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Abstract

In future generation networks (4G and beyond), the convergence of existing and
evolved wired and wireless technologies is expected to create an all-IP ubiqui-
tous networking environment. In this environment, emerging end-user services
set new requirements for highly reliable and robust operation. However, such
properties are challenging to obtain. Faults threatening service continuity are
common due to mobility, unreliable wireless links, and heterogeneous networks
with varying properties. In addition, the lack of opportunities to deploy network
wide mechanisms for synchronized QoS control, network monitoring, diagnosis
and repair challenges traditional network fault management approaches. An
alternative, studied in this work, is to consider which options an end-node exe-
cuting the end-user service may have to mitigate faults in the end-to-end paths.
Typically operating in the network edge an end-node may fusion information of
available networks and their dependability related properties. Such an end-node
driven fault management approach aims to make use of the diversity in the ubig-
uitous networking environment (various technologies, providers and operational
characteristics) to provide improved resiliency without explicitly requiring net-
work support. Predominant challenges in this approach are: i) unobservable
and incomplete network state information, ii) unreliable observations based on
network traffic, and iii) highly dynamic environments calling for adaptation in
the fault management process.

In this thesis solutions to mitigate these issues are studied. In the applied
methodology focus is on potential gains in the interaction between the well
known components of Observation, Diagnosis, Decision and Remediation Fxe-
cution. Initially, a middleware based framework, called ODDR, is proposed. It
aims to hide complexities of fault management to the end-user services, while
attempting to optimize for their dependability related requirements. In this
framework approaches are studied to improve diagnosis robustness to unreli-
able observations and dynamics by adopting multiple cross-layer observations
and decoding measurement uncertainty information in the diagnosis process.
A general case scenario study is conducted encompassing diagnosis of faults in
infrastructure networks and remediation by proper access network selection for
a time constrained end-user service. The scenario is used to obtain insights on
the impact of unavoidable diagnosis imperfections on service reliability. In addi-
tion, it is studied to what extend good remediation decisions may be applied to
mitigate such imperfections. For this purpose a light-weight decision policy eval-
uation model is proposed. Its focus is on how to parsimoniously represent the
diagnosis imperfections considering both simple memory-less diagnosis mecha-
nisms and more complex mechanisms, which correlate observations in time. The
model is applied to evaluate best decision policies and settings of the diagnosis
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component trading off imperfections. Finally, it is assessed how atomic model
parts of the studied decision model may be dynamically re-composed to handle
dynamic changes of the networking environment.

Evaluations of the proposed approaches have been conducted in the pre-
sented models and a system level simulation environment. It is shown how
diagnosis based on network traffic can be highly sensitive to even small changes
in the observations caused by dynamics in the networking environment and
measurement, errors. Obtainable gains in diagnosis accuracy and robustness
to changes have been demonstrated using multiple cross-layer observations in
a basic probabilistic model. Further, a hidden Markov model based diagnosis
mechanism has been proposed which is capable of decoding uncertainty infor-
mation associated to observations to successfully improve diagnosis performance
while balancing impact on different performance metrics. While diagnosis may
be improved to a certain extent the case study scenario shows the criticality of
addressing remaining imperfections in the remediation decision process. Some
of our main findings are: i) certain imperfection trade-off settings of the Diag-
nosis component can lead to worse end-user service reliability than if no fault
management was initiated at all, ii) using end-user service state information can
help improve service reliability and minimize remediation overhead by ignoring
imperfect diagnosis in non-critical states, and iii) imperfections of complex diag-
nosis mechanisms can be represented in the proposed policy evaluation model,
without increasing its state-space, to identify the best diagnosis trade-off setting
of diagnosis imperfections optimizing service reliability. Although remediation
improvements in some cases are modest under the limitations of studied setup, it
is shown how considering the interplay between fault-diagnosis and remediation
in the remediation decision problem provides interesting gains. These findings
have all been verified by the system level simulations. A final outlook of our
approach and results is provided by showing how the decision model may be
re-configured dynamically to changes in the networking environment.



Dansk Resumé

Konvergensen af eksisterende og fremtidige netveerksteknologier, tradede sével
som tradlgse (FTTx, xDSL, cellular, WLAN, DVB, etc.), er forudset til at ska-
be et allestedsneerveerende netvaerk baseret pa IP-teknologi. I dette netvaerk
afvikles distribuerede brugerapplikationer. Nogle af disse forventes at stille
seerligt hgje krav til palidelighed. At opné hgj palidelighed i sdidanne netvaerk er
en stor udfordring. Kommunikationsfejl opstar jeevnligt som felge af dynamik
fra tradlgse kanaler, mobilitet og i interaktionen mellem heterogene netvaerks-
typer. Dette kompliceres yderligere af begreensede muligheder for at stille krav
til, samt foretage en koordineret styring af Quality of Service, netveerk moni-
torering, diagnose og fejlretning pa tveers af forskellige netveerk. Saledes kan det
veere vanskeligt at benytte traditionelle centraliserede fejlhdndteringsmekanis-
mer. I dette arbejde praesenteres et alternativ med udgangspunkt i hvilke mu-
ligheder en end-node, der eksekverer en del af en distribueret applikation, har
for at foretage denne fejlhandtering. Fordelen for end-noden er et holistisk
perspektiv pa de netveerk, der er til radighed og dermed en mulighed for at
samordne informationer om deres funktion samt palidelighed. En sadan fejl-
handteringsmekanisme eksekveret i end-noden forsgger saledes at udnytte di-
versiteten af tilgeengelige netveerk (forskellige teknologier, udbydere og aktuelle
egenskaber) til at forbedre applikationernes palidelighed uden at stille krav om
seerlige funktioner i de tilgeengelige netveerk. Seerlige problemstillinger er: i)
uobserverbar og ukomplet tilstandsinformation om netveaerkene, ii) upalidelige
observationer baseret pa netveerkstrafik og iii) et dynamisk scenarie der stiller
krav om en fejlhandteringsproces, der kan tilpasse sig.

Denne afhandling omhandler lgsningsforslag til fgrnsevnte problemstillinger
med fokus pa at hdgste potentielle gevinster i interaktionen mellem de velkendte
funktioner: Observation, Diagnose, Beslutning og Remediering. Disse stud-
eres gennem udviklingen af et framework, kaldet ODDR. Opgaven for ODDR
middlewaren er at skjule netveerkets kompleksitet for brugerapplikationer samt
forsgge at optimere beslutninger i forhold til de krav om palidelighed en app-
likation stiller. I framework’et studeres teknikker til at forbedre diagnoserobust-
hed overfor upalidelige observationer og dynamiske sendringer. Her benyttes
observationer fra flere protokollag samt teknikker til at afkode méaleusikker-
hedsinformation i diagnoseprocessen. Et case scenarie er defineret. Det antager
fejl i tradlgse forbindelser og infrastrukturnetveerk samt remediering gennem
skifte af det tradlgse opkoblingspunkt og indeholder som applikationseksem-
pel en palidelig dataoverfgrsel med tidsgraense krav. Case scenariet giver mu-
lighed for at studere indflydelsen af ufuldkommen diagnose pa service palide-
lighed. Yderligere studeres det, i hvilken grad diagnose-ufuldkommenhed kan
afhjeelpes med hensigtsmaessige beslutninger om remediering. Til dette forméal
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er fremstillet en systemmodel, der kan benyttes til at evaluere forskellige beslut-
ningspolitikker eller diagnosekonfigurationer. Modellen indeholder en simplifi-
ceret model af diagnose, der skal repraesentere ufuldkommen diagnose for simple
hukommelseslgse diagnose mekanismer samt mere komplekse mekanismer, der
kan korrelere observationer over tid. Endeligt ses der péa hvilke muligheder der
eksisterer for at opsplitte modellen i generiske dele, der autonomt kan sammen-
sattes eftersom netvaerksscenarierne sendrer sig.

En endelig evaluering af de prazesenterede lgsninger er udfgrt i systemmod-
ellen samt en detaljeret simuleringsmodel. Det vises hvordan diagnose baseret
pa netveerkstrafik kan veere meget folsom overfor selv sma sendringer i observa-
tionerne som fglge af et dynamisk scenarie samt mélefejl. Ligeledes demonstreres
hvordan diagnose robusthed og preecision kan forbedres gennem en probabilis-
tisk samordning af informationer fra flere protokollag. Endvidere er det vist i
et diagnoseprincip baseret pa en hidden Markov model hvorledes information
om maleusikkerhed kan forbedre diagnoseydeevnen. Samtidig har forringelser
en afbalanceret indvirkning pé forskellige diagnosemalepunkter. Pa trods af
forbedringer af observations og diagnoseprocessen er det fortsat ngdvendigt
at adressere resterende diagnose-ufuldkommenheder gennem hensigtsmaessige
beslutninger. Hovedkonklusionerne af disse studier er: i) visse diagnosekonfig-
urationer, der afvejer givne ufuldkommenheder, kan fgre til lavere palidelighed
end hvis ingen fejlhandtering benyttes, ii) brugen af tilstandsinformation fra
brugerapplikationen kan anvendes til at forbedre palideligheden ved at ignorere
ufuldsteendig diagnoseinformation nar applikationen ikke befinder sig i en kritisk
tilstand, iii) den udviklede diagnosemodel kan benyttes til at repreesentere selv
visse komplekse diagnosemekanismer uden at fore til en forggelse af tilstand-
srummet af systemmodellen. Samtidig tillader modellen en identifikation af den
bedste diagnosekonfiguration hvor en acceptabel afvejning af forskellige diag-
nose uhensigtsmaessigheder opnas med henblik pa applikationens pélidelighed.
Pa trods af at visse forbedringer er sma, givet begraensningerne af det studerede
case scenarie, vises det klart hvordan fokus pa interaktionen mellem fejldiagnose
og remediering byder pa nogle interessante forbedringer. Alle disse resultater er
blevet verificeret i den detaljerede simuleringsmodel. Konklusionerne perspek-
tiveres slutteligt ved at vise hvordan systemmodellen kan konfigureres dynamisk
til sendringer i netvaerksscenariet,.
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Chapter 1

Introduction

In future generation networks (4G and beyond) the convergence of existing
and evolved wired and wireless technologies (FTTx, xDSL, cellular, WLAN,
DVB, etc.) are expected to create an all-IP ubiquitous networking environment.
Innovation in products that make use of digital communication ubiquity will
inevitably lead to requirements of increased network performance and flexibility
(mobility, battery efficiency, ad-hoc connectivity) but also raise requirements
for highly dependable operation. The latter may be associated to end-user
services with safety critical elements (heart patient monitoring, assisted vehicle
control) or in consumer and industrial applications where efficient operation is
required to avoid loss of revenue. However, networks are dominated by mobility,
varying traffic conditions and communication paths spanning wired and wireless
networks across multiple technologies and service providers. As a consequence
faults are likely to occur that may threaten end-user service continuity.

The current generations (2G, 2.5G and 3G) of mobile telecommunication
networks are relying on a centralized architecture for data switching, monitor-
ing and control. However, upcoming solutions like 3GPP LTE [2]| represent a
trend where functionality moves from the core to the edge of the network to
provide the flexibility (and cost efficiency) already existing in current flat In-
ternet architectures. The cost is increasing complexity of network management
and consequently fault management, which becomes a general issue covering
the emerging heterogeneous networking platform. In traditional approaches of
system designs for handling fault and ensuring highly dependable operation,
limited complexity is generally desirable. Applying such approaches in complex
heterogeneous and dynamic networking environments is very challenging if not
impossible. Instead, alternative approaches must be devised, which have means
to improve the overall end-user service dependability.

In this work, we study a decentralized approach for network nodes to per-
form autonomous network fault management (observation, diagnosis and re-
mediation). We consider the inherent challenges in: 1) utilizing observations
from network traffic, 2) performing diagnosis under unreliable observations, 3)
making good remediation decisions under imperfect diagnosis and, 4) how a
joint view on these processes may lead to end-user service dependability im-
provements; also in a dynamic networking system context. While the studied
methods are general a distinctive focus is made on what we define as End-node
Driven Fault Management. In this view it is considered what options an end-
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node itself has to mitigate faults in the end-to-end path. This approach enables
to make use of the diversity in the ubiquitous networking environment (various
technologies, providers and operational characteristics) to provide improved re-
siliency and trust of the end-node network services without explicitly requiring
network support.

In this chapter, we further motivate this approach by initially considering the
current network evolution, existing visions about Next Generation Networking
(NGN) and overall challenges. Next, we introduce the generic scenario assump-
tions used as a pre-requisite for this work and examples are provided in which
end-node driven fault management could apply. Further, details on the en-
visioned end-node driven fault management approach and its challenges are
given followed by a problem description, contributions summary and finally, an
overview of how this thesis is organized.

1.1 Emergence of Next Generation Networks

The research presented in this thesis represents a branch of the challenges asso-
ciated with the realization of ubiquitous networking environments (also referred
to as NGN, Next Generation Internet (NGI), Future Internet, etc). As such,
the assumptions of this work are based on common visions shared by a large
part of research organizations, standardization bodies, equipment manufactur-
ers and network operators. In order to establish relevant NGN scenarios and
motivate the end-node driven fault management approach, in this section, the
background on recognized challenges in NGN is given. A more detailed analysis
on these topics is presented in Appendix A.

1.1.1 Current Networking Scenarios

To provide a starting point for considering NGNs, initially, key properties of
current publicly available networking systems are highlighted.

Internet networks

A general principle of the Internet is to form a network of networks with no
central entity and thus, no single point of failure. This has let to a highly
robust [13],[96] and scalable [79] networking infrastructure that today serves
more than 550 million hosts [38]. This success is largely based on some of
the good technical properties of TCP/IP protocol stack based networks. In
summary, some of these are: Physical and link layer independence, which has
ensured early adaptation of IP networks on existing copper wire infrastructure.
It has also lead to easy introduction of evolving and cost-efficient wired and
wireless technologies. A packet switched architecture, which adds scalability
and shared use of network resources for different data streams. Elementary
transport protocols like TCP for reliable connection-oriented data transport and
UDP for connection-less communication. These are widely applicable to support
the wide range of application layer services running on the Internet. Means
for QoS, Security and Monitoring have been limited in the original Internet
protocol stack designs. However, several solutions have over time emerged to
enhance the TCP/IP suite such as IPsec for packet level security, DiffServ for
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QoS management and control and the Simple Network Management Protocol
(SNMP) suite for monitoring and management tasks.

With IP-based networking driving the convergence towards next generation
networks its weaknesses and limitations become more exposed. In summary,
some of the more important issues are: Mobility - A classical issue of IP address-
ing and routing is that devices are expected to remain stationary in a network.
This assumption is not valid for emerging high mobility scenarios and numer-
ous solutions have been proposed and implemented ranging from Mobile IP to
end-to-end solutions based on Stream Control Transmission Protocol. Wireless
communications - Originally designed for reliable wired links, flow control pro-
tocols like TCP, have assumed congestion as the dominating cause of packet
losses. With the increased use of unreliable wireless links in access and ad-hoc
networks, the congestion assumption can severely degrade their efficiency in such
scenarios. End-to-end QoS - Providing a given QoS level in the end-to-end path
remains a significant challenge. Several technical solutions exist (e.g. DiffServ,
IntServ, MPLS). A set of these techniques can be successfully deployed within
network operator controlled domains. However, some operators retain from im-
plementing these for economical reasons. Further, they are difficult to apply
in an end-to-end context due to heterogeneous networks with difference in QoS
technologies and prioritization policies supported, if any at all. The significant
decentralized network control and lack of incentive for infrastructure network
providers to implement QoS means for end-users have lead to a widespread con-
ception that end-to-end guarantees can never be made in an IP network context
[97]. This aspects calls for alternative mechanisms that can still help supply
needed performance and dependability of end-user services despite the lack of
network support. This is a strong incentive for the work of this thesis.

Mobile networks

Mobile networks are designed from completely different principles and presump-
tions than the networks forming the Internet. First of all, individual mobile net-
works are closed and controlled completely by their operators. These networks
have been designed from scratch to support a single service, namely two-way
communication between mobile end-user terminals and between a mobile termi-
nal and existing fixed-line phones. From a traditional mobile network perspec-
tive this enables a set of key properties: High Quality of Service is ensured by
reservation of network resources in the links of the mobile network to obtain a
consistent QoS throughout a call. Security properties have been integrated to
protect against malicious users trying to damage the service provisioning or ob-
tain free service. Centralized control and monitoring tasks are manageable from
the inherently centralized and hierarchic structure of mobile networks. This
centralization, however, also makes the mobile networks weaker to withstand
failures in the core network components. Mobility and Roaming are fundamen-
tal properties of most mobile networking systems.

The mobile networks are under complete control of network operators. Thus,
changing the network technologies and mechanisms is somewhat easier than in
the Internet where multiple parties must agree on changes and implement these.
This also means that mobile networks are under a rapid evolution where new
technologies are introduced to improve service capabilities and reduce costs of
CAPEX (establishment and upgrade) and OPEX (maintenance, network lease
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and other operation costs). Mainly these developments are driven by a transition
to an All TP Network (AIPN) [3], [9]. This allows operators to make advantage of
cost efficient IP /Ethernet infrastructure already established for wired broadband
connections (xDSL, cable) for mobile networks data. Further, running legacy
mobile communication protocols in IP networks enables: i) better utilization
of link resources, ii) traffic switching capabilities at the network edge (to off-
load the core infrastructure) and new products where GSM/UMTS Femto radio
base stations can be installed by end-users on existing IP-based broadband
connections [9)].

Other network types

Other highly relevant publicly available networking technologies that are cur-
rently becoming available are ad-hoc networks [116] and terrestrial broadcast
networks [44]. The latter are optimized for digital broadcasting services and
could play an important role in future networks. An example could be to de-
liver the same contents to multiple mobile terminals in a limited geographical
area such as video streams at a rock concert. This would require significantly
fewer wireless resources compared to sending individual data streams to indi-
vidual users in a typical mobile network setting.

Summary on current networks

In summary, today mobile networks excel in providing a networking solution
with control. This leads to inherent QoS and a profitable content delivery plat-
form due to the strong bounds between the network and the end-user services.
However, the need for added flexibility to reduce OPEX and CAPEX costs,
while handling the fast evolution of mobile technologies, challenges traditional
hierarchical networking architectures based on costly hardware. The solution
lies partially in the transition to existing IP based network technologies and ar-
chitectures. At the same time mobile technology advancements are driven by an
incentive to boost the demand for IP /data services in mobile platforms. These
developments show that a convergence of mobile networks and current Internet
based technologies is happening with IP as a unifying element. This realization
drives the ongoing research and development in understanding how a new gen-
eration of IP based networks can support future demands for dependable and
high performance end-user service provisioning.

1.1.2 NGN Challenges

Visions and developments of Next Generation Networks will offer completely
new opportunities to create ubiquitous computing environments. Details on
various projects and approaches for the NGN visions in commercial environ-
ments and research communities can be found in Appendix A. One of the
major actors is the ITU-T organization, which has propelled several projects to
develop recommendations for NGN. The latest is the NGN-Global Standards
Initiative (NGN-GSI). One of the current contributions is an NGN reference
model denominated Y.2011 [80], which has many commonalities to other ar-
chitectures as e.g. proposed in ETSI-tispan [47]. In the following listing we
will briefly consider some of the assumed characteristics of NGNs according to
ITU-T, which are relevant to, and shared by this work.
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Decoupling of end-user service provision from network and independence
of service-related functions from underlying transport technologies.

To maintain flexibility and decoupled development of the end-user ser-
vices and the network the end-user service should not be tightly coupled
to the network technology on which it is running. A central principle in
the Y.2011 reference model is a logical split in the protocol stack between
service related functions (e.g. end-user services, billing and signalling)
and network data transport functionality (not to be confused with layer
4 transport in the OSI stack). Service related functions must be able to
operate without having to consider if the transmission medium is wire-
less/wireline, which technology is used and what available networking re-
sources exist. These considerations must be made separately in the trans-
port services in an attempt to deliver the network performance required
by the service-related functions.

Support for a wide range of end-user services, applications and mecha-
nisms based on network service building blocks (e.g. to support services of
real-time, non-real time, streaming, etc.).

These building blocks are generally offered in a middleware layer archi-
tecture providing standardized interfaces to perform functions of defining
end-user service requirements and actual data transport. FExamples of
such frameworks are: the OPEN framework presented in reference [103],
which enables seamless service migration between devices and underly-
ing networks and the HIDENETS architecture [37] enabling functions to
raise service dependability in ad-hoc and ad-hoc to infrastructure network
systems.

Unrestricted access by users to different service providers.

With the eased couplings between end-user services and the network itself
a common vision of NGNs is that users do not buy all their connectivity
services from a single network provider. Instead, an end-node device could
have access to multiple networks and technologies across operators. This
would enable to make use of the diverse network properties depending on
the requirements of a particular end-user service.

Obtaining these properties in practice implies numerous challenges. Some are
technical and related to the weaknesses of the flexible but somewhat complex IP
network architectures. Other challenges are financial where network operators
may only be willing to invest in new solutions that can sustain and in best
case improve the market opportunities. Finally, political regulation may be
introduced to ensure open and competitive networking markets. In this thesis,
these latter aspects are outside the scope to consider in more detail; but they
will clearly have a significant impact on whether proposed approaches are viable
or not.

The focus of this work lies on the issues of improving dependable end-user
service provisioning in converging IP networks. The approach is made in com-
pliance with the expected principles in NGNs and the transition of existing net-
work architectures to get there. Thus, an architecture is defined. It attempts
to separate end-user services from complex actions, which may be needed in
the network to optimize certain dependability parameters for end-user services
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defining them. The proposed approach, further, recognizes the following as-
pects: 1) The convergence of existing networks with the IP-layer as a unifying
element. 2) That a network node (end-node or in path node) may make use
of the diversity of different network technologies, operator networks and net-
work paths to deliver required performance and improve dependability. 3) That
there is a large difference in what functionality may be delivered from different
available networks in terms of QoS and information about their properties and
conditions (load, faults). Still, all networks may deliver useful connectivity in
order to provide needed diversity for dependability and necessary performance
properties for a given end-user service. 4) Decentralization, where network con-
trol is moved from the network core to the network edge (i.e. in base stations
and mobile end-nodes) to provide local optimization. 5) That the solutions
proposed for improved end-user service dependability must be complementary
to existing approaches. And finally 6), that traditional solutions for proven
dependability levels in a highly complex networking environment can be diffi-
cult, if not, impossible to apply. However, there will still be applications with
high dependability requirements and efforts must be made to define feasible
alternatives.

Overall, we propose an approach that may be initiated in current networks
in parallel to the evolution of networks. This should facilitate options, already
attainable in current networking systems, to attempt to control end-user service
dependability properties when network support is limited. In the following
section an outline is described of our approach in a NGN scenarios context.
Further, an introduction is given to the used terminology and exiting principles
to improve end-to-end service provisioning in current and NGNs.

1.1.3 Scenario Outline and Dependability Means

To summarize the previous sections, the envisioned NGN networking scenario is
presented in Figure 1.1. It represents an end-node operating in a heterogeneous
networking environment. The end-node relies on end-user service providers,
which may be located in either ad-hoc or infrastructure networks to execute
end-user services such as such as e-mail, telephony and web-browsing. In the
remainder of this work, unless other is stated, the term service refers to an
end-user service.

In this networking system it is envisioned that a set of end-user services
define certain requirements for performance (e.g. goodput, delay and jitter)
and explicitly for dependability, i.e. availability: readiness for correct service,
reliability: continuity of correct service. Such QoS requirements are a part of an
end-user service specification. This means that the service cannot live up to its
service specification if the QoS requirements cannot be met by the network or
end-user service providers. This situation corresponds to a service failure. By
definition an end-user service failure is a result of one or more faults that have
not been recovered or masked successfully before impacting the service. Thus,
an overall technical aim in next generation networking systems is to provide
useful mechanisms to enable highly dependable, i.e. rarely failing, services when
required. Detailed definitions of terminology in dependable computing and fault
tolerance can be found in [11].
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Figure 1.1: NGN network scenario example with IP as a unifying element.

Means for dependable end-user services

Obtaining dependable end-user service provisioning is a challenge that is re-
flected on all parts of the network, the end-user service provisioning and the in-
dividual end-node devices. Commonly, these must provide sufficient resources,
diversity and redundancy to support overall communication requirements and
deliver alternatives when faults occur. From the service provisioning perspective
this is typically obtained using redundant access lines and service provisioning
replicates placed locally in a data center [58] or other geographic locations [4]. In
infrastructure networks efforts are also spend on redundant links and load man-
agement in case of faults [42]. Finally, the emergence of ad-hoc networks may
provide multiple paths of connectivity if network infrastructure is not present
or fails. More elaboration on these issues is provided in Chapter 2.

The approach proposed in this work under end-node driven fault manage-
ment is seen as an approach to complement these existing techniques. It focuses
on which options and end-node itself may have to optimize the dependability
properties of end-user services it is a part of executing. The means are to per-
form observations based on network traffic, diagnose potential faults and decide
on the active observation collection and remediation actions needed to optimize
relevant parameters as specified in the end-user service specification. The end-
node will in this relation try to establish and make use of dependability and
performance properties of diverse networks and end-user service providers. An
important note in this sense is that an end-node may not have the means to
recover faults in the networks and at end-user service provisioning ends. Yet, it
may have means to steering clear of sub-systems affected by them e.g. by select-
ing another network, changing wireless frequency or another service provider.
Thus, in this work the term remediation is used as opposed to recovery.

The approach is studied in relation to an end-node middleware fault man-
agement framework denominated the ODDR referring to it main functions of
Observation, Diagnosis, Decision and Remediation execution. In the following
section we will introduce a set of scenario examples in which the ODDR is en-
visioned to be applicable. Next, in section 1.2 we present the outline of the
ODDR framework and the main challenges associated with this approach.
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1.1.4 Cases for End-Node Driven Fault Management

The following three examples are taken from related work in network end-user
services imposing certain high dependability requirements. The ODDR is seen
to represent an option for implementation and operation of these services.

Car2car and car2infrastructure networks (VANET, Vehicular ad-hoc
networks [76])

Vehicles are expected to drive forward the use of wireless communications in
mobile ad-hoc networks. Future generations of car electronics may provide in-
formation about locations for road pricing or alarm calls to emergency services
using vehicle-to-infrastructure (e.g., via UMTS, GSM, WLAN) communication.
In addition, inter-vehicle communication may allow exchange of information
about road conditions or car control data to enable assisted driving services
as platooning [37] or evasive maneuvering. For such services real-time and de-
pendable communication is crucial. The ODDR may attain several roles. An
example is the real-time decision on the best communication path between cars:
when a car is emergency-braking, it requires to notify its status to cars behind.
The reliability and timeliness of the network communication is consequently
mandatory: the ODDR module has the ability to diagnose the network state,
and decide upon the best end-to-end path (e.g., through UMTS instead of the
ad-hoc network) that expectedly is not influenced by the particular fault and
provides the needed reliability and capacity.

Industrial use case: Cable Replacement Problem

In many industrial applications cabled solutions are still being preferred to wire-
less ones, especially in closed networks, due to their consistent performance,
security and reliability. Yet, wireless solutions promise to improve flexibility.
The problem of maintaining a high reliability and efficiency in wireless com-
munication solutions has been studied in [24]. The work considered software
upload and data download for diagnostic purposes in relation to a Driver Ma-
chine Interface (DMI) onboard a train. Maintenance personnel may access the
DMI via a mobile computer while the train is nearby or in a remote location.
The end-user service may simply be an FTP transfer; to maintain efficiency, re-
quirements are set to how long time the file transfer may take. The ODDR may
decide upon the needed goodput while minimizing overhead from unnecessary
remediation actions. It can benefit from service state knowledge e.g., that a file
transfer is nearly complete, and decide not to react to a (potentially falsely)
diagnosed fault to avoid jeopardizing the successful transfer by risking a timely
and potentially unreliable network fail-over.

Health Care: Emergency Services

Wireless communications are also finding relevant applications in health care.
An example is an on-board computer in ambulances, which collects information
about a patient during the treatment in the pre-hospital phase [60]. This infor-
mation must be sent to doctors in the emergency room before the ambulance
arrives enabling them to prepare the treatment and initiate it as soon as the
patient arrives. During the emergency response and transfer of the patient in-
formation via UMTS, the connection may be lost or show degraded performance
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due to a fault in the provider network. Through exchanging information with
other mobile devices in the proximity, and diagnosing the current state of the
network, the ODDR knows which local WLANSs are most reliable and chooses to
probe a few of these to assess their current state and maximize the probability
they can convey the information before they get out of reach due to mobility.

1.2 ODDR Framework and Challenges

The ODDR is constituted by a autonomic control loop as depicted in Figure
1.2, which is located in a given end-node. The loop bears strong similarities
to the IBM MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge) reference
model [75] but is focused at the challenges of end-node driven fault management.
Related frameworks are discussed further in chapter 2 while in the following the
ODDR components and their interactions are briefly presented. A more detailed
overview is further presented in Chapter 3.
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Figure 1.2: Components of the ODDR framework.

The ODDR is constructed to manage faults in the system, which consists of
the end-node device itself, networks it uses or may use and the end-user service
provider. The main functional components in this process are:

Observation & Pre-Processing (OPP) - The main role of the OPP is to
collect observations from the system. This could be done by monitoring
the local device variables in the end-node. However, as the end-node
may not expect support by monitoring agents located in networks these
observations may typically be obtained from existing network traffic (in
a passive monitoring approach) or self-generated traffic (e.g. probes in
an active monitoring approach) with the purpose to stimulate or sample
parts of the network. As some observations may be of a raw character
and/or contain excessive information initial filtering, and pre-processing
may be needed in the OPP to only forward relevant information to the
other components.

Diagnosis component - The Diagnosis component is essentially the system
state estimator. The role of the Diagnosis component is to assess whether
the system is operating in a normal state or in a state deviating from
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normal (fault state) based on pre-processed observations. Diagnosis is
implicitly also responsible for separating fault states to the extent needed
to provide sufficient remediation actions.

Decision component - The Decision component supervises and leads the ex-
ecution of the entire ODDR framework. It makes decisions on possible
remediation actions. Knowing the end-user services requirements for net-
work communication, the Decision component is in charge of properly con-
figuring the Diagnosis and the OPP components (e.g., setting parameters,
changing intensity of active monitoring activities, or modifying accuracy
requirements for the diagnosis component), and to identify possible reme-
diation actions. During operation of the end-node, the decision component
tracks the states of the system and uses best decision policies to determine
when a given action must be executed.

Remediation Execution - This component executes remediation actions ini-
tiated by the decision component such as switching to a different wireless
channel, selecting a new access network or, in other ways, modifying the
communication policies. Remediation actions shall be timely executed
and their outcome is monitored in order to obtain information on whether
it succeeded and obtain characteristics (remediation time, probability of
failing remediation, etc.) for potential adaptation of the ODDR, compo-
nents.

The process flow of between these components starts at the OPP component.
Based on observation points in the end-node or different layers of the protocol
stack the raw observations are collected (I). Events such as probes or stimu-
lation traffic may be generated actively (II') to obtain certain observations not
available from passive observations based on existing traffic. The OPP emits
pre-processed observations (IIT). The Diagnosis Component may use parts of
these observation (e.g. mean network delay observations) to estimate the sys-
tem state (V) Directly observable states (e.g. end-user service state, available
access networks, etc.) are available to the Decision Component via the Diagno-
sis Component (IV'). The decision can be made to initiate several actions (VI)
to execute remediation or change observation and diagnosis efforts. To initiate
service-critical actions (and avoid unnecessary actions) the Decision Component
is highly dependent on the end-user service requirements/specification (VIII).
It may also indicate to the end-user service when requirements cannot be met
(IX) to allow potential actions in the end-user service itself or by the user (e.g.
change video codec or buy access to new access networks). Finally, observations
of the remediation outcomes are sent to OPP and forwarded to Diagnosis and
Decision components to react.

Challenges in the End-Node driven fault management approach

In this automation framework, the end-node driven fault management approach
imposes a strong emphasis on certain challenges in automated fault manage-
ment. In this section a set of the key challenges are described and motivated.

A) - Unreliable observations - In contrast to many existing fault manage-
ment approaches the end-node driven approach assumes that the system
in which fault management is performed (end-user services and networks)
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B) -

C) -

cannot be controlled and instrumented to provide certain observations
about their state to the end-node. Instead, the end-node must rely on
observations (passive and active) from network traffic. Such observations
may, however, be unreliable (e.g. ambiguous, missing, inconsistent [123]),
which can lead to a significant impact on diagnosis accuracy and a faulty
assessment of available remediation options in the decision mechanism.

Overall, methods in the fault management control loop must be explored
to minimize the impact of such unreliabilities and further, good observa-
tions must be identified for given diagnosis problems.

Imperfect diagnosis - Diagnosis in the end-to-end path from an end-
node is challenging as: i) in many cases observations only provide indi-
rect nondeterministic information regarding the true hidden network state
making diagnosis non-trivial, ii) observations may be inherently unreliable.
While such unreliabilities are inherent in dynamic networking systems they
may also be caused by unreliabilities of instruments performing measure-
ments such as drifting or unsynchronized clocks. Altogether, these issues
may lead to imperfect diagnosis where the diagnosis is slow or not fully
accurate i.e. causes false alarms or diagnoses the wrong fault.

Challenges are to identify ways of mitigating diagnosis imperfections by
improving the decentralized diagnosis process and identify means to deal
with unavoidable diagnosis imperfections in the fault management process.

Complex decision problems - The decision process imposes some com-
plex challenges. Overall, the aim is to select a good strategy that may not
only optimize the dependability properties of one or more end-user services
operating in parallel. It is also a highly relevant property to minimize:
processing, to conserve energy in battery operated devices and maintain
resources for the end-user service itself, and network traffic resources to
keep perturbation from the fault management at a minimum and avoid
faults caused by the management process itself. The latter is particu-
larly important if multiple end-nodes are performing these operations in
parallel.

The decision process may execute several actions such as: i) initiating a
remediation among multiple options (e.g. change to certain access net-
work), ii) initiate an active observation to improve diagnosis estimates or
determine capabilities of a given remediation action (e.g. available band-
width of an alternative access network), iii) define a required accuracy
level of the diagnosis process given available remediation actions, or iv)
do nothing as it is expected that diagnosis may become better as more
observations are passively collected.

The decision problem itself constitutes a holistic view on the entire fault
management process. Thus, several aspects may be included in identifying
a good decision strategy like: quantified diagnosis imperfections, level of
confidence in diagnosis, the criticality level of the end-user state, available
remediation actions and their properties and cost (time, processing and
traffic requirements) of decision actions. Finally, the time and order of
the initiated actions must be planned, which adds a costly dimension to
the decision problem [83]. In summary, the outcome is a complex decision
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problem, which expectedly require elegantly designed heuristics and/or an
efficient modelling approach to solve.

D) - Adaptation to dynamic scenarios - The networking environments are
clearly dominated by dynamics from mobility, changing network architec-
tures, varying traffic load, etc. In this sense static approaches to determine
the configuration and behavior of the ODDR framework will only be of
limited use. The ODDR components must adapt to changes.Providing
such adaptive capabilities is a significant challenge well recognized in the
networking dependability communities [127]. First of all, changes (de-
terministically observable as well as hidden) must be reflected in system
models affecting the state estimation of the Diagnosis Component and the
prediction models of the decision planning in the decision model. Sec-
ondly, the system would need to cognitively learn system properties such
as dependencies between components [12] (e.g. which fault may lead to
end-user service failure and which remediation actions may be applied to
mitigate a specific fault) and unobservable system parameters [119] (e.g.
fault occurrence rate).

E) - Distributed ODDR The decentralized and distributed architectures of
current and next generation networks calls for solutions to solve the chal-
lenges in A)-D) in distributed systems. I.e. the ODDR framework could
heavily rely on collaboration with other end-nodes e.g. in an ad-hoc net-
work sharing the same environments. This can be beneficial from different
perspectives. Initially, an end-node adapting to a given environment may
not always need to start from a-priori information, but may utilize knowl-
edge from other nodes with extensive knowledge on operating in a given
environment. Next, solving prediction models for best decisions may also
be distributed to multiple nodes solving, each, a part of the state space
and sharing the solutions. Finally, some awareness of other end-nodes
in the system and their expected behavior can be critically important to
predict outcomes of remediation actions. E.g. a crash fault in an access
network may lead to multiple nodes selecting the same alternative access
network causing a contention fault. Clearly, this issue calls for solutions to
traditional dependability problems in distributed systems of e.g. security,
trust and fairness.

Establishing needed functions of a framework like the ODDR calls for solutions
from many research areas including dependability modelling, decision theory,
autonomous systems, measurement theory and machine learning just to mention
a few. While many of these problems have been studied in an isolated manner
for the individual components the overall focus of our view is to consider the
ODDR from a holistic approach. By understanding the interplay between the
components solutions may be identified making it possible to apply the current
state-of-the art for observation, diagnosis and decision making to realize the
end-node driven fault management approach.

