252 research outputs found

    An Overview of Multi-Attribute Decision Making (MADM) Vertical Handover Using Systematic Mapping

    Get PDF
    The evolution of infotainment industries yet the advancement of cellular gadgets such as smartphones, tablets, and laptop had increased the request on cellular traffic demands. As a result, a Heterogeneous Wireless Network (HWN) has been introduced to fulfil users requests in having seamless mobility and better Quality of Services (QoS) for the users. A lot of research works have been done in order to provide a seamless connection to the users. Even though a lot of methods have been proposed, a Multi-Attribute Decision Making (MADM) has been seemed like a promising way due to its ability to evaluate many attributes simultaneously. Previously, many reviews based on MADM methods in a Heterogeneous Wireless Network provides a details review which required researchers time in order to determine the possible potential areas to be explored. Therefore, in this study, we present an overview of the MADM method in performing vertical handover via a systematic mapping method. This will enable future researchers to identify the trends and research opportunities within this area. This mapping study analysed 30 papers. Results from the study show eight main potential research issues can be explored by researchers, including normalisation, criteria weighting, ranking abnormality, network selection, and performance comparison between MADM algorithms, network selection for a group of calls, mobility patterns and handover triggering

    Network selection based on chi-square distance and reputation for internet of things

    Get PDF
    The internet of things (IoT) has become one of the most important technologies of the 21st century. The IoT environment is composed of heterogeneous IoT communication networks. These technologies are complementary and need to be integrated to meet the requirements of different types of IoT applications that require the mobility of the IoT device under different IoT communication networks. In this paper, the vertical handover decision method is considered to select the appropriate network among different IoT technologies. So, IoT devices, equipped with several radio technologies, can select the most suitable network based on several criteria like quality of service (QoS), cost, power, and security. In this work, a multi-attribute decision-making algorithm (MADM) based on techniques for order preference by similarity to an ideal solution (TOPSIS) that uses chi-square distance instead of Euclidean distance is proposed. The network reputation is added to reduce the average number of handoffs. The proposed algorithm was implemented to select the best technology depending on the requirements of the different IoT traffic classes. The obtained results showed that our proposition outperforms the traditional MADM algorithms

    A hybrid fuzzy-MADM based decision-making scheme for QoS aware handover

    Get PDF
    The fifth-generation communications system (5G) will commercialize at 2020 in order to satisfy the increasing demands on data rate and also to enable the internet of things (IoT). One of the most challenging issues in 5G communications network is to provide provisioning quality of service (QoS) while maintaining seamless mobility for user equipment (UE). This paper proposes a QoS-aware handover algorithm based on fuzzy-TOPSIS to trigger and achieve the optimal cell selection. The proposed algorithm integrates both advantages of fuzzy logic and technique for order preference by similarity to an ideal solution (TOPSIS). The weights value of network attributes is first calculated by Entropy and the fuzzy-TOPSIS algorithm are then applied to rank each access networks. This QoS-aware algorithm is able to achieve the optimal Mean Option Score (MOS) for UE by considering QoS related parameters such as network jitter and packet loss ratio. The simulation results indicate that the proposed algorithm can guarantee good QoS while maintaining number of handover at a low level

    A fuzzy-clustering based approach for MADM handover in 5G ultra-dense networks

    Get PDF
    As the global data traffic has significantly increased in the recent year, the ultra-dense deployment of cellular networks (UDN) is being proposed as one of the key technologies in the fifth-generation mobile communications system (5G) to provide a much higher density of radio resource. The densification of small base stations could introduce much higher inter-cell interference and lead user to meet the edge of coverage more frequently. As the current handover scheme was originally proposed for macro BS, it could cause serious handover issues in UDN i.e. ping-pong handover, handover failures and frequent handover. In order to address these handover challenges and provide a high quality of service (QoS) to the user in UDN. This paper proposed a novel handover scheme, which integrates both advantages of fuzzy logic and multiple attributes decision algorithms (MADM) to ensure handover process be triggered at the right time and connection be switched to the optimal neighbouring BS. To further enhance the performance of the proposed scheme, this paper also adopts the subtractive clustering technique by using historical data to define the optimal membership functions within the fuzzy system. Performance results show that the proposed handover scheme outperforms traditional approaches and can significantly minimise the number of handovers and the ping-pong handover while maintaining QoS at a relatively high level. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    Analytical Review and Study on Various Vertical Handover Management Technologies in 5G Heterogeneous Network

