


Lecture Notes in Computer Science 3741
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Ajit Pal Ajay D. Kshemkalyani
Rajeev Kumar Arobinda Gupta (Eds.)

Distributed
Computing –
IWDC 2005

7th International Workshop
Kharagpur, India, December 27-30, 2005
Proceedings

13



Volume Editors

Ajit Pal
Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering
Kharagpur, WB 721 302, India
E-mail: apal@cse.iitkgp.ernet.in

Ajay D. Kshemkalyani
University of Illinois at Chicago, Department of Computer Science
851 S. Morgan Street, Chicago, IL 60607-7053, USA
E-mail: ajayk@cs.uic.edu

Rajeev Kumar
Indian Institute of Technology Kanpur
Department of Computer Science and Engineering
Kanpur, UP 208 016, India
E-mail: raj@iitk.ac.in

Arobinda Gupta
Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering
and School of Information Technology
Kharagpur, WB 721 302, India
E-mail: agupta@iitkgp.ac.in

Library of Congress Control Number: 2005937698

CR Subject Classification (1998): C.2, D.1.3, D.2.12, D.4, F.2, F.1, H.4

ISSN 0302-9743
ISBN-10 3-540-30959-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30959-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11603771 06/3142 5 4 3 2 1 0



General Chairs’ Message

It all started as a small sapling, sowed in 1999, as the first workshop. Within a
short span of time, it grew considerably in dimension, intensity, participation,
and impact. IWDC is presently a recognized name among the symposia and con-
ferences in the area of Distributed Computing and bears the testimony of serious
works of the researchers and academics working in the area. One salient feature
of IWDC is that it is held in the different academic centers of India and has acted
as a great impetus in fostering research in the area of Distributed Computing in
India. The Seventh International Workshop on Distributed Computing, IWDC
2005, is being held at the Indian Institute of Technology, Kharagpur, one of the
premier technology institutes in India. Kharagpur is very conveniently placed out
of the bustle of the big metropolis, yet in close proximity to Kolkata, a major
city in India, thus providing an ideal environment for academic brainstorming.
As the General Chairs of the conference, we extend to you a very hearty welcome
to IWDC 2005.

Over the years, IWDC has retained its character of not being drowned in
the magnitude of the conference and losing the scope of close interactions and
academic discussions. We are sure that this year will be no exception . The
Program Committee has painstakingly carried out the review process and has
set up a program that is rich in content and quality. The Organizing Committee
has put in all efforts to make the conference smooth sailing and provide you with
a comfortable stay. Putting all the pieces together is not an easy task and the
efforts would not have been successful without the benevolence of the sponsors.

We are thankful to our sponsors HP India Ltd., Tata Consultancy Ltd., Mi-
crosoft Research, Capgemini, and General Motors, for their generous support in
making the conference a success. Our sincere thanks are due to the Program Chairs
Ajit Pal and Ajay Kshemkalyani for their efforts in putting together an exciting
program. We are grateful to the Keynote Chair Sajal Das for arranging five high-
quality keynote talks by eminent persons in this field. We are thankful to David
Peleg, Walter Brooks, Taieb Znati, and Viktor Prasanna for delivering keynote
talks in the conference. We thank L.M. Patnaik for agreeing to deliver the A.K.
Choudhury Memorial Lecture at the conference this year. As in previous years, we
have been able to set up a number of interesting and relevant tutorials. This has
been made possible through the untiring efforts of the Tutorial Chairs Somprakash
Bandyopadhyay and Archan Mishra. We are also grateful to Arup Acharya, R.
Badrinath, Sajal K. Das, and Pradip K. Srimani for agreeing to present tutorials
at the conference. Special thanks are due to our Publication Chair, Rajeev Kumar,
who has put a tremendous amount of effort into compiling the final proceedings.
We also thank the Finance Chair, Shamik Sural, for organizing financial support
for the conference, and our Publicity Chairs, Abhijit Das, and Sandip Sen, for the
great work they did in publicizing the event across the world.
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We also thank all the members of the Organizing Committee, Arobinda
Gupta, Ajit Pal, Shamik Sural, Indranil Sengupta, Abhijit Das, Dipankar Sarkar,
Jayanta Mukhopadhyay, Pallab Dasgupta, Debasish Samanta, Soumya Ghosh,
Arijit Bishnu, Pabitra Mitra, and Sudeshna Sarkar, for their efforts. We are
grateful to the Indian Institute of Technology Kharagpur, and in particular to
Prof. S.C. De Sarkar, Head, School of Information Technology and Deputy Di-
rector, IIT Kharagpur, for extending the logistic support to the conference. Prof.
De Sarkar is also a member of the Steering Committee of IWDC. Last but not the
least, we also thank Prof. Sukumar Ghosh, who is heading the IWDC Steering
Committee, for his guidance and his continuous support and advice.

No academic meeting can achieve its desired end without the contributions
of the authors, reviewers, and the participants. We extend our heartfelt thanks
to all of them for making the event a success. We sincerely hope that this event
will be a valuable addition to the Distributed Computing research endeavor.

December 2005 Anupam Basu
Michel Raynal



Program Chairs’ Message

On behalf of the Program Committee of the 7th International Workshop on
Distributed Computing (IWDC) 2005, it is our great pleasure to welcome all
of you to Kharagpur, India. Our goal has been to put together a rich technical
program, including high-quality technical papers and state-of-the-art tutorials
and invited talks.

The conference received 253 submissions in response to the call for papers.
About 10% of the submissions were from Europe and the Americas, 41% from
India, and 49% from the rest of Asia and Australia. The Program Committee,
comprising 53 distinguished experts in the field, with the help of several exter-
nal reviewers, provided very detailed and rigorous reviews in most cases, and we
were able to obtain at least three reviews for almost every paper in a timely man-
ner. Based on three weeks of intense deliberations over the reviews, 30 regular
papers (12 pages each) and 35 short papers (6 pages each) were accepted for the
program. This represents an acceptance rate of about 25.7%. Finally, for various
reasons, a few additional papers were excluded, and 28 regular papers and 33
short papers were finally accepted for inclusion in the technical program, which
has been organized in two tracks and is spread across 13 sessions. The program
also contains four invited keynote papers and talks by David Peleg (Weizmann),
Walter Brooks (NASA), Viktor K. Prasanna (USC), and Taieb Znati (U. Pitts-
burgh). The traditional A.K. Choudhury Memorial Lecture will be delivered by
Lalit M. Patnaik (IISc). Tutorials on state-of-the-art themes will be given by R.
Badrinath, Sajal Das, Arup Acharya, and Pradip K. Srimani.

We would like to express our sincere thanks to all whose efforts and participa-
tion have made this conference possible. Firstly, we thank all the authors who sub-
mitted their work to the conference. We are greatly indebted to the PC members
and the external reviewers for submitting detailed reviews. We thank the Keynote
Speakers for accepting our invitation. Thanks to Keynote Chair Sajal Das for orga-
nizing the invited talks fromhighly eminent researchers.Wealso thank theTutorial
Speakers for agreeing to provide a valuable service to the research community. Tu-
torial Chairs Somprakash Bandyopadhyay and Archan Mishra have organized a
great tutorial program. Organizing Chair Arobinda Gupta not only organized all
the hospitality and logistics down to the smallest detail but also played an impor-
tant role in coordinating the paper review process.

Publication Chair Rajeev Kumar, as well as Arobinda Gupta, deserve special
thanks for their painstaking efforts in editing the proceedings. Thanks to our
student volunteers Plaban Bhowmick and Sushanta Karmakar who have put
immense efforts into format checking and correcting the files to bring them to
the present form. We also thank Anirban Sarkar for developing the Web pages
and the online submission software, and for customizing it dynamically during
the submission and review process.
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Once again we welcome all the delegates to the exciting technical program
of IWDC 2005 and hope you enjoy the pleasant winter of Kharagpur in
December.

December 2005 Ajit Pal
Ajay Kshemkalyani
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Distributed Coordination Algorithms for Mobile
Robot Swarms: New Directions and Challenges
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Abstract. Recently there have been a number of efforts to study issues
related to coordination and control algorithms for systems of multiple
autonomous mobile robots (also known as robot swarms) from the view-
point of distributed computing. This paper reviews the literature in the
area and discusses some open problems and future research directions.

1 Introduction

Mobile robots have been developed for over half a century, beginning in the 1950’s
with pioneering projects such as Shannon’s electromechanical mouse Theseus,
Grey Walter’s tortoise and Stanford’s Shakey (cf. [4]). Applications for such
robots abound, including industrial tasks (e.g., moving materials around), mili-
tary operations (e.g., surveillance or automated supply lines), search and rescue
missions, space exploration (e.g., Sojourner’s Mars Pathfinder mission in 1997 or
the recent automated transfer vehicle project of the European Space Agency),
as well as a variety of home applications, from babysitters and pets to smart
appliances such as vacuum cleaners and lawn mowers. Mobile robots come in
all shapes, sizes and designs, and vary in their motion type, sensors, handling
mechanisms, computational power and communication means.

Systems of multiple autonomous mobile robots (often referred to as robot
swarms) have been extensively studied throughout the past two decades (cf.
[17, 8, 24, 27, 12, 5, 41]). The motivating idea is that for certain applications it
may be preferable to abandon the use of a single, strong and costly robot in favor
of a group of tiny, functionally simple and relatively cheap robots. For instance,
it may be possible to use a multiple robot system in order to perform certain
tasks that require spreading over a large area, and thus cannot be performed by a
single robot. Also, robot swarms may be the preferred alternative in hazardous
environments, such as military operations, chemical handling and toxic spill
cleanups, search and rescue missions or fire fighting. In such situations, one may
also be willing to accept the possibility of losing a fraction of the units in the
swarm. Multiple robot systems may also be used for simple repetitive tasks that
humans find extremely boring, tiresome of repelling.
� Supported by the Israel Science Foundation (grant No. 693/04).
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Autonomous mobile robot systems have been studied in a number of different
disciplines in engineering and artificial intelligence. Some notable examples for
directions taken include the Cellular Robotic System [23], swarm intelligence [7],
the self-assembly machine [26], social interaction and intelligent behavior [25],
behavior based robot systems [27, 28, 6], multi robot learning [29, 30], and ant
robotics [42]. See [8] for a survey of the area.

Robot swarms typically consist of robots that are very small, very simple
and very limited in their capabilities. More specifically, they have weak energy
resources, limited means of communication and limited processing power. In fact,
a common and recurring metaphor is that of insect swarms, and a number of
algorithms and methodologies developed for robot swarms draw their inspiration
from this metaphor.

While most of the research efforts invested in mobile robots to date were
dedicated to engineering aspects (focusing on mobility and function), it is clear
that the transition from a single robot to a swarm of robots necessitates some
changes also in the approach taken towards the control and coordination mech-
anisms governing the behavior of the robots. In particular, dealing with the
movements of robots in a swarm raises some algorithmic problems that do not
exist when considering a single mobile robot. The individual robots must coordi-
nate their movements at least partially, in order to avoid colliding or constricting
each other, and to optimize the performance of the entire swarm.

Typical coordination tasks studied in the literature include the following.
Gathering is the task where starting from any initial configuration, the robots
should gather at a single point (within a finite number of steps). A closely related
problem is convergence, requiring the robots to converge to a single point, rather
than gather at it (namely, for every ε > 0 there must be a time tε by which all
robots are within distance of at most ε of each other). Pattern formation requires
the robots to arrange themselves in a simple geometric form such as a circle, a
simple polygon or a line segment. Flocking is the task of following a designated
leader. Additional coordination tasks include partitioning, spreading, exploration
and mapping, patrolling and searching, and avoiding collisions or bottlenecks.

Most of the experimental studies of multiple robot systems dealt with a fairly
small group of robots, typically less than a dozen. A system of that size can
usually be controlled centrally, relying on ad-hoc heuristic protocols. Indeed,
algorithmic aspects were usually handled in such systems in an implicit manner,
mostly ignoring issues such as correctness proof or complexity analysis. However,
multi-robot systems envisioned for the future will consist of tens of thousands of
small individual units, and such systems can no longer be controlled by a central
entity in an efficient way. While hierarchical approaches may be developed, it
seems that certain tasks may need to be managed in a fully decentralized manner.

Subsequently, over the last decade there have been a number of efforts to
study issues related to the coordination and control of robot swarms from the
point of view of distributed computing (cf. [31, 39, 40, 37, 3]), and in particular,
to model an environment consisting of mobile autonomous robots and study the
capabilities the robots must have in order to achieve their common goals.
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This development is fascinating in that it provides the “distributed comput-
ing” community with a distributed model that is fundamentally different in
some central ways from most of the traditional distributed models, including
the model assumptions, the research problems one is required to solve, and the
typical concerns one is faced with in trying to solve those problems.

The current paper reviews this exciting area of research and its main de-
velopments over the last decade, discusses some of the central obstacles and
difficulties, and outlines two main directions for future research.

2 Review of the Literature

2.1 Common Models for Distributed Coordination Algorithms

A number of computational models for robot swarms were proposed in the liter-
ature, and several studies dealt with characterizing the influence of the chosen
model on the ability of a robot swarm to perform certain basic tasks under dif-
ferent constraints. The general setting consists of a group of mobile robots which
all execute the same algorithm in order to perform a given coordination task.

Robot operation cycle: Each robot operates individually in cycles consisting of
the following three steps.

– Look: identify the locations of the other robots and form a map of the
current configuration on your private coordinate system (the model may
assume either a perfect vision or a limited visibility range),

– Compute: execute the given algorithm, obtaining a goal point pG,
– Move: move towards the point pG. (It is sometimes assumed that the robot

might stop before reaching its goal point pG, but is guaranteed to traverse
at least some minimal distance, unless reaching the goal first.)

The “look” and “move” steps are carried out identically in every cycle, indepen-
dently of the algorithm used; algorithms differ only in their “compute” step.

In most papers in this area (cf. [38, 39, 21, 12]), the robots are assumed to be
oblivious (or memoryless), namely, they cannot remember their previous states,
their previous actions or the previous positions of the robots. Hence the algo-
rithm employed by the robots for the “compute” step cannot rely on information
from previous cycles, and its only input is the current configuration.

The robots are also assumed to be indistinguishable, so when looking at the
current configuration, each robot knows its own location but does not know the
identity of the robots at each of the other points. Furthermore, the robots are
assumed to have no means of directly communicating with each other.

The synchronization model: With respect to time, three main models have
been considered. The first [37, 40], hereafter referred to as the semi-synchronous
model, is partially synchronous: all robots operate according to the same clock
cycles, but not all robots are necessarily active in all cycles. Robots that are
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awake at a given cycle may measure the positions of all other robots and then
make a local computation and move instantaneously accordingly. The activation
of the different robots can be thought of as managed by a hypothetical “sched-
uler”, whose only “fairness” obligation is that each robot must be activated and
given a chance to operate infinitely often in any infinite execution. The second,
closely related model of [31, 32, 34], hereafter referred to as the asynchronous
model, differs from the semi-synchronous model in that each robot acts inde-
pendently in a cycle composed of four steps: Wait, Look, Compute, Move. The
length of this cycle is finite but not bounded. Consequently, there is no bound
on the length of the walk in a single cycle, and different cycles of the same robot
may vary in length. The third model is the synchronous model [40], in which
robots operate by the same clock and all robots are active on all cycles.

2.2 Known Results on Distributed Coordination Algorithms

Much of the theoretical research on distributed algorithms for mobile robots was
focused on attempting to answer the question: “how restricted can the robots
be and still be able to accomplish certain cooperative tasks?” In other words,
the primary motivation of the studies presented, e.g., in [37, 40, 31, 32, 39] was
to identify the minimal capabilities a collection of distributed robots must have
in order to accomplish certain basic tasks and produce interesting interaction.

Various aspects of coordination in autonomous mobile robot systems have
been studied in the literature. A basic task that has received considerable at-
tention is the gathering problem. This problem was discussed in [39, 40] in the
semi-synchronous model, where it was shown that gathering two oblivious au-
tonomous mobile robots without common orientation is impossible. In contrast,
an algorithm for gathering N ≥ 3 robots was presented in [40]. In the fully asyn-
chronous model, a gathering algorithm for N = 3, 4 robots is given in [33, 12],
and for arbitrary N ≥ 5 the problem is solved in [11]. Gathering was studied
also (in both the semi-synchronous and asynchronous models) in an environ-
ment of limited visibility. Visibility conditions are modeled via a (symmetric)
visibility graph representing the visibility relation between the robots. The prob-
lem was proven to be unsolvable when the visibility graph is not connected
[21]. A convergence algorithm for any N in limited visibility environments is
presented in [2]. A gathering algorithm in the asynchronous model is described
in [21], under the assumption that all robots share a compass (i.e., agree on
a direction in the plane). The natural gravitational algorithm based on going
to the center of gravity, and its convergence properties, were studied in [15, 14]
in the semi-synchronous and asynchronous models respectively. Gathering with-
out the ability to detect multiplicity but with unlimited memory is studied in
[10], and gathering without both capabilities is shown to be impossible in the
asynchronous model in [35].

Formation of geometric patterns was studied in [3, 37, 39, 40, 16, 19, 9, 22]. The
algorithms presented therein enable a group of robots to self-arrange and spread
itself nearly evenly along the form shaped. The task of flocking, requiring the
robots to follow a predefined leader, was studied in [33].
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Searching a (static or moving) target in a specified region by a group of robots
in a distributed fashion is a natural application for mobile robot systems. Two
important related tasks, studied in [37], are even distribution, namely, requiring
the robots to spread out uniformly over a specified region, and partitioning,
where the robots must split themselves into a number of groups. Finally, the
wake-up task requires a single initially awake robot to wake up all the others. A
variant of this problem is the Freeze-Tag problem studied in [5, 41].

3 Future Directions

3.1 Modifications in the Robot Model

The existing body of literature on distributed algorithms for autonomous mobile
robot systems represents a significant theoretical base containing a rich collection
of tools and techniques. The main goals of initial research in this area were
to obtain basic understanding and develop a pool of common techniques and
methodologies, but equally importantly, to explore and chart the border between
the attainable and the unattainable under the most extreme model, representing
the weakest possible type of robots in the harshest possible external environment.

Consequently, the models adopted in these studies assume the robots to be
very weak and simple. In particular, these robots are generally (although not
always) assumed to be oblivious. They are also assumed to have no common
coordinate system, orientation, scale or compass, and no means of explicit com-
munication (not even of a limited type, such as receiving broadcasts from a
global beacon). It is also assumed that these robots are anonymous, namely,
have no identifying characteristics. Also, the robots are usually taken to be di-
mensionless, namely, treated as points. This implies that robots do not obstruct
each other’s visibility or movement, i.e., two robots whose timed trajectories in-
tersect will simply pass “through” each other. (This is not necessarily a “weak”
property, but it is an unrealistic assumption nontheless.)

These assumptions lead to challenging “distributed coordination” problems
since the only means of communication is through using “positional” or “geo-
metric” information, yielding a novel variant of the classical distributed model
(which is based on direct communication). The resulting questions are interest-
ing from a theoretical point of view, as they allow us to explore the theoretical
limits of robot swarms. Moreover, it is often advantageous to develop algorithms
for the weakest robot types possible, as an algorithm that works correctly for
weak robots will clearly work correctly in a system of stronger robot types.

On the other hand, the extremely weak model often leads to cumbersome,
artificial and sometimes impractical algorithmic solutions. Moreover, towards the
practical application of such algorithmic techniques, it is necessary to develop
a methodology supporting modularity and allowing multi-phase processes. This
becomes difficult if the robots are assumed to be completely memoryless. In fact,
it seems that tasks even slightly more involved than the basic ones studied in
the literature might pose insurmountable barriers under such weak assumptions.
Consider a two-stage project requiring the robots to gather and then perform
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some follow-up task. The feasibility of such a project is unclear: as the robots
are deaf, mute, and forgetful, it seems doubtful that they can accomplish much
once they do meet each other. Furthermore, even if they do try to embark on
the follow-up task after gathering, their obliviousness will repeatedly force them
to immediately resume their attempts to gather.

It is thus clear that the focus on extremely weak robots limits the practicality
of many of the distributed algorithms presented in the literature for autonomous
mobile robot systems, despite their importance as a base of algorithmic ideas,
paradigms and techniques for multi-robot coordination. Subsequently, future
research in this area should focus on modifying the model in order to allow a
more accurate representation, taking into account the fact that actual robots
are usually not so helpless. It is expected that a rigorous algorithmic theory
based on accurate assumptions and realistic models may lead to simpler and
more practical algorithms which can be readily used within experimental and
real systems.

Understandably, it does not make sense to expect the emergence of a single
unifying model covering the entire spectrum of possible applications. Neverthe-
less, let us outline some of the main characteristics a realistic model should have,
with a number of possible variations in certain aspects.

A central modification in the model that has to be examined involves the
effects of equipping each robot with a small amount (say, O(1) bits) of stable
memory. The most immediate benefit is that this will allow the (possibly sig-
nificant) simplification of most existing algorithms for robot coordination. The
reason for this is that many of the complications present in those algorithms
were necessary to overcome this lack of memory, and once robots can save state,
those complications can be dispensed with. The effect of this change should be
systematically investigated across all coordination tasks studied in the litera-
ture. A second advantage of introducing memory is that allowing the robots
some stable memory may facilitate the modular composition of a number of
sub-procedures into a single algorithm, since this stable memory may allow the
robots to recognize the computational phase they’re in at any given moment.
It may be interesting to consider also partial changes along this line, such as
allowing the robot to maintain partial history (say, remember the last k cycles).

A second modification concerns the assumption that the robots in a swarm
lack common orientation. In many natural settings, the robots may enjoy at
least a partial agreement on their orientation. For instance, they may agree on
the North, or use a common unit of distance or a common point of reference. It
could be interesting to examine the effects of such partial orientation agreements
on the solvability and computational complexity of simple coordination tasks.
Our initial studies in this direction indicate that with respect to the gathering
problem, each of these assumptions may suffice to improve the situation, either
by making the problem solvable in settings where impossibility holds otherwise,
or by facilitating a simpler solution.

Another interesting question concerns examining which problems can be solved
more efficiently or in a simpler manner when the robots are allowed a partial
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means of explicit communication. This relaxation is also expected to cause a dra-
matic change in the efficient solvability of various coordination problems. Since
the robots are expected to operate in difficult environments and on rugged ter-
rains, it makes sense to focus on restricted communication forms. For example,
in certain scenarios a robot may be allowed to communicate only with robots
within a limited range (say, radius r from its location), or only with robots to
which its line of sight is unobstructed.

Even in settings where explicit communication is infeasible or prohibitively
expensive, it may be possible (and desirable) to incorporate in the model some
simple means of identification and signalling, such as marking (at least some of)
the robots with colors, flags or visible indicator lights. Such modifications may
be simple to implement and yet may positively affect the ease of solving some
coordination problems, hence this direction deserves thorough examination.

Another assumption that may need to be discarded is that robots are dimen-
sionless, and can pass each other without colliding. A more realistic assumption
is that two (or more) robots moving towards each other will stop once meeting
(say, by colliding) or shortly before (say, through some “soft halt” mechanism
allowing robots to detect a near-collision and halt).

3.2 Introducing Fault Tolerance

While the classical model is rather restrictive on the one hand, it is perhaps
somewhat “too optimistic” on the other, in that it assumes perfectly functioning
robots. As future robot swarms are expected to comprise of cheap, simple and
relatively weak robots and operate under harsh conditions, the issue of resilience
to failure becomes crucial, since in such systems one cannot possibly rely on
assuming fail-proof hardware or software.

When considering the issue of coping with faults, we may classify the problems
that need to be dealt with into two types: problems that occur regularly during
the normal operation of every robot as a result of its inherent imperfections, and
problems resulting from the malfunction of some robots. Next we discuss these
two fault types and possible ways to overcome them.

Overcoming Robot Imperfections. The common robot model makes the as-
sumption that the configuration map obtained by a robot observing its surround-
ings is perfect. In fact, certain algorithmic solutions proposed in the literature
rely critically on this assumption. In practice, however, the robot measurements
suffer from nonnegligible inaccuracies in both distance and angle estimations.
(For instance, the accuracy of range estimation in sonar sensors is about ±1%
and the angular separation is about 3◦, cf. [36].) The same applies to the precision
of robot movements, as a variety of mechanical factors, including unstable power
supply, friction and force control, make it hard to control the exact distance a
robot traverses in a single cycle, or to predict it with high accuracy.

Another unrealistic assumption is that robots are capable of carrying out infi-
nite precision calculations over the reals. For instance, this assumption underlies
the distinction between the gathering and convergence problems. In fact, it is
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sometimes assumed that the robots have unlimited computational power. The
fact that in reality robots cannot perform perfect precision calculations may seem
insignificant, since floating point arithmetic can be carried to very high accuracy
with modern computers. However, this may prove to be a serious problem. For
instance, the point that minimizes the sum of distances to the robots’ locations
(also known as the Weber point) may be used to achieve gathering. However,
this point is not computable, due to its infinite sensitivity to location errors.
More generally, the correctness of many of the distributed coordination algo-
rithms presented in the literature is proven by relying on basic properties from
Euclidean geometry. Unfortunately, these properties are often no longer valid
when measurement or calculation errors occur. To illustrate this point, consider
Algorithm 3-Gather presented in [1], which gathers three robots using several
simple rules. One of these rules states that if the robots form an obtuse triangle,
then they move towards the vertex with the obtuse angle. Thus, as shown in [13],
this algorithm might fail to achieve even convergence in the presence of angle
measurement errors of at least 15◦. Similar problems arise with other algorithms
described in the literature.

Subsequently, for the “next-generation” model of robot swarms, it is desirable
to discard these unrealistic assumptions and examine whether efficient algorith-
mic solutions can still be obtained for coordination problems of interest.

An initial study [13] examines a model in which the robot’s location estima-
tion and movements are imprecise, with imprecision bounded by some accuracy
parameter ε known at the robot’s design stage. The measurement imprecisions
can affect both distance and angle estimations. Formally, the robot’s distance
estimation is ε-precise if, whenever the real distance to an observed point in the
robot’s private coordinate system is D, the measurement d taken by the robot
for that distance satisfies (1 − ε)d < D < (1 + ε)d. A similar imprecision is
allowed for angle estimations.

Several impossibility results are established in [13], limiting the maximum in-
accuracy that still allows convergence. Specifically, it is shown that gathering is
impossible for any number of robots assuming inaccuracies in both distance and
angle measurements, even in a fully synchronous model and when the robots
have unlimited memory and are allowed to use randomness. (If angle measure-
ments are always exact, then impossibility of gathering is known only for N = 2
robots, and is conjectured for any N .) Hence at best, only the weaker require-
ment of convergence can be expected. Actually, it seems reasonable to conjecture
that even convergence is impossible for robots with large measurement errors.
The exact limits are not completely clear. Some rather weak limits on the possi-
bility of convergence are given in [13], where it is shown that for a configuration
of N = 3 robots having an error of π/3 or more in angle measurement, there
is no deterministic algorithm for convergence even assuming exact distance es-
timation, fully synchronous model and unlimited memory. On the other hand,
an algorithm is presented in [13] for convergence under bounded imprecision
(specifically, ε < 0.2 or so) in the synchronous and semi-synchronous models.
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Some natural questions to be explored further include the following. First, the
precision required of the robots for the algorithm of [13] to work correctly is still
significant, and improved techniques are necessary for overcoming this. Second,
it would be interesting to obtain similar results in the asynchronous setting.
Third, similar techniques should be developed for other coordination tasks, such
as pattern formation, search, etc.

It may also be interesting to examine distributed coordination algorithms
with an eye towards complexity, trying to develop variants that are both sim-
ple and resource efficient in terms of internal computation costs at each robot.
One specific aspect of this is discarding the assumption of infinite precision
in real computations, and settling for approximations. This may necessitate
some relaxations in the definitions of certain common tasks (such as gather-
ing at a single point or forming perfect geometric objects) to fit these weaker
assumptions.

Overcoming Robot Malfunctions. Robot swarms are intended to operate
in tough and hazardous environments, so it is to be expected that certain robots
may malfunction. Indeed, one of the main attractive features of robot swarms
is their potential for enhanced fault tolerance through inherent redundancy. For
example, a fault tolerant algorithm for gathering should be required to ensure
that even if some fraction of the robots fails in any execution, all the nonfaulty
robots still manage to gather at a single point within a finite time, regardless of
the actions taken by the faulty ones.

Perhaps surprisingly, however, this aspect of multiple robot systems has been
explored to very little extent so far. In fact, almost all the results reported in the
literature rely on the assumption that all robots function properly and follow
their protocol without any deviation.

One exception concerns transient failures. As observed in [40, 37, 20], any algo-
rithm that works correctly on oblivious robots is necessarily self-stabilizing, i.e.,
it guarantees that after any transient failure the system will return to a correct
state and the goal will be achieved. Another fault model studied in [37] considers
restricted sensor and control failures, and assumes that whenever failures occur
in the system, the identities of the faulty robots become known to all robots.
Unfortunately, this assumption might not hold in many typical settings, and in
case unidentified faults do occur in the system, it is no longer guaranteed that
the algorithms of [37, 40] remain correct.

Following traditional approaches in the field of distributed computing, it is
interesting to study robot algorithms under the crash and Byzantine fault mod-
els. In order to pinpoint the effect of faults, all other aspects of the model can
be left unchanged, following the basic models of [37, 31]. In the Byzantine fault
model it is assumed that a faulty robot might behave in arbitrary and unfore-
seeable ways. It is sometimes convenient to model the behavior of the system by
means of an adversary which has the ability to control the behavior of the faulty
robots, as well as the “undetermined” features in the behavior of the nonfaulty
processors (e.g., the distance to which they move). In the crash fault model, it
is assumed that the only faulty behavior allowed for a faulty robot is to crash,



10 D. Peleg

i.e., stop functioning. This may happen at any point in time during the cycle,
including any time during the movement towards the goal point.

In [43], an algorithm is given for the Active Robot Selection Problem (ARSP) in
the presence of initial crash faults. The ARSP creates a subgroup of nonfaulty
robots from a set that includes also initially crashed robots and enables the
robots in that subgroup to recognize one another.

A systematic study of the gathering problem in failure-prone robot systems
is presented in [1]. Under the crash fault model, it is shown in [1] that the gath-
ering problem with at most one crash failure is solvable in the semi-synchronous
model. Considering the Byzantine fault model, it is shown that it is impossible to
perform a successful gathering in the semi-synchronous or asynchronous model
even in the presence of a single fault. For the synchronous model, an algorithm
is presented for solving the gathering problem in N -robot systems whenever the
maximum number of faults f satisfies 3f + 1 ≤ N .

In general, the design of fault-tolerant distributed control algorithms for mul-
tiple robot systems is still a largely unexplored direction left for future study.
Particularly, a number of questions are left open in [1]. In the synchronous model,
while the algorithm of [1] does solve the problem even with Byzantine faults, its
complexity is prohibitively high, rendering it impractical except maybe for very
small systems. Hence it is desirable to look for a simpler and faster algorithm.
In the asynchronous and semi-synchronous models, the techniques of [1] are in-
adequate for handling more than a single fault, again limiting their applicability
rather drastically, and it is interesting to investigate approaches for extending
these techniques to multiple failures. More generally, as the asynchronous model
captures a more faithful representation of typical actual settings, we view the
derivation of suitable algorithms for performing various coordination tasks in this
model in the presence of multiple crash faults as one of the central directions
of research in this area. Turning to Byzantine faults in the asynchronous and
semi-synchronous models, as such faults make gathering impossible, a plausible
alternative is to try to solve the slightly weaker problem of convergence.

Moreover, as the initial study of [1] was limited to the gathering problem, it
would be interesting to investigate also the fault-tolerance properties of currently
available algorithms for other tasks described above (e.g., formation of geometric
patterns). Specifically, a central theme of both theoretical and practical signifi-
cance concerns identifying the maximum number of faults under which a solution
for a particular coordination problem is still feasible. It would be attractive to
develop a general theory answering this question, similar to the theory developed
for the analogous question in classical distributed systems.
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Abstract. This paper deals with compact label-based representations
for trees. Consider an n-node undirected connected graph G with a pre-
defined numbering on the ports of each node. The all-ports tree labeling
Lall gives each node v of G a label containing the port numbers of all
the tree edges incident to v. The upward tree labeling Lup labels each
node v by the number of the port leading from v to its parent in the
tree. Our measure of interest is the worst case and total length of the
labels used by the scheme, denoted Mup(T ) and Sup(T ) for Lup and
Mall(T ) and Sall(T ) for Lall. The problem studied in this paper is the
following: Given a graph G and a predefined port labeling for it, with
the ports of each node v numbered by 0, . . . , deg(v) − 1, select a rooted
spanning tree for G minimizing (one of) these measures. We show that
the problem is polynomial for Mup(T ), Sup(T ) and Sall(T ) but NP-hard
for Mall(T ) (even for 3-regular planar graphs). We show that for every
graph G and port numbering there exists a spanning tree T for which
Sup(T ) = O(n log log n). We give a tight bound of O(n) in the cases of
complete graphs with arbitrary labeling and arbitrary graphs with sym-
metric port assignments. We conclude by discussing some applications
for our tree representation schemes.

1 Introduction

This paper deals with compact label-based representations for trees. Consider
an n-node undirected connected graph G. Assume that we are given also a
predefined numbering on the ports of each node, i.e., every edge e incident to a
node u is given an integer label lu(e) in {0, . . . ,deg(u)−1} so that lu(e) �= lu(e′)
for any two distinct edges e and e′ incident to u. In general, one may consider
two types of schemes for representing a spanning tree in a given graph. An all-
ports tree representation has to ensure that each node in the graph knows the
port numbers of all its incident tree edges. An upward tree representation has
to ensure that each node in the graph knows the port number of the tree edge
connecting it to its parent. Such representations find applications in the areas
of data structures, distributed computing, communication networks and others.
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Corresponding to the two general representation types discussed above, we
consider two label-based schemes. The all-ports tree labeling Lall labels each
node v of G by a label containing the port numbers of all the tree edges incident
to v. The upward tree labeling Lup labels each node v of G by the number of the
port connected to the edge e of T leading from v toward the root. We use the
standard binary representation of positive integers to store the port numbers.

Our measure of interest is the worst case or average length of the labels
used by tree labeling schemes. Let us formalize these notions. Given a graph G
(including a port numbering) and a spanning tree T for G,

– the sum of the label sizes in the labeling Lup (respectively, Lall) on T is
denoted by Sup(T ) (resp., Sall(T ));

– the maximum label size in the labeling Lup (respectively, Lall) on T is de-
noted by Mup(T ) (resp., Mall(T )).

This paper studies the following problem. Given a graph G and a predefined
port labeling for it, with the ports of each node v numbered 0, . . . ,deg(v) − 1,
select a rooted spanning tree T for G minimizing (one of) these measures.

We show that there are polynomial time algorithms that given a graph G
and a port numbering, construct a spanning tree T for G minimizing Mup(T ) or
Sup(T ). Moreover, we conjecture that for every graph G, and any port numbering
for G, there exists a tree T spanning G, for which Sup(T ) = O(n). In other
words, we conjecture that there is a tree for which the upward labeling requires
a constant number of bits per node on average. We establish the correctness
of this conjecture in the cases of complete graphs with arbitrary labeling and
arbitrary graphs with symmetric port assignments. For arbitrary graph, we show
a weaker algorithm, constructing for a given graph G (with its port numbering)
a spanning tree T with Sup(T ) = O(n log log n).

Turning to all-port labeling schemes, for any spanning tree T the labeling
Lall has average label size O(log Δ) in graphs of maximum degree Δ, which is
optimal on some n-node graphs of maximum degree Δ. It turns out that here
there is a difference between the measures Sall(T ) and Mall(T ). We show that
there is a polynomial time algorithm that given a graph G and a port numbering,
constructs a tree T minimizing Sall(T ). In contrast, the problem of deciding, for
a given graph G with a port numbering and an integer k, whether there exists
a spanning tree T of G satisfying Mall(T ) ≤ k is NP-hard. This holds even
restricted to 3-regular planar graphs, and even for fixed k = 3. Nevertheless,
denoting the smallest maximum degree of any spanning tree for the graph G by
δmin, there is a polynomial time approximation of the tree of minimum Mall(T ),
up to a multiplicative factor of O(log Δ/ log δmin).

We conclude by discussing some applications for our tree representation
schemes, including basic distributed operations such as broadcast, convergecast
and graph exploration. A number of well-known solutions to these problems (cf.
[11], [1], [12]) are based on maintaining a spanning tree for the network and
using it for efficient communication. All standard spanning tree constructions
that we are aware of do not take into account the memory required to store the
spanning tree, and subsequently, the resulting tree may in general require a total
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of up to O(n log Δ) memory bits over an n-node network of maximum degree
Δ. Using the tree representations developed herein may improve the memory
requirements of storing the tree representation. For instance, for applications
that require only an upward tree representation, our construction yields a total
memory requirement of O(n log log n) bits, which is lower in high degree graphs.
These applications are discussed in more detail in Section 4.

The all-port labeling scheme is particularly convenient for broadcast appli-
cations because it minimizes the number of messages. For less demanding tasks
such as graph exploration, more compact labeling schemes can be defined. In
particular, [3] describes a labeling scheme which uses only three different labels
and allows a finite automaton to perform exploration in time at most O(m) on
m-edge graphs.

2 Upward Tree Labeling Schemes with Short Labels

2.1 Basic Properties

Let us first establish a naive upper bound on Sup(T ) and Mup(T ). In the basic
upwards tree labeling scheme, the label kept at each node v is the port number
of the tree edge leading from v toward the root. Hence no matter which tree is
selected, the label assigned to each node v by the upwards tree labeling scheme
uses at most �log deg(v)� bits. This implies the following bounds. (Throughout,
some proofs are omitted.)

Lemma 1. For every n-vertex graph G of maximum degree Δ, and for ev-
ery spanning tree T of G, we have (1) Mup(T ) ≤ �log Δ�, and (2) Sup(T ) ≤∑

v�log deg(v)�.

Note that the second part of the lemma implies that in graph families with
a linear number of edges, such as planar graphs, the average label size for any
spanning tree is at most O(1).

Given G = (V, E), let G = (V, X) be the directed graph in which every edge
{u, v} in E corresponds to two arcs (u, v) and (v, u) in X . The arcs of G are
weighted according to the port numbering of the edges in G, i.e., the arc (u, v)
of G has weight

ω(u, v) =
{

1, p = 0,
�log p�+ 1, p ≥ 1,

where p is the port number at u of the edge {u, v} in G. That is ω(u, v) is the
number of bits in the standard binary representation of positive integers required
to encode1 port number p.

Finding a spanning tree T minimizing Mup(T ) is easy by identifying the
smallest k such that the digraph Gk obtained from G by removing all arcs of

1 Note that this encoding is not a prefix coding and therefore might not be decodable.
However, efficient encoding methods exist which are asymptotically optimal (cf. [8])
and therefore the overall results are also valid for such encoding.
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weight greater than �log k� + 1, contains a spanning tree directed toward the
root. Thus we have the following.

Proposition 1. There is a polynomial time algorithm that, given a graph G and
a port numbering, constructs a spanning tree T for G minimizing Mup(T ).

Similarly, applying any Minimum-weight Spanning Tree (MST) algorithm for
digraphs (cf. [2], [7]) on G with weight function ω, we get the following.

Proposition 2. There is a polynomial time algorithm that, given a graph G and
a port numbering, constructs a spanning tree T for G minimizing Sup(T ).

There are graphs for which the bound on Mup specified in Lemma 1 is reached
for any spanning tree T (e.g., a graph composed of two Δ-regular graphs linked
by a unique edge labeled Δ at both of its extremities). However, this is not the
case for Sup, and we will show that, for any graph, there is a spanning tree T
for which Sup(T ) is much smaller than the bound in Lemma 1.

2.2 Complete and Symmetric Graphs

First, consider the case of a complete graph with arbitrary labeling. We show that
there exists a spanning tree T of it, for which Sup(T ) = O(n). We establish the
claim by presenting an algorithm that yields a labeling of this cost. The algorithm
is a variant of Kruskal’s minimum-weight spanning tree (MST) algorithm (cf.
[4]). The algorithm maintains a collection of rooted directed tree with the edges
of each tree directed towards its root. Initially, each vertex forms a tree on its
own. The algorithm merges these trees into larger trees until it remains with a
single tree giving the solution.

The algorithm operates in phases. Let size(T ) denote the size (number of
nodes) of the tree T . A tree T is small for phase k ≥ 1 if size(T ) < 2k.

Each phase k of the algorithm consists of four steps. At the beginning of
the phase, we identify the collection of small trees for the phase: Tsmall(k) =
{T | size(T ) < 2k}. Second, for each tree T ∈ Tsmall(k) with root r(T ), we
look at the set S(T ) of outgoing edges that connect r(T ) to nodes in other
trees T ′ �= T , and select the edge e(T ) of minimum weight in S(T ). (Note that
S(T ) �= ∅ since the graph is complete.) Third, we add these edges to the col-
lection of trees, thus merging the trees into 1-factors. Formally, a 1-factor is a
weakly-connected directed graph of out-degree 1. Intuitively, a 1-factor is a di-
rected subgraph consisting of a directed cycle and a collection of directed trees
rooted at the nodes of the cycle. Figure 1 illustrates two 1-factors. Finally, for
the last of the four steps, in each 1-factor we arbitrarily select one of the edges
on the cycle and erase it, effectively transforming the 1-factor back into a rooted
directed tree. This process is continued until a single tree remains, which is the
desired tree.

Claim. Denote the collection of trees at the beginning of the kth phase, k ≥ 1,
by T k

1 , . . . , T k
mk

.
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Fig. 1. Two 1-factors

1.
∑mk

j=1 size(T k
j ) = n for every k ≥ 1;

2. size(T 1
j ) = 1 for every 1 ≤ j ≤ n (observe that m1 = n);

3. size(T k
j ) ≥ 2k−1 for every k ≥ 1 and 1 ≤ j ≤ mk;

4. mk ≤ n/2k−1 for every k ≥ 1.
5. The number of phases is at most �log n�.

Observe that when selecting the outgoing edge e(T k
j ) for the root r(T k

j ) on
the kth phase, the only outgoing edges of r(T k

j ) excluded from consideration are
the size(T k

j )−1 edges leading to the other nodes in T k
j . Hence even if all of these

edges are “lighter” than the edges leading outside the tree, the port number used
for e(T k

j ) is at most size(T k
j )− 1, hence:{

ω(e(T k
j )) = 1 if k = 1

ω(e(T k
j )) ≤ �log(size(T k

j )− 1)�+ 1 if k > 1

Moreover, we have log size(T k
j ) < k because outgoing edges are selected only for

small trees, and thus we have ω(e(T k
j )) ≤ k. Hence the total weight Ck of the

edges added to the structure throughout the kth phase satisfies

Ck ≤
∑

T k
j ∈Tsmall(k)

k = k · |Tsmall(k)| ≤ k ·mk.

By Part 4 of Claim 2.2, Ck ≤ kn/2k−1, and the total weight C of the resulting
tree satisfies C =

∑
k≥1 Ck ≤

∑
k≥1 kn/2k−1 ≤ 4n. We have the following.

Proposition 3. On the complete graph (with an arbitrary port numbering),
there exists a spanning tree T for which Sup(T ) = O(n).

Next, we consider another interesting and potentially applicable special case,
namely, arbitrary graphs with symmetric port assignment.

Proposition 4. On graphs with symmetric port assignments (i.e., where for
every edge e = {u, v}, the port numbers of e at u and v are identical), there
exists a spanning tree T for which Sup(T ) = O(n).

Proof. For graphs with symmetric port assignments, we again present an algo-
rithm that yields a labeling of cost O(n). The algorithm is a variant of the one
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r(T)

r(T’)=x

(a) (b)

Fig. 2. (a) The tree T . (b) The tree T ′.

used for proving Property 3. The general structure of the algorithm is the same,
i.e., it is based on maintaining a collection of rooted directed tree and merging
them until remaining with a single tree. The main difference has to do with the
fact that since the graph is not complete, it may be that for the small tree T
under consideration, the set S(T ) is empty, i.e., all the outgoing edges of the root
r(T ) go to nodes inside T . Therefore, an additional step is needed, transforming
T into a tree T ′ on the same set of vertices, with the property that the new root,
r(T ′), has an outgoing edge to a node outside T ′.

This is done as follows. We look for the lightest (least port number) outgoing
edge from some node x in T to some node outside T . Note that such an edge
must exist so long as T does not span the entire graph G, as G is connected. Let
p(T ) = (v1, v2, . . . , vj) be the path from r(T ) to x in T , where r(T ) = v1 and
vj = x. Transform the tree T into a tree T ′ rooted at x by reversing the directions
of the edges along this path. (See Figure 2 where dashed edges represent the path
from the original root to T .) Observe that by symmetry, the cost of T ′ is the
same as that of T , so the proof can proceed as for Property 3. ��

2.3 Arbitrary Graphs

For the general setting, we show the universal bound of O(n log log n) on Sup.
Again, the algorithm yielding this cost is a variant of the one used for proving
Property 3. As in the proof of Property 4, since the graph is not complete, it
may be that for the small tree T under consideration, all the outgoing edges of
the root r(T ) go to nodes inside T . It is thus necessary to transform T into a tree
T ′ on the same set of vertices so that the new root r(T ′) has an outgoing edge
to a node outside T ′. However, it is not enough to pick an arbitrary outgoing
edge and make its internal endpoint the new root because, in the absence of
symmetry, the reversed route may be much more expensive than the original
path, thus causing the transformed tree to be too costly.

Instead, the transformation is performed as follows (cf. Fig. 3). We look for
the shortest path (in hops) from the current root r(T ) to the node in T that
is the closest to the root, and that has an outgoing edge to a node outside T .
Moreover, all the nodes of the path must be in T . (Such a path must exist so
long as T does not span the entire graph G, as G is connected.) Let this path be
p(T ) = (v1, v2, . . . , vj), where (1) r(T ) = v1, (2) v1, . . . , vj ∈ T , and (3) vj has a
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p(T)

3v

2v

1r(T)=v

r(T’)

(b)(a)

Fig. 3. (a) The tree T and the escape path p(T ) (dashed). (b) The tree T ′.

neighbor z �∈ T . For every 1 ≤ i ≤ j − 1, we add the edge (vi, vi+1) of p(T ) to
T . In turn, for 2 ≤ i ≤ j, we remove from T the (unique) outgoing edge of vi

in T , (vi, wi). The resulting subgraph is a directed tree T ′ rooted at r(T ′) = vj .
(Note that in case the original root r(T ) has an outgoing edge to some node z
outside T , this transformation uses p(T ) = (r(T )) and leaves T unchanged.)

Clearly, applying these transformations on the small trees in each phase in-
curs additional costs. To estimate them, we bound from above the additional
cost incurred by adding the paths p(T ) for every tree T ∈ Tsmall(k) in ev-
ery phase k. For such a tree T with p(T ) = (v1, v2, . . . , vj), denote the set of
nodes whose outgoing edge was replaced (hence whose labels may increase) by
A(T ) = {v1, v2, . . . , vj−1}, and let Ak =

⋃
T∈Tsmall(k) A(T ).

Partition the nodes of the graph G into classes by their degrees, setting

D� = {v | 2�−1 < deg(v) ≤ 2�}

for � ≥ 0. Define A�(T ) = A(T ) ∩D� and A�
k = Ak ∩D� =

⋃
T∈Tsmall(k) A�(T ).

Claim.
∑

v∈A(T ) deg(v) ≤ 3·size(T ) for every phase k ≥ 1 and tree T ∈ Tsmall(k).

Proof. Note that the nodes of A(T ) have all their neighbors inside T , hence their
degrees in the (undirected) subgraph G(T ) induced by the nodes of T are the
same as their degrees in G. Since p(T ) is a shortest path from v1 to vj in G(T ),
we have that every node w in G(T ) has at most 3 neighbors in p(T ) (otherwise
it would provide a shortcut yielding a shorter path between v1 and vj in G(T ),
contradicting the assumption). Thus the number of edge ports in the nodes of
p(T ) is at most 3 · size(T ). ��

Claim. |A�
k| ≤ 3n/2�−1 for every phase k.

To effectively bound the cost increases, we rely on the following observation.
A node v may participate in several paths p(T ) throughout the construction.
Each time, it may replace its outgoing edge with a new one. Nevertheless, the
cost it incurs in the final tree is just the cost of its final outgoing edge, since
all the other outgoing edges added for it in earlier phases were subsequently
replaced. Denote this cost by X(v). (For nodes that did not incur such costs at
all throughout the execution, let X(v) = 0.) For a set of nodes W , let X(W ) =∑

v∈W X(v).
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Claim. For every �, (1) X(D�) ≤ � · |D�|, and (2) X(D�) ≤ 3�n�logn�/2�−1.