1.3 Problem Description

Considering the current evolution of publicly available networking systems there
is a clear trend that current telecommunication and Internet networks are con-
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verging to form a ubiquitous networking environment with IP as a unifying
element. Commonly, in new IP based infrastructures innovations are required
to maintain a high network stability and performance while providing support
for ever increasing performance and dependability requirements of end-user ser-
vices. High dependability can be difficult to provide as end-user services may
operate in end-to-end paths spanning highly heterogeneous wired /wireless net-
works. Further, a part of these networks may not support specific functions for
dependability. Yet, the ubiquity and diversity (different technologies, provider
infrastructures and operational characteristics) are from a dependability per-
spective very attractive to provide different remediation option. This strongly
motivates our study of how end-nodes themselves may perform fault manage-
ment (i.e. observation, diagnosis, decision and remediation execution) in a de-
centralized manner by addressing and overcoming the main problems associated
with this approach.

1.3.1 Problem Statement

The main problems to be studied in this work may be seen from two perspec-
tives: the decentralized fault management and adaptation. The first refers to the
restrictions caused by the decentralized location of the fault management mech-
anism and lack of network support functions causing unreliable observations
and hidden network states. The latter points to the highly dynamic network-
ing environments requiring that means for adaptation to changes must be an
inherent part of the fault management framework.

Unreliable observations and hidden network states

Issues of unreliable observations and diagnosis imperfections may be mitigated
by improving respectively the observations process (e.g. identifying stronger
observations, initiating active probing approaches and filtering data) and the
diagnosis process (improve accuracy and promptness). These approaches have
been the focus of much existing research work. In this work, we extend such
existing approaches by studying the interplay between the fault management
components considering: i) for observation and diagnosis how to improve di-
agnosis robustness by using observation uncertainty information and multilayer
observations and ii) for diagnosis and remediation decision, in relation to given
end-user service dependability requirements, how to apply good/optimal deci-
sion strategies given quantification of diagnosis imperfections or determine best
diagnosis settings considering imperfection trade-offs. This holistic approach en-
compasses many system parameters and system behavior comprising: networks,
fault types, protocols, diagnosis properties and end-user service requirements.
Thus, identifying good heuristics for these approaches may be difficult which
further motivates model based approaches.

Adaptation to changes

An end-node is envisioned as a mobile wireless device which may be operating
in different networking scenarios experiencing various network properties and
load conditions. As a result, characteristics of faults, observations, diagnosis
performance and impact on the end-user service can change significantly. In ad-
dition the end-node must support different end-user service types with varying
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dependability and performance requirements. These aspects mean that fault
management continually must adapt to the new conditions. This adaptation
process must apply to both models used for diagnosis (state estimation mod-
els) and models used to determine best decision strategies (prediction models).
This implies different challenges which must be addressed. First of all, models
need to be lightweight to enable re-planning of strategies as system parameters
change while maintaining the expressiveness required to describe essential sys-
tem behavior. Further, to potentially minimize the model complexity, models
may be rebuild autonomously to only cover essential parts of the networking
system and avoid state space explosion. The latter requires identification of
useful compositions rules and atomic model parts and it is an open question to
which extent these can be generalized.

1.3.2 Objectives and Scope of Work

This thesis addresses these main problems through the following objectives:

Establish fault management middleware functions and interactions
A decentralized fault management framework must be specified in order to un-
derstand which components are needed in the fault management loop, which
functionality they contain and, importantly, which information is conveyed be-
tween them. The fault management framework represents the software archi-
tecture that may support the implementation of the approaches proposed and
assessed in this work.

Improve diagnosis robustness to unreliable observations

Means for performing robust fault diagnosis under unreliable observations must
be established. This entails: i) identifying useful passively obtained, low in-
trusive observations from existing network traffic, ii) using multilayer observa-
tions to separate multiple faults and increase robustness to unreliabilities (noisy,
ambiguous, missing) in individual observations and iii) specify approaches to
increase diagnosis robustness to measurement errors by utilizing observation
uncertainty estimates in the diagnosis process.

Study models for assessment of decision strategies under imperfect
diagnosis
The interplay between imperfect diagnosis and the remediation decision process
is a central issue in this work. Modelling the particular impact on end-user
services dependability and cost associated with fault management must help
clarify to which extent diagnosis imperfections can be mitigated by good decision
policies.

Simplistic model representations should be assessed to ensure lightweight
model evaluations. Further, it must be clarified if these models are sufficient to
cover the needed policy evaluation cases.

Provide decision model adaptation approach

Based on manually constructed models studied for assessment of best decision
strategies it should be considered how such models may be constructed dynam-
ically in response to varying networks and network properties (performance,
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dependability and level of knowledge on their properties). This entails defining
a framework for construction of prediction models given certain atomic model
parts (e.g. generic diagnosis model, generic network model, generic TCP proto-
col model, etc.). Further, this framework must allow a study on to which degree
prediction models should be defined proactively or reactively considering the
state space size and impact on decision policies and end-user service reliability.

1.3.3 Delimitations and Assumptions

In the following assumptions and delimitations made on the scope of this work
are presented.

Wireless end-nodes using services in infrastructure networks - We de-
limit our study to initially focus on a use case of end-user service provi-
sioning in infrastructure networks and service consumption in a wireless
end-node. This is a setup that applies to most existing end-user service
deployments. Thus, the use of ad-hoc network settings is not considered.

End-node collaboration - The end-node fault management approach could
benefit largely from end-nodes collaborating in a distributed manner (see
Section 1.2). These topics are, however, not included in the scope of this
thesis.

Joint optimization goals - For simplicity, only a single end-user service de-
pendability metric is optimized at a time.

Adaptation and learning - The challenge of adaptation conforms to creating
decision model dynamically and similarly learning the real system parame-
ters and dependencies between its components. This problem can, indeed,
be considered in this twofold manner. In this thesis, focus is on the model
construction while issues of learning are not included.

1.4 Contributions Summary

The contributions in establishing means for end-node driven fault management
are summarized in the following. Despite the presented end-node driven fault
management context is is expected that these contributions may be generally
applicable in other fault management frameworks as well.

ODDR framework

We have defined and detailed an end-node fault management middleware frame-
work denominated the ODDR, (Observation, Diagnosis, Decision and Remedi-
ation execution). This framework specifies the full fault-management control
loop in compliance to generic autonomous frameworks like the IBM MAPE-K
reference model [75]. However, its detailed specifications consider functions and
interface definitions to support: i) observation with added meta-data (e.g. un-
certainty information) ii) a holistic decision component determining components
configuration (intensity of monitoring, requirements for diagnosis accuracy) and
remediation and monitoring actions to execute, to overall optimize end-user ser-
vice end-to-end dependability, and iii) an approach to provide dynamic adapta-
tion of decision models.



16 CHAPTER 1. INTRODUCTION

Increased imperfect diagnosis robustness by multilayer observations

To improve diagnosis robustness to non-adapted changes and diagnosis per-
formance in the networking environment a multilayer observation probabilistic
Bayesian Networks (BN) diagnosis model has been proposed. The BN model
is derived from basic fault models, TCP behavior and a set of cross-layer ob-
servations. To illustrate its diagnosis performance, the BN has been compared
to an optimal threshold (OT) approach where observations and network state
variables are mapped one-to-one. In comparison to the BN, the OT approach
requires less effort to model and parametrize. Even as a basic BN is considered,
our results show how utilizing multiple observations in the BN has the potential
to improve diagnosis performance. Finally, we evaluate the robustness of the
two diagnosis methods toward changed network conditions. These results show
how the BN using multiple observations is more robust to changes in network
delay compared to the OT.

Increased diagnosis robustness to measurement error by encoding
uncertainty in the diagnosis process

Performing measurements in distributed systems of for instance time and packet
loss rates can be associated with measurement error due to drifting clocks, clock
synchronization uncertainty, host processing and intrusiveness of the measuring
system. In this work it has been considered how such sources of observation
unreliability can be mitigated. The approach is to quantify diagnosis uncer-
tainty and establish a diagnosis approach that can make use of such uncertainty
knowledge to minimize diagnosis imperfections. Three diagnosis components
have been proposed based on the Hidden Markov Model formalism: (HO) repre-
senting a classical approach, (H1) a static compensation of (HO) to uncertainties
and (H2) dynamically adapting diagnosis to uncertainty information obtained
for individual observations. Based on uncertainty injection scenarios of unmod-
elled noise and clock synchronization issues we demonstrate how using uncer-
tainty information can provide a structured approach of improving diagnosis for
varying uncertainties.

Imperfect diagnosis policy evaluation model

The potential gains of mitigating diagnosis imperfections by good remediation
action decision strategies has been studied in a model based approach. A policy
evaluation discrete time Markov chain model has been proposed to capture:
i) diagnosis imperfections, ii) remediation capabilities by network fail-over, iii)
different potential remediation strategies, iv) cost associated to remediation, and
v) time constrained SCTP data-transfer end-user service behavior. Comparison
to detailed simulations show that decisions based on the developed Markov
model are suitable to maximize end-user service reliability. More generally, we
show how restricting fail-over in time can be used to improve reliability under
imperfect diagnosis. Our results also show how imperfect diagnosis can lead to
cases where performing no remediation is better than initiating remediation at
all. Finally, we show how considering the interplay between fault-diagnosis and
remediation in the remediation decision problem provides interesting gains.
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A parsimonious imperfect diagnosis model capturing imperfections of
promptness and accuracy

Extending the contributions of the policy evaluation discrete time Markov chain
model a parsimonious Markov model of imperfect diagnosis has been proposed.
The model focuses to capture complex behavior of diagnosis approaches which
correlate observations over time. it must help identifying in a given end-user
service setting which imperfections of promptness and accuracy can be tolerated
to provide best reliability.

Capturing complex diagnosis behavior in the model is non-trivial. In our
approach, representative diagnosis performance metrics have been defined and
their closed-form solutions obtained for the Markov model. These equations en-
able model parameterization from traces of implemented diagnosis components.
From a specific reliability evaluation case study it is shown that the parsimonious
diagnosis model sufficiently can be used to identify best trade-offs of imperfect
diagnosis performance. From the model-based analysis it is concluded that an
over-time diagnosis heuristic proposed in existing work of [25] can improve ser-
vice reliability and that its configuration will impact the obtainable reliability
level. These results are finally shown to be consistent with a similar analysis
conducted using extensive simulation-based analysis.

Dynamic model construction approach

To enable decision models to adapt to changes in the networking environment
of a give end-node an approach to compose decision models has been proposed.
We identify atomic models from the proposed model for policy evaluations.
They represent: imperfect diagnosis behavior, remediation network, remediation
behavior (delay and probability of failure) and an end-user service. Considering
different model composition strategies initial results are provided comparing a
proactive and a reactive approach. The results focus on differences in decision
policy results, impact on the end-user service reliability and model state space.
In an example change case of new access networks, it is shown that the proactive
approach despite modelling expectation of changes, provides little improvement
over the reactive approach.
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1.5 Thesis Organization

The theses is organized in the following chapters.

Chapter 2 introduces the background on network dependability, existing diag-
nosis approaches and fault management decisions under uncertainty. Next,
a short introduction is given to autonomous frameworks and challenges of
adaptation.

Chapter 3 defines in detail the ODDR architecture. Further, an overall sce-
nario is introduced which defines the background for all the studies of this
thesis. This includes the definition of an end-user service study case and
fault models. Finally, a system level simulation model representation of
the scenario is defined along with network state definitions and observation
variables.

Chapter 4 introduces to the diagnosis approaches used for the various studies
of this thesis. Two groups of diagnosis approaches are studied: one with
memory-less properties and one using memory to provide time-correlated
diagnosis outcomes (temporal) for improved performance. The different
diagnosis components are parametrized to the defined scenario and initial
comparisons on their diagnosis characteristics are performed.

Chapter 5 presents a specification and an analysis of the studied end-user
service introduced in Chapter 3. This incorporates defining its reliability
properties to optimize. The outcome of the analysis is a model, which can
be implemented in reliability studies of chapters 7 and 8.

Chapter 6 contains a study of how observation uncertainty may be applied
in the diagnosis process. Based on a Hidden Markov Model diagnosis
mechanism, different diagnosis variants are proposed to improve diagnosis
robustness to measurement errors. A comparison of the variants is finally
conducted in a simulation setting. It compares in uncertainty scenarios
the HMM based diagnosis approaches with and without the observation
uncertainty compensation.

Chapter 7 considers the interactions between diagnosis functions and remedi-
ation decisions. The chapter, initially, introduces a joint policy evaluation
model consisting of: the end-user service, network state behavior, diagno-
sis performance and networks. The model is then applied in two studies:
i) to identify best decision policy heuristics that can improve end-user ser-
vice reliability under imperfect diagnosis and ii) to provide a model based
assessment of best diagnosis settings (trading off diagnosis imperfections)
that lead to improve the service reliability.

Chapter 8 introduces to the topic of adaptation in the ODDR framework. An
approach is defined to construct policy evaluation models for changing
operating conditions. Next, a model based study is presented on different
adaptation model construction approaches. These approaches differ on
which assumptions are made on the information of a change and whether
the models are constructed in a proactive or reactive fashion. The different
approaches are, finally, compared to enable an outlook on how to specify
rules for the adaptive model construction.
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Chapter 9 contains the thesis conclusion and a view on the open challenges in
the end-node driven fault management approach.



Chapter 2

Background on Autonomic
Network Fault Management

The end-node driven fault management perspective includes several topics within
networking, dependable systems, and autonomous distributed systems. In this
chapter, background on the key topics of this thesis work is presented. Initially,
focus is on existing means for end-user service dependability in the end-to-end
path of communication networks. Next, the ODDR is related to existing work in
distributed management frameworks before presenting the main research topics
in network fault management. Finally, as the end-node driven fault management
approach is related to existing work in network hand-over decision techniques
a brief comparison is presented. Note, for each section a brief summary relates
the contributions of this thesis to the background topics.

2.1 General Network Dependability

In this section a definition on network faults terminology is presented and ex-
isting means for dependable network operation are introduced.

2.1.1 Network Faults Representation

According to the well recognized paper of [11] an activated fault is the cause of
an error (or deviation) in the states of the system that may lead to a service
failure. A service failure is when a service deviates from its service specification.
Stated differently, a given fault may lead to service failure if it can cause an error
significant enough that the service cannot live up to its specification.

In the following a general fault specification is introduced presenting the
fault when it is not activated (system normal states) as well as states where it
is (system fault states). The main aim of this specification is to introduce the
fault properties relevant to the following studies. The specification consists of
the two main attributes: fault instance and fault impact. These are defined in
the following.

Fault Instance - A fault instance (generally just referred to as a fault in this
work) can be described by the properties:

21
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e Fault type
e Fault location
e Fault severity

e Fault process

Fault type describes the event or phenomenon constituting the fault. Ex-
amples of such fault types are congestion, contention, crash, radio noise,
etc. A given fault instance may occur in different parts of the network
which will require different remediation actions. This property is defined
as Fault location. Fault severity defines the level of deviation (error)
from the normal operational states. Identified fault severity levels can
be mapped to the state space of the fault model representation of the
single fault. Severity in the networking environment refers to which ex-
tent connectivity, packet loss error, delay and other transmission related
parameters are affected. The fault severity levels are controlled by the
fault process which specifies the dynamics on how a given fault instance
may be activated and deactivated (repaired) e.g. using parameters Mean
Time Between Failures (MTBF) and Mean Time to Repair (MTTR). In
this manner, the fault process controls the nature of a fault i.e. whether
it appears permanently, transiently or in an intermittent manner.

Fault Impact - The fault impact determines how a certain fault instance af-
fects a specific end-user services. Thus, to define the full reliability and
performance metrics of an end-user service both the Fault Instance def-
initions and its Fault Impact must be known. Clearly, the fault impact
may be different from service to service; e.g. a TCP stream can be less
influenced by jitter than a Voice over IP (VoIP) session.

2.1.2 Existing Means for Dependable Networks

Network faults in the end-to-end path may lead to end-user service failure.
Typically, ensuring highly dependent operation despite such faults is addressed
in the different parts of the end-to-end path.

Highly Dependable End-User Service Provisioning

In a traditional setting of centralized end-user service provisioning, depend-
ability mechanisms are highly mature. Emerging from service provisioning in
PSTNs multiple high availability cluster middleware solutions exist (e.g. Fu-
jitsu RTP4CS [58],[65] and OpenSAF [57]). They integrate solutions for node
fail-over, load balancing, fault monitoring and services for end-user services to
replicate processes, application state and data among multiple nodes. In recent
years focus has been to develop middleware and standardized interfaces enabling
cluster functionality for a general range of end-user service types [56]). Also,
de-centralized reliable service provisioning platform have emerged such as the
open Reliable Server Pooling [43]. It takes advantage of using servers in different
network locations to potentially improve both performance and dependability
properties. Geographic diversity and service provisioning close to the end-user
are principles also applied in the widespread content delivery network provided
by the company Akamai today handling a significant part of HTTP traffic in
the Internet [4].
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Infrastructure networks

Design and deployment of reliability techniques for infrastructure networks is a
well studied topic. Much work has been conducted in cost-dependability opti-
mal network architectures [111] and mechanisms for efficient traffic re-direction
in case of node failures [42]. More recently, work has emerged in high-level
fault management mechanisms (monitoring, diagnosis and recovery) to manage
the complex fault scenarios when considering all protocol layers and network
services in a modern IP based network architecture [84][12]. Further means in
infrastructure networks are to manage all network traffic to ensure sufficient
resources for transport of data with high dependability requirements. Multiple
means exist for such QoS management as emphasized in the introduction chap-
ter. However, often the general tool applied by network operators is to deploy
overprovisioning. I.e. ensuring that there is on average a certain amount of
free resources left in dynamically loaded infrastructure links [97]. While this
approach does not provide any guarantees on the traffic it has the advantage of
simplicity.

Ad-hoc networks

Ad-hoc networks are starting to move from research laboratories into real de-
ployments in applications of e.g. sensor networks [121], flexible Internet con-
nectivity using Mesh networks [116] and vehicular ad-hoc networks VANET
[37]. Leveraging high dependability properties in such systems is challenging
given high dynamics, unreliable links and often limited processing capabilities.
However, the potential high node-count offering collaboration by distribution of
tasks and different routes provides means for high redundancy. This has in ex-
isting work been used to propose services of distributed reliable data-replication,
reliable broadcasting and self-aware clocks [37].

2.1.3 Summary

The end-node driven fault management approach is seen to provide an additional
option for improving end-user service dependability properties in the end-to-end
link making use of the diversity of difference access networks and potentially
end-user service end-points.

2.2 Diagnosis under Unreliable Observations

The background and state of the art in network diagnosis is introduced in this
section. Further, background is presented on measurement error and observation
uncertainty relevant to the network diagnosis process.

2.2.1 Fault Diagnosis and Detection

System diagnosis is an integral part of fault management to determine if the
system is in a faulty state, which fault has occurred and in which part of the
system the fault has occurred. In some cases system diagnosis may also focus
on determining the nature of a fault, i.e. whether it is transient, permanent or
intermittent [39]. In existing literature fault diagnosis covers several focus areas
ranging from detection of very basic component failure modes (e.g. up/down)
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based on basic observation techniques [107] to correlation of a multitude of
alarms and observed system metrics [73] (also referred to as event correlation
[123]). A detailed view on how diagnosis and detection specifically is defined in
the ODDR context is presented in Chapter 4.

In general, performing fault diagnosis in an end-to-end connection can be
defined as diagnosis on a black box or gray box through external interfaces.
Without explicit network support, alarms and other deterministic fault state
information may not be available to the end-node. Instead it must attempt to
infer the hidden true network state through a set of indirect non-deterministic
observations. Performing such diagnosis in complex, heterogeneous and dynamic
networks includes several challenges which are highlighted in the following para-
graphs.

Unreliable observations and measurements

Observations for diagnosis based on network traffic are inherently unreliable.
Observations may be inconsistent, ambiguous, incomplete, missing or delayed
[123]. Inconsistency may stem from multiple observations providing conflicting
information e.g. whether a node is available or not. Ambiguity refers to avail-
able observations not being rich enough to allow a distinction between relevant
faults providing similar observations. Incompleteness defines when the obtained
observation information is not sufficient to perform diagnosis. Finally, as any
traffic in a packet switched network observations may be missing due to lost
packets or similarly delayed.

Many observations will rely on measurements of network related metrics and
measurement errors may occur. A measurement error is the difference between
the measured quantity value and the true value of the considered measurand
[20]. It can in general be split in two elements: a systematic element and a ran-
dom element [18]. In the distributed networking environment several sources
of measurement errors exist. Examples are drifting clocks and low clock reso-
lution [69], clock synchronization uncertainty [22], destination host processing
and queuing time (e.g. in case of application based ping) [5],[69] or intrusive-
ness of the measuring system [22]. In this respect measurement error is another
contributing factor to unreliable observations that may affect the diagnosis per-
formance.

Adaptation to dynamics

As a final point network dynamics will also play a significant role in hinder-
ing stable and trustworthy diagnosis outcomes. Such dynamics may change the
properties of the end-to-end path which may imply: i) new fault instances and
observations required or ii) that existing faults and /or observations change char-
acteristics (e.g. higher throughput reduction on a certain fault and a different
distribution for a certain observation). Dynamics in the networking scenarios
may be attributed to e.g. mobility of other nodes or the end-node itself, load
changes (e.g. due to time-of-day), network reconfigurations and sporadic de-
ployment of new access networks (WLAN, femto cells, etc.). Thus, dynamics
may be of a slowly or fast changing nature. Such changes calls for both robust
and adaptive diagnosis techniques [12], [32].
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2.2.2 Overview of Diagnosis Approaches

Performing diagnosis under unreliable observations has been handled using var-
ious techniques and with different objectives in existing diagnosis work. For the
discrimination of fault nature (transient, intermittent or permanent) under in-
complete alarm events (probability of detection below 1) such unreliabilities have
been addressed using threshold-based heuristics [25] and probabilistic methods
[142]. In existing work of event correlation under unreliable observations some
of the previously applied techniques are: Codebook, which is a channel coding
technique where a signature of alarms is compared to signatures in a database
via a most likely match (i.e. some alarms may be missing or false). Code-
book approaches have the disadvantage of high configuration complexity and
potentially bad performance under ambiguity [123]. Neural networks repre-
sent another method which is robust to input/observation unreliabilities and
have good properties in terms of learning diagnosed system properties although
a large amount of training data may be required [139], [123]. A final cate-
gory considered here are probabilistic approaches ranging from Hidden Markov
Models [142] to Bayesian Networks [73], [124], [117], [104]. Such probabilistic
approaches have lately become popular in research on diagnosis as they provide
good formalisms for the specification of the diagnosis problem [39], can achieve
good accuracy and operate well under uncertainties [124]. The challenge in most
cases is that for even small models the computational complexity may be high.
Thus, the research motivation is to identify good solution approximations [124]
and distributed approaches [125] while maintaining a good accuracy.

More details on the diagnosis approaches studied in this thesis are presented
in Chapter 4 in the context of the end-node driven fault management scenario.

2.2.3 State Estimation under Observation Uncertainty

Means to mitigate unreliable observations and improve diagnosis robustness are
relevant to explore in the interplay between the observation processes (in ODDR
context the Observation & Pre-Processing Component) and the diagnosis pro-
cess. A particular focus in this thesis is the measurement process where uncer-
tainty estimates may be applied in the diagnosis process. Uncertainty on an
observation provides quantitative information on the dispersion of the quantity
values that could be reasonably attributed to the measurand [18]|. Uncertainty
has to be included as part of the measurement result and represents an estimate
of the degree of knowledge of the measurand. It has to be evaluated according
to conventional procedures, and is usually expressed in terms of a confidence
interval, that is a range of values where the measurand value is likely to fall.

In general, existing work on observation uncertainty applied to the network
diagnosis process seems limited. Instead, this topic has been addressed in other
similar research fields considering control systems [137], and speech recognition
[90], [61].

An important research area in the field of speech recognition is to provide
robustness of recognition algorithms to varying noise environments [61]. Com-
monly, noise robustness techniques have aimed at compensating recognition
models to understand noisy speech signals or compensate noisy signals to look
like error free signals. In recent years, means of enriching observations with un-
certainty information have been studied using ad-hoc and more mathematically
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founded approaches yielding good results [90]. Gains are that the computational
complexity of models using uncertainty is low while maintaining flexibility to
varying noise sources. The speech recognition problem is formulated as finding
one model among multiple (each representing e.g. a word) that best matches a
signal [115]. The defined diagnosis problem differs, as only a single model is de-
fined which must be used to provide the best possible (network) state estimate.
Thus, while uncertainty principles are alike it is less clear to what extend the
good experiences from speech recognition can be translated to network diagno-
sis. This provides a key motivation for these studies.

2.2.4 Summary

In the remainder of this thesis the aim is not to propose new accurate diagnosis
mechanisms. Rather, it will be considered in the ODDR context how diagnosis
robustness to unreliable observations may be improved. In the end-node per-
spective a comparison between basic thresholding techniques and a multilayer
observation based Bayesian network is conducted and a diagnosis mechanism
including uncertainty estimates proposed.

2.3 Remediation Decisions under Uncertainty

The backbone of the ODDR is the decision process. In this section a brief
view on existing work on joint approaches for fault management in networking
environment are provided and a background on principles for decisions under
uncertainty is presented.

2.3.1 Joint Observation-Diagnosis-Decision-Remediation

A central part of making an approach as end-node driven fault management
viable is to take advantage of the tight coupling and interactions between the
functions of observation, diagnosis and remediation actions. To aid manual and
autonomous remediation a majority of existing work is focused on improving
fault diagnosis accuracy. Interesting gains of combining observation-diagnosis-
remediation /recovery is the focus of more recent work. The authors in reference
[92] define an approach to plan best sequences of tests (observation collection)
and repair actions minimizing time-costs to resolve an end node network con-
nectivity fault. Their focus is on learning such policies, however, under the
assumption of perfect tests. In the work of [83] the authors define a central
decision mechanism with the objective to plan tests and recovery actions from
faults in a service provisioning architecture. They address this decision process
under imperfect tests, a probabilistic diagnosis mechanism and a continually
calculated decision strategy based on planning a few steps into the future. The
authors emphasize how accuracy of diagnosis is only relevant to the extent
needed to identify the cheaper recovery action relevant to solve the issue.

2.3.2 Recovery/Remediation Decisions under Uncertainty

Decision making under uncertainty is a general topic which is well studied and
an inherent part of probabilistic modelling approaches such as in Bayesian Net-
works using Decision Graphs [81] and Markov Models using the framework of
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the Markov Decision Process (MDP) [33]. As previously mentioned Bayesian
Networks may offer a strong formalism for the diagnosis task. Its system model
may, thus, be shared with the decision process to collect more observations,
initiate remediation etc. The Bayesian Network approach is, however, typically
limited to modelling static, i.e. non temporal systems. An MDP is based on a
Discrete Time Markov Chain (DTMC) and optimal decision policies are derived
to minimize a cost function over future system evolutions. As neither of these
approaches are applied for decision making in this thesis work, interested read-
ers are referred to the given references for more details. The MDP approach is,
however, interesting to derive optimal decision policies in the ODDR framework.
As a result the decision problems studies in this work are based on a Discrete
Time Markov Chain modelling approach.

DTMCs have successfully been used for performance evaluations of commu-
nication systems [55], [51], [16] and dependability evaluation [34]. They provide
a useful framework to describe the stochastic evolution of states in complex
systems. Assuming system states to satisfy the Markov property only state
transition probabilities and initial state probabilities need to be specified to
describe system behavior. Some disadvantages of this modelling approach are:
The complete state space is a product of all states of system variables. Thus,
obtaining solutions can be costly in terms of memory and processing power.
Analytical solutions to transient and steady-state evaluations can be difficult to
obtain. And finally, not all systems may be well suited for application of the
Markov property.

2.3.3 Summary

Many of the challenges in observation collection and remediation policy planning
are shared by the end-node approach where existing solutions may apply. In
this work additional focus is on decisions to optimize certain reliability metrics
of an end-user service model while inherently including imperfection properties
of the underlying diagnosis and remediation processes.

2.4 Autonomous Frameworks

The ODDR component falls in to a category of frameworks for autonomous
computing. In this section a background on a basic reference model in the
research area is provided. Further, issues and existing approaches to enable
adaptation and learning in autonomic context are presented.

2.4.1 Autonomic Computing

In the last decade, effort has been made to define a common understanding
of autonomous and adaptable systems, with the introduction of Autonomic
Computing [74], [127]. The idea of autonomy is inspired by the autonomic
nervous system of the human body. It is capable of effectively monitoring,
controlling and regulating itself without external intervention. An autonomic
system aims to provide such facilities.

The MAPE-K [77] loop depicted in Figure 2.1 has been proposed by IBM as
a generic framework for Autonomic Computing. In this framework the managed
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Figure 2.1: The MAPE-K (Monitor, Analyse, Plan, Ezecute, Knowledge) reference
model for autonomic control loops.

element represents any hardware or software resource that is given autonomic
behavior by coupling it with an autonomic manager. Sensors collect informa-
tion about the managed element. Two kind of sensors have been identified;
probes are system-specific sensors that extract data from a managed element.
Probe data is then sent to gauges, which may filter, aggregate and process the
probes’ data before reporting it to higher-level components in the autonomic
manager for adaptation planning. FEffectors carry out changes to the managed
element.

The setup is general in the sense that it does not inherently specify the level
of autonomicity. IL.e. this reference model is seen to cover cases from level 1.
(Basic) to level 5. (Autonomic). The first level refers to autonomicity with
with high human interaction (i.e. as a decision support system). In the latter
level the system requires minimal human interaction and can operate and adapt
itself to changing operating conditions.

Research in autonomous systems is besides efforts of IBM recognized to have
gained momentum from various DARPA programs [74] such as DASADA [136]
introducing an architecture for self-managing software and SPS [114] which is
designed to sustain dependability of military computing systems to physical
and software attacks. This momentum has joined existing and created new
research directions in a multitude of areas including the ones introduced in this
chapter as well as full frameworks attempting to integrate multiple solutions.
According to recent surveys in [74] and [41] current key application areas of
full frameworks studies are in wireless sensor networks (power management and
self-organization), context management systems and management of complex
service provisioning architectures and corporate networks.

Adaptation and Learning

Envisioning the ODDR to operate in an autonomic level, adaptation to new net-
work conditions is a central issue. The problem of creating systems which adapt
themselves to different environment conditions while learning system properties
and dependencies is well known. Belonging to the substantial research area of
artificial intelligence different techniques have been established in Bayesian rea-
soning, neural networks, fuzzy logic and dynamic programming. According to
the survey presented by the author in [10] adaptation can be split in three over-
lapping main areas: Adaptation to a changing environment - where a system is
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capable of updating its parameters as a system gradually changes e.g. changes
in network load conditions, Adaptation to a similar setting without explicitly
being ported to it - accounting for cases where the system adapts to a previ-
ously unknown environment, and Adaptation to a new/unknown application -
where adaptation itself must identify its application context, identify potential
solutions and apply the most useful.

In general, the definition of the boundaries between adaptation and learning
are not formalized. Depending on the context, the two terms are in literature
used interchangeably or together (e.g., adaptive learning). From a general per-
spective, adaptivity is often referred to as a characteristic of the system, while
learning refers to the processes which allow models to evolve and optimize. In
this sense, learning is an often useful, but not required, mean to achieve adap-
tation; for example the term adaptation through learning is used in reference
[10]. Our main studies in the adaptation approach of the ODDR are relying
on adaptation without learning considering an approach to generate models to
adapt to varying network scenarios.

Adaptive Modelling

A motivation of studying adaptive modelling approaches is in the ODDR con-
text to ensure that a given ODDR instantiation can adapt to changes in the
environment (e.g. fault properties, link load characteristics) and operate in new
environments e.g. under end-node mobility actions. The focus of this work is
on the latter aspect. Enabling such adaptations while the ODDR is operating
is a fundamental problem where some of the main issues are: i) How to bring
the system in a safe state where adaptation may occur. ii) How to dynami-
cally construct models as the environment changes, and iii) how and when the
adaptation should take place given the current system model, to which extent it
matches the system, the current system state and future expectations on change
in the system state.

Concerning the issue in i) the authors of reference [48] present a general
approach to model and monitor system components to identify states where
adaptation may occur or identify actions to drive the system into such a state.
The concept is to use and update a Petri Net model to assess such states and
actions. Concerning ii), such challenges have been studied in different contexts
in the literature. For instance in [46] an architecture for an Intrusion Detection
System (IDS) is proposed where, besides a detector, a model generator is em-
ployed for learning and generation of new detection models. The authors in [82]
deal with the issues in iii) by proposing an adaptation controller exemplified in
a multi-server service provisioning infrastructure. To optimize performance and
availability metrics, they use an MDP to pre-compute reconfigurations policies
to load changes including expectations of future fault events. At fault events,
the policies are re-computed to handle the changed resource availability. By
this split adaptation approach the authors argue to make the system model
computationally tractable while obtaining policies taking future changes into
account.
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2.4.2 Summary

Adding autonomous capabilities to end-nodes to optimize dependability prop-
erties of end-user services independent of network support is a novel approach
to facilitate dependable end-user services in future generation networks.

Options of providing adaptation to new operating environments in the ODDR
have been explored. We consider the properties of a proactive approach, includ-
ing expectation on future changes, in terms of the generated policies and relia-
bility metrics. The outcome is compared to reactive cases where no expectation
is assumed to simplify the model complexity and consider cases insensitive to
non anticipated changes.

2.5 Comparison to Existing Approaches in Hand-
over Mechanisms

Performing hand-overs/fail-overs between various access points and base sta-
tions in heterogeneous networks is a dominating part of ensuring end-to-end
service continuity. Although the fault management approach sought in this
work also considers other remediation options such as wireless channel change,
change of service provisioning end-point etc. the hand-overs aspects are cen-
tral. In the last decade much research has been focused on problems in the
domain of wvertical hand-overs. Vertical refers to hand-overs between different
access technologies such as WLAN to UMTS to WiMAX whereas horizontal
hand-overs refer to hand-overs within APs of a given technology. Vertical hand-
over/suitable network selection mechanisms are seen as an integral part of fu-
ture pervasive networking environments where mobile devices can connect to
different networks in terms of technology and operators. Existing research has,
however, underlined how complex problems of providing good hand-over mech-
anisms are and that this is still an open research topic [86], [129]. In this work
the hand-over problem is seen from a fault management perspective in terms of
relating fault diagnosis, remediation options and end-user service requirements
to the hand-over decision problem. In this section the aim is to provide an
overview on which differences, advantages and disadvantages exist in relation
to the proposed fault-centric approach versus existing state-of-the-art (SoA) in
vertical handover technology. In Appendix B, a brief overview of existing work
in network hand-over approaches is provided. In the following, a set of topics
are identified where the fault management perspective proposed in this work
has differences compared to the majority of existing work.

Fault-centric vs. Performance centric - The most profound difference be-
tween traditional hand-over approaches and the fault-centric view dis-
cussed in this work is in the approach to determine when a hand-over
should be executed and to which access network. Most existing work at-
tempts to match a set of QoS requirements from a given end-user service
to the most suitable network. The decision is typically based on assumed
accurate information about available network capabilities. A hand-over
is then initiated when QoS requirements cannot be met on the current
network or in some cases when a better network is identified. To han-
dle fluctuations in observations, hysteresis and timers are often applied.
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Figure 2.2: Stages in a generalized hand-over mechanism and the fault-centric ap-
proach of this work.

In typical approaches it is often not considered which fault has occurred
but rather that a fault has occurred as indicated by a throughput drop,
increase in BER, loss of connection etc. In the proposed approach hand-
over decisions are based on end-node driven diagnosis of faults in own and
identified networks for remediation. Identifying which fault has occurred
provides additional options in the hand-over decision process. Assuming
that fault types (congestion, interference, low signal strength) are associ-
ated with some fault process (e.g. ON-OFF with exponentially distributed
state holding times) identifying a fault can be used to establish its severity
on the end-user service and thereby establish if a remediation action is re-
quired. Identifying a fault can also be useful to establish the remediation
action (available network) which is most likely to mitigate the impact of
the fault. The case study of Figure 3.2 is an example of this.