    Get PDF
    In recent mobile networks, due to the huge number of subscribers, the traffic may occur rapidly; therefore, it is complex to guarantee the accurate operation of the network. On the other hand, the Fifth generation (5G) network plays a vital role in the handover mechanism. Handover management is a prominent issue in 5G heterogeneous networks. Therefore, the Handover approach relocates the connection between the user equipment and the consequent terminal from one network to another. Furthermore, the handover approaches manage each active connection for the user equipment. This survey offers an extensive analysis of 50 research papers based on existing handover approaches in the 5G heterogeneous network. Finally, existing methods considering conventional vertical handover management strategies are elaborated to improve devising effective vertical handover management strategies. Moreover, the possible future research directions in attaining efficient vertical handover management in a 5G heterogeneous network are elaborated

    Fuzzy-TOPSIS based optimal handover decision-making algorithm for fifth-generation of mobile communications system

    Get PDF
    With the increasing demand for higher bandwidth and data rate of the mobile user. There are massive Base Stations (BS) will be deployed in the future wireless environment. Several issues could be raised dues to dense deployment of BSs, i.e. handover (HO) ping-pong effect, unnecessary HO and frequent HO. To avoid these effects, the handover decision-making strategies become extremely important to select the optimal BS among all detected BS and ensure QoS for each mobile user. In this paper, the author develops a fuzzy-TOPSIS based HO algorithm to minimise the ping-pong effect and number of HO. The proposed algorithm integrates both advantages of fuzzy logic and TOPSIS. The Received Signal Strength Intensity (RSSI) and Signal to Noise Ratio (SNR) are considered as HO criteria in this approach. For the simulation result, the proposed HO algorithm can reduce ping-pong rate and a number of HO effectivity by comparing to conventional RSSI-based HO approach and classical Multi-Attribute Decision Making (MADM) HO method, i.e. simple additive weighting (SAW) and TOPSIS

    Gestão comum de recursos rádio em redes sem fios de próxima geração

    Get PDF
    Mestrado em Electrónica e TelecomunicaçõesA tecnologia de sinais de rádio frequência sobre fibra óptica involve o uso de links ópticos para transportar os sinais desde a unidade central de processamento até aos sites remotos (e vice-versa). A centralização do processamento dos sinais de rádio frequência permite a partilha de equipamentos, alocação dinâmica de recursos e uma manutenção mais simplificada do sistema. Embora o conceito de gestão comum dos recursos rádio tenha despertado grande interesse na comunidade científica em termos da melhor utilização desses recursos e de novos modelos de negócio, a verdade é que a sua implementação não tem sido fácil. A interligação entre diferentes componentes de rede, normalmente localizados em locais diferentes, introduz um grande atraso nas comunicações; por outro lado as implementações proprietárias e a escassez de informação global não satisfazem os requisitos de um ambiente extremamente dinâmico, como é o ambiente wireless. Uma topologia centralizada permite ultrapassar estas contrariedades, disponibilizando uma interligação eficiente entre as entidades locais e comuns de gestão de recursos rádio. Nesta dissertação é apresentada uma nova arquitectura de gestão comum de recursos rádio, baseada no conceito de interligação entre diferentes tecnologias de acesso. Esta arquitectura faz a gestão dos recursos rádio de forma centralizada, onde os sinais rádio chegam sem qualquer pré-processamento. Essa arquitectura é avaliada com a implementação de um algoritmo simples de balanceamento da carga que segue a politica de minimização da interferência e aumento da capacidade. As simulações com duas tecnologias de acesso, quando consideradas separas ou em agregado, mostraram um aumento do débito de pelo menos 51% para o mesmo valor de interferência enquanto que o erro de simbolo decresce pelo menos 20%.Radio over fibre technology involves the use of optical fibre links to distribute radio frequency signals from a central location to remote sites (and viceversa). The centralisation of radio frequency signals processing functions enables equipment sharing, dynamic allocation of resources, and simplified system operation and maintenance. Despite the unquestionable interest concept of common radio resource management from the point of view of resource usage and novel business models, its implementation has not been easy. The interworking between the different local radio resource management entities, usually located on different places will not satisfy the requirements of the wireless dynamic behaviour due to increase of delay in communication process, less information availability and proprietary implementations. A centralised topology can overcome the drawbacks of former wireless systems architecture interconnection by providing an efficient common radio communication flow with the local radio resource management entities. In this thesis a novel common radio resource management architecture is presented based on the concept of inter-working between different technologies. This is a centralised architecture where the radio frequency signals are delivered to the central location through the optical links. The new architecture is evaluated with a common policy that minimises interference while the overall system capacity is increased. The policy is implemented through the load balancing algorithm. The simulations of two radio access technologies when separately and jointly considered show that when the load balancing algorithm is applied the available throughput increases in at least 51% while the symbol error rate decreases at least 20%

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    corecore