Proof. By the definition of D�, we have X(v) ≤ �log deg(v)� ≤ � for every node
v ∈ D�. Part (1) of the claim follows. For part (2), we first note that Claim 2.2
holds for the setting of the T k

j in arbitrary graphs. Hence, the number of phases

is at most �log n� by Claim 2.2, item 5. Therefore X(D�) ≤
∑�log n�

k=1 X(A�
k) ≤∑�log n�

k=1 � · |A�
k|. Using Claim 2.3 we get X(D�) ≤ �log n� · � · 3n/2�−1. ��

Claim. The total additional cost incurred by the nodes is O(n log log n).

Proof. Partition the total additional cost X into X = XL + XH where XL =∑
�≤log log n X(D�) and XH =

∑
�>log log n X(D�). Note that by item (1) of Claim

2.3, XL ≤
∑

�≤log log n � · |D�| ≤ n log log n. Also, by item (2) of Claim 2.3,
XH ≤

∑
�>log log n 3�n�logn�/2�−1 ≤ 3n�log n� · 2 log log n

log n = O(n log log n). ��

Consequently, we have the following.

Theorem 1. There is a polynomial time algorithm that given a graph G and a
port numbering constructs a tree T spanning G in which Sup(T ) = O(n log log n).

3 All-Ports Tree Labeling Schemes with Short Labels

Let us now turn our attention to Sall and Mall. Any spanning tree T enables
the construction of a labeling Lall with average label size O(log Δ) in graphs of
maximum degree Δ. This is optimal in the sense that there are n-node graphs
of maximum degree Δ and port numberings for which Sall(T ) = Ω(n log Δ) for
any spanning tree T . For instance, take a bipartite graph G = (V1, V2, E) where
Vi = {(i, x), x = 0, . . . , n − 1}, i = 1, 2, and {(1, x), (2, y)} ∈ E if and only if
(y−x) mod n ≤ Δ−1. Then, label any {(1, x), (2, y)} ∈ E by l = (y−x) mod n
at (1, x), and by Δ − l at (2, y). For any tree T spanning G, at least one of the
two labels at the extremity of every edge of T is larger than �Δ/2�, and therefore
Sall(T ) ≥ Ω(n log Δ).

However, for many graphs, one can do better by selecting an appropriate
spanning tree T . Assign a weight ω(l) + ω(l′), where ω(x) = 1 for x = 0 and
�log x�+ 1 for x ≥ 1, to every edge e where l and l′ are the port numbers of e at
its two endpoints. It is easy to check that running any MST algorithm returns
a tree T minimizing Sall(T ). Thus, we have the following.

Proposition 5. There is a polynomial time algorithm that given a graph G and
a port numbering constructs a tree T minimizing Sall(T ).

On the other hand, by a reduction from the Hamiltonian path problem in 3-
regular planar graphs, we have the following negative result.

Proposition 6. The following decision problem is NP-hard.
Input: A graph G with a port numbering, and an integer k;
Question: Is there a spanning tree T of G satisfying Mall(T ) ≤ k.

This result holds even restricted to cubic planar graphs, and even for fixed k = 3.
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Obviously, one way to obtain a tree T with small Mall(T ) is to construct a
spanning tree with small maximum degree. Finding a spanning tree with the
smallest maximum degree δmin in an arbitrary graph G is NP-hard. However, it
is known (cf. [9]) that a spanning tree with maximum degree at most δmin + 1
can be computed in polynomial time. Hence we have the following.

Theorem 2. There is a polynomial time algorithm that given a graph G and
a port numbering constructs a spanning tree T for G satisfying Mall(T ) =
O(δmin log Δ).

On the other hand, any tree T ∗ minimizing Mall in a graph G has a degree
ΔT ∗ ≥ δmin. Thus Mall(T ∗) ≥

∑ΔT ∗
i=1 log i ≥

∑δmin

i=1 log i ≥ Ω(δmin log δmin).
Hence we obtain a polynomial time approximation of the optimal tree for Lall,
up to a multiplicative factor of O(log Δ/ log δmin).

4 Applications of Tree Labeling Schemes

Let us now discuss the applicability of our tree representation schemes in various
application domains, mainly in the context of distributed network algorithms.
Hereafter we consider an n-vertex m-edge graph G of maximum degree Δ, such
that the smallest maximum degree of any spanning tree for G is δmin.

4.1 Information Dissemination on Spanning Trees

A number of fundamental distributed processes involve collecting information
upwards or disseminating it downwards over a spanning tree of the network. Let
us start with applications of our tree representation schemes for these operations.

Broadcast. The broadcast operation requires disseminating an information
item initially available at the root to all the vertices in the network. Given a span-
ning tree of the graph, this operation can be performed more efficiently than by
the standard flooding mechanism (cf. [11], [1], [12]). Specifically, whereas flood-
ing requires O(m) messages, broadcasting on a spanning tree can be achieved
using only O(n) messages.

Broadcast over a spanning tree can be easily performed given an all-ports
tree representation scheme, with no additional communication overheads. Con-
sider the overall memory requirements of storing such a representation. Using an
arbitrary spanning tree may require a total of O(n log Δ) memory bits through-
out the entire network and a maximum of O(Δ log Δ) memory bits per node.
In contrast, using the constructions of Property 5 or Theorem 2, respectively,
yields the following bounds.

Corollary 1. For any graph G, it is possible to construct an all-port spanning
tree representation using either optimal total memory over the entire graph or
maximum memory O(δmin log Δ) per node, in a way that will allow performing
a broadcast operation on the graph using O(n) messages.
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Upcast and Convergecast. The basic upcast process involves collecting in-
formation upwards to the root over a spanning tree. This task is rather general,
and refers to a setting where each vertex v in the tree has an input item xv

and it is required to communicate all the different items to the root. Analysis
and applications of this operation can be found, e.g., in [12]. Any representa-
tion for supporting such operation must allow each vertex to know its parent in
the tree.

Again, using an arbitrary spanning tree may require a total of O(n log Δ)
memory bits throughout the network. Observe, however, that the upcast process
does not require knowing the children so it can be based on an upwards tree
representation scheme. Given such a representation, the upcast process can be
implemented with no additional overheads in communication. Hence using the
construction of Theorem 1 we get the following.

Corollary 2. For any graph G, it is possible to construct an upwards tree rep-
resentation using O(n log log n) memory bits over the graph in a way that will
allow performing an upcast on the graph using O(n) messages.

A more specialized process, known as the convergecast process, involves collect-
ing information of the same type upwards over a spanning tree. This process
may include the computation of various types of global functions. Suppose that
each vertex v in the graph holds an input xv and we would like to compute
some global function f(xv1 , . . . , xvn) of these inputs. Suppose further that f is
a semigroup function, namely, it enjoys the following two properties: (1) f(Y ) is
well-defined for any subset Y ⊆ {xv1 , . . . , xvn} of the inputs, (2) f is associative
and commutative.

A semigroup function f can be computed efficiently on a tree T by a con-
vergecast process, in which each vertex v in the tree sends upwards the value of
the function on the inputs of the vertices in its subtree Tv, namely, fv = f(Xv)
where Xv = {xw | w ∈ Tv}. An intermediate vertex v with k children w1, . . . , wk

computes this value by receiving the values fwi = f(Xwi), 1 ≤ i ≤ k, from
its children, and applying fv ← f(xv, fw1 , . . . , fwk

), relying on the associativity
and commutativity of f . The message and time complexities of the converge-
cast algorithm on a tree T are O(n) and O(Depth(T )), respectively, matching
the obvious lower bounds. For a more detailed exposition of the convergecast
operation and its applications see [12].

Observe that the convergecast process requires each vertex to receive mes-
sages from all its children before it can send a message upwards to its parent.
This implies, in particular, that a vertex needs to know the number of children
it has in the tree. This means that when using the spanning tree T , the label
size at each node v has another component of log(degT (v)). Hence the max-
imum label size increases by log δmin, and the average label size increases by
1
n

∑
v log(degT (v)) = O(1).

Here, too, using an arbitrary spanning tree would require a total of O(n log Δ)
memory bits throughout the network. In contrast, using the construction of
Theorem 1 we get the following.
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Corollary 3. For any graph G, it is possible to construct an upwards tree rep-
resentation using a total of O(n log log n) memory bits over the entire graph in
a way that will allow performing a convergecast operation on the graph in time
at most Diam(G) using O(n) messages.

4.2 Fast Graph Exploration

Graph exploration is an operation carried out by a finite automaton, simply
referred to in this context as a robot, moving in an unknown graph G = (V, E).
The robot has no a priori information about the topology of G and its size. The
robot can distinguish between the edges of the currently visited node by their
port numbers. The robot has a transition function f , and a finite number of
states. If the robot enters a node of degree d through port i in state s, then it
switches to state s′ and exits the node through port i′, where (s′, i′) = f(s, i, d).
The objective of the robot is to explore the graph, i.e., to visit all its nodes.

The tree labeling schemes allow fast exploration. Specifically, the all-ports
labeling scheme Lall allows exploration to be performed in time at most 2n
in n-node graphs. The upward labeling scheme Lup allows exploration to be
performed in time at most 4m in m-edge graphs.

More compact labeling schemes can be defined for graph exploration. In
particular,[3] describes a labeling scheme using only 2 bits per node. However,
this latter scheme yields slower exploration protocols, i.e., ones requiring 20m
steps in m-edge graphs.

Suppose our graph G has a spanning tree T . As a consequence of [6], if the
labels allow the robot to infer at each node v, for each edge e incident to v in
G, whether e belongs to T , then it is possible to traverse G perpetually, and
traversal is ensured after time at most 2n. Indeed, the exploration procedure
in [6], which applies to trees only, specifies that when the robot enters node v by
port i, it leaves the node by port (i + 1) mod d where d = deg(v). In the case of
general graphs, exploration is performed as follows. When the robot enters node
by port i, it looks for the first j in the sequence i + 1, i + 2, . . . such that port
j mod d is incident to a tree-edge and leaves the node by port j mod d.

Clearly, this exploration procedure performs a DFS traversal of T . Hence, as
a corollary of [6], using the all-ports labeling scheme Lall, we get the following.

Corollary 4. It is possible to label the nodes of every graph G in polynomial
time, with labels of maximum size O(δmin log Δ) and average size O(log Δ), in a
way that will allow traversal of the graph in time 2n by a robot with no memory.

The following result shows that exploration can be performed with smaller labels,
using the upward labeling scheme on a spanning tree of the graph.

Lemma 2. Consider a node-labeled m-edge graph G, with a rooted spanning tree
T . It is possible to perform traversal of G within time at most 4m, terminating
at the root of T .

By Lemma 2, using a labeling Lup on an arbitrary spanning tree and relying on
Lemma 1 and Theorem 1, we get the following.
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Corollary 5. It is possible to label the nodes of every graph G with labels of
maximum size O(log Δ) and average size O(log log n) in a way that will allow
traversal of the graph in time at most 4m.

By Lemma 1, the scheme uses labels of total size at most
∑

v�log deg(v)�. This
means, in particular, that in graph families with a linear number of edges, such
as planar graphs, the average label size for any spanning tree is O(1).
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9. M. Fürer and B. Raghavachari. Approximating the minimum degree spanning tree
within one from the optimal degree. In Proc. 3rd Ann. ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 317–324, 1992.

10. M. Garey, D. Johnson, and R. Tarjan. The planar Hamiltonian circuit is NP-
complete. SIAM Journal on Computing 5(4):704–714, 1976.

11. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1995.
12. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.



Single-Bit Messages are Insufficient in
the Presence of Duplication�

Kai Engelhardt1 and Yoram Moses2,��

1 School of Computer Science and Engineering
The University of New South Wales, and NICTA� � �

Sydney, NSW 2052, Australia
kaie@cse.unsw.edu.au

2 Department of Electrical Engineering
Technion, Haifa, 32000 Israel
moses@ee.technion.ac.il

Abstract. Ideal communication channels in asynchronous systems are reliable,
deliver messages in FIFO order, and do not deliver spurious or duplicate mes-
sages. A message vocabulary of size two (i.e., single-bit messages) suffices to
encode and transmit messages of arbitrary finite length over such channels. This
note proves that single-bit messages are insufficient once channels potentially de-
liver duplicate messages. In particular, it is shown that no protocol allows the
sender to notify the receiver which of three values it holds, over a bidirectional,
reliable, FIFO channel that may duplicate messages. This implies that messages
must encode some additional control information, e.g., in the form of headers or
tags.

1 Introduction

Ideal communication channels in asynchronous systems are reliable, deliver messages
in FIFO order, and do not deliver spurious or duplicate messages. Single-bit messages
suffice to encode and transmit messages of arbitrary finite length over unidirectional
channels of this type. When only the FIFO requirement is relaxed (so that messages
may be reordered), the same can be achieved over a bidirectional channel. Fekete and
Lynch proved that reliable end-to-end communication (data link) is impossible for (fair)
lossy FIFO channels without messages containing header information [5]. The results
of Wang and Zuck show that, in non-FIFO models with duplication or loss, reliable
end-to-end communication is impossible unless there are more different packet types
than there are different potential messages sequences to transmit [8]. We consider the
impact of duplication, and prove a result closely related to Fekete and Lynch for a seem-
ingly better-behaved model we call RelDFi. Namely, we show that no protocol allows
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the sender to notify the receiver which of three values it holds, over an asynchronous,
bidirectional, reliable, FIFO channel that may duplicate messages. While single-bit pro-
tocols exist for transmitting a binary value over a duplicating channel, our result implies
that these cannot be composed to implement a data-link layer, without using a larger set
of message types. Intuitively, to transmit more complex messages or to implement a
data-link layer, messages must encode some additional control information, e.g., in the
form of headers or tags. A general theory of composition for this model, in which mes-
sages are assumed to have headers, is presented in [3].

This note is devoted to proving the following theorem.

Theorem. Let P be a protocol for two processes that uses only single-bit messages over
a single bi-directional, finitely-duplicating FIFO channel between the sender S and the
receiver R. Then P cannot transmit more than two distinct values from S to R.

Since data-link layers enable the transmission of all finite sequences of bits, our theorem
yields

Corollary 1. No data-link protocol exists in the model of the previous theorem.

2 Preliminary Definitions

Processes and local runs. We consider systems consisting of two processes, a sender,
S, and a receiver, R. We let X range over {S,R} and denote by X the other process. Each
process X has a set ΣX of initial states, a message set MX , and a set AX of internal actions.
The moves of X consist of its internal actions AX as well as send actions snd(m) for m ∈
MX . An event (of X) is a move of X or a delivery dlv(m) of a message m ∈ MX sent by X.

A local run of X is an infinite sequence x = 〈v, e0, . . .〉where v ∈ ΣX and the ei events
of X, infinitely many of which are moves of X (and the remaining ones are deliveries
to X). This assumption prevents crash behavior or denial-of-service scenarios. A run
r = (s, l, δ) consists of local runs s and l of S and R, respectively, and a matching
function δ mapping delivery events to send events. More formally, δ is a function from
pairs (X, j) to indices k where the j’th event in x is a delivery and the k’th event in the
other local state x is a send of the same message. Moreover, δ satisfies:

Interleaving. There exists a total ordering of all events in s and l extending the orders
of events in s and l such that δ(e) precedes e, for all e in the domain of δ.

FIFO. δ is monotone, i.e., for j < k ∈ N if both e j and ek are delivery events to X then
δ(X, j) ≤ δ(X, k). This prevents re-ordering of messages.

Reliability. δ is surjective, in other words, every send is related to at least one delivery.
This prevents message loss.

Finite Duplication. Every send event is related by δ to only finitely many deliveries.
This prevents infinite duplication of messages.

Observe that our assumption that δ is a total function prevents spurious message from
being delivered.

Local states. A local state of X is a non-empty finite prefix x(k) = 〈v, e0, . . . , ek−1〉 of a
local run x = 〈v, e0, . . .〉 of X. Observe that no information is discarded from the local
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state of a process over time. Hence, processes have perfect recall and thus, in a precise
sense, accumulate knowledge as efficiently as possible.1

Protocols. A protocol P associates with each process a function from that process’s
local states to its actions. In particular, the behavior of processes is deterministic.2 A
run of P is a run r = (s, l, δ) where, for each process X and k ∈ N, the k + 1’st event
in X’s local state x ∈ {s, l} is either a delivery or an occurrence of the action P(X)(x(k))
prescribed by the protocol for the preceding local state x(k). These definitions imply
that processes cannot prevent messages from being delivered to them. Thus they are
input-enabled in the sense of Lynch and Tuttle [7].

Executions. The crux of the proof of our impossibility result will consist of the con-
struction of runs as limits of chains of finite approximations of runs, which we call
finite runs. A finite run of P is a triple (a, b, β) where a and b are local states of S and R,
respectively, and β is a matching function restricted to these local states, that is, it maps
delivery events in a and b to send events in b and a, respectively. Moreover, β satisfies
the conditions called Interleaving, FIFO, and Finite Duplication, but not necessarily
Reliability from above, with a, b, and β substituted for s, l, and δ, respectively. One
finite run (a′, b′, β′) is a prefix of another (a, b, β) if a′ and b′ are prefixes of a and b,
respectively, and β′ ⊆ β. A chain is a sequence (ci)i∈N of finite runs where ci is a prefix
of ci+1 for all i ∈ N.

Knowledge. For a given protocol P, we can talk about what processes know3 w.r.t. P
by considering the set of all runs of P. Specifically, we say that the receiver knows the
sender’s initial value, denoted by KRv, at a local state b (w.r.t. P) if there exists a value
v ∈ ΣS such that in every run of P in which the state b appears, the sender’s initial state
is v. Thus, the fact that R is in state b implies that the sender’s value is necessarily v.
We say that a protocol P transmits n values if |ΣS| = n and in every run of P the receiver
eventually knows the sender’s initial value. Formally, this is expressed as: for all runs
r = (s, l, δ) of P there exists k ∈ N such that for all runs r′ = (s′, l′, δ′) of P satisfying
l(k) = l′(k) we have that s(0) = s′(0).

Our main result can now be rephrased as: If |MS| = 2 then no protocol can transmit
3 values in RelDFi. The remainder of the paper is devoted to the proof of this theorem.

3 Proof of the Theorem

Let |ΣS| = 3, let MS = {0, 1}, and, w.l.o.g., assume that ΣR is a singleton set. Fix a
protocol P and assume, by way of contradiction, that P transmits three values. All finite
runs and runs mentioned will be ones of P.

1 For the purpose of proving an impossibility result, perfect recall is preferred over a more ex-
plicit notion of local state based on variables. Any modifications to a more general form of
local state can be simulated based on the protocol, initial state, and messages received [2].

2 The restriction to deterministic protocols is again motivated by the kind of result we are after.
Should a non-deterministic protocol P solve a transmission problem reliably then so does any
deterministic protocol compatible with P.

3 Our notion of knowledge here coincides with the formal notion of knowledge in the sense
of [6, 4].
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Lemma 2. Every finite run can be extended to a run.

Proof. Let c = (s, l, δ) be a finite run of P. For X ∈ {S,R} let 〈mX
0 , . . . ,m

X
iX
〉 be the

sequence of messages sent by X in c outside the range of δ (i.e., not yet delivered in c).
Define4 c′ = (s � τS, l � τR, δ ∪ δS ∪ δR), where τX is 〈dlv(mX

0 ), . . . , dlv(mX
iX

)〉 and δX

matches the k’th of these deliveries to the k’th unmatched send of X in c. Construct the
run r as the limit of the sequence of finite runs (ci)i∈N defined as follows. Let c0 = c′ and
obtain ck+1 inductively from ck by having each process make the move prescribed by
P, and if that move is a send event then a delivery of this message appears immediately
after the current move of the other process. The limit r of the ci is indeed a run of P. 
�
Lemma 3. Let r = (s, l, δ) be a run of P. If KRv holds at l(k) then l(k) contains a
delivery.

Proof. Let r = (s, l, δ) be a run and let k ∈ N such that l(k) does not contain a delivery.
Notice that l(k) is uniquely determined by k. For each v ∈ ΣS, construct the finite run,
c(v) = (s(v), l(v), δ(v)) by performing k moves for the sender and the receiver but without
delivering a single message should any be sent. Each c(v) can be extended to a run by
Lemma 2. Observe that each receiver state l(v) equals l(k). It follows that KRv does not
hold at l(k). 
�
A delivery event e to R in a run r = (s, l, δ) of P is called an alternation either if it is the
first delivery to R or if its content is distinct from that of the preceding delivery to R.
We also call a send event by S an alternation if the earliest delivery matched to it is an
alternation. In particular, the first send by S and the first delivery to R are alternations.

Proof (of the theorem). We construct a pair of chains (ci)i∈N and (di)i∈N of finite runs of
P with different initial sender states but identical local states for R in each pair (ci, di).
Let i ∈ N and let li be R’s local state in both ci and di. Since ci and di are finite runs,
each of them can be extended to a run by Lemma 2. Since the sender has different initial
states in these runs, KRv does not hold at li. As we shall show, the limit of at least one
of these chains is a run. In that run the sender’s value is never transmitted, contradicting
the assumption that P transmits three values.

Outline of the proof: Our first step is to find two values for which the first message
sent by the sender is the same. Then, we generate the two chains (ci)i∈N and (di)i∈N of
finite runs starting from these two sender values, respectively. The intuition underlying
the second step is as follows. We maintain an invariant that in ci and di the receiver has
the same local state and is scheduled to move at the same local states (which will occur
at odd steps of our construction). Since the protocol P is deterministic, R performs the
same actions in both chains. Moreover, every message sent by R is delivered immedi-
ately. More delicate is the handling of the sender S, whose moves occur at even steps of
the construction. If P prescribes the same move for S in both finite runs, then this move
is taken, and, if the move is a send, the message is delivered to R. If S is prescribed a
send in one finite run that repeats the most recent value delivered to R, then this mes-
sage is delivered to R and is regarded by δ as a duplicate delivery in the finite run in

4 Given two sequences σ and τ, we use σ� τ to denote the result of appending τ at the end of σ.
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which the message was not sent. Finally, if S should send an alternation in one of the
finite runs (say ci) but not in the other, then this message is delayed and the sender is
suspended in the corresponding (say c) chain. From this point on, in even steps of the
construction, S moves only in the finite runs in which it is not suspended (d), until an
alternation is sent by S there. In case this never happens, the limit of the chain in which
S continues to move is a legal run in which the value is never transmitted. Indeed, S
is guaranteed to move infinitely often in at least one of the chains (possibly both), and
such a chain will yield the desired contradiction. To make the above intuition precise,
we shall use a simple automaton to help determine in which of the chains S should
move at even steps of the construction.

Step 1: Fix λ ∈ ΣR. This will R’s initial state in all finite runs and runs considered
from now on. For each of S’s three initial states, we start a finite run of P and stop it
as soon as S sends its first message. Until then, both S and R move in lock step. Every
message sent by R in, say, step k is delivered to S right after its k’th move. We claim
that the sender eventually sends a message in each of these finite runs. Assume by way
of contradiction that in one such finite run e the sender does not send any messages.
Observe that e contains infinitely many moves by both processes and every message
sent is delivered. Thus e is a run. By Lemma 3, however, KRv never holds in e and
hence the value is not transmitted. Since the messages sent by S are single bits, in the
finite runs starting from at least two of the three values, say v and w, the first message
sent by S is the same.

Step 2: Next we construct two chains of finite runs ci and di with initial sender values
v and w, respectively. In each step i of the construction, we define two finite runs,
ci = (si, li, δi) and di = (s′i , li, δ

′
i) in which R’s state is the same. Initially, s0 = 〈v〉,

s′0 = 〈w〉, l0 = ε, and δ0 = δ
′
0 = ∅. The whole construction is symmetric. We focus on

constructing ci. We distinguish odd-numbered steps from even-numbered ones.

Odd-numbered steps: A step i = 2k+1 of the construction contains a move by R. If that
move is a send then the step also contains a delivery of that message to S. More formally,
let e = P(R)(li−1). Define li = li−1

� 〈e〉. If e is not a send then si = si−1 and δi = δi−1.
Otherwise, if e is snd(b) then si = si−1

� 〈dlv(b)〉 and δi = δi−1 ∪ {(S, |si|) → |li|}.
Even-numbered steps: A step i = 2k + 2 of the construction handles a move by S. In
this case, however, S might perform a move in just one of the finite runs, or in both.

c cd d

(alt, sit)
(alt, alt)
(alt, alt) (sit, alt)

(alt, sit)

(alt, alt)

(sit, alt)

(alt, alt)

Fig. 1. The construction automaton A
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Who moves and how is determined by an auxiliary 3-state automaton and by P. The
state σi of the automaton in step i is one of c, d, and cd, where the occurrence of a
letter in a state’s name indicates that the sender moves in the corresponding finite run.
(See Fig. 1.) For instance, if σi−1 = c then the sender only moves between ci−1 and ci

but not between di−1 and di. The initial state of the automaton is cd. Odd moves do not
affect the automaton state, i.e., σ2k+1 = σ2k for all k.

It is convenient to consider the sender’s behavior m in the step from ci−1 to ci, de-
pending on e = P(S)(si−1) and σi−1, to be one of {alt, skip, rpt, sit}. Intuitively, alt stands
for the receipt of an alternation; skip stands for an internal action not involving commu-
nication; rpt indicates the receipt of a message that is not an alternation; sit means that
this sender does not participate in the current step. If σi−1 = d then m = sit. Otherwise
we define m as follows. If e = skip then m = skip. If e = snd(b) and this send is an
alternation then m = alt. Otherwise this send repeats the preceding message, whence
we define m = rpt. We define m′ based on e′ = P(S)(s′i−1) and σi−1 analogously.

The transition function of the automaton is described in Fig. 1. Its transitions are
labeled with pairs, the first component of which describes m and the second describes
m′, where alt stands for skip or rpt.

We can now specify the i’th step of the construction based on m, m′ and σi−1 as
follows.

– If m = sit then si = si−1 and otherwise si = si−1
� 〈e〉.

– If σi−1 = cd, m = m′ = alt, and e = snd(b), then the alternation is delivered
immediately in both chains, that is, li = li−1

� 〈dlv(b)〉, δi = δi−1 ∪ {(R, |li|) → |si|},
and δ′i is obtained analogously.

– If σi−1 = cd and m = alt but m′ � alt then the alternation is not delivered im-
mediately but the sender is suspended from making moves in the following s j by
the automaton entering state d. As long as no alternation is encountered in the fol-
lowing s′j, the automaton state d is preserved. When a matching alternation occurs,
the pending message is finally delivered, as is the matching alternation, and the au-
tomaton returns to cd. Formally, if σi−1 = cd, m = alt, and m′ = skip, then li = li−1

and δi = δi−1.
– If σi−1 = d, m′ = alt, and e′ = snd(b) then li = li−1

� 〈dlv(b)〉 and δi will reflect the
delivery of the pending alternation, that is, δi = δi−1∪{(R, |li|) →

∣
∣
∣s j

∣
∣
∣}, where j < i is

the last step in which S moves between s j−1 and s j. Moreover, δ′i = δ
′
i−1∪{(R,

∣
∣
∣l′i
∣
∣
∣) →

∣
∣
∣s′i
∣
∣
∣}.

– If m = skip and m′ ∈ {sit, skip} then li = li−1 and δi = δi−1.
– Suppose that m = rpt and e = snd(b). This repeat will be delivered to R immedi-

ately, meaning that li = li−1
� 〈dlv(b)〉 and δi = δi−1 ∪ {(R, |li|) → |si|}.

– If m′ = rpt but m � rpt then δi will reflect the delivery of a duplicate, that is,
δi = δi−1 ∪ {(R, |li|) →

∣
∣
∣s j

∣
∣
∣}, where j < i is the last step in which S performs a snd()

action between s j−1 and s j.

The description is complete when taking symmetry into account, swapping the roles of
si, δi, e, d, and m with s′i , δ

′
i , e′, c, and m′, respectively.

Let c = limi ci and d = limi di. Observe that the construction has established the
following properties.
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1. Both ci and di are finite runs of P, for every i.
2. The receiver moves infinitely often in both c and d.
3. The sender moves infinitely often in at least one of c and d, because every even-

numbered step of the construction contributes such a move to at least one of them.
4. All messages sent by the receiver are delivered.
5. In both, c and d, if the sender moves in step i then all messages it sent earlier have

been delivered. It follows that once the sender performs infinitely many moves, all
of its messages are delivered.

It follows that at least one of c and d is a run of P and that run the sender’s value is
never transmitted. 
�
The theorem is as strong as can be expected, since two values can trivially be transmit-
ted in RelDFi using a one-bit message. Moreover, it is straightforward to show that a
message set of size 3 suffices to transmit arbitrary values, as well as infinite sequences
of values. (One message can serve as a delimiter.) The Alternating-Bit Protocol trans-
mits arbitrary sequences of bits using 4 different messages in all FIFO models we con-
sider [1].
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Abstract. The fundamental question considered in this paper is when program
Q, if executed immediately after program P, is guaranteed not to interfere with P
and be safe from interference by P. If a message sent by one of these programs
is received by the other, it may affect and modify the other’s execution. The no-
tion of communication-closed layers (CCLs) introduced by Elrad and Francez in
1982 is a useful tool for studying such interference. CCLs have been considered
mainly in the context of reliable FIFO channels (without duplication), where one
can design programs layers that do not interfere with any other layer. When chan-
nels are less than perfect such programs are no longer feasible. The absence of
interference between layers becomes context-dependent. In this paper we study
the impact of message duplication and loss on the safety on the safety of layer
composition. Using a communication phase operator, the fits after relation among
programs is defined. If program Q fits after P then P and Q will not interfere with
each other in executions of P ∗Q. For programs P and Q in a natural class of
programs we outline efficient algorithms for the following: (1) deciding whether
Q fits after P; (2) deciding whether Q seals P, meaning that Q fits after P and no
following program can communicate with P; and (3) constructing a separator S
that both fits after P and satisfies that Q fits after P∗S.

1 Introduction

Much of the distributed algorithms literature is devoted to solutions for individual tasks.
Often, the issues involved in solving an individual task in models of interest deserve
considerable attention and may involve a great deal of work. In large distributed ap-
plications, subtasks often need to be implemented so that one task can make use of
the output of another, in a sequential manner. For example, a leader election algorithm
may precede a vote coordinated by the chosen leader, and the result of this vote may
determine updates to local copies of a distributed database. While these tasks may be
partially concurrent, each uses the outcome of preceding tasks, and the overall logical
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structure is clearly sequential. Nevertheless, efficiency in a distributed setting is ob-
tained via concurrency, and this precludes strictly sequential execution of the tasks, in
which a task does not start executing at any node before all previous tasks have com-
pleted at all nodes. A high degree of concurrency imposes the need to guarantee non-
interference among concurrent tasks. In current technologies this is often obtained by
way of a data-link layer that provides an abstraction of reliable FIFO communication.
In effect, such an abstraction layer implements a fresh set of virtual channels for every
subtask, and incurs high translation costs for every message. A basic question is whether
and when the overhead paid for such a layer is justified. Under what assumptions can
we achieve safe composition of programs at a significantly reduced cost? In a previous
work [4] we studied safe composition in the REL model of communication, when chan-
nels are reliable and non-duplicating but may reorder messages. It was shown that safe
composition can be achieved in REL at a much smaller price than required by a data-
link layer implementation, or the use of global barriers. The current paper is devoted to
a study of program composition in models with order-preserving (FIFO) channels that
are imperfect due to possible message duplication and/or message loss.

Sequential ordering (or layering) of programs for asynchronous message passing
systems has received a modest amount of attention in the literature, and this has focused
almost exclusively on the RELFI model in which channels are reliable, non-duplicating,
and FIFO [3], [1], [18]. Indeed, Gerth and Shrira showed that in RELFI it is possible
to design off-the-shelf components that are guaranteed to safely compose with each
other [7]. Once any of the assumptions about the channels are relaxed, such components
are no longer viable. Recall that the definition of CCL refers to the full program context
of the layer in question.

This paper considers composition in models with asynchronous order-preserving
(aka FIFO) channels. These consist of FFI (in which the FIFO channels are lossy but
fair and non-duplicating), RELDFI (reliable channels with finite duplication), and FDFI

(lossy but fair channels with finite duplication). As we show, in these models it is pos-
sible to safely compose layers by ensuring compatibility at the interfaces between adja-
cent layers, without requiring an analysis of the full program context. We shall analyze
composition in the RELDFI model first, and then show that a similar analysis applies
to the other two models.

Communication-Closed Layers. We consider a layering operator ∗ for composing dis-
tributed programs in the spirit of Janssen, Poel, and Zwiers [10]. Pratt defines a similar
operator on pomsets which he calls local concatenation [17]. Our layering operator ∗
acts as sequential composition between programs of the same process and as parallel
composition between programs of different processes. Thus, if P and P′ are both pro-
grams of the same process i, then the actions of P are executed before those of P′ in the
program P∗P′. If Q is a program of a process j �= i, then P∗Q is a program in which
P and Q execute concurrently. Layering does not impose any precedence constraints
between actions in P and those of Q. Hence the program P ∗Q is equivalent to Q ∗P.
Thus, for general programs S and T , the composition S ∗T results, for every process i,
in all actions of i induced by S preceding those actions of i induced by T .

Because of the potential concurrency of layers in programs constructed using lay-
ered composition, it is essential to ensure that messages from one layer are not mis-
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takenly considered as being sent by a different layer. The notion of a communica-
tion-closed layer, introduced by Elrad and Francez in [3], is a useful tool for studying
such interaction and interference between components of a distributed program. Let
L = (L1 ∗ . . .∗Ln) where each Li is a program of process i. Let P = Q∗L∗Q′. Then L is
a communication-closed layer (CCL) in P if no command in any Li ever communicates
with a command in Q or Q′ in executions of P. If a program P can be decomposed into a
sequence of CCLs then every execution of P consists of a sequence of executions of P’s
layers in order. Hence, reasoning about P can be reduced to reasoning about each of its
layers in isolation. This approach has been investigated further and applied to a variety
of problems [1], [10], [16], [8], [18], [9], [13], [14]. An introductory exposition to the
proof technique based on communication-closed layers can be found in [2].
Safe layering. We defined in [4] that a program Q seals a program P if the two do not
communicate and furthermore no succeeding program R can communicate with P in any
isolated execution of P ∗Q ∗R. Given a sequence L(1), . . . ,L(m) of programs, if L(k+1)

seals L(k) for 1≤ k < m, then every layer L(k) will be a CCL in an isolated execution of
P = L(1) ∗ . . .∗L(m). In this paper we introduce and characterize two additional properties
of interest in this context. One is the notion of a program Q fitting after P, which means
simply that Q does not communicate with P in executions of P∗Q. Fits after can be used
to construct CCLs in the following fashion. If L(k+1) fits after (L(1) ∗ . . . ∗L(k)) for 1 ≤
k < m, then every layer L(k) will be a CCL in an isolated execution of P = L(1) ∗ . . .∗L(m).
While sealing is a more powerful notion of compatibility, fitting after is more appropriate
when considering smaller program segments (as layers), since it does not require Q to
cover all channels on which P can communicate. There are cases in which we need to
compose programs P and Q that are incompatible and we do not have the freedom to
modify them. In this case we can search for a separator between P and Q, which is a
program S satisfying (1) S fits after P and (2) Q fits after P∗S. Thus, in isolated executions
of P∗ S ∗Q, all three will be CCLs.

Example 1 (Value transmit). Consider the problem of transmitting a value v by pro-
cess i to process j in an asynchronous message-passing system. If communication is
reliable, a simple solution is given by a program VTi→ j (for value transmit from i to j)
consisting of a single send statement for i on the channel from i to j, and a single receive
statement for j. How do things change if we wish to transmit two values? Intuitively, we
can perform VTi→ j twice. This will indeed work if and only if the channel is reliable,
communication from i to j is FIFO, and non-duplicating (RELFI).

Observe that VTi→ j will produce the desired behavior in RELFI if it is executed when
the channel from i to j is empty. Indeed, when this occurs the channel will again be
empty once VTi→ j has completed its execution. In a precise sense, the VTi→ j program
can serve as an off-the-shelf component for being a CCL in a larger program. Once we
go beyond RELFI, the situation becomes more complex. Executing VTi→ j in RELDFI

when the channel is empty will successfully transmit the value from i to j. It does
not, however, guarantee to leave the channel empty when it terminates. Indeed, in this
model, once a message is sent over a channel, we can never again be sure that the
channel is empty. Hence VTi→ j is not an off-the-shelf component in RELDFI. As we
shall formalize in Th. 2 there are only non-communicating or diverging off-the-shelf
components in this model.
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The need for headers. Fekete and Lynch proved that reliable end-to-end communication
is impossible in FFI (and thus in FDFI) without messages containing header informa-
tion [6]. In [5] we show that it is impossible in RELDFI to reliably transmit more than
a single bit by only exchanging one-bit messages between two processes. This implies
that a message set consisting of at least three different packets is necessary to transmit
sequences of bits reliably in RELDFI. In light of these results we shall restrict attention
to tagged messages in the three FIFO models we consider here.

Contributions. The main contributions are: 1. We introduce the fits-after relation among
programs. It suggests a new method for safely composing distributed applications from
a sequence of distributed programs (or layers). 2. Based on the fits-after relation, we
define separators between distributed programs. Since universal barriers do not exist
in most models other than RELFI, such tailor-made separators are necessary for com-
posing layers P and Q where Q does not fit after P. 3. We study safe composition of
programs in the FIFO models RELDFI, FFI and FDFI. In each of them we define the
signature of a program to capture the composition behavior (for a natural class of pro-
grams). We show: (a) that only trivial programs are tail communication closed, (b) how
to characterize fits after and sealing, (c) that each pair of programs can be separated,
and (d) that each program can be sealed properly.

2 Distributed Programs with Layering

In this section we define a syntax for distributed programs with layering, a run-based
model of asynchronous message passing, a notion of a program occurring over an
interval within a run, and a notion of refinement between programs. These techni-
cal preliminaries will be used in the next section to conduct an analysis of safe
composition.

Let n ∈ N and P = {1, . . . ,n} be a set of processes. Throughout the paper, n will be
reserved for denoting the number of processes. Let (Vari)i∈P be mutually disjoint sets of
program variables (of process i). Let L be propositional logic over the set of arithmetic
expressions over Vari and tag expressions PEEK j←i. We define a syntactic category Prg
of programs, where x ∈ Vari, e ∈ Expri, i, j ∈ P, t is a tag value, and φ ∈ L , by:

Prg � P ::= ε | x :=e | SNDt
i→ j(e) | RECVt

j←i(x) | [φ] | τP | P∗P | P+ P | Pω

The formal semantics of Prg is given in the Section 2.3. The intuitive meaning of these
constructs is as follows. The symbol ε denotes the empty program, which takes no time
to execute. Assignment statement x := e evaluates expression e and assigns its value to
variable x. The SNDt

i→ j(e) statement sends a message containing the value of e and
tagged with t on the channel from i to j. This enables the delivery of that message to
process j. Communication is asynchronous, and sending is non-blocking. Finitely many
enabled deliveries can happen spontaneously. Each delivery of a message sent from i to
j appends that message to a message buffer buf j←i for that channel. The tagged receive
RECVt

j←i(x) behaves as follows. It busily waits until there is a message tagged t in
buf j←i. During the busy waiting messages can be delivered to j. Once buf j←i contains a
message tagged t, the RECVt

j←i(x) stores the content of the first such message in x and
removes that message together with any preceding messages from buf j←i. (Note that



36 K. Engelhardt and Y. Moses

the preceding messages will necessarily have tags different from t.) If a message tagged
t never appears in buf j←i, then j will perform infinitely many no-ops in the course of
busy waiting and thus diverge.

The guard [φ] takes no time to execute and expresses a constraint on the execution of
the program: in a run of the program, φ must hold at this location. We call τ the phase
quantifier. It is a specification construct that needs to be eliminated before a program
can be considered an implementation. The program τP behaves the same as P, with
the additional restriction that it does not communicate with statements outside P. For
the purposes of τ, a tagged receive RECVt

j←i(x) is considered to communicate with the
send statement SNDt

i→ j generating the message it stored in x. It is not considered com-
municating with the statements generating preceding messages removed in the process
of receiving. The symbol “+” denotes (demonic) nondeterministic choice. By Pω we
denote zero or more (possibly infinitely many) layered repetitions of P. More conven-
tional programming constructs such as conditionals and loops are defined in the usual
manner, e.g., if φ then P else Q fi abbreviates [φ]P +[¬φ]Q and while φ do P od stands
for ([φ]P)ω[¬φ].

2.1 A Model of Asynchronous Message Passing

States and events. A send record (for i) is a tuple (i→ j, t,v), which records sending a
message with contents v and tag t from i to j. Similarly, (i← j,t,v) is a deliver record,
(i ← j,v) is a receive record, and (i ← j) is a drop record (for i). We call all these
records communication records (for i). Note that receive and drop records ignore tags
and that drop records ignore message contents. A local state (for process i) is a mapping
from Vari to values and from the reserved variable hi to a sequence of communication
records for i.

Local runs. A local run (for process i) is an infinite sequence of local states. We identify
an event (of i) with the transition from one local state in a local run of i to the next. An
event is either a send, deliver, receive, drop, or an internal event. An idle event is an
internal event that preserves the local state.

Buffers. The message buffer buf j←i for channel chani→ j at local point (r j,k) is a queue
comprising of all but the first � messages delivered to j from i by that local point, where
� is the total number of receive and drop events in (r j,k). Thus a delivery event appends
a message to the end of the queue whereas receives and drops can only take place when
the message buffer is non-empty. They result in the message at the head of the queue
being removed, and, in the case of receives, the message being removed is received.

Global runs. A (global) run is a tuple r = ((ri)i∈P,δr) of local runs — one for each
process i ∈ P — plus a matching function δr associating a send event with each deliver
event in r. The k’th event of process i in r is referred to by Er

i (k). It starts at the local
point (ri,k−1) and ends at (ri,k). The mapping δr is restricted such that:

1. If δr(e) = e′ and e is a deliver event of process j resulting in the appending of
( j ← i, t,v) to j’s message history then e′ is a send event of process i appending the
send record (i→ j, t,v) to i’s message history.

2. Messages are delivered in order. More formally, for each pair (i, j) of distinct pro-
cesses, if δr(Er

j(k1)) = Er
i (k

′
1) and δr(Er

j(k2)) = Er
i (k

′
2) and k1 < k2 then k′1 ≤ k′2.
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3. Messages are duplicated at most a finite number of times, that is, for each send
event e′ in r, the set { e | δr(e) = e′ } of deliver events mapped to the same send
event is finite.

4. Lamport’s causality relation1 L−→ induced by δr on the events of r is an irreflexive
partial order, hence acyclic.

The first condition captures the property that messages are not corrupted in transit. The
second condition prevents reordering of messages. That distinct deliver events can be
matched with the same send allows for duplication of messages, however, the third
condition prevents infinite message duplication. The fact that the function δr is total
precludes the reception of spurious messages. Further restrictions on δr can be made to
capture additional properties of the communication medium such as reliability, fairness,
non-duplication, etc. We use δ̂r to refer to the function from receive and drop events to
send events induced by δr. The fourth condition on δr implies that the partial order on
all events in a run induced by the sequential nature of the local runs can be extended
to a total order (i.e., an interleaving of the local runs) such that each deliver event is
preceded by the matching send event.

Cuts and channels. Write N+ for N∪{∞}. A cut is a pair (r,c) consisting of a run r and
a P-indexed family c = (ci)i∈P of N+-elements. We write “≤” for the component-wise
extension of the natural ordering on N+ to cuts within the same run. A cut is finite if all
its components are.

Say that an event Er
i (k) is in a cut (r,c) if k ≤ ci. A cut (r,c) corresponds to the,

possibly implausible, situation in which the events in the cut have occurred for each
process i ∈ P.

The (message) balance between i and j, denoted bali→ j , at a cut (r,c) is a signed
sequence of tagged messages, namely those messages from i to j that have been de-
livered in (r,c) but not been sent yet or vice versa. A positive sign indicates that the
sequence consists of messages sent but not yet delivered whereas a negative sign in-
dicates that the sequence lists delivered messages that were not yet sent in (r,c). We
define the channel chani→ j at a cut (r,c) to be the pair consisting of the message buffer
buf j←i and the message balance bali→ j at (r,c). A channel is empty whenever both of its
components are.

2.2 Semantics of Formulas

Evaluating the tag expression PEEK j←i at a cut (r,c) results in the tag value of the head
of buf j←i if that buffer is empty and ⊥ otherwise. Finally, a formula φ ∈ L holds at
(r,c), and we write (r,c) |= φ, if φ holds in standard propositional logic when, for each
i ∈ P, program variables in Vari are evaluated in the local states ri(ci) if ci is finite. The
value of a variable in Vari in (r,c) is considered unspecified if ci = ∞.

1 In [12] Lamport defined a “happened before” relation
L−→ on the set of events occurring in

a run r of a distributed system. The relation
L−→ is defined as the smallest transitive rela-

tion subsuming (1) the total orders on the events of process i given by the local run ri, and
(2) the relation between send and deliver events induced by the matching function, that is,
{ (e1,e2) | δr(e2) = e1 }.
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2.3 Semantics of Programs

We define the meaning of programs by stating when a program occurs over an interval.
We do so for a more general class of programs, called basic programs, which con-
tains (untagged) drop DRP j←i and receive RCV j←i(x) statements in place of the tagged
receives, which are defined as follows.

RECVt
j←i(x) = FLUSHt

j←i ∗ RCV j←i(x) , where

FLUSHt
j←i = AWAIT(PEEK j←i �=⊥)∗

while PEEK j←i �= t do DRP j←i ∗AWAIT(PEEK j←i �=⊥) od

AWAIT(φ) = while ¬φ do SKIP od SKIP = x :=x

An interval consists of two cuts (r,c) and (r,d) over the same run with c≤ d, which
we denote for simplicity by r[c,d]. An event is in r[c,d] if it is in (r,d) but not in (r,c).
We define the occurrence relation � between intervals and programs such that deliver
events can occur in addition to the events prescribed by the program text. Formally, we
define that r[c,d] � P iff there exist c′,d′ such that

– c≤ c′ ≤ d′ ≤ d,
– r[c′,d′] � P as defined below,
– there are finitely many events in r[c,c′] and r[d′,d], all of which are deliver events.

Intuitively, this assumption makes processes “input enabled” at all times. Program P ∈
Prg is embedded into interval r[c,d], denoted r[c,d] � P, iff:2

r[c,d] � ε if c = d.
r[c,d] � x :=e if ci is finite, d = c[i �→ ci +1], and ri(di) = ri(ci)[x �→ v], where v is the
value of e in ri(ci).
r[c,d] � SNDt

i→ j(e) if ci is finite, d = c[i �→ ci + 1], and ri(di) = ri(ci)[hi �→ ri(ci)(hi) ·
〈(i→ j, t,v)〉], where v is the value of e in ri(ci).
r[c,d] � DRPi← j if ci is finite, d = c[i �→ ci +1], the message buffer bufi← j is non-empty
at (ri,ci), and ri(di) = ri(ci)[hi �→ ri(ci)(hi) · 〈(i← j)〉]
r[c,d] � RCVi← j(x) if ci is finite, d = c[i �→ ci + 1], the message buffer bufi← j is non-
empty at (ri,ci), and ri(di) = ri(ci)[hi �→ ri(ci)(hi) · 〈(i← j,v)〉,x �→ v].
r[c,d] � [φ] if c = d and (r,c) |= φ.
r[c,d] � τP if r[c,d] � P and no send or receive event in r[c,d] is matched by δ̂r with a
receive or send event outside r[c,d].
r[c,d] � P∗Q if there exists c′ satisfying c≤ c′ ≤ d such that r[c,c′] � P and r[c′,d] � Q.
r[c,d] � P+ Q if r[c,d] � P or r[c,d] � Q.
r[c,d] � Pω if, intuitively, an infinite or finite number (possibly zero) of iterations of P
occur over r[c,d]. More formally, r[c,d] � Pω if there exists a finite or infinite sequence
(c(k))k∈I such that I is a non-void prefix of N+, c(0) = c, c(k) ≤ c(k′) for all k < k′ ∈ I,⊔

k∈I c(k) = d, and r[c(k),c(k+1)] � P for all k,k + 1 ∈ I.

2 We denote by f [a �→ b] the function that agrees with f on everything but a, and maps a to b.
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2.4 Refinement

A model is a set of runs. For instance, RELDFI denotes the the set of all runs
(r1, . . . ,rn,δr) such that δr is a monotone surjective function. The fact that it is mono-
tone prohibits reordering of messages whereas surjectivity guarantees reliability. Given
a model Γ, we say that P refines Q in Γ, denoted P �Γ Q, iff r[c,d] � P implies
r[c,d] � Q, for all r ∈ Γ and c,d ∈ (N+)P. In other words, every execution of P (in
a Γ run) is also one of Q, regardless of what happens before and after. Therefore, we
may replace Q by P in any larger program context. This definition of refinement is in
particular appropriate for stepwise top-down development of programs from specifi-
cations. The refinement relation on programs is transitive (in fact a pre-order) and all
programming constructs are monotone w.r.t. the refinement order.