In existing work on hand-over approaches most work considers the aspect
of dependability in relation to metrics of BER and PER on particular
links (e.g. see [129]). Other important issues of highly dependable service
provisioning are availability and reliability of end-to-end connections. For
instance an Access Point (AP) may provide good connectivity in terms
of bandwidth and delay, however, if it fails and restarts regularly it may
not be desirable to use for reliable end-user service provisioning. Clearly,
such parameters should be included in the decision process to include
performability (dependability versus performance). In the proposed fault-
centric approach performability is inherently the central aspect given the
inclusion of fault models and diagnosis in the decision process. This will,
expectedly, lead to different hand-over decisions increasing dependability
of end-user services potentially at the cost of performance (i.e. where
lower bandwidth and increased delay must be accepted).

Solve infrastructure network faults - A majority of existing work in hori-
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zontal and vertical hand-overs aim at solving first hop wireless link issues.
The proposed approach inherently considers hand-overs as a fail-over op-
tion to solve infrastructure faults as well.

Unreliable observations and active probing - A topic sparsely addressed
in existing hand-over decision mechanism work is how hand-over options
(available networks) are discovered and how properties of hand-over op-
tions and the current network are determined. Much work in hand-over
decision mechanisms assumes that such information can be timely, reli-
ably, and accurately obtained during the system discovery phase. Such
reliable information may however be difficult to obtain, especially, when
no infrastructure information support exists. As shown in this work, un-
reliable observations, and thereby diagnosis, may affect the best decision
strategy. Thus, hand-over decisions should be based on assumptions of
unreliable observations and imperfect diagnosis. The approach will also
be extended to consider trade-offs between obtainable diagnosis accuracy
and remediation option capabilities in relation to timely requirements. It
is assumed that:

e Unreliable diagnosis of the ongoing network connection and remedi-
ation options can be improved by spending more time and resources
on diagnosis at the cost of delaying the decision.

e Non-complete information about available remediation options can
be improved at spending more time and resources on searching for re-
mediation options at the cost of delaying the decision and disturbing
the ongoing end-user service. Such disturbances may be unavoidable
if only one radio module is available.

A part of including such trade-offs is to include decisions of active probing
approaches for information collection in the overall decision process. In
hand-over terminology this corresponds to combining tasks of the System
Discovery and Handoff Decision (see Figure 2.2) phases which has not
been extensively covered in existing work.

Dynamic QoS requirements - In existing work QoS is often considered in
relation to existing traffic class definitions (e.g. see 3GPP specifications
[1]) each specifying different required levels for metrics of e.g. RT'T, band-
width and jitter. Such definitions require that application requirements
are translated into a QoS class. For instance a data transfer case study
considered in Section 3.2.2 would typically belong to the background QoS
class. This class aims at a high bandwidth and a low PER. In most work
such a prioritization will assign the data transfer end-node to the network
with a high bandwidth and low PER. In our work such a hand-over is only
performed if the current network cannot live up to the QoS requirements.
This is similar to the work in [35] where a lower bound threshold on a
given QoS metric must be exceeded before fail-over is initiated. In our
work, however, QoS requirements are not defined by static thresholds but
rather by dynamic requirements. In the data transfer case the state of the
data transfer (amount of data transferred) is related to the time deadline
(how much time has elapsed in relation to the deadline). This dynamic
approach enables hand-over decisions to be based on an assessment of the
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end-user service state. For instance if a high throughput has been expe-
rienced in the first part of the transfer and much of the data has been
transferred, a significant drop in throughput may be irrelevant. The data
transfer will end within requirements anyway. In this manner the dynamic
QoS requirements can be used to minimize unnecessary hand-overs, min-
imize overhead and minimize the risk that an unnecessary fail-over will
lead to a failure.

Minimize hand-overs for overhead and reliability - In recent work in ver-
tical hand-overs focus is on minimizing unnecessary hand-overs that will
not improve the network connectivity significantly. In [128] the authors
show how their Markov Decision Process (MDP) based decision algorithm
is competitive to existing Multiple Attribute Decision Making (MADM)
algorithms while reducing the amount of hand-overs. In [35] the authors
try to avoid unnecessary hand-overs from GSM to WLAN to conserve en-
ergy. In our work, avoiding unnecessary hand-overs is typically possible
in a end-user service like a data transfer where the criticality of the trans-
fer (time elapsed in relation to amount of data transfered) can be used
to evaluate whether a hand-over is required. Avoiding unnecessary hand-
overs is in our work also in focus to minimize the risk that an end-user
service will fail due to a failed hand-over attempt.

Limited or no support from the infrastructure networks - In conjunc-
tion with the topic on unreliable observation a large part of existing work
assumes that wireless link state, traffic load and network path informa-
tion can be retrieved from functions in the network. In our work it is
assumed that a large part of available networks will not support such
functionality. Particularly, WLAN access could be provided by privately
maintained access points similarly to the FON concept (see [99]) where
QoS control options are not available. Further, in UMTS scenarios the
available bandwidth and delay characteristics may not be promised for
typical subscribers and access and infrastructure network information will
expectedly not be available to the application layers of the end-node soft-
ware. As a consequence the end-node must use whichever information
possible to make the best decisions.

Prior and historical knowledge - Considering metrics of availability and re-
liability historical knowledge may be very useful to determine how a par-
ticular AP, an infrastructure network of a given network provider or an
end-user service provider is expected to function in the future. Such in-
formation can be imporatant to make the best hand-over decision. Again,
immediate observed metrics of a hand-over option with high bandwidth
and low delay may be attractive. However, if the particular hand-over
option is known to fail with a significant probability it may not be the pre-
ferred option. Using prior knowledge of fault occurence rates and repair
rates our approach uses such historical information. How such information
is obtained at an end-node, updated and made obsolete is a challenge of
future work. Some existing work does, however, consider these aspects. In
[35] expected mean throughput samples are collected over time to predict
future throughput. An approach is proposed to render old samples obso-
lete to maintain a fresh knowledge of a particular hand-over option. In
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[128] it is assumed that knowledge of the network states and state transi-
tions are recorded in the infrastructure network where also new hand-over
policies are deduced.

2.5.1 Summary

As seen from the discussed points the end-node driven fault management ap-
proach brings a new perspective to the access network selection problem. Not all
end-user service functions may need to utilize the complexities of the ODDR.
Also, it is not expected that the ODDR will attempt to include all available
networks in the decision models consequently, the ODDR, functionality is not
seen to replace existing hand-over decision techniques, but rather complement
these.



Chapter 3

ODDR Framework and
Analysis Approach

In this chapter a detailed outline of the ODDR framework architecture is pre-
sented. It will establish a reference for the thesis to define where functionalities
are located in the fault management control loop and how the individual com-
ponents interact. Next, a presentation of the networking scenarios to be studied
in this work is made considering fault models, remediation options and end-user
service assumptions. To enable a framework for evaluating proposed solutions a
simulation based analysis methodology is presented. This involves specifying the
scenario parameters (system states, link dimensioning, etc.) and observations
available in the OPP Component.

3.1 Detailed Outline of the ODDR Framework

In this section the ODDR framework introduced in Section 1.2 is presented in
details. Besides clarifying architectural specificities in relation to the MAPE-K
framework it is also specified which parts of the framework are addressed in the
remainder of this thesis.

3.1.1 The ODDR Components and Modules

The ODDR aims to improve the network resilience for end-user services: de-
pending on the specific service requirements for network communication, the
ODDR will operate to maintain the network communication (and consequently
the end-user service that depends on the network behavior) within the service
requirements. An overall view of the ODDR architecture and of its interfaces
is shown in Figure 3.1 and described in detail in what follows. The ODDR
framework is a middleware service composed of four different components: the
OPP (Observation & Pre-Processing), the Diagnosis, the Decision and the Re-
mediation Execution components. Each component is subdivided in a set of
optional modules. Different ODDR instantiations may implement a different
subset of the ODDR modules, or have different module implementations and
settings. Such flexibility of the framework allows to develop different instantia-
tions depending on the available computational and energy resources.

35
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Figure 3.1: Eztended view of the ODDR framework.

Observation & Pre-Processing

The Observation & Pre-Processing (OPP) component performs network obser-
vations (modules grouped under Adaptive Monitoring), using: i) passive moni-
toring functions based on existing traffic. Passive monitoring can be configured
at run-time (e.g. which observations and sampling rate to use) depending on
the information required by the other ODDR, components, ii) active monitoring
functions that can be initiated to collect information not provided sufficiently
by passive monitoring, and iii) online testing procedures (module Testing and
Stimulation), that may allow to accelerate the collection of relevant data about
the state of a given network and improve the effectiveness in terms of accuracy
and timing for detecting or predicting anomalies.

Observations may be collected from all layers of the protocol stack in the
end-node. The output of the monitoring can subsequently be pre-filtered or
aggregated (module filtering € aggregation) to reduce the forwarding of un-
necessary information (in time and space) to the more processing expensive
functions in diagnosis and decision components.

It must be noted that the ODDR is the measurement instrument of the
ODDR. It represents different active or passive measurement mechanisms (path
delay, packet loss rate etc.) to be deployed, configured and enabled depending
on the particular end-user services requirements. In general, these mechanisms
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must be developed with a particular care to collect reliable observations [23],
[19]. To achieve this objective, the OPP design and implementation may take
advantages of measurement theory basics and well-known practice from moni-
toring and testing fields. For example, the monitoring and testing functionalities
shall be low-intrusive, and computation of the uncertainty in the collected mea-
surement results may help in providing confident and representative results [23].
The latter considerations refer to the remaining three modules: the module Sta-
tistical Analysis, which provides statistical analysis on the data collected (e.g.
mean or standard deviation estimate), and the modules Observation Compen-
sation and Confidence Fvaluation. Observation compensation is the process
of removing systematic errors and attempting to provide an estimate of the
measured value without measurement error. Considering, however, that the
compensation process can never be perfect, the role of confidence evaluation is
to estimate the residual uncertainty on a given measurement.

In this thesis the OPP component is studied from a holistic perspective
making assumptions on its functions and properties. In particular low-intrusive
passive observations are in focus in the following technical chapters. A more
detailed description of the assumptions of the observation process are provided
in Section 4 regarding observation uncertainties and impact on diagnosis and
Section 6 particularly addressing measurement errors and how diagnosis may
adapt to these.

Diagnosis Component

The main functionality of the Diagnosis Component is to estimate the actual sys-
tem state depending on the collected pre-processed observations (System State
Estimation module). As many states (and particularly fault states) of the net-
work are not directly observable (i.e., hidden), the network state estimation
must rely on available observations and on a system model to provide knowledge
about the hidden states. Note, in some literature on the diagnosis topic what
here is referred to as pre-processed observations is denominated symptoms or
alarms. To maintain the generic perspective of the ODDR framework forward-
ing binary alarms as well as raw data values in this work the term pre-processed
observations is primarily used.

Diagnosis in the envisioned dynamic system scenarios requires diagnosis
models, which can be adapted online. The adaptation may occur in relation
to both system changes as well as changes in the requirements of the end-user
service and Decision Component. To handle this process the module Model
Generator has been defined to change both model parameters and potentially
its structure.

The System State Observation module refers to the process of monitoring
and storing the value of certain system variables that can be referred to as be-
ing deterministic; i.e. where no uncertainty is associated. Examples of such
variables are: end-user service state, available access networks, free system re-
sources etc. The variables may either be discrete or continuous. The module
is responsible for making the observations available to the diagnosis process
and the Decision Component. It has been located in the Diagnosis Component
recognizing it as the overall entity to maintain the current probabilistic and
deterministic system state view in the ODDR.

The Diagnosis Component is a central component in the considered work. As
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emphasized in Chapter 2, diagnosis in networking systems is a highly relevant
and intensively studied topic due to integral challenges in performing accurate,
timely and adaptive diagnosis on unreliable information. In this work, focus in
the Diagnosis Component is on how to apply measurement uncertainty informa-
tion in the diagnosis process, how to make it robust to changes in observations
and, finally, how to characterize the diagnosis imperfections. Issues of how to
adapt the Diagnosis Model to changing operating conditions are not addressed
in this work.

Decision Component

The Decision Component supervises and leads the execution of the ODDR
framework. It has the central role of making decisions. In summary, these
are: 1) which remediation actions to initiate, ii) if active observation efforts
must be initiated, iii) how to reconfigure the OPP and diagnosis components,
and iv) to do nothing waiting for development in mainly diagnosis, end-user
service or network states before initiating any external actions. Taking a start-
ing point in the dependability (and implicitly performance) requirements and
active state information of end-user services the decision process has the overall
goal to steer the end-node clear of faults that can lead to end-user service fail-
ure. In this process it must attempt to minimize: perturbation on the network,
use of computational resources and for certain end-node types, the energy con-
sumption. Note, that while all three may be important, the end-node driven
fault management approach especially stresses the need to minimize network
perturbation. This is due to its centralized nature and inherently, multiple end-
nodes attempting to assess network states, which itself could lead to undesirable
network fault states.

As mentioned previously, the Decision Component constitutes a holistic view
on the entire fault management process. This leads to behavioral characteris-
tics that can optimize end-user service reliability providing advantages, which
cannot be provided by individually optimizing the individual parts of the fault
management process. A set of key examples are: Minimize diagnosis effort)
to avoid performing active/passive observations or elaboration of approximate
solutions when no gains exists. No gain could be in cases where clearly sepa-
rating certain fault causes is irrelevant as the remediation action would be the
same or where initiating remediation is relatively cheap and resource consuming
diagnosis is expensive. Adapt observation efforts to diagnosis requirements and
only look up remediation options that are relevant to expected faults and end-
user service requirements. Select best diagnosis component setting trading off
its different imperfections related to varying end-user service requirements. Use
characterization of diagnosis imperfections to select best remediation decision
strategies.

Based on the presented aspects to include in the decision process it is clear
that multiple sources of observations are needed. Most predominant are: es-
timated system states (network, end-node and end-user service provisioning),
available remediation options, end-user service state and time progress. The
joint system state view provided by observations must be related to the system
parameters in order to provide useful decisions. Examples of such parameters
are remediation properties (expected delay of application and probability of fail-
ure), impact of network states on the end-user service and expected fault /repair
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process. Finally, additional cost/reward metrics may also be needed to capture
relevant information not evident by the system state evolution itself (monetary
costs, energy costs and good user-perceived quality).

Operating online under varying conditions, the Decision Component needs to
adapt its behavior to the environment. In practice, this involves re-computation
of the decision strategies to use. However, identifying good decisions in relation
to the complex interactions between the managed system states and the actions
of the ODDR can be difficult. In this work, model based approaches are studied,
which will provide insights into needed aspects to define a good decision strategy
and may act as a base to autonomously adapt the strategies. A strategy is
defined as a policy. A policy is further to be understood as a set of rules
defining decision behavior under certain conditions.

Now having established the main role of the Decision Component, a more
detailed introduction to the individual modules Decision Manager, Policy En-
forcement, Policy Construction and Model Generator is given in Section 8.2.

Concerning the Decision Component, in this work, focus is on the interplay
between the Decision Component and the diagnostic capabilities. In Chapter
7 it is studied how the impact of diagnosis imperfections may be minimized
considering end-user service reliability parameters. The aim is to propose a
light-weight model for a given reliability study, which can be used to compare
various policy heuristics and may be extended to a dynamic setup given its
atomic components. The study is finally extended to consider best settings of
complex diagnosis components trading off their imperfections.

Remediation Execution

The execution of remediation actions is performed by the Remediation Execution
component. Examples of remediations are to switch the end-node association
to a different access point (changing access network and potentially end-to-end
path in the process), select a different end-user service end-point or change pa-
rameters of the communication protocols (frame size, packet size, transmission
strength). The component contains the set of rules to initiate a certain reme-
diation action. It has access to interfaces in the protocol stack for execution of
these rules and it is responsible for monitoring the remediation process. This
monitoring must establish the outcome of remediation (successful or failed) and
monitor further performance parameters such as time to effectuate remediation.
All monitored information is provided to the OPP component, which further
forwards the information to diagnosis and the decision components. The func-
tionality of this component is considered implicitly in the following chapters.

3.1.2 The ODDR Interfaces

In this section the ODDR external and inter-component interfaces are described
in detail.

I - System observations

This is the primary interface for the collection of observations to the OPP com-
ponent. It is a generalized abstraction of interfaces towards monitoring modules
in all layers of the protocol stack, operating system counters and potentially
monitoring frameworks like SNMP [31]. The observations may be of a raw na-
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ture such as network delay measurements, radio signal strength information or
already processed information like explicit fault notifications from other moni-
toring subsystems like health monitors.

IT - Active events sent

The active monitoring modules of this component use this interface to send ac-
tive events. An active event can be stimulation traffic to exert a certain network
path, a test request to an end-user service to ensure it provides the expected
answers or active probes (e.g. ICMP ping) to perform measurements of path
delay and potential bandwidth. The interface generalizes different interfaces
towards monitoring modules in all layers of the protocol stack, end-node system
drivers and potentially external testing middleware functionality.

IIT - Pre-Processed observations

Pre-processed observations made by the OPP are conveyed in this interface. Dif-
ferent meta-data may be associated to the observations such as a time-stamp and
uncertainty information. The observations may both be of a stochastic nature
(e.g. network delay and radio-signal strength measurements) or deterministic
(e.g. available access networks and protocol being used).

IV - Pre-Processed system state observations

This interface is similar to interface III and in principle provides access to the
same information. In practice, however, a sub-set of the observations in IIT
needs to be processed into state-estimates before being useful to the Decision
Component (through interface V). Direct state observations are maintained in
the Diagnosis Component but made directly available to the Decision Com-
ponent such as available remediation actions (e.g. access networks and their
properties, end-user service end-points and utilization of frequency bands) and
end-user service state information (e.g. progress, criticality level and user expe-
rienced waiting times).

V - System state estimates

Interface V provides system state estimates for the Decision Component. Each
state estimate may have meta-data associated such as confidence in the state
estimate or information on which observations or how much time may be needed
to improve the estimate for a given amount.

VI - Decisions

The decision interface is composed of several interfaces towards the components
Diagnosis, OPP and Remediation Ezecution. The interfaces are grouped in
two lanes conveying actions and settings re-configuration commands. Actions
are in summary: 1) initiation of a specific remediation procedure (Remedia-
tion Execution Component), ii) actively collect observations (OPP), and iii)
elaborate approximate diagnosis (Diagnosis). In addition, the Decision Compo-
nent issue reconfigurations depending on which end-user service is active. Such
re-configurations could be which observations to make, the frequency of observa-
tion collection, which observation filtering level to apply, how accurate diagnosis
needs to be etc.
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VII - Remediation outcome

The Remediation component communicates to the OPP component the outcome
of the remediation action. The remediation outcome is provided in order to
obtain information for potential adaptation of the ODDR components (including
new decisions in case the remediation procedure fails).

VIII - End-User services requirements

The end-user services require certain dependability properties to be maintained
by the OPP. These requirements are communicated through this interface. The
abstraction level of the requirements may be high such as transfer X amount of
data reliably within Y seconds, or, low e.g. by inclusion of a complete applica-
tion state profile and restrictions on time or performance in different states.

IX - Requirements violation

The Decision Component operates to satisfy the end-user service requirements.
When they cannot be met, the Decision Component may communicate this in-
formation to the end-user service, which may then have the option to react. E.g.
by increasing its safety margins or informing the user to perform certain manual
remediation actions (e.g. insert cable with broadband wired connection). Alter-
natively, such information may be collected in the application layer to quantify
the general QoS of a certain end-user service.

3.2 Scenario, Faults and Remediation Options

Having defined the ODDR and its motivation in this section a derived scenario to
be used in the remainder of this work is presented. The scenario must provide a
viable framework to study the challenges of end-node driven fault management.
This involves the definition of faults, remediation options and an end-user service
use case.

3.2.1 Generalized End-to-End Scenario

Based on the general scenario in Figure 1.1 a detailed scenario case has been
derived. This case scenario is presented in Figure 3.2. It depicts an end-to-end
connection as it will appear in a generalized wireless end-node to infrastruc-
ture network setting. In the pervasive networking environment the end-node
may have the option to connect to different wireless access networks using pri-
vate or commercial access points (WLAN), mobile networks (UMTS, LTE) or
use a connection via an ad-hoc network. The infrastructure consists of a radio
access network and a backbone operated by a given network operator. From
the operator network there is a path to the service provisioning infrastructure.
It may be established through some arbitrary network architectures (Internet
transport) depending on, amongst others, where the end-user service provision-
ing end-point is situated. Finally, it is considered that an end-user service may
have different provisioning end-points located in different networks to deliver
the same service.
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Figure 3.2: End-to-end scenario with fault cases and remediation by access network
selection. Grayed elements are not considered actively in this work.

Faults and remediation options

Anywhere in the end-to-end path a fault may occur and potentially lead to
an end-user service failure. Such faults may be handled in the network part
in which it has occurred. However, this is not sufficient to ensure end-user
service continuity. Some faults may not be timely recovered such as replacing
or repairing a failed component. Examples are private wireless access points that
may take hours to weeks to repair or crashed DSL connection that may take
some minutes to restart or days to be repaired by a technician. Other faults
may not be actively recoverable due to sparse recovery options. An example
is high contention in the wireless spectrum caused by multiple asynchronous
nodes. Finally, what may be considered as a fault in the end-user service fault
model may not be considered a fault in the network part where it occurred
and thus, no recovery actions are initiated. In this case an example may be
a high router load leading to some level of packet losses and increased delays
(congestion). Given the diverse network access options and reconfigurations
of the protocol stack parameters the end-node may have several options to
remediate such faults. Examples of remediation options could be to: adapt link
layer parameters such as reducing the frame size and increasing the transmission
strength given contention at the access point is diagnosed, or change end-user
service end-point to change parts of the end-to-end path or finally, select another
access network. The latter option is particularly interesting considering that the
diversity in access network configurations and technologies can help to remediate
different faults. An example is depicted in Figure 3.2 for the faults of wireless
contention and infrastructure network congestion. Starting with emphasizing
the diagnosis challenges the end-node must identify whether the cause of a
reduced throughput is caused by one of the two faults. None of the faults are
directly observable as the contention happens at the access point (the end-node
may not experience a high contention level itself) and the congestion in the
infrastructure. Providing a useful diagnosis can have a significant influence on
making the best remediation decision. E.g. assuming the end-node is connected
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to Access Point 1 (AP1) failing over to AP 2 is only useful if the fault is
contention in the WLAN channel 1 CH 1. On the other hand, a congestion
fault in Operator A Infrastructure would require a fail-over to AP 3.

Scenario delimitation

In the remainder of this thesis focus is on a subset of the presented scenario
in Figure 3.2 while the grayed parts are not studied in detail. In practice
the subset involves the two introduced fault types. Further, a single end-user
service provisioning end-point is considered and the remediation option studied
is access network selection. Despite its simplicity, this scenario is rich enough
to support the studies of: 1) how to improve diagnosis robustness to unreliable
observations, 2) study various remediation decision strategies and models for
these, and 3) discuss decision adaptation approaches. Finally, it is expected
that the obtained results may in future work be extended to a larger set of
multi-fault and multi-remediation option scenarios.

A more detailed definition of the faults is presented in Table 3.1. Actual
parameterizations (i.e. fault process and states) of the faults are introduced as
needed in the following chapters.

3.2.2 End-User Service Case Study

A single end-user service case is introduced as a mean to specify a useful end-
user service reliability metric. This metric will be applied to assess reliability
impacts of imperfect diagnosis and remediation actions.

Examples of end-user service cases to consider could be: a) upload of patient
examination results to the emergency room during an emergency response. b)
HTTP/TCP based streaming of video/audio (with progressive download) where
a certain amount of data must be transferred in a timely manner to avoid buffer
underrun. ¢) File down/upload in time before connectivity is lost or within time
constraints to ensure a certain productivity in industrial applications. Such end-
user service cases are interesting as the success criteria can be formulated as a
deadline in contrast to a minimum throughput requirement. This makes it pos-
sible to explore best fail-over strategies (optimizing reliability and minimizing
overhead) based on past and predicted progress of the end-user service.

The chosen case is motivated by industrial grade reliability requirements for
wireless communication as discussed in the work of reference [24]. It considers a
reliable data transfer operation. A certain amount of data must be transferred
within a critical time deadline requirement. The reliability parameter considered
is, thus, the probability of a successful transfer within the deadline (later referred
to as ). In accordance to this, the studied end-user service is defined as time
constrained reliable data transfer. This generic end-user service case covers var-
ious end-user services based on Transmission Control Protocol (TCP)/Stream
Control Transmission Protocol (SCTP), where the influence of likely network
faults may lead to service failure. From a general perspective both TCP and
SCTP are considered in the following sections. In cases where one of the reliable
transport protocols is used over another this will be mentioned explicitly.
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Congestion Fault
Description During operation, an end-to-end path may experience dif-
ferent levels of congestion on the links traversed in the
network. This may happen from varying cross traffic lev-
els at the congested links or varying paths taken by the
packets constituting the end-to-end link. In this respect
congestion itself is an expected event and may occur in
different severity levels. A congestion fault is, thus, in
this work defined as a certain severity level that can lead
to end-user service failure.
End-node effect Increased levels of congestion lead to increased round-trip
times, packet losses and jitter.
Ezample causes On a network component level the fault chain may be ini-
tiated by a crashing and restarting router or an unstable
link. In both cases traffic over this router or link is re-
routed to paths in the end-to-end link leading to a severe
congestion level.

Contention Fault

Description Contention in this work refers to wireless contention.
Multiple wireless nodes are working without a central-
ized media control scheme. Instead they compete about
the network access using Carrier Sense Multiple Access
(CSMA) [135]. This media access control scheme is com-
mon in open wireless network technologies like IEEE
802.11 (WLAN). Next, assuming that the contention oc-
curs mainly at the access point (due to other nodes using
it or other nodes communicating with each other in the
same spectrum (channel), the goodput may be severely
damaged. The reason is an increased amount of frame col-
lisions (two or more frames sent at the same time causing
some to be lost) and the access point waiting for medium
access.

End-node effect | Contention at the remote end-point (the access point) is
experienced at the end-node as frame losses and even-
tually packet losses. The end-node may, obviously, also
observe some of the contending nodes, which leads to an
increased channel access delay (as it waits for the channel
to become clear) and consequently increased round-trip
time.

Erample causes Crash fault of another access point causing multiple nodes
to use the contended until a repair takes place. An al-
ternative cause could be a large group of wireless nodes
moving into the area where the access point is operating
leading to contention until they move out again.

Table 3.1: Detailed definitions of the faults considered that may lead to end-user
service failure.
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3.3 Analysis Methodology and Setup

A majority of the results produced in this thesis are made in the context of the
network scenario presented in Section 3.2. A detailed simulation based approach
is introduced. It implements the network scenario to provide observation and
parametrization data (network obs. etc.) and an environment for verification
and assessment of analytical results. In this section the outline of the simulation
setup is introduced encompassing its assumptions, its functions and a baseline
parametrization. This parametrization involves defining network states and
their impact on the reliable data transfer end-user service. It must be noted
that the simulation model structure presented is general to the remaining part
of the thesis. However, the parametrization may vary in some of the Chapters.
In cases, where such deviations from the model presented here exist, they are
explicitly emphasized.

Further details on the simulation verification and setup can be found in
Appendix C while Appendix E provides an overview of the common parameters.

3.3.1 Background on Simulation Analysis

To implement the network scenario in a reference setup, a simulation based ap-
proach has been chosen. A simulation based approach offers some clear advan-
tages over real experimental test-beds or true end-to-end paths in that it mainly
offers: i) stability, full controllability and repeatability, and ii) less experiment
setup and execution time and lower cost compared to practical experiments.
The main disadvantages are that the proposed simulation environment may be
over-simplifying important aspects compared to a real networking environment
such as cross-traffic patterns, time-varying changes in the network setup charac-
teristics of observation distributions etc. In the individual studies of this thesis
discussion on such simplifying assumptions will be made to put these issues
into perspective. In future work, the proposed approaches must be extended
to larger experimental Internet test-beds like GENI [63], PlanetLab [113] or
experimental test-bed scenarios of ALARP [68], HIDENETS [37] or SAFEDMI
[24].

To ensure a realistic simulation environment a system level simulation ap-
proach is pursued. System level simulation refers to a realistic implementation
of the Internet Protocol stack protocol behavior. This generally includes imple-
mentation of layer 4 transport protocols like TCP, SCTP, UDP, RTP etc. down
to, and including, layer 1 in the wireless links considering wireless fading, frame
losses and media access control. The implementation of the evaluation frame-
work is based on the de facto standard network simulator ns-2. This simulator
is highly regarded in research communities. It is dominant in simulation based
analysis of communication methods in fixed infrastructure and ad-hoc scenarios.
Being an open source tool with many different contributing parties ns-2 has been
thoroughly revised and partially verified to deliver realistic network simulation
results [52]. The network simulator used is in this work is ns-2 version 2.29.

3.3.2 Introduction to Simulation Model

The simulation model of the networking scenario in Figure 3.2 is depicted in
Figure 3.3. Initially, its parts are introduced and in the following sections the
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Figure 3.3: Outline of the simulation model for the studied end-to-end scenario.

capabilities and limitations of the used simulation model are discussed along
with baseline parametrization.

Simulation Model Structure

The simulation model consists of altogether eight infrastructure nodes and two
access point nodes in two distinct network paths with an identical network archi-
tecture. These paths are denominated Network A and Network B respectively,
referring to two operator infrastructures A and B offering wireless access and
independent network paths. The end-node can operate in either of the networks
by directing traffic via access point A (AP4) or APg. To describe the model
a starting point is taken in network A. From the wireless link, connectivity is
offered to the network infrastructure via the Radio Access Links representing
e.g. a private xDSL connection or cellular network radio access infrastructure.
The Congestion Link between the nodes R4 and R 41 represents the infrastruc-
ture network link. It may be seen as a representation of multiple links in the
independent end-to-end path resulting from using a certain network provider.
Based on cross-traffic generated from R 42 to R43 the load on the link from R 49
to Ra1 can be controlled to define various congestion levels. Thus, the buffer in
which congestion occurs is in R4 toward R4;. From the potentially congested
infrastructure network the Service Provisioning Infrastructure is attached rep-
resenting an independent path to the given End-User Service Provider.
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3.3.3 Simulation Model Properties

In the following paragraphs functions and assumptions to realize the studied
end-to-end scenario in the similation model are presented. It must be noted that
the following descriptions apply to both network A and B, which are initially
considered to have equal properties.

Fail-over remediation option and fail-over properties

The remediation option considered is a hand-over (fail-over) from network A to
B. Le. network A is considered as the initiation network and network B is the
remediation network. General assumptions are: 1) the data upload can only be
active on one link at a time, 2) a data-upload session can be resumed after a fail-
over, and 3) a fail-over may fail. Failing fail-over must simulate the aspect that a
fail-over may fail due to a fault in the connection establishment procedure with
the link to which a fail-over is attempted. In the simulation this is simulated
by changing access network from network A to network B and disabling the
wireless link to APp for 200 ms before falling back to access network A. A link
down duration has been set for 200ms to correspond to some layer 2 delay in
failing over. In practice, this value depends heavily on the wireless equipment
and device driver, used authentication/security schemes, link conditions and
hand-over implementation. So while 200ms or less may be achievable [100] in
practice this is a highly variable value that may be a factor 2-3 higher. Including
the layer 4 behavior, i.e. the stochastic congestion avoidance behavior of SCTP,
the mean return delay has been identified to 1.2 s based on simulation results.
Details on the obtained results are available in Appendix C.2.

SCTP layer 3 mobility

To simplify issues of layer 3 mobility in this work, SCTP in a multi-homing
configuration is used. This has in existing work [95] been considered a potential
end-to-end layer 3 mobility solution in hand-over scenarios as an alternative
to Mobile TP (MIP)[112]. In the multi-homing setup both the end-node and
the service provider has two end-points (with individual IP-addresses). SCTP
may now use either of the networks to transfer the data by activating one of
the multi-homing paths. As a result an ongoing data transfer session can with
insignificant interruption be moved from one network path to another [95]. To
disregard complexities of SCTP connection establishment it is assumed that it
is always successful and can be conducted with no delay implications.

SCTP configuration

The transmission rate of SCTP is controlled by congestion avoidance mecha-
nisms very similar to TCP. This means that results obtainable from this simu-
lation model may be comparable to a setup based on TCP (e.g. in an MIPv4/6
setting). This is useful for the modelling approach described in Section 7.1 as a
starting point can be made in previously well studied TCP modelling techniques.
There are, however, some important differences between TCP and SCTP con-
gestion avoidance mechanisms. Most significant differences are pointed out in
[29] and [7]. To address some of these differences SCTP has, in the studied sim-
ulation setup, been (re-)configured to approach TCP SACK congestion control
behavior. Details on these reconfigurations are presented in Section 7.1.
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Network state control

The congestion fault related network states of the Congestion Link can in sim-
ulation be controlled either by cross-traffic (for different rates of Acga/cqm) or
a setting of an independent loss rate for each link (pcga/cgp). The first op-
tion is most realistic in relation to the congestion fault model where losses are
correlated due to loss events from queue overflows (assuming drop-tail queues).
The latter option ensures independent losses, which may ease later modelling
challenges but also be too simplifying. The impact of the two approaches is
discussed later in Chapter 7 where a complete model of the scenario is intro-
duced to derive good decision policies. A similar discussion could be made for
the contention fault in the wireless link considering simulation of contending
nodes versus modelling contention as a wireless frame loss probability. Yet, for
simplification a fixed frame loss probability is assumed (peia/e¢p) in line with
the existing well regarded IEEE 802.11 contention modelling approach in the
work of [17].

ODDR capabilities

The simulation model, finally, also implements basic ODDR functionality to
support cases where the simulation outcome is determined by ODDR behav-
ior. Besides fail-over execution, such functions are observation pre-processing,
diagnosis functions and decision policies for the decision component. Details on
which of these functionalities are used are emphasized in the chapters making
use of the simulation model.

In the following section a set of network states is defined describing network
conditions in normal and fault states. The intermediate results obtained in this
process will be used as a background for a model of the end-user service as a
function of the network state, which is introduced in Chapter 5.

3.3.4 Network State Definitions

To complete the diagnosis model in this section a realization of the networks
states is made. This involves parameterizing the model links, defining fault and
normal states and assessing their impact on the reliable data transfer end-user
service case. Primary focus is made on the congestion fault case, which is used
as reference for a majority of the presented studies.

Fault severity and fault process

In the scenario two likely fault types have been introduced and the importance
of pin-pointing their location in the end-to-end path has been exemplified. Fo-
cusing on the fault severity and fault process as defined in Chapter 2, these
properties may be used to create a multi-state model that accurately captures
the behavior of a certain fault. I.e. a fault may alternate between different
severity levels each of which could lead to different decision actions in the reme-
diation framework. In this work, however, a basic two-state fault model is used
as a starting point. It allows to represent a normal state and a fault state. Both
the normal and fault state will represent a certain severity level. By definition
the normal state cannot lead to end-user service failure while the fault state
can lead to failure. Thus, the fault state may represent a quantified level of
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’ Link Name \ Bandwidth \ Delay ‘
Wireless Access 5 Mbit/s 4ms
Radio Access 10 Mbit/s 4ms
Congestion Link 15 Mbit/s 10ms
Service Provisioning Infrastructure 10 Mbit/s 5ms
Cross-traffic Links 20 Mbit/s 10ms

Table 3.2: Applied link properties to the simulation model of Figure 3.3 on page 46.

degradation/error (e.g. a given throughput degradation) or a hard fault like a
crash fault. A common and convenient assumption in fault modelling is that
state holding times can be described by an exponential distribution. Conve-
nience stems from the independence assumption that time left in a state does
not depend on time already spent in the state. This allows for simple and
analytically tractable model representations e.g. in a Markov model [33]. De-
pending on the type of fault and fault analysis sensitivity to fault model error,
richer representation of fault behavior may be needed and obtained using Ma-
trix Exponential (ME) approaches [91]. The ME modelling approach offers the
advantage of modelling arbitrary state holding times at the imminent cost of an
increase in the state space.

For now, the basic fault model representation can be summarized as an
ON-OFF model (ON representing the fault state, OFF the normal) with expo-
nentially distributed state holding times. This fault model may be parametrized
to specify both intermittent, periodic and approximations of permanent faults
in cases where the expected fault period is significantly larger than the end-user
service period.

From the literature of modelling end-to-end links as well as wireless access
links Markov models have often been found to provide powerful model repre-
sentations despite their simplicity. For instance, the authors in [85] show how
802.15.4-based wireless links behavior may be split in a long term component
(e.g. link state level) and a fast component (packet level). They propose a
model that captures these two levels and shows good similarities to experimen-
tal measurements when considering packet level statistics. In the work of [119]
the authors attempt to train Hidden Markov Models of various state sizes to
network traces based on loss traces. For a diverse set of various Internet end-
to-end traces they find that at most four states may be needed to describe the
connection state while in a majority of cases only a single or two states would
be sufficient. While these models and their results are not tied to network state
(fault) causes, they exemplify how simple two-state Markov models, as applied
in this work, may be sufficient to describe end-to-end paths properties.

