (3 × 3 × 3 = 27) rules. From these complete rules, Algorithm 1 

(as can be seen in [19]) is then applied to the mapping rule for subsystems FLSA and FLSB of the HFS. 

 

2.3.  Interpretability 

In recent years, researchers have started to pay attention to interpretable fuzzy models. However, 

because of its contextual existence and various contributing influences, the selection of acceptable 

interpretability measures remains a topic of controversy. Significant research on the suggested interpretability 

index for FLS has been performed [25]–[30] of the proposed interpretability index for FLS. Among them, only 

the Fuzzy index and the H framework will be discussed in detail in the following sections. 

In [31], Razak et al. introduced the H (for HFS interpretability) framework, which incorporates 

aggregate interpretability at each subsystem into a single overall metric of HFS interpretability. It can be 

described in the following way:  

 

𝐻mean =  ∑ (𝑙𝑗 ∑ 𝐸𝑗𝑘/𝑠𝑗

𝑠𝑗

𝑘=1

)

𝑞

𝑗=1

 

 

(2) 

 

where  𝐸𝑗𝑘 is the underlying (standard) FLS index associated with the subsystem 𝑘 at layer 𝑗, for 

example, the Fuzzy (F) index, 𝑙𝑗 is the weight connected with layer 𝑗 of the HFS, 𝑠𝑗 is the number of subsystems 

located in layer 𝑗, 𝑠 is the total number of subsystems and 𝑞 is the number of layers of the HFS. 

 

2.4.  Complexity 

In general, and particularly in FLSs, complexity is defined by several rules, variables, and fuzzy terms. 

An FLS with less rules, for example, is easier to customise and uses less memory and execution time than one 

with more rules. As a result, the majority of studies have used the index, or the number of rules, to determine 

the complexity of FLSs [11], [32]–[34].   

Razak et al. suggested a method for evaluating the complexity of HFSs that takes into account the 

complexity of its structure, which requires several subsystems, layers, and a dynamic topology [35], [36]. Also, 

the approach seems to be better has its combined structure complexity and rule-based complexity. It can be 

computed as follows: 

 

𝐶𝐻𝐹𝑆 =  𝐶𝑅𝐵  ⊕  𝐶𝑆 (3) 

 

where 𝐶𝑅𝐵 is rule-based complexity, 𝐶𝑆 is structural complexity and ⊕ indicates the generic 

aggregation operator such as min, max and mean. In this paper, we will use mean in (3) to measure the 

complexity of HFSs. Further information for this (3) can be seen in [36]. 

 

 

3. METHODOLOGY 

We propose a method to compare parallel and serial HFSs focusing on interpretability and complexity. 

Figure 3 shows the steps involved in developing this method: 
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Figure 3. Stepwise process for the proposed methodnovelty. 

 

3.1.  Step 1: Produce parallel (P-LHFS) and serial (S-LHFS) HFSs using L-HFS algorithm 

The method begins by producing two types of HFSs, i.e., parallel and serial, using an L-HFS 

algorithm. These HFS models are named P-LHFS and S-LHFS, respectively. 

 

3.2.  Step 2: Generate synthetic input data 

Then, the input data of 500 samples is synthetically produced. This is achieved by using a simple 

random function (Rand()) as in Microsoft Excel. 

 

3.3.  Step 3: Perform the input-output mapping data for P-LHFS and S-LHFS 

Next, the input-output mapping is conducted for P-LHFS and S-LHFS by using the synthetic input 

data as in Step 2. The result of this step is stored for both P-LHFS and S-LHFS and will be used in the next 

step. 

 

3.4.  Step 4: Examine the equivalence between P-HFS and S-HFS using the Kolmogorov-Smirnov test 

For this step, a statistical test was conducted using the Kolmogorov-Smirnov (KS) test [37] to compare 

the equivalence of P-LHFS and S-LHFS. The K-S test statistic measures the maximum distance (D) between 

the empirical cumulative distribution function (ECDF) P-LHFS and S-LHFS, measured in a vertical direction. 

It is computed as: 

 

𝐷 =  
sup

𝑥
|𝐹𝑃−𝐿𝐻𝐹𝑆(𝑥) −  𝐹𝑆−𝐿𝐻𝐹𝑆(𝑥)| (4) 
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where, 𝐹𝑃−𝐿𝐻𝐹𝑆(𝑥) indicates the cumulative distribution of output mapping of P-LHFS (as in Step 3), 

𝐹𝑆−𝐿𝐻𝐹𝑆(𝑥) indicates the cumulative distribution of output mapping of S-LHFS (as in Step 3). 