3 Composing Layers

As we explained in detail in [4], the phase operator τ allows us to delineate the inter-
actions that a layer can have with other parts of the program. When combined with
refinement it is useful for defining CCL and related notions. For example, we can ex-
press that the program L is a CCL in the program Q∗L∗Q′ w.r.t. Γ by:

τ(Q∗L∗Q′) �Γ Q∗ τL∗Q′ .

Say that S is a barrier in Γ if,

τ(Q∗ S ∗Q′) �Γ τQ∗ τS ∗ τQ′ , for all P and Q.

Inspired by [7] we defined in [4] that P is tail communication closed (TCC) in Γ if

τ(P∗Q) �Γ τP∗ τQ , for all programs Q.

Hence, inductively we obtain that each layer Pi is a CCL in P1 ∗ . . .∗Pm whenever all Pi

are TCC in Γ. We can show that only trivial programs are TCC in RELDFI 3.

Theorem 2. Let P ∈ Prg. If there is a communication event (i.e., send or receive) in
a finite interval r[c,d], where r ∈ RELDFI, r[c,d] � P, and all channels are empty in
(r,c), then P is not TCC in RELDFI.

Corollary 3. Barriers do not exist in RELDFI.

The above theorem captures an essential difference between RELDFI and RELFI w.r.t.
composability of programs. Since nontrivial programs are not TCC in RELDFI, an alter-
native methodology is required for determining when composing programs in RELDFI

yields desirable behavior.

3 Proofs had to be omitted from this version. The full version is available at
ftp://ftp.cse.unsw.edu.au/pub/users/kaie/EM2005b.pdf.
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3.1 Fitting After

Say that Q fits after P (in Γ) if τ(P∗Q)�Γ τP∗ τQ. Intuitively, this is the case when P
and Q do not communicate. For example, any program of the form VTt

i→ j = SNDt
i→ j ∗

RECVt
j←i fits after any program of the form VTt̄

i→ j in RELDFI, where t̄ �= t. Conse-

quently, a program of the form VTt
i→ j ∗ VTt̄

i→ j fits after itself in RELDFI. A rather
pathological example is that ε fits after any program and vice versa.

Before discussing a more general class of programs, we consider fitting after and
related notions for straight-line balanced programs. Formally, a straight-line program is
one that is free of guards, choice, and loops. A balanced program is a program, where,
on each channel, the sequences of tags on send and receive statements are equal. The
shortest communicating balanced programs are those of the form VTt

i→ j. By BSL we
refer to balanced straight-line programs.

Characterizing fits-after. Next we turn to the topic of characterizing the fits-after be-
havior of BSL programs P. For each channel chani→ j there are two important aspects

to characterize. We denote by
←−
P i→ j the tag t that the first tagged receive RECVt

j←i

on this channel in P expects, and by
−→
P i→ j the tag t ′ of the last send SNDt′

i→ j in P on
chani→ j, if they exist. (The notation ⊥ is used when such a tag does not exist.) We
define the signature of P as a function associating with every channel chani→ j the pair

(
←−
P i→ j,

−→
P i→ j). Consequently, the size of P’s signature is in O(n2) and it can be com-

puted in time O(|P|). The following theorem yields an O(n2) algorithm for deciding the
fits-after relation.

Theorem 4. Let P and Q be BSL programs such that τP occurs over a finite RELDFI

interval. Then Q fits after P in RELDFI iff, for all channels chani→ j , we have that either
←−
Q i→ j �=

−→
P i→ j or that both are ⊥.

To see that the requirement in Th. 4 for P to have a terminating execution is not redundant
consider P = RECVt

j←i(x)∗RECVt
i← j(y)∗ SNDt

i→ j(3)∗ SNDt
j→i(4). Any Q fits after this

P in RELDFI because P necessarily diverges for i and j in any execution of τ(P∗Q).

Separators. Program S is a separator between programs P and Q if S fits after P and
Q fits after P ∗ S. Intuitively, a separator is a tailor-made barrier. Given two BSL pro-
grams P and Q, we can construct a separator S between P and Q as follows. For each
channel chani→ j on which Q does not fit after P, that is, satisfying

←−
Q i→ j =

−→
P i→ j �=⊥,

the separator contains a layer of the form SNDt
i→ j ∗RECVt

j←i for some tag t �= −→
P i→ j.

Consequently, the separator is BSL and can be constructed in O(n2) time and space.

Theorem 5. Each pair of BSL programs can be separated by a terminating BSL pro-
gram in RELDFI.

Sealing. In [4] we defined a notion of sealing that formalizes the concept of a program
S serving as an impermeable layer between P and later layers such that no later com-
munication will interact with P. This notion is stronger than fitting after. We defined
that S seals P in Γ if, for all programs Q, τ(P ∗ S ∗Q) �Γ τP ∗ τ(S ∗Q). A seal S
for P is proper if S never diverges after P, that is, for all r ∈ Γ and c,d,d′, whenever
r[c,d] � τP, and r[d,d′] � S and d is finite then so is d′.
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It follows that sealing implies fitting after. A program Q that merely fits after P may
leave untouched channels on which P communicates whereas a seal must re-use the
channel with a different tag. If, however, a BSL program fits after itself in Γ, then it also
seals itself in Γ. Observe that the program P = VTt

i→ j ∗ VTt̄
i→ j of our example properly

seals itself in RELDFI. Lemma 3 of [4] also states that if P properly seals itself in
RELDFI then P properly seals Pω in RELDFI. It follows that the infinite repetition of P
solves the sequence transmission problem in RELDFI. To decide sealing it once again
suffices to inspect the signatures of the two programs involved. The following theorem
claims for sealing what Th. 4 does for fitting after. Its proof is analogous.

Theorem 6. Let P,Q ∈ Prg be BSL such that τ(P ∗Q) occurs over a finite RELDFI

interval. Then Q properly seals P in RELDFI if
−→
P i→ j �= ⊥ implies that both

←−
Q i→ j �=−→

P i→ j and
←−
Q i→ j �=⊥, for all channels chani→ j .

The next theorem shows that BSL programs can always be properly sealed.

Theorem 7. All BSL programs can be properly sealed in RELDFI.

3.2 Beyond Straight-Line Programs

The restriction to straight-line programs can be easily overcome, however, requiring
the sequences of tags on send and receive statements to be equal seems justified in any
account of safe composition.4 For example, a program consisting of a single RECV j←i
will either diverge for j or preclude future layers that send on chani→ j from being
a CCL by receiving one message sent on that channel. In the full paper we define a
notion of balance for general programs P, which, roughly speaking, amounts to requir-
ing that, for every channel, the sequence of tags of messages sent on the channel are
equal to the corresponding sequence of tags received, in every execution of the pro-
gram. For non-straight-line programs, different executions can give rise to different tag
sequences.

The joint state at a cut (r,c) is the tuple r(c) = (ri(ci))i∈P of the local states of the
processes at (r,c), where ri(∞) = ω. Let P ∈ Prg (i.e., not necessarily BSL).

Let
←−
P i→ j(σ) be the set of tags of the first tagged receives in P on chani→ j that appear

in intervals r[c,d] such that r[c,d] � τP and σ = r(c). Similarly, let
−→
P i→ j(σ) be the set

of tags of the last sends in P on chani→ j that appear in intervals r[c,d] such that r[c,d] �
τP and σ = r(d). Note that,

←−
P i→ j(r(c)) = /0 whenever c j = ∞. The characterization of

fits after in Th. 4 can now be generalized to the following.

Theorem 8. Let P,Q ∈ Prg be balanced. Then Q fits after P in RELDFI iff, for all
channels chani→ j and joint states σ we have that

←−
Q i→ j(σ) ∩ −→P i→ j(σ) = /0.

Algorithmically, this theorem is of limited use because the condition characterizing the
fits-after property is undecidable for general balanced programs.

Separators do not exist for all pairs of balanced programs. For example, two in-
stances of the the non-deterministic choice between VTi→ j for all possible tags t are
not separable. Many pairs of programs can be separated, by relatively simple means.

4 A minor generalization is possible: extra send statements can be compensated for.
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For instance, if, on each channel, no
←−
Q i→ j(σ) contains t(i, j) and no

−→
P i→ j(σ) contains

t ′(i, j) then S containing a layer VT
t′(i, j)
i→ j ∗ VT

t(i, j)
i→ j for each chani→ j is a separator between

balanced programs P and Q.

3.3 Models with Lossy Channels

Having characterized fitting after and separation in RELDFI, we now turn to FFI and
FDFI. The potential of losing messages in these models is typically compensated for
by retransmitting messages. Channels therefore contain duplicates of messages much
in the same way as in RELDFI. As a result, program composition in these models has
many of the same characteristics as in RELDFI.

Let us focus on the basic problem of transmitting a message e from sender i to re-
ceiver j in FFI. No balanced program as defined above is suitable for solving this prob-
lem since no bounded number of send statements guarantees a delivery in FFI (and thus
FDFI). A standard solution to this problem is to retransmit the message until i knows
that the value of e is (guaranteed to be) delivered to j [15]. Retransmitting in turn intro-
duces multiple deliveries of the same message much in the spirit of the duplication pos-
sible in RELDFI. In FFI, receiving an acknowledgment message from j informs i of the
reception (and thus preceding delivery) of e. (Recall that there are no spurious messages
in our models.) In a rather ad hoc manner, we could extend Prg to Prg′ by replacing the
send and tagged receive actions by the acknowledgment-awaiting send ACKSNDt

i→ j(e)
and the acknowledging receive ACKRECVt

j←i(x). When executing ACKSNDt
i→ j(e) pro-

cess i sends t-tagged messages containing the value of e to j repeatedly until i receives
a t-tagged acknowledgment from j. When executing ACKRECVt

j←i(x) process j first
performs RECVt

j←i(x) followed by repeatedly sending a t-tagged acknowledgment to i
until detecting a non-t-tagged message in the buffer.

Koo and Toueg proved that in FFI no necessarily communicating program can ter-
minate [11]. This also applies to Prg′. Observe that in order to terminate any acknowl-
edging receive requires the delivery of a differently tagged message in addition to the
one it receives. Consequently no last layer of a communicating program can terminate.

For programs in Prg′ composition in FFI (and FDFI) is very similar to that in
RELDFI. In particular, only trivial and necessarily diverging programs are TCC. An
essentially identical notion of a signature of a balanced program in Prg′ can be defined,
leading to results analogous to Th. 4 and 5. A variant of Th. 7 holds: all balanced pro-
grams in Prg′ can be sealed in FFI by a not necessarily diverging program. This is as
much as could be expected, given that proper seals only exist for trivial and necessar-
ily diverging programs. The complexities of computing all composition-related issues
carry over from the RELDFI case to FFI. Finally, the behavior of Prg′ programs as far
composition is concerned is exactly the same in FDFI as it is in FFI.
The nature of seals. It is instructive to compare the nature of seals in RELDFI, FFI, and
FDFI to their nature in the model REL of reliable non-duplicating channels with potential
reordering [4]. The latter crucially depends on establishing a causal dependence between
receives in one layer and sends on the same channel in later layers. The standard way to
achieve this is by sending an acknowledgment in the reverse direction. In the former mod-
els, however, sealing is achieved by switching the message tag. It therefore requires only
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half-duplex channels. Acknowledgments play a different role in the lossy FIFO models.
They inform the sender of the arrival of a message and thus allow him to progress.

4 Conclusion and Future Work

Much of the distributed algorithms literature is devoted to solutions for individual tasks.
Often, the issues involved in solving an individual task in models of interest deserve
considerable attention and may involve a great deal of work. At the end of the day,
however, such solutions must be combined to form larger applications. Answers to the
questions of when, whether, and how distributed programs can be composed are there-
fore crucial to methods for correctly designing distributed applications.

In [4] we introduced a powerful notion of sealing which captures the property of
one program serving as an impermeable layer between a given predecessor program
and any following program. The correct behavior of an application composed from a
number of layers, each of which seals its predecessor, follows from the correct behavior
of each of the layers in isolation. In this paper we introduce fits after, a weaker notion
than sealing, which applies more broadly, in particular to smaller programs. A seal will
often consist of a sequence of smaller programs each of which fits after the prefix of the
layer accumulated so far.

No interesting program is TCC in any of RELDFI, FFI, and FDFI. This implies
that universal barriers do not exist in these models. We show in this paper that, for
given pairs of BSL programs, tailor-made barriers, which we call separators, always
exist in all of the above models. We also outline efficient algorithms for deciding the
fits-after and seals relations as well as constructing separators. For general balanced
programs, we defined a suitable generalization of signatures and characterized the fits-
after relation in terms of signatures.

References

1. C. T. Chou and E. Gafni. Understanding and verifying distributed algorithms using stratified
decomposition. In D. Dolev, editor, PODC ’88, pp. 44–65. ACM Press, 1988.

2. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers.
Concurrency Verification. Cambridge University Press, 2001.

3. T. Elrad and N. Francez. Decomposition of distributed programs into communication-closed
layers. Science of Computer Programming, 2(3):155–173, Dec. 1982.

4. K. Engelhardt and Y. Moses. Causing communication closure: Safe program composition
with non-FIFO channels. In DISC 2005, LNCS 3724, pp. 229–243. Springer-Verlag, 2005.

5. K. Engelhardt and Y. Moses. Single-bit messages are insufficient in the presence of duplica-
tion. In this volume.

6. A. Fekete and N. Lynch. The need for headers: An impossibility result for communication
over unreliable channels. In CONCUR ’90, LNCS 458, pp. 199–215. Springer-Verlag, 1990.

7. R. Gerth and L. Shrira. On proving communication closedness of distributed layers. In
FSTTCS 1986, LNCS 241, pp. 330–343, Springer-Verlag, 1986.

8. W. Janssen. Layered Design of Parallel Systems. PhD thesis, University of Twente, 1994.
9. W. Janssen. Layers as knowledge transitions in the design of distributed systems. In TACAS

1995, NS-95-2 in Notes Series, pp. 304–318, Dept. of Comp. Sci., U. of Aarhus, 1995.
10. W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in the development

of parallel systems. In CONCUR ’91, LNCS 527, pp. 298–316, 1991.



44 K. Engelhardt and Y. Moses

11. R. Koo and S. Toueg. Effects of message loss on the termination of distributed protocols.
Information Processing Letters, 27(4):181–188, 1988.

12. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 7:558–565, 1978.

13. B. Meenakshi and R. Ramanujam. Reasoning about message passing in finite state environ-
ments. In ICALP, LNCS 1853, pp. 487–498. Springer-Verlag, 2000.

14. B. Meenakshi and R. Ramanujam. Reasoning about layered message passing systems. Com-
puter Languages, Systems & Structures, 30(3-4):171–206, 2004.

15. Y. Moses and O. Kislev. Knowledge-oriented programming. In PODC 93, pp. 261–270.ACM
Press, 1993.

16. M. Poel and J. Zwiers. Layering techniques for development of parallel systems. In CAV
’92, LNCS 663, pp. 16–29. Springer-Verlag, 1992.

17. V. R. Pratt. Modelling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33–71, 1986.

18. F. A. Stomp and W.-P. de Roever. A principle for sequential reasoning about distributed
algorithms. Formal Aspects of Computing, 6(6):716–737, 1994.



Efficiently Implementing LL/SC Objects Shared
by an Unknown Number of Processes�

Prasad Jayanti and Srdjan Petrovic

Department of Computer Science,
Dartmouth College, Hanover, New Hampshire, USA

{prasad, spetrovic}@cs.dartmouth.edu

Abstract. Over the past decade, a pair of instructions called load-linked
(LL) and store-conditional (SC) have emerged as the most suitable syn-
chronization instructions for the design of lock-free algorithms. However,
current architectures do not support these instructions; instead, they
support either CAS (e.g., UltraSPARC, Itanium) or restricted versions
of LL/SC (e.g., POWER4, MIPS, Alpha). To bridge this gap, a flurry of
algorithms that implement LL/SC from CAS have appeared in the liter-
ature. Some of these algorithms assume that N , the maximum number of
participating processes, is fixed and known in advance. Others make no
such assumption, but are either non-blocking (not wait-free), implement
small LL/SC objects, or require that a process performs O(N) work to
join the algorithm. Specifically, no constant-time, word-sized, wait-free
LL/SC algorithm that does not require the knowledge of N exists. In
this paper, we present such an algorithm.

1 Introduction

1.1 Background

In shared-memory multiprocessors, multiple processes running concurrently on
different processors cooperate with each other via shared data structures (e.g.,
queues, stacks, counters, heaps, trees). Atomicity of these shared data structures
has traditionally been ensured through the use of locks. To perform an operation,
a process obtains the lock, updates the data structure, and then releases the
lock. Locking, however, has several drawbacks, including deadlocks (each of two
processes waits for a lock currently held by the other), priority inversion (a low
priority process holds a lock needed by a high priority process, and the low
priority process is preempted by a medium priority process), and convoying (a
descheduled process that holds a lock causes other processes to wait). Locking
also limits parallelism: even when operations update disjoint parts of the data
structure, they are applied sequentially, one after the other. Finally, lock-based
implementations are not fault-tolerant: if a process crashes while holding a lock,
other processes can end up waiting forever for the lock.
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Wait-free implementations were conceived to overcome the above drawbacks
of locking [1], [2]. A wait-free implementation guarantees that every process com-
pletes its operation on the data structure in a bounded number of its steps, re-
gardless of whether other processes are slow, fast, or have crashed. This bound
(on the number of steps that a process executes to complete an operation on the
data structure) is the time complexity (of that operation). A weaker form of imple-
mentation, known as non-blocking implementation [2], guarantees that if a process
p repeatedly takes steps, then the operation of some process (not necessarily p)
will eventually complete. Thus, non-blocking implementations guarantee that the
system as a whole makes progress, but admit starvation of individual processes.

It is a well understood fact that whether lock-free algorithms (i.e., wait-free or
non-blocking) can be efficiently designed depends crucially on what synchroniza-
tion instructions are available for the task. As we describe in the next section, the
synchronization instructions supported by modern machines are not well suited
for the task. The goal of this paper (and a lot of recent research) has been to
remedy this situation by implementing more useful synchronization instructions.

1.2 Weaknesses of Hardware Synchronization Instructions

Most modern machines support either a compare&swap (CAS) instruction
(e.g., UltraSPARC [3], Itanium [4]), or a pair of instructions RLL/RSC (e.g.,
POWER4 [5], Alpha [6] processors). Neither of these instructions are well suited
for the design of shared data structures. To understand why, we must first look
at their semantics.

The instruction CAS(X, u, v) checks if location X has value u; if so, it changes
the value to v and returns true, else it returns false and leaves the value un-
changed. In practice, CAS is most commonly used as follows. First, we would
read some value A from a location X ; then, we would perform some computation
(which may involve reading other locations) and compute the new value to be
stored into X ; finally, we would use CAS to attempt to change location X from
A to the new value. Most often, our intent is for CAS to succeed only if between
the read and the CAS the location X hasn’t been changed. However, it is quite
possible that the location X changes from A to some value B, and then back
to A again between the read and the CAS; in that case, CAS will succeed, even
though our intent was for it to fail. This undesirable behavior is known in the
literature as the ABA-problem [7], and has greatly complicated the design of
shared data structures.

Next, we turn to the instructions RLL/RSC, which are also supported on
many modern machines. The RLL and RSC instructions act like read and
conditional-write, respectively. More specifically, the RLL(X) instruction by pro-
cess p returns the value of the location X , while the RSC(X, v) instruction by p
checks whether some process updated the location X since p’s latest RLL, and
if that isn’t the case it writes v into X and returns true; otherwise, it returns
false and leaves X unchanged.

Due to their semantics, the RLL/RSC instructions do not suffer from the
ABA-problem. However, they impose two severe restrictions on their use [8]: (1)



Efficiently Implementing LL/SC Objects 47

there is a chance of RSC failing spuriously: RSC might fail even when it should
have succeeded, and (2) a process is not allowed to access any shared variable
between its RLL and the subsequent RSC. Due to these restrictions, it is hard
to design algorithms based on these instructions.

1.3 Solution: LL/SC Instructions

The instructions LL/SC have the same semantics as RLL/RSC, except that
they do not impose any restrictions on their use. For this reason, they are very
well suited for the design of shared data structures. Some examples of recent
LL/SC-based lock-free algorithms are [9], [10], [11], [12], [13], [14], [15], [16].

However, despite thedesirability ofLL/SC,noprocessor supports these instruc-
tions in hardware because it is impractical to maintain (in hardware) the state in-
formation needed to determine the success or failure of each process’ SC operation
on each word of memory. Thus, there is a gap between what algorithm designers
want (namely, LL/SC) and what multiprocessors actually support (namely, CAS
or RLL/RSC). To bridge this gap, we must efficiently emulate LL/SC instructions
in software, which gives rise to the following research problem:

Research Problem: Design a wait-free algorithm that implements LL/SC mem-
ory words from memory words supporting either CAS or RLL/RSC operations.

The above problem has been extensively studied in the literature [17], [18], [19],
[20], [21], [22], [23], [24], [25], [8]. The most efficient algorithm for implementing
LL/SC from CAS is due to Moir [8]. His algorithm runs in constant time and has
no space overhead.However, it can only implement small (e.g., 24 to 32 bit) LL/SC
objects, which are inadequate for storing pointers, large integers and doubles. This
size limitation is due to the fact that Moir’s algorithm stores a sequence number
along with the object’s value in the same memory word. Since sequence number
could take up to 32 to 40 bits, only 24 to 32 bits are left for the value field.

Elsewhere, we presented an algorithm that implements a word-sized LL/SC
object from a word-sized CAS object and registers (e.g., 64-bit LL/SC on a
64-bit machine) [23]. This algorithm stores a value and a sequence number in
separate memory words, thus enabling values to be as big as 64 bits. The algo-
rithm implements both LL and SC in O(1) time and uses O(N) space, where
N is the maximum number of processes that the algorithm is designed to han-
dle. Although these space requirements are modest when a single LL/SC object
is implemented, the algorithm does not scale well when the number of LL/SC
objects to be supported is large. In particular, in order to implement M LL/SC
objects, the algorithm requires O(NM) space. Furthermore, the algorithm re-
quires that N is known in advance. Removing these two drawbacks has been the
focus of some recent research [19], [22], [25] which we describe below.

Doherty, Herlihy, Luchangco, and Moir [19] present an algorithm that uses
only O(N + M) space and does not require knowledge of N , but is only non-
blocking and not wait-free. Michael’s [25] algorithm, on the other hand, is wait-
free and does not require knowledge of N , but uses O(N2 +M) space. The main
drawback of this algorithm is the time complexity of the SC operation: although
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the expected amortized running time of SC is only O(1), the worst-case running
time of SC is O(N2). In [22], we designed a wait-free algorithm that has a space
complexity of O(N2 + M), while still maintaining the O(1) worst-case running
time for LL and SC. This algorithm too does not require knowledge of N . In the
following, we refer to this algorithm and the algorithm by Michael [25] by the
names JP and MIC, respectively.

The drawback of algorithms JP and MIC is that a process needs to perform
O(N) work in order to join the algorithm. Therefore, JP and MIC are not constant-
time algorithms. In this paper, we present an algorithm that removes this draw-
back: our algorithm allows a process to join the algorithm in O(1) time, while still
maintaining the O(1) running time for LL and SC. To the best of our knowledge,
the algorithm presented in this paper is the only constant-time wait-free algorithm
that implements a word-sized LL/SC object without requiring the knowledge of N .

We note that in certain other dimensions the algorithms JP and MIC do
better than our algorithm: (1) when implementing M variables, the space com-
plexity of algorithms JP and MIC is O(N2 + M), whereas the space complexity
of our algorithm is O(N2 + NM); (2) JP and MIC allow processes to join and
leave the algorithm, while our algorithm allows only joins; and (3) JP and MIC
are good for implementing multiword LL/SC objects, while our algorithm im-
plements only word-sized objects.

In terms of techniques, we achieve our result by employing two ideas: (1) we
use our earlier LL/SC algorithm [23] as a base for the new algorithm, and (2)
we use a novel notion of dynamic arrays that we introduced earlier in [22]. For
completeness, we explain both ideas again in this paper.

Organization for the Rest of the Paper. We present our main result in two
steps. First, we restate our earlier algorithm [23] that implements a 64-bit LL/SC
object for a known N . Building on this algorithm, we present a more general
algorithm that works without the knowledge of N . These two algorithms are
described in Sections 2 and 3.

2 LL/SC for a Known N

Figure 1 presents our earlier algorithm that implements a 64-bit LL/SC objects
shared by a fixed number of processes N [23]. We begin by providing an intuitive
description of how this algorithm works.

2.1 How the Algorithm Works

The algorithm implements a 64-bit LL/SC object O. Central to the implemen-
tation is the variable X that supports CAS and read operations. In addition,
there are four atomic registers at each process p—valp[0], valp[1], oldvalp and
oldseqp—that are written to only by p but may be read by any process. The
meanings of these variables are described as follows.

The algorithm associates a tag with every successful SC operation onO. A tag
consists of a process id and a sequence number. Specifically, the tag associatedwith
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Types
valuetype = 64-bit number
seqnumtype = (64 − log N)-bit number
xtype = record pid : 0 .. N − 1; seqnum: seqnumtype end

Shared variables
X: xtype (X supports read and CAS operations)
For each p ∈ {0, . . . , N − 1}, we have four single-writer, multi-reader registers:

valp[0], valp[1], oldvalp: valuetype; oldseqp: seqnumtype
Local persistent variables at each p ∈ {0, . . . , N − 1}

xp: xtype; seqp: seqnumtype
Initialization

X = (0, 1); val0[1] = vinit, the desired initial value of O; oldseq0 = 0; seq0 = 2
For each p ∈ {1, . . . , N − 1} seqp = 1

procedure LL(p, O) returns valuetype procedure SC(p, O, v) returns boolean
1: xp = X 7: valp[seqp mod 2] = v

Let (q, k) = (xp.pid, xp.seqnum) 8: if CAS(X, xp, (p, seqp))
2: v = valq[k mod 2] 9: oldvalp = valp[(seqp − 1) mod 2]
3: k′ = oldseqq 10: oldseqp = seqp − 1
4: if (k′ = k − 2) ∨ (k′ = k − 1) return v 11: seqp = seqp + 1
5: v′ = oldvalq 12: return true
6: return v′ 13: else return false

procedure VL(p, O) returns boolean
14: return X = xp

Fig. 1. An unbounded implementation of the 64-bit LL/SC object O using a 64-bit
CAS object and 64-bit registers, taken directly from our earlier paper [23]

a successful SC operation is (p, k) if it is the kth successful SC operation by process
p. The variable X always contains the tag corresponding to the latest successful SC.

Suppose that the current value of X is (p, k) (which means that the last
successful SC was performed by p and p performed k successful SC operations
so far). The algorithm ensures that the value written by the kth successful SC by
p is in valp[0] if k is even, or in valp[1] if k is odd; i.e., the value is made available
in valp[k mod 2]. The registers oldvalp and oldseqp hold an older value and its
sequence number, respectively. Specifically, if p has so far performed k successful
SC operations, oldseqp and oldvalp contain, respectively, the number k−1 and
the value written by the (k − 1)th successful SC by p.

In addition to the shared variables just described, each process p has two
persistent local variables, seqp and xp, described as follows. The value of seqp is
the sequence number of p’s next SC operation: if p has performed k successful
SC operations so far, seqp has the value k + 1. (Thus, sequence numbers in our
algorithm are local: p’s sequence number is based on the number of successful
SC’s performed by p, not by the system as a whole.) The value of xp is the value
of X read by p in its latest LL operation.

Given this representation, the variables are initialized as follows. Let vinit

denote the desired initial value of the implemented object O. We pretend that
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process 0 performed an “initializing SC” to write the value vinit. Accordingly, X is
initialized to (0, 1), val0[1] to vinit, oldseq0 to 0, and seq0 to 2. For each process
p �= 0, seqp is initialized to 1. All other variables are arbitrarily initialized.

We now explain the procedure SC(p,O, v) that describes how process p per-
forms an SC operation on O to attempt to change O’s value to v. First, p makes
available the value v in valp[0] if the sequence number is even, or in valp[1] if
the sequence number is odd (Line 7). Next, p tries to make its SC operation
take effect by changing the value in X from the tag that p had witnessed in its
latest LL operation to the tag corresponding to its current SC operation (Line
8). If the CAS operation fails, it follows that some other process performed a
successful SC after p’s latest LL. In this case, p’s SC must fail. Therefore, p
terminates its SC procedure, returning false (Line 13). On the other hand, if
CAS succeeds, then p’s current SC operation has taken effect. To remain faith-
ful to the previously described meanings of the variables oldvalp and oldseqp,
p writes in oldvalp the value written by p’s earlier successful SC (Line 9) and
writes in oldseqp the sequence number of that SC (Line 10). (Since the sequence
number for p’s current successful SC is seqp, it follows that the sequence num-
ber for p’s earlier successful SC is seqp − 1, and the value written by that SC
is in valp[(seqp − 1) mod 2]; this justifies the code on Lines 9 and 10.) Next, p
increments its sequence number (Line 11) and signals successful completion of
the SC by returning true (Line 12).

We now turn to the procedure LL(p,O) that describes how process p performs
an LL operation on O. In the following, let SCq,i denote the ith successful SC by
process q and vq,i denote the value written inO by SCq,i. First, p reads X to obtain
the tag (q, k) corresponding to the latest successful SC operation, SCq,k (Line 1).
Since SCq,k wrote vq,k into valq[k mod 2], and since valq[k mod 2] is not modified
untilq initiatesanSCoperationwithseqq = k+2, it follows thatat the instantwhen
pperformsLine 1, thevariablevalq[k mod 2]holds thevalue vq,k. Furthermore, the
value of valq[k mod 2] is guaranteed to be vq,k until q completes SCq,k+1.

So, in an attempt to learn vq,k, p reads valq[k mod 2] (Line 2). By the
observation in the previous paragraph, if p is not too slow and executes Line
2 before q completes SCq,k+1, the value v read on Line 2 will indeed be v q,k.
Otherwise the value v cannot be trusted. To resolve this ambiguity, p must
determine if q has completed SCq,k+1 yet. To make this determination, p reads
the sequence number k′ in oldseqq (Line 3). If k′ = k − 2 or k′ = k − 1, it follows
that SCq,k+1 has not yet completed even if it had been already initiated (because,
by Line 10, SCq,k+1 writes k into oldseqq). It follows that the value v obtained
on Line 2 is vq,k. So, p terminates the LL operation, returning v (Line 4).

If k′ ≥ k, q must have completed SCq,k+1, its (k + 1)th successful SC. It
follows that the value in oldvalq is vq,k or a later value (more precisely, the
value in oldvalq is vq,i for some i ≥ k). Therefore, the value in oldvalq is a
legitimate value for p’s LL to return. Accordingly, p reads the value v′ of oldvalq

(Line 5) and returns it (Line 6). Although v′ is a recent enough value of O for
p’s LL to legitimately return, it is important to note that v′ is not the current
value of O. This is because the algorithm moves a value into oldvalq only after
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it is no longer the current value. Since the value v′ that p’s LL returns on Line
6 is not the current value, p’s subsequent SC must fail (by the specification of
LL/SC). Our algorithm satisfies this requirement because, when p’s subsequent
SC performs Line 8, the CAS operation fails since xp is (q, k) and the value of X
is not (q, k) anymore (the value of X is not (q, k) because, by the first sentence
of this paragraph, q has completed its (k + 1)th successful SC). This completes
the description of how LL is implemented.

The VL operation by p is simple to implement: p returns true if and only
if the tag in X has not changed since p’s latest LL operation (Line 14). The
following theorem summarizes the above discussion.

Theorem 1 ([23]). The wait-free algorithm in Figure 1 implements a lineariz-
able 64-bit LL/SC object from a single 64-bit CAS object and an additional six
registers per process. The time complexity of LL, SC, and VL is O(1).

3 LL/SC for an Unknown N

In this section, we present a modified version of the algorithm in Figure 1 that
does not require N to be known in advance. In particular, the algorithm supports
a new operation, Join(p), that allows a process p to join the algorithm at any
given time. If K is the maximum number of processes that have joined the
algorithm so far, then the space complexity of the algorithm is O(K2 + KM).
The time complexity of procedures Join, LL, SC, and VL is O(1).

The algorithm is given in two steps. First, we introduce an important building
block of the algorithm, namely, an implementation of a dynamic array that
supports constant-time read and write operations (with some restrictions). Then,
we present our main result, namely, an algorithm that implements the LL/SC
object shared by an unknown number of processes. These two steps are described
in Sections 3.1 and 3.2.

3.1 Dynamic Arrays

A dynamic array is just like a regular array except that it places no bounds on
the highest location that can be written. In particular, a process can write into
the ith location of the dynamic array, for any natural number i. At all times,
the size of the array must stay proportional to the highest location written so
far. Furthermore, all reads and writes in the array must complete in O(1) time.
In this paper, we consider only a weaker version of dynamic array that has the
following restrictions: (1) all writes into the same location write the same value,
(2) a write into a location i must precede a read on that location, and (3) a
write into a location i must precede a write into location i + 1. We capture the
above restrictions in an object that we call a DynamicArray object. This object
is formally defined as follows.

A DynamicArray object supports two operations: write(i, v) and read(i). The
write(i, v) operation writes value v into the ith location of the array, while the
read(i) operation returns the value stored in the ith location of the array. The
following restrictions are placed on the usage of read and write:
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– Before write(k + 1, ∗) is invoked, at least one write(k, ∗) must complete.
– Before read(k) is invoked, at least one write(k, ∗) must complete.
– If write(k, v) and write(k, v′) are invoked, then v = v′.

As it turns out, a DynamicArray object can be implemented efficiently (i.e.,
in O(1) time) from a CAS object and registers [22]. Because of space constraints,
we omit the details of the implementation from this paper and only state the
main theorem.

Theorem 2 ([22]). There exists a wait-free implementation of a DynamicArray
object D from a word-sized CAS object and registers. The time complexity of read
and write operations on D is O(1). The space used by the algorithm at any time
t is O(nK), where n is the number of processes executing the algorithm at time
t and K is the highest location written in D prior to time t.

3.2 The Unknown-N LL/SC Algorithm

We now present our main result, namely, the algorithm that implements an
LL/SC object shared by an unknown number of processes. The algorithm is
presented in Figure 2. Below, we describe how the algorithm works.

Recall that the algorithm in Figure 1 stores the process id and a sequence
number together in a central variable X. The assumption is that, once a process
p reads a process id q from X, it can immediately locate all the shared variables
owned by q, namely, oldseqq, oldvalq, valq[0], and valq[1]. Although the exact
mechanism as to how p learns the locations of q’s shared variables is not described
in the algorithm, it is easy to see that the following approach will do: maintain
an array A of length N , with one entry for each process, and store in each entry
A[r] the address of the block containing r’s shared variables. To lean the location
of q’s shared variables, p simply reads the address stored in A[q].

To simulate the above approach in the new algorithm (where N is not known
in advance), we keep a dynamic array D in place of the static array A. This array
will grow in size as more processes keep joining the algorithm. When a process
p joins the algorithm, it first obtains a name – say, i – which will be its unique
index into the array D. Next, p inserts the address of the block that contains p’s
shared variables into location i of array D. From this point onwards, p uses its
name i in place of its process id, i.e., it writes i into X instead of p. It is easy to
see that if some process q reads i from X, it can learn the location of p’s shared
variables by simply consulting the ith location in array D.

The main challenge in implementing the above scheme is to allow concurrent
processes toobtainuniquenames inO(1) time.Below,weexplainhowthealgorithm
addresses this issue. We start by describing the variables used by the algorithm.

Each process p maintains a block of memory where it keeps its shared vari-
ables, namely, oldseq, oldval, val[0], and val[1] (which have the same meaning
as in the algorithm in Figure 1), as well as a new variable name which holds p’s
name. The address of this memory block is kept in p’s local variable locp. In
addition to locp, each process p maintains the following three (local) variables:
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Types
valuetype = 64-bit value
xtype = record type: {0, 1}; if (type == 1) (ptr : ∗blocktype)

else (name: 20-bit number; seqnum: 43-bit number) end
blocktype = record name: 20-bit number; val[0], val[1], oldval: valuetype;

oldseq: 43-bit number end
Shared variables

X: xtype; D: dynamic array of ∗blocktype; N: 20-bit number
Local persistent variables at each p

xp: xtype; seqp: 43-bit number; locp: blocktype; firstp: boolean
Initialization

loc = malloc(sizeof ∗blocktype); loc→name = 0; loc→oldseq = 0;
loc→val[1] = vinit, the desired initial value of O; X = (1, loc); N = 0

procedure LL(p, O) returns valuetype procedure SC(p, O, v) returns boolean
1: xp = X 17: locp.val[seqp mod 2] = v
2: if (xp.type == 1) 18: if (firstp)
3: l = xp.ptr 19: locp.name = N
4: k = 1 20: if (succ = CAS(X, xp, (1, &locp)))
5: da write(D, l→name, l) 21: firstp = false
6: CAS(N, l→name, l→name + 1) 22: else succ = CAS(X, xp,
7: else l = da read(D, xp.name) (0, locp.name, seqp))
8: k = xp.seqnum 23: if (succ)
9: v = l→val[k mod 2] 24: locp.oldval =
10: k′ = l→oldseq locp.val[(seqp − 1) mod 2]
11: if (k′ = k − 2) ∨ (k′ = k − 1) return v 25: locp.oldseq = seqp − 1
12: v′ = l→oldval 26: seqp = seqp + 1
13: return v′ 27: return true

28: return false
procedure Join(p)
14: seqp = 1 procedure VL(p, O) returns boolean
15: locp.oldseq = 0 29: return (X == xp)
16: firstp = true

Fig. 2. An unbounded implementation of the 64-bit LL/SC object O shared by an
unknown number of processes

(1) seqp, which stores p’s sequence number, (2) xp, which stores the value of X
that p had read in its latest LL operation, and (3) firstp, which holds value true
if p hasn’t yet performed a successful SC operation, and false otherwise.

In addition to the variables stored at each process, there are two global shared
variables, namely, X and N. Variable N stores an unbounded integer, and is used
by processes to acquire names. Variable X stores the following information: if q
is the latest process to perform a successful SC, then X holds either (1) a pair
(1, b), where b is a pointer to q’s block of memory, or (2) a tuple (0, k, s), where
k is q’s name and s is a sequence number.

We now explain the procedure SC(p,O, v) that describes how a process p
performs an SC operation on O to attempt to change O’s value to v. First, p
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makes available the value v in locp.val[0] if the sequence number is even, or in
locp.val[1] if the sequence number is odd (Line 17). Next, p checks whether it
had previously performed at least one successful SC (Line 18). If it hasn’t, then
p reads variable N to obtain a name, and saves that name in locp.name (Line 19).
(Multiple processes reading N at the same time may get the same name; however,
only one process will actually keep that name, as we explain below.) Next, p tries
to make its SC operation take effect by changing the value in X from the value
that p had witnessed in its latest LL operation to a value (1, &locp) (Line 20).
If the CAS operation succeeds, then p’s SC is successful. Since it is p’s first
successful SC, p updates variable firstp to false (Line 21). Furthermore, p keeps
the name it had read from N. If, on the other hand, p’s CAS fails, then p’s SC
has failed and so p terminates its SC procedure by returning false (Line 28).
Furthermore, p discards the name it had read from N. Therefore, of all processes
that had read N at the same time, only one process (namely, the process that
performed a successful CAS on X) actually keeps that name; all other processes
abandon it, and attempt to capture a name again during their subsequent SC
operations.

Ifphadpreviouslyperformeda successfulSC(Line18),pattempts to change the
value inX toavalue (0, i, s),where i isp’snameands isa sequencenumber (Line22).
Again, if the CAS operation succeeds, then p’s SC is successful. Otherwise, p’s SC
has failed, and p terminates its SC procedure by returning false (Line 28).

If p’s SC is successful (for the first time or not), p performs the same steps
as in the algorithm in Figure 1. Namely, it (1) writes into locp.oldval the value
written by p’s earlier successful SC (Line 24), (2) writes into locp.oldval the
sequence number of that SC (Line 25), and (3) increments its sequence number
(Line 26). Finally, p signals successful completion of the SC by returning true
(Line 27).

We now turn to the procedure LL(p,O) that describes how a process p per-
forms an LL operation on O. In the following, let SCq,i denote the ith successful
SC by process q, and vq,i denote the value written in O by SCq,i. First, p reads
the current value x of variable X (Line 1). Suppose that SCq,k is the latest suc-
cessful SC operation to write into X before p reads X. Then, if x = (1, l) (Line 2),
we have k = 1 (Line 4). Furthermore, l is the address of the memory block con-
taining q’s shared variables. Since it is possible that l has not yet been inserted
into the DynamicArray D, p inserts l into D (Line 5) and increments N to a
value that is by one greater than the value of q’s name (Line 6). By doing so,
q ensures that before another process obtains a new name, the following holds:
(1) the address of p’s memory block has been inserted into D, and (2) variable
N is by one greater than p’s name. As a result, each process obtains a name that
is unique, and all entries in array D are written (for the first time) in sequential
order: entry j is written before entry j + 1, for all j ≥ 0.

If x = (0, i, k) (Line 2), then we have k > 1. Furthermore, by the above argu-
ment, the address l of q’s memory block has already been written into location
i of array D. So, p simply reads that location to obtain l (Line 7).
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Notice that, in both of the above cases, p is able to obtain address l of q’s
memory block: either directly from X (Line 3), or indirectly fromD (Line 7). From
this point onwards, p proceeds in the same way as in the algorithm in Figure 1.
In particular, p first reads l→val[k mod 2] to try to learn vq,k (Line 9). Next, p
reads the sequence number k′ in l→oldseq (Line 10). If k′ = k − 2 or k′ = k − 1,
then SCq,k+1 has not yet completed, and the value v obtained on Line 9 is vq,k.
So, p terminates the LL operation, returning v (Line 11). If k′ ≥ k, q must have
completed SCq,k+1. Hence, the value in l→oldval is vq,k or a later value (more
precisely, the value in l→oldval is vq,i for some i ≥ k). Therefore, the value in
l→oldval is not too old for p’s LL to return. Accordingly, p reads the value v′

of l→oldval (Line 12) and returns it (Line 13).
The VL procedure is self-explanatory. Based on the above, we have the fol-

lowing theorem.

Theorem 3. The wait-free algorithm in Figure 2 is linearizable. The time com-
plexity of Join, LL, SC, and VL is O(1). The space complexity of the algorithm
is O(K2 + KM), where K is the total number of processes that have joined the
algorithm.
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Abstract. An important problem of mobile communication is placing
a given number of base-stations in a given convex region, and to assign
range to each of them such that every point in the region is covered by at
least one base-station, and the maximum range assigned is minimized.
The algorithm proposed in this paper uses Voronoi diagram, and it works
for covering a convex region of arbitrary shape. Experimental results
justify the efficiency of our algorithm and the quality of the solution
produced.

1 Introduction

In a mobile radio network, a set of base-stations are appropriately positioned in
a desired area, and their transmission ranges are assigned. The mobile terminals
communicate with its nearest base-station, and the base-stations communicate
with each other over scarce wireless channels in a multi-hop fashion. Each base-
station emits signals periodically, and all the mobile terminals within its range
can identify it as its nearest base-station after receiving such signals. We study
the problem of positioning the base-stations and the assignment of transmission
ranges such that the entire area under consideration is covered, and the total
power consumed by all the base-stations is minimum.

We assume that, the region to be covered is a convex polygon in 2D, the
number of base-stations is given a priori, and the range assigned to each of
them is same. If the range of a base-station is ρ, it can communicate with all
the mobile terminals present in the circular region of radius ρ and centered at
the position where the base-station is located. Our problem is to minimize ρ by
identifying the positions of the base-stations appropriately.

It is slightly different from the well-known k-center problem in 2D, where we
need to place a set S of k supply points on the plane such that the maximum
Euclidean distance of a demand point from its nearest supply point is minimized.
For a given set D of n demand points, the k-center problem can be solved using
parametric search technique when k is small. For a fixed value of k, the best
known algorithm for this problem runs in O(nO(

√
k)) time [4]. But, if k is a part

of the input, then the problem becomes NP-complete [2]. In our case, the set
of demand points D is the entire convex region under consideration, and the
problem is referred to as a covering problem in the literature. Two variations of
this problem are studied:

A. Pal et al. (Eds.): IWDC 2005, LNCS 3741, pp. 57–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



58 G.K. Das et al.

(i) finding the minimum number of unit-radius circles that are necessary to
cover a given square, and

(ii) finding the arrangement (positioning) of the members in S and determining
a real number ρ such that the circles of radius ρ centered at positions in S
can cover the unit square, but for any real number ρ′ < ρ, there exists no
arrangement of S which can cover the entire unit square.

In [12], a lower bound was given for problem (i); it says that if m is the minimum
number of unit circles required for covering a squarewith each side of length σ, then
3
√

3
2 m > σ2 + cσ, where c > 1

2 . Substantial studies have been done on problem
(ii) [3], [6], [7], [8], [9], [11]. The objective was to cover a unit square region with a
given number (say k) of equal radius circles with minimum radius. In [9], simulated
annealing approach was used to obtain near-optimal solutions for the unit square
coveringproblem for k ≤ 30. As it is very difficult to get a good stopping criteria for
a stochastic global optimizationproblem, theyusedheuristic approach to stop their
program. It is mentioned that, for k = 27 their algorithm runs for about 2 weeks to
achieve the stipulated stopping criteria. For k > 28, the time requirement is very
high. So, they have changed their stopping criteria, andpresented the results. In [8],
the same approach is adopted for covering a equilateral triangle of unit edge length
with circles of equal radius, and results are presented for different values of k.

We have adopted a geometric approach using Voronoi diagram for solving
the same problem in a more general situation, where the region to be covered
may be a convex polygon of arbitrary shape. Experimental results say that our
algorithm terminates in a fraction of a second for reasonably large values of k.
We could compare our results when the region to be covered is a square or an
equilateral triangle and when k is small (≤ 30). The solutions produced by our
algorithm are favorably comparable with that of [8], [9]. Thus, our algorithm
will be very useful in practical applications.

Fig. 1. Illustration of our problem

2 Algorithm

Consider a set of points P = {p1, p2, . . . , pk} inside a convex polygon Π where
the i-th base-station is located at point pi. We use V OR(P ) to refer the Voronoi
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diagram [1] of the set of points P , and vor(pi) to denote the Voronoi polygon
of a point pi ∈ P . Since we need to establish communication inside Π , if a part
of the region vor(pi) goes outside Π for some i, then the region vor(pi)

⋂
Π is

used as vor(pi). Note that, all the points inside vor(pi) are closer to pi than any
other point pj ∈ P , j �= i. Thus, all these points will communicate with pi. As
the base stations are of equal range, our objective is to arrange the points in P
inside Π such that the maximum range required (ρ) among the points in P is
minimized. Our algorithm is an iterative one. At each step, it perturbs the point
set P as described below, and finally, it attains a local minimum.

In each iteration, we compute V OR(P ) [1], and then compute the circum-
scribing circle Ci of each vor(pi) using the algorithm proposed in [10]. Let ri

denote the radius of Ci. In order to cover a convex polygon by a base-station
with minimum range, we need to place the base-station at the center of the
circumscribing polygon of that convex region with range equal to the radius of
that circle. Thus, for each i = 1, 2, . . . , k, we move pi to the center of Ci and
assign range ri to it. Next, we compute ρ = max{ri, i = 1, 2, . . . , k}.
Lemma 1. At each iteration, (i) the newly assigned position of each point pi

lies inside the corresponding vor(pi), and (ii) the value of ρ decreases.

Remark 1. The iteration terminates when the value of ρ reaches to a local min-
ima, or in other words, ρnew = ρold is attained.

We also apply a refinement step to improve the solution. Note that, if a point
(base-station) pi is on the boundary of Π , then at least 50% of the area of Ci lies
outside Π , and hence this region need not be covered. This indicates, the scope
of further reduction in the area of Ci. Thus, if a point goes very close to the
boundary of Π , we move it to the centroid of Π , whose coordinate is computed
as ( 1

m

∑m
j=1 xα, 1

m

∑m
j=1 yj), where m is the number of vertices of Π . It can be

shown that, the centroid of a convex region is always inside that region.
It is observed that, such a major perturbation moves the solution from a local

minima, and it leads to a scope of further reduction in ρ. We again continue
iteration with this initial placement until it again reaches another local minima.
Theorem 1. The worst case time complexity of an iteration is O(klogk).

Proof: The factors involved in this analysis are (i) computing V OR(P ), which
can be done in O(klogk) time [1], and (ii) computing Ci for all i = 1, 2, . . . , k,
which needs O(k) time due to the fact that each edge appears in at most two
Voronoi cells, and computing the circular hull of a convex polygon needs time
linear in its number of edges [10]. ��
It is observed that the number of iterations needed to reach to a local optima
from an initial configuration is reasonably small. The overall time complexity
depends on the number of times we apply the refinement step.