Link dimensioning

The network state definitions are made based on an instantiation of the simu-
lation model of Figure 3.3. The links have been dimensioned to the values of
Table 3.2 using the following considerations. Starting from the end-node the
wireless access links between it and the AP,,p node are represented by wired
links in the simulation model. This is due to implementation-wise limitations
of SCTP in ns-2. However, the link bandwidth and mean delay parameters
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have been tuned to correspond to an IEEE 802.11b 11 Mbit/s link under ideal
link conditions. As the wired links are full duplex aspects such as layer 2 con-
tention between SCTP data-packets in the uplink and acknowledgements in the
downlink are not included in this simulation model. While more recent versions
than TEEE 802.11b offer more than 100 Mbit/s [21] (with a theoretical option
of moving to 600 Mbit/s) the considerations of this work are general and could
be applied to various setups and configurations. Moving on to the Radio Access
link it is assumed that it offers high bandwidth as it may be based on xDSL
or a fiber connection. The same is assumed for the service provisioning infras-
tructure bandwidth capacity. To represent a high bandwidth infrastructure the
congestion link has the highest bandwidth of links in the end-to-end path but
also the highest delay to represent multiple intermediate links and nodes. Fi-
nally, to realize the congestion issue, cross-traffic links have been dimensioned
with a higher bandwidth than the congestion link.

Congestion network states

To implement the congestion fault model the simulation setup must implement
two states: normal and congested for the independent losses setting and cross-
traffic based setting.

Initially, a normal state has been defined for independent losses specified
by a low packet loss probability of p.g4/.qp = 0.005 %. The impact on data
transfer completion times in this state is depicted in Figure 3.4 for 2000 inde-
pendent simulation runs for a medium-sized data transfer of datas;,. = 10 M B.
This data amount is defined from the requirements of the industrial applica-
tion, which has inspired the studied end-user case study [24] and will be used
as a reference throughout this work. Over the simulation runs there is a signifi-
cant variability in the data transfer completion time distribution, which ranges
from 18.6s to 28.4s. For comparison a data tranfer under perfect conditions
(Pegajegp = 0.0%) has a duration of 16.8s. Clearly, even for the low packet
loss probability in a normal state the congestion control mechanisms for SCTP
(and similarly TCP) have a significant influence on the data transfer completion
times.

A fault state has been defined to provide approximately a halving of the
mean throughput under independent losses. The result is a fault state definition
where pega/cqp = 0.022 %. The result is depicted in Figure 3.5. As expected,
the variability and range of data transfer completion times increases significantly
when considering the fault state. It can be observed that there is no overlap
from the distribution of the normal state, which is in the range 38.9 s to 59.1 s.

The end result is two highly distinguishable network states. Introducing
a fault process to alter between the two states will theoretically lead to data
transfers in the range of 18.6 s to 59.1s. It should further be noted that the
considered mean packet loss probabilities are not rare in an Internet path con-
texts as several measurement based studies have shown for both low hop count
links [40] considered in the order of 0 — 1% and in longer Internet based paths
[110],[138] in the order of 0 — 10%.

A summary of the state definitions is given in Table 3.3. End-to-end path
metrics have been obtained from the simulation which have a dominant impact
on the end-user service and that are interesting to understand how the conges-
tion network states may be observed and diagnosed. The upper half depicts



3.3. ANALYSIS METHODOLOGY AND SETUP o1

Data transfer completion time PDF — Normal state

0.08 1
0.06 b
0.04 b
0.02} i

Frequency

0
18 20 22 24 26 28

Data transfer completion time CDF — Normal state

T

0.8

0.2

O Il
18 20 22 24 26 28
Data transfer time [s] (Bin size: 0.2 s)

Simulation (2000 samples)|

Figure 3.4: Data transfer completion time distribution for a mormal state where
pch/ch = 0.005 %

Data transfer completion time PDF - Fault state
0.08F ‘ ‘ ‘ 7

Frequency
o
o
D
Il

40 45 50 55 60

Data transfer completion time CDF - Fault state
1F T

T T

0.8

0.2r

Simulation (2000 samples)|

40 45 50 55 60
Data transfer time [s] (Bin size: 0.2 s)

Figure 3.5: Data transfer completion time distribution for a fault state where
PcgA/cgB = 0.022 %



52 CHAPTER 3. ODDR FRAMEWORK AND ANALYSIS APPROACH

results for normal and fault states using independent losses. PER is the es-
timated Packet Error Ratio (PER) obtained from simulation. It describes the
ratio between packets sent in the particular state over packets observed as lost.
In this respect it just verifies the specified packet loss probabilities to be correct.
RTT is the mean Round-Trip Time (RTT) estimate made from observations of
SCTP acknowledgments at the transport layer. dRTT is also an RTT mean
estimate. It has, however, been obtained at the link layer by inspecting the
payload of the frames to obtain sequence numbers of SCTP. Now registering
sending and receiving times of the individual SCTP segments at layer 2, an
RTT observation metric can be obtained without including the local end-node
network layer to link layer buffer. Eliminating the local buffer provides a better
estimate of RTT variations caused by network congestion conditions as local
link bottleneck behavior is not included. This is beneficial for the diagnosis
component as will be discussed later. It should be noted that for the observed
transport and link layer round-trip times the estimates have been made as a
mean of means of all raw RTT observations in a trace. That there is a dif-
ference between RTT and dRTT is clear. The local buffer has a significant
contribution to the overall RTT estimate. Notice, that RTT is lower when a
fault has occurred in the independent loss case. This is due to the fact that
the data upload transmission rate is decreased in the fault state leading to less
queueing in the local queue. Finally, in Table 3.3 the 5, 50 and 95 % quantiles
are stated for the data transfer distributions.

Table 3.3 also includes results in the case where fault and normal states
are based on cross-traffic. Rates of Acga/cop have empirically been adjusted to
roughly provide data transfer completion time ranges similar to the independent
loss cases. Each cross-traffic event starts an FTP file transfer (using TCP)
with file sizes according to a Pareto distribution (u = 10K B, 8 = 1.5 [g]).
Stability has been ensured in the amount of parallel active transfers (see also
Appendix C). Considering PER, it is significantly higher than in the case
of independent losses while producing similar data transfer completion time
ranges. The reason is that many of the losses are correlated due to the drop-
tail queue packet loss behavior. As SCTP transmission rate reduction efforts
are determined based on whether losses have occurred within a transmission
window, as opposed to evaluating the individual packet losses, each loss has

Percentiles
State | Aegasegn | PER, o | RTT | dRTT| 5% [ 50% | 95%
Independent losses
Normal | - 0.5, 0.09 | 59.1 51.7 20.2 22.3 25.0
Fault - 2.2, 0.17 | 53.3 52.5 42.7 47.5 52.9
Cross-traffic - Pareto distributed file sizes
Normal | 86.96 0.8,0.23 | 72.1 54.3 18.3 20.4 23.8
Fault 123.46 2.9, 0.44 | 58.5 57.1 34.3 41.3 50.0

’ Units \ [conn/s.]\ % \ [ms] \ [ms] \ [s] \ [s] \ [s] ‘

Table 3.3: Network state definitions for state simulation by independent losses and
cross-traffic (Each state is based on 2000 independent simulation runs of a data amount
datasize = 10 Mbyte).
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less impact when it is correlated to other losses. As a result the outcome is
higher packet loss ratios for network states when losses are based on cross-traffic
compared to true independent losses.

Contention network states

The contention network normal and fault states can be defined in the same
manner as the independent losses congestion network states. The aim is, thus,
to define a fault state that also leads to provide an approximate halving of the
mean throughput by a packet loss probability similar to the one obtained in the
congestion state. More details on defining a set of contention network states
is provided in Section 4.4 where an approach for multi-fault diagnosis using
observations from multiple layers is discussed.

3.3.5 OPP Observations

A final focus is on which observations to make available for the OPP component
and how these may be pre-processed. A set of observations has been selected
which: 1) can be obtained from existing network traffic to maintain a non-
intrusive observation approach with no overhead and 2) enables to diagnose
and distinguish between the two faults of contention and congestion despite
unreliable observations. The set consists of the observations of Round-Trip
Time (RTT), Packet Retransmission Ratio (PRR) and Frame Retransmission
Ratio (FRR). The resoning behind their selection and a definition is provided
in the following paragraphs.

Round-Trip Time - An indicator for network congestion is round-trip time.
The congestion fault is caused by a general increase in the queue length in
the infrastructure network router buffers. This leads to increased waiting
time for packets in the end-to-end link and consequently the following
interpretation: a high RTT observation corresponds to the network being
in a fault state and a low RTT to the network being in a normal state
(assuming a reasonable stationarity of the link properties not associated
to the fault process).

olRTT refers to an observation of RTT, where [ is a discrete time step

(1 <1< L)and OFTT = {oFfTT oRTT oBTT} Each of17 is obtained
by collecting RTT samples readily available from an SCTP based upstream
data-stream in a fixed size observation window of the size wrrr [s]. A new
window is made for every olRTT from the sample time and wgrrr [s] in the
past. Each window may consist of 0...V individual RTT samples where
V is a random variable depending on the SCTP transmission rate control
and its interaction with the network dynamics. This step is a part of the
observation pre-processing where relevant statistics are drawn from the
raw RTT observations. Being interested in observing the expected value
of RTT, for this observation a mean statistic is calculated to obtain:

v .
oRTT — Ty rtty ifV >0 3.1)
missing if V=0

where rtt; is the ¢’th RTT sample obtained in the window of size wrrT [$]
at the discrete time step [. Note, that if the window is empty the obser-
vation is defined to be missing.
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It must be noted that RTT observations are obtained as previously de-
scribed by recording the end-to-end path RTT at layer 2. This prevents
the RTT from becoming affected by local layer 3 to layer 2 queuing ef-
fects, which may distort relevant information about the end-to-end path
delay and, hence, the congestion level state. Also, it must be emphasized
that the RTT observation used to observe the network congestion level,
in the simulation scenario, clearly only is valid when states are generated
based on cross-traffic. In Table 3.3 this is seen from the dRTT estimate
where the increased load on the bottleneck buffer leads to a higher mean
RTT. Notice, that RTT (the layer 3 estimate) actually drops in the fault
state due to less buffering in the local link layer buffer due to the drop in
transmission rate. This shows why the link layer based RTT observation
is needed.

Frame Retransmission ratio - Losses of frames at layer 2 can provide in-

formation on contention (also in the case of hidden nodes) based on lack
of layer 2 acknowledgments (e.g. see section 9 in the IEEE 802.11 stan-
dard [78] as the receiver node (the access point) may not have been able
to receive the transmission due to a collision. A retransmission is the in-
dication that the MAC protocol has considered a frame to be lost. To
quantify the amount of frame losses this observation variable is defined
as a ratio of frames, which are marked as re-transmissions in relation to
frames sent. The use of ratios rather than rates is due to the fact that the
frame transmission rate is dynamic. The dynamics stem from potential
variation in the used data link transmission rate as well as the rate of
packet coming from the network layer to transmit. This makes a potential
re-transmission rate highly sensitive to the used rate. The observation
variable Frame Retransmission ratio is thus obtained as:

S oneasions if Ytransmissions > 0 (3.2)
missing if ¥transmissions =0

FRR _

Xretransmissions
Ol ==

where Ytransmissions refer to all transmissions including retransmissions
and first time transmissions in a window of size wrgrg[s]. wrrr[s] is
defined in the same manner as the wrrr [s] window.

Packet Retransmission ratio - The Retransmission ratio PRR observation

(wprr[s]) is defined similarly to FRR in the sense that packets that
are retransmitted by TCP/SCTP are considered in relation to all packet
transmissions in a window wpgrg [s]. Again, it must be noted that a re-
transmission by TCP/SCTP is considered as packet judged to be lost by
TCP. PRR provides information on whether the end-node is affected by
any fault. As the considered faults of contention and congestion per defi-
nition will affect the end-node end-user service, packet losses can provide
some information. However, packet losses themselves are ambiguous as
both of the faults may lead to a similar ratio of packet losses. Thus, all
three observations considered in this section may be considered in con-
junction to diagnose and separate the contention and congestion faults.

Additional observations which would also provide some information on the

network states are: throughput, amount of visible contending nodes and packet-
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pair probe time-gaps [131]. However, the focus is not to identify the best obser-
vation options available but rather to handle unreliabilities of available obser-
vations. Thus, for the delimitation of this work these three observations RTT,
PRR and FRR are in focus.

Example: normal and congestion state RTT observations

As mentioned in the section introduction the congestion fault case is used as
a reference for more of the subsequent studies. Thus, concluding this section
is an example of the RTT observation as a function of the network state of
normal and congested. Round-trip time observations obtained from an SCTP
stream in a single end-to-end link (e.g. Network A) of the simulation model are
presented in Figure 3.6. It contains two large sample sets of observations made
in the normal and fault state, respectively, to create the empirical distributions
of P(ofTT|Ns = normal) and P(of"T|Ns = fault). Ns refers to the net-
work state. The states have been obtained using cross-traffic levels according
to the state parameters of table 3.3. In the presented case a window size of
wgrrT = 0.3 5 is considered. This window size provides a reasonable trade-off
that can provide initial smoothing of the RTT observations without having a
strong impact on the achievable reaction time when it later is used in the context
of diagnosis [104].

RTT - Network State Distributions (~8000 samples)
02 T T T T T T T

(u=57.2 ms, std=43.7:ms)

015k ——M Normal State 1
) —@ Fault State
0.1 i

(1=67.2 ms, std=89.3 ms)
0.05 B

Missing 50 55 60 65 70 75 80 >80
RTT [ms]

Figure 3.6: Observation distribution of RTTs for normal and fault network states.

In the normal state, as expected, most probability mass is located at the
lowest obtainable round-trip times. As the fault state is entered the distribution
shifts towards longer round-trip times and a long tail. It must here be noted that
very large round-trip times can be caused by effects of SCTP (and similarly for
TCP) where duplicate acknowledgments delay an acknowledgment of a certain
sequence number. As these delays are caused by packet losses, which again
are more likely in a fault state, these observation samples contain some useful
information on the network state as well. Further, from the distributions it is
clear that the two states are not deterministically separable as expected. Finally,
it can be observed that the amount of missing observations is significant and
that more observations are missing in the fault state. This is the case, as there
due to TCP flow control are more periods without transmission when many
packet losses have occurred.



Chapter 4

Fault Diagnosis under
Unreliable Observations

This chapter is focused on techniques for network fault diagnosis. The aim is
to initially present the view on diagnosis as made in this work. This includes
defining a basic set of diagnosis metrics, which will be used to classify diagno-
sis performance in the remainder of the work. Subsequently, a set of diagnosis
mechanisms are introduced representing the most basic threshold based mech-
anisms to more complex probabilistic approaches. The aim is not to present
an extensive overview on the vast amount of diagnosis approaches in the litera-
ture, but rather to present, specify and parametrize a selection of relevant ones
that will be referred to in the remaining chapters. It is further discussed how
the presented approaches may handle observation unreliabilities. To enable this
discussion, initial experimental diagnosis performance results and comparisons
are performed. The insights gained will form a basis for the studies presented
in Chapter 6 on improving diagnosis under measurement error and in Chapter
7 on handling diagnosis imperfections in the decision process.

In the following section an atomic view on diagnosis is provided and in the
subsequent sections different diagnosis approaches are presented.

4.1 Diagnosis Atomic Model and Metrics

In this section, a generic view on faults and fault diagnosis is introduced. This
generic view will help to present diagnosis metrics, which will be used to assess
diagnosis performance and provide model representations for the remediation
decision problem.

In general the system diagnosis process can be seen as system state estima-
tion where the system state in the studied case is the end-node subsystem, the
available networks and the end-user service provisioning end-points. From this
perspective the aim of the diagnosis process is to identify system normal and
fault states correctly to avoid applying wrong, premature or delayed remedia-
tion. To represent this process a general diagnosis atomic model is introduced.
The generic system view studied in this work is based on a single independent
fault assumption and two network states assumption to form an atomic rep-
resentation. This representation must help: 1) to define a diagnosis view for

56
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quantifying diagnosis performance including imperfections, and 2) to provide a
model building block that can be applied in the decision modelling framework
to be studied in Section 7. The atomic representation can, thus, represent the
different potential faults that may occur in the end-to-end path assuming they
occur and can be modelled independently. It may in future work also be scaled
to handle more fault states.

The diagnosis process may be event-driven [124] where alarms from the
network or certain patterns in observations trigger an update of the diagnosis
mechanism to produce a new system estimate. It may also be periodic where
new observations are made and/or collected periodically to produce a state
estimate or a combination of both. In this work focus is primarily on the
periodic approach. In the studied case it is not considered that network or
observation pre-processing triggered events occur. Instead, observations are
continually available and the diagnosis process must periodically determine the
estimated state of a potential fault case. This periodic diagnostic process is
depicted in the atomic representation of Figure 4.1 where periodically (with a
fixed period T') a state estimate is produced.

False Positives (FP) Fault occurrence False Negatives (FN)
True Negatives (TN Reaction Time (RT
States g (TN) Fals?Fﬁ)aims A (RT)
Fault (1): \ . - 00
Normal (0): L D

t=0 ~TH True Alarm (TA) True Posiiives (TP)

Legend Diagnosis Estimate: O True state:

Figure 4.1: Terminology of diagnosis outcomes.

State estimation classification and diagnosis metrics
Considering the true fault state process and the diagnostic process in combi-
nation enables a classification of the diagnostic process performance. In the
following the basic diagnosis performance metrics used in this work are defined.
Using a classical binary classification scheme the true state of the system
may be defined as negative (N) when in a normal state and as positive (P)
when in a fault state. When the estimated state and the actual state are equal
the estimate is True (T) and False (F) otherwise. This leads to four possible
outcomes of the diagnosis component of True Negative (TN), False Positive
(FP), True Positive (TP) and False Negative (FN). Based on these definitions
we may define more contextual metrics to be used in this work:

Accuracy - Accuracy is the amount of true estimates relative to all estimates
and provides a metric of the overall state classification accuracy of the
diagnosis component.

True and False Alarm - An alarm is the first positive experienced in a group
of consecutive positives. An alarm is true if the system state is positive
at the time of the alarm. An alarm is false if the system state is negative
at the alarm.

Reaction Time - Reaction time represents the time from a fault occurs until
it is diagnosed correctly by a true alarm.
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Diagnosis Ratios - For every state of the system a ratio between the true/false
estimates and all estimates of a particular state can be defined. L.e. the

True Negative Ratio is defined as TN R = %, where # refers to an
#TP

amount. Similarly, it is possible to define TPR = ~ - From these
definitions it is further clear that FPR=1—TNRand FNR=1-TPR.

These are the main metrics that in the following sections will be used to describe
and assess the diagnosis approaches studied in this work. From these, derived
metrics can be specified, which may be more representative for the studied fault
management case or more practical to model. These derived metrics will be
introduced in the following sections and chapters as needed.

Fault detection and diagnosis

With the simplified view on diagnosis presented in this section a close resem-
blance to fault detection theory is evident. l.e. diagnosing a fault state may
implicitly be the detection process itself. In this relation the following chapters
will refer to both diagnosis and detection theoretical aspects. However, in the
framework of the ODDR fault detection is seen as a functionality in the OPP
to identify that an error is present in the system. This may lead to actions such
as the OPP intensifying certain observation processes to intensify the diagnosis
process accordingly. In this way fault detection may be seen as a mechanism
to conserve resources when the system operates in normal states well within
tolerated boundaries. In this work, however, these detection mechanisms are
not considered actively and, thus, focus is on the diagnostic process and a pre-
determined observation collection and pre-processing setup.

4.2 Introduction to Diagnosis Mechanisms

In the following chapters a set of diagnosis mechanisms are introduced to provide
insights into how to increase diagnosis robustness to measurement errors (see
Chapter 6), how diagnosis imperfections may affect end-user service reliability
and how such imperfections may be handled in the remediation decision process
(see Chapter 7).

Altogether, four diagnosis approaches are considered: i) Basic threshold,
ii) a probabilistic Bayesian Network, iii) a heuristic named a-count, and iv) a
probabilistic Hidden Markov Model based approach. The diagnosis mechanisms
studied range from basic approaches to more complex and potentially more
accurate and robust probabilistic diagnosis mechanisms. These different levels
of complexity reflect a (non exhaustive) set of options for the system designer
to populate the diagnosis component of the ODDR e.g. depending on available
resources.

In the following sections first the basic threshold is introduced followed by the
Bayesian Network (BN). In contrast to the basic threshold BN introduces some
model structure and correlation of multiple observations. To study these effects
a comparison of the two approaches is finally presented. The basic threshold
and BN diagnosis mechanisms share the property that they are Memory-less.
They do not attempt to correlate observations over time. Instead, they rely on
a snapshot of the observations available at that moment in time. This simplifies
the diagnosis mechanism in the sense that no memory is needed to store previous
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samples. Another class of diagnosis mechanisms is here defined as Temporal
diagnosis approaches. They are characterized by implementing some degree
of memory, attempting to correlate previous observation samples to the most
recent. This may improve their diagnosis accuracy at the cost of increased
reactivity. Both the a-count heuristic Hidden Markov Model (HMM) exist in
this category where the HMM like the BN introduces model structure. To clarify
the considered difference on memory-less and temporal diagnosis approaches a
comparison is made between the threshold and a-count heuristic.

The motivation to study both memory-less and temporal diagnosis are that
memory-less diagnosis approaches may be simpler to model while temporal may
offer better performance. How to model both in relation to the decision com-
ponent is the key topic of Chapter 7. Aspects of memory in the diagnosis
process have previously been discussed in the work of Daidone et al. [39] where
these concepts are referred to as traditional one-shot and over-time diagnosis,
respectively.

4.3 Basic Threshold Based State Estimator

A simple and widespread approach of discriminating system states is to use a
basic threshold. For simple diagnosis or fault state detection tasks properly
configured thresholds may offer a sufficient performance while demanding little
implementation and computational complexity. Thresholds are widely used e.g.
in network management systems where they may be associated to observation
variables of link utilization, link delay measurements, CPU utilization or packet
losses rate [134]. Breached thresholds then lead to alarm events that in an event
correlation process, as previously discussed, can help stitch together a sufficient
system state view to identify the actual fault cause. More than a single threshold
can be associated to an observation variable to consider different normal states
of operation and similarly different fault states [73].

In the general case, the threshold approach is defined as specifying the
threshold ] ;.0 Where variable refers to the observation or system variable
and 7 is a threshold identifier on the particular variable for multiple thresholds.

Diagnosis of congestion level fault and parametrization

Applying a threshold based state discrimination approach in the studied sce-
nario the congestion fault is considered as an example. Thus, we define a single
threshold on the RTT observation variable olRTT. A diagnosis trace J is subse-
quently specified:

JO _ 1 if ofTT > 4%, fault state hypothesis
0 if of'TT < ~%rp, mormal state hypothesis

Considering Figure 3.6 a threshold corresponds to defining a point on the
x-axis attempting to separate observations belonging to either of the two distri-
butions in an appropriate manner. Defining a threshold v5 4 in this setting will
clearly be non-trivial to ensure that most true fault state observations (true pos-
itives) are observed without resulting in an intolerable high amount of false fault
state observations (false positives). The trade-off options for different threshold
settings are presented in Figure 4.2 in a ROC curve [98]. The ROC curve has
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been obtained from RTT observations of a normal and fault state in 100 inde-
pendent simulation runs transferring a 10 Mbyte data file using wrrr = 0.3 s
and a sample made every T =~ 0.4 s.

Clearly, the threshold based approach is better than a random guess. How-
ever, the diagnosis approach is also far from the perfect case, which would be
FP=0 and TP=1. Thus, the common challenge is to select a good threshold
value that can offer the required diagnosis trade-off between false alarm rate
(FP) and mean reaction time (depending on TP) [15][73]. In this work two

ROC plot for the Basic Threshold Approach
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True positives
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Figure 4.2: ROC curve showing the trade-off between false positives (leading to false
alarms) and true positives.

main approaches for defining thresholds settings are applied:

Fixed empiric setting - A set of empiric thresholds is selected based on the
ROC curve to represent different interesting trade-off settings. The em-
piric settings will help to assess how a given diagnosis imperfection per-
formance set (i.e. considering reaction time versus false alarms) may be
mitigated in the decision process. This aspect is discussed further in Chap-
ter 7. A set of specific settings studied in this work are depicted in the
ROC curve being 7% and yhr. Details on criteria for selection of these
particular settings are presented in section 7.3.

Minimum Probability of Error (MPE) - More formal approaches exist for
selecting a useful threshold. An example is the well known Bayesian detec-
tor (e.g. see Reference [54]), which enables to encode a-priori information
on the fault process (if any) as well as to utilize the conditional distri-
butions P(offTT|N, = normal) and P(oFfTT|Ng = fault). A decision
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rule is used by the Bayesian detector to set the threshold defining which
state hypothesis to map an observation to. The minimum probability of
error (MPE) decision rule is an example of a rule, which equally tries to
minimize false positives as well as false negatives. While this approach
optimizes for maximum state estimation accuracy it does not necessar-
ily offer best end-user service performance. The accuracy metric may,
however, be useful to evaluate diagnosis approaches when no immediate
diagnosis context exists (e.g. end-user service requirements) that would
give reason to weigh false positives different from false negatives. An ex-
ample of a threshold obtained by the MPE decision rule (assuming equal
prior probabilities on normal and fault states) is depicted in the ROC
curve. While the true positives are increased dramatically so are the false
positives.

A final relevant parametrization approach could be to reverse the fixed em-
piric setting analysis by identifying the best diagnosis setting given a certain
decision strategy. This approach is in Chapter 7 studied for the more complex
a-count diagnosis heuristic, which is introduced later in this chapter.

A basic threshold approach may provide useful diagnosis performance at a
low implementation complexity. It may, however, be sensitive to even small
changes when network conditions change [73]. Also, threshold approaches may
have difficulties dealing with unreliabilities such as missing or ambiguous ob-
servations (due to multiple potential network fault affecting the observation
variable). In the following sections it is considered how robustness to net-
work changes and observation imperfections may be dealt with in a probabilistic
framework correlating multiple observation variables .

4.4 Bayesian Network Approach

An approach to overcome unreliable observations and provide robustness to
changes is to use and correlate several observations across multiple protocol
stack layers. This is, however, not trivial as more observations can lead to
contradicting observations and increased ambiguity. To target these challenges
we perform a study of using a Bayesian Network (BN) for diagnosis. A BN
offers a formal approach of formulating the diagnosis problem by encoding:
1) the basic fault models, 2) a set of cross-layer observations, and 3) system
properties such as the impact of faults on TCP/SCTP behavior and further on
observations.

The BN inherently enables the inclusion of multiple faults in the diagnosis
model. Thus, in the presented and studied model both the congestion and
contention faults are considered.

4.4.1 Background on Bayesian Networks

A Bayesian Network is a graphical model that relates stochastic variables of
a domain by their causal relations. Formally, a BN N = (G, P) counsists of
two basic entities [81]: a directed acyclic graph (DAG) G = (X, E) where X
is a set of nodes X = {Xi,...,X,} and F is a set of edges connecting the
nodes. P is a set of conditional probability distributions (CPD). Each node
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X, represents a variable with a finite set of states and each edge represents a
causal relation between two variables. One strength of BNs is that independence
between variables can be utilized meaning that only a part of the conditional
probabilities present in P(X) needs to be specified in P. This makes it practical
to construct and parametrize such models. Most importantly, BNs also make
inference in P(X) computationally feasible for large models [133]. More on the
background of BNs may be found in [81].

Developing a BN for fault-diagnosis is a three-step process: (1) obtaining
domain knowledge, (2) developing a BN structure and (3) obtaining probabilities.
This process is described briefly in the following part of the section for a BN
considering the previously introduced two-fault scenario.

4.4.2 Diagnosis Model

To construct the BN structure G, variables and their causal relations are mapped
from the fault diagnosis scenario to a graphical representation. To provide
information on the two faults all of the observation variables introduced earlier
are included in the more. These are RTT for congestion, FRR for contention
and PRR, which can ambiguously represent information on both faults.

It is a condition that the graph representing the BN is a Directed Acyclic
Graph (DAG). In practice this means that the BN cannot model dynamic ef-
fects such as the strong influence of TCP congestion control on the faults and
observation variables. The consequence is that different effects are difficult to
capture in the model. An example is delay between observation variables. It
takes time before an increase in FRR leads to increased PRR. Also, throughput
could be a useful observation variable. However, there will also be a time delay
from a fault manifests itself in the observation variables RTT, PRR and FRR
before the throughput is strongly affected by TCP transmission control. Thus,
this observation variable cannot easily be included. Details on these consider-
ations for developing a functional BN model can be found in Appendix D and
more details are given in references [104] and [102].
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Figure 4.3: Basic Bayesian Network model for diagnosis of congestion level and
contention faults. *Fault states.

An overview of the final BN for the studied problem is presented in Figure
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4.3. In the upper part are the nodes that define the system under diagnosis in-
cluding its normal and fault states. An intermediate node represents the packet
loss level while observation nodes are located in the lower layer. Starting from
the system component nodes, two directed edges point to the packet loss node,
which they clearly both affect. In addition, the state of the infrastructure in-
dependently affects the Round-Trip Time while the wireless link independently
affect the FRR. As an example, independence is assumed between the Infras-
tructure variable and the FRR observation. Under this interpretation, a change
of the infrastructure variable in the infrastructure networks should not have
a significant effect on the ratio of frame retransmissions. As the infrastructure
fault does not directly affect the wireless conditions this seems to be a reasonable
assumption.

As no knowledge of features in observations are known in advance, simple
state spaces have been defined. The RTT is represented by a set of equally
spaced intervals representing the thresholds between discrete states. The FRR is
defined by high and low which are divided by a single threshold. PRR is defined
by high, medium and low. Compared to FRR (which is only depending on
wireless link conditions) the introduction of an additional state enables different
expressions of when a single or two faults have occurred. Finally, the states of
the packet loss variable are high and low.

4.5 Comparison of Threshold and BN Approach

The BN diagnosis performance has been evaluated in a simulation study where
its performance is illustrated in relation to the basic threshold based state es-
timator approach. Note, for the threshold based approach observations and
network state variables are mapped one-to-one. I.e. the RTT observation is
mapped to Infrastructure and the FRR is mapped to Wireless Link while no
threshold on PRR is considered. The general MPE rule has been used to select
Optimal Thresholds (OT) being yMIF and vMEE. In comparison to the BN,
the OT approach requires less effort to model and parametrize.

Network A of the previously introduced simulation model is used with the
parameters summarized in Table 4.1. Notice, as these parameters have been
defined in a study independent of the parameters in Section 3.3 there is some
deviation between the two. However, they have been created on the same back-
ground on fault definitions (method to create fault states, impact of fault states
on throughput, etc.). Thus, the conclusions of this section are expected to
generally apply to the studied scenario.

Based on the simulation setup the conditional probability tables of the pro-
posed BN have been learned from network data where the true network states are
known. Details on learning and actual parameters can be found in Appendix D.
It must here be noted that the state-spaces of the individual observation nodes
have been defined based on the optimal thresholds yMEF and vAMEF where the
latter aligns the bins of the RTT observation variable. Using these thresholds
is done to pursuit good observations for the BN and ensure comparability with
the OT approach. As the OT approach does not specify a threshold for PRR,
for consistency, optimal thresholds based on the MPE decision rule have been
applied for vMIE as well.

The diagnosis capabilities of the BN and basic threshold based approaches
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’ Link Name \ Bandwidth \ Delay ‘
Wireless Access 10 Mbit/s 1ms
Radio Access 10 Mbit/s 5ms
Congestion Link 5 Mbit/s 20ms
Service Provisioning Infrastructure 10 Mbit/s 5ms
Cross-traffic Links 10 Mbit/s 5ms
State Definitions

State )\ch PctA

Normal 18 conn./s 1%

Fault 47 conn. /s 4%

Table 4.1: Simulation parameters for the Bayesian Network and the basic threshold
comparison study.

are directly determined by how efficiently they can estimate the state of the
network. A measure of timeliness is obtained by the mean reaction time and
correctness of state estimation capabilities by mean state estimation accuracy.
Finally, a mean false alarm count defines how many false alarms occur in a
simulation run on average.

Assuming an application would define a requirement that faults must be
diagnosable within few hundreds of milliseconds a diagnosis sample period of
T = 0.1s has been chosen. In addition, the window size wprr = 300ms is
set. Also choosing wrrr = wprr = 300ms helps keeping reaction time low
while ensuring some correlation between frame losses and packet losses where
the latter is delayed due to TCP detection latency (by timeout or duplicate
acknowledgments).

In the following paragraphs, a summary of the results obtained by compar-
ing the basic threshold based approach and the BN is presented. Focus is on the
diagnosis performance and the robustness to changes in the system environment
when model parameters are maintained. For reasons of brevity only contended
wireless link results are presented in detail in the diagnosis performance study.
The robustness results are based solely on the diagnosis of infrastructure conges-
tion. In a scenario, a simulation run is conducted of a data transfer for a fixed
duration of 35 seconds. At 20s a fault deterministically occurrence. With a
warmup period of 5 s this means that diagnosis time in normal and fault state is
equally distributed. This approach is useful to obtain a diagnosis accuracy met-
ric that is well balanced between fault and normal state diagnosis capabilities.
Altogether, 30 independent simulation runs are made.

4.5.1 Diagnosis Performance

Both the BN and the OT approaches have been evaluated using the same set
of observations provided by observation pre-processing. The Wireless Link di-
agnosis performance results are listed in Table 4.2. Conveniently, the reaction
time results for both approaches are approximately the same given the selected
observation window sizes. This allows a fair comparison on the remaining met-
rics. As seen from accuracy the BN, overall, leads to a better state estimation
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Reaction T. [ms] | Accuracy [%] | False Alarms #
OT 323 (£83) 73 (£1.4) 6.7 (£0.8)
BN 323 (£30) 77 (£0.7) 7.8 (£0.3)

Table 4.2: Performance results for Wireless Link diagnosis (Ci=95%).

than the single threshold based approach. The cost, however, is a higher mean
amount of false alarms in the simulation runs.

To provide insights into these differences, cases have been identified from
all simulation runs of the contended wireless link results where the BN and the
OP make different state estimates. The results are shown in Figure 4.4 ordered
by evidence vectors. An evidence vector consists of the set of observations at
a discrete time step. The integer defines the state of the observation where
FRR = 0 corresponds to low frame retransmission rate, PRR = 2 corresponds
to high retransmission rate and finally the value of RTT the given RTT-state
(see Table D.2) with ’-1’ corresponding to a missing observation.

From the figure it can be seen that the FRR = 0 (low retransmission rate),
which leads the OT approach to diagnose a normal state. From the additional
information (low RTT, high level of packet retransmissions) this leads the BN to
diagnose a fault state. In a significant amount of these cases the BN clearly pro-
vides the better state estimate. Altogether, these results explain the increased
wireless link state estimation accuracy in Table 4.2. It is, however, also clear
that these evidence vectors do not occur very often, only 6.3% in total (568 out
of 9012 cases), as it is the occurrence probability of these vectors that deter-
mines the improvement of the BN over the OT. For the congested infrastructure
scenario (not depicted) only 1.8% of cases between the OT and BN differ, as
the RT'T observation alone is a strong observation for the congestion level.

BN:[WL=Contend.] vs. OT:[WL=Norm.]

300 .
[ IBN true
Il BN false

N
o
o

o

No. of diagnoses
=
o
(=]

100

[-1,2,0] [3,2,0] [2,2,0]
Evidence vector [RTT,PRR,FRR]

Figure 4.4: Occurrences of observations that lead to contradicting wireless link state
diagnoses.

The contradicting cases show that the constructed BN based on its structure
and learned probabilities is capable of using additional observation to improve
diagnosis performance.
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Acc. |%] (before) | Acc. [%] (after) | FP Prob. (after)
OT 87 (£1.6) 49 (£0.35) 1 (£0.00)
BN 86 (£0.6) 52 (£0.004) 0.95 (£0.01)

Table 4.3: Robustness results for diagnosis of infrastructure congestion before and
after a mean increase of 4.3ms in the RTT observation variable (Ci=95%).

4.5.2 Robustness to Changes

As discussed previously, networks are highly dynamic and changes may occur
from route changes in the end-to-end path, changes of traffic levels etc. Assess-
ing the robustness properties of the two diagnostic approaches has been realized
by changing the network delay without re-parameterizing the BN or the OT ap-
proaches. The impact has been assessed on infrastructure congestion diagnosis.
In the presented example the delay has been increased by 4.3 ms in relation to
an original mean RTT around 80ms. 4.3ms is the bin size of the discretized
RTT vector meaning that observations are shifted by a single state.