The D statistic is then compared with the critical value (𝐷𝛼) to find the equivalence between P-LHFS 

and S-LHFS. The D is greater than (𝐷𝛼), indicating that both data are distributed differently. Meanwhile, D is 

less than (𝐷𝛼), indicating that both data have the same distribution. The critical values can be found at the K-S 

test critical values in [37] and computed as follows: 

 

𝐷𝛼 =  
𝑐(𝛼)

√𝑛
  

(5) 

 

where n is a sample size, 𝛼 is level of significance that will indicate the value of 𝑐(𝛼) and both values 

can be referred at K-S Test Critical values in [37]. In this case, we use the value of 𝛼 = 0.05 and therefore, the 

value of 𝑐(𝛼) = 1.36. 

 

3.5.  Step 5: Measuring the interpretability and complexity of P-LHFS and S-LHFS 

In this step, the interpretability and complexity for each P-LHFS and S-LHFS are measured. For the 

interpretability, (2) is used to measure the interpretability for both P-LHFS and S-LHFS. Then the results are 

compared. Also, in this step, to measure the complexity of P-LHFS and S-LHFS, we use (3) to calculate the 

overall complexity of HFSs that include rule-based and structural complexity. 

 

3.6.  Step 6: Comparing the relationship interpretability and complexity of P-LHFS and S-LHFS 

Finally, the results from Step 5 are analysed and compared. This step can provide significant insight 

into the relationship between the interpretability and complexity of HFSs, respectively. 

 

 

4. EXPERIMENT AND RESULTS  

Provide As a demonstration, we have used the example of a seesaw control application (as in [19]), 

which solved the problem of balancing a seesaw using an FLS. The involved parameters of the seesaw are 

(𝑥 =  𝑥1), (𝜃 =  𝑥2), (𝑟1 =  𝑥3), and (𝑟2 =  𝑥4), as shown in Fig. 4. The topology and complete rules set for this 

FLS can be seen in Figure 5 and Table 2, respectively. 

 

 
Figure 4. Seesaw Control Application. Adapted from [19]. 

 

 

The experiment aims to investigate the relationship between the interpretability and complexity of 

different HFSs, i.e., parallel and serial, using the proposed method. The method consists of six main steps, as 

shown in Figure 3. For step 1, we used the L-HFS algorithm to produce two types of HFSs (parallel and serial) 

for seesaw systems, termed as P-LHFS and S-LHFS. The topologies of these HFSs can be seen in Figs. 6 and 

7, respectively. Also, the complete rules for these HFSs were shown in Tables 3 – 8. The summary of both 

HFSs of the seesaw system, including FLS, is presented in Table 1. For step 2, the input data of 500 samples 

for the seesaw system are synthetically produced using a simple random function (Rand()) in Microsoft Excel. 

In Step 3, we conducted the input-output mapping for P-LHFS and S-LHFS by using the synthetic input data 

from Step 2. For the remaining steps (Step 4 – Step 6), a detailed explanation will be provided in the following 

subsections. 
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Table 1. Description of the three Seesaw systems, namely FLS, P-LHS and S-LHFS. Note that NOR is the 

number of rules. 
Description  FLS P-LHFS S-LHFS 

Number of inputs 4 4 4 

Number of subsystems 1 3 3 
NOR in FLS1 81 9 9 

NOR in FLS2 - 9 15 

NOR in FLS3 - 25 21 
Total NOR 81 43 45 

 

Table 2. The complete rules of FLS 
𝑥3 𝑥4 𝑥1 

nb ze pb 

𝑥2 𝑥2 𝑥2 

nb ze pb nb ze pb nb ze pb 

 

nb 

nb nb nb nm nb nm ns nm ns ze 

ze nb nm ns nm ns ze ns ze ps 

pb nm ns ze ns ze ps ze ps pm 
 

ze 

nb nb nm ns nm ns ze ns ze ps 

ze nm ns ze ns ze ps ze ps pm 

pb ns ze ps ze ps pm ps pm pb 
 

pb 

nb nm ns ze ns ze ps ze ps pm 

ze ns ze ps ze ps pm ps pm pb 

pb ze ps pm ps pm pb pm pb pb 

 

 

 

 
Figure 5. FLS topology 

 

 
Figure 6. Parallel HFS (P-LHFS) topology 

 

 

 
Figure 7. Serial HFS (S-LHFS) topology 

Table 3. The rules of subsystem FLS1 in P-LHFS Table 4. The rules of subsystem FLS2 in P-LHFS 



                ISSN: 2089-3272 

IJEEI, Vol.9, No. 2, June 2021:  478 - 489 

484 

𝑥2 𝑥1 

nb ze pb 

nb A B C 

ze B C D 

pb C D E 
 

𝑥4 𝑥3 

nb ze pb 

nb F G H 

ze G H I 

pb H I J 
 

 