3 Experimental Results

An exhaustive experiment is performed with several convex shapes of the given
region and with different values of k. It is easy to show that, for a given initial



60 G.K. Das et al.

Table 1. Covering a unit square

k ρopt using ρ∗
opt

method in [9] using our
method

4 0.35355339059327376220 0.353553
5 0.32616054400398728086 0.326165
6 0.29872706223691915876 0.298730
7 0.27429188517743176508 0.274295
8 0.26030010588652494367 0.260317
9 0.23063692781954790734 0.230672
10 0.21823351279308384300 0.218239
11 0.21251601649318384587 0.212533
12 0.20227588920818008037 0.202395
13 0.19431237143171902878 0.194339
14 0.18551054726041864107 0.185527
15 0.17966175993333219846 0.180208
16 0.16942705159811602395 0.169611
17 0.16568092957077472538 0.165754

k ρopt using ρ∗
opt

method in [9] using our
method

18 0.16063966359715453523 0.160682
19 0.15784198174667375675 0.158345
20 0.15224681123338031005 0.152524
21 0.14895378955109932188 0.149080
22 0.14369317712168800049 0.143711
23 0.14124482238793135951 0.141278
24 0.13830288328269767697 0.138715
25 0.13354870656077049693 0.134397
26 0.13176487561482596463 0.132050
27 0.12863353450309966807 0.128660
28 0.12731755346561372147 0.127426
29 0.12555350796411353317 0.126526
30 0.12203686881944873607 0.123214

Table 2. Covering a equilateral triangle

k ρopt using ρ∗
opt

method in [8] using our
method

4 0.2679491924311227065 0.267972
5 0.2500000000000000000 0.250006
6 0.1924500897298752548 0.192493
7 0.1852510855786008545 0.185345
8 0.1769926664029649641 0.177045
9 0.1666666666666666667 0.166701
10 0.1443375672974064411 0.144681
11 0.1410544578570137366 0.141252
12 0.1373236156889236662 0.137633
13 0.1326643857765088351 0.133379
14 0.1275163863998600644 0.127829
15 0.1154700538379251529 0.115811
16 0.1137125784440782042 0.114574
17 0.1113943099632405880 0.112141
18 0.1091089451179961906 0.109890
19 0.1061737927289732618 0.107288
20 0.1032272183417310354 0.104049

k ρopt using ρ∗
opt

method in [8] using our
method

21 0.0962250448649376274 0.099165
22 0.0951772351261450917 0.095877
23 0.0937742911094478264 0.094625
24 0.0923541375945022204 0.093982
25 0.0906182448311340175 0.091688
26 0.0887829248953373781 0.090231
27 0.0868913397937031505 0.088238
28 0.0824786098842322521 0.086795
29 0.0818048133956910115 0.084545
30 0.0808828500258641436 0.082246
31 0.0798972448089536737 0.081665
32 0.0788506226168764215 0.080457
33 0.0776371221483728244 0.079604
34 0.0763874538343494465 0.078827
35 0.0751604548962267707 0.076918
36 0.0721687836487032206 0.075950

placement of P , at each iteration the value of ρ is decreased. As the process
reaches a local minima, the quality of the result completely depends on the
initial choice of the positions of P . We have studied the problem with random
distribution of P . It shows that in an ideal solution, the distribution of points
is very regular. So, while working with unit square region, we choose the initial
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Table 3. Performance evaluation of the algorithm

k ρ∗
opt ρaverage std. devn. Time

(in sec.)
4 0.353553 0.395284 0.040423 0.052
5 0.326165 0.326247 0.000201 0.073
6 0.298730 0.309837 0.008433 0.090
7 0.274295 0.27603 0.001668 0.107
8 0.260317 0.26131 0.003079 0.124
9 0.230672 0.231119 0.000540 0.143
10 0.218239 0.218244 0.000004 0.164
11 0.212533 0.213855 0.000894 0.184
12 0.202395 0.205567 0.000908 0.206
13 0.194339 0.194960 0.000645 0.228
14 0.185527 0.189217 0.001722 0.258
15 0.180208 0.182782 0.001883 0.279
16 0.169611 0.174669 0.003178 0.303
17 0.165754 0.168231 0.002336 0.327

k ρ∗
opt ρaverage std. devn. Time

(in sec.)
18 0.160682 0.164347 0.001092 0.351
19 0.158345 0.160797 0.000885 0.377
20 0.152524 0.156772 0.000877 0.405
21 0.149080 0.153131 0.001253 0.436
22 0.143711 0.148640 0.000582 0.465
23 0.141278 0.145498 0.001738 0.499
24 0.138715 0.142105 0.001507 0.531
25 0.134397 0.139549 0.001572 0.557
26 0.132050 0.136489 0.001618 0.587
27 0.128660 0.133725 0.001298 0.623
28 0.127426 0.131589 0.001357 0.655
29 0.126526 0.129241 0.000964 0.688
30 0.123214 0.127069 0.000881 0.719

placement of the points in P as follows: compute m = �
√

k�. If m2 = k, we split
the region into m × m cells, and in each cell place a point of P randomly. If
k−m2 < m, then split the region into m rows of equal width. Then, arbitrarily
choose (k −m2) rows and split each of these rows into (m + 1) cells; the other
rows are split into m cells. Now place one point in each cell. If k−m2 > m, then
split the square into m + 1 rows, and each row is split into m or m + 1 rows to
accommodate all the points in P .

For each k, we have chosen 1000 initial instances. For each of these instances,
we have run our algorithm, and have computed ρmin which is the minimum value
of ρ observed during the experiment. Finally, we report ρ∗opt = minimum value
of ρmin over all the 1000 instances. Thus, ρ∗opt indicates the minimum value of ρ
that is achieved by our experiment. In Table I, we have compared ρ∗opt with the
value of ρopt obtained by the algorithm in [9] for different values of k.

We have also compared our method with that of [8] when the region is an
equilateral triangle. The experimental results for different values of k appear in
Table II. Figure 1 demonstrates the output of our algorithm for covering a given
convex polygon with 13 circles.

In order to present the performance of our heuristic, we report the minimum,
average and standard deviation of the value of ρmin over all the 1000 instances
for different values of k with unit square region (see Table III). We have per-
formed the entire experiment in SUN BLADE 1000 machine with 750 MHz CPU
speed, and have used LEDA [5] for computing the Voronoi diagram. The average
time for processing each instance is also given. Similar results are observed with
equilateral triangular area; so it is not specifically mentioned.

Experimental results indicate that the solutions produced by our algorithm
are very close to those of the existing results on this problem where the region
is a square [9] and an equilateral triangle [8]. This is highly acceptable in the



62 G.K. Das et al.

context of our application. It is mentioned in [8, 9] that for a reasonably large
value of k (≥ 27), it need to run several weeks to get the solution, whereas our
method needs a fraction of a second. This is very important in this particular
application.
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Abstract. Sensor networks are increasingly being used for applications
which require fast processing of data, such as multimedia processing.
Distributed computing can be used on a sensor network to reduce the
completion time of a task and distribute the energy consumption eq-
uitably across all sensors. The distribution of task modules to sensors
should consider not only the time and energy savings, but must also im-
prove reliability of the entire task execution. We formulate the above as
an optimization problem, and use the A∗ algorithm with improvements
to determine an optimal static allocation of modules among a set of sen-
sors. We also suggest a faster but suboptimal algorithm, called the greedy
A∗ algorithm. Both algorithms have been simulated, and the results have
been compared in terms of energy savings, decrease in completion time
of the task, and the deviation of the sub-optimal solution from the opti-
mal one. The sub-optimal solution required 8-35% less computation, at
the cost of 2.5-15% deviation from the optimal solution in terms of aver-
age energy spent per sensor node. Both the A∗ and greedy A∗ algorithms
have been shown to distribute energy consumption more uniformly across
sensors than centralized execution. The greedy A∗ algorithm is found to
be scalable, as the number of evaluations in determining the allocation
increases linearly with the number of sensors.

1 Introduction

Sensor networks consist of a large number of small, lightweight, highly resource-
constrained wireless devices called sensors. Typical scenarios of application of
sensors include habitat monitoring, intrusion detection, chemical and meteoro-
logical sensing, and military use [1]. Sensors have limited processing capability
and battery power, and are typically not equipped with rechargeable or replace-
able power sources. With an increase in data- and computation-intensive appli-

A. Pal et al. (Eds.): IWDC 2005, LNCS 3741, pp. 63–74, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



64 A. Sekhar, B.S. Manoj, and C.S.R. Murthy

cations such as multimedia processing and data collaboration, which may be sub-
ject to time constraints, distributed applications play a vital role in sensor net-
works. A given task can be split into modules and allocated to a group of sensor
nodes considering (a) minimum completion time, (b) minimum energy consumed
per node, (c) increased reliability. The process of splitting a task into modules in-
troduces computation and communication overheads. In a centralized execution,
one sensor spends a large amount of energy to complete a complex task. By dis-
tributing it, each sensor spends some energy towards the task completion. This
distribution of energy consumption ensures that the whole network is equally in-
volved in computation and collaboration, which is preferred in sensor networks,
since it avoids the premature death of some sensors due to battery drain.

Distributed sensor networks have generated research interest in recent times.
In [2], an architecture called SensorWare has been proposed which utilizes the
computation, communication, and sensing resources available in sensor nodes us-
ing lightweight and mobile scripts. EnviroTrack [3] is an environmental comput-
ing paradigm proposed for sensor networks, which develops embedded systems
of massively distributed, disposable sensors for habitat monitoring and intru-
sion tracking. Distributed computing systems have been explored in the wired
domain, as a set of interconnected processors which together perform a specific
task. Algorithms have been studied to allocate modules efficiently to different
processors [4]. The lifetimes of sensors and communication links are assumed
to follow exponential distribution, the simplest life distribution model [6]. Run-
ning applications which require high computational resources often proves to
be difficult on single sensor nodes, due to their limited processing capabilities.
On the other hand, such computation-intensive applications are increasing in
number and importance, which makes it imperative to explore the possibilities
of distributing the computation across nearby sensors. Distributed real-time ap-
plications on sensors are being studied in the context of military applications.
Multi-spectral image analysis is used to derive surveillance information from
wavelengths outside the visible range of the spectrum. This requires algorithms
such as auto-correlation and the fast Fourier transform to be executed in a
distributed manner. Such applications make distributed computation on sensor
networks extremely essential. The organization of the rest of this paper is as
follows: We present our work in Section 2. Our simulation results are presented
in Section 3, and we summarize our findings in Section 4.

2 Our Work

We have presented an optimization problem formulation for the distribution of
tasks on a sensor network. The major costs involved in the execution of any task
are those of computation and communication. A task is split into modules, and is
then allocated to the sensors in the network. We have considered a static alloca-
tion of tasks, where the split-up into modules, and the expected communication
between modules, is known a priori. Also, the distribution of modules is per-
formed among a known set of sensors. A central entity such as a base station (BS)
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could program sensors to perform certain modules of the task, and communicate
the results to it. Alternatively, a sensor could itself distribute a task among its
neighbors. While computation costs depend on the capability of the processor
and the total processing required for a task, communication costs depend on
the bandwidth available between two nodes and the inter-module communica-
tion between the modules running on them. We have considered a heterogeneous
network in which nodes have different processing speeds and communication and
computation costs. Node failure has been assumed to be mainly due to battery
drain, since the network is highly power-constrained. Link reliability has also
been considered. Consider a task such as intruder-tracking or a multimedia ap-
plication, which has to be split into modules and distributed among the nodes of
a sensor network. Let there be n nodes available, labeled N0, N1, ..., Nn−1. The
task T is split into m modules i.e., T = M0, M1, ..., Mm−1. Several methods for
splitting an application in to modules (or tasks) can be found in [7]. We consider
a heterogeneous network, where the nodes have different processing capabilities.
Let the processing speed of each node be recorded in a matrix PROC of or-
der 1 × n, where PROC[i] represents the processing capability of node Ni, for
i = 0, 1, ..., n − 1. The communication links between different nodes also have
different speeds, represented by the n × n matrix LINK, where LINK[i][j] is
the speed of the link between node Ni and Nj, for i, j such that 0 ≤ i, j < n.
The diagonal entries of the LINK matrix are set to infinity, since the speed of
communication within a node is much faster than that across nodes (the network
links are not required for communication within a node). Each module Mi has a
certain computation requirement COMP [i], where 0 ≤ i < m. The inter-module
communication requirement is represented by an m × m matrix IMC, where
IMC[i][j] is the communication requirement between modules Mi and Mj , for
i, j such that 0 ≤ i, j < m. The maximum computational load that a node can
handle is given by LOAD[i] where 0 ≤ i < n and the maximum available energy
of a node is given by ENERGY [i] where 0 ≤ i < n. Let the energy required for
unit computation on node Ni be ECOMP [i] and that for unit communication be
ECOMM [i]. Typically, faster nodes have a higher value of ECOMP .

Since the nodes of the network have different processing capabilities, execu-
tion of a module on different nodes will entail different costs. To model this,
an m × n matrix exec is used, where exec[i][j] represents the execution cost of
module Mi on node Nj , 0 ≤ i < m, 0 ≤ j < n. The entries of the matrix exec are
filled up as exec[i][j] = COMP [i]/PROC[j] where 0 ≤ i < m, 0 ≤ j < n. Simi-
larly, non-identical communication links result in different communication costs
when modules are executed on different nodes. A 4-dimensional matrix comm is
used to model the communication costs. comm[i][j][k][l] is the communication
cost incurred due to inter-module communication between modules Mi and Mj

when they are executed on nodes Nk and Nl, respectively, for 0 ≤ i, j < m and
0 ≤ k, l < n. It is assumed that the communication cost between modules exe-
cuting on the same node is 0. The matrix comm is filled up using the equation
comm[i][j][k][l] = IMC[i][j]/LINK[k][l] for 0 ≤ i, j < m, 0 ≤ k, l < n. Since
the denominator term LINK[k][l] is set to ∞ for k = l, the communication cost
within the same node goes to 0. All the m modules are to be assigned to the n
nodes, and the assignment is represented by an m× n binary matrix X .
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X[i][j] = 1 if Mi is assigned to Nj

= 0 otherwise (1)

Since a given module is assigned to one and only one node, the row-sum of any
row of the assignment matrix must be 1. Hence

n∑
j=1

X[i][j] = 1 (2)

The computation cost of the task is given by

m∑
i=1

n∑
j=1

X[i][j]exec[i][j] (3)

The total communication cost of the task is

m∑
i=1

m∑
j=1

n−1∑
p=1

∑
q>p

X[i][p]X[j][q]comm[i][j][p][q] (4)

An important feature of our modeling is the inclusion of reliability as a criterion
for the assignment of modules to nodes. The reliability of a node Nk, 0 ≤ k < n
in a time interval t is e−λkt where λk is the failure rate of node Nk [6]. The
failure rate is inversely proportional to the available energy of the node. Hence,
it has been modeled as the reciprocal of the available energy. The time for which
a module Mi runs on a node Nk under a given assignment X is exec[i][k].
Hence, the total running time of the modules on a node under X is given by∑m

i=1 X [i][k]exec[i][k]. The reliability of the node Nk is thus given by

Rk(T, X) = exp(−λk

m∑
i=1

X[i][k]exec[i][k]) (5)

Similarly, link reliability is also modeled to account for the vagaries of the
wireless medium. A matrix μ is used to model the failure rate of paths between
any two nodes. μ[p][q] denotes the failure rate of the path between nodes Np and
Nq. Then, the reliability of the path is given by

Rpq(T, X) = exp(−μ[p][q]
m∑

i=1

m∑
j=1

X[i][p]X[j][q]comm[i][j][p][q]) (6)

Then the reliability of the entire task is given by the product of all the individual
node reliabilities and link reliabilities. Hence

R(T, X) = [
n∏

k=1

Rk(T, X)][
n−1∏
p=1

∏
q>p

Rpq(T, X)] (7)

Using Equations (5) and (6), this can be rewritten as

R(T, X) = exp(−RelCost(X)) (8)
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The term RelCost must be minimized to ensure that the reliability of the entire
task is maximized. Hence, using the expressions for the computation, commu-
nication, and reliability costs (from Equations (3), (4), and (8)) the objective
function of the task assignment is to minimize the cost

m∑
i=1

n∑
j=1

X[i][j]exec[i][j]+

m∑
i=1

m∑
j=1

n−1∑
p=1

∑
q>p

X[i][p]X[j][q]comm[i][j][p][q] + RelCost(X) (9)

Equivalently, substituting for RelCost(X), the objective is to minimize

m∑
i=1

n∑
j=1

(1 + λj)X[i][j]exec[i][j] +
m∑

i=1

m∑
j=1

n−1∑
p=1

∑
q>p

(1 + μ[p][q])X[i][p]X[j][q]comm[i][j][p][q]) (10)

Besides the row-sum constraint on the assignment matrix (Equation (2)), the
modules executed on a node must satisfy two other resource constraints – the
total energy required must be less than the available energy at the node and the
total computational load offered must be within the capacity of the node. These
are represented by the following inequality constraints.

m∑
i=1

X[i][k]exec[i][k]ECOMP [k]+

m−1∑
i=1

n∑
p=1

m∑
j=1,j>i

X[i][k]comm[i][j][k][p]ECOMM [k] ≤ ENERGY [k] (11)

m∑
i=1

X[i][k]exec[i] ≤ LOAD[k] (12)

The optimization problem is now formulated, with the objective as in Equation
(10), and constraints of Equations (2), (11), and (12). This is a generic problem
formulation, which reduces to simpler special cases depending on the values
given to parameters μ and λ. If the sensors are assumed to have ample energy,
and hence are very reliable, then the values of λ[i] go to 0. Similarly, if the
communication links are also assumed to be reliable, the μ matrix is set to 0.

2.1 Computation of Optimal Module Allocation

We use the A∗ algorithm [8] to find an optimal allocation of modules among
a set of sensors. Each vertex x in the search tree represents a partial alloca-
tion of modules to sensors. A goal vertex represents a complete allocation of
all modules. Every vertex x has an associated cost function f(x), which is a
lower bound on the minimum cost of a complete allocation which includes the
partial allocation Ax at vertex x. Any goal vertex in the sub-tree rooted at x
will have a cost greater than f(x). f(x) = g(x) + h(x), where g(x) is the cost
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of the partial allocation Ax and h(x) is a lower bound on the minimum cost of
a path from vertex x to a goal vertex. h(x) is calculated by making a temporary
allocation of all the unallocated modules, and summing up their computation
costs and their communication costs only with the modules already allocated in
the partial allocation A(x). The search begins with the null allocation, where no
module has been assigned a sensor. At each stage in the search, the vertex with
minimum f(x) is expanded, until a goal vertex is reached. The order in which
modules are allocated to sensor nodes greatly affects the required computation
for the solution search. Suppose there are k independent modules (which do
not have inter-module communication among themselves). Then the tentative
allocation represented by vertex x at level m − k itself is a goal vertex, since
the only costs induced further in the subtree rooted at x are the computation
costs, which are already included in the calculation of f(x). This restricts the
search to only m−k levels of the search tree. In order to ensure feasibility of the
temporary allocation, the energy and load constraints must also be checked in
the computation of h(x). Finding the maximal set of independent modules is an
NP-complete problem [9]. We use the algorithm independent-module-set heuris-
tic to find a set of independent modules, as presented by Sinclair [5] and on the
ordered set of modules produced by this algorithm, the A∗ algorithm is applied.

Algorithm Independent-module-set

1. M = all modules, I = φ
2. Compute the degree of each module
3. While( M contains more than 1 module)

a. Find a module x in M of minimum degree, Remove x from M and add to
I

b. ∀ y ε M such that x and y communicate
i. Remove y from M
ii. ∀ z in M such that y and z communicate, reduce degree of z by 1

end while
4. Insert last remaining module in I

Algorithm Optimal-module-allocation

1. Set terminating level = m − k, order the modules in M using Independent-module-
set
2. Insert root vertex(φ, φ, ..., φ) in a list OPEN. Set f(r) = 0 and vertex level =
0
3. While (vertex level != terminating level)

a. Move the vertex x with least f(x) to a list CLOSED
b. if(vertex level(x) < terminating level)

i. Expand x by assigning next unassigned module to all sensor nodes
ii. Insert all feasible new vertices into OPEN
iii. vertex level of each new vertex = vertex level(x) +1

end while
4. Return the assignment of vertex x
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2.2 Greedy A∗ Algorithm

The A∗ algorithm guarantees optimal allocation of modules, but at the expense
of evaluations of many solution points (vertices) in the search tree. Since the
execution of the algorithm itself could drain the resources of a sensor node, in
this case, a simpler sub-optimal solution, given by the greedy A∗ algorithm,
can be preferred. We, in Step 3b.ii. of Optimal-module-allocation, instead of
inserting all new feasible vertices into the OPEN list, only the least cost vertex
is inserted. This greedy approach, of exploring only the least-cost path, is called
the greedy A∗ algorithm. Consider the following example in which a task T
involving 80 units of computation. This is now to be distributed among 4 nodes
(sensors) N0, N1, N2, and N3, with processing speeds 2,4,1, and 3, respectively.
The cost of computation on each processor is proportional to the speed. Hence,
the matrix ECOMP is [2, 4, 1, 3]. Suppose the task can be split into 5 modules,
with computational loads [20,25,20,15,20]. The inter-module communication cost
between modules and the interlink bandwidth between nodes are given by the
matrix IMC and LINK, respectively.

IMC =

⎡⎢⎢⎢⎢⎣
0 4 2 0 0
4 0 0 3 1
2 0 0 0 2
0 3 0 0 0
0 1 2 0 0

⎤⎥⎥⎥⎥⎦ LINK =

⎡⎢⎢⎣
∞ 4 1 3
4 ∞ 3 2
1 3 ∞ 2
3 2 2 ∞

⎤⎥⎥⎦

All nodes are assumed to have a starting energy of 500 units, and can take
a maximum computational load of 100 units. The energy for communication
ECOMM is assumed to be 4 units from all nodes on all links to other nodes. If
the task is executed in a centralized fashion, assuming it is run on the fastest node
(of speed 4), the completion time will be 80/4 = 20 time units. The only energy
spent will be for computation on node N1. The energy per unit computation
is 4 units (ECOMP [1] = 4), hence total energy spent is (80 × 4) = 320 units
of energy. Applying the ordering algorithm on the modules, the order obtained
is [2,1,4,0,3]. Applying the A∗ algorithm, after evaluation of 24 solution points
in the solution tree, the optimal solution is determined as shown in columns 1
and 2 of Table 1. This allocation entails an execution time of 16.25 time units,
and the energy spent at nodes N1 and N3 are 296 and 141 units, respectively.
The completion time in the distributed allocation is less than the centralized
execution, and the energy spent by the fastest node (node 1) is also reduced.

On the other hand, using the greedy A∗ algorithm to explore only the least-
cost path down the search tree, a solution is obtained after evaluation of 12 solu-
tion points. The allocation is shown in columns 1 and 3 of Table 1. The solution is
sub-optimal, with completion time 21.67 time units. The energy consumption at
nodes N1 and N3 is 176 and 231 units, respectively. The completion time of the
greedy A∗ allocation is close to that of the centralized execution, and the energy
spent by node 1 is decreased. While the greedy A∗ algorithm reduces the number
of solution points evaluated in determining the module distribution, it may not
provide the least completion time of tasks. Comparing the energy consumed in
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the centralized and distributed execution scenarios, node 1 spends 320 units in
the centralized case, but only 296 units using A∗ and 176 units using greedy A∗

algorithm. This illustrates that the energy spent by a single sensor is reduced, and
the load is partially shared by other sensors, e.g. node 3 spends 141 units of en-
ergy in the A∗ allocation and 231 units in the greedy A∗ allocation, respectively.

3 Results

The working of the A∗ and greedy A∗ algorithms was studied using simulations
in C++. A task of 100 units of computation was split into 2, 3, 4, or 5 modules.
The division of the task into modules introduces both computation and commu-
nication overheads. The added computation on each module was generated by a
uniform random distribution of 1 to 5 units. The IMC cost matrix was generated
as a uniform random distribution between 1 and 10 units of communication. To
account for heterogeneity of nodes in the network, the speed of each node was
a random integer between 1 and 5, and the cost of computation on a node was
proportional to its speed. In our simulations, we have assumed the cost of com-
putation equal to the speed. The subset of nodes among which the modules are
to be distributed varies in size from 2 to 5. The cost of communication between
any two nodes was specified by the P : C ratio. The P : C values of 1:5, 1:3,
and 1:1 were used, indicating that communication is 5, 3, or 1 time(s) as ex-
pensive as computation. The bandwidth of links connecting any two nodes was
uniformly distributed between 1 and 5 units. The initial state of the network,
in terms of capacity of the nodes and available energy, was also modeled using
a random distribution. Nodes had an initial computation capacity distributed
in the range (800, 1200) and energy in the range (500, 800). The reliability of
links, represented by the μ matrix, was uniformly distributed in (0, 1). The fail-
ure rate of the nodes was inversely proportional to the available energy of the
nodes. The orthogonal factors which defined the input configurations were the
number of modules (2, 3, 4, or 5), number of nodes (2, 3, 4, 5, or 6), and the
P : C ratio (1:5, 1:3, or 1:1). Each configuration was run on 10 random seeds.
Hence, both the optimal A∗ and the sub-optimal greedy A∗ algorithms were
run for 4 × 5 × 3 × 10 = 600 times. Distributing a task among a set of nodes
results in faster completion of the task compared to executing it in a centralized
form on 1 node. This was demonstrated by the difference in completion time of

Table 1. Module Allocation

Module A∗ Node Greedy A∗ Node
0 3 1
1 1 3
2 1 3
3 3 1
4 1 3



A State-Space Search Approach for Optimizing Reliability 71

Difference in completion time

2 2.5 3 3.5 4 4.5 5
Modules 3

3.5
4

4.5
5

5.5
6

Sensors

-1
0
1
2
3
4
5
6
7
8

Time

Fig. 1. Completion time of task with P:C
= 1:5

Difference in completion time

2 2.5 3 3.5 4 4.5 5
Modules 3

3.5
4

4.5
5

5.5
6

Sensors

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Time

Fig. 2. Completion time of task with P:C
= 1:1

2

3

4

5

6

7

8

2 2.5 3 3.5 4 4.5 5 5.5 6

C
om

pu
ta

tio
ns

Nodes

A*
Greedy A* 

Fig. 3. Solution point evaluations for allo-
cation of 2 modules

2

4

6

8

10

12

14

16

18

2 2.5 3 3.5 4 4.5 5 5.5 6

C
om

pu
ta

tio
ns

Nodes

A*
Greedy A* 

Fig. 4. Solution point evaluations for allo-
cation of 5 modules

Fig. 5. Percentage savings in computation
of sub-optimal solution by greedy A∗ algo-
rithm
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the task under the centralized and distributed scenarios, as shown in Figures 1
and 2. The P : C values in the two sets of results are 1:5 and 1:1, respectively.
In these graphs, for most configurations of number of modules and nodes, the
distributed execution of the task results in an earlier completion time, in spite
of an increased computation overhead. The metric for comparison between the
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optimal A∗ algorithm and the greedy A∗ algorithm was the number of solution
points evaluated till the goal node is reached. The results for 2 and 5 module
allocations are shown in Figures 3 and 4. In these cases, the number of compu-
tations required for the optimal solution is more than that for the sub-optimal
solution. Also, there is a trend of increase seen in the number of evaluations
required for greater number of nodes and modules. The percentage savings in
computations given by the sub-optimal solution over the optimal is shown in
Figure 5. The deviation of the sub-optimal solution from optimality, in terms of
total energy spent, is shown in Table 2. For the distribution of modules among
2, 3, 4, or 5 nodes, the average energy consumed is computed for the A∗ and
the greedy A∗ algorithms. Averages have been computed over all P : C values,
and over different number of modules to be allocated. The entries in bold are
the total energy consumed by all nodes and the percentage difference between
the optimal and sub-optimal solution.

The distribution of a task across nodes results in a more uniform energy con-
sumption across sensors compared to executing the entire task on a single sensor
in a centralized fashion. In Figure 8, the fastest sensor is assumed to be chosen for

Table 2. Energy spent by nodes using the optimal allocation and the sub-optimal
allocation

Node 5-nodes 4-nodes 3-nodes 2-nodes
A∗ Greedy A∗ A∗ Greedy A∗ A∗ Greedy A∗ A∗ Greedy A∗

Node 0 170.66 171.90 134.59 132.28 180.32 184.72 157.89 190.78
Node 1 192.78 195.97 170.09 154.54 202.57 205.48 271.70 304.08
Node 2 178.82 197.45 218.04 298.20 173.00 181.96 429.59 494.86
Node 3 105.93 107.66 198.33 219.29 555.97 572.16 Increase - 15.2%
Node 4 110.28 113.12 721.05 804.31 Increase - 2.9 %
Total 758.40 786.10 Increase - 11.5 %

Increase - 3.6 %
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execution of the centralized task, while in Figure 9, the sensor with the maximum
available energy is chosen for centralized execution. Both graphs show that the
A∗ and greedy A∗ algorithms distribute the energy consumption more equitably
across all sensors. In the case of 3 sensors in Figure 9, the centralized algorithm
has a lower percentage standard deviation, but the completion time is adversely
affected, as seen earlier in Figure 1. Such a situation may occur when the node
with maximum available energy is slower than the other nodes. Since the A∗

and greedy A∗ algorithms evaluate a combined objective of completion time and
reliability, equitable energy consumption is traded off against faster completion
time. In order to compare the energy spent by nodes of different capabilities, a
simplified scenario was considered, where nodes are of only two different speeds,
one set of nodes twice as fast as the other. In a given group of nodes, both kinds
were assumed to be equally likely. As expected, the nodes of higher speed, which
consume higher energy for computation and communication, spent more energy,
since they contribute more to reducing the completion time. The results are
shown in Figures 6 and 7, for P : C ratios of 1:1 and 1:5. While it was possible
to run both the A∗ and the greedy A∗ algorithms for a small number of modules
and sensors, the A∗ algorithm took an inordinately long time for a larger num-
ber of modules and sensors. Hence, only the greedy A∗ algorithm was run for
larger number of sensors and modules. The greedy algorithm was employed on
50 to 120 sensors, and the task was split into 20 to 40 modules. Figure 10 shows
the number of solution point evaluations and the average energy spent per node
using the greedy A∗ algorithm. The increase is almost linear in the number of
sensors, which shows the high scalability of the greedy A∗ algorithm.

4 Summary

In this paper, we have analyzed and formulated the problem of distributing
the modules of a task among a group of sensors. We proposed an algorithm
to optimally and reliably allocate the modules. Simulations have demonstrated
that the completion time of tasks is reduced by distributing them across sensors
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and that the energy spent is equitably distributed across sensors. We have also
proposed the greedy A∗ algorithm to reduce the computation involved in finding
an allocation. The greedy A∗ algorithm explores only the least-cost path of the
search tree in the solution space. The solution produced is sub-optimal, but
simulations show that the deviation from optimality is low (about 15%). Both
the A∗ and greedy A∗ algorithms distribute the modules such that the energy
consumption is shared across sensors more uniformly than centralized execution.
This leads to uniform depletion of resources in the network, and reduces the
possibility of faster nodes dying out earlier. The greedy A∗ algorithm was found
to be highly scalable, showing only a linear increase in the number of solution
point evaluations with increase in the number of sensors.
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Abstract. Authors in [1] have recently introduced an interesting model,
COSMOS (Cluster-based heterOgeneouS MOdel for Sensor networks) for
sensor networks; COSMOS is a hierarchical network architecture that
consists of a large number of low cost sensors with very limited com-
putation capability and a smaller number of more powerful “cluster-
heads”. The clusterheads can communicate between each other in an
asynchronous fashion while the low capability sensors under each clus-
terhead operate in a synchronous way with their respective clusterheads.
Our purpose in the present paper is to design several protocols for bench-
mark programs like broadcast, matrix multiplication and matrix chain
multiplication using this model and provide detailed complexity analysis
of these protocols. Our results further illustrates the usefulness of the
model for use in sensor networks.

1 Introduction

Wireless sensor networks [2], [3], [4], [5] consist of large number of tiny low-
cost sensors that are used to sense natural phenomenon. These sensors have
limited computation power as well as limited communication capability. We need
specialized computing and communication protocols that can effectively adapt
to these limitations of the sensor nodes.

Authors in [1] have recently introduced an interesting model, COSMOS (Cluster-
based heterOgeneouS MOdel for Sensor networks) for sensor networks; COSMOS
is a hierarchical network architecture that consists of a large number of low cost
sensors with very limited computation capability and a smaller number of more
powerful “clusterheads”. The clusterheads can communicate between each other
in an asynchronous fashion while the low capability sensors under each clus-
terhead operate in a synchronous way with their respective clusterheads. Our
purpose in the present paper is to design several protocols for benchmark pro-
grams like broadcast, and matrix multiplication using this model and provide
detailed complexity analysis of these protocols.

2 The COSMOS Model

COSMOS model has been introduced in details in [1]. COSMOS assumes that
the sensors are uniformly distributed in a two dimensional plane. The total area
� The work was supported by an NSF Award # ANI-0219485.
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Fig. 1. Clusters in COSMOS

is arranged as a grid of cells where each sensor occupies a cell. The sensors are
organized into clusters, each cluster with a clusterhead which has a broader trans-
mission range and more computational power than individual sensors. Within a
cluster, the communication is single hop and its size is determined by the trans-
mission range of the sensor. We assume the size of each cluster is r × r, where
the transmission range of the sensor is at least r/

√
2, as shown in Figure 1.

The concept of clustering the sensors can also be applied in arbitrary networks
[6]. However, the properties of particular topology such as mesh is utilized to
simplify the computation and communication, as was done previously in [7] (the
model was a strict arrangement of sensors in a mesh).

We assume the clusterhead knows the size of the sensor network and its own
position (column and row index) in the mesh network. Each sensor has unit mem-
ory, unit processing power, and unit bandwidth. Each clusterhead has m ≥ r2

memory, c ≥ r2 processing power and b ≥ r2 bandwidth. This enables the clus-
terhead to transmit or receive b data elements in one time step, either from
other clusterheads or from the sensors within its cluster. All sensors in a clus-
ter are time synchronized with their clusterhead. The communication between
clusterheads is asynchronous using message passing.

2.1 Performance Metrics

To evaluate the proposed algorithms using the COSMOS computational model,
we use three metrics of performance: Time complexity, Energy dissipation, and
Message complexity. These metrics were introduced in [1]; we briefly describe
them in the following:
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Definition 1. Time complexity of an algorithm in the COSMOS model is de-
fined to be the total execution time of the longest weighted execution chain on
the clusterheads and sensors in the network.

Time complexity includes the time taken to transmit, receive, or locally cal-
culate data on clusterheads and sensors. The unit of data is the smallest data
item on which computation or communication is performed. Since a clusterhead
is more powerful in terms of computing power and bandwidth than a sensor,
computation and communication at clusterheads are assigned higher weights.
Each computation and communication of one unit of data at a sensor node is
normalized to unity. The computation of one unit of data at a clusterhead is as-
signed a weight of 1/c (a clusterhead is c times computationally more powerful
than a sensor). Similarly, communication of one unit of data at a clusterhead is
assigned a weight of 1/b (a clusterhead has b times more bandwidth than that
of a sensor).

Definition 2. Total energy dissipation of an algorithm is defined to be the sum
of energy consumed at sensors and clusterheads.

We define the energy used to transmit, receive, or locally compute on one unit of
data to be one unit of energy. [This assumes that the size of the sensor network
small; the transmission energy is dominated by a range independent constant.

Definition 3. Message complexity of an algorithm is defined to be the total
number of messages transmitted in the execution of algorithm.

A sensor always transmits and receives one unit of data in one message, since
it has only one unit of memory. The message transmitted between clusterheads
may contain multiple units of data.

2.2 System Primitives

We assume a underlying protocol provides reliable message passing between
the sensors and clusterheads. Following system primitives are provided by the
underlying protocol.

– send (i, j, x). The send primitive transmits the data x from the cur-
rent clusterhead to another clusterhead labeled Si,j within the transmission
range. Both clusterheads maintains a local variable x. By calling this system
primitive, the current clusterhead sends a message that contains the data
in its local variable x. This message is received by clusterhead Si,j , and Si,j

stores the data in its own local variable x.
It is apparent that the execution time of send(i, j, x) is |x|/b, where 1/b

is the weight of transmitting one unit of data between clusterheads, and
the |x| is the size (number of units) of the data to be sent; and, the energy
consumed in this process is |x|.
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– call (i, j, proc(args list)). This is a system primitive of RPC (remote
procedure call). By calling this system primitive, the current clusterhead
sends a message to a neighboring clusterhead Si,j , indicating that Si,j will
invoke the local procedure proc with parameters args list.

We assume the RPC message is short enough to be treated as one unit of
data. Thus the execution time of this system primitive is 1/b, and the energy
consumed in this process is 1.

It is possible to use different frequency to transfer data messages and RPC
messages. In this case, there will be no collision between the two types of
messages. In this paper, we assume only one frequency is used two transfer
both types of messages so that only one clusterhead can be sending at the
same time in the neighborhood of a particular clusterhead, no matter what
type of the message to be sent.

– wait (t). This system primitive simply let the clusterhead wait t units of
time, without doing anything.

Throughout the paper, we use the notations shown in Table 1.

Table 1. Notations

Symbol Description
n number of sensors in network
S clusterhead
r number of rows and columns of sensors in each cluster

b, c weight of computation and communication cost on clusterhead
m1, m2 number of rows and columns of clusters in network

a, b the row and column index of some particular cluster
s, t the row and column index of some particular cluster

i, j, k iteration index of row and column of clusters

3 One to All Data Broadcasting

Consider a two dimensional m1 ×m2 mesh of clusterheads, where Sa,b denotes
the specific clusterhead, 1 ≤ a ≤ m1,1 ≤ b ≤ m2. A clusterhead Sa,b has some
local data x. This data item x can be of any type; typically, it may be an array
of integers or it may have a size of r2 where the clusterhead collects data from
all the r2 sensor nodes that are attached to this clusterhead.

Without lost of generality, let the type of x be an array of integers. If only a
single unit of data is to be broadcasted, the size of x is 1. Otherwise if more than
one unit of data are to be broadcasted, the size of x is the number of data units.
For example, when broadcasting the information collected from all the sensors
attached to Sa,b, the size of x is r2.

The COSMOS model does not include multicast as a feature, which can be
used to flood the data from one clusterhead to all neighboring clusterheads in
one step. Because multicast is not available in the network, we have to deploy
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strategies to minimize the time and energy needed. The most important issue
in data broadcasting is the message collision. To prevent the message collision,
there can be only one clusterhead sending the data at the same time, within the
neighborhood of any clusterhead.

Consider the data broadcasting in a row of clusterheads. Assume the cluster-
heads are labeled S0,0, S0,1, S0,2, . . . , S0,m, and S0,0 contains the original data.
In the first round, S0,0 sends data and RPC to S0,1, and in the second round,
S0,1 send the data and RPC to S0,2. In m − 1 rounds, all the clusterheads will
get the data. Now consider these clusterheads will further send the data to the
other nodes in the same column. Since R = r, S0,i and S0,i+1 can send messages
to S1,i and S1,i+1 relatively in the same time, without incurring collision. So the
strategy is, first send the data to all the clusterheads in the same row, then these
clusterheads send to all other clusterheads in the same column.

3.1 Algorithm

Thepseudocode for thedatabroadcastingalgorithm,Broadcast(a,b,x), is shown
in Figure 2. This algorithm broadcasts data x from the clusterhead Sa,b to all the
clusterheads in the network, where 1 ≤ a ≤ m1, 1 ≤ b ≤ m2 and m1 ×m2 are the
size of the mesh of clusterheads. Before the algorithm executes, only Sa,b has the
data x. When the algorithm ends, all the clusterheads have a local copy of x.

The algorithm Broadcast(a, b, x) has three parameters. Parameters a and
b are the coordinates of the clusterhead that contains the data to be broadcast.
Parameter x is the data.

We use the first parameter a to denote the row coordinate and the second
parameter b to denote the column coordinate of the clusterhead. The coordinates
are integers that are known to all the clusterheads. Thus when we say “all
clusterheads on row a”, we refer to all clusterheads of the form Sa,j, where
1 ≤ j ≤ m2. We use this naming convention in the remainder of this paper.

Broadcast(a, b, x) uses two subroutines: ColBroadcast(a, b, x), which sends
the data x to a column, and RowBroadcast(a, b, x), which sends x to a row.
Initially, Broadcast(a, b, x) is called on Sa,b, which contains the data x.

3.2 Time Complexity

The algorithm can be divided into two phases. In the first phase, the data is sent
to all clusterheads on row a. The clusterheads that get the data wait until data
reaches all clusterheads on row a. After that, phase 2 starts and the data is sent
along the columns.

Theorem 1. In a m1 × m2 mesh of clusterheads that contains n sensors, the
time complexity of Broadcast(a, b, x) is O(

√
n).

Proof. In RowBroadcast, each clusterhead takes 3/c units of time to do the
comparison, |x|/b units of time to transmit the data and 1/b unit of time to
perform the RPC, then it starts waiting. So the execution time of RowBroadcast
is max(m2−b, b)×(|x|/b+1/b+3/c). The upper bound is m2(|x|/b+1/b+3/c).
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Following code is executed on cluster Si,j :

RowBroadcast(a, b, x)
Begin

if j ≥ b ∧ j < m2 ∧ i = a then
send(i, j+1, x)
call(i, j+1, RowBroadcast(a,b,x))

if j ≤ b ∧ j > 0 ∧ i = a then
send(i, j-1, x)
call(i, j-1, RowBroadcast(a,b,x))

if j > b ∧ j ≤ m2 ∧ i = a then
wait(max(m2 − j, 2b − j + 1))

else if i = a then
wait(max(m2 − (2b − j + 1), j))

else
wait(max(m2 − b, b − 1))

End

ColBroadcast(a, b, x)
Begin

if i ≥ a ∧ i < mi then
send(i+1, j, x)
call(i+1, j, ColBroadcast(a,b,x))

if i ≤ a ∧ i > 0 then
send(i-1, j, x)
call(i-1, j, ColBroadcast(a,b,x))

End

Following code is executed on cluster Sa,b,
which contains the original data to be broadcast:

Broadcast(x)
Begin

RowBroadcast(a, b, x)
ColBroadCast(a, b, x)

End

Fig. 2. Algorithm 2: One to All Broadcast Algorithm

Similarly, the execution time of ColBroadcast is m1(|x|/b+1/b+2/c). So the
total execution time is m2(|x|/b + 1/b + 3/c) + m1(|x|/b + 1/b + 2/c), which is
O(m1 + m2). For a

√
n/r ×

√
n/r mesh, m1 = m2 =

√
n/r, time complexity is

O(2
√

n/r) = O(
√

n).

3.3 Energy Dissipation

Theorem 2. In a m1 × m2 mesh of clusterheads that contains n sensors, the
energy dissipation of Broadcast(a, b, x) is O(n).



Protocols for Sensor Networks Using COSMOS Model 81

Proof. Each clusterhead receives one data message and one RPC message, except
for clusterhead Sa,b. So total number of data or RPC messages sent is n

r2−1. Each
data message contains |x| units of data, and each RPC message contains 1 unit of
data, so the energy dissipation for transmitting messages is ( n

r2 −1)×|x| = O(n).
In RowBroadcast, the number of comparisons performed on each clusterhead

is 3. In ColBroadcast, the number of comparisons performed on each clusterhead
is 2. So the total number of computations is 3 × m2 + 2 × m1 × m2. Each
computation on clusterhead takes 1 unit of energy. So the energy dissipation for
computation is O(m1 ×m2) = O(n).

3.4 Message Complexity

Theorem 3. In a m1 × m2 mesh of clusterheads that contains n sensors, the
message complexity of Broadcast(a, b, x) is O(n).

Proof. Except for the initial clusterhead Sa,b, each clusterhead receives one data
message and one RPC message. So total number of messages transmitted is
2n
r2 − 2. Thus the message complexity is O(n).

4 All to All Data Broadcasting

The All to All data broadcasting in COSMOS model is defined as all the clus-
terheads transmits data to every other clusterheads. It is possible to implement
the all-to all data broadcasting by repeating the One to All data broadcasting
m1×m2 times. However, this approach is not time efficient. Two non-interfering
clusterheads can be scheduled to transmit different data at the time to save
execution time.

4.1 Data Structures and Algorithm

As in One to All data broadcasting, we assume each clusterhead maintains an
integer variable x that contains the data to be broadcast to all other clusterheads.

Furthermore, to store the data comes from other clusterheads, each cluster-
head also maintains an integer array Y [1..m1][1..m2] of size m1 ×m2. For each
clusterhead Si,j , we define a procedure sync(α, β), where the parameters α and
β can take values as shown in Table 2.

Consider all the clusterheads on row i. To prevent the collision, when Si,j

is executing sync(0, 1), Si,j+1 and Si,j+2 cannot execute sync(0, 1). However,
Si,j+3 can execute sync(0, 1), as well as other clusterheads in the same column.
This is shown in figure 3.

In the first and second round, all clusterheads on column j, j + 3, j + 6, . . .
execute sync(0, 1) and sync(0, -1). This sends the data on those columns to
adjacent columns. In the third and fourth round, all clusterheads on column
j + 1, j + 4, j + 7, . . . execute sync(0, 1) and sync(0, -1). In the fifth and sixth
round, all clusterheads on column j + 2, j + 5, j + 8, . . . execute sync(0, 1) and
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Table 2. The sync(α, β) procedure

α β Definition Description
1 0 send(i + 1, j, Y [1..i][1..m2 ]) sends the upper part (up to row i) of y to the

lower neighbor of clusterhead Si,j .
−1 0 send(i − 1, j, Y [i..m1][1..m2]) sends the lower part (up to row i) of y to the

upper neighbor of clusterhead Si,j .
0 1 send(i, j + 1, Y [1..m1][1..j]) sends the left part (up to column j) of y to

the right neighbor of clusterhead Si,j .
0 −1 send(i, j − 1, Y [1..m1][j..m2]) sends the right part (up to column j) of y to

the left neighbor of clusterhead Si,j .

Fig. 3. Executing sync(0, 1) every three columns. Arrows denote the data transmission.

sync(0, -1). After the six rounds, each clusterhead contains the correct data value
from its left and right neighbors.

This process is repeated m2/3+1 times. After these rounds, each clusterhead
contains all the data from the clusterheads on the same row. Then all cluster-
heads execute sync(1, 0) and (-1, 0), in the same way of every three rows, to
transfer the data to the entire mesh. The formal algorithm is presented in figure 4.

4.2 Time Complexity

Theorem 4. In a m1 × m2 mesh of clusterheads that contains n sensors, the
time complexity of All2AllBroadcast(x) is O(n3/2).

Proof. In the first loop of All2AllBroadcast, each clusterhead executes m2/3+
1 times of sync(0, 1) and m2/3+1 times of sync(0, -1). In sync(0, 1), |x|×m1×
(j + 1) units of data are transmitted. In sync(0, -1), |x| ×m1× (m2− j) units of
data are transmitted. So the execution time in the first loop is |x| ×m1× (m2 +
1)× (m2/3 + 1)× 1/b = O(m1 ×m2

2).
Similarly, in the second loop, the execution time is |x| × (m1 + 1) × m2 ×

(m1/3 + 1)× 1/b = O(m2
1 ×m2).

For a
√

n/r×
√

n/r mesh, m1 = m2 =
√

n/r, time complexity is O(m1×m2
2+

m2
1 ×m2) = O(n3/2).
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Following code is executed on cluster Si,j :

All2AllBroadcast(x)
Begin

Y [i][j] = x
for k = 0 to m2/3 do⎧⎪⎪⎨⎪⎪⎩

wait(j mod 3)
sync(0, 1)
sync(0, −1)
wait(2 − (j mod 3))

for k = 0 to m1/3 do⎧⎪⎪⎨⎪⎪⎩
wait(i mod 3)
sync(1, 0)
sync(−1, 0)
wait(2 − (i mod 3))

End

Fig. 4. All to All Broadcast Algorithm

Recall that the time complexity of One to All broadcast is O(n1/2). If sim-
ply apply m1 × m2 times One to All broadcast on each clusterhead, the time
complexity will be O(n1/2×n2) = O(n5/2). So algorithm All2AllBroadcast is
more time efficient.

4.3 Energy Dissipation

Theorem 5. In a m1 × m2 mesh of clusterheads that contains n sensors, the
energy dissipation of All2AllBroadcast(x) is O(n3/2).

Proof. In the first loop of All2AllBroadcast, each clusterhead executes m2/3+
1 times of sync(0, 1) and m2/3+1 times of sync(0, -1). In sync(0, 1), |x|×m1×
(j + 1) units of data are transmitted. In sync(0, -1), |x| ×m1 × (m2 − j) units
of data are transmitted. So the energy dissipation in the first loop is |x| ×m1 ×
(m2 + 1)× (m2/3 + 1) = O(m1 ×m2

2).
Similarly, in the second loop, the energy dissipation is |x| × (m1 + 1)×m2 ×

(m1/3 + 1) = O(m2
1 ×m2).