Results are presented in Table 4.3. From the table it is seen how the accuracy
degrades significantly from before the change. The probability of false positives
shows that for the delay increase OT estimates ’Infrastructure=Congested’ con-
stantly. The BN is also strongly effected, yet, it remains capable of diagnosing
some normal states. This illustrates how the BN can be more robust than the
OT to network changes, due to the use of additional observations. However,
as the BN is also strongly sensitive to RTT observations its performance good
performance is not maintained.

Finally, the BN differs from the OT in one other important property; it can
utilize prior belief and additional observations to make a diagnosis even when
observations in the evidence are missing. The OT, only using one observation,
cannot provide an estimate without an observation sample. Potentially, the
previous diagnosis could be used again or the normal state could be selected
by default. In this work no assumptions have been made on what would be
the best approach, as this may be dependent on the cost of making a wrong
diagnosis. Consequently, cases where the OT does not lead to an estimate
have simply not been included in the statistics of tables 4.2 and 4.3. This may
be disadvantageous to the BN in terms of accuracy and FA. In our results,
nonetheless, the BN performance benefits from the property. This has been
observed in both performance scenarios. The BN infers infrastructure congestion
correctly in 130 out of 150 cases without an RTT observation, and contended
wireless link in 6 out of 7 cases without an FRR observation.

4.5.3 Summary on Memory-less Diagnosis Mechanisms

Up until this point, two diagnosis mechanism approaches have been introduced.
i) A basic threshold approach, which enables to perform basic state estimation
based on a single observation variable, and ii) a more complex approach using
a Bayesian Network. In an example design, results of the Bayesian Network
approach have been established. Compared to the basic threshold approach the
BN offers better accuracy, larger robustness to network changes and, finally, an
option to handle missing observations. The cost is an increased complexity to
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develop and maintain a model and increased resource requirements to solve it.
The presented model has been evaluated using exact solution methods with an
average inference time of 0.5 ms (on a 1 GHz class PC running Linux). How-
ever, in a complete setting with multiple fault scenarios and potentially more
observation variables the complexity may increase drastically. Solutions are to
use inexact inference methods and letting the decision component control the
needed solution accuracy and/or distribute the diagnostic task among multiple
end-nodes. The latter approach has been studied in the work of reference [125]
as a viable option.

While the BN based approaches may have good state estimation properties
and properties to handle observation unreliabilities, in the following chapters
focus will be on how to handle diagnosis imperfections. Thus, when applicable,
results from the basic threshold based approach will be used as it is simpler to
parametrize and implement.

As mentioned in the introduction of this chapter, the diagnosis mechanisms
of the threshold and BN have the common trade of not including memory. In
this sense the diagnosis components do not correlate observations and knowledge
over time. In the following section diagnosis components studied in this work
with memory and observation correlation properties are presented.

4.6 Temporal Diagnosis Mechanisms

Including memory in a diagnosis component to enable correlation of knowledge
from past observations with latest observations can be a viable approach to
track an overall trend of an observation and filter out transient changes. The
potential advantage is to obtain good state estimation properties at the cost
of an increased response time to changes, which negatively affects the reaction
time metric. This again relates to the usual trade-off between false alarms and
reaction time, however, there are some differences in how the diagnosis behav-
ior is characterized and its potential to improve diagnosis metrics overall. To
study this type of diagnosis mechanism, in this section two temporal diagnosis
approaches are introduced: A heuristic known as a-count [25] and an approach
based on the Hidden Markov Model formalism.

4.6.1 Heuristic: a-count

The initial diagnosis approach introduced is a heuristic based on the work of
Bondavalli et al. [25] named a-count. The general motivation of studying
this heuristic is that it is simple in its operation and has little computational
complexity. In this respect, the a-count heuristic may be compared to the
simple threshold based approach of Section 4.3 with the difference that a-count
has memory and temporal correlation of observations. In the following, the a-
count heuristic is introduced and compared to the threshold approach in terms
of diagnosis properties.

In the original work of reference [25] and further studies in reference [39] the
a-count mechanism is introduced as a mean to determine the nature of a fault,
i.e. whether it is transient, intermittent or permanent. The mechanism belongs
to a scheme of count-and-threshold where fault indication events are counted
(for a given time period) and a threshold on the count is used to determine
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if the fault may be considered as tolerable (transient) or permanent and if an
action is required. This principle is directly translatable into the basic diagnosis
issue of discriminating a fault state from a normal state based on an observation
mechanism. As the a-count mechanism assumes that such observations can only
be '1’: an alarm event or ’0’: no alarm event, the basic threshold approach is in
this work defined as this observation mechanism. Now, assuming an observation
process J() consisting of normal (0) and fault (1) state estimates at discrete time
[. The a-count is specified as follows:

a® =0

0 =Y.k ifJW =0 (0<k<1),
o =
=N 41 if JO =1

w — {1 if o) > ar,
0 ifa® <ap
where k£ can be defined as a forgetting factor, ap the a-count threshold, and
M® is the output diagnosis trace. In this manner, the a-count heuristic only
requires a single memory variable. This can clearly be useful in very basic
hardware configurations as given in sensor nodes where potentially multiple
diagnostic functions are implemented.

Diagnosis of congestion level fault compared to basic threshold

The a-count heuristic has been evaluated on the congestion fault scenario using
parameters introduced in Section 3.3. It is studied how it compares to the basic
threshold approach when considering the transient diagnosis behavior.

When addressing transient behavior in the diagnosis process, focus is on how
the diagnosis process reacts to system changes in terms of its performance over
time. This behavior is primarily influenced by two aspects: i) the functions
of the diagnosis component itself, and ii) how a system change (e.g. network
fault occurrence) in time is propagated through system components to, finally,
manifest itself in observations. In relation to the latter a given observation
may on a timely basis become stronger or weaker in indicating that a fault has
occurred. When considering the diagnosis component the transient effects are
given by changes in the accuracy of the state estimate as more observations are
collected over time.

Figure 4.5 depicts example diagnosis characteristics over time for three dif-
ferent diagnosis traces. They show mean normal state diagnosis probabilities
(period T = 0.4 s) obtained from 2000 independent simulations of a normal to
fault state transition at ¢ = 30s. These have been obtained from: i) a basic
threshold on RTT observations, ii) a model based representation of the threshold
approach ensuring independent diagnosis outcomes, and finally iii) an a-count
filtering where the observation process J® is the output of ii).

Considering, initially the (memory-less) basic threshold approach on the
RTT observation it is seen that within around 1 — 1.5 s after the fault occur-
rence the estimation output transitions to a level near its steady state behavior.
Following, is a 5 — 6 s period before it finally settles at steady state. This tran-
sient effect is mainly attributed to dynamic interactions between the end-user
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Figure 4.5: Impact of a fault occurrence on diagnosis estimates.

service data transfer and the increased amount of cross-traffic when the fault oc-
curs. The model based representation of the RTT threshold approach has been
obtained by parameterizing a Bernoulli process for each of the states (parame-
ters pry and prp). The diagnosis traces have been generated from stochastic
simulations of this model. This model representation is useful as it allows a
full characterization of the diagnosis component by the tuple: (True Negative

Ratio (TNR), True Positive Ratio (TPR)) where pry = TNR = %
and prp = TPR = %. This can be beneficial to ensure a simple

diagnosis model representation and parametrization approach when consider-
ing decision models. However, as evident from the figure, this also implies the
assumption that the transient effects of the threshold based approach on the
RTT observation variable can be considered insignificant. The impact of these
approximations are discussed further in Chapter 7.

Finally, the a-count results have been obtained using the model based traces
as an input to only consider the transient effects added by the diagnosis compo-
nent itself. The selected a-count parametrization represents an example where a
significant improvement in the state estimation capabilities are observed. From
these traces important observations can be made regarding the temporal a-count
diagnosis component. Compared to the threshold model results, in the normal
state the state-estimation accuracy is improved (close to 1). This means that
the amount of false alarms can be significantly reduced. In the fault state the
estimation accuracy increases dramatically from a ratio of 0.1 to nearly 0.45 in
the steady state. However, there is a significant transient phase for the a-count,
which can negatively affect the reaction time. These results also show that
characterizing the a-count performance by the parameters TNR/TPR under an
independence assumption (as in case of the basic threshold) is not possible as
they strongly depend on time and cannot in a simple manner be derived from
traces of a diagnosis component.

Seen from the holistic perspective of the diagnosis-decision interaction in
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the ODDR framework, the trade-off options provided by the temporal model
approaches are interesting. Remediation decision strategies may be studied
that wait for diagnosis to get better before reacting if remediation on a false
alarm is costly and the end-user service is not in a critical stage. Identifying
good settings for the parameters of the a-count mechanism, and in this setup
the basic threshold, is however not straight forward. To assess the potentially
improved diagnostic properties of the temporal model approaches the a-count
heuristic is revisited in Section 7.4 where a specific service reliability model is
used to identify the setting of the diagnosis component that will offer the best
trade-off of e.g. reaction time and false alarms. The problem of representing
the transient characteristics of temporal diagnosis mechanisms in the decision
model is also addressed.

4.6.2 Hidden Markov Models

In this section a short introduction to a more complex diagnosis formalism is
provided; namely, the Hidden Markov Model (HMM). Like the previously stud-
ied BN, the HMM encodes some system structure, which provides a formalized
and straight forward approach of formulating the diagnosis problem. In addi-
tion, it has been shown to enable good diagnosis accuracy [39]. In existing work
an HMM for diagnosis has been studied in different contexts. In reference [39]
the authors study the problem of diagnosing the nature of a fault (and compare
it to the a-count heuristic). The authors of [141] apply a HMM in a multi-fault
multi-component scenario whey they estimate the most probable system state
evolution (including fault states) to perform component failure diagnosis while
overcoming unreliable binary tests of the individual components. The authors
also demonstrate how learning the HMM parameters can be done on-line to
adapt to changes. The HMM formalism has been applied in the work of [93] to
classify observations of round-trip times before a packet loss to diagnose if the
cause of the loss is congestion or a wireless loss somewhere in the end-to-end
path.

For this work, the properties of the HMM approach have been studied in
the congestion diagnosis setting to inherently estimate (hidden) network system
states based on stochastic observations using the RTT observation variables.
This section is focused on the formulation of the studied HMM. In Chapter 6
the model is extended and studied in more detail with approaches to increase
its robustness to uncertainties in the observations provided from the OPP com-
ponent in the ODDR framework.

Background on HMMs

In general, a Hidden Markov Model can be described as a Markov Model (first
order, homogeneous and discrete) in the transition probability matrix A with
the state space S. For a fully specified model the size of the state space is known
as well as the state transition probabilities. However, the process is not directly
observable (hidden). It is assumed that the stochastic Markov Model process
can be observed indirectly through a stochastic process (given by the obser-
vation sequence X). Having knowledge about the conditional probabilities (in
the observation symbol probability distribution matrix B) of observing certain
observations given states in S, the HMM can be used to derive an estimate of
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’ Symbol \ Description ‘
I,1<I<L) Discrete time step [ up to L.

X ={x1,x9,...,21} | Error free observation sequence.
S ={s1,82,...,8n} | State space of HMM.

N The number of states in the HMM.
Q={q1,92,.-,q.} | State of the HMM at time .
A = Hay}, The hidden process Markov Model transition proba-
(1<i,7<N) bility matrix.

= {v1, v, ...,vpr} | Discrete symbol alphabet describing the possible val-
ues of observations in X.

M Number of symbols in V.
B = (bj(k))jk, The distribution of symbols in V in state j.
( <k g M
= Plq1 = s4] Initial state distribution.

Table 4.4: Summary of important symbol definitions for the HMM approach.

the hidden Markov Model state sequence given a sequence of observations. See
[115] for an elaborate description of the HMM formalism. In order to design
the HMM it is necessary to specify the model A(A, B, 7), where 7 is the initial
state distribution. Table 4.4 provides an overview of the HMM symbols and
their definitions as used in the remaining part of this work.

Using the HMM for diagnosis of the congestion level fault

To clarify how the HMM may be used for diagnosis in the studied setting an
initial instantiation is made based on the atomic diagnosis model in Section 4.1
and RTT observation distributions of Figure 3.6. In a real network diagnosis
context the HMM model structure and parameters may be learned [119]. This is
a useful property for the studied use case but out of the scope of this work to be
considered. In the following paragraphs the steps to define the HMM diagnosis
approach are highlighted.

Hidden Markov Model - (4)
For the case study a simple two-state system model is assumed describing a
normal and fault state (congested). The state holding time for a network
state is assumed to be geometrically distributed following an ON-OFF
process. Thus, the HMM is defined as:

L—pf  py
A= : : 4.2

< Ppr 1—pr (42)
where py is the fault occurrence probability and p, is the fault repair

probability.

Observation Distributions - (B)
The conditional observation symbol probability distributions are defined
as:

bi(k) = Plogla = 57), 1<j<N, 1<k<M (4.3)
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Figure 4.6: Hidden Markov Model summary.

where B = {b;(k)}, ¢ is the current state at discrete time step ! and
V = {v1,vq,...,upr} defines a discrete observation symbol alphabet. Con-
sidering b; as a discrete distribution, rather than a continuous, enables to
represent an arbitrary distribution of the networking delays without re-
quiring distribution fitting.

For this realization of a HMM for diagnosis a basic discretization approach
is applied where equally sized bins are defined to describe {vy ..., vpr—1}
in the range from bin!°**" = min(x;) [ms] to bin“PP" [ms]. Note, as
RTT delay distribution tails are long (describing rare events) as seen from
Figure 3.6, good tail representations may require an impractically large
dataset. Thus, for parameterizing the model the symbol v,; represents an
accumulated probability of the upper tail of the delay distribution in the
interval: [bin"PP" +oo] [ms]. For this study the initial parameters M =
16 and bin“PP¢" = 80 ms have experimentally been found to provide useful
results, however, these parameters are expectedly not highly sensitive.
Finally, the symbol v is introduced to represent missing observations.

Initial State Distribution - ()

For the conducted studies it is assumed that the network state process
always starts in a normal state (7 = [1 0]), thus, ¢1 = Snormai-

A graphical representation of the diagnosis HMM model is presented in Fig-

ure 4.6 representing the system state ON-OFF process and the distributions
of the emitted observation symbols for each of the two states using the state
definitions of Figure 3.6. Applying this HMM based diagnosis mechanism in
online state estimation is realized by applying the forward algorithm (details
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may be found in [115]), which produce the a posteriori marginal distribution
[119], () = Plg; = s;|X]. To provide a final state estimate a threshold 7yqut
is introduced on B(fault):

0 if ﬂ(fau”) < Yfault (44)

. _ {1 if ﬁ(fault) > Yfaults

Sfault =
This threshold allows to control the diagnosis trade-off for the HMM approach
similar to yrpr for the basic threshold approach or (arp,k) for the a-count
heuristic. To visualize the HMM output and 74.:¢ an example trace is depicted
in Figure 4.7 for 3(fault) using X = OFTT where wrrr = 0.3 s and system
parameters of Table 4.5. Ay and A, are the fault and repair rates controlling
the exponential state holding times of a given ON-OFF network state process.
Later in Chapter 7 end-user service usage durations (data transfer time) of 20-60
seconds will be considered. In this relation, the defined rates have been chosen
to define a network state process where faults occur and are repaired frequently.
For consistency, these rates are also considered in this example along with the
diagnosis period T~ 0.4 s also applied in Chapter 7.

Hidden Markov Model Output and True Network State
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Figure 4.7: An ezample HMM trace of B(fault) of congestion level diagnosis based
on RTT observations.

The example trace shows how the fault state probability S(fault) overall
follows the actual network state process. It is also seen that there is some fluc-
tuation in the state estimate that can lead to false alarms. A direct performance
comparison to the threshold approach has not been performed for the HMM.
However, in chapter 6 details of the diagnosis performance of the HMM based
diagnosis component are analyzed for error free observations and observations
with observation uncertainty due to measurement error.

Parameter(s) Value(s)

P[Ql = Snormal] 1

T 0.398 s
Frequent Fault Event (short repair time)

1/A;, 1/A, 12.425, 15 s

SS probability: normal, fault 0.453, 0.547

Table 4.5: Summary of parameters used in the HMM diagnosis example.
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Finally, it must be emphasized that the derivation of () is based on a
recursive function providing an accumulation of () based on most recent ob-
servations and their likelihood of belonging to one hidden state over another.
Consequently, the HMM approach is similar to the a-count byonly requiring a
single memory variable to represent past progress. The use of memory, however,
makes it belong to the temporal class of diagnosis components as defined in this
chapter. More details can be found in [115].

4.6.3 Summary on Temporal Diagnosis Mechanisms

In this section two diagnosis mechanisms have been introduced and specified to
be used for diagnosing congestion level states in the studied scenario. The a-
count heuristic represents a simple count-and-threshold mechanism. It requires
little effort to implement, but may not be straight forward to parametrize to
a particular scenario. A Hidden Markov Model approach partially addresses
this problem by adding model structure and knowledge about a given scenario.
The cost is increased complexity to specify it and increased implementation
effort compared to a-count. As a common element, these mechanisms incorpo-
rate memory to correlate past knowledge to the most recent observation. This
promises to increase state diagnosis accuracy compared to what can be achieved
by the compared memory-less basic threshold. A cost is, though, likely to be
paid by an increased reaction time as more observation samples must be col-
lected to achieve a good state estimate.

The introduction of memory in the diagnosis component can lead to signif-
icant time-dependent performance characteristics making it difficult to charac-
terize the diagnosis performance by a simple TPR, TNR tuple. This will have an
impact when trying to capture the imperfect diagnosis performance in a model
used to determine best decision policies or best diagnosis settings given a spe-
cific reliability problem. This topic is studied in Chapter 7. Finally, it should
be noted that same time dependent diagnosis behavior could exist in a setting
including memory-less diagnosis approaches. This could occur in cases where
observations used for diagnosis change properties over time. However, in this
work it is assumed that the basic threshold approach, without memory, on RTT
observations may be approximated by a Bernoulli process ensuring independent
diagnosis outcomes and a time invariant diagnosis performance.

4.7 Conclusion

In this chapter the overall challenges of diagnosis in distributed networking sys-
tems have been introduced focusing on unreliable observations and the resulting
diagnosis imperfections. As a background for the thesis a set of diagnosis mech-
anisms/approaches have been introduced representing Memory-less approaches
based on a single-shot view of observations in time and Temporal approaches
where observations are correlated over time to provide potentially better diag-
nosis characteristics.

In the following a brief summary of the introduced diagnosis mechanisms is
provided emphasizing their basic properties and why they are considered in this
work.
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Basic threshold

Implementation, parametrization and computational complexity

Very low implementation and computational complexity makes basic
thresholds a widespread approach for simple fault diagnosis (and detec-
tion) [134].

Provided that historical data is available about a given observation variable
in an invariant system a full characterization of the trade-off options of
different threshold settings can be obtained in a ROC curve. The always
existing challenge is, thus, for the system designer to determine the tolerable
amount of false alarms in relation to the reaction time.

Ezxpected diagnosis capabilities and imperfections

Not including any knowledge from past observations or the system struc-
ture a basic threshold approach is considered to be the most sensitive to
unreliable observations of the three studied approaches. Both the BN and
a-count have been demonstrated to provide improved state estimation ac-
curacy in this chapter.

The basic threshold approach is used in this work as: 1) it is simple to
implement and configure, 2) it may (under the limitations of the studied
scenario) be represented by a simple Bernoulli model, and 3) it offers the
basic trade-off options of diagnosis imperfections relevant to study different
decision strategies in Chapter 7.

Bayesian Network

Implementation, parametrization and computational complexity

Of the diagnosis mechanisms studied, the BN approach represents the high-
est complexity of implementation, parametrization and computational com-
plexity. Significant efforts are required to specify the models being system
variable dependencies, conditional and a-priori probabilities. Some of these
complexities can, however, be mitigated by well established learning mech-
anisms e.g. for online adaptation [72]. BNs generally impose a high com-
putational complexity, which in worst case is exponential. This issue can
partially be mitigated by approximate [124] and distributed solution ap-
proaches [125].

Ezxpected diagnosis capabilities and imperfections

As shown in this chapter the BN can inherently correlate information
from multiple observations to improve diagnosis accuracy and robustness to
changes in the system. This makes the BN approach a highly relevant can-
didate for the diagnosis component to increase its tolerance to observation
imperfections.

Due to the inherent capabilities of performing diagnosis under uncertain-
ties the BN is an interesting candidate for the diagnosis component when
computational resources are available. Thus, it has been included in this
analysis. As the primary focus of this work, however, is not to obtain the
best possible diagnosis capabilities the BN is not analyzed further in the
subsequent chapters.
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a-count

Implementation, parametrization and computational complexity
The a-count heuristic represents a low implementation and computational
complexity.
In terms of parametrization it, however, has two parameters (three if in-
cluding the threshold as in the studied implementation of this work), which
are difficult to map directly to the system properties.

Ezxpected diagnosis capabilities and imperfections
As shown in this chapter, introducing memory has the potential to strongly
improve the state estimation accuracy with few means in comparison to
the basic threshold. This makes the a-count heuristic relevant to consider
in this work as a representative for temporal diagnosis approaches which
is also simple to implement. The problem of parameterizing a-count to
obtain good diagnosis performance, is studied in Chapter 7.

Hidden Markov Model

Implementation, parametrization and computational complexity

Given that realistic fault models exist that are or can easily be represented
as a Markov chain (as the case in this work) the HMM formalism provides a
straight forward approach of formulating a diagnosis model and using it to
infer the most likely system state. As for any of the diagnosis mechanisms
a challenge is to obtain expected observation statistics for a given state. As
in the case of BNs also for HMMs well defined approaches exist for online
adaptation [142].

Disregarding more advanced mechanisms for online adaptation the imple-
mentation complexity of the iterative forward algorithm is moderate. The
same accounts for the computational complexity, which is quadratic on the
amount of model states.

Ezxpected diagnosis capabilities and imperfections

Similar to the BN, the HMM model imposes some system structure, which
in terms of diagnosis performance gives it a principal advantage over e.g.
a—count. This aspect has, however, not been evaluated in this work.

The structure of the HMM approach and hence, direct mapping to the
diagnosis problem makes it a useful candidate mechanism for the study
in Chapter 6. It will explore options of improving diagnosis robustness to
quantified observation uncertainties.

Future work

An promising future work item is to study the dynamic variant of BNs called a
Dynamic Bayesian Network (DBN) [101]. It enables to model system dynamics
such e.g. as TCP congestion control and may, thus, lead to better diagnosis
performance. A significant complexity increase is expected. In this setting, it
will be highly interesting to study if the interplay between diagnosis and the
decision component can help mitigate the impact of the increased complexity.
The outlook is to apply partial and approximate solution methods for the DBN.
It can enable the decision component to request the needed level of diagnosis
accuracy and separation of different fault hypothesis given available remediation
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options and costs of making a bad decision.



Chapter 5

End-User Service Model

In this chapter a model of the time constrained reliable data transfer end-user
service is introduced. The introduction of the model will provide background
information on the end-user service functionality. More importantly, a central
outcome is an end-user service model which can be integrated into the predic-
tion model of the Decision Component for reliability analysis under unreliable
observations and imperfect diagnosis. Initially, a background is provided on the
assumptions of the prediction model. This background is shared by the mod-
elling approach of the end-user service. Next, the model of the time constrained
reliable data transfer end-user service is developed and finally, intermediate re-
sults on its performance are discussed.

5.1 Prediction Model Background

The Decision Component is the main control component of the ODDR. It inter-
prets end-user service requirements from the application layer and transforms
these into a series of decisions. The primary objective is to ensure high service
reliability and secondarily attempt to minimize overhead from observations or
unnecessary remediation actions. Which decisions to employ, in which order and
when is not a trivial task to perform. A good decision depends amongst others
on: the past and predicted development of the end-user service, observed and
expected properties of remediation options, consequences of initiating a certain
remediation action and the performance properties of the imperfect diagnosis
component. Defining good heuristics to drive the decision process may be diffi-
cult due to the complex interactions between these aspects. In this work, it is
studied how such good decisions may be derived from a model. This model is
referred to as the prediction model. Its role is to predict the end-user service
reliability given certain decision policies. Thus, it can be used to evaluate and
identify best decision policies to apply.

The prediction model relies on a model representation of the end-user ser-
vice to take certain reliability metrics into account given the end-user service
requirements. In a prediction model this end-user service model is envisioned
to be interchangeable to different end-user service types. In this thesis, how-
ever, focus is on a service model of the time constrained reliable data transfer
end-user service. General prediction model parts concerning functions such as

78



5.2. RELIABLE DATA TRANSFER MODEL 79

networks, fail-over and in particular diagnosis are presented in Chapter 7 and
joined with the end-user service model. The resulting prediction model instance
is in the remainder of this work referred to as the Policy Evaluation Discrete
Time Markov Chain (PE DTMC) model.

General modelling considerations

In the context of the ODDR certain properties of the prediction model are de-
sirable. Initially, the model must posses sufficient qualitative behavior. For the
optimization of reliability parameters it is not always necessary for the model
to be highly quantitatively accurate. More importantly, the model must be
able to capture important system behavior that affects studied reliability met-
rics. Furthermore, it must provide sufficient qualitative behavior in comparisons
between different policies to identify the most suitable. Good qualitative be-
havior is clearly a weaker requirement than good quantitative behavior. The
advantage of accepting some quantitative inaccuracies is, however, to allow a
potentially simpler model complexity. This supports another desirable property
of a lightweight model. This property is particularly important in the online and
dynamic setting of the end-node. If some parameters of the model change such
as end-user service requirements, fault instance properties or diagnosis prop-
erties the policy evaluation could need to be re-invoked. In such cases simple
lightweight prediction models are considered important in the ODDR context.
In the modelling work of this thesis the primary aim is, however, to define initial
models and provide insights into the imperfect diagnosis and reliability relations.
In practice, this means that simple model constructs are pursued. However, the
approach on how to solve the models fast and accurately in potentially low
computational power devices is not addressed in details. Besides further model
optimizations, viable approaches may be partial solutions, storage of existing
solutions and sharing solutions in a distributed scenario of end-nodes. These
challenges are left for future work.

A final aspect of the prediction model properties to consider is the ability
to provide adaptation. A prediction model may need to change regularly due
to for instance new parameters, newly appeared or disappeared access networks
and different end-user service models. This adaptation requires model flexibility
where parts of the model may be re-used, changes and extended. In this chapter
the model parts are presented as such and options for adaptation and extension
of the models presented here are discussed in Chapter 8.

5.2 Reliable Data Transfer Model

In this section the basic reliable data transfer end-user service model is defined
with a starting point in TCP/SCTP modelling. To start out, two modelling
approaches of different complexity to construct and maintain in the PE DTMC
are proposed. Subsequently, the two approaches are parametrized and compared
resulting in an approach where both models are applicable. It must be noted,
that some presumptions are made about the overall PE DTMC model (including
fail-over, diagnosis, etc.) at this stage. Details on the overall PE DTMC are,
however, left for Chapter 7. As a final step, the data transfer model is extended
to also include a model internal notion of time relevant for certain policies as
will be shown later in this work.
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5.2.1 End-user Service Characteristics

The studied time-constrained reliable data-transfer end-user service case has
some characteristics making it worth considering for the service reliability stud-
ies. The reliability requirement is formulated as a probability that a data-
transfer of a certain amount of data (datasi..) is transferred within a given
deadline requirement (Ygeadiine). This probability is represented by Q. In a
traditional setting the QoS requirement formulation for such a service would be
the background QoS class [1] as discussed in comparison to existing hand-over
mechanisms. Formulating the requirement as a dependability requirement for
this end-user service case allows a different system view compared to maintain-
ing certain throughput, delay and jitter thresholds. The criticality level of the
end-user service can be established by monitoring data transfer state and time
to deadline. If criticality is low an option may be to wait for diagnosis to im-
prove before reacting. It may also be chosen not to react to a diagnosed fault
if a failure is not predicted to occur from it. These aspects are explored in the
following chapter through the simulation model formerly introduced. It must
be noted that the case of data upload from the end-node to the end-user service
provider is considered.

The readily defined network states of Section 3.3 will form the basis for the
modelling work in the following sections. Also, as previously, medium-sized data
transfer of datas;,. = 10 M B is assumed as the general case. From these results
an interesting setting of tgeqqiine = 30s to apply in the following studies may
also be defined. It is located between the normal and fault state distributions
enabling some margin to optimize €.

5.2.2 Modelling of SCTP Behavior

The core aspect of the model is to describe the resulting data transfer completion
time distribution for different model parameterizations and different decision
policies. Given the requirement to minimize Q (the amount of data transfers
that complete within ¢geqarine) the aim is to establish the policy that moves
most of the probability mass to or below tgeqdiine. Two Markov Chains model
approaches are established to describe the data transfer progress and finally the
data transfer completion time distribution: A) a basic discrete time Markov
chain and, B) a complex discrete time Markov chain. Being basic, approach A)
must show what can be achieved for simple model constructs with few states in
contrast to B) which attempts to decode more system functionality at the cost
of an increased state space. The models are depicted in Figure 5.1.

All models are based on a first order Markov Chain with transient states
and a single absorbing state. The transient states represent the accumulated
data transfer progress while the absorbing states represent the point at which
the last byte of the total data amount has been transferred. Each state can be
defined by the transferred data-range it represents as:

datasize . datasize
to

[...,(j—1) ,...], where j = 1..n (5.1)

n—1 n—1
where n is amount of states. Solving these models in a transient analysis enables
a distribution of the data transfer completion probability in relation to time. In
the following these data transfer models are described in detail.
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Figure 5.1: Data transfer progress models.

5.2.3 A) Basic Discrete Time Markov Chain Model

The data transfer progress may in a simple form be described as a discrete time
birth chain with an absorbing state. The model has two parameters, which
are pg: the interstate transition probability and n4 the amount of states in the
model. Considering that the inter-state transition probability is equal for all
state transitions the resulting data transfer distribution formally complies to
the Pascal distribution [118]. The model, thus, describes the distribution of the
time at which the transition from state N4 — 1 to N4 is fired. Defining S as the
random variable of the data transfer time, two relevant statistical parameters
of mean and variance of the model distribution can be obtained from:
1
Adt
Dadt Adt

1-—
Var(S) =(na — 1) 5—, where pgy = — (5.3)
Adt K

E(S) =(na — 1)— (5.2)

k is the rate of the discrete Markov chain and Ay the data part transmission
rate. For this chain, clearly, the condition exist k > A\g; and Ay is defined as:

Age

Aat = (na — UW

(5.4)
From these definitions the model is partially defined by Ag;, which is the mean
SCTP goodput (application layer throughput). In the remaining part of this
chapter the word throughput is used to represent SCTP goodput. Ag may
be obtained from existing work of TCP modelling [110] or similar modelling
methods. It must be noted that SCTP and TCP transmission control algorithms
have strong similarities. The model, however still has two free parameters: n4
and k. In practice, these two free parameters control the distribution variance
and consequently, how well the data transfer distribution is modelled. Defining
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them, is however, not straight forward as they both influence the entire PE
DTMC model. k defines the discrete rate for the entire model (including discrete
functions like diagnosis), which introduces some limitations. Further, n4 defines
the model state space, which also has an important impact on the product space
of the PE DTMC. Defining good settings for these parameters is, clearly, a
trade-off between model complexity and accuracy.

5.2.4 B) SCTP Congestion Window Based DTMC Model

A more complex version of the DTMC birth chain is the SCTP congestion win-
dow (cwnd) based model. It has the option to more accurately describe the
data transfer completion time distribution by incorporating throughput vari-
ations determined by the SCTP transmission control mechanisms. Initially, a
short summary on TCP/SCTP transmission control is presented followed by the
model description. In the following a TCP/SCTP client with data to be sent is
referred to as a source and a receiver client a sink.

Brief background on transmission control mechanisms

TCP and SCTP are both reliable layer 4 transport protocols featuring similar
transmission control mechanisms. In short, the transmission control mecha-
nisms throttle the transmission rate of the TCP/SCTP source to avoid network
congestion. The throttling process is based on the estimated congestion in the
network, which is judged by packet losses. In this respect the SCTP transmis-
sion rate and hence, the achievable throughput depends strongly on the packet
loss rate. The throttling is based on a sender window of packets (congestion
window), which is adjusted continually. The window defines how many unac-
knowledged packets the transmission control algorithm allows to be in transit.
The window size control function can be in either of two phases slow-start or
congestion avoidance:

Slow-start - The slow start phase is active in the beginning of a transfer or
during a transfer if significant packet losses are detected; usually by a
time-out on missing acknowledgments to sent packets. In the slow start
phase the congestion window is initialized to an initial window size i.e.
Wy. Every time a new acknowledgment arrives the window is increased
by one. This continues until reaching the slow start threshold Wy after
which, the congestion avoidance phase is entered.

Congestion avoidance - Entering the congestion avoidance phase the source
attempts to identify the highest possible transmission rate. The rate can
be limited by: i) a maximum allowed window size (source setting) W,aq,
ii) a packet loss under the assumption of congestion, or iii) the receiver
window. The latter is set by the sink, i.e. the end-user service provider,
if it cannot process the data in the pace it is sent, however, it is not
considered in this work. In the congestion avoidance phase the window
increase rate is reduced to 1/W; where W; refers to the current window
size when the acknowledgment to packet with sequence number ¢ has been
successfully received. In low loss scenarios the most typical packet loss
detection method is duplicate acknowledgments. In this case a receiver
keeps acknowledging the last successfully received packet (packet with
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sequence number j — 1) before the lost packet j, based on subsequent
received packets (j <). The source resends the lost packet (known as
fast re-transmission) and reacts by reducing the window size to a half.
For both the time-out and duplicate acknowledgment based packet loss
detection mechanisms, W, is halved as well. This means the point where
congestion avoidance is initiated, is reached earlier.

These are the general mechanisms of TCP/SCTP transmission control. Both
transport layer protocols exist with different variants of the transmission control
algorithm. This is especially true for TCP which exist in variants of Vegas
[28], Reno, SACK and New-Reno. The latter is most widespread in current IP
protocol stacks. The details on these will not be considered further in this work.
More specific insights on SCTP and TCP transmission control mechanism can
be found in the references [110],[45],[29][7].

Having defined the basics of transmission control mechanisms the cwnd based
DTMC model can be introduced. Its starting point is taken in the majority of
existing work on TCP transmission control modelling methods. The applied
SCTP implementation of ns-2 has been adjusted to approach the TCP SACK
variant. This must ensure a minimal divergence to SCTP from the TCP mod-
elling methods. In brief, the following changes and configurations have been
made: 1) when cwnd = Wy congestion avoidance is performed as opposed
to slow start, 2) fast retransmissions are triggered after three missing packet
reports as opposed to four which is typical in SCTP [29], and 3) SCTP specific
features of heart-beats and retransmissions on a secondary path have been dis-
abled. It should finally be noted that SCTP has been configured to only use
one link at a time to obey a strict fail-over scenario.

Principles of the cwnd-based DTMC model

In the model of Figure 5.1, states represent data transfer progress starting from
the initial state, which represents no progress (0 Bytes sent). Further, the
transitions (pwo, Pwi, Pw2, ---) represent different data transmission rates. The
actual data transmission rates depend on the state of the transmission control
mechanism and can be obtained as follows:

W, - Pdata

A = =577

(5.5)
where W is the congestion window size during a mean RTT period RT'T, Pdata
is the application layer payload in a packet and i, (1 < ¢ < R) is an identifier
for a mean window size. Both Pdata and RT'T are assumed to be constant for
a given network state. W; is clearly dynamic and the needed distribution over
A(i) can be deduced from a distribution of W;.

Distributions of W; as function of pjpss and Wi, are obtained from an
existing basic DTMC model proposed in [45] of the TCP congestion avoidance
mechanism. This model is based on the following main assumptions:

Independent packet losses - To enable a simple model, independent packet
losses with packet loss probability p;,ss are assumed. This assumption may
fit well for links where packet losses are caused by queues implementing
the Random Early Detection (RED) mechanism [53], which ensures a fair
impact of losses on different flows. In a drop-tail queue, implemented in
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the simulation setup, this assumption is compromised. Impacts of this
assumption will be discussed later.

Only model the TCP congestion avoidance phase - for low loss scenar-
i0s (pross < 5 %) a majority of time is spent in the TCP congestion avoid-
ance phase. Consequently, including the slow-start model and behavior of
packet losses detected by time-out may be left out. Extending this model
is necessary if considering higher loss probabilities. It must be noted that
this assumption is valid only for longer data transfers where the obligatory
initializing slow-start phase has an insignificant role on the data transfer
completion time estimate.

Integer window size - The window size remains constant within each RT'T
and is as a simplification counted in integers representing amount of pack-
ets.