Table 5. The rules of subsystem FLS3 in P-LHFS 
𝑦2 𝑦1 

A B C D E 

F nb nb nm ns ze 

G nb nm ns ze ps 

H nm ns ze ps pm 
I ns ze ps pm pb 

J ze ps pm pb pb 

 

 

 

Table 6. The rules of subsystem FLS1 in S-LHFS 
𝑥2 𝑥1 

nb ze pb 

nb A B C 

ze B C D 

pb C D E 
 

Table 7. The rules of subsystem FLS2 in S-LHFS 
𝑥3 𝑦1 

A B C D E 

nb F G H I J 
ze G H I J K 

pb H I J K L 

 

 

Table 8. The rules of subsystem FLS3 in S-LHFS 
𝑥4 𝑦2 

F G H I J K L 

nb nb nb nm ns ze ps pm 
ze nb nm ns ze ps pm pb 

pb nm ns ze ps pm pb pb 
 

4.1.  Step 4: Comparing the equivalence of P-LHFS and S-LHFS 

In this step, the input-output mapping data for both P-LHFS and S-LHFS of the seesaw system from 

Step 3, are statistically compared using the Kolmogorov-Smirnov (KS) test. The aim is to find the equivalence 

between both HFSs and with FLS. It is crucial to make sure that they are equivalent before we can proceed to 

the next steps. For example, if the result showed that they were not equivalent, there would be is no point in 

doing a detailed comparison and analysis in terms of interpretability and complexity because they would be 

two different systems.  

 

Table 9. The Kolmogorov-Smirnov Test between FLS and HFSs (P-LHFS and S-LHFS) of Seesaw Control 

Application. 
Input sample 

(n) 

FLS vs P-LHFS FLS vs S-LHFS P-LHFS vs S-LHFS Critical values 

𝐷 𝑝-value 𝐷 𝑝-value 𝐷 𝑝-value 
𝐷𝛼 =

𝑐(𝛼)

√𝑛
 

500 0.042 0.7699 0.040 0.8186 0.048 0.6121 0.061 

 

Table 9 presents the result of the K-S test that examined the equivalence between FLS and P-LHFS, 

FLS and S-LHFS, and, most importantly, between P-LHFS and S-LHFS of the seesaw system. From Table 9, 

the K-S test showed that three seesaw systems – namely, FLS, P-LHFS and S-LHFS were equivalent when 

tested with the 500 input samples. The K-S test statistic, which measured the maximum distance (𝐷) between 

three seesaw systems, produced less than (𝐷𝛼), indicating they have the same distribution. These results can 

also be viewed graphically in Figs. 8, 9 and 10, respectively. 

 

 
Figure 8. FLS vs P-LHFS 
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Figure 9. FLS vs S-LHFS 

 

 
Figure 10. P-LHFS vs S-LHFS 

 

4.2.  Step 5: Measuring the interpretability and complexity of P-LHFS and S-LHFS 

This step discusses measuring the interpretability and complexity of these Seesaw systems, namely 

FLS, P-LHFS and S-LHFS. For the interpretability, we use the Hmean as in (2) to measure the interpretability 

of for FLS, P-LHFS and S-LHFS of the seesaw system. Table 10 shows a summary of the interpretability 

measured for FLS, P-LHFS and S-LHFS.  

 

Table 10. The interpretability of Seesaw systems measured by Hmean 
Seesaw systems Interpretability Index (Hmean) 

FLS 0.241 

P-LHFS 0.456 

S-LHFS 0.477 

 

For the complexity, we use the C framework as in (6) to measure the complexity for FLS, P-LHFS 

and S-LHFS of the seesaw system. Table 11 shows a summary of the interpretability measured for FLS, P-

LHFS and S-LHFS. Generally, the results of the computed C index of S-LHFS higher than P-LHFS and FLS, 

indicating more complex. 

 

Table 11. The interpretability of Seesaw systems measured by C framework 
Seesaw systems Complexity Index (CHFS) 

FLS 0.250 

P-LHFS 0.768 
S-LHFS 0.756 

 

 

 

4.3.  Step 6: Comparing the relationship between interpretability and complexity of HFSs 
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The Table 12 shows the result of comparison between the interpretability and complexity for P-LHFS 

and S-LHFS of the seesaw system. As can be seen from Table 12, the result indicates S-LHFS is having high 

interpretability and less complexity for the seesaw system. Meanwhile, the result showing that P-LHFS have 

less interpretability and high complexity for the seesaw system. 