For a
√

n/r ×
√

n/r mesh, m1 = m2 =
√

n/r, total energy dissipation is
O(m1 ×m2

2 + m2
1 ×m2) = O(n3/2).

4.4 Message Complexity

Theorem 6. In a m1 × m2 mesh of clusterheads that contains n sensors, the
message complexity of All2AllBroadcast(x) is O(

√
n).
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Proof. In the first loop of All2AllBroadcast, each clusterhead executes m2/3+
1 times of sync(0, 1) and m2/3+1 times of sync(0, -1). So the number of messages
transmitted is m2×2/3+2. Similarly, in the second loop, the number of messages
transmitted is m1 × 2/3 + 2.

For a
√

n/r ×
√

n/r mesh, m1 = m2 =
√

n/r, So total number of messages
transmitted is

√
n/r × 4/3 + 4. Thus the message complexity is O(

√
n).

5 Matrix Multiplication

Given two matrices Am×m and Bm×m, the matrix multiplication C = A×B can
be calculated as Cij =

∑
1≤k≤m AikBkj , where 1 ≤ i, j ≤ m. In the COSMOS

model, the matrix multiplication does the following: if for all the sensors, Aij

and Bij is stored on cluster row s column t, and inside the cluster the sensor on
row p column q, where i = (s− 1)r + p, j = (t− 1)r + q. Then after the matrix
multiplication is done, the result Cij is stored in the same way.

5.1 Data Structure

Each sensor keeps three integer variables a, b, and c. Before the algorithm is
started, a and b contain the corresponding element of matrix A and B. After the
algorithm is finished, c contains the element of matrix C = AB. Each clusterhead
keeps following variables: Integer arrays X [1..m][1..m] and Y [1..m][1..m] of size
m ×m, which store elements of A and B that get from the sensors within the
cluster and from other clusterheads. An integer array z[1..m][1..m] of size m×m,
which stores computed elements of the result matrix C. Two integer variables s
and t that denote the index of the clusterhead in the mesh.

5.2 Algorithm

The first step is aggregating data a and b from the sensors to array x and y of
its clusterhead. For the clusterhead at row s and column t, it stores all the a
elements to X [(s−1)r+1..s× r][(t−1)r +1..t× r], and stores all the b elements
to Y [(s−1)r+1..s× r][(t−1)r+1..t× r]. The next step uses the All to All data
broadcasting to send the block of A and B matrices to all the clusterheads. The
clusterhead Ss,t can then calculate the block z[(s−1)r+1..s×r][(t−1)r+1..t×r]
as follows: z[i][j] =

∑
0≤k<m X [i][k]×Y [k][j]. Finally, z[i][j] is distributed to the

sensor on row i column j in the cluster.

5.3 Time Complexity

Lemma 1. DataAggregation takes 8r2 + 6 time steps.

Proof. [1] gives the aggregation schedule: It takes 2r2 time for one cluster to
aggregate data: In the first r2 time, each sensor is assigned a rank order. In the
next r2 time, sensors send data x to clusterhead in the rank order.
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Following code is executed on cluster Ss,t:

MM(a, b)
Begin

do DataAggregation(a, X[(s − 1)r + 1..s × r][(t − 1)r + 1..t × r])
do DataAggregation(b, Y [(s − 1)r + 1..s × r][(t − 1)r + 1..t × r])
do All2AllBroadcast(x)
do All2AllBroadcast(y)

calculate z[(s−1)r+1..s×r][(t−1)r+1..t×r] using data in X[1..m][1..m]
and Y [1..m][1..m].

send result in z[(s − 1)r + 1..s × r][(t − 1)r + 1..t × r] back to sensors.
End

Fig. 5. Matrix Multiplication Algorithm

To avoid collision, adjacent clusters must not aggregate data in same pe-
riod. The aggregation sequence is scheduled in this way: In time 0 ≤ t <
2r2, all clusters on even row and even column do data aggregation. In time
2r2 + 2 ≤ t < 4r2 + 2, all clusters on even row and odd column do data ag-
gregation. In time 4r2 + 4 ≤ t < 6r2 + 4, all clusters on odd row and odd
column do data aggregation. In time 6r2 + 6 ≤ t < 8r2 + 6, all clusters on odd
and even column do data aggregation. The 6 time steps are required to notify
neighboring clusterheads to start the data aggregation. Thus the total time is
8r2 + 6.

Theorem 7. In a m×m mesh that contains n sensors, the time complexity of
Matrix Multiplication is O(n5/2).

Proof. By lemma 1, data aggregation takes 8r2 + 6 time steps. The All to All
data broadcasting takes O(n5/2) time steps. The matrix multiplication is then
concurrently performed on all the clusterheads. It takes 2m/c time steps to
compute one element in z, so in all it takes 2r2m/c time steps to compute all
r × r elements. The last step is the reverse of data aggregation, so it also takes
8r2 + 6 time steps. Adding all together, the time complexity is O(n5/2).

5.4 Energy Dissipation

Theorem 8. In a m×m mesh that contains n sensors, the energy dissipation
of Matrix Multiplication is O(n3/2).

Proof. The total number of data transmissions in data aggregation step is 2n.
The total number of data transmissions in last step (reverse data aggregation)
is n. So the energy dissipation is O(n) for these steps. The energy dissipation
in All2AllBroadcast is O(r2)×O(n3/2) = O(n3/2). Calculating z[1..r][1..r] in
each cluster takes O(m×r2) calculations in all. Since r is fixed size of the cluster,
it is a constant. So the energy dissipation on calculation is n×O(m) = O(n3/2).
Therefore Total energy dissipation is O(n) + 2n3/2/b + 2n = O(n).
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5.5 Message Complexity

Theorem 9. In a m1×m2 mesh that contains n sensors, the message complexity
of Matrix Multiplication is O(n).

Proof. The total number of transmissions in data aggregation and reverse data
aggregation step is 3n. Each of the textbfAll2AllBroadcast step sends O(n1/2)
messages. So the total number of transmissions is O(n) + O(n1/2) = O(n).
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Abstract. Data streams from sensors are usually characterized as continuous, 
with very frequent updates. Queries over those data streams need to be proc-
essed in near real-time. So it is needed to design the index structure for support-
ing the frequent updates and fast retrieval of data efficiently. In this paper, 
CLUR-Tree (Cache-conscious Lazy Update R-Tree) is proposed, which is a 
spatial index for efficient processing of frequent updates of data streams in lo-
cality preserving monitoring applications. CLUR-Tree has two characteristics. 
First, it excludes index reconstruction overhead by permitting modification of 
only the index node of the sensor which moves out of the corresponding MBR 
(Minimum Bound Rectangle). Second, it reduces the key spaces by applying 
new compression method for MBR used as key in R-Tree and by considering 
cache to prevent bottleneck due to speed difference between main memory and 
CPU. The experimental results indicate that the proposed CLUR-Tree enhances 
update performance and gives a good retrieval performance simultaneously. 

1   Introduction 

On new database management environments such as for sensor networks, data 
streams from sensors are fed into a database management system (DBMS) [9], [11]. 
Data stream from sensors are usually characterized as continuous, with very fast up-
dates. A main memory based DBMS can be used for supporting this environment [3], 
[7], [8]. But generally, cost of updating operation in the traditional DBMS is more 
than search operation. And there are still no functions and structures for efficient 
processing of dynamic updating of the data stream [2], [7]. 

∗ This research was supported by the MIC (Ministry of Information and Communication),  
Korea, under the ITRC (Information Technology Research Center) support program super-
vised by the IITA (Institute of Information Technology Assessment). 
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In particular, R-Tree [5] is not considered suitable for modifying only the sensing 
data from the sensor of a specific location contrary to data insertion and deletion. 
Therefore the design of the spatial index structure in main memory is needed for effi-
cient processing of the dynamic updating of the data stream like sensing data. 

In this paper, CLUR-Tree (Cache-conscious Lazy Update R-Tree) is proposed, 
which is a new index structure for efficient processing of frequent updates of data 
stream over sensor networks. The proposed CLUR-Tree index is a kind of modified 
R-Tree and has the following two characteristics. First, it excludes index reconstruc-
tion overhead, which happens because of the splitting and merging of index node. 
Second, it optimizes the key spaces by considering cache block size. A new compres-
sion method is used to translate MBR into relative MBR of various lengths integer. 
The proposed CLUR-Tree enhances update performance of index compared with ex-
isting index and gives good retrieval performance simultaneously. Therefore the pro-
posed CLUR-Tree can be used to efficiently process frequent updates of data stream 
over sensor networks. 

The remainder of this paper is organized as follows. Section 2 briefly reviews re-
lated work. Section 3 presents the proposed CLUR-Tree, indexing technique to reduce 
update cost for efficient processing of stream data. Section 4 presents the experimen-
tal results to compare proposed CLUR-Tree with existing approaches. Finally, con-
clusion and future work are discussed in Section 5.  

2   Related Work 

2.1   R-Tree Based Indexes 

An R-Tree is an approximately height-balanced search tree [1], which is widely used 
for handling spatial data in traditional database systems. 

Assuming that we consider spatial objects embedded in 2-dimensional space, the 
spatial extent of each data object is represented by a MBR (Minimum Bounding Rec-
tangle). Leaf nodes in the R-Tree contain entries of the form (oid, mbr), where oid is a 
pointer to the object in the databases and mbr is the MBR of the object. Non-leaf 
nodes contain entries of the form (mbr, ptr), where mbr is the MBR that bounds all 
the MBRs in the child node and ptr is a pointer to a child node in the tree. 

2.2   Cache-Conscious Indexes 

To overcome the speed gap between the CPU and DRAM, cache is used [6]. Several 
researches have shown that cache behavior is important for main memory index struc-
ture, and they are classified into two types - using the pointer elimination technique 
and using compression of node keys. 

In CSB+-Tree (Cache Sensitive B+-Tree), nodes are increased by using the pointer 
elimination technique. The CSB+-Tree puts all the child pointers for a given node con-
tiguously in an array and stores only the pointer to the first child node [10]. But the 
pointer elimination technique cannot be directly applied to multidimensional index 
structures such as the R-Tree, because MBR is much larger than pointer size. 

The CR-Tree (Cache-Conscious R-Tree) is a modified R-Tree by compression of 
MBR. Compressed MBR of the CR-Tree is a quantized relative representation of the 
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object MBR [4, 6]. But because quantized compression technique translates absolute 
coordinates into quantized relative coordinates of fixed size without consideration of 
the area, more errors happen as it goes to the root node. 

3   CLUR-Tree: Cache-Conscious Lazy Update R-Tree 

In this section, firstly TRMBR (Transformed Relative MBR) technique is designed as 
a compression method of MBR. And then CLUR-Tree applying the TRMBR has been 
proposed. 

3.1   TRMBR Technique: Compression Method of MBR 

In general, R-Tree has a characteristic that the internal nodes consist of (rectangle, 
pointer) pairs, the pointer points to a node one level below in the tree, and the rectan-
gle is a MBR of all the objects in the subtree pointed by the pointer. The MBR of the 
parent node includes the MBR of its child node. Therefore the MBR of the child node 
in R-Tree can be represented relatively as MBR of its parent node. In this paper, the 
TRMBR is a transformed relative MBR and works by applying the conversion func-
tion to relative MBR. 

The conversion function for TRMBR must be selected taking the distribution char-
acteristics of the object and the size of the area which the index is constructed, and it 
must reduce a cache miss by increasing fan-out of node as much as possible. When 
MBR of parent node R0 is as (R0.xl, R0.yl, R0.xh, R0.xh) and MBR of the first child 
node R1 of the R0 is as (R1.xl, R1.yl, R1.xh, R1.xh), the conversion function in this 
paper is as follows. 

 

).1.0,.0.0,.1.0,.1.0()( >−<>−<>−<>−<= yhRyhRxhRxhRylRylRxlRxlRMBRgetTRMBR  (1) 
 

Fig. 1 (a) shows the absolute coordinates in real map, and R0 is parent node of R1 
and R2. Fig. 1 (b) shows the relative MBR (RMBR) of the child node R1 and R2 to 
the parent node R0. And Fig. 1 (c) shows the TRMBR which is transformed MBR 
from the RMBR using conversion function of formula (1). This form is applied to 
every node in the index. 

Fig. 1. Absolute coordinates, TRMBR of node R0 and its child node R1, R2 
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TRMBR technique in this paper compresses MBR of the object to 2, 4, 8 bytes and 
compressed MBR is stored in entry instead of original MBR. In case TRMBR is 16 
and less, MBR is represented as 2 bytes, and in case TRMBR is 256 and less, MBR is 
represented as 4 bytes, and in case TRMBR is 65536 and less, MBR is represented as 
8 bytes. 

As entries are assigned according to compressed size of MBR dynamically, a 
node's fan-out is increased. Using TRMBR technique, accuracy of retrieval can be in-
creased because it reduces the error in compression by considering the area. 

3.2   Structure of the CLUR-Tree 

Based on TRMBR technique, node structure of the CLUR-Tree is illustrated in Fig. 2. 
The node of the CLUR-Tree is fixed to make the efficiency of the cache increase as a 
multiple of the cache size. TRMBR is used for increasing the fan-out of the node 
which is of fixed size. MBR is stored at the node as shown in  Fig. 2 (a), which is 
used to recalculate the MBR of the entry at the retrieval, deletion, and insertion opera-
tions. In a leaf or non-leaf node, TRMBR obtained by the conversion function is 
stored as shown in Fig. 2 (b) and 2 (c). 

Fig. 2. The node structure of the CLUR-Tree 

TRMBR can be calculated differently according to the area of the entry in the node 
and the entry of the node of the CLUR-Tree is dynamically allocated according to the 
calculated TRMBR. 

The structure of the CLUR-Tree is as follows. The node is fixed to the multiple of 
the cache size. For example,  n entries of 8 bytes lengths are included in a root node 
of fixed size, 2n entries of 4 byte lengths are included in a node of lower level, and 4n 
entries of 2 byte length are included in a leaf node because contained area becomes 
small as it goes to a leaf node. In case the contained area is different among nodes in 
the same level, the number of entry included in the node can be different. Then ‘Entry 
Size’ field is used in the node structure. 

Almost all algorithms and index structures are similar to those which are used in 
other R-Tree variants. However algorithm and data structure in update operation of 
the CLUR-Tree are slightly modified. CLUR-Tree has an additional access path, 
called Hash Table, which is used to find the leaf node with object id and position. 
Each entry has a pointer to the corresponding entry in a leaf node of the CLUR-
Tree. 

Entries of the node in CLUR-Tree can be changed according to TRMBR. There-
fore when an object is inserted and deleted, it is very important that the value of ‘En-
try Size’ is not changed for minimizing cost of the node reconstruction. That is, in 
case of standard R-Tree, when we decide the position of the new object to be inserted, 

MBR Entry 1 Entry n

Leaf or 
Nonleaf

(a) node

(b) entry of nonleaf node (C) entry of leaf node

Pointer to 
child node

Pointer to 
object

Entry SizeEntry Count

TRMBR of 
child node

TRMBR of 
object
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we first consider that the node including the object has a minimal extension of the 
node. But in case of CLUR-Tree, we first consider that the value of ‘Entry Size’ is not 
changed though node has been extended more. 

When an object is updated, firstly we find a leaf node through the Hash Table, and 
check whether the MBR of the leaf node contains a new position or not. If the new 
position is in the MBR, we modify only the position of the object in the entry. Other-
wise, we delete an old position and insert a new one. The CLUR-Tree can reduce the 
update cost for large number of objects, since it prevents unnecessary traversal and 
modifications from the root node of the R-tree. 

4   Performance Evaluation 

In this section, we will present the result of some experiments to analyze the per-
formance of the CLUR-Tree with respect to the search performance and the update 
performance. For comparing and verifying the effectiveness of the proposed CLUR-
Tree, we implemented the ordinary R-Tree and CR-tree respectively in C++ on 
Windows XP PC with Pentium 4 2.4G Hz CPU, 1 GB memory and 80 GB HDD. In 
this evaluation, query selectivity was fixed within 0.01 % of the data space. MBR 
size is 16 bytes and TRMBR size is about one-fourth of the MBR size even if it is 
variable. And, data set was made by moving object generator developed by  
ourselves.  
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Fig. 4. Update Performance 

In the first experiment, the search performance is compared in terms of the time 
spent processing. Fig. 3 shows that the search time quickly approaches the minimum, 
and then increases slowly. It results from increasing the number of accessed nodes as 
node size is small. For all node sizes, CLUR-Tree displayed the search performance 
more than two times than that of R-Tree. In the second experiment, we inserted 
10,000 objects into the index bulk-loaded with uniform data set to measure the update 
performance. Fig. 4 shows the measured insertion time. For a given node size, the 
CLUR performed similar to or better than the R-Tree. 

The large part of the time required in insertion is used to find the proper leaf node 
of the tree. In case of the R-Tree and the CR-tree, the update performance is dropped 
because number of node is increased. But, the proposed technique made performance 
enhancement by keeping the Hash Table structure. 
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5   Conclusion 

In this paper CLUR-Tree has been proposed, which is a new index structure for effi-
cient processing of frequent updates of data stream over sensor networks. The pro-
posed CLUR-Tree index is a modified R-Tree to manage stream data efficiently and 
has following two characteristics. First, it excludes index reconstruction overhead by 
permitting to modify only the index node of sensor which moves out of the corre-
sponding MBR. Second, it adjusts the key spaces by considering cache to prevent bot-
tleneck, and by applying new compression method. It translates MBR into trans-
formed relative MBR of various lengths integer using conversion function. 

The proposed CLUR-Tree enhances update performance of index compared to ex-
isting index techniques and gives good retrieval performance simultaneously. There-
fore the proposed CLUR-Tree can used to efficiently process frequent updates of data 
stream over sensor networks. 
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Abstract. This paper presents a new routing approach for wireless networks 
based on the combination of both lifetime and routing cost. As the nodes in the 
wireless sensor and ad hoc networks are limited in power, a power failure oc-
curs if a node has insufficient remaining energy to send a message. So, it is im-
portant to minimize the energy expenditure as well as to balance the remaining 
battery power among the nodes. In ad hoc networks, movement of nodes also 
causes frequent disconnections of routes and thus effects on network stability. 
Cost effective routing algorithms attempt to minimize the total power needed 
while lifetime prediction routing algorithms try to balance the remaining ener-
gies among the nodes in the networks. However, because of ignoring other pa-
rameter, each method fails to achieve the objective of other. The proposed rout-
ing protocol suggests a tradeoff between these two parameters, and ensures a 
balanced utilization to achieve maximum overall performance. 

1   Introduction 

Wireless sensor and ad hoc networks are likely to be widely deployed in various ap-
plications including remote monitoring, online information processing, and communi-
cation among the soldiers on the battle field and disaster relief personnel. The nodes 
in these networks are equipped with limited battery power, which makes energy a 
crucial consideration to prolong its lifetime. The lifetime of the node is limited by its 
residual energy and in order to increase the lifetime, minimum battery power should 
be used. Cost-effective routing protocols ensure that a packet from a source to a desti-
nation gets routed along the most energy efficient path possible. These approaches 
frequently select efficient path having nodes with very short remaining energy and 
result an early death of some nodes as well as network disconnection. In mobile ad 
hoc networks, mobility of nodes also results frequent disconnection of routing path. In 
both cases a significant topological change is taken place in the network and would 
require reorganizing the network and re-routing of packets [1], [2].  

In case of cost effective routing protocols, the probability of a node within the 
transmission range to be selected as a forwarding node is proportional to the degree of 
that node, where degree of a node is the number of neighboring nodes with in its 
transmission range. So, nodes with higher degree might die soon since they are likely 
to be used in most cases [3], [4]. Lifetime prediction routing protocols mainly consider 
                                                           
* Corresponding author. 
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the residual energy of the individual nodes in a path and are aimed at maximizing the 
network lifetime by finding routing solution that minimizes the variance of the remain-
ing energies of the nodes in the network [2], [4]. However, these approaches often 
select path having much higher cost than cost effective algorithms do. To achieve a 
tradeoff between the routing cost and network stability, we propose a new routing 
technique that combines the best features of these two routing approaches. 

2   Overview of the Proposed Method 

The proposed Effective and Energy Balance Routing (BEER) protocol is a reactive 
routing protocol like DSR [5] and it attempts to minimize the total transmission 
power needed and to avoid nodes with a short battery's remaining lifetime. It finds a 
tradeoff between the cost and the lifetime of each of the possible paths. Incase of 
wireless sensor networks where nodes are static, lifetime parameter is calculated 
only from the residual energy or battery. In ad hoc networks, the nodes in the net-
work may move; hence lifetime of a path is calculated from both residual battery 
energy and predicted time before disconnection due to the mobility of nodes. Trans-
mission cost can be determined from energy, hop count, delay, link quality as well as 
other factors. Hop count is mostly used parameter to measure energy requirement of 
a routing task. However, if nodes can adjust their transmission power based on the 
distance of their neighbors, different energy levels can be used depending on dis-
tance between nodes [6]. The distance between neighboring nodes can be estimated 
on the basis of incoming signal strengths or directly communicating with a satellite, 
using global positioning system [7]. We used the later approach to determine the 
transmission cost. 

3   Effective and Energy Balanced Routing 

3.1   The Network Model 

We model a wireless network by a triplet, N = (V, E, C), where V = {v1,….,vn}, 

represents nodes, E ⊆ V x V, represents set of edges {( , ),1 , }i jv v i j n≤ ≤ , that 

connect all the nodes, and C: E→R (Rational number) is a weight function for each 
edge (vi, vj) that indicates the transmission cost of a data packet between node vi and 
vj. Each node in the network has a unique identification number. Data are broadcast 
to all nodes inside its transmission range. In case of sensor networks, nodes as well 
as edge cost are static. In ad hoc networks and the edge cost between any two nodes 
may change over time. The lifetime of node may also change over time. However, 
for the ease of presentation, we assume a static network during the route discovery 
phase. 

3.2   Selection of Path with Static Nodes 

Let us assume that the maximum possible lifetime of any node is L and the maximum 
possible transmission cost between any two nodes is C. We define a scaling factor: 
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L

C
σ =  .                                                           (1) 

σ contributes to generate meaningful path selection parameter and also helps to add 
other parameters like mobility with it. Let there be n paths (π1, π2,…..πn) from source 
to destination. The lifetime of a path is bounded by the lifetime of all the nodes along 
the path. So, the lifetime of a path πi, is defined as: 

( ( ))......{ }i j iMin T t jτ π= ∈  .                                   (2) 

Tj(t) is the predicted lifetime of node j in path πi. at time t. The cost of a path is the 
sum of all the costs calculated between two consecutive nodes along the path from 
source to the destination. Cost of a path πi is defined as: 
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where, ( )im π is the number of nodes in path πi and 
, 1i j j

cπ +
 is the cost between node 

j and j+1 of the path πi  at time t. Our path selection parameter β is represented by  

i
i

i

τβ
σχ

=   .                                                  (4) 

BEER selects a path, which has the largest β i.e. max (βi). If more than one path hav-
ing the highest β are found, any one can be selected. Thus, the proposed method is 
inclined to select a path having higher lifetime τ and lower cost χ. Figure 1 displays 
an instance of wireless network represented by a graph. Nodes are marked with their 
lifetime values and edges are labeled with transmission cost. 

In this instance there are six paths from source, S to destination, D. They are 
SABD, SABCFGD, SEFCBD, SEFGD, SCFGD and SCBD, where the total cost and  
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lifetime pairs of the paths are (19,100), (36, 100), (38, 400), (29, 450),  (27, 400) and 
(24, 400) respectively. Power Aware Routing (PAR) [8] selects the path SABD, hav-
ing cost 19 and lifetime 100 while the route, SEFGD, is chosen by Lifetime Predic-
tion Routing (LPR) [4], having lifetime 450 and cost 29.  

Let us assume maximum possible cost (C) between any two nodes is 15 and maxi-
mum possible lifetime (L) of any node is 600. So the scaling factor σ becomes 40. 
Hence, using BEER algorithm, the selection parameter β for the paths SABD, 
SABCFGD, SEFCBD, SEFGD, SCFGD and SCBD are 0.1316, 0.0694, 0.2632, 
0.3879, 0.3704 and 0.4167 respectively. The path SCBD possesses the highest value 
of β. So, BEER protocol will select the path, SCBD, having cost 24 and lifetime 400. 

3.3   Selection of Path with Moving Nodes 

In mobile ad hoc networks, each host may change its position and thus routes are 
subject to frequent disconnections. However, nodes in the network exhibit some de-
gree of regularity in the mobility pattern. By exploiting the non-random traveling 
pattern of mobile nodes, future state of network topology can be predicted. Various 
approaches are taken to enhance the stability of routing protocols using mobility pre-

diction. In [9], the amount of time two mobile hosts p and q will stay connected, ,p qλ  

is predicted from their initial positions, speeds and moving directions. So we define 
the predicted connection time of a path πi at time t as: 

, 1( ( ))......{ 1 ( ) 1}i p p i iMin t p p mλ λ π π+= ∈ ∧ ≤ ≤ −  .               (5) 

If iλ  is greater than L we use equation 4 to calculate iβ , else we use: 

(1 )i i
i

i

α τ α λβ
σχ

∗ + −=  .                                          (6) 

where, α is an adjusting parameter determines the relative importance between resid-
ual energy and mobility value. Usually α varies from 0.8 to 1. A network having most 
of the connections are of long duration may use higher value of α. 

4   Simulation and Results 

The performance of the proposed BEER protocol is investigated through simulation 
and is compared with that of the LPR and PAR. In our simulation, we considered up 
to 25 nodes distributed randomly over the simulation area; confined in a 400X400 
m2. Every node has a fixed transmission power resulting in a 50 m of transmission 
range. Random connections were established between nodes within the transmission 
range. In case of simulating ad hoc networks, we use “random waypoint” model to 
generate node movement, where the motion is characterized by two factors: maxi-
mum speed and pause time. The lifetime of a node is varied between 1 and 600 while 
the transmission cost between two neighboring nodes is varied between 2 and 11. 
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Each packet received or transmitted has a cost factor. If the cost factor is n then n-1 
is considered as the cost at the transmitter node and remaining unit cost goes to the 
receiving node. So transmission band may vary from 1 to 10 where receiving band is 
unit cost for all the nodes in the network. We run simulations for 150 times for net-
works considering both static and moving nodes; and average the resultant data to 
obtain the final data. 

Results of simulation in cost perspective are depicted in Figure 2. It can be noticed 
that PAR performs the best in this perspective. Transmission cost of BEER lies be-
tween PAR and LPR and it is a bit closer to PAR. Figure 3 shows the time for indi-
vidual node to run out of power. In PAR, first power failure occurs shortly, as some 
nodes are frequently selected by neighboring nodes. LPR maintains the longest life-
time for individual node among the three protocols as nodes are selected based on the 
remaining energy of that node. Figure 4 and Figure 5 show the average network life-
time in low and high node density, respectively. In low density three curves are 
closer, as there are less routing options to choose. 
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Fig. 2. Comparison of cost among three related 
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We consider network lifetime until 40% of total nodes die. Some of the nodes, 
alive at this point are also rendered unreachable due to the lack of forwarding nodes. 
From the figures shown above, we can conclude that PAR offers minimum cost but its 
network stability is poor. On the other hand the LPR has maximum network lifetime 
or stability but it suffers from high routing cost. BEER does not suffer extremely from 
either of the routing cost or network stability, as it is not biased by a single parameter. 
Thus, it maintains a balance between the two and offers cost-effective routing main-
taining maximum possible network stability. 

5   Conclusions 

In this paper, we elaborate a cost effective and energy balanced routing protocol 
where routing problem is formulated as maximizing the network lifetime while mini-
mizing the routing cost. We notice that the proposed BEER protocol may select a path 
with cost little higher than a path with least cost and a path having little less lifetime 
than a path having the highest lifetime. But it increases the network lifetime up to 
about 22% than that of power aware routing and cut routing cost up to 30% from the 
cost of lifetime prediction routing. Thus, the proposed method cuts the cost short 
while tries to maintain maximum possible lifetime of the network and thus empha-
sizes the advantage of combined approach over power only or lifetime only methods.  
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Abstract. Multipath source routing is an effective way to exploit the
redundant routes that are usually common in dense sensor networks. In
this paper, we present a multipath source routing algorithm that uses a
ranking technique to distinguish between the quality of different routes
for the same source-destination pair. A ranking coefficient is calculated
for each route based on three different metrics- energy, delay and reli-
ability. The number of parallel routes that is considered is governed by
the minimum reliability requirements. Simulation experiments are con-
ducted that show that multipath routing can increase the reliability, and
dissipate energy more evenly among the nodes.

1 Introduction

The advancement of wireless communication technologies coupled with the tech-
niques for miniaturization of electronic devices have enabled the development of
low-cost, low-power, multi-functional sensor networks [1]. The sensor nodes sense
the environment and pass the information to a destination node (usually called
a sink) through a single route as obtained by the underlying routing algorithm.
For reduced complexity and overhead, such single-path routing algorithms are
usually used in ad hoc and sensor networks. To avoid the dependency on the sin-
gle route, we propose to select and use multiple routes to transfer packets from
the source to the sink. Multipath routing is not a new concept and has been
proposed as an alternative to single shortest path routing to distribute load and
alleviate congestion in the network [2]. In multi-path routing, traffic bound to
a destination is split across multiple paths to that destination. In other words,
multipath routing uses multiple good paths instead of the best path. This mech-
anism also ensures that traffic load is distributed over the network to achieve
load balancing and improve end-to-end delay.

In this paper, we first try to characterize the rank coefficient of a route. Rank
is just a relative measure of how good or bad a route is with respect to some
performance metrics like remaining (battery) energy, packet loss, and end-to-end
delay. We discover multiple paths from the source to the destination (sink). We
define the ranking metric as a linear combination of the three metrics and rank
each route. Since, the possible number of routes can potentially be very large,
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we restrict ourselves to a subset consisting of at most K routes which are chosen
based on their ranks. When a source node has packets for a destination node,
it distributes them among the K routes. The fraction of packets going through
each route is inversely proportional to the routing coefficient. To increase the
robustness of the packet losses, we use forward error correction (FEC) codes.
Simulation experiments are conducted that show the benefit of using multiple
routes. The most important observation is the saving in energy of the nodes
which extends the lifetime of the network.

2 Multipath Routing

Since this research does not deal with any particular routing algorithm, the
proposed technique is generic enough and can be applied to any routing algo-
rithm. We will assume that routes between source-destination pairs are obtained
through algorithms such as DSR [4]. We also assume that there are multiple
routes available for the same source-destination pair. This assumption can be
justified by the fact that the density of sensor deployment is usually high and
each node potentially has many neighbors. The existence of multiple routes can
be obtained by using techniques such as [2] or extending DSR to incorporate
multiple routes.

Cache Design: We suppose that each sensor node has a route cache consisting of
two parts- one for routing and the other for local recovery. The route part stores
the routing table. It contains request-id, parent-id and route number. Request-id
is a unique id generated by the sink. As the name suggests, the local recovery
part is used for local recovery of routes. Since we extend DSR to incorporate
multiple routes, the route cache at each node must be re-designed.

Route Discovery: We assume that the sink issues route discovery only when
it needs to send a query message. The sink first initiates a route discovery by
broadcasting its query packet with a unique request-id and its node-id. When
an intermediate sensor node receives this request, it checks the routing table
to see if it has this request-id. If not, it will consider the node that forwarded
the request as its parent and record it in its table. If a node receiving a query
request is a destination node, it records the information and the route number.
The destination node will save the information of all the preceding nodes and
number the route number.

Route Reply: Destination sends route reply message back to its parents; the reply
message will also contain information about the remaining energy, hop number,
and delay. Each parent node that gets the message will record the route number,
add its energy value, add its queuing delay time and increase the hop number to
the message and forward the message to their parents. The route reply travels
from the sink to the source node. Our algorithm guarantees node disjoint routes
since each node (except source node) only sends reply message once.
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3 Ranking of Routes

During transmission, the sink records the transmission status of each route.
Based on the performance of each of the K routes, the sink ranks each route and
periodically sends the ranking information to the source. The rank parameters
considered here are nothing but the QoS parameters that we are interested in.
They are energy consumption, end-to-end delay, and reliability (throughput).
Our final goal is to improve the network lifetime for which considering the routes
with more average residual energy is important. Let us now consider the factors
that we use for ranking the routes. Let K be number of routes that are used.
The determination of K will be discussed later.

Residual Energy: We define residual energy of a node as the amount of energy
remaining at that node. We assume that at the time of network activation, all
the nodes have equal amount of energy. With the lapse of time, energy will
be depleted by the nodes- the amount of which will depend on the activity of
the node. Let the average residual energy for the ith route be given by Ei. We
normalize the average residual energy for the K routes and define the normalized
residual energy for route i as Êi = Ei∑ i=K

i=1 Ei
.

End-to-end Delay: The end-to-end delay is mainly governed by the queueing
delay at every intermediate node. The queueing delay at a node is usually hard
to calculate because it not only depends on the packet generation rate of that
node but also the activities of the neighboring nodes. For estimating the queueing
delay, we use the congestion related information at each node. This information
is nothing but the MAC buffer state occupancy which is conveyed by the nodes
in their beacon signals. So, for every route, the sink can calculate the the total
delay that is expected at all the intermediate nodes. If Ti is the total delay for
route i, then the normalized delay for route i is defined as T̂i = Ti∑ i=K

i=1 Ti
.

Reliability: For reliability, we consider the packet loss probability of each route.
As the sink receives the packets along multiple routes, it calculates the ratio of
packets lost for every route. If the packet loss probability for route i as Pi, then
the normalized packet loss probability for route i is defined as P̂i = Pi∑

i=K
i=1 Pi

.

Overall Ranking Metric: So far, we have defined three metrics which are some-
what independent of each other. It can be noted that a high value is Ei is
desirable, where as T̂i and P̂i should be low. We propose a linear combination
of the three for the overall ranking of the routes. We used the normalized values
for each factor such that all the factors have the same bounds, i.e., between 0
and 1. Thus the ranking coefficient for route i is defined as

Ri = α(1 − Êi) + βT̂i + γP̂i (1)

where α, β, and γ are the weighing or tuning parameters for the three metrics
respectively. Also, α + β + γ = 1. The rank coefficients, Ri’s, when sorted in the
ascending order gives the ranks.
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Packet Distribution: With the relative ordering of all the K routes being known,
it is important that this route diversity be exploited for distributing the load over
the network. We do so by making use of all the routes in a proportional manner.
According to the rank of each route, the source distributes a fraction of packets
along different routes. Since, lower the Ri better the route, we use the inverse
ratio of the rank coefficients to calculate the fraction of the packets that would
be routed through route i. Thus, if R1, R2, · · · , RK are the rank coefficients for
routes 1, 2, · · · , K, then the ratio in which packets are distributed are in the ratio
R−1

1 , R−1
2 , · · · , R−1

K . Therefore, the fraction of packets through route i is given

by fi = R−1
i

S , where S =
∑i=K

i=1 R−1
i . Obviously,

∑i=K
i=1 fi = 1.

Determination of K: Thus far, we dealt with K routes, but we never discussed
how to determine K. It is intuitive that the number of routes, K, has a close
relationship with the reliability that the network must operate. We impose the
reliability requirement must be such that all packets are expected to arrive at
the destination. Since we propose to use FEC coding, we can still achieve the
desired level of reliability even if there are packet losses. If we use h redundancy
packets for n original packets, then we can afford to loose h packets out of the
total N = n + h packets. These N packets are distributed among the K routes
such that Ni = Nfi packets are routed through route i. We choose K routes
such that the expected number of packets arriving at the destination is greater
than n. Thus,

∑K
i=1

∑Ni

l=0

(
Ni

i

)
P l

i (1− Pi)
Ni−l ≥ n. Recall, Pi is the packet loss

probability for route i. The inner sum calculates the expected number of packet
received through route i, and the outer sum finds the total number of packets
received over all the K routes. K must be such chosen that the expected number
of packets over all the K routes must be at least n.

4 Improving Reliability Through FEC

Forward error correction (FEC) is a method which is usually used to recover
packets that get corrupted during transmission. The correction capability of
these codes will depend on the kind of codes and the length of the code used.
Since this paper does not deal with FEC codes, the simplest simplest of codes-
block codes will be used. In block codes, M redundancy bits are added to the
information bearing N bits. (Note that the extra M bits are generated using a
generator matrix operating on the N bits.) In this paper, we use FEC on the
packet level and not bit level. If we consider a packet of N +M bits, then the re-
sulting bit loss probability is given by [3] b =

∑M+N
i=M+1

(
M+N

i

)
bp

i(1 − bp)
M+N−i,

where, bp is the bit loss probability before decoding and b is the decoded bit
error probability.

5 Simulation Model and Results

To evaluate the performance of routing efficiency when multiple routes are used,
we conducted simulation experiments where every sensor node was initialized
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with the same amount of energy. The bit error rates of each route was varied
from 0 to 0.2. To calculate the power consumed for transmitting and sensing, a
simple first order radio model was used [5], where the radio dissipates Eelec = 50
nJ/bit to power the transmitter/receiver circuitry and Eamp = 100 pJ/bit/m2

for the transmit amplifier to achieve an acceptable Eb/N0. Therefore, to transmit
a k-bit message over a distance of d meters, the energy expended is

ETx(k, d) = kEElec + kd2Eamp (2)

To receive a k-bit message, the energy expended is ERx(k) = kEElec. We used
different values of K. The ranking coefficients are calculated for the required
number of routes and packets are distributed accordingly. The density of the
nodes and the transmission range are so set that the number of hops range from
5 to 15. To investigate the rate at which the energy is consumed, we assume
that every node is initialed with just enough power to transmit 1000 packets.
We discuss the results with respect to network lifetime and reliability.

Lifetime: We compared the lifetime for 2 different cases. The first one is the
lifetime measured using single route, and the second case is using single route
with one backup route in case of the route failure. We compared the results with
the proposed multipath routing scheme. We assumed that the sink recalculates
the rank after every 250 packets. We show how the lifetime is affected in terms of
both average remaining energy and the worst route remaining energy for K = 4
and 8 in figures 1 and 2 respectively.
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Fig. 1. Remaining energy for K = 4
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Fig. 2. Remaining energy for K = 8

We observe that for a single route, the energy of the route is used up very fast,
i.e., after 1000 packets are transmitted, there is no energy available in that route
signifying a dead route. With one extra route as backup, the energy usage is
better, but the route dies after 2000 packets were transmitted. Results improved
on using multiple routes. Our multipath routing can distribute the packets to
different routes according to their residual energy and also dynamically adjusts
the distribution as and when their rank changes.
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Reliability: We use the packet loss probability as a measure of reliability. We set
the packet loss probability as 1% and check the block loss rate when block size
change from 4 to 16 and redundant packet changes from 0 (i.e., no FEC) to 3.
Figure 3 shows the loss probability with and without FEC. From the plot, we
can see that without using FEC technique (h = 0), the probability to loose a
packet is much higher than applying FEC. Figure 4 shows the loss probability
when the number of redundant packets is changed from 1 to 3. This provides
guideline on how to select the number of redundant packets.
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Fig. 3. Loss with and without FEC

4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ob

ab
ilit

y 
of

 p
ac

ke
t l

os
s 

(%
)

block size

 redundant packet number h=1
 h=2
 h=3

Fig. 4. Loss with different redundancy

6 Conclusions

In this paper, we presented a multipath source routing algorithm that exploits
the relative goodness of multiple routes. We devised a ranking mechanism that
computes a ranking coefficient for each route based on a linear combination of
three different metrics. FEC was also used to increase the reliability. The num-
ber of routes used was such chosen that the expected number of packets arriving
at the sink, would meet the minimum reliability requirements. Simulation ex-
periments were conducted that show that the proposed method increases the
reliability and energy is dissipated more evenly among the nodes.
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Abstract. In this paper, we propose a reliable time synchronization
protocol (RTSP) in sensor networks considering topology changes. Due
to movement of sensor nodes, running out of energy or crashes in the
network, the topology of sensor networks changes very frequently. In the
proposed method, synchronization error is decreased by creating a hier-
archical tree with lower depth and reliability is improved by maintaining
and updating the information of candidate parent nodes. The RTSP
reduces recovery time and cost compared to the TPSN (Timing–sync
Protocol for Sensor Networks) when there are changes in topology. Sim-
ulation results show that RTSP has about 10% better performance than
TPSN in synchronization accuracy. The number of messages in RTSP is
10%∼30% lower than that in TPSN when there are topology changes.

1 Introduction

As in any distributed computer system, time synchronization is a critical issue
in sensor networks. Time synchronization is a prerequisite for sensor network ap-
plications such as object tracking, consistent state updates, duplicate detection,
and temporal order delivery. In addition to these domain-specific requirements,
sensor network applications often rely on synchronization as typical distributed
system do: for secure cryptographic schemes, coordination of future action, or-
dering logged events during system debugging, and so forth [1]. Traditional time
synchronization methods in distributed systems can not be applied to the sensor
networks directly because of the characteristic of sensor networks with limited
computation and energy.

In the first stage of research on time synchronization in sensor networks,
most approaches are based on the synchronization model such as event ordering
or relative clock. These methods do not synchronize the sensor node clocks but
generate a right chronology of events or maintain relative clock of nodes. From
a viewpoint of the network topology, synchronization coverage is limited in a
� This work was supported by the Regional Research Centers Program (Research

Center for Logistics Information Technology), granted by the Korean Ministry of
Education and Human Resources Development.
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single broadcast domain; however, typical wireless sensor networks operate in
areas larger than the broadcast range of a single node, so network-wide time
synchronization is needed essentially. Besides, adjusting the local clock has better
efficiency than maintaining relative clock since it requires more memory capacity
and communication overheads [2]. The FTSP [3] and the TPSN [4] are the
representative ones which meet these requirements.

FTSP achieves robustness against node and link failures by utilizing periodic
flooding of synchronization message and implicit dynamic topology update. On
the other hand, TPSN does not handle dynamic topology changes; however,
FTSP can not be applied generally since the synchronization accuracy in FTSP
is seriously affected by the analyzed source of delays and uncertainties which
are varied according to changes of the systems. The synchronization accuracy
of network-wide multi-hop synchronization is a function of the construction and
depth of the tree. The synchronization error is propagated hop by hop. Therefore
new approaches are required to reduce the synchronization error and to manage
dynamic topology changes.

This paper proposes a reliable time synchronization protocol in sensor net-
works considering topology changes. The topology of sensor networks changes
frequently due to moving of sensor nodes, running out of energy or physical
crashes in the network. In the proposed method, synchronization error is de-
creased by creating hierarchical tree with lower depth and reliability is improved
by maintaining and updating information of candidate parent nodes. The RTSP
reduces recovery time and costs - communication overheads - comparing to TPSN
[4] when there are changes of topology.

2 Reliable Time Synchronization Protocol

In the followingwepresent our scheme calledReliableTimeSynchronizationProto-
col (RTSP) in sensor networks. It is assumed that nodes in the network have unique
ID, but it does not need that each node is aware of the neighbor set as in the TPSN.
The management of neighbor nodes is included in the operations of the protocol.

Fig. 1. Measuring delay and offset

As in the NTP, the roundtrip delay and clock offset between two nodes A and
B are determined by a procedure in which timestamps are exchanged via wireless
communication links between them. The procedure involves the four most recent
timestamps numbered as shown in Figure 1. The measured roundtrip delay δ and
clock offset θ of B relative to A are given by [5]
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δ = (T4 − T1)− (T3 − T2) , θ =
(T2 − T1) + (T3 − T4)

2
.

2.1 The First Phase: Hierarchical Topology Setup

In the first phase, a hierarchical topology is created in the network. This phase
works to create a tree structure with lower depth and candidate parent list is
generated to manage failure of nodes in the network.

Step 1: The root node initiates topology setup phase. Level 0 is assigned to the
root node. It broadcasts topology setup message with its ID and its level.

Step 2: A node receives topology setup message during pre-defined time inter-
val. (Root node discards this message.) It selects a parent with the lowest
level number from received messages and stores other information to the can-
didate parent list according to the level number. Then it broadcasts topology
setup message with its ID and its level.

Step 3: Each node in the network performs step 2 and eventually every node
is assigned level.

Step 4: When a node does not receive topology setup message or a new node
joins the network, it waits for some time to be assigned a level. If it is not
assigned a level within that period, it broadcasts topology setup request
message and then performs step 2 with reply of its neighbors.

2.2 The Second Phase: Synchronization and Handling Topology
Changes

In the second phase, a node belonging to level i synchronizes with its parent
node which is belonging to level i-1 by exchanging time-stamp messages. When
a node can not communicate with its parent, it selects another parent in the
candidate list and performs synchronization.

Step 1: The root node initiates synchronization phase by broadcasting synchro-
nization message.

Step 2: On receiving synchronization message, nodes belonging to level 1 ex-
change time-stamp message with the root node and adjust the local clock
and then broadcast synchronization message.

Step 3: On receiving synchronization message, each node belonging to level i
exchanges time-stamp message with its parent and performs step 2. Eventu-
ally every node is synchronized. Once it receives a synchronization message,
it discards additional messages from other upper level nodes.

Step 4: When a node can not communicate with its parent, it selects another
parent in the candidate list, updates its own level - if it is needed - and
performs step 3. The level of its child nodes will be updated when they
execute synchronization. If the candidate list is empty, it performs step 4 of
the topology setup phase ahead. Candidate list can be updated periodically
by listening to communications of neighbors.
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When the root node fails, a node which has the lowest ID in the next level
takes over its role. The synchronization accuracy may be improved by utilizing
the concepts of MAC layer time-stamping as in the TPSN, and the random
back-off mechanism can be adapted to avoid the collision of wireless links.

3 Performance Evaluation

In order to evaluate the performance of the proposed method, we established
a simulation model in the NESLsim based on the PARSEC platform [6, 7]. N
nodes are deployed in a uniformly random fashion over a sensor terrain of size
100x100. Each node has a transmission range of 28. The number of nodes, N ,
is varied from 100 to 300 with each increase of 50. All other parameters are ar-
ranged with the same value in the TPSN simulation. The setup includes a CSMA
MAC. The radio speed is 19.2kb/s, similar to the UC Berkeley MICA Motes,
and every packet has a fixed size of 128bits. A node is chosen randomly to act as
the root node. The granularity of the node clocks, which is the minimum accu-
racy attainable, is 10μs. The clock model used in simulations has been derived
from the characteristics of the oscillators used in sensor nodes. The frequency
drift is varied randomly with time, within the specified range, to model the tem-
poral variations in temperature. All sensor node clocks drift independently of
each other. There is an initial random offset uniformly distributed over 2 sec-
onds among the sensor node clocks to capture the initial spatial temperature
variations and the difference in the boot up times [8]. All results are averaged
over hundred simulation runs. The performance is compared to the TPSN. The
synchronization error is defined as the difference between the clocks of the sensor
nodes and the root node.

In Fig. 2, the number of messages processed during the simulation and the
synchronization accuracy are presented when there is no failure of nodes. In
almost the same number of messages, the RTSP has better performance in syn-
chronization accuracy. This is the effect of the tree depth. Usually RTSP has
1∼2 lower depth than TPSN.
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Fig. 3. 10% failure of nodes
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Fig. 4. 30% failure of nodes

Fig. 3 and Fig. 4 show the number of messages processed during the sim-
ulation, synchronized proportion of nodes and synchronization accuracy when
there are 10% and 30% failure of nodes respectively. In sensor networks, sen-
sor nodes can fail easily such as nodes may move, may run out of energy and
may be destroyed physically. This failure of nodes leads to topology changes.
In the simulation, node failure means that there are topology changes. In a
similar proportion of synchronized nodes to the entire nodes, RTSP reduces
the number of messages and shows better performance in synchronization ac-
curacy. In sensor networks, communication is one of the dominant factors in
energy efficiency; therefore, communication overheads must be reduced to save
energy. The RTSP reduces the number of messages and improves the synchro-
nization accuracy by handling dynamic topology changes through the candidate
parent list.

As can be seen in the results, the performance of RTSP gets better than
TPSN as the failure rate (topology change) is increased. At 10% failure out of
300 nodes, the number of messages in the RTSP is 20% lower than that in the
TPSN. At 30% failure out of 300 nodes, the number of messages in the RTSP is
decreased by 35% compared to that in the TPSN.
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4 Conclusions

In this paper we proposed a reliable time synchronization protocol in sensor
networks considering topology changes. It constructs hierarchical topology in
the first phase, and performs pair-wise synchronization and handling topology
changes in the second phase. In the proposed method, synchronization error
is decreased by creating hierarchical tree with lower depth and reliability is im-
proved by maintaining and updating information of candidate parent nodes. The
RTSP reduces recovery time and costs - communication overhead - comparing
to the TPSN when there are changes of topology. Simulation results show that
RTSP has about 10% better performance than TPSN in synchronization accu-
racy. The number of message in the RTSP is 10%∼35% lower than that in the
TPSN when there are topology changes.
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Abstract. This presentation covers a synthesizing overview of the structural 
organisation of the brain, viewed as a complex network. Such an organisation is 
encountered in social, information, technological, and biological networks. The 
underlying conclusions may, in future, lead to interesting studies in the areas of 
cognition, and distribution computing. It is also hoped that the brain network 
structure studied through scale-free, small world, and clustering concepts may 
facilitate better understanding and design of brain-computer interface (BCI) 
systems. 