Recalling W, 4. is the maximum cwnd size and defining Wp;,, as a cwnd dis-
cretization bin size to control the modelled resolution of the congestion window
values, the following vectors are defined:

G, =0, (1), A(2), ...A(R)), Gp = (Pwys PWy s ---PWg) (5.6)
R =ceiling (Wmmﬂ;b;:/bm/2) +1

G, are transfer rates and G, are corresponding probabilities of having state
transitions with rates in G,., which are governed by the distributions of W;.

In practice, an upper bound on the achievable rate may exist due to a bottle-
neck link that has a sufficiently large buffer to avoid packet drops. In the case of
the studied scenario this type of bottleneck occurs in the end-user node on the
wireless link. It has the least bandwidth resources (see Table 3.2). As the TCP
source passes the bottleneck rate (Aizmaz) the local link layer interface queue
starts to build up leading to an increase in the experienced RTT rather than an
increased data transmission rate. To compensate for this aspect in the proposed
model the rate index is identified that most closely matches the maximum rate
q = min{|A(¢) — Mzmaz|}- This step assumes that Atzmaz is available, which it
may be from knowledge of the local link or information obtained from historical
observations on a given link. Having quantified ¢, an update of the probabilities
is performed, Gp(q) = X5, 1Gp(x).

The amount of states in the cwnd-based data transfer model can finally be
defined from:

- datag;ze
o i ! 5.7
#states = ceiling (Wbm “Pdata/RTT ) © o

Solving the cwnd-based data transfer model by transient analysis at a discrete
rate of 1, it is now possible to derive data transfer completion time distributions
assuming that for low loss scenarios throughput = transmission rate.

5.2.5 Model parameters and numerical evaluation

To provide initial results on the performance of the two models to describing
the data transfer distributions they have been parametrized and compared to
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the fault/normal states that were previously defined. In relation to the basic
DTMC model the cwnd-based DTMC model defines more meticulously the data
transfer process. Thus, it is presented first as a baseline for the comparison to
a simpler approach.

Results of the cwnd-based DTMC model

Practically, the cwnd-based DTMC model can be defined by two parameter
sets. The first consists of Pdata, Wy, .. and Wy;, and represents, for this work,
permanent model parameters. These are summarized in Table 5.1. Pdata is
obtained from an assumed layer 2 frame size of 1500 bytes of which 38 bytes
are MAC and IP headers. W,,,, defines the maximum window size in packets
and is obtained from a typical limitation in TCP and SCTP that the maximum
announced window size in bytes cannot be more than 65,535 bytes. Finally,
Whin has been defined empirically.

Parameter Value
Pdata 1452 Bytes
Winaz 46

Wbin 5

Table 5.1: Permanent cwnd model parameter settings used in this work.

The second set of parameters is obtained from the network state definitions
being RTT and Dioss- RTT is estimated from low transmission rates A(<q)
where the windowing dynamics have most influence on the transmission rate
estimates. Thus, for both the normal and fault state parameterizations the
fault state RT'T mean estimate is applied. Referring to Table 3.3 the RIT
observation is used (53.3ms). For the pj,ss case the mean PER estimates are
applied. The resulting model has a total of ng = 75 states.

CDF completion times for SCTP, simulation and models — Normal state

1 —=z
Simulation (2000 runs) ! S D
= = = cwnd-based f-t model : i
0.8f....... Basic f~t model (n, = 70) P e a
..... Basic f-t model (nA = 26) 'l v/
0.6| = = = Simulation mean r’ 9
0a,+o0 5, 50, 95 percentiles
0.4f 4
0.2r e i
Kd
0 = ! - _ Ng €] ;
15 20 25 30

Data transfer time [s]

Figure 5.2: Comparison of data transfer modelling methods in comparison to simu-
lation results for a normal state.

For the normal network state under independent losses, the capability of the
cwnd-based DTMC model to describe the data transfer completion distribution
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is depicted in Figure 5.2. For now, the results of the basic DTMC model are
disregarded. The CDF derived from the cwnd based DTMC model shows good
resemblance to simulation results. An underestimation of ~ 1 s is observed for
fast transfers around the 5% percentile. Similar results have been obtained for
the fault state (not depicted) where an understimation of ~ 2.5 is observed.
Three main reasons for this discrepancy have been identified. 1) The RTT
used, RTT, is estimated from the fault scenario (independent losses) where the
transmission rate is low. This may give an underestimation of the RTT for
large cwnd window sizes, which are likely in the normal state, and thus a more
optimistic model. 2) The rate Aizmaz is only roughly estimated in the model
with a rate resolution of 136 K B/s for the normal state. The maximum rate
Atemaz ~ 630 K B/s where A(¢q) = 681 KB/s. Thus, the maximum throughput
is slightly overestimated leading to the underestimation of the 5 % percentile. 3)
The congestion window model is not accurate enough when loss rates increase
(fault state) due to amongst other SCTP slow restart being unmodelled. A
good resemblence between the congestion window model and observations of
the SCTP window have, however, been established as seen in Figure 5.3.

From these results the cwnd based DTMC model seems useful to model
the data completion time CDF for cases where the applied assumptions hold.
Integral are the assumptions of independent losses and low loss scenarios in the
area of 0 — 5%. In the following, the more basic birth chain is introduced to
compare and identify the impact of a simpler and potentially smaller model in
terms of state space.

(A) SCTP cwnd steady-state distribution, normal state, indep. losses p=0.005

T T T T

T
I Simulation model
—— DTMC model

0.25

0.2
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0 10 20 30 40 50
Window size

Figure 5.3: Comparison of results of window size distribution in normal state based
on simulated SCTP results and the TCP congestion control DTMC model obtained
from the work in [45].

Results of the Basic DTMC results

In contrast to the cwnd based DTMC model that models TCP/SCTP behav-
ior directly from packet loss rates and RTT, the basic data transfer progress
DTMC model needs to be parametrized from the expected mean application
layer throughput. Table 5.2 depicts the mean throughput obtained for the sim-
ulation environment and for the cwnd-based DTMC model. As it can be seen
there is only a small deviation from the simulated to the estimated through-
put. Estimated mean throughput results have also been obtained from the well
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known TCP transmission control model by Padhye et al. [110] using the same
input parameters as for the cwnd-based DTMC model. However, in relation
to the considered simulation results, the Padhye model error has been found to
be approximately 6%. The reason for this difference between the cwnd-based
DTMC model and the Padhye model is not central for this work and has there-
fore, not been studied further. Consequently, the cwnd-based DTMC model is
used to derive the mean throughput for the remaining part of this work.

The selection of the discrete time rate parameter x has been done empiri-
cally to comply with the entire PE DTMC. Thus, the results obtained here are
consistent throughout the remaining evaluations of this thesis. The approach
has been to identify the state @@ with the highest flow rate out of it. While
details on the full model state space is reported later the rate is defined as:

K= A +Ap+Ap+1 (5.8)

where, A4, represents the highest considered data transfer rate (in normal
state), Ayp is the time progress (introduced later in this chapter) and A the fault
occurrence rate (which in subsequent studies is higher than the repair rate). Fi-
nally, I has been selected empirically as a self transitioning rate on ) but also
offers headroom to change the current parameters when & is fixed. This empiric
approach has been useful for the results of this chapter, however, more robust
approaches may be considered in future model iterations. Depending on A4y,
to determine x also the state space n 4 should be determined. Using equations
5.3, 5.4 and 5.8 a good n4 has been found to provide a standard deviation of
the Pascal distribution close to the sample standard deviation for the normal
state data transfers used to obtain Figure 3.4. The sample standard deviation
is s = 1.48 s. The resulting parameter set is (ng = 70,k = 4.51). This amount
of states is close to the cwnd-based DTMC model state space. To understand
if less accuracy can be suflicient, another parameter set is defined considering
an approximate doubling of the standard deviation. This allows for the reduc-
tion of the needed states on ng to a third. Thus, another state set is created
(np = 26,k = 2.51). The results for these two parametrization sets are also
depicted in Figure 5.2. It is observed that the parametrization with ng = 70
provides a good characterization of the data transfer CDF, only shifted. The
predominant part of this shift is caused by the small error of the cwnd-based
DTMC model throughput estimation. The np = 26 parametrization shows
as expected a somewhat higher variance. This parametrization is used in the
following studies to understand if it is possible to gain from the reduced state
space while still providing useful policy evaluation results. Similar results on
the basic data transfer DTMC model on the fault state have been observed (not

State Simulation (Ag) | cwnd DTMC (Ag) | Error
Normal 447 453 1.3
Fault 210 220 4.8

[ Units [ [KB/s] [ [KB/s] | % \

Table 5.2: Simulated mean transmission rate compared to rate obtained from cwnd-
based data transfer DTMC (Each based on 2000 independent simulation runs of a data
amount datasi-e = 10 Mbyte).
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depicted). It must be noted that the full PE DTMC model will include both
a fault and a normal transfer rate data transfer birth chain. Thus, to enable
basic translation between these two, the fault state chain is fixed to the same
parameters of (np = 26,k = 2.51). Here, it must be noted that as the mean
transmission rate is halved in the fault state the variance increases. This behav-
ior corresponds well with the increased data transfer distribution times when
comparing Figures 3.4 and 3.5.

While the cwnd based DTMC model has the potential to provide quite accu-
rate estimates of the data transfer completion times, it requires a high amount
of states. As mentioned previously, ng = 75 states in the Markov chain are
needed. Considering the alternative basic CTMC DTMC birth chain a real-
ization of it with ny = 26 states has been studied. The cost that must be
accepted to obtain the smaller state-space is an increase in the variability of the
data transfer completion time estimates. To parametrize the model from state
space definitions by RTT and packet loss the cwnd-based DTMC model pro-
vides a valid approach for parameterizing the basic DTMC for the considered
loss rates. It should be noted that the larger state space of the cwnd base model
is no problem for the derivation of the mean transmission rate as the model is
solved independently of the full PE DTMC (using transient analysis). It would
have a significantly larger impact if it was to be integrated into the PE DTMC
model due to its product space.

5.3 Including a Stochastic Clock

In terms of the introduced data transfer completion time models the notion of
time exist as the model is solved using transient analysis. This is sufficient to
relate the model solution to time. The model itself must, however, also keep an
internal notion of time to enable policies based on criticality of the time progress
in relation to the time deadline. Thus, the data transfer completion time model
is extended to also include time. Modelling deterministic time progress in a
stochastic DTMC is, however, not straight forward. The most basic approach is
to create another birth chain and model each state as a time epoch. However,
as a state is needed for every ! ~ 0.4 s this is an expensive solution in terms
of states. An alternative is to reduce the state space and accept that time
is tracked by a stochastic clock. This approach has been adapted for model
simplicity and is depicted in Figure 5.4. The horizontal direction represents the
data transfer model introduced before. The vertical direction represents the
time progress equally as a birth chain with an absorbing state. Reaching the
absorbing state means that the deadline (t4eqdrine) has been exceeded and that
the data transfer has failed.

The state space of the end-user service model depicted in Figure 5.4 is defined
as Sgus = {Tp, Dp}, where Tp=Time progress and Dp=Data transfer progress.
Now as time is included in the model it can be solved using a steady state
solution. Thus, we define the model based probability of a successful data
transfer as Qpoder = X071 SpUSss(T,n). SEusss is the steady state solution
for Sgys. It must be noted that time progress and data progress is modelled
as independent events in the model. This has been done to maintain that the
true time (not evaluated by the stochastic clock) distribution of ;041 can be
obtained from the model in a transient analysis. This feature has been used
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Figure 5.4: Basic DTMC model representing data progress and time progress tracked
by a stochastic clock. pain refers to data transfer progress in a normal network state.

for intermediate verifications. Effects of modelling data and time progress as
interdependent events have not been studied further in this work.

Clearly, the approach to model time as a stochastic process in the model
will lead to inaccuracies in ,,04e;- This is demonstrated in an intermediate
model result depicted in Figure 5.5 of normal state data transfer results. The
time model has been fixed at m = 10 states. Considering the last state to be
absorbing and tgeqqiine = 30 s, each mean state holding time is 3.33 s. The upper
part of the Figure depicts the discrete distribution over the time states where
the data transfer is completed successfully. Notice, that only time until and
including the > 30 s state is included in the model. It should further be noted
that the final time state > 30s is considered successful as the data transfer
is completed on the transition to this state (see also figure 5.4). Comparing
this distribution to the CDF in Figure 5.2 it is evident that the variability is
significantly higher when using the stochastic clock. For instance, the simulation
results show that 100 % of data transfers are completed within the tgeqqiine =
30s. However, the model predicts that only 79 % are completed. This shows
that the model will lead to a quantitative deviation. It may, however, still be
qualitatively correct enabling it to assess useful decision policies.

5.4 Conclusion

In this chapter a model of the time constrained reliable data transfer end-user
service has been specified. Modelling data and time progress as birth chains
leads to strong quantitative deviations from results obtained in a detailed simu-
lation scenario of the end-user service. The qualitative properties of the model
may, however, be sufficient for best policy evaluation. Final conclusions on this
topic are obtained in Chapter 7.
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Future work

While the simple birth chain approach has been chosen, especially, leading to
a stochastic clock with high variability other modelling approaches have been
briefly reviewed. One is to use a Two timescale option where more than one
epoch clock is used in the DTMC. This may be useful to slow down the stochastic
clock to decrease variance at the cost of clock resolution. More on this option
can be found in [140]. Another option could be to apply a semi-Markov DTMC
to specify other state holding time distributions than geometric. Neither of
these methods have been applied here but could be investigated in future work
to minimize the time variability if needed.

Also, other end-user service model formulations may be considered. I.e.
it would be relevant to consider if the model could be re-formulated to have
regenerative properties allowing for the reduction of the current model state
space.



Chapter 6

Improving Diagnosis
Robustness by Uncertainty
Estimates

A part of the unreliability of observations based on network traffic is caused
by the monitoring process itself. Measured values that are impacted by non-
negligible measurement errors, may lead to significant imperfections of the diag-
nosis estimates and thereby affect end-user service performance and reliability
[67]. Overall, approaches are sought to improve the performance of diagnosis
given unreliable and uncertain observations as in the work of [104], [124] and
[39]. In this chapter, the disciplines of metrology and diagnosis are joined to
identify approaches of improving robustness of system diagnosis to observation
unreliabilities from the measurement process.

The body of knowledge of metrology (measurement theory [18]) proposes
rules and practices to estimate and possibly mitigate measurement errors through
measurement uncertainty [18]. Using approaches of metrology it is assumed that
a measure of uncertainty can be provided in the network observation process
to enrich measured point estimates. The aim in this work is to propose a di-
agnosis approach that can make use of such uncertainty knowledge to minimize
diagnosis imperfections.

A starting point is made in the Hidden Markov Model formalism. Besides
providing a formalized approach to specify the diagnosis problem HMMs are also
applied and studied in other application areas such as speech recognition. In
speech recognition uncertainty issues from noise have been addressed with good
results [61]. In Section 4.6.2 the diagnosis problem has readily been formulated
as a Hidden Markov Model. In this chapter, the resulting basic model is referred
to as (HO). Based on (HO) two HMM model variants are further proposed: (H1)
which assumes an accurate a-priori stochastic estimation of measurement uncer-
tainty to update the model parameters, and (H2) which adapts to uncertainty
in observations online by weighing low uncertainty observations over those with
high uncertainty in the diagnosis process. The diagnostic performance of the
three approaches is compared in the thesis case study for diagnosis of infras-
tructure network congestion faults based on network delay measurements. To
examine how the three HMM diagnosis approaches cope with uncertainties two
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uncertainty injection scenarios are studied. These cover unmodelled distur-
bances and clock synchronization issues.

The subject of unreliable observations in HMMs for diagnosis has previously
been studied in [39], [141] as an expected stationary coverage probability of
conducted tests with a binary outcome. In this work, we extend this approach
to handle uncertainty in a continuous observation variable (H1) and propose an
approach to associate a different uncertainty to individual observations based
on the measurement process (H2).

6.1 Uncertainty in Networking Scenarios

The analysis of including uncertainty in the diagnosis process is based on the
generalized end-to-end scenario presented in Section 3.2.1. In this section ex-
ample uncertainty cases are defined and analyzed. Following, details on the
assumptions on the interactions between the ODDR OPP and diagnosis com-
ponents are introduced.

6.1.1 Case Study View

The case study view taken in this chapter is depicted in Figure 6.1. It com-
plies to the scenario presented in Section 3.2 but introduces some additional
components. The following assumptions are made for this chapter. The remedi-
ation action is network fail-over. The main weight is, however, on the diagnosis
process. Thus, the fail-over action and resulting reliability properties are not
considered actively. To simplify the study a single fault is assumed. The fault
is the congestion fault occurring in the infrastructure network.

End-to-End Path

| ODDR ) _
\ Component | Operator A Service
—_———— Infrastructure Provider
Infrastructure

() v
S “/ i Congestion
# Access Network Fault
End- Selection Csp
Node @ Operator B Egd-user
Infrastructure ervice
Cen Provider
DATA *Real-time Transport Protocol
4— — — RTP* based Streaming, Observation: One-Way Delay (OWD)— — — -
DATA

4— TCP/SCTP based End-User Service, Observation: Round-Trip Time (RTT)— p

Figure 6.1: Scenario for diagnosis of congestion faults.

Network Diagnosis Under Uncertainty

The level of network congestion can be observed through the network delay in
the path [104], [93]. Depending on the type of end-user service, network delay
observations can generally be obtained from Round-Trip Times as previously
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Figure 6.2: Observation Pre-Processing and System Diagnosis process.

discussed and One-Way Delays (OWDs). OWDs may be obtained in streaming
traffic data cases by observing packet timestamps.

RTD and OWD observations have some inherent issues. 1) They provide
indirect non-deterministic observations of the true hidden network state making
diagnosis non-trivial. 2) The measurement process may, further, be exposed to
additional errors leading to observation uncertainty. In this chapter, the focus is
on uncertainties caused by: a) Unmodelled network disturbances (noise), as for
example queuing delays [5], and b) clock drift and offset, referring in particular
to synchronization uncertainty [22]. The first case would apply to both RTT
and OWD observations. However, the issue of clock synchronization is most
significant for OWD observations where two distributed local clocks (Cgy and
Csp in Figure 6.1) are used to provide the delay estimate. Clearly, for RTT
observations obtained at the end-node only Cgy is required. As mentioned
initially, other sources of measurement errors and uncertainty exist. However,
the chosen are considered sufficiently illustrative in this study to understand
how measurement errors and uncertainty based mitigation actions may affect
diagnosis performance.

6.1.2 Observation Pre-Processing and Diagnosis

A principal outline of how observation uncertainty is considered in the OPP and
Diagnosis components is depicted in Figure 6.2. An error free observation x;
represents a perfect measurement, with no uncertainty or undetected systematic
errors, at time instant [. The unreliable observation o; is obtained by x; asso-
ciated with possible measurement errors; o; is what the OPP module observes
from the network. The functionality of the OPP module is not the focus, but
it is assumed to have the following properties:

Observation Compensation: The OPP may attempt to remove any sys-

’ Symbol \ Description
X ={x1,29,..,21} Error free observation sequence.
O ={o01,09,...,01} Observation sequence with measure-
ment errors.
X = {&1,&9,.... 21} Compensated observations with uncer-

tainty.

6 = {(alew, x?p), ey (2hOw, :E%p)} Estimate of uncertainty expressed by
tuples of upper and lower bounds
(&' € X'low 4,"P ¢ XP),

Table 6.1: Definition of observation sequences.
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tematic error in o; to provide an observation point estimate Z; [18]. In cases
where no compensation is made it is assumed that &; = o;.

Uncertainty Estimate: ) represents an estimate of residual uncertainty
associated to Z;. Thus, the OPP provides in discrete steps [ (with period T')
the measure #; and &, as input to the Diagnosis Component. The Diagnosis
component may then use both the collected measurement and its uncertainty
to estimate the network state.

The expected properties of observation uncertainty 5 depend strongly on
the confidence level required and on the OPP module ability to provide an
estimate of uncertainty. Two different assumptions are identified, namely Con-
fidence Bounds (CB) and True Value Interval (TVI). CB represent probabilistic
bounds, typically, considering a confidence level less than 1, where it is possible
that the true value of a measurement result may lie outside the uncertainty
bounds. CB could be obtained from noise estimation techniques or a model
of the residual uncertainty given some observation compensation approach [90].
TVI represents bounds, which promise to contain the true value with proba-
bility 1 (may be considered a sub-class of the CB bounds). Such bounds may
be obtainable from a system model of the uncertainty factor as in [22], where
bounds are derived for synchronized clocks in a networking system.

To simplify the coupling between the OPP and the system diagnosis module
the weakest possible assumption is made of a uniform probability distribution,
ie. p(z|d;) ~ U(2'°%, 24P) within the bound. Stronger assumptions may be
made when the mechanisms and properties of the OPP are well known. In
this general study this is not the case, thus, these considerations are left for
future work. A summary of the observation sequence definitions is provided in
Table 6.1. Other symbol definitions relevant in the following sections have been
introduced, previously, in Table 4.4.

In the following section, diagnosis components are proposed using processed
observations from the OPP. In section 6.3 the properties of the diagnosis com-
ponents are compared for the CB and TVI bounds.

6.2 HMM Diagnosis Models

A background and initial results on a realization of a HMM used for diagnosis
have already been introduced in Section 4.6.2. The resulting diagnosis mecha-
nism is defined as (HO) or the Basic HMM , which by definition considers point
estimates, X for diagnosis, i.e. the a posteriori marginal distribution is given
by 8(i) = Plg = s;/X]. In this section two variants of (H0) are proposed to
compensate for unreliable observations. (H1) is an extension of (H0) where it is
compensated statically under the assumption of an accurately specified a-priori
model of the measurement error contribution. (H2) represents an observation
uncertainty model variant using the uncertainty bounds derived by the OPP.

6.2.1 (H1) - Compensated Basic HMM

This variant is a basic extension of (H0) under the assumption that an accu-
rate a-priori stochastic model of the uncertainty can be provided and used to
update B. The uncertainty model is represented by the distribution: P(Z;|x;).
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This conditional distribution describes the probability that due to an error con-
tribution an initial error free observation x; is observed as #; in the HMM.
In reality, it may be difficult to obtain this distribution (e.g. by online estima-
tion). Hence, (H1) just provides a comparison basis to the uncertain observation
method presented in (H2). For (HI) the observation distributions can be up-
dated as: Byi1) = B x C, where C is the compensation uncertainty matrix
defined as: C' = (¢p(k))p,x and:

cp(k) =Plii =vilz =vp), 1<p k<M (6.1)

These efforts makes C' similar to the translation probability matriz described in
[39] as a mean to define coverage of a given observation.

As the observation distribution model B(g) is more accurate to the true
observation distribution than B in (HO), improvements in diagnosis performance
should be achieved for uncertain observations. In the considered form (H1)
requires a model update and a complete specification of P(%;|z;), which is not
assumed to be available from the OPP module. Thus, (H1) just provides a
comparison basis to the uncertain observation approach presented in (H2).

6.2.2 (H2) - Dynamic Discretization HMM

The (H2) variant is studied to make use of the bounds provided by the OPP
module. (H2) dynamically encodes uncertainty of observations into the symbol
probability distribution in B. In practice B is updated based on the uncertainty
estimates provided by the OPP for each observation in X. Therefore, the ob-
servation received from the OPP module at time step [ is (il,fcf"“’,ifp ). The
approach is based on a dynamic adaptation of the discretization of the continu-
ous observation random variable x (see Figure 6.3). The continuous observation
symbol probability distribution can be specified: I;J(x) = f(z|q = sj). These
(continuous) symbol probability distributions form a model of the true distri-
bution of the continuous observation value. They will not be used directly in
the HMM model. Instead, a discrete symbol observation probability distribu-
tion is defined based on a new discrete alphabet to be used in the HMM (see
Figure 6.3): Vgo = {v1 = I',vy = X% v3 = XU}, The distribution of this
alphabet is described by a time varying observation symbol distribution matrix
B(l) = (bj(k,1)); k. The principle is now as follows: it is assumed that the
observed symbol always is I'. Now, the likelihood of observing I" for state j is
in each time step updated as:

Sup
Ty

b;(1,1) = Plil*" < x < #)7] = f(zlq = s;)dx (6.2)

ghow

It is considered that the true value (2;) of the observation with uncertainty &
is located within the bounds for some confidence level P (or outside as marked by
example points €/°?, €“P). Further, it is assumed that the true value is anywhere
in the interval with equal probability (uniform distribution) as assumed for the
OPP.

Intuitively, (H2) can be related to (HO0). In a normally formulated setting
i.e. (HO), b;(k) is obtained as follows: the observation x; discretized to vy has
been made at time step I. What is then the likelihood that v, was emitted from
the system in state s;? In the setting formulated under (H2) the problem is



CHAPTER 6. IMPROVING DIAGNOSIS ROBUSTNESS BY

96 UNCERTAINTY ESTIMATES
)A(IIOW )A(Iup
f(x|qi=s1) | | f(x|a=s2)
' X
low )A(I X gup -
—————— D Sl B

Figure 6.3: FExample distributions of observations for two different system states.

considered in the following manner: The observation with uncertainty Z; has
been made at time step [. It is assumed that its true value is equally likely to
be anywhere in the interval between #/°* and #,”. What is then the likelihood
that it was emitted from the system in state s;7 Depending on the location of
the bounds and their range, the relative likelihood between states in S change.
Note, as bounds increase the likelihood increases that the unreliable observation
could have been emitted by any of the states. This makes the update on (3(7)

less significant.

6.3 Comparison of Diagnosis Models

To understand the overall properties of the proposed diagnosis models, in this
section the proposed models are compared in two different uncertainty scenarios.
They represent unmodelled network disturbances on RTT measurements and
clock synchronization issues on OWD measurements.

6.3.1 Scenario Setup, Metrics and Model Implementation

Error free observation traces X and traces with uncertainty X for diagnosis
are obtained from the ns-2 based simulation results of RTT observations an
SCTP data transfer (see Section 4.6.2). In addition, statistics from the two
networks states of the congestion level are obtained from the distributions of
Figure 3.6. Recall, that these are based on mean RTT observations from a
window of a fixed size wrrr = 0.3s. These state definitions will be used for
model parametrization. Further to govern the ON-OFF network state process
and diagnosis period T, parameters of Table 4.5 are reused. To obtain OWD
traces, in practice, the actual RTT observations are utilized. In relation to
RTT observations, this corresponds to assuming a longer end-to-end path for
OWD observations. This step ensures consistency between diagnosis results
under uncertainties affecting RTT and OWD, and that only one set of the
diagnosis models is needed. Further, this simplification is not expected to have
a significant impact on the overall conclusions. For simplicity, uncertainty is
added directly to mean estimates obtained from the RTT observation windows,
although in practice it would apply to the individual delay observations. It must
be noted that the remediation action execution is not studied in this analysis.
Thus, diagnosis is only considered on a single active end-to-end connection where
the data transfer is being executed.
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Comparison Methodology and Metrics

The diagnosis components are compared using 2000 independent simulation
runs (provides for CI = 95% an error bound of + ~ 2% for prra ~ 0.5).
Each simulation run starts the network state process in a normal state and
lasts for 300s. To characterize the diagnosis performance metrics describing
the trade-off between accuracy and timeliness of the diagnosis case are sought.
As shown in Section 4.6, the metrics TNR/T PR may not be a good represen-
tation of the performance of temporal diagnosis approaches. Instead, the more
intuitive Mean Fault Reaction Time (uprr) and Probability of Remediation on
a True Alarm (prra) are taken into consideration. Recording in a simulation
run the first reaction time observed (for the first correctly diagnosed fault oc-
currence) prrr is the mean reaction time over all simulation runs. Registering
in a simulation run if the first alarm raised (8¢qux = 1) is true or false, prra
defines the fraction of simulation runs that leads to a true alarm. The selected
diagnosis performance metrics may not uniquely describe all characteristics of
the diagnosis component. However, they are considered sufficient for these ini-
tial comparisons. A more thorough discussion of such metrics can be found in
Section 7.4.1.

HMM model configurations

The two state fault model observation distributions of Figure 3.6 are used to
parameterize the diagnosis models as in the example study of (HO). It must be
noted, that for all three model realizations missing observations are included in
the observation alphabet. It is in this relation assumed that missing observations
are not affected by uncertainties introduced in the uncertainty injection studies.

(H1) Setup - To define C, the distribution P(Z;|x;) is discretized into
{vi...,vp}. This is conducted in correspondence to the symbol alphabet of
(HO). Observations which fall below the discretization bin corresponding to
(v1) are interpreted as v;. Observations above the bin vy;_1 are interpreted as
vp. Recall, that the bin vy, represents oﬁTT > 80ms.

(H2) Setup - The (H2) approach applies in Equation 6.2 sample distribu-
tion CDFs of the observations made to obtain the distributions in Figure 3.6.
To deal with sample distribution tails that contain limited observations Pareto
tails have been fitted to the upper 4% of all observations (highest RT'Ts). This
fraction has been found empirically to provide best diagnosis outcomes. In
uncertainty cases where Z;” is lower than any observation in the sample distri-
butions, the observation is simply ignored. In the following sections, the defined
realizations of the HMM based diagnosis mechanisms are compared in the two
uncertainty scenarios.

6.3.2 Uncertainty: Unmodelled Network Disturbances

In this uncertainty scenario the effects of unmodelled network disturbances
(noise) are studied on diagnosis performance. Simulation traces of o; are gen-
erated by adding synthetic Gaussian noise to error free observation traces z;.
Gaussian noise is expectedly not highly representative of common network delay
disturbances. However, it is useful as a starting point to get valuable insights
into the impacts on the diagnosis components.

To parametrize (H1) by defining C it follows that #; = x; + N(u,0?). For
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the uncertainty bounds based diagnosis model, in (H2), probabilistic Confidence
Bounds are considered based on Z;+z0 where o is the standard deviation (which
we assume to be accurately estimated by the OPP) and z a factor controlling
the bound confidence level.

(A) Impact of Gaussian Noise N(u,cz) on (HO), Veautt = 0.97
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Figure 6.4: (A) Impact of Gaussian noise on (H0). (B) Comparison of diagnosis
trade-off for (H0), (H1) and (H2) for N(0,10%)

Figure 6.4 depicts noise impact results and potential diagnosis trade-off op-
tions for the different diagnosis components given ppgr and prra. A perfect
diagnosis component would enable diagnosis at pprr = 0 and prra = 1; In
the imperfect diagnosis cases, characterizing this study, (HO) under error free
observations (N(0,0?)) is defined to represent the best achievable trade-off per-
formance. Trade-off options are given by varying the fault state threshold ysquu+
of Equation 4.4 in the range [0.1...0.999] to characterize the overall capabili-
ties of the diagnosis component. For a practical setup, however, it may not be
trivial to adjust this threshold dynamically to maintain some given trade-off.
Thus, we also study how a fixed threshold, set at design time for (HO) under
error free observations, will affect the diagnosis performance. A fixed threshold
of Yfaquir = 0.97 provides an example trade-off favoring a high prra without a
drastic increase in ppgrr.

Considering the different noise conditions in Figure 6.4 (A) on (HO), for
increasing variance of the observation noise the probability of a true alarm
decreases dramatically (while the probability of a false alarm increases accord-
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ingly). This occurs as in a normal state, noise will as one effect cause low RTT
observations to become high making the HMM more prone to diagnose a fault
state. Interestingly, uprr is not strongly affected.

Focusing on changes in the mean, clearly the diagnosis performance is highly
sensitive. For N(2,5?) performance in ppr4 drops below N (0, 10%) while gaining
slightly in improved reaction time. For N(—2,52) uppr increases while helping
to improve prra by nearly 20 percentage points over N (0,52). Moving to the
case of N(—4,5%) the reaction time is so high that the considered fault cannot
properly be diagnosed. This is in practice seen as 1.3% of the simulation traces
no longer lead to alarms (although faults appear in all traces). The impact of
these degradations in prr4 and pprr depend on the end-user service. Later
in this thesis when evaluating best imperfect diagnosis settings a sensitivity
analysis of the end-user service case reliability to diagnosis performance metrics
is conducted. It shows that a degradation of prr 4 is most severe and that values
below ~ 0.5 will lead to worse service reliability than if not fault management is
made at all. An increase in delay similarly means that potential gains of timely
remediation become insignificant. More details can be found in Section 7.4.2.

Figure 6.4 (B) shows how (H1) and (H2) perform compared to (HO) consider-
ing N(0,10%). In the trade-off curve, neither (H1) nor (H2) come close to (HO)
under error free observations. Yet, they do offer a similar improvement over
(HO). Looking at a fixed state threshold, however, it is clear that (H1) and (H2)
perform quite differently. Seemingly, (H1) makes use of the accurate information
of the noise to maintain a high prr4 but at the cost of an impractically high
prrr (in this case nearly the same as the mean fault duration). Compared to
(H1), with (H2) a drop in prr4 must be accepted, but at a significantly smaller
cost in increased pprr. These results are also largely consistent for other noise
levels and settings of 7fqu: not shown here. The studied setting of z = 1.5
(Confidence Level of 86.6%) has empirically been identified to provide the best
trade-off curve for (H2) under N(0,10%) (and N(0,5%) as well). An optimum
exists as a too small confidence interval would be less likely to contain the true
value. Further, a too large interval would make the observation less likely to
belong to one hidden state over another (see Figure 6.3). This would lead to
long reaction times and diagnosis primarily based on the hidden model behavior
in A and missing observations.

6.3.3 Uncertainty: Clock Synchronization Uncertainty

In this section the sensitivity of the (H2) approach to different properties of
TVI bounds are studied. As (H1) is not using bounds, it is not evaluated in this
section. Practical results of uncertainties due to clock synchronization errors on
OWD are further provided. It is shown how (H2) performs by use of statistically
estimated bounds on the clock drift and offset.

Figure 6.5 (A) depicts synthetic TVI results considering varying intervals
which are symmetric and asymmetric in relation to x;. The time value refers to
the range of the bounds interval (|2;7 — 2/°*|). Percentages define how bounds
are shifted in relation to x;. It is observed that as bounds increase from 1ms
to 30 ms for both symmetric and asymmetric cases, pprr increases while prra
drops. For asymmetric bounds of 30%-70%, the bounds include more of the
OWD tail behavior favoring the fault state distribution mass. This leads to
fast prrr and a small penalty of prra. The opposite is the case for 70%-30%
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bounds maintaining a high prr4 at a high penalty on upgr.
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Figure 6.5: (A) Ezample, and (B) R&SAClock based True Value Intervals.

These results are put into practice by studying a real measurement based
clock drift experiment. Uncertainty bounds are obtained from the Reliable and
Self-Aware Clock (R&SAClock) being a software clock self-aware of its syn-
chronization offset from the reference time. Its internal algorithm considered
is presented in [22]. It uses a statistical model of the evolution versus time
of clock offset and drift to provide a time value, Z;, and associated informa-
tion on the uncertainty to provide ;7 and #/°”. In an experiment considering
poorly synchronized clocks, three traces (of 300 s duration) have been selected
to exemplify periods with low, medium and high uncertainty (see Figure 6.6).
In relation to the scenario, the reference time is defined to belong to the Cgp
where the relative drift of Cgy is considered (see Figure 6.1). The drift offset
from the reference time has been added to the error free observations of OWD

to get or.
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Figure 6.6: Clock Uncertainty Traces.

Results comparing (H0) using the drifting clock point estimate Z; and (H2)
using the bounds are depicted in Figure 6.5 (B). For consistency to Figure 6.4
the exact clock value results (error free observations) for (HO) are still referred
to as N(0,0%). For a fixed state threshold (yfauir = 0.97) it is clear that (HO)
suffers from the clock offset in both the medium and high uncertainty cases
leading to a low prra. As the offset is primarily positive from the start of
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the trace (where the diagnosis process is initiated) the situation corresponds to
mean shifts similar to N(2,5%) in Figure 6.4 (A).

Now considering (H2) for medium uncertainty in Figure 6.5 (B) a significant
improvement in prra is observed without leading to a higher cost in pupgrr
compared to N(0,0%). Looking at the corresponding clock trace in Figure 6.6
it is seen that the lower bound is closer to the reference time value. This
corresponds to the 30%-70% asymmetric bounds investigated previously which
favor a low pupgrr. For the high uncertainty case the prra level is also high.
However, the large bounds lead to a significant increase in ppgrr as expected.
It must further be noted, that (H2) for small bounds performs similarly to
error free reference clock observations. These results show that (H2) for this
case of a fixed state threshold can provide a significant diagnosis performance
improvement. It must, however, also be noted, that (HO) for other settings of
v fauit could provide an improvement over (H2) for medium and high uncertainty
bounds (not depicted). In future work, approaches may be sought to adapt this
threshold dynamically.