 

Table 12. Comparing the interpretability and complexity of P-LHFS and S-LHFS 
Seesaw systems Interpretability Complexity 

P-LHFS Less High 

S-LHFS High Less 

 

 

 

5. DISCUSSION 

We studied the newly proposed approach to systematically compared the Parallel and Serial of HFSs 

in term of interpretability and complexity. The approach was achieved using the Seesaw systems application 

example consisting of six key steps. However, the discussion only considers the on the Steps 4- 6.  

In Step 4, a statistical comparison of an equivalent between FLS, P-LHFS and S-LHFS was 

performed. This is accomplished by using a statistical test that is the Kolmogorov-Smirnov (KS) test. The result 

reveals that Both P-LHFS and S-LHFS are equivalent to an FLS as Kolmogorov-Smirnov Test showed 𝐷 <
 𝐷𝛼 . The detailed result can be seen in Table 9. The results also found that S-LHFS are closer to FLS than P-

LHFS. Also, the result of the 𝐷 in SLHFS is less than P-LHFS. However, at this stage, we cannot make any 

assumptions on which HFSs (parallel or serial) is better as this step aims to see the equivalent between them. 

Meanwhile, in Step 5, a computation measurement study between FLS, P-LHFS and S-LHFS was 

made based on the interpretability and complexity. For the case of interpretability, the computed values of 

Hmean showed that the S-LHFS is higher than P-LHFS and FLS. This could indicate that S-LHFS is more 

interpretable than P-LHFS and FLS. Interestingly because the S-LHFS has 45 rules and the P-LHFS has 43 

rules.  Also, the S-LHFS has three layers, and a P-LHFS has two layers. It seems possible that these results are 

due to the S-LHFS has more antecedent than the P-LHFS, particularly at subsystem 2 (FLS2), which influence 

the overall interpretability of HFSs. Contrary, for the case of complexity, the computed values of CHFS showed 

that the P-LHFS is higher than S-LHFS and FLS. This could mean that P-LHFS is more complex than P-LHFS 

and FLS. However, the number of rules in P-LHFS is lower than S-LHFS, as shown in Table 1. This could 

also reveal that the number of rules does not only influence the complexity of HFS. Nonetheless, it may also 

influence by its structure, namely the number of layers, multiple subsystems, and varied topologies. 

Specifically, the possible explanation of these results includes; (i) intermediate output variables produced by 

using L-HFS algorithm are different; (ii) Five new mapping variables (A, B, C, D and E) are obtained for 

intermediate output 𝑦1 at subsystem (FLS1) in both P-LHFS and S-LHFS, as can be seen in Tables 4 and 7, 

respectively; and (iii) Five new mapping variables (F, G, H, I and J) are obtained for intermediate output 𝑦2 at 

subsystem (FLS2) in P-LHFS as shown in Table 5. Meanwhile, seven new mapping variables (F, G, H, I, J, K 

and L) are obtained for intermediate output 𝑦2 at subsystem (FLS2) in S-LHFS as shown in Table 8. 

In Step 6, Table 12 shows a comparison of interpretability and complexity of P-LHFS and S-LHFS 

for Seesaw systems example. In general, the result exposes that there is a trade-off relationship between 

interpretability and complexity of HFSs, as also discussed in [38]. That is, the less interpretability is, the higher 

complexity in the system. Also, the higher interpretability is less complexity in the system. In this comparison, 

the result tells that P-LHFS is less interpretability and high complexity. Meanwhile, the result exhibits that S-

LHFS is high interpretability and less complexity. 

Lastly, this systematic comparison is essential for assisting as a guideline to choose the best model or 

system between varied topologies in HFSs. Thus, this may provide an insight into building the interpretable 

hierarchical fuzzy system for the real-world example.  

 

6. CONCLUSION  

In conclusion, we have proposed a method for systematically comparing the HFS topologies (parallel 

and serial). We would like to look at the relationship between interpretability and complexity in HFSs, which 

are made up of six main stages, using the Seesaw method as an example. Based on the available data, the S-

LHFS tends to be superior to the P-LHFS for the Seesaw method. This is since, in the case of the Seesaw 

system, the result shows that the S-LHFS is more interpretable and less complex than the P-LHFS.  

Note that this systematic comparison is essential for assisting as a guideline to choose the best model 

or system between varied topologies in HFSs. Thus, this may provide an insight into building the interpretable 

hierarchical fuzzy system for the real-world example. 
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While the comparison approach is promising, there is still room for improvement. Therefore, for 

future work, we will improve the approach by incorporating the investigation with the other criteria such as 

accuracy, semantic interpretability. 
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