1   Introduction 

I deem it an honour to deliver the Prof. A K Choudhury Memorial Lecture at the 
Seventh International Workshop on Distributed Computing. Prof. Choudhury was an 
outstanding researcher who has made pioneering contributions in diverse areas in the 
broad discipline of Electrical Sciences. Notable among the areas where he made some 
of his excellent contributions are, control and system theory, fault diagnosis, 
computer hardware and logic design, network and circuit theory. As a befitting tribute 
to this great scholar, I have chosen a topic of interdisciplinary nature covering some 
of the above areas.  

Networks in the human brain possibly work similar to those in the internet. 
Networks often have very many nodes with very few links, and very few nodes with 
very many links. The brain is one of the most challenging complex systems. The 
neurons are massively interconnected to each other. To understand the complexity of 
the nervous system, we need to characterize its network structure. Networks are 
described by simply defining a set of nodes and connections (edges) between them. A 
wide variety of such systems are scale-free, where the connectivity distribution takes 
a power-law form. What makes such networks complex is not only their size but also 
the interaction of architecture or the interconnection topology and dynamics. In many 
networks, cluster of nodes group into tightly coupled neighborhoods, but maintain 
short distances among nodes in the entire network. Such a situation leads to what is 
known as ‘small world’ within the network [1]. For many networks, the degree of 
individual nodes forms a distribution that decays as a power law, producing a ‘scale-
free architecture’ characterized by highly connected nodes (hubs). 
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Nervous systems generate and integrate information from several external and 
internal sources in real-time. The aim of this presentation is to review some insights 
into connectivity of the brain. Though many studies have been reported on single 
neuron networks, what is of more interest from a computer network paradigm is the 
large-scale networks of the cerebral cortex, enabling us to study links between neural 
organization and cognition. 

2   Cerebral Cortex: A Network Structure 

Large-scale connections of the cerebral cortex of mammalians have been studied. 
This area is neither completely connected with each other nor randomly linked. On 
the contrary, a specific and intricate organisation is revealed in this region. The 
functional roles of brain regions are specified by their inputs and outputs. At the next 
level of organization, i.e. neural circuits linking small sets of connected brain areas; 
we need to look for patterns of local interconnections occurring with a higher 
frequency in real networks than in the randomized networks. 

2.1   Connection Patterns 

Mammalian connection patterns studied through graph theoretical techniques have 
revealed interesting features. Cortical connection patterns exhibit small world 
features, which have short path lengths and high clustering coefficients [3-4].  The 
average shortest path is given by the mean of the entries of the distance (adjacency) 
matrix. The clustering coefficient Ci of a node is calculated as the number of existing 
connections between the node’s neighbors divided by all their possible connections. 
High clustering and short path lengths can be found across cortical organisation. 
Graph theory tools provide insights into the functioning of neural architectures. In-
degree and out-degree specify the amount of functional convergence and divergence 
of a given region. On the other hand, the clustering coefficient indicates the degree to 
which the area is part of functionally related regions. The path length metric between 
two regions of the brain represents the potential ‘functional proximity’. Inter-cluster 
connections link areas with one another in all shortest paths and are important for 
structural stability of cortical networks [5]. 

2.2   Functional Networks 

Deterministic clustering method has been used to combine cross-correlations between 
fMRI signals, and graph theory formalism. Image voxels are represented by nodes of 
a graph, and the corresponding temporal correlation matrix represents the weight 
matrix of the edges between the nodes. Based on fMRI data, a network can be 
implemented, where those voxels that are functionally linked are ‘connected’. Their 
degree distribution and the probability of finding a link versus the distance decay as a 
power law. The corresponding characteristic length is short, although the clustering 
coefficient is much larger. 

A possible link between network organisation and cognition is likely to exist. Our 
future understanding of human cognition will benefit from the studies on complex 
brain networks. One may still be interested in answering questions such as, are all 
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cognitive processes carried out in distributed networks? Are some cognitive processes 
carried out in more restricted processes?  

Predominantly brain activity is spatio-temporal. It is hard to analyse such systems 
using numerical techniques. Thus attempts have been made to study such systems 
using the concepts of complex networks consisting of nodes and links with specific 
topological properties. During any given task, the networks are constructed using 
magnetic resonance brain activity. This activity is measured, at each time step, from 
several brain sites. 

2.3   Scale-Free Networks 

Networks with power-law degree distributions have been the focus of a great deal of 
attention. They are sometimes referred to as scale-free networks, although it is only 
their degree distributions are scale-free. In any real network, some nodes are more 
highly connected than others are. To quantity this effect, let pk denote the fraction of 
nodes that have k links. Here k is called the degree and pk is the degree distribution. 
For many real networks, pk decays much more slowly than a Poisson distribution and 
is given by a power law pk ~ 1/ kγ . These networks are ‘scale-free’ by analogy with 
fractals and other situations where power laws arise and no single characteristic scale 
can be defined. 

The brain creates and reshapes continuously complex functional networks, during 
behavior or at rest. These networks have been studied, using functional magnetic 
resonance imaging in humans. The degree distribution of the network for a subject in 
finger tapping task is found to demonstrate the scale-free property of the network. 
This property implies that there are always a small but finite number of brain sites 
having broad access to most other brain regions. The scale-free character is unaltered 
for tasks engaging different brain states corresponding to tasks such as listening to 
music. 

2.4   The Small-World Effect 

A direct demonstration of the small-world effect is the fact that most pairs of vertices 
in most networks seem to be connected by a short path through the network. If one 
considers the spread of information across a network, the small-world effect implies 
that the spread will be fast on most networks. If it takes six steps for a rumour to 
spread from any person to any other person, then the rumour will spread much faster 
than if it takes a hundred steps. From a calculation of path length and clustering 
coefficient, the small-world structure of the brain network can be demonstrated.   

2.5   Wiring in Networks 

Graphs that result from selection for complex dynamics can be placed in a physical 
space such that the wiring cost is low. However, in real brains possibly the 
positioning of vertices precedes the edge formation between them. But complex 
dynamics should consider low wiring costs too. Evolution exerts pressure on 
connectivity to reduce the overall wiring length, or to maximize connectivity while 
minimizing volume or to place brain components in order to minimize wiring length. 
It is unlikely that evolutionary pressure on wiring alone is responsible for the specific 
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patterns of connectivity we notice today. Possibly the anatomical structures have 
evolved to accommodate specific kinds of functional and dynamic interactions 
supporting adaptive behavior. Relationship between wiring and functional 
connectivity could be investigated by embedding graphs in two-or three-dimensional 
space, by incorporating explicit development rules in the wiring process or by 
including conduction delay type temporal features. As diverse sources of 
environmental information need to be integrated, and varied output patterns are 
required for adaptive behavior, there is a need for the selection for neural architecture 
capable of matching signals as well as for degenerate pathways to increase robustness 
against failure. Consequently the complexity of the neural circuits will increase. 

3   Neuronal Characterization by Fractal Dimension 

Fractal dimension has been used to characterize the neurons. Such a computation 
makes extensive use of automated image analysis system and the approach is 
extremely useful in studying multiple neurons connected through a network. The 
fractal dimension D may not always be an adequate descriptor of a neuron. For 
example, two neurons may appear visually very different from one another, yet 
having the same fractal dimension. Moreover, a complex structure such as a neuron 
can be a mixture of different fractals, each one with a different fractal dimension. 
Attempts have been made to use multifractals as a more comprehensive methodology 
to provide information about the distribution of fractal dimension in biological 
systems [6]. 

4   Brain-Computer Interface (BCI) 

Electroencephalographic activity or other electrophysiological measures of brain 
function might provide a new channel for sending messages to the external world - a 
brain-computer interface (BCI) [7]. Such systems provide a supportive 
communication and control technology for those with severe neuromuscular 
disorders, such as brainstem stroke, and spinal cord injury. These systems can provide 
users, who may be completely paralyzed, with basic communication capabilities so 
that they can express their wishes to people attending to them; they can even operate 
keyboard and mouse. These signals typically include cortical potentials and cortical 
neuronal activity recorded by implanted electrodes. The user encodes the commands 
in these signals and the BCI system derives the commands from the signals. 

The signal features used in present-day BCIs reflect identifiable brain events like 
firing of the synchronized and rhythmic synaptic activation in sensorimotor cortex 
that produces a mu rhythm. Knowledge of these events can help guide BCI 
development. The location and function of the cortical area generating a rhythm or an 
evoked potential can indicate how it should be recorded and how to eliminate the 
effects of non-CNS (Central Nervous System) artifacts. 

Most BCIs use electrophysiological signal features representing brain events that 
are well-defined both anatomically and physiologically. These include rhythms 
reflecting oscillations in particular neuronal circuits (mu and beta rhythms from 
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sensorimotor cortex), potentials evoked from particular brain regions by specific 
stimuli, or action potentials generated by particular cortical neurons. 

User training may be the most important and least understood factor affecting the 
BCI capabilities of different signal features. BCI signal features are not normal or 
natural brain output channels. They are artificial output channels created by BCI 
systems. Thus it is not clear to what extent these artificial outputs will observe known 
principles. For example, mu rhythms and other features generated in sensorimotor 
cortex, may be more useful than alpha rhythms generated in visual cortex. Initial 
efforts have focused on neurons in motor cortex. Other cortical areas need 
exploration. 

Some of the above issues can be addressed if the complex brain network is studied 
extensively, both mathematically and by simulation studies, using the network 
principles discussed earlier.  

5   Conclusions 

The structure of brain networks is a result of the combined forces of natural selection 
and natural activity during evolution and development from computational and 
information theoretical concepts. Brain has to solve the problem of information 
extraction from inputs and the generation of coherent states that allow coordinated 
action. This imposes severe constraints on the set of possible cortical connection 
patterns. More empirical and computational work is needed to develop the functional 
principles underlying the structural connection patterns in the cortex. There may be 
more ways in which structural properties of brain networks influence the dynamical 
and informational patterns neurons can generate. Dynamical patterns generated by 
brain networks underlie cognition and perception operators. Some aspects of vision 
seem to be embedded in structural connectivity of the thalamocortical network. 
Network analysis may enable us to understand the computational power of the brain. 
Also if the studies of brain image classification [8] are suitably integrated into brain 
network analysis, there may be a scope to identify regions of the brain responsible for 
malfunctions such as epilepsy, Schizophrenia, Parkinson’s, Huntington’s, 
Alzheimer’s etc. 

It is envisaged that such studies may be of mutual interest to the neuroscience and 
distributed computing research communities, to learn more about the performance of 
such complex systems. Brain-computer interface has been attracting significant 
attention in recent years and network-centric studies of the brain may, in future, throw 
open several challenging issues. 
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Abstract. Checkpointing and rollback recovery are established tech-
niques for handling failures in distributed systems. Under synchronous
checkpointing, each process involved in the distributed computation
takes checkpoint almost simultaneously. This causes contention for net-
work stable storage and hence degrades performance. To overcome this
problem, checkpoint staggering under which checkpoints by various
processes are taken in a staggered manner, has been proposed. In this pa-
per, we propose a staggered quasi-synchronous checkpointing algorithm
which reduces contention for network stable storage without any synchro-
nization overhead. We also present an asynchronous recovery algorithm
based on the checkpointing algorithm.

1 Introduction

In distributed computing systems, checkpointing and rollback recovery are well-
established techniques for handling failures [1], [2], [3], [4], [5], [6], [7], [8]. Existing
checkpointing algorithms can be classified into three main categories – asyn-
chronous, synchronous and quasi-synchronous [9]. In asynchronous checkpoint-
ing, processes take checkpoints periodically without any coordination. However,
when a failure occurs, recovery may suffer from domino effect, in which processes
roll back recursively in order to roll back the system to a consistent global state.
Moreover, multiple checkpoints need to be kept in stable storage and some or all
the checkpoints taken may not be part of any consistent global checkpoint and
hence are useless.

In synchronous checkpointing schemes, domino-free recovery is achieved by
sacrificing process autonomy and incurring extra synchronization overhead dur-
ing checkpointing. In this approach, processes synchronize their checkpointing
activity so that a globally consistent set of checkpoints is always maintained
in the system [1], [10], [5]. Under quasi-synchronous (or communication-induced)
checkpointing [11], [12], [13], [6] processes are allowed to take checkpoints (called
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basic checkpoints) asynchronously, as well as reduce the number of useless check-
points by forcing processes to take additional checkpoints (called forced check-
points) at appropriate times. Hence, they have the advantages of both syn-
chronous and asynchronous checkpointing algorithms.

Quasi-synchronous checkpointing mitigates the problems with synchronous
and asynchronous algorithms. However, contention for stable storage is still a
problem when several processes take checkpoints simultaneously. This can signif-
icantly impact the checkpointing overhead and extend the total execution time
of the distributed computation [14], [15]. Contention for stable storage can be
mitigated by staggering the checkpoints [16]. Staggered checkpointing attempts
to prevent two or more processes take checkpoints at the same time and re-
duce contention for stable storage. To the best of our knowledge, checkpoint
staggering has previously been proposed for only synchronous, or coordinated,
checkpointing algorithms [16], [15].

Objectives

In this paper, we present a staggered quasi-synchronous checkpointing algorithm
that takes basic checkpoints in a staggered manner to reduce contention for stable
storage. We also present a basic recovery algorithm based on the checkpointing
algorithm.

Organization

The rest of the paper is organized as follows. In Section 2 we present the system
model, background and related work. Section 3 describes our staggered quasi-
synchronous checkpointing algorithm. In Section 4 we present our basic recovery
algorithm. Section 5 concludes the paper.

2 System Model, Background and Related Work

In this section, we present the system model and background required. We also
briefly review the related work.

2.1 System Model

A distributed computation consists of N sequential processes denoted by P0, P1,
P2, · · ·, PN−1 running concurrently on a set of computers in the network. Pro-
cesses do not share global memory or a global physical clock. Message passing
is the only way for processes to communicate with one another. The computa-
tion is asynchronous: each process evolves at its own speed and messages are
exchanged through communication channels, whose transmission delays are fi-
nite but arbitrary. We assume that messages are not lost, altered or spuriously
introduced. Processes are fail-stop. All failures are detected immediately and
result in halting failed processes and initiating recovery action [8].
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Execution of a process is modeled by three types of events – the send event of
a message, the receive event of a message, and an internal event. The states of
processes depend on one another due to interprocess communication. Lamport’s
happened before relation [17] on events, hb−→, is defined as the transitive closure
of the union of two other relations: hb−→ = ( xo−→ ∪ m−→)+. The xo−→ relation
captures the order in which local events of a process are executed. The ith event
of any process Pp (denoted ep,i) always executes before the (i + 1)st event:
ep,i

xo−→ ep,i+1. The m−→ relation shows the relation between the send and receive
events of the same message: if a is the send event of a message and b is the
corresponding receive event of the same message, then a

m−→ b [7].

2.2 Background

A local checkpoint of a process is a recorded state of the process in stable storage.
A checkpoint of a process is considered as a local event of the process for the
purpose of determining the existence of happened before relation among states
of processes. Each checkpoint of a process is assigned a unique sequence number.
The checkpoint of process Pp with sequence number i is denoted by Cp,i.

The send and the receive events of a message M are denoted respectively
by send(M) and receive(M). So, send(M) hb−→ Cp,i if message M was sent
by process Pp before taking the checkpoint Cp,i. Also, receive(M) hb−→ Cp,i if
message M was received and processed by Pp before taking the checkpoint Cp,i.
send(M) hb−→ receive(M) for any message M . The set of events in a process that
lie between two consecutive checkpoints is called a checkpoint interval. Next, we
present the definition of a consistent global checkpoint.

Definition 1. A set S = {C0,m0 , C1,m1 , · · · , CN−1,mN−1} of N checkpoints, one
from each process, is said to be a consistent global checkpoint1 if Cp,mp �

hb−→
Cq,mq for all p, q, 0 ≤ p, q ≤ N − 1.

Z-paths and their Properties

In [7], Netzer and Xu give a necessary and sufficient condition for a given set
of checkpoints to be part of a consistent global checkpoint. They introduce the
notion of zigzag paths, which is a generalization of causal paths2 induced by
the Lamport’s happened before relation. A zigzag path (or a Z-path for short)
between two checkpoints is like a causal path, but a Z-path allows a message in
the sequence to be sent before the previous one in the path is received.

We use the notation A
zp
� B to indicate the existence of a Z-path from check-

point A to B. Note that the existence of Z-paths is a transitive relation. In other
1 Also called a a consistent cut.
2 A causal path from a checkpoint A to checkpoint B exists if and only if there exists

a sequence of messages m1, m2, · · · , mn such that m1 is sent after A, mn is received
before B, and mi is received by some process before the same process sends mi+1

(1 ≤ i < n).
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words, if A
zp
� B and B

zp
� C, then A

zp
� C. A checkpoint C is said to be in

a Z-cycle if C
zp
� C. An important property of Z-paths is that it captures the

precise requirement for a set of checkpoints to be a part of a consistent global
checkpoint as stated in the following theorem due to Netzer and Xu [7]. We state
the theorem using the notations introduced above.

Theorem 1. A set of checkpoints S can be extended to a consistent global check-
point if and only if for any two checkpoints A, B ∈ S (not necessarily distinct)
neither A

zp
� B nor B

zp
� A holds.

Proof. Proof can be found in [7]. ��
In particular, if we take S to be a set containing a single checkpoint in Theorem 1,
it follows that a checkpoint can be part of a consistent global checkpoint if and
only if it does not lie on a Z-cycle. So, we have the following Corollary.

Corollary 1. A checkpoint of a process is part of a consistent global checkpoint
if and only if it does not lie on a Z-cycle.

So, checkpoints that lie on a Z-cycle are useless. An efficient quasi-synchronous
checkpointing algorithm tries to minimize the useless checkpoints while minimiz-
ing the number of forced checkpoints.

2.3 Related Work

In this section we briefly review previous work related to staggered quasi-
synchronous checkpointing.

Chandy and Lamport [1] propose a synchronous checkpointing algorithm.
Their algorithm assumes the channels to be FIFO. The checkpointing process
is initiated by a coordinator. The coordinator first records its own state (takes
a checkpoint) and then sends a marker message along all outgoing channels
before sending any other messages. If a process that receives the marker has
not already recorded its state, it immediately records the state of the incoming
channel as empty and then records its state. It then resends the marker along
all its outgoing channels. If a process that receives the marker has already taken
a checkpoint, it merely records the messages received (along the channel on
which the marker was received) since its last checkpoint as the state of that
channel. The algorithm guarantees that the checkpoints taken form a consistent
global checkpoint. However, contention for stable storage can occur as a result
of multiple processes taking checkpoints simultaneously.

Plank [16] observes that, to a certain degree, the Chandy-Lamport (C-L) al-
gorithm [1] staggers checkpoints when marker messages (initially sent by the
coordinator) only reach neighboring processes, which in turn resend the marker
to their neighbors. In contrast, the staggered behavior is eliminated if all pro-
cesses simultaneously receive a marker message from the coordinator directly.
Plank proposes a variation of the C-L algorithm that staggers a limited number
of checkpoints, depending on the network topology. Plank assumes a connected,
but not necessarily complete, underlying interconnection network. Clearly, in this



An Asynchronous Recovery Algorithm 121

approach a completely connected topology would subvert staggering. A network
sweeping algorithm is also used to route messages through neighboring nodes,
and to ensure a consistent global state. Once all processes have finished sweeping,
and notified the coordinator, the local checkpoints are committed and a consis-
tent global state is obtained from the set of local checkpoints. The algorithm
successfully maintains a consistent global state in a coordinated manner similar
to Chandy-Lamport [1]. Moreover, contention for stable storage is proportional
to the degree of connectivity in the underlying network topology.

Based on Plank’s observation, Vaidya [15] proposes another synchronous check-
pointing algorithm that staggers all checkpoints. Like Plank [16] and
Chandy-Lamport [1], Vaidya uses a coordinator to initiate the checkpointing
process. The algorithm has two phases. In the first phase, the coordinator P0
takes a physical checkpoint and sends a take checkpoint message to the next pro-
cess P1. Upon receipt of the take checkpoint message, process Pi takes a physical
checkpoint and resends it to process Pj , where i>0 and j = (i+1) mod n. The
phase is terminated when the coordinator P0 receives the take checkpoint mes-
sage from the last process Pn−1. In the second phase, the channel states, called
by author as logical checkpoints, are recorded. The set of logical checkpoints,
together with the physical checkpoints, form a consistent global state. The al-
gorithm successfully staggers all physical checkpoints. However, contention for
stable storage exists for taking the logical checkpoints. In the next section, we
present our staggered quasi-synchronous checkpointing algorithm which reduces
contention for stable storage without any synchronization overhead.

3 Our Staggered Quasi-Synchronous Checkpointing
Algorithm

In this section, we present our staggered quasi-synchronous checkpointing algo-
rithm which not only makes all checkpoints useful but also reduces contention
for stable storage by taking basic checkpoints in a staggered manner. Since all
checkpoints taken are useful, the algorithm ensures the existence of a recovery
line3 containing any checkpoint of any process. This property of the algorithm
helps bound rollback during recovery due to a failure.

3.1 The Algorithm

Informal Description of the Algorithm

Under our algorithm, each process takes basic checkpoints asynchronously. In
addition, to prevent useless checkpoints, processes take forced checkpoints upon
the reception of some messages. Each checkpoint is assigned a unique sequence
number. The sequence number assigned to a basic checkpoint is the current value
of a local counter (an integer variable). Since the sequence numbers assigned to

3 A consistent global checkpoint.
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basic checkpoints are picked from the local counters which are incremented pe-
riodically, the sequence numbers of the latest checkpoints of all the processes
will differ by at most one as long as the local clocks do not drift more than
half the checkpoint time interval. This property helps in advancing the recovery
line. When a process Pp sends a message, it appends the sequence number of
its current checkpoint to the message. When a process Pq receives a message,
if the sequence number appended to the message is greater than the sequence
number of the latest checkpoint of Pq, then, before processing the message, Pq

takes a checkpoint and assigns the sequence number received in the message as
the sequence number of the checkpoint taken. When it is time for a process to
take a basic checkpoint, it skips taking a basic checkpoint if its latest checkpoint
has a sequence number greater than or equal to the current value of its counter
(this situation could arise as a result of the forced checkpoints or drift in lo-
cal clocks). This strategy helps to reduce the checkpointing overhead, i.e., the
number of checkpoints taken. An alternative approach to reduce the number of
checkpoints would be to allow a process to delay processing a received message
until the sequence number of its latest checkpoint is greater than or equal to the
sequence number received in the message.

If several processes take checkpoints simultaneously, they will contend for
access to the stable network storage. The network contention can be reduced by
taking checkpoints in a staggered manner. Next, we illustrate our approach for
taking basic checkpoints in a staggered manner. We assume that there are a total
of N processes P0, P1, . . . , PN−1, involved in the distributed computations we
consider. Each process has a unique process id. For example, process Pp (where
0 ≤ p < N) has process id p. We also assume that it takes at most t (maximum
checkpoint latency) time units to take a checkpoint and send it to the stable
network storage in the absence of contention for stable storage. Each process
takes one checkpoint (either basic or forced) within each checkpoint interval X .
A local variable nextp keeps track of the current number of checkpoint intervals
by incrementing by 1 at the end of each checkpoint interval. nextp is initialized
to 1. We denote the local clock at the site in which process Pp is running as Cp.
The current time at clock Cp is denoted by V (Cp). For simplicity, we assume
that V (Cp) is initialized to 0.

Within each checkpoint interval of length X time units, a process takes a basic
checkpoint some time during the second half of the interval if it has not taken
a forced checkpoint yet. The second half of the interval is divided into several
time slots. The size of each slot T is at least t (maximum checkpoint latency)
plus δ (maximum local clock drift) time units. So, T is defined as follows:

T = t + δ (1)

The number of slots within a checkpoint interval, denoted by γ, is given by
Equation 2.

γ = �X/(2T )� (2)

We assume that X is chosen such that T << X . For example, if N ≤ 15 and
T = 10 seconds, it may be ideal to choose X = 5 minutes so that there would be
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Fig. 1. An example illustrating basic checkpoints taken in a staggered way

15 available slots during the later half of each 5 minute interval and each process
can have its own slot to take a checkpoint. However, if there are more processes
than time slots, then we use a round-robin method to reduce the contention for
stable storage. This can be achieved as follows:

A process Pp takes a basic checkpoint when its local time V (Cp) =
(nextp − 1) ∗X + X/2 + (p mod γ) ∗ T if there is no forced checkpoint
already taken in the period of time from (nextp − 1) ∗X to V (Cp).

So far we discussed how our algorithm takes basic checkpoints in a staggered
manner to reduce contention. It is also possible to reduce contention between
basic and forced checkpoints. In Section 3.2, we discuss one such optimization.

Next, we illustrate the basic idea behind how basic checkpoints are taken in
a staggered manner using an example.

An Example. In Figure 1, each checkpoint interval is X time units long.
Each slot is of length T and there are a total of 3 slots in the second half
of each checkpoint interval. There are a total of 4 processes involved in the
distributed computation. To take a basic checkpoints in a staggered manner,
we require that process P0 takes its basic checkpoint in time slot 0 in each
checkpoint interval, process P1 in slot 1, P2 in slot 2, and P3 in slot 04. If no
forced checkpoints are taken in any checkpoint interval, only process P0’s ba-
sic checkpoint slot (i.e., slot 0) collides with process P3’s basic checkpoint slot
(slot 0) in each checkpoint interval, assuming synchronized clocks. This is illus-
trated in the second checkpoint interval in Figure 1. In the presence of forced
checkpoints, illustrated in the first checkpoint interval of Figure 1, process P0’s

4 P3 and P0 take checkpoint in the same time slot. This is because, 0 mod 3 = 3 mod 3.
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basic checkpoint slot (slot 0) collides with P3’s basic checkpoint slot, and P1’s
basic checkpoint slot (slot 1) also collides with P2’s forced checkpoint slot. The
forced checkpoint, taken by P2 in slot 1, is due to the reception of message M1
from process P0.

Formal Description of the Algorithm

The example given above is very simple, but it illustrates the main idea be-
hind taking basic checkpoints in a staggered manner. Next, we present the stag-
gered quasi-synchronous checkpointing algorithm formally. The variable nextp
of process Pp represents its local counter. It keeps track of the current num-
ber of checkpoint intervals at process Pp. V (Cp) denotes the current value of
local clock at the site of Pp. The value of the variable snp represents the se-
quence number of the latest checkpoint of Pp at any time. So, whenever a
new checkpoint is taken, the checkpoint is assigned a sequence number and
snp is updated accordingly. Also, C.sn denotes the sequence number assigned
to the checkpoint C and M.sn denotes the sequence number piggybacked with
message M .

The Staggered Quasi-Synchronous Checkpointing Algorithm

Data Structures at Process Pp

V (Cp) := 0; {Current value of local clock, initialized to 0.}
snp := 0; {Sequence number of the current checkpoint, initialized to 0.

This is updated every time a new checkpoint is taken.}
nextp := 1; {Sequence number to be assigned to the next basic

checkpoint, initialized to 1}

When it is time for process Pp to increment nextp

nextp := nextp + 1; {nextp is incremented at periodic time intervals of X time units}

When process Pp sends a message M
M.sn := snp; {sequence number of the current checkpoint appended to M}
send (M);

Process Pq, upon receiving a message M from process Pp

if snq < M.sn then {if sequence number of the current checkpoint is less than
Take checkpoint C; checkpoint number received in the message, then
C.sn := M.sn; take a new checkpoint before processing the message}
snq := M.sn;

Process the message.

When it is time for process Pp to take a basic checkpoint
(i.e., When V (Cp) = (nextp − 1) ∗ X + X/2 + (p mod γ) ∗ T )

if nextp > snp then {skips taking a basic checkpoint if nextp ≤ snp (i.e., if it
already

snp := nextp; took a forced checkpoint with sequence number ≥ nextp)}
Take checkpoint C;
C.sn := snp;
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Theorem 2. The staggered quasi-synchronous checkpointing algorithm presented
above makes every checkpoint useful.

Proof: We only need to prove that none of the checkpoints lies on a Z-Cycle by
Corollary 1. Let C be any checkpoint. Suppose C lies on a Z-cycle, then there exists
a sequence of messages M1, M2, · · · , Mn that forms a Z-path from C to itself. In
particular, M1 is sent after the checkpoint C is taken and Mn is received before the
checkpoint C is taken. Thus M1.sn ≥ C.sn. Since a message M is received and
processed by a process only after it had taken a checkpoint with sequence number
≥ M.sn, it follows from the definition of Z-paths that Mi.sn ≥ C.sn ∀i, 1 ≤ i ≤ n.
In particular, Mn.sn ≥ C.sn. This is impossible since Mn is received before the
checkpointC is taken and there is no checkpointwith sequence number≥C.sn that
precedes C, since C.sn ≤ Mn.sn and all checkpoints that precede C have sequence
numbers < C.sn. Hence, our assumption that C is on a Z-cycle is incorrect and
hence every checkpoint is useful. ��
When processes take basic checkpoints in a staggered manner, contention for
stable storage is reduced. If there are no forced checkpoints taken, then the degree
of contention can be easily computed. In the absence of forced checkpoints, the
degree of contention, for stable network storage, DCnw , can be defined as follows:

DCnw =
{

0 if N ≤ γ
N/γ otherwise (3)

When forced checkpoints are present, more than one process may take check-
point in some time slots even if N ≤ γ, while fewer checkpoints (or none at all)
are taken in other slots. The degree of network contention can not be easily com-
puted, and depends on the communication pattern as well as the values of N ,
X , and T . So, we analyze performance of our algorithm under various scenarios
using simulation.

3.2 An Optimization

In the staggered quasi-synchronous checkpointing algorithm presented above,
effort is made to stagger basic checkpoints. However, nothing is done to reduce
the contention that arises when forced and basic checkpoints are taken simulta-
neously by two different processes. We propose an optimization to handle this
situation when the number of time slots is at least twice as many as the number
of processes. In this case, we can reduce the probability of a basic checkpoint and
a forced checkpoint being taken in the same slot significantly. This is achieved by
allowing processes to take basic checkpoints in the even (or odd) numbered slots
within each checkpoint interval, while the forced checkpoints are taken in the
odd (or even) numbered slots within the same checkpoint interval. Contention
for stable storage is reduced because basic checkpoints are taken in different time
slots.

Next, we describe this optimization formally, where the number of slots within
each checkpoint interval is at least twice as many as the number of processes (i.e.,
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γ ≥ 2N). For simplicity, we only provide rules which differ from the algorithm
in Section 3.1:

(1): Each process Pp takes a basic checkpoint at a specified even-numbered
slot within each checkpoint interval, if no forced checkpoint has been taken
within the same checkpoint interval yet.

(2): When process Pp receives a message with sequence number greater
than its current checkpoint sequence number, it checks whether the value
of its local clock is within an odd-numbered slot in (the later half of) the
current checkpoint interval. It takes a forced checkpoint if it is currently
in an odd-numbered slot. Otherwise, it delays to process the message
and takes a forced checkpoint at the next odd-numbered slot and then
processes the message.

4 Recovery Algorithm

In this section, we first present a basic recovery algorithm that rolls back the
processes to checkpoints that form a consistent global checkpoint. Due to space
restriction, we do not present a comprehensive recovery algorithm which handles
the different types of messages (such as lost messages, delayed messages, etc) ap-
propriately. We also do not present the performance evaluation of the algorithm
for the same reason.

4.1 The Basic Recovery Algorithm

The basic recovery algorithm presented below only rolls back processes to a
consistent global checkpoint when a process fails. It does not necessarily restore
the system to a consistent global state.

The Basic Recovery Algorithm

When process Pp fails
Roll back to the latest checkpoint C;
send roll back to(C.sn) to all the other processes;

Process Pq on receiving roll back to(n) message
If snq ≥ n then

Find the checkpoint C of Pq such that C.sn = n;
Roll back to C;
snq := C.sn;
Discard all the checkpoints taken after C;

Else {In this case the process does not roll back at all}
Take a checkpoint C; {It takes a checkpoint and proceeds normally}
C.sn := n;
snq := C.sn; {update snq}



An Asynchronous Recovery Algorithm 127

Note that under the basic recovery algorithm, a failed process rolls back to its
latest checkpoint, say with sequence number n, and all other processes roll back
to their checkpoint with sequence number n as well. The set of checkpoints with
the same sequence number to which the processes roll back form a consistent
global checkpoint because a message sent by a process after taking a checkpoint
with sequence number n is never received by a process before taking a checkpoint
with sequence number n. Even though, the basic recovery algorithm rolls back
the processes to a consistent global checkpoint, it may not restore the system
to a consistent state. For example, due to rollback, a process may have undone
the event receive(M) of some message M while the sender of M might not have
undone send(M).

5 Conclusion

In this paper we presented a staggered quasi-synchronous checkpointing algo-
rithm that makes every checkpoint useful, and reduces contention for stable
storage significantly. In contrast to previous staggered checkpointing algorithms,
our approach does not require explicit coordination. We also studied the perfor-
mance of our algorithm with varied approaches for selecting time-slots for basic
and forced checkpoints. Our simulation results indicate that the adaptive opti-
mization of our algorithm performs the best. We also presented a comprehensive
recovery algorithm based on the checkpointing algorithm. For handling the lost
messages due to rollback, messages are logged selectively and optimistically at
both sender and receiver. Thus, our approach does not have the disadvantages of
simple optimistic or pessimistic message logging but has the advantages of both
of them; and this advantage comes with very low overhead as our performance
evaluation indicates.

References

1. Chandy, K.M., Lamport, L.: Distributed Snapshots : Determining Global States
of Distributed Systems. ACM Transactions on Computer Systems 3 (1985) 63–75

2. Elnozahy, E.N., Zwaenepoel, W.: Manetho: Transparent Rollback-recovery with
Low Overhead, Limited Roll-back and Fast Output Commit. IEEE Transactions
on Computers 41 (1992) 526–531

3. Helary, J.M.: Observing Global States of Asynchronous Distributed Applications.
In: Proceedings of 3rd International Workshop on Distributed Algorithms, LNCS
392, Berlin: Springer (1989) 124–134

4. Johnson, D.B., Zwaenepoel, W.: Recovery in Distributed Systems Using Optimistic
Message Logging and Checkpointing. Journal of Algorithms 11 (1990) 462–491

5. Koo, R., Toueg, S.: Checkpointing and Roll-back Recovery for Distributed Systems.
IEEE Transactions on Software Engineering SE-13 (1987) 23–31

6. Manivannan, D., Singhal, M.: Asynchronous Recovery Without Using Vector
Timestamps. Journal of Parallel and Distributed Computing 62 (2002) 1695–1728

7. Netzer, R.H.B., Xu, J.: Necessary and Sufficient Conditions for Consistent Global
Snapshots. IEEE Transactions on Parallel and Distributed Systems 6 (1995) 165–
169



128 D. Manivannan et al.

8. Strom, R.E., Yemini, S.: Optimistic Recovery in Distributed Systems. ACM Trans-
actions on Computer Systems 3 (1985) 204–226

9. Manivannan, D., Singhal, M.: Quasi-Synchronous Checkpointing: Models, Char-
acterization, and Classification . IEEE Transactions on Parallel and Distributed
Systems 10 (1999) 703–713

10. e Silva, L.M., Silva, J.G.: Global Checkpointing for Distributed Programs. In:
Proceedings of Symposium on Reliable Distributed Systems. (1992) 155–162

11. Baldoni, R., Helary, J.M., Mostefaoui, A., Raynal, M.: A Communication Induced
Algorithm that Ensures the Rollback Dependency Trackability. In: Proceedings of
the 27th International Symposium on Fault-Tolerant Computing, Seattle. (1997)

12. Kim, K.H.: A Scheme for Coordinated Execution of Independently Designed Re-
coverable Distributed Processes. In: Proceedings of 16th IEEE Symposium on
Fault-Tolerant Computing. (1986) 130–135

13. Manivannan, D., Singhal, M.: A Low-overhead Recovery Technique using Quasi-
synchronous Checkpointing. In: Proceedings of the 16th IEEE International Con-
ference on Distributed Computing Systems, Hong Kong (1996) 100–107

14. Vaidya, N.: On Checkpoint Latency. In: Proceedings of the Pacific Rim Interna-
tional Symposium on Fault-Tolerant Systems. (1995)

15. Vaidya, N.: Staggered Consistent Checkpointing. IEEE IEEE Transactions on
Parallel and Distributed Systems 10 (1999) 694–702

16. Plank, J.: Efficient Checkpointing on MIMD Architectures. PhD thesis, Priceton
University (1993)

17. Lamport, L.: Time, Clocks and Ordering of Events in Distributed Systems. Com-
munications of the ACM. 21 (1978) 558–565



Self-stabilizing Publish/Subscribe Protocol
for P2P Networks�

Zhenyu Xu and Pradip K. Srimani

Department of Computer Science,
Clemson University, Clemson, SC 29634–0974

Abstract. In this paper, we develop a new self-stabilizing (fault toler-
ant) protocol for publish/subscribe scheme in a P2P network. We provide
a complexity analysis of the recovery (stabilization) time of the protocol
after arbitrary failures in the network. The protocol converges in at most
n2(Δ + 1)m + n3 − n time in the worst case where n, m, and Δ denote
respectively the number of nodes, edges, and the maximum degree of a
node in the system graph (network). We also propose a a space efficient
way to utilize this self-stabilizing publish/subscribe scheme, which allows
flexibility in implementations.

1 Introduction

Publish/Subscribe has become a popular method of distributing information
in the P2P networks. In a P2P system, the number of information sources is
usually large and hence the problem of how to obtain the desired information in
the system, is of great importance to the peers.

The publish/subscribe system involves two different kinds of processes: in-
formation producer and information consumer. The producer is responsible of
announcing to the network what information the producer introduces into the
system. The consumer, on the other hand, announces what information the con-
sumer is interested in, and retrieves this information accordingly.

When implementing the publish/subscribe scheme in a P2P network, bro-
kers play an important role. The brokers gather the announcements from the
information producers and the subscriptions from the information consumers.
With this knowledge, brokers match the information publisher and subscriber.
There are two types of brokers: centralized broker and distributed broker. In
the centralized approach, every node in the P2P network talks to the unique
broker in the system. In the distributed approach, there are multiple brokers
where each of them is responsible for a part of the subscriptions. Distributed
brokers are more desirable in real life as they are capable of adapting to the
network scaling and topology changes. But, this distributed approach needs to
handle the additional problem of sharing data between the brokers. Traditional
solutions include multicast tree and dynamic routing [1], [2].
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Various publish/subscribe protocols have been proposed in the literature.
Castro et al. presented a group based multicast protocol, Scribe [3], on top of
Pastry [4], which route the message based on numeric node ID of the peers. In
[5], Fox and Pallickara presented the Narada brokering system, where the bro-
kers route the message through the shortest path in a hierarchical server/peer
topology. Bayeux [2] is a multicast protocol presented by Zhuang et al. It orga-
nizes the information consumers into a multicast tree rooted at the information
provider, and route the message according to the suffix of the node ID.

In a recent paper [6], the authors introduced an interesting approach of im-
plementing publish/subscribe system. Their scheme is anonymous (nodes do not
have unique IDs), decentralized, modular, and self-organizing. Most importantly,
only local information is needed at each peer node to construct the organiza-
tion. The approach starts with building a logical directed acyclic graph (DAG),
which determine the priority of the peers. Only the privileged peers are allowed
to disseminate information. The algorithm has a built-in mechanism to assign
privileges to the peer nodes and is designed in such a way that the privileged
peer, once activated, will relinquish its privilege, by changing the logical DAG of
peers; thus, every node in the DAG will eventually get activated infinite times.
This liveness property associated with and starvation-freeness s the unique fea-
ture of this publish/subscribe scheme [6]. However, this approach requires the
system to be initialized to start with a logical DAG of the peers (by adjusting
local state variables at peer nodes). If the initial state of the system is not le-
gitimate (the peer nodes do not form a DAG), or there is temporary corruption
of the local state variables, then the algorithm is not guaranteed to satisfy the
properties of liveness and lack of starvation. In other words, the approach is not
self-stabilizing and not tolerant to error.

The publish/subscribe algorithm proposed in [6], is a localized (actions at
nodes are based on local knowledge [7]) distributed algorithm but it is not fault
tolerant. Self-stabilization is a relatively new paradigm for designing fault tol-
erant localized distributed algorithms for networks; it is an optimistic way of
looking at system fault tolerance and scalable coordination, because it provides
a built-in safeguard against transient failures that might corrupt the data in
a distributed system. The concept was introduced by Dijkstra in 1974 [8], and
Lamport [9] showed its relevance to fault tolerance in distributed systems in
1983; a good survey of early self-stabilizing algorithms can be found in [10] and
Herman’s bibliography [11] also provides a fairly comprehensive listing of most
papers in this field. Our purpose in this paper is to design a self-stabilizing
publish/subscribe protocol for P2P networks; the network can start from any
arbitrary state (no initialization or global reset is necessary for starting the pro-
tocol), the protocol can recover from an arbitrary data corruption at any number
of nodes and the protocol is a localized distributed algorithm (each node needs
to have knowledge only of the states of its immediate neighbors). We achieve
this objective by modifying the algorithm of [6] with the concept of unison from
[12]. An unison system is one where each node has a clock variable that is as-
signed value i + 1 iff the clock variables on all neighboring nodes has the value
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i or i + 1. By applying the unison concept, we show that the publish/subscribe
scheme becomes now self-stabilizing. We provide a detailed worst case time com-
plexity analysis of the bounded unison system (using a bounded clock variable).
It is to be noted that the unison system was proved to converge in finite time
([12]), but no complexity analysis was done in previous works. We also show
that it is possible to carry numerous topics with fixed resources while using the
publish/subscribe schemes in P2P networks. By providing a trade-off between
transfer time and system resources we can attain flexibility on publish/subscribe
scheme; we show that the resulting protocols are more efficient. This property
will prove useful when designing restricted systems. Comparing to Pastry [4] and
Scribe [3], our protocol further ensures every peer in the multicast group gets
the privilege to publish or subscribe data.

2 Logical DAG and the Edge Reversal Algorithm [6]

The original method proposed in [6] was based on the assumption that a logical
DAG is imposed on the system graph by the node variables. Each node has
two variables: an integer identifier lid and an integer variable val, where val ∈
{0, 1, 2}. The logical orientation of the edges in DAG is defined as follows:

Definition 1. The relation ≺ is defined as:

x ≺ y
def= y = (x + 1) mod 3

Definition 2. The logical orientation of the edges → is defined as:

q → p iff (valp ≺ valq) ∨ (valp = valq ∧ lidp < lidq)

Definition 3. A sink is defined as a node such that:

sink(p) iff ∀q ∈ N(p), q → p

For any value of the pair (val, lid) at node p and q, it is guaranteed that
either p → q or q → p is true. Only a sink node is privileged to move (take
actions). Once a sink node moves, it resigns the sink status by reversing the
logical orientation on all the edges incident at this node. This is done by the
algorithm shown in Figure 1.

R1: if sink(i) ∧ (∀j ∈ N(i), vali = valj)
then vali := (vali + 1) mod 3

R2: if sink(i) ∧ (∃j ∈ N(i), vali ≺ valj)
then vali := maxj∈N(i)(valj) and lidi := min{k ∈ 0..n|

∀j ∈ N(i), vali ≺ valj ⇒ k > lidj}

Fig. 1. Re-orientation Algorithm
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val=0 val=2

val=1

Fig. 2. Example of cycle in system

2.1 Initial State Dependency

It is shown in [6] that if the initial global system state denoted by the local
variables at each node such that the induced directed subgraph is acyclic, then
the algorithm 1 will maintain this acyclicity, i.e. every time a sink node moves
and the system enters into a new global system state, there will always be a sink
node in the new state, each node will become a sink node infinitely often and
the publish/subscribe protocol will properly function.

However, when error occurs in transactions, or the system starts from ille-
gitimate state, it is possible that the induced directed system graph by the local
variables at each node is not acyclic and hence there may not be any sink node;
this results in a situation that no node can move. An example is given in Figure 2

By the definition of≺, we know that 0 ≺ 1 ≺ 2 ≺ 0. In the above example, the
three nodes in the network have val values set at 0, 1, 2 respectively, thus forming a
logical directed cycle; no node is privileged to move, so the system stops function-
ing. The problem is inherent in the ≺ relation. Since every edge must have logical
orientation explicitly defined by the local variables, the relationship ≺ need be a
total order. To maintain a acyclic digraph, there will always exist a local minimum.
On the other hand, the protocol needs to re-orient an edge by changing the vari-
ables on one node only, i.e., for every possible x ≺ y, we should be able to find a z
such that y ≺ z. this will require infinite elements in the domain of the variable.

In order to use of the re-orientation, authors in [6] uses the lexicographical
ordering of two variables (val, lid) for comparison, where the variable val assumes
values of positive integers modulo 3. Such wrapping restricted the values to a
finite domain, but introduced the necessity of starting system from a fixed initial
state. (since the values are from a finite domain, to satisfy the re-orientation
requirement, there must be a subset of values V = {v1, v2, . . . vs}, such that
v1 ≺ v2 ≺ . . . ≺ vs ≺ v1; thus, if this is the configuration of the initial values on
the nodes in a cycle, there will be no sink in system).

3 New Method to Determine Priority

We propose a new method to determine the priority of the nodes. Such a method
should have following desired properties:



Self-stabilizing Publish/Subscribe Protocol for P2P Networks 133

– Liveness: At any given time, there is at least one node in the system privi-
leged to move.

– Starvation freeness: Each node in the system must be privileged infinitely
often.

– Self-stabilization: For any arbitrary initial state of the system, it converges
to a legitimate state in finite time.

3.1 Bounded Unison System

The bounded unison system is defined in [12] as follows:

Definition 4. v is a clock variable which can take the value 0 . . . Z − 1.
v is maintained on every node p. We denote it as vp.

Definition 5. A relation ≺ is defined as

x ≺ y iff (y − x) mod Z ≤ n

here n is the number of nodes in system.

Definition 6. A relation " is defined as

x " y iff not(y ≺ x) ∧ not(x ≺ y)

Definition 7. A system is a bounded unison system iff for every node p in
the system, p can only change its vp when privileged:
∀q ∈ N(p), vq = vp ∨ vq = vp + 1 mod Z. Here Z is a predetermined constant
greater than n2.

Definition 8. A legitimate state of a bounded unison system is defined as:

∀p, ∀q ∈ N(p), |vp − vq| ≤ 1 mod Z

A node gets the priority when it is privileged. We present the algorithm for
a node to resign its priority:

This algorithm will converge to legitimate states, and then moving from one
legitimate state to another legitimate state for infinite times. This can be proved
by showing the number of execution of R1 on each node is finite. The proof is
given in [12]. We will show the proof in the next section, and give a bound of
convergence. By the definition of legitimate state, every node gets privileged
infinitely often.

Algorithm3 is a replacementof algorithm1.Weconstruct thepublish/subscribe
algorithmbased on algorithm3 in exactly the sameway that algorithm1 is applied.

R1: if ∃j ∈ N(i), vj � vi ∧ vi > vj

then vi := 0
R2: if ∀j ∈ N(i), vi ≺ vj

then vi := vi + 1 mod Z

Fig. 3. Algorithm 3: Unison Re-orientation
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4 Analysis

4.1 Correctness

In this section, we present the proof of the algorithm’s satisfaction of pub-
lish/subscribe requirement.

Lemma 1. Algorithm 3 meets the liveness requirement.

Proof. The proof is given by [12]. For any 2 given nodes p and q on an edge
(p, q), the relation between vp and vq is one of the following three:

vp ≺ vqvq ≺ vpvp " vq

If there exists an edge (p, q), such that vp " vq, by the definition of " we know
that |vp − vq| > n. Thus vp �= vq, either p or q will be privileged by R1.

If there does not exist such an edge (p, q), vp " vq, assume there is no node
in the system gets privileged, i.e. ∀p, ∃q ∈ N(p) : vq ≺ vp. By the definition of
≺, we know that (vp − vq) mod Z ≤ n. Since we choose Z such that Z > n2, it
requires at least n + 1 nodes in the system. Contradiction. So there always be
at least one node that is privileged.

Lemma 2. Algorithm 3 meets the starvation-free requirement.

Proof. Authors in [12] proved that algorithm 3 will converge to legitimate states
in finite time. After that, the system will evolve within the legitimate states for
infinite long time. This implies that at least one of the nodes, say i, will get
privileged infinite times.