6.4 Conclusion

Performing robust network fault diagnosis based on unreliable observations from
network traffic is challenging. Sources of uncertainty may degrade diagnosis
timeliness and accuracy impacting reliability and performance of distributed
services. In an attempt to improve robustness to uncertainties a new approach
has been proposed in network diagnosis to enrich observations by quantifica-
tions of measurement uncertainties in a basic Hidden Markov Model (HMM).
The properties of the approach have been assessed through three HMM model
variants: (HO) representing a classical HMM formulation, (H1) a static com-
pensation of the (HO) model by an accurate a-priori model of the measurement
uncertainty and (H2) the alternative HMM formulation utilizing uncertainty en-
riched observations. To establish how the proposed diagnosis components react
to uncertainties a simulation study has been conducted. The study considers
diagnosis of a network congestion state fault in an end-to-end connection based
on delay measurements. It consists of uncertainty injection scenarios covering
unmodelled disturbances (noise) and clock synchronization issues. The diagno-
sis components have been compared considering a fixed configuration (a fixed
threshold on the estimated fault state probability) and varying configurations
(varying thresholds) to reveal their trade-off capabilities of mean fault reaction
time (uprr) and probability of correct diagnosis (prra).

Overall, the studied HMM variants have been found to perform very differ-
ently. (HO), representing no uncertainty compensation, is as expected highly
sensitive to observation noise mean and variance changes. In an increased vari-
ance scenario, both the (H1) and (H2) offer similar improvements in the diag-
nosis trade-off options. For a fixed state threshold configuration (H1) manages
to maintain a high prra but at a cost of an impractically high upgry. In the
same setting (H2) provides a more balanced impact on both performance met-
rics while still improving prra over (HO). Using realistic drifting clock traces
and corresponding varying uncertainty bounds for a fixed configuration (H2)
manages to significantly improve prra over (HO) with no or little increase in
wrrr compared to perfect clock measurements.
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Future work

The obtained result suggest, that using uncertainty bounds can provide a struc-
tured approach to improve diagnosis robustness for an online diagnosis com-
ponent experiencing varying uncertainty of observations. In future work, it is
relevant to study alternative approaches to the (H2) heuristic considering: 1) the
impact of the assumption made on the distribution within uncertainty bounds,
2) an (H1) based observation distribution model update approach using uncer-
tainty bounds and, 3) approaches to dynamically adapt fault state thresholds.
Also, more realistic network uncertainty injection scenarios remain to be scruti-
nized. Finally, the impact of diagnosis performance differences must be assessed
on the reliability of different end-user service types.



Chapter 7

Ameliorate Service Reliability
under Imperfect Diagnosis

After having characterized diagnosis and means to improve its robustness to
measurement error and observation uncertainty, this chapter considers which
options exist to mitigate unavoidable diagnosis imperfections in the decision
process. Thus, in the context of the ODDR framework the interplay between
the Diagnosis and Decision components is studied. The aim is to clarify how
good decision strategies may help to optimize end-user service reliability and
how to configure the diagnosis component considering the imperfection trade-off
options of a given diagnosis component.

In this chapter a complete prediction model is developed. In addition to
the previously proposed end-user service model the prediction model consists
of several functional parts including: time, networks, the fail-over process and
a parsimonious diagnosis model. Based on the prediction model two separate
studies are conducted: i) a policy evaluation study is made to assess best de-
cision policies given diagnosis imperfections. This study includes modelling
of basic memory-less diagnosis behavior. ii) Focusing on the proposed parsi-
monious diagnosis model it is studied if it can also capture important diagnosis
performance properties of temporal diagnosis mechanisms. This resulting model
improvement is finally considered to identify best settings of the a-count heuris-
tic for end-user service reliability optimization.

7.1 Introduction of Policy Evaluation Model

A manual approach is taken to construct a prediction model for determining
best decision policies under imperfect diagnosis in the case of fault remediation
for the reliable data transfer end-user service. In this section the individual
model parts are presented and a joint model view is established. Recall that
this model is referred to as the Policy Evaluation Discrete Time Markov Chain
(PE DTMC) model.

In Chapter 5 the end-user service model of the time constrained reliable
data transfer has readily been introduced. Recall, that it integrates both data
progress and time progress. In this section other general model functions are
introduced with particular focus on capturing performance of the diagnosis pro-
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cess. Thus, the PE DTMC model is in summary developed to include the
following functions:

End-user service model - Time constrained reliable data transfer (see Chap-
ter 5).

Imperfect diagnosis - Models true and diagnosed (estimated) network state
behavior.

Networks - A model of the actively used access network and an additional
access network available for remediation.

Network fail-over and protection schemes - The network fail-over process
is modelled to enable aspects of a failing fail-over and penalty in fail-over
time. This part enables assessment of different protection schemes, which
may be available in the access network change process.

These model parts are presented individually and subsequently, the inte-
grated PE DTMC model is defined including the end-user service model. To
focus the subsequent studies, diagnosis is delimited to estimate network conges-
tion level states in the infrastructure network.

7.1.1 Parsimonious Diagnosis Model

In this section a general diagnosis model is introduced. As previously em-
phasized it must be capable of capturing diagnosis performance including its
imperfections while being light-weight to pursuit a small state space.

Network states and diagnosis capabilities are modelled by a four-state par-
simonious Markov model depicted in Figure 7.1. The network states (Ns) are
vertically oriented labeled Normal (N) and Fault (F'). The diagnosed network
states (Ds) are horizontally oriented representing the estimates N and . When
the estimated state and the actual state are equal the estimate is True (T) and
False (F) otherwise. A fault state estimate corresponds to a Positive (P) and
normal state estimate to a Negative (N). Thus, the states are named sTN gFN.
sF'P and sTP. Transition probabilities between states are named Px|y, Where
Y describes the state from which the transition initiates and X the transition
target state. Notice, to avoid complicating this notation further, the s-marker
(e.g. sTT) is not used in these probability labels. Further, the labels should not
be confused with conditional probabilities.

In the model, the previously defined diagnosis metric of a False Alarm (FA)
is given by the transition from state s7™V to s'" or state sV to s, Further,
Reaction Time is observed as the time from a fault occurrence until a true
positive (true alarm) diagnosis in the s7% state given by s7V to s7* or sV to
sTP,

As described in Chapter 4, the diagnosis component operates on a periodic
basis with the period T. This corresponds well to the discrete time model. By
defining T~ = & (see Section 5.2.5) the DTMC and simulation model ver-
sions of the diagnosis component are using the same diagnosis rate. Transitions
between true normal and fault states are given by the ON-OFF fault model in-
troduced in Section 4.1 with geometrically distributed state-holding times and
transition probabilities: preui (Pr) and prepair (pr). In the basic four state
model, a total of 16 parameters exist to be defined. However, assumptions can
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Figure 7.1: DTMC model of fault occurrence and diagnosis.

be made to reduce the amount of free parameters. In this work two parametriza-
tion approaches are considered: The first is considered in Section 7.3. It utilizes
an independence assumption of diagnosis estimates accounting for the intro-
duced memory-less diagnosis approaches. The second is introduced in Section
7.4. Tt relaxes the diagnosis estimate independence assumption to also repre-
sent temporal diagnosis model approaches. The applicability of the introduced
parsimonious diagnosis model will be discussed in more details.

Integration with time and data transfer model part

The diagnosis model and the end-user service model are integrated as the net-
work states (Ns) control the rate of transition in the data transfer birth chain
(Dp in Figure 5.4). pg, is the transition probability for the normal state data
transfer progress and py, for the fault state. It should be noted that all state
transition events, i.e. network state change, diagnosis, data transfer progress
and time progress, in the overall Markov model are independent and may occur
concurrently at a time epoch.

7.1.2 Additional Model Functions

Having established the basic model functions of the end-user service and network
state diagnosis, in this section further model functionality is added to cover two
networks A and B, the fail-over process and policy support.

Fail-over to other Network

The model contains two network stereotypes to contain the functionality of the
fail-over option and properties associated to performing the fail-over. These
are a network in which the data transfer is, initially, performed and a second
network offering the remediation option. Seen from an initial condition of always
starting the transfer in network A, network B is the remediation network.
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To handle the two network stereotypes the model is extended by adding
another state space variable called Nw. Nw has three values, namely network
A, network B and Intermediate. This corresponds to having three instances of
the state space: {Tp, Dp, Ns, Ds} (where Tp and Dp are time progress and
data progress, respectively). The first two instances describe the operation in
network A and B, while the intermediate states are used solely to handle the
fail-over. These three state sets are depicted in Figure 7.2. Only state variables
are depicted that have a probability of progress in the different states of Nw.

Network A Intermediate Network B
pfosn
- —» {’A’v Tp! Dps
b,
Entering D fosr
fail-over state A
Ib@/ {’B,: Tp! Dp’
Returns to true ‘Fault’, True’}
diagnosis state V Pt
: Network (Nw) |

LEGEND S.c = {Network, Time progress, Data progress,
Network state, Diagnosis state}

‘Italic’: Initiated state. Bold: State variable.

Figure 7.2: Integration of two networks and intermediate states. Apart from initiated
states, only states where there is a probability of progress are depicted.

Starting from network A a fail-over is initiated from a state dictated by the
applied policy. When a fail-over is initiated it may either fail (with probability
Pyor) or succeed. If the fail-over succeeds the data transfer is immediately
resumed in network B in either the normal (Py,sy,) or fault state (Pyosr). These
probabilities are determined by the steady-state probability of the network B
states. If a fail-over fails, the penalty is a geometrically distributed waiting
time with the parameter Pfgjeiqy Where no data transfer occurs. This penalty
is handled in an intermediate model part. After a failed fail-over, the transfer
is resumed in network A to the same (true) normal/fault state as before the
fail-over.

A limitation of the model in its presented form is that it does not keep
track of the states of network A and network B simultaneously. Thus, only
one fail-over is enabled. This limitation should be removed in future modelling
approaches.

Applying and evaluating policies

To implement policies in the model, states given by the policy have their out-
going transitions replaced with transitions to the Intermediate and network B
states as shown in Figure 7.2. Now different policies can be implemented and
evaluated in the model by solving for the steady state solution to the full model
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Spr = {Nw, Tp, Dp, Ns, Ds} to obtain Q,04e1 (see Section 5.3 for how this
metric is obtained).

7.1.3 PE DTMC Model Overview

A full overview of the Policy Evaluation (PE) DTMC Model is presented in
Figure 7.3 along with the simulation model introduced in Section 3.3. Recog-
nizing that the simulation model can be considered a valid, yet comprehensive,
approach of performing policy evaluation it is in the remainder of this chapter
referred to as the PE Simulation Model.

The state space described by Spg represents the complete PE DTMC model.
A summary of the state space and its dimensioning used in this chapter is

presented in Table 7.1.
PE Simulation
Model

e SCTP transmission
/" cwnd-based .
\data transfer DTMC /

PE DTMC Model

Networks and
failing fail-over
{Nw}

Time and data transfer
{Tp, Dp}

Network state and
diagnosis
{Ns, Ds}

Figure 7.3: Overview of the models applied for policy evaluation.

] State variable \ States

Data progress (Dp) | n =26 and j = 1...n

[y (j — 1)9attaie 4o (j)dalaere )
Time progress (I'p) | m =10 and i = 1..m

[..., (i — 1)deadiine to () Ldeadiine ]
Network states | 2 - [Normal, Fault]

(Ns)

Diagnosis  States | 2 - [True, False]

(Ds)

Network (Nw) 3 - [network A, network B, Intermediate]
Total states 2600 as Ds is not included under the Interme-

diate network states.

Table 7.1: State-space of the PE DTMC model.

7.2 Applications of the PE Models

In the remainder of this chapter two main studies are conducted:
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Evaluation of Remediation Policies for Imperfect Diagnosis (Section 7.3)

In this study the PE DTMC model is applied to determine best decision strate-
gies for fault remediation under imperfect diagnosis. Besides gaining insight
into the properties of a set of policy heuristics for the given end-user service, a
comparison is conducted between the PE DTMC model and the more compre-
hensive PE Simulation model used as a reference in this work. A central part
of this study is the diagnosis component and its representation of the diagno-
sis performance properties. As a first step, a memory-less diagnosis approach
based on the basic threshold diagnosis mechanism is studied where independent
diagnosis outcomes may be assumed.

Model-based Evaluation of Trade-offs in Temporal Diagnosis (Section 7.4)

The results of the policy evaluation study are extended to also include diagnosis
mechanisms and settings where independence in the diagnosis outcome is an
inappropriate assumption. This is the case when considering temporal diagno-
sis components. The focus is, thus, to examine how the parsimonious diagnosis
component may capture essential properties of the a-count heuristic. The re-
sults are, then, used to identify good settings of the a-count parameters trading
off diagnosis imperfections to optimize the end-user service reliability.

7.3 Evaluation of Remediation Policies for Im-
perfect Diagnosis

As emphasized in the introduction of this chapter a central focus of the ODDR
component is on the interactions between diagnosis and remediation decisions
and potential reliability gains in studying these. An important issue is how
accurate fault diagnosis needs to be in order to initiate remediation actions that
can increase service reliability. Making good decisions to initiate such remedia-
tion is not trivial. The decision process must consider: A) Imperfect diagnosis
where fault estimates may be false which leads to unnecessary or damaging
remediation actions or a true fault is not diagnosed in a timely manner. B)
Requirements from the end-user service. C) Properties of remediation such as
potential remediation gain, risk of failing remediation and signalling and time
overhead associated with the remediation action. In this work, A) and B) are
examined primarily.

Approach for identifying best decisions

Remediation decisions are based on different decision rule sets referred to in
this work as policies. A rule in this context defines a state or ranges of states
in which an action is triggered in accordance to the decision policy rules. To
identify best policies the method applied in this work has been to evaluate a
set of heuristic decision policies. Alternatively, optimal decision policies may
be derived by assessing the PE DTMC model in the Markov Decision Process
(MDP) framework. However, a clear mapping between a reward function needed
in the MDP specification and optimizing for {2 has not been identified. This
option should be revisited in future work. Instead, a determination of the best
policy is made simply by comparing and identifying the policy that maximizes (2.
This manual approach provides an understanding of the optimization problem
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that may be applied in future work to identify optimal decision policies.

In assessing the impact of diagnosis imperfections in this chapter, the main
focus is on memory-less diagnosis approaches and the main assumption that
diagnosis estimates are independent and only conditioned on the true network
state. In the following sections properties of an imperfect diagnosis component
are specified. Next, it is defined how they are captured in the parsimonious
diagnosis model. Finally, policy evaluation result are evaluated for different
diagnosis capabilities.

7.3.1 Imperfect Diagnosis Properties

For the study of various diagnosis imperfections a starting point has been made
in the basic threshold based state estimator introduced in section 4.3. Using the
diagnosis outcome independence assumptions discussed in Section 4.6, the full
diagnosis component behavior can be defined for the studied fault model from
the tuple:

Dy, =(TNR, TPR)

# TN and TPR = #TP

TNR=—-— P —
= p TN #TP + #FN

(7.1)

For the subsequent policy evaluation, a set of diagnosis component settings
has been specified to represent different diagnosis properties. This set is in-
troduced in Table 7.2. It is defined from different realizations of the threshold
value of ygrr trading off false alarms and the reaction time. To obtain these
realizations a simulation study has been conducted using cross-traffic to pro-
vide the required congestion buffer dynamics and similar fault and normal state
data transfer performance as obtained with independent losses. The network
state definitions of Table 3.3 are used. To delimit our study two thresholds
are introduced for imperfect diagnosis: ’y%TT = 64.5ms and 'y]l?TT = 59.5ms.
These values have been picked empirically from a ROC curve obtained from
simulation results showing possible trade-offs between TPR and FPR for the
provided diagnosis component. 7%, has been chosen to ensure a low FPR and
False Alarm Ratio (FAR) at the cost of a high Reaction Time (RT). vk has
been chosen to approximately halve the reaction time at the cost of a higher
false alarm ratio. These values will in the policy evaluation show what is most
important to the considered system: a low FAR in relation to a low RT. To
obtain the diagnosis performance tuples for these results 100 independent sim-
ulation runs have been conducted of a data transfer of datag;,. = 10 M B. At
t = 12 s a change from normal to fault occurs providing a period of true nor-
mal and fault state to consider. The threshold state estimator is executed on
the traces of RTT observations (wgrr = 300ms). Now counting the instances
of the different diagnosis outcomes an estimate of TNR and TPR is obtained
from Equation 7.1. The results for simulation are depicted in Table 7.2. Before
mentioned implications on the FAR and RT can be observed.

7.3.2 Parametrization of Policy Evaluation Model

An open question from the introduction of the parsimonious diagnosis model in
Section 7.1.1 is how to parametrize it based on the diagnosis performance tuple
Dy, = (TNR, TPR).



CHAPTER 7. AMELIORATE SERVICE RELIABILITY UNDER

110 IMPERFECT DIAGNOSIS
| Threshold | (TNR, TPR) [ FAR | RT (u,0) [ms] |
Sim: 7%, =64.5ms | (0.984, 0.102) [ 0.014 [ 3856, 3338
Diagnosis model (0.984, 0.104) 0.016 3743, 3811
Sim: Yhpr =59.5ms | (0.953, 0.225) | 0.041 | 1983, 1998
Diagnosis model (0.953, 0.225) | 0.044 | 1573, 1607

Table 7.2: Key metrics from the diagnosis component in simulation and in the diag-
nosis model part for two diagnosis configurations.

From the independent diagnosis outcome assumption studied in Section 4.6
it is defined that a diagnosis outcome only depends on the current network
state and not previous diagnosis outcomes. Conditioned on the network state
the probabilities are defined:

prn =P(Ds = norm.|Ns = norm.), ppp = P(Ds = fault|Ns = norm.)
prp =P(Ds = fault|Ns = fault), ppny = P(Ds = norm.|Ns = fault)

where:

prp =1 —prN
prN =1 —prp

Considering that the parameters of the true network state ON-OFF process
are known: py probability of a fault occurrence and p,, probability of a repair
occurrence, the state transition probabilities can be written:

PrpPTN = (1 —Pf) (I—-prNn) = PFPIFP

DFP|FN = pr- (1 =prN) = DPrp|TP
PTN|FP = (1 =py)-prN = PTN|TN
PrN|FN = Pr - PTN = PrniTP
PrpiFN = (1—-p)-prp = PrpP|TP
Prpr|iTN = pPf-pPrP = PrpP|FP
penire = (1—p;)- (1 —prp) =DprnFN
PrN|TN = br- (1—-prp) = PFN|FP

where it is the case that:

Prp|TN + PFN|TN = PrP|FP + DPFN|FP = Pf
PTN|TP T PFP|TP = PTN|FN T PFP|TN = Pn

This leaves two parameters free being pry and prp. Now finally considering
Equation 7.1, the probabilities may be estimated as: pry = TINR and prp =
TPR.

Intermediate diagnosis model evaluation
The diagnosis model has been simulated stochastically in compliance to the
ns-2 based simulation traces of the basic threshold approach used to obtain
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parameterizations of TPR and TNNR in Table 7.2. Thus, a trace of 60s has
been generated with a deterministic transition at ¢ = 30 s for 2000 independent
simulation runs. The model based diagnosis performance results in terms of
FAR and RT are seen to correspond to the ns-2 based simulation results for both
parameter sets. This indicates that the diagnosis model is a useful representation
of the threshold based diagnosis component for the defined normal and fault
states.

7.3.3 Heuristic Policy Definitions and Evaluation Setup

In this section, the heuristic policies applied in this chapter are defined. The
approach to define these policies has been based on the state-space options of
the PE DTMC model and initial empirical trials in the model. The considered
policies are:

(PI) No fail-over: No fail-over is commenced during the data transfer. This
policy will enable to identify cases where not to do anything may be a
better strategy than failing over.

(PII) Fail-over at diagnosed fault state: A fail-over is initiated as soon as
the network by diagnosis is estimated to be in a faulty state. This is
relevant to investigate how different settings of the diagnosis module affect
the remediation performance given the decision component has a high
trust in the diagnosis component.

(PIII) Minimum time threshold: A fail-over is initiated when: 1) the con-
ditions in (PII) are met and 2) a minimum period of time has passed
from a data transfer has been initiated before a fail-over is allowed. This
policy has multiple settings represented by the minimum period parame-
ter, Ymintime. Lhe policy provides options to study decisions based on the
end-user service state. It enables to evaluate the time state criticality in
relation to the deadline: tgeqqiine-

Common for these policies is that they have been found to enable an optimiza-
tion of the end-user service parameter (2. Other policy heuristics have also been
identified as worth investigating such as a threshold on the data progress state in
combination with (PIII). This policy may offer options to avoid fail-overs when
the data-progress is far within the time deadline and as a consequence reduce
overhead. However, in the following focus is on the €2 optimization problem and
such additional policies have been left for future work.

Setup for policy evaluation

To establish the impact on Q from imperfect diagnosis capabilities, results are
provided for Y%7 and Yhpp. For reference, the ideal case of perfect diagnosis
(TPR=1, FPR=0) is also included. In all cases a data upload action is started in
network A. The transfer is started in a normal state with probability 1 assuming
that a good pre-diagnosis can be made in the network selection prior to initiation
of the data transfer. In each data transfer only one fail-over to network B is
allowed. Finally, network B is started in a normal or fault state given by the
state steady-state distribution. To focus the impact in the study on policies,
diagnosis and hand-over, differences of parameters between network A and B are
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PE DTMC and simulation model parameters

dattg;e 10 M B || Fail-over to normal s. psosn | 0.430
tdeadline 30s Fail-over to fault s. psosf 0.520
Period k71 =T 0.398 s || SCTP packet payload Pdata | 1452 B
Failing fail-over prob. | 0.05 Congestion window bin size | 5
Dfof Whin
Mean failing fail-over de- | 1.2s Max congestion window size | 46
lay Winaz
Frequent Fault Event (short repair time)

Mean periods, 1/A%™ 1/A0/P 12.42s, 155

SS probability: normal, fault 0.453, 0.547

P(Ns=mnormal|t =0...30s) 0.09

Table 7.3: Summary of parameters used in the policy evaluation study.

eliminated by defining the two networks to have equal parameters. In addition,
this ensures the study of a non-trivial case where network B is either significantly
better than A (and could always be used) or significantly worse (and should
never be used).

The parameters used in the policy evaluation results are provided in the
state definitions of Table 3.3, the diagnosis properties of Table 7.2 and finally
Table 7.3 which summarizes the parameters introduced in Chapter 5 and in
this chapter. In the table five new parameter values are further introduced for
Dfofs Pfosns Pfosn and the fault and repair rates. A value for ps,; has been
chosen to assume that in 5% of all cases a fail-over will fail. Dfosn and Prosn
then correspond to the steady state probabilities of failing over to network B
provided for the remaining 95% of sucessful fail-overs. For policy evaluations, a
single fault /repair process has been specified. It assumes a frequent state change
meaning that several ON-OFF periods may be experienced during a single data
transfer. In practice this means that an occuring fault may also self-repair with
a high probability leading to cases where waiting for a repair may be beneficial.

Parameters

PE DTMC Model

ns-2 Simulation Model

Model based
diagnosis

Threshold based diagnosis &
cross-traffic based network states

y PR TNR
Model based diagnosis & ‘

TPR, TNR

independent packet loss (p%®)

network states
Policy Evaluation Results

Figure 7.4: Overview of diagnosis mechanism representations in the PE DTMC and
ns-2 simulation models.
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Previously, two different state definitions have been defined: one making use
of cross-traffic to offer a realistic impact of the fault model and one based on
independent packet loss events. The former is necessary for the RT'T threshold
based approach to enable diagnosis at all. The latter allows for a simulation
setup which more closely resembles the PE DTMC model assumptions. Com-
paring the two can help clarify differences in PE DTMC and the more realistic
ns-2 simulation results. The diagnosis model is implemented in the ns-2 based
simulation setup as depicted in Figure 7.4 to enable diagnosis in the independent
loss event case where no cross-traffic is executed. In the ns-2 implementation of
the diagnosis model the state estimates are randomly generated by two separate
Bernoulli processes representing the normal and fault state. Which Bernoulli
process is active is defined by the fault model ON-OFF process.

To obtain Qgimulation 2000 independent simulation runs of a data upload sce-
nario are conducted. Qg;muiation 18 then derived as the fraction of data transfers
that were completed within the deadline tg4eqqiine. Note, that 2000 simulation
runs provide for the binomial proportion variable Q in worst case (2 = 0.5) an
error bound of £0.022 (CI 95%) which is useful to demonstrate significant im-
provements for some settings of the policy evaluations while keeping simulations
tractable.

The policy evaluation results are initially considered for perfect diagnosis
comparing the PE DTMC model and the ns-2 simulation model results. These
results provide a baseline for subsequently studying the impact of diagnosis
imperfections and to which extent the different decision policies impact the €
optimization problem.

7.3.4 Perfect Diagnosis

For independent losses, results of Qgimulation (left y-axis) and Q,04e (right y-
axis) are depicted in Figure 7.5. The PE DTMC model results have been scaled
and shifted to graphically match simulation results at policies (PI) and (PII).
Results are presented in this manner to compensate for the differences in quanti-
tative results (discussed in section 5.3) and to emphasize qualitative similarities
instead. These qualitative similarities are in this respect most important to
establish the capabilities of the model to identify best policies.

In Figure 7.5 varying settings of ymintime (Policy (PIII)) are depicted on the
x-axis. Notice, Ymintime = 08 corresponds to policy (PII), and vintime > 308
corresponds to policy (PI). The model results show that failing over immedi-
ately when a fault is diagnosed (PII) should be done. The same conclusion
is true for the simulation results where an actual gain of nearly 10 percentage
points is achieved compared to no fail-over (PI). The results show that for the
studied settings it is worth taking the chance that network B may be in a good
state compared to staying in network A. Should network B turn out to be in
a fault state failing over is not worse than staying, as the expectation on the
remaining fault time in both networks is equal due to equal parameters and the
Markov property. Studying policy (PIII) there is consequently, as stated by
both the Markov model and simulation results, no gain in waiting from the data
transfer has been started before a fail-over is allowed.

The same policies have been studied in a simulation case where losses are
caused by cross-traffic. Selected results are depicted in Figure 7.6. A consistent
tendency has been observed in the perfect diagnosis case that some gain can be
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Figure 7.5: Model and simulation results for remediation policies (PI), (PII) and
(PIII) in a setting where perfect diagnosis is assumed.

obtained from waiting in the order of 7-10 s before a fail-over should be allowed
(policy (PIII)). These results are seemingly conflicting with the PE DTMC
model and the ns-2 simulation results with independent losses. A further study
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Figure 7.6: Selected policy settings where perfect diagnosis is assumed and losses are
generated by cross-traffic.

of average throughput correlated to time (2000 runs) in a pure normal and
a pure fault state based on cross-traffic reveals that the throughput is higher
initially compared rest of the transfer time. E.g. in a fault state the throughput
is 271 + 2.6 K B/s for the first 8 s and 248 + 0.5 K B/s for the remaining. The
same tendency is not observed when losses are independent. This indicates
that there is some significant correlation between the, in average more than
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60, concurrent cross-traffic and the SCTP connection. Waiting, enables the
transfer to take advantage of two of such periods with increased throughput in
network A and network B. In conclusion, while large transient effects have not
been observed in the RTT based diagnosis traces, other transient effects seem to
have a relevant impact on the data transfer rate. It is recognized that the data
transfer models may need to incorporate these currently un-modelled aspects
in a future model iteration. However, in the further analysis, the remaining
simulation based policy evaluations are conducted using independent losses.
Also, the model based diagnosis component implemented in simulation is used
to focus on the aspects of diagnosis imperfections.

7.3.5 Imperfect Diagnosis

Results of imperfect diagnosis are presented in Figure 7.7 for fy%TT and Figure
7.8 for v}7p. Two important observations can be made. 1) for 4%, failing over
immediately (PII) is still better than not failing over (PI). However, for 7},
lower reliability is actually obtained from (PII); given that network A is started
in a normal state. This shows that the increased probability of false alarms is
more damaging than the increased reaction time. 2) The second observation is
that (PIII) becomes important. There is actually a significant gain in waiting
to allow a positive diagnosis to cause a fail-over. In addition our results show
that the optimal setting of Y,nintime increases as the FPR/FAR becomes worse.
This is expectedly the case as FAs in the beginning of a data transfer can lead to
undesirable fail-over from a normal state to a faulty one. As only one fail-over
is allowed there is no chance to recover from a bad decision. This fact clearly
weakens (PII) compared to (PIIT). Waiting serves to initially ignore positives
(true or false) to a point where there is a higher probability that the alarm is
true and there still is a potential gain in failing over to a normal state.

Also, for imperfect diagnosis the policy evaluation conclusions seem consis-
tent for model and simulation results. Overall, for the studied settings it is
shown that the model, despite quantitative deviations, delivers good qualitative
results.

The aspects of failing fail-over with the parameters in Table 7.2 have in the
considered results had insignificant influence compared to P,y = 0. The model,
however, enables an evaluation of how significant these parameters need to be,
and under which policies, before the reliability is considerably degraded. This
should be studied in future work.

The proposed PE DTMC model has been constructed to explore relevant
policies for different diagnosis capabilities. Thus, at this stage limited effort
has been spent on model optimizations. The model consists of altogether 2600
states and the evaluation of a single policy setting takes ~ 3 s on a 2.5 GHz x86
based system. State space reduction options should be considered to support
other relevant functions and enable model solutions in resource constrained en-
vironments. Potential options are to examine the impact on qualitative results
by reducing the amount of time and data progress states as well as the aggrega-
tion of a subset of these states depending on implemented policies. Further, it
should be noted that some relevant model functions could expectedly be added
with no (using alternative parameterization) or limited increase of state space
such as evaluating best fail-over policies for multiple available remediation net-
works and support for temporal diagnosis approaches which improve over time
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Figure 7.7: Model and simulation results for remediation policies (PI), (PII) and
(PIII) under imperfect diagnosis using the yvorr diagnosis performance setting.
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Figure 7.8: Model and simulation results for remediation policies (PI), (PII) and
(PIII) under imperfect diagnosis using the yhrr diagnosis performance setting.

(as more observations are made). The latter aspect is the sole objective of the
next section where focus will be on extending the analysis of the parsimonious
diagnosis model.
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7.4 Model-based Evaluation of Trade-offs in Tem-
poral Diagnosis

The parsimonious diagnosis model introduced in Section 7.1.1 is based on the
assumption that diagnosis outcomes are independent. While this assumption
enables a simple model and parameterization approach, it also hinders assess-
ment of an essential class of temporal diagnosis mechanisms that were presented
in Chapter 4, which correlate observations in time to mitigate observation im-
perfections. In the following, it is examined if the independence assumption can
be relaxed by freeing model parameters from two in the previous analysis to
six, without increasing the model state space. The approach taken is to define
a set of representative diagnosis performance metrics and derive their closed-
form equations from these free parameters. The metrics enable: 1) a sensitivity
analysis to provide valuable insights into the model capabilities, IT) the estab-
lishment of the metrics’ sufficiency to capture main properties of diagnosis for a
given service reliability problem, and III) model parameterization from a tem-
poral diagnosis component to assess potential reliability gains and its various
trade-off settings.

Based on the improved diagnosis approach the data transfer service reliabil-
ity problem of improving the data transfer success probability €2 is re-evaluated.
However, while focus in the previous study was on selecting the best policy
heuristic, attention is now shifted to determining the best parametrization of
the temporal diagnosis component trading off its imperfections.

Gains and main challenge
A comparison was introduced in Section 4.6 on the properties of the basic thresh-
old based state estimator and the a-count heuristic representing the memory-less
and temporal diagnosis approaches, respectively. Summarizing its conclusions
the a-count based diagnosis enables to improve both fault and normal state
diagnosis accuracy and reduces the probability of false alarms. The cost is a
significant transient phase which affects the reaction time significantly as well.
Besides changing the characteristics of the diagnosis performance, also cap-
turing the diagnosis capabilities of the temporal component in a simple model
becomes more challenging. The parameters TPR/TNR in this case depend on
time and they cannot in a simple manner be derived from traces of a diagno-
sis component state estimates as in the previous section. Thus, an alternative
approach to characterize such complex diagnosis behavior is the aim of the sub-
sequent analysis. The proposed approach will enable a study of the potential
reliability gains obtained from different settings of a-count compared to the
previously assessed threshold based diagnosis approach. To delimit the focus
to the diagnosis component a fixed remediation policy of fail-over at diagnosed
fault state corresponding to policy (PII) is considered in the following setup.

7.4.1 Parsimonious Diagnosis Model Revisited

In the initial step, the previously defined 4-state light-weight diagnosis model
is revisited to clarify how it may also be used to capture essential temporal
diagnosis properties. From the model, closed-form equations are derived of
performance metrics considered to be suitable to describe essential diagnosis
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capabilities. They can subsequently be used to parametrize the model.

Model re-definition

The revised parsimonious diagnosis model is depicted in Figure 7.9. In the gen-
eral diagnosis model in Figure 7.1.1 all states are connected by a transition.
However, for the type of remediation policy studied (fail-over at diagnosed fault
state), transitions from positive states (true or false) can be neglected as sub-
sequent diagnosis behavior will have no influence on the reliability analysis (for
remediation policies that also depend on other criteria such as criticality of the
service, these transitions may be re-considered in future work). Consequently,
positive states are absorbing with prpjpp = 1 and prpjrp = 1. The resulting
model, thus, has six inter-state transition probabilities.

———Diagnosis state (Ds)——

Normal
m (Pdtn)
<
Q
o
)
=
o
2
(0]
z Fault
‘ (patr)
PrrIFN
True estimates False estimates

Figure 7.9: The parsimonious diagnosis model has 6 parameters; 4 are free. Greyed
transitions are not considered for the studied remediation policy.

Now, recalling that py € (0...1) is the probability of a fault transition and
pr € (0...1) the probability of a repair transition the system equations for the
transition probabilities can be specified:

Py =PrN|TN + PrP|ITN,  PTN|TN = 1 — (PRP|ITN + Df)
Pr =PTN|FN + PFPIFN, PFNIFN =1-— (pTP\FN +pr) (7.2)

As py and p, are defined by the fault-model, they are not free parameters
of the model. Thus, only one of the parameters pryrn, prpiry and one of
PTN|FN, Prp|FN can be considered free. The final free model parameters are
summarized in Table 7.4.

Diagnosis metrics

The requirements for the performance metrics characterizing diagnosis are: I)
that equations of individual metrics can be derived from the model, II) that
metrics in a simple manner can be obtained from traces of the temporal di-
agnosis component behavior for parameterization purposes, and III) that the
set is sufficient to characterize diagnosis when studying reliability assessment
problems.
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Altogether, a set of two metrics is defined. Each of the metrics can be
obtained from an implementation of the diagnosis component in the following
manner. A diagnosis trace is obtained by starting the diagnosis process at t = 0
(to) in a network in normal state with the considered ON-OFF process. The
trace is run until an alarm is observed and the true state of the network is
recorded at that instant. A set consisting of M repetitions of independent di-
agnosis traces is created. The number of traces in which remediation is based
on a False Positive (False Alarm) are counted by O. The considered metrics are
(see also Figure 4.1):

Probability of Remediation on False Alarm, (prra)

Probability that a fail-over will be commenced based on a False Alarm. De-
fined as: prpa = %

Mean Remediation Reaction Time, (ugrr)

Describes the mean time until a remediation action occurs from ty. Notice,
this metric does not distinguish between whether a fail-over is caused by a false
or a true alarm. It must be noted that the metric Probability of Remediation on
True Alarm prra could also be specified. For steady state solutions (where di-
agnosis is performed until an alarm occurs) it is valid that prra = 1 —prra and
no additional information is provided by having prr 4. This relation changes,
though, when considering transient versions of these metrics as will be shown
later in this section.

An additional metric p,,;ss has also been studied to capture the probability
that a fault is not diagnosed during the limited period of a service usage case.
Defining py,iss as the probability of missing the first occurred fault, the resulting
equation for p,,;ss has been found only to depend on prra and pgrgr. Thus,
this definition of p,,;ss provides no additional information and has not been
considered further.

Summarizing the considered diagnosis performance metrics, prga represents
the capability of diagnosis to lead to correct remediation (from a true fault
state). The metric prra is, however, not sufficient alone. Even though a fail-
over may occur with pgrra = 0 this may not matter if this fail-over occurs after

Parameter | Range Description

PFN|TN 0...p¢ Probability of a False Negative (FN) condi-
tioned on being in a True Negative (TN) state
and a fault occurrence

PFPITN 0...(1—py) | Probability of a False Positive (FP) condi-
tioned on being in a True Negative (TN) state
and no occurrence of a fault.

PTN|FN 0...pr Probability of a True Negative (TN) condi-
tioned on being in a False Negative (FN) state
and a repair occurrence

PTP|IFN 0...(1 —p,) | Probability of a True Positive (TP) condi-
tioned on being in a False Negative (FN) state
and no occurrence of a transition to the nor-
mal state.