When system is in legitimate state, only R2 is executed on every node. So
each time R2 is executed, vi is increased by 1. Suppose from time t to t′, vi is
increased three times to v′i = vi + 3. For any node j ∈ N(i), vj ≤ vi + 1 at time
t, and v′j ≥ v′i − 1 at time t′. Therefore v′j ≥ vj + 1, node v is privileged at least
one time between t and t′. Since i is privileged infinite times, j is also privileged
infinite times.

Thus for a node that get privileged infinite times, every adjacent node is
privileged infinite times. Because the system is a connected graph, eventually
every node gets privileged infinite times.

Lemma 3. Rule R1 is executed at most (Δ + 1)m times, where Δ is the max
degree and m is the number of edges.

Proof. Assume R1 is executed on node i. Let vi(t) be the value of vi before the
move, and vi(t+1) be the value of vi after the move. There must be an adjacent
node j, such that vj(t) " vi(t), and vi(t) > vj(t).

Define following two invariants:

ψ1
def= |{(i, j) ∈ E|vj " vi ∧ vi > vj ∧ vj > 0}|

ψ1 is the number of edges (i, j) such that j’s existence makes i to execute R1,
and vj > 0.
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ψ2
def= |{(i, j) ∈ E|vj " vi ∧ vi > vj ∧ vj = 0}|

ψ2 is the number of edges (i, j) such that j’s existence makes i to execute R1,
and vj = 0.

For any such vj(t) > n, the execution of R1 on node i decreases ψ1 by 1, and
increases ψ2 by at most deg(i).

For any such j, n ≥ vj(t) > 0, the execution of R1 on node i decreases ψ1 by
at least 1, and does not change ψ2.

For any such j, vj(t) = 0, the execution of R1 on node i does not change ψ1,
by at least 1, and decreases ψ2 by 1.

And the execution of R2 won’t change both ψ1 and ψ2. Therefore ψ1 is
non-increasing, and ψ2 is increased only when ψ1 is decreased.

The upper bound of ψ1 is the number of edges m. The upper bound of
ψ2 is the same. For ψ1 to decrease to 0, ψ2 is increased at most Δm. When
R1 is executed, either or both ψ1 and ψ2 is decreased. So the total number of
executions of R1 is at most (Δ + 1)m.

Theorem 1. Algorithm 3 meets the self-stabilization requirement. The system
will converge to legitimate state within n2(Δ + 1)m + n3 − n moves. After that,
all moves will lead system to another legitimated state.

Proof. By Lemma 3, R1 is executed at most (Δ + 1)m times.
Consider two executions of R1 on the same node i. There may be R2’s executed
on i between these two executions of R1. Let vi(t) be the value of vi after the
first R1, vi(t + 1) be the value after next R2, and so on. Let vi(t + T ) be the
value of vi after the second R1,

If vj(t) > n, the next move on j will be R2. And i will not move until R2 has
been executed on j. If vj(t) ≤ n, j won’t move until after several R2’s, vi = vj

or vi = vj + 1. Since vi = vj + 1 comes after R2 on i, before that R2 we still
have vi = vj . So, after R1 is executed, only one node among i and j can move,
until vi = vj . And the number of moves before vi = vj is less than n + 1.

After vi = vj , i and j will keep |vi − vj | ≤ 1 by executing R2, until one of
them executes R1.

Therefore if R2 is continuously executed on i more than n + 1 times, ∀j ∈
N(i), |vi(t + n + 1)− vj(t + n + 1)| ≤ 1.

Repeat this step. If R2 is continuously executed on i more than s(n+1) times,
then for any node k within distance s from i, (d(k, i) < s), ∀l ∈ N(k), |vk(t +
n + 1)− vl(t + n + 1)| ≤ 1.

Because the maximum distance between i and any other node is at most n−1,
the maximum number of continuous executions of R2 on i is (n − 1)(n + 1) =
n2−1. If more than this number of R2’s are continuously executed, then system
will be in a legitimated state.

So there can be at most n2 − 1 R2’s between any two consequent R1’s on
any node i. Since R1 is executed totally at most (Δ + 1)m times, the converge
time will be (n2 − 1)(Δ + 1)m + (Δ + 1)m + (n2 − 1)n = n2(Δ + 1)m + n3 − n.
After this number of moves, system is guaranteed to be in legitimated state.
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5 Publish/Subscribe

5.1 Layered Publish/Subscribe

There are multiple topics or contents existing in the system. Node publishes or
subscribes the topic or content that it is interested in. Given a priority algorithm
as showed in previous sections, a nature way to organize the topics and contents
is to assign a virtual layer for each topics or contents [6].

They also showed topic based publish/subscribe and content based pub-
lish/subscribe can be established on this same priority adjustment method. So
on the next we only show the topic based publish/subscribe scheme. Content
based scheme is quite the same.

A virtual layer Ls is defined as a set of variables vs
i on all nodes i, and the

algorithms that adjusts vs
i . Two variables vs

i and vt
i are accessed and modified

separately on node i, therefore layers Ls and Lt is independent. The algorithm
4 now works on every layer:

R1-s: if ∃j ∈ N(i), vs
j � vs

i ∧ vs
i > vs

j

then vs
i := 0

R2-s: if ∀j ∈ N(i), vs
i ≺ vs

j

then vs
i := vs

i + 1 mod Z

Fig. 4. Algorithm 4: Unison Re-orientation on layer Ls

A node i gets priority on layer Ls if the legitimate invariant of bounded
unison is hold on vs

i , and vs
i is privileged to change.

For each topic, a new virtual layer is created on the graph. The node is
allowed to take action to publish or forward information s only when it gets
priority on layer s.

5.2 Actions Performed on Privileged Nodes

When sending or forwarding information s, node i send information data to all
j ∈ N(i). The data is then stored in the local buffer bufs

j of node j.

Definition 9. A buffer bufs
i is a local storage on node i. When information

data related to layer s is received at node i, it will be put into bufs
i

When node i gets priority on layer s, it reads bufs
i , discards redundant messages,

then forward the received messages, and send the new message created by node
i itself, if any. The whole process is described in algorithm 5.

A control layer (layer 0) is used to coordinate between the nodes. Layer 0
transfers the information that what topics are running on other layers. A node
has to get priority in layer 0 to initial a new layer. When node i gets priority and
wants to initial a new layer, it is guaranteed that all previous layer initialization
started on other nodes are already traversed to node i. Thus no conflicts will
occur.
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if priority(i, s)
then read local buffer bufs

i ;
send received information and new

information that are on topic s;
execute algorithm 4;

Fig. 5. Algorithm 5: publish/subscribe on topic s

st(t = 1 . . . k) are the topics on layer s
if priority(i, s)

then read local buffer bufs
i ;

send received information and new
information that are on topic st;

execute algorithm 4;

Fig. 6. Algorithm 6: publish/subscribe

5.3 Time Space Trade-Off

It can be easily showed that the total number of layers is L + 1 if there are L
topics in the system. And the memory storage for the variables on each node is
L. The network traffic consists of information messages and the value of all vs

i

that are used to maintain a bounded unison. For L layers, each layer will have
one set of vs

i to sent between nodes.
When the number of topic goes up, the number of layers increases in lineal

scale, so do the storage and the network traffic to maintain legitimate states.
Consider the nodes with limited resources (e.g. in sensor network), sometimes
a fixed storage is required. This means to keep the number of layers about the
same, while number of topics increases.

In order to handle this, we present the multi-access of the layer. Each layer
is assigned several topics, and the node can only publish or forward information
of those topics when is gets priority on the related layer.

In extreme condition, only 1 layer is needed. This will reduce the variable
storage, but it also has drawbacks. The most apparent drawback is the transfer
time. Layers work in parallel. Since there can be several nodes get priority on
different layers, the more the number of layers, the more nodes execute pub-
lish/subscribe scheme at the same time. Therefore, when number of layer de-
creases, the time that useful information traverse in the network increases. In
the extreme condition, it takes L times to the one-topic-per-layer scheme if all
L topics run in single layer.

As a result, we have two optimization metrics, optimal space and optimal
time. If t topics use 1 layer, then for L topics, comparing to the one-topic-per-
layer scheme, the space needed on each node is 1/t, and the time is t times.
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Fig. 7. Example Execution Sequence



Self-stabilizing Publish/Subscribe Protocol for P2P Networks 139

6 An Illustrative Example

Figure 7 shows the execution sequence of the publish/subscribe algorithm with
two virtual layers on a network of 6 nodes. For each layer Ls, (s = 1, 2), vs is
the variable used in algorithm. We omit the subscript when the context is clear.
e.g. The variable v1 labeled by node 2 will be v1

2 . The Unison Re-orientation
algorithm (as shown in Figure 4) executed on layer L1 consists of rules R1-1 and
R2-1, and the same algorithm executed on layer L2 consists of rules R1-2 and
R2-2.

The network topology is shown in (a), and the initial value of v1 and v2

of each node are shown in (b). Number of nodes is n = |V | = 6. We pick the
constant Z = 50 > 62. So x ≺ y iff (y − x) mod 50 ≤ 6.

In the initial state: node 2 is privileged by R2-1 and R2-2, node 4 is privileged
by R1-1, node 6 is privileged by R1-1 and R1-2. Assume the daemon picks node
6 to move. R1-1 and R1-2 are executed on node 6 and the v values are set to
0. This is shown in (c): node 1 is privileged by R1-2, node 2 is privileged by
R2-1 and R2-2, node 3 is privileged by R1-2, node 4 is privileged by R1-1,
node 5 is privileged by R1-1 and R1-2. Next, assume the daemon picks node 2
to move. After the move: node 1 is privileged by R1-2, node 2 is privileged by
R2-1, node 3 is privileged by R1-2, node 4 is privileged by R1-1, node 5 is
privileged by R1-1 and R1-2, as shown in (d). Next, assume the daemon picks
node 4 to move. After the move: node 1 is privileged by R1-2, node 2 is privileged
by R2-1, node 3 is privileged by R1-2, node 5 is privileged by R1-1 and R1-2,
as shown in (e). Next, assume the daemon picks following nodes in sequence:
node 5, 6, 4, 6, 2, 6, 2, 5, 4, 5. After these ten moves, layer 1 is in a global
legitimate state, but layer 2 is still not converged. The state after the moves is
illustrated in (f): node 1 is privileged by R1-2 and R2-1, node 3 is privileged
by R1-2, node 4 is privileged by R2-1, node 5 is privileged by R2-1 and R2-2.
In this state, node 1, 4, 5 get the priority to publish/subscribe on layer 1. i.e.
priority(1, 1) = priority(4, 1) = priority(5, 1) = true. Assume the daemon then
picks node 1, 5, 3, 6, 1, 4, 3, 5, 2. After these moves, both layers are converged,
as shown in (g). In this state, node 1, 4, 6 get the priority to publish/subscribe
on layer 1, and node 1, 2, 3 get the priority to publish/subscribe on layer 1.
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Abstract. If the variables used for a checkpointing algorithm have data faults,
the algorithm may fail. In this paper, a self-stabilizing checkpointing algorithm is
proposed for handling data faults in a ring network. The proposed algorithm can
deal with concurrent initiations of checkpointing and at most one data fault per
process. However, several processes may be faulty.

1 Introduction

A self-stabilizing distributed system [1],[4] ensures recovery from an illegitimate con-
figuration in a finite number of steps. A system may reach an illegitimate configuration
due to failure or a perturbation in the system.

In this paper, a self-stabilizing checkpointing and data fault correction protocols
for an unreliable distributed system on a ring network is proposed. Two types of faults,
data fault and process fault are considered. Data fault means that the data of a variable
is changed or corrupted due to some unreliability of the system. Process fault, means
that a process in the volatile storage is corrupted and the process can be recovered only
using its saved state in the non-volatile storage. If some variables, used by the check-
pointing algorithm, are corrupted, then some of the existing checkpointing algorithms
will not give a Consistent Global checkpointing State (CGS) [8] after rollback. This
paper describes self-correction of data-faults in checkpointing algorithms. At most one
data fault per process is assumed. That fault may occur any time during the computa-
tion. In the worst case, all processes can have data faults concurrently. The system is
in a legitimate configuration if there is no data fault and there exists a CGS for the
system. In this proposed work, in a finite number of steps, system reaches a legitimate
configuration from an illegitimate configuration.

In [2], a scalable, time-independent method to stabilize from k-fault configuration
on a tree topology is proposed. Ghosh et al. [3] proposed several ways of measuring
the performances of fault-containing self-stabilizing algorithms. Only one [5],[7] or
several [10],[11],[8] snapshot collection processes may be active at any point of time.
In [7] Vidya used a concept of logical checkpoint. In the recovery algorithm of [12], all
processes recover from their last existing checkpoints.
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2 The Underlying Model

The underlying network topology used in this paper is the same as in [8]. We consider a
distributed system consisting of n processes on a ring network. Processes are numbered
P0, P1, P2, · · ·, Pn−1 sequentially, in the clockwise direction. In case of checkpoint-
ing, process sends checkpointing request (ckpt req) along the anti-clockwise direction.
There is no common clock, shared memory or central coordinator. Message passing
is the only mode of communication between any pair of processes. Any process can
initiate checkpointing.

We assume that the checkpointing state (ckpt state) and checkpointing version
number (v no) might be corrupted or changed because of the unreliable system. If a
process fails when a data fault is present, the algorithm proposed in [8] will not give a
CGS after rollback. Each process maintains a counter, called v no. Whenever a pro-
cess takes a logical checkpoint [8], it increments its v no by one. Each process may
store at most two checkpoints (one permanent and one temporary) when checkpointing
algorithm is running. Each process maintains a list of unacknowledged messages in a
Message Logging Table (MLT ).

3 Predicates for Self-stabilization

Process, Pi maintains four variables previ, curri, state previ, and state curri in the
stable storage ∀ i ∈ {1, 2, · · ·, n}. The v no of the previous checkpoint and the v no of
the current checkpoint are stored in previ and curri respectively. The state variables
state previ and state curri denote the states of the previous and the latest checkpoints
for the process respectively.

Each process maintains two predicates. pred1 is associated with previ and curri

and pred2 is associated with state previ and state curri.

pred1: if (curri = previ + 1) then pred1 = True else pred1 = False end if
pred2: if (state previ = T ) then pred2 = False else pred2 = True end if

If process is in a legitimate state, both pred1 and pred2 should return values True. It
may be noted here that both the predicates returning values True does not guarantee
that there is no error. But such errors are handled later. If one of the predicates return
value False, the process is in an illegitimate state. We do not consider the case where
a single process may have more than one error.

In case where a data fault is detected, if possible, the process corrects itself; other-
wise it takes help from the other processes. A process will check its predicates whenever
it sends an application message, control message or an application message is passing
through the process with an undecided information.

4 Data Fault Detection and Correction

Process, Pi checks its predicates before sending an application message and logs the
message in the MLT along with its curri. If pred2 returns False, Pi corrects the fault
by putting state previ = P . Since at most one data fault in a process is assumed,
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pred1 returning False implies that the fault is either in curri or in previ. If previ is
faulty, then the correct value for previ would be curri − 1. If curri is faulty then the
correct value for curri would be previ + 1. In this situation Pi can not decide which
one would be correct. Pi sends an undecided (U ) tag with the application message.
When a process sends an application message with U tag, it sets the value of the flag
to T. If pred1 returns True, Pi sends the application message with tag D. Pi sends an
application message to the next process with previ, curri, state curri, k (receiver id),
i (sender id).

When Pj receives a message with U , if pred1 is True, then Pj corrects the fault of
sender (Pi) of this message. If pred1 is False, and if one of the following condition is
True, then Pj would not be able to correct the fault of Pi and its own. Now, Pj also
become undecided.

Condition 1: ((previ = prevj) ∧ (curri = currj) ∧ (state curri = state currj))
Condition 2: ((previ = prevj + 1) ∧ (curri = currj + 1) ∧ (state curri = T ) ∧

(state currj = P ))
Condition 3: ((prevj = previ + 1) ∧ (currj = curri + 1) ∧ (state currj = T ) ∧

(state curri = P ))

If none of the above three conditions is True, Pj corrects the fault. Given that pred1 is
False for Pi, curri �= previ+1. Let S1

i = (curri−1, curri), and S2
i = (previ, previ+

1). The correct value for the ordered pair (previ, curri) is either S1
i or S2

i . Simi-
larly, the correct value for the ordered pair (prevj , currj), for process Pj , is either
R1

j = (currj − 1, currj) or R2
j = (prevj , prevj + 1).

Let (prev′i, curr′i) ∈ Su
i and (prev′j , curr′j) ∈ Rv

j , where u, v ∈ {1, 2}. (Su
i , Rv

j )
is correct for some u, v ∈ {1, 2} if and only if one of Conditions 4, 5 or 6 is True.

Condition 4: ((prev′i = prev′j + 1) ∧ (curr′i = curr′j + 1) ∧ ¬(state curri =
state currj) ∧ (state curri = T ))

Condition 5: ((prev′j = prev′i + 1) ∧ (curr′j = curr′i + 1) ∧ ¬(state curri =
state currj) ∧ (state currj = T ))

Condition 6: ((prev′j = prev′i) ∧ (curr′j = curr′i) ∧ (state curri = state currj))

If Pj is undecided, it forwards the message to the next process, without changing any-
thing. If Pj is able to correct the fault it overwrites the corrected value in the appropriate
variable and changes the message tag from U to D and then forwards the message to
the next process.

When Pk receives a message with tag D, if it finds that pred1 = False then it can
correct the fault as follows:

Procedure 1

if ((currk = curri + 1(−1)) ∧ (state currk = T (P ))) then prevk ← currk − 1
if (state curri �= P (T )) then state curri ← P (T ) end if end if

if ((currk = curri) ∧ (state currk = P (T ))) then prevk ← currk − 1
if (state curri �= P (T )) then state curri ← P (T ) end if end if

if ((prevk = previ + 1(−1)) ∧ (state currk = T (P ))) then currk ← prevk + 1
if (state curri �= P (T )) then state curri ← P (T ) end if end if
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if ((prevk = previ) ∧ (state currk = P (T ))) then currk ← prevk + 1
if (state curri �= P (T )) then state curri ← P (T ) end if end if

After correcting the data fault, if currk < curri, Pk takes a temporary checkpoint
with v no = curri and then processes the message. If currk ≥ curri, Pk processes
the message without taking a checkpoint. After processing a message Pk sends an ac-
knowledgement message (ack msg) with state curri, curri, currk to Pi.

If Pj receives a message with tag D and finds that pred1 is False, then it corrects
the data fault (using Procedure 1 with k replaced by j) and forwards the message to the
next process without changing the body of the message.

On receiving an ack msg from Pk, process Pi first makes its correction if pred1 =
False. Then it compares currk with curri of the message logged in the MLT . If currk

is greater than or equal to the curri, then the curri is replaced by currk in the MLT .
The message will be deleted when the curri of the process becomes greater than the
curri of the message logged in MLT .

When Pk receives a message with tag U from Pi, if pred1 = False and one of
conditions 1, 2 or 3 is True then Pk also becomes undecided. Pk keeps the message for
future processing. It passes the message without message data to the next process with
i as the changed receiver id of the message.

In the worst case, a message with tag U returns back to Pi, its originator. If there
exists at least one i such that state curri = T , Pi will wait for ckpt req. After re-
ceiving ckpt req, Pi corrects the data fault. Otherwise, all processes have data faults
and they are unable to rectify these faults. Several processes may receive such mes-
sages with tag U returned to them. Another round of message passing is required to
elect one process among them (may be the one with minimum id). This can be done by
passing a message round the system by all the processes. So in total there will be O(n)
messages and O(n) time. Let Pm be the elected process. As it is impossible to decide
which one of prevm and currm is correct, Pm assumes that prevm is correct. currm is
replaced by prevm + 1. Pm sends a correction message (correction msg) with currm

and state currm to other processes.
On receiving correction msg, Pj takes the following actions:

Procedure 2

if (state currj = state currm) then currj ← currm and prevj ← currj − 1
else if ((state currm = T ) ∧ (state currj = P )) then currj ← currm − 1 and

prevj ← currj − 1
else currj ← currm + 1, prevj ← currj − 1 end if

end if

The correction msg is forwarded until it passes through all the processes and it returns
back to Pi. The message which was held up due to U tag be processed after recovery.

5 Checkpointing Algorithm

A process without a temporary checkpoint or any data fault may initiate checkpointing.
All control messages for the checkpointing are routed in the anti-clockwise direction.
The following checks are carried out during the initiation.



Self-stabilizing Checkpointing Algorithm in Ring Topology 145

if ((pred1 = True) ∧ (pred2 = True) ∧ (state curri = P )) then take checkpoint
set initiator flagi ← T , state curri ← T , previ ← curri, curri ← curri + 1,
v no ← curri, send(ckpt req, curri, i) end if
On receiving a ckpt req, if Pj finds pred1 = False, it corrects the fault and takes a
checkpoint as per the following procedure.
if (state currj = T ) then set currj ← curri and prevj ← currj − 1 end if
if (state currj = P ) then take checkpoint set currj ← curri, prevj ←
currj − 1, v no ← currj , initiator flagj ← F , state curri ← T end if
If both pred1 and pred2 are True then currj is compared with the curri of the mes-
sage. A new checkpoint is taken as follows.
if (currj �= curri) then take a checkpoint set currj ← curri, prevj ← currj − 1,
v no ← currj , initiator flagj ← F , state curri ← T end if
if (currj = curri) then do not take a checkpoint end if
As concurrent initiations of checkpointing are allowed, several ckpt req may be re-
ceived a by a process. The decision to forward, discard or generate a commit message
(commit msg) is taken by the following logic.
if ((initiator flagj = T ) ∧ (j < initiator id)) then discard the message end if
if ((initiator flagj = T ) ∧ (j = initiator id)) then discard the message and
send a commit msg to the next process. end if
if (j > initiator id) then forward the ckpt req to the next process. end if
On receiving a commit msg, Pj takes the following actions:

if (j �= i) then delete the checkpoint with v no = prevj , keeping prevj unchange
set state currj ← P , forward the commit msg to the next process.

end if

When the commit msg returns back to its creator, it stops the message propagation.
The checkpointing process is terminated and a CGS, one checkpoint per process with
same v no is established.

6 Correctness and Complexity Analysis

In case of a single data fault in the system, if self-correction is not possible then the next
process can correct the data fault. Only two message exchanges are required to correct
the fault. This takes O(1) time. Maximum number of messages are exchanged when
all processes have data faults, and no process can correct its fault. If messages with tag
U are returned to multiple processes then the election procedure takes O(n) messages
and hence O(n) time. But the probability of occurrence for such a case is very low.
Checkpointing algorithm requires two rounds of message exchanges in case of single
and multiple checkpointing initiations. For both single and concurrent checkpointing
initiations O(n) message exchanges are required. Proofs of the following results may
be found in [9].

Theorem 1. The system reaches a legitimate configuration from an illegitimate config-
uration in O(n) steps.
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Lemma 1. There will not be any missing message and any orphan message in
the system.

Lemma 2. If curri is corrected after a data fault, the set of checkpoints, which would
be obtained in case of a process fault, are consistent.

Theorem 2. In case of a process fault, the system can roll back to a consistent global
state.

Theorem 3. The set of checkpoints generated by the proposed algorithm is consistent.
The time complexity is O(n). The message complexity is O(n).

7 Conclusion

In this paper, a self-stabilizing checkpointing scheme in an unreliable distributed system
on a ring topology has been proposed. The worst case time and message complexities
are both O(n). Earlier concurrent checkpointing algorithms [10], [11] were designed
for general topologies. Their worst case message complexities are O(n3) and this worst
case occurs for the ring. Data fault assumed is in the variables used for checkpointing
and is due to unreliable system. Single data fault per process is considered; but, multiple
processes may have faults. An interesting extension is to consider multiple data faults
per process and/or a general topology.
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Abstract. Since the Web started in 1990, it has shown an exponential growth. It 
is essential that the Web's scalability and performance keep up with increased 
demand and expectations. The key to achieving these goals of scalability, ro-
bustness and responsiveness lies in the practices of caching and replication. 
Quorum Consensus is a popular protocol used for data replication. This paper 
describes an implementation of two special cases of Quorum Consensus proto-
col, namely Majority Voting and Read-One-Write-All (ROWA) and compares 
their performance. The performance evaluation was done using a number of 
systems located at PlanetLab member institutions at different locations over the 
world. This enabled simulation of real world Internet conditions. The study 
shows that the ROWA protocol performs better than the Majority Voting under 
no-site-failure conditions in terms of response time, communication overhead 
and growing number of users. 

1   Introduction 

Replication involves creating and maintaining duplicates of a database or file system on 
different computers, typically servers, to enhance services. Motivations for using repli-
cation are [7]: performance enhancement, increased availability and fault Tolerance. A 
common requirement for replicating data is replication transparency. The clients should 
not be aware of multiple physical copies but feel that operations are being performed on 
a single database. Mutual consistency as well as internal consistency [11] must be  
preserved. Replication of changing data requires protocols toensure that clients receive 
up-to-date data at all times. Network partitions and disconnected operations reduce data 
availability. To overcome this problem, users can maintain local copies of heavily used 
data. Replica failure and recovery also have to be taken into consideration. Many repli-
cation control methods have been proposed in the literature [1]. In this paper we focus 
on two special cases of Quorum Consensus protocol [3], Majority Voting and Read-
One-Write-All (ROWA) and compare their performance.  

In Quorum Consensus protocol each site is given a nonnegative weight. It assigns 
two integers to read and write operations on an item X, namely a read quorum (r), and 
a write quorum (w) that must satisfy the following conditions: 

r + w > S, w > S / 2, 
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where S is the total weight of all sites at which X resides. To execute a read operation, 
enough replicas must be read such that their total weight is more than or equal to r. To 
execute a write operation, enough replicas must be written to so that their total weight 
is greater than or equal to w. The two conditions for Quorum Consensus mentioned 
above ensure that there is a non-null intersection between every read quorum and 
every write quorum. There is always a subset of the servers, with total votes w, that 
consists of current replicas. Thus, any read quorum gathered is guaranteed to have a 
current copy of the object. 

The benefit of the quorum consensus approach is that it can permit the cost of ei-
ther reads or writes to be selectively reduced by appropriately defining the quorums. 
[1], [3]. In read-one-write-all (ROWA) protocol generally all replicas have equal 
weight. A read requires locking only one replica whereas a write needs all replicas. 
In majority protocol [2] both operations require a quorum, which constitutes a ma-
jority. 

2   Implementation 

The Client in Fig. 1 requests the front end to process a transaction. The front end 
provides replication transparency to the clients. It creates a new front end request 
handler (FERH) for each client transaction. The FERH implements the Quorum Pro-
tocol and is the transaction coordinator. It forms read/write quorums and sends these 
transaction requests to the replicated servers in the corresponding quorums over the 
Internet on behalf of the client. The responses from the servers are accepted by the 
FERH and forwarded to the client. Version numbers are used to know whether the 
server contains the current data or stale data. 

The server creates a new request handler for each request received from the FERH 
(transaction coordinator). The request handler coordinates the processing of the re-
quest coordinating with the other modules and sends the response to the FERH. It 
interacts with the lock manager to handle lock/release requests and deadlock manager 
to prevent the request from creating a deadlock. In case the transaction needs to be 
aborted, the request handler initiates a cleanup. The database module is contacted for 
reading and writing to replicated objects assuming appropriate locks have already 
been acquired. The lock manager maintains a lock table for handling locks and release 
requests from the request handler. It responds when the request is granted otherwise 
stalls it. It also initiates deadlock detection at the deadlock manager whenever a re-
quest is not granted. The deadlock manager maintains wait-for-graphs to detect dead-
lock. The deadlock detection algorithm is run periodically and whenever a lock re-
quest is not granted. The protocols have been tested using a number of systems lo-
cated at PlanetLab member institutions at different locations over the world. Planet-
Lab [10] is an open, global network test-bed for developing, deploying and accessing 
planetary-scale services.  

Performance Evaluation Parameters: The performance of Majority Voting protocol 
has been compared with that of the ROWA on the basis of Message Traffic Overhead, 
Response Time, Scalability and Availability. 
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Fig. 1. Overall design for the Quorum Consensus Protocol 

3    Experimental Setup 

The experiments were carried out on PlanetLab nodes located mostly in the United 
States of America and few others in India and Netherlands. The machines are con-
nected through the Internet and run Linux. A new instance of the database (files) was 
used at the replicated servers for each experiment and these were carried out during 
the day-time (in India) to maintain similar testing conditions. After completion of 
each experiment, log files containing the response times were copied to the home 
terminal using SCP [10] and then cleared for the next experiment. 

Each read/write client ran for four minutes generating approximately forty read 
transactions or ten write transactions depending on its type. The transactions from 
various clients were generated simultaneously. This random transaction generation was 
simulated using Poisson’s distribution. Average of these response times have been 
used for better confidence in the results. The read and write operations were not sym-
metric. Writes took more time than reads. Also write operations were given higher 
priority than reads so that clients always receive up-to-date data. The ratio of clients 
performing reads to writes was almost 1:3. All servers had equal weights of unity. 
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All experiments were conducted both for Majority Voting Quorum Consensus pro-
tocol and ROWA. The voting configurations [9] selected are as shown in the Table 1. 

To measure the performance enhancement, a variable number of servers were used 
with two clients, one sending read transactions and the other write transactions. The 
write request arrival rate was fixed and the read request arrival rate was varied. Meas-
urements were done with different number of servers to observe how it en-
hances/deteriorates the response time. To measure the effect of client-scalability, a 
fixed number of servers were run and the number of clients was increased linearly.  

Table 1. Voting configurations for the experiments 

 

 

4    Results 

Message Exchange Overhead: Following table summarizes the Message Exchange 
Overhead 

Read Transaction Write Transaction Voting  
Protocol RQ available WQ available None  WQ available Not available 

ROWA O(1) O(1) O(1) O(N) O(N) 
Majority O(1) O(1) O(r) O(w) O(r + w) 

WQ: write quorum; RQ: read quorum 

Response Time: The first experiment was performed with fixed write request arrival 
rate (  = 0.01) and by varying the read arrival rate (  = 6, 8, 10). The read/write trans-
actions ran for four minutes each simultaneously. The voting configuration was 
ROWA. 

As seen in Fig. 4, the response time for read requests increases with the increase in 
the number of servers. This is because reads have to wait for the simultaneously run-
ning write transactions. As the number of servers increases, the response time for 
write requests also increases (Fig. 5) due to the overhead involved in write transac-
tions. Writes are not compatible with other writes and read requests whereas reads are 
compatible with other read requests. 

Scalability: The second experiment tested the scalability of ROWA and Quorum 
protocols with four servers. The number of clients was varied from one to nine. The 
arrival rates for write request (  = 0.01) and read request (  = 1) were fixed. 

The read transaction response time increases slightly with the increase in the total 
number of clients as more clients compete for the same resources (Fig. 6). The re-
sponse for Majority Quorum Consensus Protocol (QC), on the other hand, increases 
by a huge margin as the read quorum size is (N+1)/2  instead of one (ROWA). Thus 
reads are much more expensive in the case of Majority Quorum Protocol. 

Voting Protocol Read Threshold (r) Write Threshold (w) 
ROWA 1 N 

Quorum (Majority) floor ((N+1) / 2) floor(N / 2) + 1 
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Though the write quorum size for the Majority Quorum Consensus protocol is 
smaller than that of ROWA, still because of the read transactions, Majority writes 
suffer as shown in Fig. 7. 

Availability: The Majority Voting technique can tolerate at most floor ((N + 1) / 2) 
failures, where N is the number of replicated servers, when the optimal voting con-
figuration is used. ROWA, on the other hand, does not tolerate any site failures or 
network partitions [8].  

5    Conclusion 

An actual implementation of the quorum consensus method and experimental evalua-
tion of its performance was carried out on the Plant Lab [10] test-bed and included 
globally distributed nodes, which are members of Planet Lab. These machines are 
connected through the Internet. This setup provided a realistic network substrate that 
experiences congestion, failures, and diverse link behaviors and also models realistic 
client workload. A performance comparison with ROWA protocol was done. The 
conclusions that can be drawn from the experiments carried out are: 



152 R. Bhadoria et al. 

• The message exchange overhead in ROWA is lesser than that in majority Voting. 
The message exchange overhead of Quorum Consensus (with Majority Voting) 
increases linearly with the number of replicas of a replicated object whereas the 
overhead of the ROWA method is almost invariant to the number of replicas. 

• ROWA performs better in terms of response time than Majority Voting.  
• Quorum Consensus with Majority Voting provides higher availability than 

ROWA, but the ROWA protocol can be adapted to ROWAA [8] (read-one-write-
all available) to improve upon this. 

• ROWA is more scalable than Majority Voting. 
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Abstract. This paper proposes a novel method for achieving a distributed self-
refined fault tolerance by dynamically partitioning the processes into smaller 
groups, which are mutually disjoint and collectively exhaustive of the whole 
system. The present model provides tolerance for frequent faults, makes the roll 
back recovery simple and less time consuming. An optimal checkpoint interval 
is found using a mathematical approximation and a spare process is made to 
capture all the in-transit messages when a process fails at its ends. Piggybacking 
the events of dependent processes on the outgoing messages is used for process 
grouping. A process with maximum information can scatter chunk values to the 
other dependent processes in its group. Each process constructs a checkpoint 
when the received chunk matches with its log.  

1   Introduction 

The recent trend in high performance computing (HPC) involves the use of clusters 
and Grids containing a huge number of processors where node and network failures 
are common. Processes may migrate to other nodes to increase the system 
performance and facilitate administration. Hence, studies concerning the fault 
tolerance and process migration at run time assumed significance in the recent past.  

In the synchronization of processors using messages, the system tends to be 
asynchronous with unpredictable message delays and receiver overrun. The 
coordinated checkpointing protocol requires synchronization of all processors before 
constructing a recovery line [5]. When one or more processors fail, all others rollback 
to the most recent checkpoint (without message logging) to arrive at a consistent state. 
This is economical for communication intensitive parallel programs running in small 
and medium sized environments [2], [5]. The algorithms used for dedicated parallel 
computing systems [1], [7] cannot be applied to large-scale systems with varied 
dynamic behaviors and non-FIFO properties as they complicate the system 
synchronization.  

In the uncoordinated checkpointing with message logging (UC-ML) only the failed 
processes participated in rollback under complicated recovery procedures, garbage 
collection and domino effect [3], [4] degrading the performance. The Uncoordinated 
Checkpointing with Event Logging (UC-EL) uses message envelopes containing 
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Sender/Receiver sequence numbers (SSN/RSN) and the list of dependent processes ids 
(PIDs) and are advantages under certain environments [4]. The idea of built-in 
checkpoints and condor library are introduced in Starfish [1] and Co-check MPI [7] 
respectively. Systems like MPICH-V [3] and MPICH-V2 [4] used fault tolerant MPI 
without re-computations and re-transmission of messages. But it was shown that they 
take more communication time for a full recovery in case of crashes. Elaborate 
descriptions of protocols related to checkpointing, message logging, and rollback 
recovery can be found in [6] and are used in fault tolerant MPI.  

In this paper, a novel method of dependent process grouping with event logging 
(DPG-EL) is presented for a large-scale fault tolerant system without synchronization 
overhead.  Using MPI library functions, processes in the cluster are partitioned into 
smaller groups based on their dependency. The fault tolerance is implemented at the 
application level and is transparent to the user. An optimal fail-free checkpoint 
interval is computed using a mathematical approximation for each process and a 
process with the maximum information (about others in the group) initiates a 
checkpoint at its end. In case of failures, a stand by spare process replaces the failed 
process to receive the in-transit messages.  

2   Optimal Checkpoint Interval 

Let the time interval between two successive checkpoints be TInt and the time required 
to save the process state information (PSI) in the stable storage before the occurrence 
of a failure be TStore. If TDelay is the delay incurred while transferring a checkpoint to a 
system with stable storage (SSS), TSys is the time taken by a system message from a 
process to reach SSS and TRecord is the time taken to save a checkpoint on a SSS; then 
TStore = TDelay + TSys + TRecord. Similar notations can be defined for TRetrive which is the 
time taken to retrieve the information from SSS. The occurrences of failures are 
assumed to follow a Poisson process with a failure rate η and mean time between 
failures (TMTBF) 1/η. The probability density function P(t) for the time interval t 
between failures is given by P(t) = ηe-ηt. It is assumed that the initial checkpoint was 
constructed before the process execution starts. A spare process is kept ready to 
receive the in-transit messages and deliver them in the same order to the failed 
process when it restarts. Hence, the total time lost (TLos) due to the occurrence of a 
failure, checkpointing and information logging is, 
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The best value of the checkpoint interval (TInt) is one that minimizes the value of TLos.  
So, differentiating (2) with respective to TInt, and equating to zero, 
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Retaining up to the 2nd degree terms in IntTeη and StoreTe η− (3) can be written as, 

StoreStoreRproducetriveIntRproducetriveInt TTTTTTTT ηηηηη 2)1)((2)(2 22
ReRe

222 −=−++++  (4) 

Substituting TMTBF = 1/η, Tlog = TRetrive + TRproduce and using TStore << TFmean in (4) 
solving it, the optimal fail free checkpoint interval is obtained as, 

LogMTBFStoreLogMTBFLogInt TTTTTTT −−++= )(22
 (5) 

It is clear from (5) that the optimal checkpoint interval is decided based on the current 
availability of the resources and fault frequency. 

3   Algorithms 

When a process P sends or receives a message, the sender (with Sender Process id: 
Spid), the receiver (with id: Rpid) and their PIDS are dependent on P during a 
communication event. This dependency is accumulated until a checkpoint is 
constructed. In the proposed model, there are N processes with α active and (N-α) 
spare processes. Each process P has a PSI, containing the set of PIDs with its current 
SSN and RSN and is used for the application-level process coordination. It captures all 
causal, non-causal dependent messages with the help of process grouping. Each PSI is 
updated with the occurrence of a communication event. Further, checkpointing and 
recovery procedures are used to overcome the process failures. 

3.1   Process Grouping with Event Logging 

1. When the sender process wants to send or receive any message, it increments 
SSN or RSN. 

2. Before a message is sent, the sender process will identify the receiver’s group 
using “Process Grouping algorithm” given below: 
i. While both Spid and Rpid are new for an existing group: The sender(s) 

will create a new group(s) with Spid and Rpid. When multiple concurrent 
senders to a single receiver is present, the multiple groups formed are to be 
merged. 

ii. While Spid and Rpid are in a group: The sender knows that the group 
already exists, and PSI is not required for piggybacking.  

iii. While Spid is new and Rpid already in a group: The sender is new to the 
group in existence and the group has to extend its communicator with Spid.  

iv. While Spid is old and Rpid is new for a group: The sender is from an 
already existing group but the receiver may or may not be in an existing 
group. Accordingly, the causal dependency may be extended or the non-
active receiver process may be included in an existing group. When there are 
multiple receivers, the different groups are to be merged and a common 
communicator is to be formed. 
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3. The sender process logs and piggybacks the PSI with the outgoing messages.  
4. With the receipt of a message, the receiver will update its dependent processes 

information. 

3.2   Checkpoint and Recovery Procedure 

The receiver process with the maximum PSI may initiate the checkpoint construction 
procedure anticipating a possible failure and the recovery procedure is self-activated 
with the failure of a process. This is done as follows:     

When ∀PID ∈ same Gpid, where (1 ≤ PID ≤ S) do { 

1. if TInt is reached and 
=

S

PID
SSN

1
= 

=

S

PID
RSN

1
, then using 

MPI_Scatter broadcast the chunk values to all the processes within its group;   
2. upon the receipt of chunk value, each process matches the received chunk 

data with that of its own chunk. When they match, a checkpoint is 
constructed at the end of its log. 

3. if a PID with  a  Log Record exists after a checkpoint, compare the check 
pointed data with the existing log record and if they match, create a 
temporary log for the set of sent and received messages with their PIDs. 
Delete the log record entries after checkpointing; 

4. if a temporary log exists, send it to  the stable memory; } 
5. When a process fails, assign a standby process to receive the messages meant 

for it. When it restarts, reload the log information pertaining to its execution 
from its most recent checkpoint with the Spare process supplying the 
messages received in the order of arrival. 

6. After the restart of a failed process, delete information pertaining to the spare 
process.  

4   Results 

The experimental results presented in this section are obtained using a cluster of PCs 
under Linux 2.4.18. The cluster test bed consists of sixteen 2.8 GHz Pentium IV 
processor based workstations connected to a 100 Mbps Ethernet. Each workstation 
has dual processors with 512 MB of main memory and 40 GB of stable storage. The 
experiment uses a MPI program for the Gauss-Jordan method of solving system of 
linear equations. The linear system is evenly distributed by rows among (N-1) 
processes from where the results are collected by the MPI_Allreduce function call to 
the rank 0 process. The MPI implementation uses the LAM/MPI version 7.0.4. Test 
programs were compiled using the GNU GCC version 2.96. Three different linear 
systems with 4,000, 8,000 and 16,000 processes are considered and the experimental 
results are shown in Fig 1.  

The test programs are executed in three modes: 

1. Non-checkpointing execution without failures (source code alone is 
executed) 

2. Checkpointing execution with failures (varying from 1 to 7) and  
3. Recovery and restart after a failure. 
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Fig. 1                                                             Fig. 2 

The execution time in mode 1 is used for comparing the results of mode-2 with 
processes grouping, logging and checkpoint procedures as in sections 3.1 and 3.2. The 
compression is made in two parts: First, the proposed DPG-EL is executed with the 
test program under Mode-1 with different problem sizes. The results are then 
compared with those of UC-EL and UC-ML methods of execution [3, 4]. The 
execution times remain nearly the same for all problem sizes when the number faults 
do not exceed 2, but vary drastically when the faults are 4 or more. (The study can go 
up to 7 faults as   TStore and TInt >> TStore) (Cf. Fig 1).  The variations are qualitatively 
similar for various problem sizes and hence they are not shown separately. Under UC-
EL and UC-ML, the execution times are found to be higher by about 16%, 16.8% and 
20.5% and 31.17%, 36.7% and 50.7% than those observed in the present DPG- EL 
model using 4000, 8000 and 16000 processes in action. This may be due to the 
following reasons:  

1. UC-ML suffers from total logging and garbage collection and this may 
degrade the performance with the increase in failures. 

2. In UC-EL, the dependent processes overheads are proportional to the number 
of failures due to the possible occurrences of domino effect. 

In DPG-EL, once the dependent groups are formed, processes do not incur 
synchronization overheads. The recovery of the failed process is very simple and less 
time consuming as compared to UC-ML and UC-EL because the groups formed are 
smaller and the log information are confined to these sub-groups. (Shown in Fig. 2). 
In addition, recovery times in UC-ML and UC-EL are higher by 52 % and 79.4% than 
that required for DPG-EL for a checkpoint size of 200 MB.  
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5   Conclusion 

For a self-refined distributed fault tolerance checkpointing, the dependent processes 
group formation is an advantageous design and it reduces the issues on scalability, 
garbage collection and huge restart overhead. It is well suited for FIFO and non-FIFO 
communication channels. It also captures all causal and non-causal dependencies 
without synchronization overhead. When messages are sent, the PSI’s are 
piggybacked with the computation-messages and the processes (with in a group) 
construct a forced checkpoint after the receipt of the chunk values. This avoids 
cascading rollback and reproduction of messages during recovery. Further, the chunk 
values are scattered by processes with the maximum information and so does not 
require any centralized co-coordinator process. The recovery of the failed process is 
simple and less time consuming. 
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Abstract. The impact of different routing and wavelength assignment algo-
rithms on the in-band crosstalk performance of a 4 x 4 mesh-torus and a 15-
node network has been studied. This paper considers both switch-induced 
crosstalk and the crosstalk induced by the multiplexers and demultiplexers. 
Fixed routing and fixed-alternate routing of connection requests have been con-
sidered. First-fit and random wavelength assignment algorithms have been em-
ployed. A crosstalk-aware wavelength assignment has also been considered. In-
band crosstalk leads to poor received signal quality at the destination node. This 
results in increased receiver bit error rate (BER). This implies that some of the 
routes will deliver a signal quality which is unsatisfactory. To ensure that no re-
sources are wasted on those connections which cannot deliver an unacceptable 
signal quality, this paper uses an event-driven simulation which incorporates 
on-line BER calculations. A call request is accepted only if the BER at the des-
tination node is less than 10-12; otherwise it is rejected. 

1   Introduction 

Establishing a connection in all-optical networks involves selecting a wavelength and 
a route for that connection with the constraint that the same wavelength is available 
on all fiber links of the route. This problem of routing a set of connections is referred 
to as routing and wavelength assignment (RWA) [1]. A connection established in the 
above manner is called a lightpath (LP). Two lightpaths cannot be assigned the same 
wavelength on any given link. In this work, lightpaths are established for dynamically 
arriving call requests. In this paper, wavelength conversion is not assumed at the net-
work nodes. 

Various algorithms have been proposed for route selection and wavelength selec-
tion. Fixed routing (FR), fixed-alternate routing (FAR) and adaptive routing (AR) are 
the approaches used for routing the connection requests [1]. In fixed routing, the Di-
jikstra’s algorithm is used to find the shortest path between a given source-destination 
pair. In fixed-alternate routing, a set of routes to be used between each source-
destination pair is statically computed [1]. The routes in this set may be edge-disjoint 
to ensure fault tolerance [2]. In this paper, the number of routes between each source-
destination pair is restricted to two. The routes are edge-disjoint. 
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Random wavelength assignment (RN), first-fit wavelength assignment (FF), least-
used wavelength assignment (LU) and most-used wavelength assignment (MU) algo-
rithms are used to select a free wavelength [1]. In this paper, FF, RN and a crosstalk-
aware wavelength assignment scheme (C-RN) are tested for crosstalk performance 
[3]. The RWA algorithms used in this paper are mentioned below   

• Fixed routing and first-fit wavelength assignment(FR/FF) 
• Fixed routing and random wavelength assignment(FR/RN) 
• Fixed-alternate routing and first-fit wavelength assignment(FAR/FF) 
• Fixed-alternate routing and random wavelength assignment(FAR/RN) 
• Fixed routing and crosstalk-aware wavelength assignment(FR/C-RN)  

A wavelength-routed all-optical network consists of wavelength-routing nodes 
(WRNs) interconnected by optical fibers. Wavelength-routing nodes (or optical cross-
connect nodes) employ erbium-doped fiber amplifiers (EDFAs) to compensate for the 
signal power loss introduced by the optical fibers. The wavelength-routing nodes and 
EDFAs may cause significant transmission impairments such as crosstalk generation 
in the optical space switches of the nodes, generation of amplified spontaneous emis-
sion (ASE) noise by EDFA while providing signal amplification, saturation and 
wavelength dependence of EDFA gains and crosstalk generation due to the De-
mux/Mux employed in the nodes arising due to the non-ideal separation of wave-
lengths by the demultiplexer [4], [5], [6].  This paper considers the in-band crosstalk 
introduced by wavelength-routing nodes and the ASE noise introduced by the ED-
FAs. In [4], the in-band crosstalk induced by the demux/mux was not considered. In 
[7], both switch-induced crosstalk and demux/mux intraband crosstalk were consid-
ered. In [4], [7] only FR/FF and FR/RN RWA algorithms were considered. This work 
studies the impact of the different RWA algorithms mentioned above on the crosstalk 
performance of WDM networks. In [3], only fixed routing of connection requests was 
considered but MU and LU wavelength assignment were considered.  

For each dynamically arriving call request, BER is calculated on candidate routes 
at an available free wavelength before setting up a call. If the BER is less than 10-12, a 
call is set up on a lightpath; otherwise it is blocked. An event-driven simulation with 
on-line BER computation is used to accomplish the above task. The rest of the paper 
is organized as follows. Section 2 presents the network architecture and also discusses 
the origination of in-band crosstalk in optical networks, Section 3 discusses the BER 
calculations, Section 4 presents the results and Section 5 concludes the paper.   

2   Network Architecture and Origination of In-Band Crosstalk 

A lightpath in the optical network consists of intermediate wavelength-routing nodes 
(WRNs) between the source and destination nodes, interconnected by fiber segments. 
Fig. 1 presents a block diagram for a possible realization of a WRN [4]. The constitu-
ent optical components in a given wavelength routing node include, in general, a 
crossconnect switch (XCS), a pair of optical power taps on either side of XCS at each 
port. The EDFA on the input side compensates (with small signal gain, Gin) for the 
signal attenuation along the input fiber and tap loss. The EDFA on the output side 
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(with small signal gain, Gout) compensates exactly for the losses of the XCS. The XCS 
is realized using an array of demultiplexers, optical wavelength-routing switches 
(WRS) and multiplexers. Further, multiplexers are realized using power combiners 
whereas demultiplexers are realized using a combination of power splitters and  
filters [5], [6].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Realization of a wavelength-routing node 

 
 
 
 

 

 
 
 
 

 

 

 

 

Fig. 2. Types of in-band crosstalk 
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The term crosstalk represents the effect of other signals on the given signal. Two 
forms of crosstalk can arise in WDM networks: in-band crosstalk and out-of-band 
crosstalk [3]. In-band crosstalk effect can be much more severe than out-of-band 
crosstalk [4]. In this paper, in-band crosstalk effect is considered while establishing 
the lightpath. In-band crosstalk is widely regarded as a major transmission impair-
ment which limits the BER performance of all-optical networks. Three types of in-
band crosstalk can arise in the network [3]. The first type of in-band crosstalk (switch-
induced crosstalk) occurs when two or more lightpaths of the same wavelength pass 
through an optical crossconnect. As an illustration in Fig. 2(a), two lightpaths, both 
carrying signal on the same wavelength i traverse the OXC: LP1 from input 1 to out-
put 1, LP2 from input 2 to output 2. Since they both enter the switching module of i, 
crosstalk occurs here. When the lightpaths exit the switching module, LP1 carries a 
small fraction of interference power from LP2 and vice versa. The interference power 
may generate a first order crosstalk or a higher order crosstalk [4]. 