Table 7.4: Free diagnosis model parameters.
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the end-user service has failed anyways. To capture these time aspects pgrprr is
needed.

For these diagnosis metric definitions focus has been to ensure simple deriva-
tions of closed form-equations from the diagnosis model. The approach has
been to specify metrics based on long term behavior of the diagnosis component
(where a fail-over is known to happen eventually). However, in reality the diag-
nosis component is not necessarily operating in accordance with its long term
behavior during the limited period of a service usage case. This may influence
the quality of these metrics to specify the proper behavior of the diagnosis com-
ponent. Closer attention will be devoted to this aspect later in the data transfer
case study based sensitivity analysis. In the following section the specified met-
rics are derived from the model. Further, inverted equations are presented using
the performance metrics as an input to establish the proper model parameters.

Performance metric equations

The diagnosis Markov Model may simply be considered using phase-type distri-
bution theory [91][64] enabling a straight forward definition of the closed-form
equations. Defining p as the initial transient state vector,

Q = [qz‘j]iz{sTN7sFN};j={sTN7SFN} the state transition probability matrix from
transient state i to j and R = [ri]i—(s7n 37N} p={sFP sTry the transition prob-
ability matrix from transient state ¢ to absorbing state &, these can be specified
as:

<PTN|TN pFN|TN) R<pFPTN pTPTN)
PTN|FN DPFN|FN ’ PrP|IFN PTP|FN

p=(1 0) (7.3)

Now the metric purrr can be derived as the mean time to absorption given as:
prrr =p(I— Q)™ (T T)

__PFN|TN T PTP|FN + DPr

HRRT = T

I' =(prpirn +2f)(PrP|IFN + Pr) — PEN|TN - PTN|FN

T (7.4)

Where T is the time epoch duration of the discrete diagnosis. Next, the prob-
ability that remediation is commenced on a True/False alarm is derived based
on the probability of absorption in the False Positive state.

prra =p(I— Q) 'R - €, (where €, = (1 0)')
__PrP|TN (prpiFN + Pn) + PEN|TN (Pn — PTN|FN)
B r

PRFA (7.5)
In the remainder of this work, focus is on the performance metric set: prra,
urrr- To enable a study of the sensitivity of these parameters and subsequently
use the model to perform service reliability evaluations, the inverted equations
are derived; i.e. the description of the four free model parameters as functions of
the two performance metrics. Clearly, this problem is underdetermined as only
two equations exist to determine four parameters. While additional diagnosis
performance metrics may be introduced, the approach taken in this work is to
keep the number of performance metrics small and investigate the impact of
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the remaining two free undetermined variables. Based on Eq. (7.3) and (7.4)
solutions may now be provided for pry|7y and pryjpn:

T Pr - Df - MRRT + (PRFA — 1)pp - T
PFN|TN =% *PTP|FN T
v v
v Pr - Py - BRRT — (PRFA - Df +Dr)T
PTN|FN =~ *PFP|TN + T

where, T = ps - pirrr + (PRFA — 1)T
U =p, - prer + (1 —prra)T (7.6)

Note, that the solution consists of two linear equations where ppy|7y and
pry|ry only depend on prppn and pppj7N respectively.

Model parameters

To obtain fixed solutions for the underdetermined solutions in Equation (7.6)
the additional freedom of the model must be clarified, when prr 4 and pgrgrr are
fixed. This aspect is investigated by defining two different strategies, (M0) and
(MI), for model parameterization. Next, the solutions for these approaches are
compared in terms of the transient phases of the diagnosis performance metrics.
These approaches are:

(MO) - Equal prp and prpp - In this approach the free model parameters are
fixed under the assumptions:

PrP|ITN
DPTN|FN = ( + 1) Dr
py—1

PrplFN
DFN|TN = (l + 1) Df
DPr — ]-

In practice, this corresponds to defining that the probability of a true positive,
prp, is the same independent on whether a transition takes place from s7% (in
a fault occurrence) or from sV (without a repair occurrence). The same is true
for ppp from s and sV. This constraint is also applied in the independent
diagnosis approach studied in Section 7.3.

(MI) - Minimize pp pirN and prp py - In this approach we consider the solution
min(pppirn) and min(prp py) where min() defines the lowest value in the
legal range for the solution (also considering ppyjrn and pryjrn, see Table
7.4). The interpretation is that the model is forced to minimize direct transitions
from s7N and sV increasing probabilities that such transitions must take place
during fault occurrence or repair transitions. This has an interesting impact on
the transient behavior of the performance metrics which is considered next.
From empirical studies of alternative approaches to (M0) and (MI) performed
in the data transfer case study, these alternatives generally provide solutions
close to and in the range of (M0) and (MI). Thus, only these two are considered
in this paper.

Although both strategies (M0) and (MI) lead to same steady state metrics
of prra (and prra) and purprr the obtained solutions show different transient
behavior. Thus, results for the transient model behavior of prra (1) and prra(l)
(where [ is the discrete time step) have been studied using parameters of Table
7.5 and 7o (see Table 7.6). An example is provided in Figure 7.10 in comparison
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to a simulation trace of the a-count heuristic (mean behavior over 2000 inde-
pendent runs). Notice, that prrpa(l) + prra(l) # 1 for a low [. This is clearly

Transient Behavior for a—-count, k=0.95, O(T:Z
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Figure 7.10: Ezample of transient behavior for simulation and model settings (MO0)
and (MI).

the case as the probability of a fail-over increases with time. For the simulation
results it should be emphasized that the relation between prpa(l) and prra(l)
also is time dependent. Realizing that a service usage case is inherently limited
in time (< Ymintime = 30 s) this transience can have some impact.

Comparing the model to the simulation results in Figure 7.10 two different
behaviors are observed. While (MO0) has a fairly good match in prr4(1) for low
I, prra(l) is overestimated. The opposite is the case for (MI). As shown in the
lower graph of Figure 7.10, selecting either (MO0) or (MI) will allow a shifting
of the relation between the two metrics in time. Only (MI) shows the tendency
that there is a higher probability of a true alarm for low values of ! where (MO)
shows the opposite. While the best solution may be found somewhere between
(M0) and (MI), (MI) of the two seems to best describe this relation. Same
conclusions have been found for other settings of a-count (not depicted).

’ Parameter ‘ Value H Parameter ‘ Value ‘
Discrete Time 0.398 s Dy (1/12.42s)-T
Epoch Period, T Dr (1/15s)-T

Table 7.5: Initial analysis parameters.
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Figure 7.11: Sensitivity analysis on Q for performance metrics and parameterization
method.

7.4.2 Model Based Sensitivity Analysis

Having re-defined the parametrization of the parsimonious diagnosis model to
the temporal diagnosis approaches, we now return to the time constrained reli-
able data transfer end-user service. Paring the diagnosis model with the specific
reliability problem will help quantifying to what extent the chosen diagnosis per-
formance metrics have an impact on service reliability. This is in the following
obtained through a model based sensitivity analysis of the €2 problem. This
analysis can in addition enable a comparison of the impact of parameterization
approaches (MO0) versus (M1), which helps to select the most suitable.

The sensitivity analysis has been conducted based on parameters of Table
7.5 using the PE DTMC model. Recall, that the default remediation policy
studied is fail-over at diagnosed fault state.

In the study, parameters of prr 4 have been varied in the interval: [0.0001...1]
for values of prrr = [10s,155,35s] under (M0) and (MI). The results are
depicted in Figure 7.11. Besides the sensitivity analysis, results for perfect
diagnosis (where prra = 1 and occurred faults are diagnosed instantly) and
no fail-over/no-remediation are depicted. Comparing (M0) and (MI) there is
a general tendency that (MI) leads to a higher Q. This is expected to be
caused by the fact that (MI), as shown in our previous analysis, weighs prra
higher in the transient phase. In terms of the general results for different values
of prra and prprr both (MO) and (MI) show the same tendencies. In fact,
preliminary studies (not shown) comparing reliability analysis based on (MO)
and (MI) to extensive simulation analysis lead to the same conclusions for best
settings of the temporal diagnosis component. Thus, the difference may not be of
significant importance for temporal diagnosis evaluation. Qualitatively, though,
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(MI) provides slightly better results compared to simulation. Thus, (MI) is
considered in the remainder of this work. Focusing on the diagnosis performance
metrics some general conclusions can be made. Clearly, both prra and prgr
have a significant impact on €. A high prra (above 0.45-0.55 for the studied
settings of prpr) and thereby a high level of false alarms can lead to situations
in which diagnosis can result in even worse performance of remediation than
performing no fail-over at all. Also, a quite low prr4 is needed to get close to
the theoretically best diagnosis performance. prrr seems to be less influential,
but a low value is also required to get close to the theoretical maximum. Notice,
that for prrr = 10 s no solutions exist for prra < 0.2 in these evaluations. This
is because of an assumption that the fault ON-OFF process always starts in the
normal state for the conducted analysis in this work. The normal state has
a mean duration of &~ 12.4s in which a fail-over can only occur due to a false
alarm. Thus, it is not possible to have a very low probability of prr 4 and a very
low value of prprr. These facts demonstrate how prprr controls promptness of
fail-overs, while prra/prTAa controls which fail-over type is most likely.

Finally, our results show that the same value of ) can be achieved for dif-
ferent settings of prrpa and prprr. Here, it is important to stress that it is the
properties of an applied diagnosis mechanism that specify which values of prra
and purprr can be achieved in practice. This type of analysis is conducted in the
next section for the a-count heuristic.

7.4.3 Properties of Diagnosis Component

The next step is to determine the impact of diagnosis imperfections on service
reliability in the PE DTMC model for the parsimonious diagnosis model fitted to
the a-count heuristic. This analysis will show if the PE DTMC model can also
be utilized to identify best diagnosis settings. Initially, performance capabilities
of prra and prpr are investigated based on traces from the extensive ns-2
based system level simulation setup. Subsequently, best diagnosis settings are
studied based on PE DTMC results and an equivalent analysis conducted in the
ns-2 simulation model.

Evaluation setup

For evaluation, the PE DTMC model with the modified diagnosis model parame-
trization scheme is applied along with the ns-2 based simulation model. The
simulation model is studied with network states based on independent losses,
which also requires the use of model based diagnosis. As previously, an inde-
pendent diagnosis outcome diagnosis model is used to obtain the process J®
with [ being the discrete time step. The a-count heuristic of Equation 4.1 is
implemented in the simulation scenario using J' to obtain the temporal diagno-
sis outcomes M*. The simulation setup, then, enables both to obtain prp4 and
prrr from an implementation of the a-count component in a realistic setting
and an evaluation of Qgmuiation-

The applied model and simulation parameters are adopted from the policy
evaluation study.
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Simulation Model Diagnosis Metrics

As seen from the sensitivity analysis of the proposed diagnosis model prra
and prpr have a significant influence on 2. In this section, sets of prra and
urrr are extracted from simulation traces of a-count following the methodology
previously described with the introduction of the metrics. It must be noted that
only a single set of observations is needed from simulation to get the observation
process J!. Subsequently, the dataset can be post-processed for different settings
of the temporal diagnosis component. This makes the following model based
analysis process significantly less complex than the presented extensive ns-2
simulation based analysis.

| Parameter set | (TNR, TPR) |

70 (0.983,0.097)
7! (0.953,0.225)

Table 7.6: Parameters used in the independent diagnosis outcomes diagnosis model.

To carry out the studies two sets of parameters for TNR and TPR are
defined for the independent diagnosis outcomes diagnosis model. These are
given in Table 7.6 by 1" and v!'. They represent two different possible trade-off
options and have been obtained from a simulation analysis of a threshold based
diagnosis component on RTT as previously. 7° is an example of a setting where
the true negative ratio is high leading to few false alarms but at the cost of
a low TPR leading to longer reaction time. For 4! the TPR is higher at the
cost of more false alarms. Both settings correspond to the previously studied
imperfect diagnosis cases whereas the parameters of the high true negative cases
are slightly different as the estimates are derived from different simulation result
sets.

Figure 7.12 depicts prra versus prrr for v°, 4! and different settings of the
a-count component in simulation. The different settings have been obtained by
varying the alpha-count threshold ar.

Trade off options between Rea and HrrT
0.4 T T T

Figure 7.12: Trade-off options between prra and purrr for different settings of a-
count.
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For 4° three different settings of the forgetting factor k are chosen to rep-
resent a slow (0.99) medium (0.92) and fast (0.75) rate of reducing the counter
variable . For k = 0.92 and k& = 0.75 the trade-off performance is similar
while & = 0.99 seems to offer a worse prra as prprr increases. More interesting
is the v! setting (only made for k = 0.92) which offers low prra values for
lower purrr. The filtering effect of a-count manages to reduce the amount of
false alarms while maintaining the faster reaction time. In the following, the
influence of the different settings are studied in the reliability analysis. Due to
similar trade-off options of £k = 0.92 and k = 0.75, the latter is not considered
further.

Reliability Analysis - Model and Simulation

The reliability analysis for the reliable data transfer end-user service conducted
in the model is presented in Figure 7.13. The x-axis defines varying ar. Note,
~! has been evaluated for higher settings of ar as ! generates more positive
estimates. Thus, a higher threshold may be needed to discriminate true positives
and false positives. The vertical lines represent the no fail-over policy and the
upper bound of Q for fail-over on perfect diagnosis.

For the setting ar = 0.7 the results of € correspond to the independent
outcome diagnosis where the a-count filtering has no effect (see Eq. 4.1). Note,
that «' is worse than 7° as expected. Observing the three graphs for increasing
ar, it is clear that all settings can provide some improvement over the one-shot
diagnosis. The improvement for higher o is clearly caused by filtering out false
alarms. A tendency for 4%, k = 0.92 and 7', k = 0.92 is that there seems to be
optimal settings where the highest gain in €2,,,4¢; can be achieved. However,
for 40, k = 0.99 it seems multiple settings can be used without significantly
affecting Qp,04e¢1- Studying for this setting the obtainable diagnosis metrics
pairs for oy = 1,...,2.8, purprr increases from 19.2 s to 29.9 s while prpra drops
from 0.22 to 0.12. It seems the improvement in prpr4 is cancelled out by the
increase in WRRT.

Interestingly, with the temporal filtering the best gain can now be provided
by the ! setting k = 0.92 for ar = 2.5 where urrr = 20.8 s and prr4 = 0.11.
As mentioned previously, this gain is obtained as the improvement in prp4 is
relatively higher than the cost in increasing purgr.

From these studied settings of a-count in the model it is possible to obtain
69.3% of the theoretical maximum for €,,,,4¢; compared to the no fail-over policy.
Higher gains may be achieved for other obtainable pairs of TNR and TPR.
However, as the primary aim of this work is to study the model sufficiency this
task is left for future work of applying the model.

The conducted analysis has been repeated in the PE simulation model. The
results are depicted in Figure 7.14. From these results it is clear that the same
conclusions are made as in case of the model based results. Note, that quan-
titatively there is a difference in terms of Q0461 and Qgimuiation, While they
are strongly qualitatively alike. The quantitative difference can again be con-
tributed to the fact that time is modeled stochastically in the model. This leads
to higher variability in the model data transfer completion time estimates and
consequently lower estimates of (2. However, this aspect does not effect the
qualitative performance of the model in terms of defining best settings of the
studied temporal diagnosis component. Thus, the model is considered highly
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Figure 7.14: Simulation results for reliability analysis of a-count for different set-
tings. Confidence bounds of v°, k = 0.99 and v, k = 0.92 have been shifted respectively
left and right for improved visualization. .

useful. It can be applied to evaluate the best settings that trade off imperfec-
tions of temporal diagnosis to provide improved remediation in the context of
end-node driven fault management. Further, this is done without increasing the
state space (and complexity) of the PE DTMC model initially defined.
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7.5 Conclusion

In this chapter the interplay between the diagnosis and decision component
has been studied. The main aim has been to consider how good remediation
decisions may mitigate diagnosis imperfections and similarly how to identify
qualified diagnosis settings trading off diagnosis imperfections for a fixed de-
cision policy. These aspects have been considered for a time-constrained data
transfer end-user service case attempting to optimize the reliability parameter
of probability that a data transfer will complete within the time deadline. To
gain insights into the decision problem and define a prediction model for use in
the decision component, a DTMC based policy evaluation model (PE DTMC
model) has been created. This model provides evaluation of best policies for
remediation in optimizing the end-user service reliability and consists of the
model-parts: end-user service model (simplified data transfer and time model),
a parsimonious diagnosis model (network states and diagnosis capabilities) and
remediation to an alternative network. To estimate SCTP data transfer distri-
butions and mean throughput a self-contained SCTP congestion window based
DTMC model has been proposed.

The four state parsimonious diagnosis model parametrization approach has
been specified to support basic memory-less diagnosis mechanisms where inde-
pendent diagnosis outcomes can be assumed. In addition, the model has been
extended, without increasing its state space, to also capture essential proper-
ties of more complex, and potentially better performing, temporal diagnosis
approaches with strong correlation in the diagnosis outcome. To achieve the
latter, closed-form equations of representative diagnosis performance metrics
(mean Remediation Reaction Time, pgrrr, and probability of Remediation on a
False Alarm, prra) have been successfully established leading to: a) a sensitiv-
ity analysis of their impact on service reliability metrics for a given reliability
problem, b) an assessment of their sufficiency to capture the main diagnosis
properties and c¢) a model parameterization from traces of an implemented di-
agnosis component (in simulation).

Finally, the prediction models have been parametrized from an extensive
ns-2 based system level simulation setup offering model parametrization and
validation of the model results.

Main Results

The results from the PE DTMC model have been compared to the extensive
system level simulation analysis. Due to a stochastic clock, model based esti-
mates deviate quantitatively from simulation results. The model is, however,
qualitatively good as it can be used to derive the same best-policy conclusions
as obtained from considerably more tedious system level simulation results. For
a perfect and imperfect diagnosis component it is shown how the best policy dif-
fers in relation to diagnosis capabilities. For some levels of diagnosis accuracy no
fail-over is a better policy than failing over when a fault is diagnosed. Further,
it is shown how waiting to enable fail-overs can improve reliability significantly.
Although improvements in the studied scenario are modest (5.5-10 percentage
points) under the given limitations it is demonstrated how including diagnosis
capabilities in the remediation decision can be useful to improve reliability. The
Markov model for optimal remediation strategy evaluation in this paper targets
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a specific SCTP upload application with completion-time constraints. Several
aspects of the modelling approach can benefit also other application scenarios:
1) The inclusion of passed time as input parameter for the remediation decision.
2) The abstraction of the fault-diagnosis properties. 3) The abstraction of the
SCTP congestion control behavior.

Based on the proposed diagnosis model a reliability analysis of an tem-
poral heuristic (a-count) from [25] has been conducted in a scenario of time-
constrained SCTP-based data transfers. Under a remediation policy of fail-over
at diagnosed fault state the sensitivity analysis shows how both purprr and prra
are essential diagnosis performance metrics. It is also shown how the model,
despite its simplicity, may represent different transient behaviors of diagnosis
metrics; however, a fixed parameterization approach based on steady state be-
havior of metrics is sufficient for the considered reliability study. The model
based results show that the a-count diagnosis mechanism can provide signifi-
cantly improved reliability compared to simpler diagnosis components not using
time correlated observations. Moreover, it is shown how best diagnosis-settings
can be identified maximizing reliability trading off urrr and prra. Finally,
a comparison has been conducted of the model based analysis to an equiva-
lent analysis performed in the extensive simulation setup. Despite expected
quantitative differences the qualitative similarities are high. As a consequence,
exactly the same conclusions regarding best diagnosis settings can be derived
from the model as well as simulation. These results emphasize the usefulness
of the proposed parsimonious model and the sufficiency of the chosen diagnosis
performance metrics to capture essential diagnosis performance.

Future work

The study of this chapter has provided some basic insight into the decision
problem under imperfect diagnosis. However, for the model to have relevance
in a full setup, additional fundamental model functions are relevant to address:
i) diagnosis of remediation options to assess their state (presumingly with im-
perfections), ii) decisions about collecting (actively and passivly) more infor-
mation to improve diagnosis before making decisions to remediate, iii) multiple
fail-overs during an end-user service, and iv) inclusion of multi-fault multiple
remediation option scenarios. These functions clearly add to the complexity of
policy evaluation. This encompasses defining good policy heuristics as well as
obtaining fast and efficient model solutions. The first problem may be addressed
by deriving optimal policies in and MDP like approach (for confined parts of
the state space) while the latter requires a thorough analysis of how the model
state space may be reduced further or re-used by solving the model for different
parameterizations in independent policy evaluation cases.

For the extended model functions proposed in future work also the generality
of the parsimonious diagnosis model should be studied further. This is relevant
when evaluating more complex policies than in the case of temporal diagnosis
approaches where remediation is initiated on a diagnosed fault event.

The PE DTMC model in its current form is also viable for future studies
of formulating the optimization problem differently than optimizing reliability
parameters. Also, new policies to minimize unneccesary hand-overs accepting a
given drop in reliability could be relevant. This could be achieved by a threshold
on the data transfer states.
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Finally, future studies should be made for different end-user service reliability
formulations to understand to which extent the results of this chapter can be
generalized to these as well. Examples of such services could be: IP voice
service where a certain quality must be maintained for a given fraction of time
or arbitrary distributed services where function execution location (end-node
or in the cloud) policies must be determined based on (imperfectly) diagnosed
network states, reliability and resource cost.



Chapter 8

Decision Model Adaptation in
Dynamic Network Scenarios

The preceding sections have focused on how to mitigate unreliable observations.
Applied means have been to increase diagnosis robustness and make good reme-
diation decisions taking into account the diagnosis imperfections and properties
of the remediation options. The presented studies until now have been based
on a static system setting where the network conditions are well known and do
not change over time. In the highly dynamic environments of the end-node, as-
sumptions of a static system view may only be valid for limited periods of time.
Thus, the ODDR components and their sub-functionalities will need to adapt
as changes occur. This is needed to obtain near-optimal or sufficient operation
that can increase dependability to an acceptable level for the end-user service
being executed. In this chapter, it is studied how the ODDR may facilitate
the adaptation to changes. The primary focus lies on the models used in the
decision component to derive decision policies. An equally important topic is
how to properly adapt the diagnosis component model. However, for reasons of
delimitation this topic is left for future work.

In the chapter, initially, an introduction is given to which categories of
changes exist. Next, details on functions in the decision component to han-
dle adaptation are presented. Finally, a study is presented on how to construct
the prediction models. The study takes into account when adaptation is made
and which presumptions are available on the change. This involves an imple-
mentation of the PE DTMC model principles in a Stochastic Activity Network
(SAN) modelling framework, Mdbius [36], which may act as support for the
adaptation process.

8.1 Introduction to Changing Scenarios

In this section a brief introduction is provided introducing which parts of the
operating scenario of the ODDR typically are expected to change over time.
Based on these changes, requirements for adaptations in the end-node driven
fault management setup are presented.

131
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8.1.1 Changes in the End-to-End Path

From the end-node perspective, changes may apply to different system parts in-
cluding system parameters (e.g. fault occurrence rates, channel settings, band-
width assignment), network configuration (e.g. topology, available access net-
works) and the level of information of these properties. Not directly attributed
to changes in the components of the end-to-end path, the information level refers
to how well the properties of a component are known by the ODDR and can be
used accordingly in the decision process. Thus, the information level is a prop-
erty that may change over time as a component is used and more information
about it is gathered.

Based on the scenario introduced in Figure 3.2 a set of high-level parameters
has been identified representing components in and in relation to the end-to-
end path as seen from the end-node perspective. These are depicted in Figure
8.1. Each of these parameters represent parts that can change. In the figure
an example is given on how the parameters may be interdependently related.
Details on the individual parameters can be found in Appendix F.

Networks & Available End-
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Device Capabilities

Requirements for
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Figure 8.1: A high-level summary of parameters in the end-node driven fault man-
agement scenario and their dependencies as seen from an end-node device perspective.

It can be utilized that a part of these parameters can be attributed to the
Available Access Networks. Thus, a starting point of defining and representing
a change is in the following study made from an access networks perspective.

8.1.2 Challenges for Adaptation in the ODDR

In the scenario of the end-node driven fault management many events can trigger
a change in the availability of access networks and their properties. Examples
of such triggers are end-node mobility, evolution of the access options in cer-
tain geographical locations (as private or public access points/base stations are
installed and removed) and network load patterns. How to regularly adapt to
such changes in the ODDR is an open question. It leads to some fundamental
challenges shared with any autonomously adaptive system [74]. Some of these
are:
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Detection of prediction model insufficiency - Determining when adapta-
tion is needed, is a function of how critical an inconsistency is to the end-
user service reliability performance and the deviation between the real
world system and the model state space representation and its parame-
ters. Finding a good approach for identifying such model insufficiency can
be crucial to ensure a good trade-off between the needed amount of costly
adaptation tasks and the overall performance of the decision process.

Pre-filtering changes - As emphasized, changes may occur frequently. This
leads to a significant amount of system information continually floating
into the ODDR, component. Assuming that functions of data process-
ing become increasingly complex as information moves into the ODDR
component modules, early pre-filtering is important. For example in an
urban environment a mobile end-node will continually discover new access
networks (even in a stationary setting). Pre-filtering by selecting only net-
works with good signal strength, networks that are known in advance or
networks, which are expected to have the needed properties for a partic-
ular end-user service, can significantly reduce adaptation efforts.

Learn system properties - Learning in the ODDR context is a topic that
independently applies to several functions. Learning may be used to de-
termine system parameters that are not directly observable (e.g. amount
of fault model system states [119]), system dependencies (e.g. which reme-
diation action can solve which fault) or rules to autonomously construct
prediction models. While learning may be considered a mean to provide
adaptation it is not necessarily a prerequisite as discussed in Chapter 2.

Dynamically construct models - When system changes have been detected
and system properties discovered, models used to obtain decision policies
need to be re-computed from scratch or incrementally. This problem im-
poses sub-challenges on: i) how to dynamically build models for newly
discovered environments, and ii) how to ensure that constructed models
are efficient to solve, and iii) how to derive good or optimal policies in
these.

Constructing models dynamically can be seen as a challenge of identifying
system building blocks and rules on how to stitch these together depending
on the discovered scenario. Model efficiency is depending on how large
part of the system state space to include in the model. Also, it must be
identified how including and excluding different parts of the state space
may affect the properties of the derived policies.

In the remaining part of this chapter focus is on dynamic construction of
models for policy derivation. Thus, with a starting point in the ODDR, an
approach is proposed on how this could be realized. Using the basic mechanisms
of the proposed model construction approach, an initial study is made on a
change case of a new access network arrival. More specifically, implications on
policy evaluation results are considered when including an expected change in
the model in advance (leading to a larger state space) compared to waiting to
adapt until the change occurs (leading to a smaller state space).
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8.2 Adaptation in the ODDR

The main role of the Decision Component is to determine which actions (re-
mediation, active observations, reconfiguration) should be initiated to optimize
reliability of end-user services. In this section, a baseline architecture is intro-
duced defining how adaptation could be enabled in the Decision Component
and thereby the ODDR.

The key issue to obtain decision outcomes that can sufficiently improve end-
user service reliability, is to ensure that decisions made are based on a correct
and up to date system model. When the system model and real world scenario
deviates to an undesirable extent, the system model needs to be updated. In
this chapter it is studied how the adaptation of the prediction model may be
conducted using online model generation. The role of the prediction model is
to describe the expected progression of the system states including potential
changes. This enables to identify the decision policies that are most likely to
lead to a highly reliable operation of the end-user service. An ambitious goal
could be to construct a prediction model that contains all anticipated changes
and resulting policies in the system design phase. However, in a highly dynamic
and ubiquitous environment, such as the one considered in ODDR context, this
is clearly not a feasible option. Instead, the prediction model should represent
only a part of the system and anticipated changes. Subsequently, the model
should be updated to new system evolutions when needed. This is where online
model generation comes into play. An online model generator must be capable of
modifying the structure and parameters of the model. This is needed when sys-
tem changes are discovered as the arrival of a new network or if new knowledge
is obtained such as the maximum throughput of a particular access network.
In fact, the model generator should always be able to provide autonomously
a new model for the system, regardless of how and how much the networking
environment has changed. For this reason, in the following we introduce a com-
positional modelling approach to generate models for different configurations of
the system with a starting point in a set of basic atomic models.

8.2.1 Model Composition Approach

A Stochastic Activity Network (SAN) represents a high-level modelling formal-
ism based on Petri Nets. The formalism is based on four graphical primitives
which are: places, activities, input gates and output gates. In brief, places
can contain zero to multiple tokens and represent states. Activities define how
transitions of tokens take place over time, while gates describe changes in the
amount of tokens for different places. Input gates further define when activities
are enabled. SANs are a class of stochastic Petri nets and under certain as-
sumptions (i.e., only exponentially distributed or instantaneous activities) the
underlying stochastic process is a Continuous Time Markov Chain (CTMC); in
this case analytical solution methods exist. More details can be found in ref-
erences [36], [120]. One of the features of SAN is the ability to create a model
of the system by composing atomic sub-models through the join and replicate
operators. The join operator allows to compose (possibly different) sub-models
by setting some places as shared; the replicate operator creates a predefined
number of replicas of the same sub-model.

In the work of [26], this compositional modelling is exploited by the use
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Figure 8.2: Composition of different system models from pre-defined atomic model
building blocks in accordance to a system parameter set.

of parametric models following an approach, which recalls the Object-Oriented
programming methodology. After identifying the basic building blocks of the rel-
evant modelling domain, the respective parametric atomic models are created.
Using multiple instances of these templates with different parameters and fol-
lowing specific compositional rules, a model for a wide range of possible system
parameters can be obtained as depicted in Figure 8.2. Notice, the SAN model
is an intermediate version of the prediction model, which can be converted into
a Markov model, given the previously mentioned conditions can be met.

A similar approach can be used to implement online model generation in the
ODDR framework. In particular, when a new model generation step is triggered,
ad-hoc composition rules will allow to autonomously build the corresponding
prediction model and from that establish a new active policy set. In this setting,
the currently studied PE DTMC model and its sub-models can be directly
translated into this approach considering individual models for: the end-user
service, a network, an active diagnosis component and fail-over properties. Thus,
relatively simple rules may be established. They must change the model to
accommodate to new and disappearing networks, different diagnosis models for
different faults and importantly, different end-user service models as the end-
user changes the active service.

8.2.2 Decision Component Modules

In Chapter 3, the overall ODDR framework has been introduced and a brief
overview of the Decision Component and its modules has been presented. In
Figure 8.3, a more detailed realization of the Decision Component is introduced
in the context of the model composition approach. It must be emphasized that
the approach presented here still requires a significant amount of future work
to become applicable. It, however, defines a setting for the subsequent studies
of the model construction approaches.

In the following, a short introduction to the individual modules and their
interfaces is provided.

Decision Manager - Its main role is to manage the information flow to the
remaining modules. I.e. it is responsible for filtering out changes that are
not relevant to the decision process. It also stores and updates a global
set of system parameters (including end-user service requirements) that
are used in prediction models and model generation process. Finally, it
must be able to deliver information to the end-user service layer if end-user
service requirements cannot be met.
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Figure 8.3: Rich image of the ODDR components, their functions and Decision
Component to enable decision making and adaptation to system changes.

Policy Enforcement - The policy enforcement module is the policy engine

of the Decision Component.

This is where observations based on dis-

crete or continuous, deterministic or probabilistic states (interface Dej)
are mapped to an Active Policy. The active policy contains the currently
applied policy rules for making decisions and rules defining its validity. In
cases where adaptation is not required (i.e. observations are within the
validity of the active policy) decision actions are executed as defined by

the policy.

Policy Construction - The module Policy Construction performs the main
task describes in the thesis as policy evaluation by evaluating a set of policy
heuristics in the currently defined prediction model. A policy database
can help to avoid re-calculating policies of already encountered system
configurations.

Model Generator - The model composition approach is located in the Model
Generator component. It uses system parameter information to generate
models as the system changes or moves into states for which no policies
have been derived. The Intermediate Composed model corresponds to the
SAN model.

In brief, the adaptation loop in the Decision Component can be summarized
as follows. Adaptation can be initiated if the Active Policy validity does not
correspond to the observed system states. When the policy is no longer valid



8.2. ADAPTATION IN THE ODDR 137

a new policy evaluation is triggered (Dejr). In the Policy Construction Com-
ponent a new active policy may be obtained from the policy database or from
a re-evaluation in the prediction model if it includes the state space needed to
calculate a new policy. If this is not the case, the Model Generator is activated
(Dery) to generate a new prediction model (Dey ), which then will lead to a
new policy evaluation and finally, a new active policy (to be set via Deyrr).
This loop contains some of the inherent challenges in the task of adaptation as
previously introduced. In the following sections, the impact of performing the
prediction model generation in a proactive or reactive manner is studied. The
change case of a new access network is introduced in the following section.

8.2.3 Change Case Study

As a background to study different prediction modelling approaches in the
ODDR adaptation approach a change case is introduced in this section. A
change case refers to a system change that requires adaptation and thus, a pre-
diction model update. The starting point is made in the arrival of a new access
network. An arriving new access network can be understood as a new access
network that is discovered by the OPP component due to a mobility action or
simply, a new access point that becomes available. This corresponds to a fault
model scenario where an access point becomes available and certain properties
are known about for how long it is expected to remain available. Finally, the
arrival of a new access network may also in a next step be used to model changes
of parameters of already available access networks at a certain point in time.

Study background

In the new access network change case the following aspects are in focus of the
study.

Varying Network capabilities - Considering new access networks to have
different capabilities in terms of performance and reliability it must be
established how these parameters impact the decision process and overall
end-user service reliability metrics.

Varying Time of Arrival - The new access network may appear before an
end-user service is initiated or during an end-user service execution phase.
It must be clarified when the properties of a newly arrived network are
beneficial to improve reliability.

Information on Arriving Networks - Operating in unknown or known sce-
narios can make a difference on how much information an end-node has
on the potential available networks that may arrive. This information can
both be on when the network is expected to arrive and which properties
it is expected to have. The impact of the availability of such information
on decision policies and reliability parameters must be clarified.

The change case studies will, primarily, refer to these points. In the subsequent
paragraphs, a scenario and basic assumptions made for the change case are
introduced.
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Figure 8.4: Scenario of a new access network xi arriving during end-user service
execution.

Change case scenario and assumptions

A change case scenario has been specified with a starting point in the well known
setup introduced in Section 3.3. An end-node is operating on a good or optimal
strategy on using networks A and B as depicted in Figure 8.4. The end-user
service is initiated at ¢t = 0, defined as t;,;; where operation starts in network
A in a normal state. During the end-user service executions a fail-over may be
initiated to network B. Before (¢ < 0) or during an end-user service execution
case, a new network, network x; appears representing new or other properties,
which may or may not improve the end-user service reliability if included in the
prediction model. This point in time is referred to as ¢7}.. This allows for new
options regarding the fail-over and potentially also the re-calculation of policies
or the activation of a pre-computed policy depending on the prediction model
approach. To delimit the following study, a set of assumptions have been made
about the new access network change case scenario.

Fault Model - For all networks the single congestion fault ON-OFF model is
assumed.

Properties of Networks - Networks A and B are defined to have the same
parameters as in the previously conducted studies of Chapter 7. How-
ever, different parameterizations of network x; are provided to study the
decision impact for different cases. An introduction of the applied param-
eterizations is presented in Section 8.5.

Imperfect Diagnosis - For the diagnosis process on network A, imperfect
diagnosis is assumed. A single setting assuming independent diagnosis
outcomes for 72, .. in Table 7.2 is used (TNR=0.984, TPR=0.102).

Single Remediation Action - To ensure consistency to previous studies, only
a single remediation action, i.e. fail-over, is allowed during the end-user
service execution. As a result the decision problem becomes an issue of
which network to fail-over to from network A.

Single New Access Network - The change case of this work includes differ-
ent parameterizations of the arriving network x;. However, it is assumed
that there is only one new network that may arrive at a time. Thus, it
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is network x; that changes parameters. Also, when the new network has
arrived it is defined that it will remain available throughout the service
execution period (along with networks A and B).

Remediation Cost - In previous studies a cost of executing remediation has
been implemented as the probability of a failing fail-over (ps,; = 0.05) and
a random delay drawn from an exponential distribution (Mean fdelay =
1.2 s). These properties have been maintained for the following studies
and the same parameters are assumed for fail-over to network B as well
as network x.

Arrival Time - The following analysis methods allow assessment on the de-
cision policies for different arrivals times of x1 (before and after end-user
service initiation). The primary focus of the studies is on arrival dur-
ing the end-user service execution phase to study end-user service state
dependent adaptation.

Finally, a simple formalization of the new access network change case can
be made considering