The other two types of crosstalk occur due to the non-ideal channel isolation of the 
optical filters in the demultiplexers [5], [6]. This effect occurs on channels that are ad-
jacent to each other. The origination of second type of in-band crosstalk (demux/mux 
in-band crosstalk) is discussed below. In Fig. 2(b), LP1 on i traverses the OXC from 
input 1 to output 1. LP2 on j and LP3 on i enter input 2 together and LP2 will exit 
output 1. LP2 will have a leakage power from LP3. This leakage power will travel 
with LP2 via the switch module- j and will appear as a crosstalk for LP1. The third 
type of in-band crossalk which also arises due to non-ideal channel isolation of the 
optical filters has negligible effect and is not considered here. It is to be noted that the 
first and second types of in-band crosstalk effect arise from another signal which is of 
the same wavelength as the desired signal. The third type of in-band crosstalk origi-
nates from the same signal itself.  

In-band crosstalk of type 1 can also be further classified as first order and higher 
order crosstalk. The effect of higher order crosstalk is negligible. In this paper, only 
the first order switch induced in-band crosstalk is considered. In this work, optical 
space switches fabricated on Ti: LiNbO3 substrates have been considered [4], [8]. In 
this paper, multiple substrate point-to-point architecture, which is a nonblocking ar-
chitecture, has been considered [4].  

3   Computation of BER 

Consider a lightpath which is to be established on wavelength i between nodes 1 and 
N in a network.  The outbound powers of the signal  (psig ( k, i )), switch induced 
crosstalk (pxt ( k, i )) and ASE noise (pase ( k, i ))  on wavelength i, at the output of the 
kth intermediate node, can be expressed  using the following recursive relations [4]: 

psig(k, i) = psig(k-1, i)Lf(k-1, k)Gin(k, i)Ldm(k)Lsw(k)Lmx(k)Gout(k, i)Ltap
2 ,  (1) 

pxt(k, i) = pxt(k-1, i)Lf(k-1, k)Gin(k, i)Ldm(k)Lsw(k)Lmx(k)Gout(k, i)Ltap
2  + 

=

kJ

j 1
Xsw pin(j, k, i) Lsw(k)Lmx(k)Gout(k, i)Ltap , 

 

(2) 
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Pase(k, i) = pase(k-1, i)Lf(k-1, k)Gin(k, i)Ldm(k)Lsw(k)Lmx(k)Gout(k, i)Ltap
2 + 

2nsp[Gin(k, i)-1]h iB0 Ldm(k)Lsw(k)Lmx(k)Gout(k, i)Ltap + 2nsp[Gout(k, i)-
1]h iB0 Ltap . 

 

(3) 

The outbound power of the demux/mux in-band crosstalk (pmt (k, i)) on wave-
length i, at the output of the kth intermediate node, can be expressed using the follow-
ing recursive relation: 

Pmt(k, i) = pmt(k-1, i)Lf(k-1, k)Gin(k, i)Ldm(k)Lsw(k)Lmx(k)Gout(k, i)Ltap
2  + 

=

kQ

1q
Mp(q, k, i) Ldm(k) Lsw(k)Lmx(k)Gout(k, i)Ltap . 

 

(4) 

The loss and gain variables for various components used above are indicated in 
Fig. 1. Generally Lx (k) refers to the losses, Gx (k, i ) refers to EDFA gain at wave-
length i. Lf (k-1, k) refers to the loss of the fiber segment connecting the nodes k-1 
and k. Further pin (j, k, i)  is the power of the jth propagating signal at the switch 
shared by the desired signal (i.e., the switch,WRS- i, for wavelength i) at the kth node 
contributing to a first -order  switch induced in-band crosstalk with Jk being the total 
number of such crosstalk sources at the kth node. The terms Xsw refers to the switch 
crosstalk ratio and M (filter adjacent channel isolation) represents the fraction of 
power leaking from a wavelength to the adjacent wavelength due to non-ideal channel 
isolation of the optical filters in the demultiplexers. Further, p(q, k, i ) is the power of 
the  qth signal at i which contributes to demux/mux in-band crosstalk. Note that this 
power is referred at the input of the demultiplexer in the kth node. A fraction of p(q, k, 

i ), namely, M.p (q, k, i ),  leaks into an adjacent channel and will travel along with 
the adjacent channel and will appear as  demux/mux in-band crosstalk when this adja-
cent channel is multiplexed with the desired signal as shown in Fig.2(b). The number 
of such crosstalk sources is Qk. Bo is the optical bandwidth, h is Planck’s constant, nsp 

represents the spontaneous emission factor and i is the optical frequency at i. The 
receiver BER at the destination node can then be calculated as given below 

.
2

I
erfc

2

II
erfc25.0P

0

TH

1

TH1s
b

σ
+

σ
−

=  
 

(5) 

The noise variances are given below 

sxi
2 = polR

2bipsig
1(N, i)pxt

1(N, i) ,                                    (6) 

 

shi
2 = 2qR (bipsig

1(N, i) + pxt
1(N, i) + pmt

1(N, i))Be ,                             (7) 

 

smi
2 = polR

2bipsig
1(N, i)pmt

1(N, i) ,                                   (8) 
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sspi
2 = 4R 2bipsig

1(N, i)pase
1(N, i)Be/Bo ,                                                 (9) 

th
2 = thBe .                                                                                    (10) 

The signal component of the photocurrent is given by 

Isi = biR psig
1(N, i) .                                                 (11) 

In the above equations, psig
1(N, i), pxt

1(N,  i), pmt
1(N, i) and pase

1(N, i)  are the 
power referred at the receiver of the destination node. In equations (5) through (11), i 
in the subscripts represent the data bit (0 or 1) being received. Further bi= 0 or 1 for i 
= 0 or 1, respectively (assuming perfect laser extinction). Bo and Be denote the optical 
and electrical bandwidth respectively. pol is the polarization mismatch factor and is 
taken as ½ [4]. R  is the responsivity of the photodetector (1 A/W).  The spectral den-
sity of the thermal noise current in the optical receiver is represented by th. The 
threshold current is Is1/2 assuming perfect laser extinction (i.e., b0 = 0 and Is0 = 0).  

In this work, a 50% mark density of the crosstalk channels is assumed while calcu-
lating the beat noise components between signal and crosstalk [9]. The noise variance 

sxi
2 accounts for the beating between the signal and switch-induced crosstalk. The 

noise variance 
smi

2 arises due to the beating between the signal and demux/mux in-
band crosstalk, sspi

2 accounts for the beat between signal and ASE noise, shi
2 ac-

counts for the shot noise of the digital receiver and 
th

2 accounts for the thermal noise 
of the digital receiver.  Beat noise components between ASE and itself and crosstalk 
and itself are not dominant and can be neglected.   

4   Results and Discussions 

The impact of the various RWA algorithms on the crosstalk performance of a 15-node 
mesh network and on a 4 x 4 mesh-torus is presented. In obtaining these results, 
EDFA gain saturation is assumed to be absent. This implies that the EDFAs always 
deliver the desired small signal gain irrespective of the input signal powers and signal 
wavelengths. This is possible by providing an excess small signal gain at each ampli-
fier in the network which ensures that enough gain is supplied to a signal even though 
the amplifier may be saturated [4]. It is to be noted that the ASE noise is always pre-
sent and has been incorporated during BER calculation. Fig. 3 and Fig. 4 show the 15-
node mesh network and the 4 x 4 mesh-torus respectively.  

The internode distance is 100km in both of the networks. Each edge actually con-
sists of two standard single mode fibers carrying bi-directional traffic. Table 1 pre-
sents the values of the system parameters used in the event-driven simulation [3], [4], 
[7]. The number of wavelengths on each link is 8 and they are: [1546.99, 1547.80, 
1548.60, 1549.40, 1550.20, 1551.00, 1551.80 and 1552.60] nm. The signal power per 
channel is assumed to be 1mW at the transmitter. External modulation is supposed at 
the transmitters. The bit rate per channel is 2.5 Gbps. In this condition, the chirping of 
the transmitted signal and chromatic dispersion can be neglected.  
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Fig. 3. 15-node mesh network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. 4x4 mesh-torus 

The event-driven simulation module and the on-line BER-evaluation module used 
in this paper are similar to [4]. Calls arrive to the network following a Poisson proc-
ess. The source and destination of the incoming call is determined using a uniform 
distribution. The call durations are exponentially distributed with a mean of 1. For 
each dynamically arriving call request, the event-driven simulation module deter-
mines a route and a free wavelength using one of the five RWA algorithms discussed 
in Section 1. If no free wavelength is available, the call is blocked. If a free wave-
length is available, simulation is switched over to the on-line BER–evaluation mod-
ule. Before establishing a lightpath for this call, BER at the destination node of this 
connection is estimated. If the receiver BER associated with this connection request is 
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less than 10-12, a lightpath is established; otherwise, it is blocked.  An admitted call is 
terminated upon its completion. This process is repeated for a large number of calls. 
The blocking probability of the network is given by    

Blocking probability =
calls offered ofnumber  Total

calls blocked ofNumber 
. 

 

(12) 

Table 1.  System parameters and their values 

Fig. 5 shows the effect of demux/mux in-band crosstalk on the 15-node mesh network 
under various RWA algorithms. Fig. 6 shows the impact of various RWA algorithms on 
the demux/mux in-band crosstalk performance of a 4 x 4 mesh-Torus. Each data point on 
the graph is obtained by simulating one million calls. In obtaining these results, switch-
induced crosstalk is assumed to be eliminated (i.e., Xsw = 0). Filter adjacent channel isola-
tion (M) is assumed to be -25 dB. In these figures, I-FR/FF, I-FR/RN, I-FAR/FF and I-
FAR/RN refer to the FR/FF, FR/RN, FAR/FF and FAR/RN RWA algorithms in the ab-
sence of any crosstalk.  Further, MCT-FR/FF, MCT-FR/RN, MCT-FAR/FF and MCT-
FAR/RN refer to the FR/FF, FR/RN, FAR/FF and FAR/RN RWA algorithms in the pres-
ence of only demux/mux in-band crosstalk.  In the absence of any crosstalk I-FAR/FF 
shows the best performance, followed by I-FAR/RN, I-FR/FF and I-FR/RN. This implies 
that I-FAR/FF RWA algorithm blocks the least number of calls due to non-availability of 
free wavelengths. However in the presence of demux/mux in-band crosstalk, MCT-
FAR/RN shows the best performance, followed by MCT-FAR/FF, MCT-FR/RN and 
MCT-FR/FF. It may be noted that calls may be blocked due to non-availability unavail-

Parameters Values 
Multiplexer loss (Lmx) -7 dB 
Demultiplexer loss (Ldm) -9 dB 
Switch loss (Lsw) (NxN switch) (Ls = Lw = 1 dB) (2log2N)Ls+4Lw dB 
Tap loss (Ltap) -1 dB 
Fiber loss (Lf) -0.2 dB/km 
Desired input EDFA gain for 15 node mesh network 
and 4 x 4 mesh-torus (Gin) 

22 dB 

Desired output EDFA gain (Gout) for the 15-node 
mesh network   

26 dB at nodes 2, 
6, 9 &10. 
24 dB, elsewhere 

Desired output EDFA gain (Gout) for the 4 x 4 mesh- 
torus 

26 dB at all nodes 

Wavelength Spacing 100 GHz 
Optical Bandwidth ( B0) 36 GHz 
Electrical bandwidth ( Be)  2 GHz  
ASE factor (nsp) 1.5 

Bandwidth

currentthermalRMS
,

thη   5.3 x 10-24 
Hz

A
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ability of free wavelengths as well as due to the BER exceeding 10-12. At higher loads, the 
performances of MCT-FAR/RN and MCT-FAR/FF do not differ significantly. Similarly 
MCT-FR/RN and MCT-FR/FF perform almost alike at higher loads.  
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Fig. 5. Impact of the various routing and wavelength assignment algorithms  on the demux/mux 
in-band crosstalk performance of the 15-node mesh network (Xsw = 0 and M = -25 dB) 
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Fig. 6. Impact of the various routing and wavelength assignment (RWA) algorithms on the de-
mux/mux in-band crosstalk performance of the 4x4 mesh-torus (Xsw= 0 and M = -25 dB) 
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Fig. 7 and Fig. 8 show the worst case effect of switch-induced in-band crosstalk in 
the 15-node mesh network and in the 4 x 4 mesh-torus respectively. These results are 
called as worst case effect for the reason discussed below. In obtaining these results, it 
was assumed that a signal propagating through a switch module will always interfere 
with other co-propagating signals and will generate first order crosstalk. In reality, the 
interfering signals may or may not generate first order in-band crosstalk depending on 
the input ports and the output ports associated with them. In Fig. 7 and Fig. 8, SCT-
FR/FF, SCT-FR/RN, SCT-FAR/FF and SCT-FAR/RN refer to the FR/FF, FR/RN, 
FAR/FF and FAR/RN algorithms in the presence of only switch-induced crosstalk 
(i.e., M =0). Switch crosstalk ratio is (Xsw) is assumed to be -25 dB. Random wave-
length assignment performs better than the first-fit wavelength assignment irrespec-
tive of whether fixed routing or fixed-alternate routing is assumed.  

Fig. 9 presents the impact of the various RWA algorithms on the in-band crosstalk 
in 15-node mesh network. In obtaining these results, filter adjacent channel isolation 
(M) and switch crosstalk ratio (Xsw) are set to -30 dB each. Fig. 9 considers both 
switch-induced in-band crosstalk and the demux/mux in-band crosstalk. In Fig. 9, 
FR/C-RN refers to fixed routing and the crosstalk-aware wavelength assignment. In 
FR/C-RN, after finding a route connecting a given source-destination pair, the wave-
lengths that are free along this route are determined. As an illustration, if the free 
wavelength is k, then a search is initiated to find whether there are other ongoing sig-
nals at wavelength k through the crossconnects of the concerned route. The number 
of such signals is counted.  This gives the number of sources contributing switch-
induced crosstalk. Similarly, the number of sources contributing to demux/mux in-
band crosstalk at wavelength k is also found. The sum of both sources of crosstalk is 
then found. This procedure is repeated for all the available wavelengths. The wave-
length that has the least number of sources of crosstalk associated with it is finally se-
lected. In case of ties, selection is done randomly.  
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Fig. 7. Impact of the various routing and wavelength assignment algorithms on the switch-
induced in-band crosstalk performance of the 15-node mesh network (Xsw = -25 dB and M = 0) 
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Fig. 8. Impact of the various routing and wavelength assignment (RWA) algorithms on the 
switch-induced in-band crosstalk performance of the 4x4 mesh-torus (Xsw = -25 dB and M = 0) 
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Fig. 9. Impact of the various routing and wavelength assignment (RWA) algorithms on the in-
band crosstalk performance of the 15-node mesh network (Xsw= -30 dB and M =-3 0 dB) 

As can be seen from Fig. 9, FAR/RN exhibits the best performance. This can be 
explained as follows. Fixed-alternate routing admits more calls into the network than 
the fixed routing. Random wavelength assignment tends to geographically spread 
wavelengths across the network such that crosstalk effects are not likely to be severe. 
Thus the combination of fixed-alternate routing and random wavelength assignment 
improves the blocking performance in the network.  

5   Conclusions 

In this paper, the impact of various RWA algorithms on the in-band crosstalk per-
formance of wavelength-routed optical networks has been studied. It is observed that 
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fixed-alternate routing with random wavelength assignment offers the best perform-
ance. A crosstalk-aware wavelength assignment scheme is also considered for 
crosstalk performance. It is found that it also offers a good performance when com-
pared with fixed routing/ first fit wavelength assignment, fixed routing/random wave-
length assignment and fixed alternate routing and first fit wavelength assignment.   
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Abstract. This paper studies a series of reconfiguration processes corresponding 
to a series of traffic demand changes in a WDM (Wavelength Division 
Multiplexing) optical network. The proposed reconfiguration framework consists 
of two objective functions, a reconfiguration process, and a reconfiguration 
policy. The two objective functions are AHT (objective function of minimizing 
Average Hop distance of Traffic) and NLC (objective function of minimizing 
Number of Lightpath routing Changes). The reconfiguration process finds a set of 
non-dominated solutions using the PEAP (Pareto Evolutionary Algorithm 
adapting the Penalty method) that optimizes two objective functions by using the 
concept of Pareto optimality. The reconfiguration policy picks a solution from the 
set of non-dominated solutions using the MDA (Markov Decision Action). 
Experimental results show that our reconfiguration framework incorporating the 
PEAP and the MDA yields efficient performance in the entire series of 
reconfiguration processes. 

1   Introduction 

There are two topologies in a WDM (Wavelength Division Multiplexing) optical 
network, a physical topology and a virtual topology. The physical topology consists of 
optical fiber links and photonic nodes. The virtual topology consists of a set of 
lightpaths that carry optical signals from source nodes to destination nodes for given 
traffic demands. A process of rearranging the virtual topology to meet new traffic 
demands is called a reconfiguration process [1]. The reconfiguration process of a virtual 
topology is a major task when new traffic demands are given in a WDM optical 
network. When the previous traffic demands are changed over a period of time, the 
optimal reconfiguration of a virtual topology is required to minimize network cost and 
maximize network performance. Since the reconfiguration is not a one-time operation, it 
will be activated whenever the current traffic demands are changed. The consequent 
reconfiguration problem is how and when to perform a reconfiguration process. A 
reconfiguration policy should be considered to control the reconfiguration process to 
generate an optimal virtual topology in the long term. The reconfiguration process and 
the reconfiguration policy are challenging problems in WDM optical networks. We 
found three major limitations of the previous reconfiguration methods available in 
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literature. First, reconfiguration process methods proposed in [1] considers only a one-
time reconfiguration and not a series of future reconfigurations. We know that once a 
reconfiguration generates a new virtual topology, it will serve the traffic until the 
demand changes. Then the next reconfiguration is started over again. The virtual 
topology must serve well not only for the current traffic demand but also for the traffic 
changes in the future. The reconfiguration problem in WDM optical networks becomes 
a series of reconfigurations in the long term and not a one-time reconfiguration. Second, 
two methodologies are widely used in WDM optical networks: ILP (Integer Linear 
Programming) methodology used in [2-3] and heuristic methodology used in [4]. The 
ILP methodology considers only one objective at a time. Additionally, it is not possible 
for the ILP methodology to find an optimal solution in large-size problem domain. As 
the complexity and size of problem domain becomes higher and larger, a heuristic 
methodology has been employed to find a near optimal solution. However, the heuristic 
methodology can be stuck in a local optimal solution because a rule of thumb or 
incomplete knowledge based on experience is used to reduce the amount of search. 
Usually, the heuristic methodology will be accepted if it is able to find a good solution, 
although the solution is not the best. Third, reconfiguration techniques available in 
literature have showed good performance for a single objective goal. Reconfiguration 
techniques available in [1-4] have not addressed their performance in terms of both 
network performance and network cost. Therefore, a reconfiguration framework that 
considers both network performance and network cost simultaneously needs to be 
proposed and evaluated extensively to design an optimal, reconfigurable WDM  
optical network. 

2   Reconfiguration Framework 

The reconfiguration framework consists of two objective functions, AHT and NLC, 
which are described in Section 2.1, the PEAP in Section 2.2, and the MDA in Section 
2.3. The reconfiguration process based on the PEAP first finds a set of non-dominated 
solutions (i.e., virtual topologies) using the concept of evolutionary algorithms. Then 
the reconfiguration policy based on the MDA picks an optimal solution in the set of 
non-dominated solutions on the Pareto front. 

2.1   Problem Formulation 

In this section we formulate the reconfiguration process and policy problems 
mathematically. The formulation of reconfiguration process and policy problems in this 
paper is different from a general virtual topology design because it requires not only an 
objective goal that maximizes network performance but also an objective goal that 
minimizes the number of changes in a virtual topology. Therefore, the reconfiguration 
problem considered is a multi-objective problem that considers two objectives, AHT 
(objective function of minimizing Average Hop distance of Traffic) for network 
performance and NLC (objective function of minimizing Number of Lightpath routing 
Changes) for network cost. We assume that the reconfiguration of a virtual topology is 
only triggered by the change of given traffic demands. Additionally, all nodes are 
capable of grooming a bunch of low-speed traffic to the available capacity of a lightpath 
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as much as possible. All transceivers are freely tuned to any wavelengths.  We do not 
allow the de-multiplexing of OC-x traffic streams lower than its capacity when the 
traffic channel is routed through a network. Two or more OC-x traffic streams with the 
same source and destination nodes may pick a different route. In this section, two 
objective functions, AHT and NLC, are proposed along with the following parameters, 
variables, and fundamental constraints. We formulate the reconfiguration policy through 
a MDA model. The MDA model consists of five elements: 1) a set of decision epochs 
which are a period of time that triggers the action, 2) a set of states which indicates the 
status of the network, e.g., a performance parameter and a current traffic demand, 3) a 
set of actions, 4) a set of states and actions dependent on immediate rewards and costs, 
and 5) a set of state transition probabilities which relies on the action and the arrival 
traffic. The reward is the benefit gaining from doing a particular action while the cost is 
incurred from the action. Let Ri(H) be the reward function of H, where H is the 
performance variable in the ith reconfiguration round. Let Ci( ) be the cost function of , 
where  is the number of lightpath routing changes in the ith reconfiguration round. For 
each state transition with a performed action, we want to maximize the expected 
outcome O in every reconfiguration round where 

( )  (C(H)RE
y

1
limO

y

1i
ii

y
−=

=∞→
 (1) 

The reconfiguration policy tells us what action we should select in each state to 
maximize the expected outcome O. The average hop distance of traffic reflects the 
performance of grooming OC-x traffic streams. Low OC-x traffic streams are 
groomed at each edge node in the electrical domain before they are converted to a 
wavelength, which is carried through a lightpath. The higher the value of average hop 
distance of traffic streams, the more the network operation cost and propagation delay 
of traffic streams because of O-E-O (Optical-Electrical-Optical) conversion at 
intermediate nodes. The AHT is formulated as follows: 
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λ  (2) 

Λx
sd  represents demand of OC-x traffic streams between node s and node d. 

λ x
ijsd , represents number of OC-x traffic streams from node s to node d being routed 

on the lightpath ij, where x ∈ {1, 3, 12}. The objective goal of equation (2) minimizes 
the ratio of λ x

ijsd , to Λx
sd . Therefore, the AHT can minimize the average hop distance 

of traffic required for the transmission of total OC-x traffic streams between node s 
and node d. Lightpath routing changes require the additional network operation cost 
to meet new traffic demands. Lightpath routing changes are costly because of 
wavelength retuning. The disruption and overhead costs of lightpath routing changes 
occur during the operation of wavelength retuning. The NLC is formulated as follows: 
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σ k
wmnij ,,  denotes 1 if there exists a lightpath from node i to node j being routed 

through fiber link mn and the lightpath uses the kth path and wavelength w, 0 
otherwise, where k ∈ K and w ∈ W. Note that K denotes the number of alternative 
routing paths and W denotes the number of wavelengths that can be multiplexed on an 
optical fiber link. The objective goal of equation (3) minimizes the difference between 
the current lightpath routing σ k

wmnij ,, and the lightpath routing  k
wmnijσ ′

,, produced by a 

new traffic demand. Two objective functions, the AHT and the NLC, are in conflict. 
The average hop distance of traffic tends to increase when the number of lightpath 
routing changes is minimized. Thus, optimizing two competitive objective goals of 
the AHT and the NLC simultaneously belongs to the multi-objective optimization 
problem. In the multi-objective optimization problem, there is a set of optimal 
solutions that non-dominate each other within the set of solutions but dominate other 
solutions outside of the set of solutions for given multi-objective goals. The set of 
optimal solutions is known as the Pareto optimal set or the Pareto front. 

2.2   PEAP (Pareto Evolutionary Algorithm Adapting the Penalty Method) for 
Reconfiguration Process 

In this section we present the PEAP procedure that optimizes two competitive 
objective functions, AHT and NLC. The PEAP procedure exploits the concept of 
chromosomes and generates a set of non-dominated solutions known as a Pareto front. 
The PEAP simulates a process of natural evolution based on the concept of stochastic 
optimization. The PEAP is able to capture a Pareto optimal set in a single run. It is 
also less susceptible to the shape of the Pareto front, so it can search on a problem 
with the non-convex Pareto front. In the reconfiguration problem, a sequence of 
lightpath routing changes effects the disruption of traffic and network availability. 
The PEAP searches all possible sequences of lightpath routing changes because a 
different sequence of lightpath routing changes affects network performance and cost. 
In the PEAP, a virtual topology is represented by a chromosome. The chromosome is 
encoded by the string of N × (N - 1) elements, where N is the total number of nodes in 
a WDM optical network. The chromosome represents an intermediate virtual 
topology for given traffic demands. Each cell represents a transmitter unit of lightpath 
routing from source node i to destination node j where i ≠ j. The value of each cell 
represents a path index used for the lightpath routing. If the kth path index is equal to 
0, there is no lightpath on the transmitter. Otherwise, the lightpath traverses over the 
kth

 path. A set of K-shortest paths are exploited for a set of path indices. 
The PEAP optimizes multiple objective goals considered in a reconfiguration 

process. The PEAP consists of five procedures: (1) an initialization procedure of 
generating a set of initial chromosomes, (2) a procedure of evaluation, (3) a procedure 
of a fitness assignment, (4) a procedure of selection, and (5) a procedure of crossover 
and mutation. The initialization procedure generates a set of chromosomes. The 
chromosome is an encoded solution to the problem which is presented in a binary 
format. Each chromosome consists of genes which take on certain values. If the size 
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of chromosome population is too big, it will waste the time to evaluate the 
chromosomes. If it is too small, an optimal solution may not be found. The evaluation 
procedure measures how well the chromosome is survived in the generation of next 
population. The AHT and the NLC are used for an evaluation function and a fitness 
function in a reconfiguration process. The selection procedure allows good solutions 
to be kept and bad solutions to be eliminated while maintaining the same population 
size for the next generation. A tournament selection is used for the selection scheme. 
The tournament selection divides solutions into two sets and matches up each pair 
randomly. The winner, which has a better fitness value, is placed in the mating pool 
whose size is the same as that of initial population. A good fitness solution has a 
chance to win tournaments. The next procedure is the crossover and the mutation 
procedures. The crossover procedure yields a recombination of solutions by 
exchanging segments between pairs of chromosomes. Two chromosomes are 
randomly picked to change the segments. The value of m is randomly selected and m 
random crossover points are used. The mutation operation flips binary bits in the 
chromosome to keep a diversity of chromosomes in the population. To improve the 
performance of the PEAP, we exploit the Pareto-based fitness assignment strategy 
and the penalty method. In the next two subsections, the Pareto-based fitness 
assignment strategy and the penalty method are described in detail. 

Two objective functions (AHT and NLC) used for a reconfiguration process are 
incorporated in the fitness assignment phase to generate the Pareto front. We optimize 
the goals of the two objective functions using the concept of Pareto optimality. A 
Pareto optimal outcome cannot be improved without hurting at least one solution. 
Thus, some of non-dominated solutions need to be utilized to generate an optimal 
solution. A solution x in the PEAP is said to dominate a solution y if conditions I and 
II are true; (I) the solution x has the equal or less average hop distance of traffic than 
the solution y, and the solution x has the equal or lower number of lightpath routing 
changes than the solution y and (II) there exists one objective that the solution x is 
better than that of y. The term “better" means the less average hop distance of traffic 
or the lower number of lightpath routing changes. The PEAP exploits the Pareto-
based fitness assignment strategy to determine the reproduction probability of each 
chromosome. Additionally, it performs clustering to reduce the number of non-
dominated solutions while maintaining its characteristics might be necessary or even 
mandatory. A chromosome is referred to as a solution in this section. The flow of the 
PEAP procedure is as follows. 

1. Generate Pt for given fobj (AHT or NLC) where |Pt| ≤ D and D ≥ 1; 
2. Pt′ ← ∅; Pt′′ ← ∅; 
3. Find non-dominated solutions ω, where ω ∈ Pt; 
4. Pt′ ← Pt′ ∪ ω; 
5. Find dominated solutions, ω′ ∈ Pt′; Pt′ ← Pt′ - ω′; 
6. if | Pt′| > D′ then Pt′′ ← clustering(Pt′, N′); Pt′ ← Pt′′; fi 
7. Pt′′ ← ∅; Pt′′ ← Pt′; 
8. while (Pt′ ≠ ∅) do 
9. Select solution i ∈ Pt′; Pt′ ← Pt′ - i; 
10.  Si = (# of solutions dominated by i) / (D + 1); Fi = Si; 
11.  if  (traffic rerouting occurs) then Fi = Fi + τ⋅ Φ(Si), where Φ(Si) = (1+Si)

2; 
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12.  od 
13.  Pt′ ← Pt′′; 
14.  Pt′′ ← ∅; Pt′′ ← Pt; 
15.  while (Pt ≠ ∅) do 
16.  Select solution j ∈ Pt; Pt ← Pt - j; 
17.  Fj = ρ + Si, where {i ∈ Pt′ ∧ [(fobj (i) is better than fobj (j))} and ρ ≥ 1; 
18.  if  (traffic rerouting occurs) then Fj = Fj + τ⋅ Φ(Si), where Φ(Si) = (1+Si)

2; 
19.  od 
20.  Pt ← Pt′′; 
21.  Pt′′ ← ∅; Pt′′ = tournament selection procedure (Pt, Pt′); 
22.  if |Pt′′| ≥ D′ then stop; else execute crossover and mutation operations; go to 

Step 3; fi 

Steps 1 through 2 generate an initial dominated population Pt with size D and 
create an empty non-dominated population Pt′ with size D′. t denotes the tth 
population generation. After the dominated population Pt is generated for a given 
objective function fobj (AHT or NLC), non-dominated solutions ω are found from Pt. 
In Step 4, ω is copied into Pt′. Step 5 finds dominated solutions ω′ within Pt′ and 
deletes ω′, which are covered by any other members of Pt′. Hence, the PEAP 
maintains elites among non-dominated populations. This ensures that only non-
dominated solutions are kept in Pt′ and carried through the next generation by the 
elitist property. These allow some of the non-dominated solutions to be continually 
improved and to be an optimal solution. If the number of stored non-dominated 
solutions exceeds a given maximum D′, Step 6 prunes Pt′ by means of clustering. If 
the number of solutions in Pt′ is greater than or equal to D′, a clustering process based 
on the Euclidean distance is executed to reduce |Pt′| into D′. At the beginning of the 
clustering process, each solution itself is a cluster. Then two clusters with the 
minimum distance of cluster-center gravity are merged into a bigger cluster. The 
process of merging clusters is repeated until the number of clusters is reduced to D′. 
In the final phase of the clustering process, the number of elements in each cluster is 
reduced to one by keeping a solution which has the minimum average distance from 
other solutions in the cluster. Other solutions are deleted in the cluster. 

The fitness assignment procedure is a two-stage process. First, the fitness values of 
individuals in the non-dominated set Pt′ are evaluated in Steps 8 through 12. Second, 
the fitness values of individuals in the population Pt are evaluated in Steps 15 through 
19. Step 9 selects a solution i, which is a chromosome of non-dominated population 
Pt′. In Step 10, Si is a real value, which is proportional to the value of D plus 1, where 
Si ∈ [0, 1). Si is defined as the average value of solutions dominated by element i. Si 
becomes the fitness value for the solution i in Step 10. Step 11 calculates the total 
traffic flow on the virtual topology, which is a solution of Pt′. If traffic is blocked, a 
penalty method is applied. The same rule as in Step 11 is also applied to Step 18. 
More details of the penalty method are described later. Step 16 selects a solution j, 
which is a chromosome of non-dominated population Pt. For each solution j in Pt, its 
fitness value Fj is calculated by the summation of average value of Si and a gain 
weight factor ρ in Step 17. The gain weight factor ρ  is at least one in order to 
guarantee that solutions of Pt′ may have better fitness than solutions of Pt. Since two 
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objective functions (AHT and NLC) need to be minimized, the value of fitness should 
be minimized. It implies that small fitness values correspond to high reproduction 
probabilities. Therefore, the probability of selecting solutions of Pt′ is greater than that 
of selecting solutions of Pt. Step 21 executes the tournament selection procedure 
addressed in this section to eliminate bad solutions. In Step 22, if the maximum 
number of generations is reached, then the PEAP stops. Otherwise, crossover and 
mutation operators are applied and then the PEAP goes to Step 3. 

After generating virtual topology solutions (each individual of Pt and Pt′ represented 
by a chromosome), it is possible that the number of lightpaths required by a virtual 
topology is greater than the number of transmitters available in the physical topology. 
We take a heuristic process. The heuristic process eliminates a lightpath which occupies 
the lowest traffic. We repeat the heuristic process until the number of lightpaths required 
by the virtual topology is not greater than the number of available transmitters. The 
traffic in this process is the sum of OC-x traffic streams required between source and 
destination nodes. The traffic is routed by the following policies. The traffic is routed 
over the virtual topology using the K-shortest paths algorithm. The traffic routing starts 
from the highest streams (e.g., route OC-12 streams first, followed by OC-3 streams and 
OC-1 streams). Routing bifurcations are allowed in the same OC-x stream level - i.e. an 
OC-12 stream cannot be broken into four OC-3 streams and routed separately but two 
OC-12 streams with the same source and destination nodes may use different routes. As 
many traffic streams as possible are first routed over single-hop lightpaths. The 
remaining traffic is routed over multiple-hop lightpaths. If all OC-x traffic streams are 
routed over a single-hop, the average hop distance of traffic is equal to 1. It is the lowest 
bound of the average hop distance of traffic. Afterwards, we calculate the total traffic 
flows on the virtual topology. If the flows are blocked in the virtual topology by the 
distinct wavelength assignment constraint, a penalty is imposed on the virtual topology. 
As a result, we want to get some information out of infeasible solutions, by degrading 
their fitness rankings in relation to the degree of constraint violation. We set a penalty 
function Φ and its penalty coefficient τ to the chromosome if traffic streams are blocked 
(see steps 11 and 17 in the PEAP procedure). A number of alternatives exist for the 
penalty function Φ. Note that we consider a multi-objective minimization problem, so a 
smaller fitness value represents a better solution. Hence, Φ(Si) = (1+Si)

2 for violated 
constraint Si, which is exploited in Steps 11 and 17 of the PEAP. The penalty function 
will downgrade the fitness value of a chromosome and cause it to be eliminated in the 
next generation. Under certain conditions, the unconstrained solution converges to the 
constrained solution as the penalty coefficient τ approaches infinity. As a practical 
matter, τ values may be often sized separately for each type of constraint so that 
moderate violations of the constraints yield a penalty that is some significant percentage 
of a nominal operating cost. Finally, the PEAP generates a set of non-dominated 
solutions that is a non-blocking virtual topology. The non-dominated solutions belong to 
the Pareto front that optimizes multiple objective goals. A reconfiguration policy 
addressed in Section2.3 picks one of solutions in the Pareto front. 

2.3   MDA (Markov Decision Action) for Reconfiguration Policy 

We model a reconfiguration policy by the MDA (Markov Decision Action) to pick up 
one of the solutions in the Pareto front generated by the PEAP. The reconfiguration 
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policy is activated with the MDA. The goal of MDA is to find a reconfiguration 
policy which produces an optimal decision and an optimal action to be taken in each 
state. The MDA consists of a set of decision epochs, a set of states, a set of actions, a 
set of states and actions dependent on immediate rewards and costs, and a set of state 
transition probabilities. For decision epochs, the time between reconfiguration 
transitions is assumed discrete. We define a state as the tuple (AHToutcome, Ψ) for the 
MDA. Ψ denotes the virtual topology utilization for given traffic demands. AHToutcome 
denotes the outcome generated by the AHT. It implies that the MDA considers the 
virtual topology utilization and the outcome of the AHT. Definition 1 is used in the 
state description. 

Definition 1. Virtual topology utilization Ψ is defined by a ratio of the total amount 
of traffic routed over the network to the upper bound of virtual topology capacity. 

Remark: Let N be the number of optical nodes, T be the maximum number of 

transceivers, and C be the capacity of lightpaths. Ψ is ( ) ( )CTN  x
xsd

x
sd ××Λ× /

,
.  

In Definition 1, N, T, and C are constant or rarely changed unless the total network 
capacity is full. Ψ relies on traffic demand Λx

sd in Definition 1. Additionally, Ψ 

reflects the Pareto front curve because the reconfiguration process requires more 
number of light path routing changes to achieve the high virtual topology utilization. 

Λx
sd  is a parameter of the AHT described in equation (2). Therefore, the tuple 

(AHToutcome, Ψ) is defined as a state for the MDA. An action states how to perform the 
reconfiguration process by picking a solution x on the Pareto front. The Pareto front is 
the combination of AHT and NLC. We define the set of actions as the different 
positions of the Pareto front’s curve. For each position indicating an action, we select 
the solution x closest to the pseudo-weight factor calculated by equation (4). 
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The pseudo-weight factor in equation (4) is calculated for each solution on the 

Pareto front’s curve. f max
i and f min

i are the maximum outcome and the minimum 

outcome of objective function fi respectively. Obj is the number of objective 

functions. The outcome  ok
ij generated in moving from state i to state j for action k is 

defined as  ok
ij = rk

ij  - ck
ij . The reconfiguration policy determines what action should 

be selected in each state to maximize  ok
ij . rk

ij  and ck
ij are the immediate gaining 

reward and incurring cost respectively when state i is changed to state j using action 

k. The immediate gaining reward rk
ij is defined as rk

ij = cH k
ij +⋅ . H k

ij  is the average 

hop distance of traffic when state i is changed to state j using action k. β is a weight 

assigned to the reward and c is a control factor. The cost ck
ij is defined as  
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ck
ij = k

ij +⋅ . η k
ij denotes the average number of lightpath routing changes required 

in the reconfiguration process, where state i is changed to state j using action k. α is a 
weight assigned to the cost. γ  is a one-time cost required for activating the 
reconfiguration operations. Note that reward and cost functions can be any functions 
that reflect reconfiguration performance and cost factors such as delay, throughput, 

packet loss, load balance, management cost, and resource costs.  qk
i shown in 

equation (5) denotes the expected immediate outcome out of state i for action k. 

 pk
ij denotes the state transition probability from state i to state j for action k. Each 

outcome  ok
ij and transition probability  pk

ij has its specific value according to an 

action k. 
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As shown in equation (6), the next state vi(n+1) from the current state vi(n) is 

selected by utilizing three information,  pk
ij ,  ok

ij , and vi(n). vi(n) represents the 

expected total outcome in the nth transition starting from state i. 
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Equation (7) is generated by combining equations (5) and (6). We apply the 
iterative cycle of Howard [5] to find the optimal decision for the MDA. It consists of 
two operations; the value-determination operation and the policy-improvement 
operation. These two operations take turn to produce the optimal gain g that 
represents the optimal reconfiguration policy. The value-determination operation 

shown in equation (8) exploits  pk
ij and  ok

ij  to produce the value of g, which is the 

expected optimal outcome. 
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The policy-improvement operation shown in equation (9) finds the optimal action 
k. These two operations are executed iteratively until the new g′ is not better than the 
current g under the condition such that g′ – g > ε and ε is a threshold value. 
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3   Experiments 

The 14-node NSFNET network topology is used for the performance measurement of 
the proposed reconfiguration framework [6]. We assume that each node is working as 
both an access node and a routing node. The lightpath capacity is OC-192. The total 
number of wavelengths available over each link is 8. The number of transmitters and 
receivers per each node is assumed to 6, thus, there are at most six lightpaths initiated 
or terminated at each node. Transmitters and receivers are tunable to any 
wavelengths. We simulate the changes of traffic by swapping the data randomly 
within each traffic matrix to preserve the values of Ψ. We randomly swap all pairs of 
data, i.e. N(N-1)/2 pairs. The results are new traffic demand matrices used in the next 
round of the reconfiguration process. Thirty sets of traffic demand matrices are 
generated for reconfiguration processes. The parameters used in the PEAP are set as 
follows. The probability of crossover is 0.6. The probability of mutation is 0.01. The 
dominated population size is 50. The non-dominated population size is 50. In the 
reconfiguration policy, we reduce state spaces by considering the only traffic 
demands with the same value of Ψ. Therefore, we can ignore Ψ in the state tuple 
(AHToutcome, Ψ). Now the state is defined by the AHToutcome. Since the AHToutcome is a 
continuous value, we define a discrete state based on a range of the AHToutcome and 
use the median of an AHToutcome range to represent a state. 
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Fig. 1. Pareto front of the reconfiguration at
K = 2 

Fig. 2. Pareto front with Ψ = 0.355 and Ψ = 
0.184 

We first find the right number of generations for our experiments. We run the 
PEAP and plot the Pareto fronts generated in the PEAP as illustrated in Fig. 1. The 
horizontal axis is the number of lightpath routing changes in the virtual topology 
and the vertical axis is the average hop distance of traffic. We found that running 
the PEAP at 1200 generations is enough to generate the optimal Pareto front in our 
experiments. Fig. 1 shows that the more the number of generations, the better the 
results. However, the performance of results is saturated when the number of 
population generations is greater than 1200 generations. Additionally, we find the 
experimental K value in K-shortest paths. We run the PEAP at 1200 generations 
with the different values of K. Through the extensive experimentation, K = 2 is the 
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right choice. It generates better results than those of K = 3 and K = 4 because they 
have a large search space and better Pareto front is not found at K ≥ 3. As described 
earlier in this section, the states in the MDA rely on the value of Ψ in experiments. 
So, we need to compare the Pareto front in terms of the value of Ψ. In Fig. 1, the 
value of Ψ is 0.355 when the number of generations is 400. When the number of 
generations is 1200, the value of Ψ is 0.184. In Fig. 2, the value of the average hop-
distance of traffic seems worse when the value of Ψ is 0.355. The high value of Ψ 
implies that the high utilization of virtual topology is accomplished by maximizing 
the average hop-distance of traffic. The optimal policy is derived from the results 
generated through the following experimentation. The value of Ψ is set to 0.184, 
which is near optimal as shown in Fig. 2. Finally, the MDA process is applied to 
find the optimal decision. The efficiency of the MDA is compared with that of the 
IHO (Immediate Highest Outcome reconfiguration policy) over thirty sets of traffic 
demand matrices. The IHO selects the solution on the Pareto front that produces the 
immediate best outcome in the current state of virtual topology reconfiguration. We 
run 30 rounds of reconfigurations. The IHO selects the solution in the Pareto front 
that produces the immediate best outcome in the current state of virtual topology 
reconfiguration. 
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Fig. 3. Individual reconfiguration outcomes Fig. 4. Accumulated reconfiguration outcomes 

Fig. 3 shows a series of individual outcomes. Fig. 4 shows a series of accumulated 
outcomes in round 1 through round 30. Even if the IHO selects the best immediate 
outcome in the current state of virtual topology reconfiguration, it does not generate 
better overall outcomes than those of the MDA as shown in Fig. 4. In the long term, 
the MDA produces better outcomes than the IHO as shown in Fig. 4. In Fig. 4, the 
total accumulated outcome of the IHO is 425.787 and that of the MDA is 442.947. All 
of the experiments performed in this paper were carried out using 2.4 GHz Intel based 
processor. The worst case in the experiments took less than 30 minutes, which is 
acceptable for the reconfiguration process where traffic demands are changed in at 
least daily basis. The computational complexity of the PEAP is O(P2) where P is the 
population size. The routing computational complexity is O(N2) where N is the 
number of nodes in the network. Thus the overall complexity needed in each 
generation of the PEAP is O((PN)2). 
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4   Conclusion 

We propose a reconfiguration framework adapting multi-objective optimization in 
WDM optical networks. The reconfiguration problem in WDM optical networks 
requires a process of multi-objective optimization because the objective of 
reconfiguration considers the network performance and the network cost 
simultaneously. In this paper, the AHT is exploited for the measurement of network 
performance and the NLC is exploited for the measurement of network cost. The 
proposed reconfiguration framework includes a reconfiguration process and a 
reconfiguration policy. The reconfiguration process finds a set of non-dominated 
solutions using the PEAP that optimizes two objective functions by using the concept 
of Pareto optimal. The reconfiguration policy picks a solution from the set of non-
dominated solutions using the MDA. A case study based on experiments shows that 
the performance of the PEAP incorporating the MDA is better than that of the IHO in 
the entire series of reconfiguration processes. 
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Abstract. In this paper, we have suggested a novel way to implement the inter-
connections in the Multi-Mesh (MM) network using optical devices. In a tradi-
tional, copper-based approach, the long connections between processors in an 
interconnection network create major limitations with respect to the speed of 
communication. Our approach for inter-block communication in a MM uses op-
tical communication using Wavelength Division Multiplexing (WDM). Rather 
than passive stars or free-space optics, used to implement some recent optoelec-
tronic communication schemes for interconnection networks, this design uses 
wavelength routed fiber-based networks.  

1   Introduction 

Das, De and Sinha [2] proposed the Multi-Mesh (MM) interconnection network to-
pology recently. In this paper we have outlined a scheme for implementing such a 
network using optical technology. Traditionally, metal-based electrical connections 
have been used to realize links in interconnection networks. Copper-based connec-
tions to realize complex interconnections is problematic since long copper wires are 
needed for such topologies which accentuates problems like skin effect, crosstalk, 
interference, wave reflections and electrical noise due to current changes, and dielec-
tric imperfections [4]. Metal interconnects can cause severe pulse distortions and 
attenuation, clock skew and random propagation delays and suffer from the techno-
logical limitations of communication bandwidth constraints, low interconnect density, 
long network latencies, and high power requirements [4]. A major advantage of opti-
cal communication over electronic communication is that, for relatively shorter dis-
tances needed in multi-processor systems, the delay in optical communication is neg-
ligible, essentially independent of communication distance. Other advantages of opti-
cal interconnections over metal include inherent parallelism, higher bandwidth, ability 
to propagate in parallel channels without interference, low crosstalk, immunity from 
electromagnetic interference, lower signal and clock skew, lower power dissipation, 
potential for reconfigurable interconnects [1], [6].  

The Optical Multi-Mesh Hypercube (OMMH) proposed by Louri and Sung [5] and 
the Optical Transpose Interconnect System (OTIS) proposed by Marsden et al. [7] are 
two notable interconnection networks based on optical interconnects. Free-space 
optical interconnects exploiting air space for optical signal propagation [6] and pas-
sive stars have been used in such networks [5].   
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Optical technology has become dominant in large capacity backbone networks. It 
is technologically impossible to exploit the huge bandwidth of optical fiber using a 
single high-capacity channel.  Wavelength-division multiplexing (WDM) can be 
used to define multiple communication channels on optical networks to avoid this 
problem [8].  

In our approach WDM wavelength-routed networks have been used to realize the 
links between blocks. This is the first known approach to avoid the use of complex 
alignments needed in free-space optics or the high power [8] of passive star couplers. 
Due to lack of space, the issue of single faults in the fiber links has not been dis-
cussed. In our approach, faults may be handled easily with a small increase in the 
number of wavelengths needed. Our optical implementation for inter-block connec-
tions uses wavelength division multiplexing (WDM). The intra-block links can al-
ways be realized using VLSI technology since they require short links of constant 
length. For effective use in parallel processing, it is essential that the delay along each 
link is small and uniform (O (1)). Since the inter-block links used in the 3D MM are 
relatively long, optical links for such inter-block connections may be used to ensure a 
small uniform delay link.  

2   The Physical Topology for Communication in a Multi-mesh 

In our scheme we propose to use 2n routers - one for each of the 2n  blocks.  Figure 
1 shows part of the physical topology where a square represents a block (which is a 

nn×  mesh of processors) and an oval represents an optical router. All the routers 

are arranged in the form of a two-dimensional grid. To simplify the diagram we 
have not shown the connections from the boundary processors to the routers. As 
shown in Figure 1, the connection between the routers follows the architecture of a 
torus. For clarity, we have shown the wrap-around links only for the first and the 
last rows and columns. Each row and column has similar connections. In figure 1, 
we have used bi-directional links. To realize a bi-directional link x ↔ y, there will 
be two unidirectional fibers - one allowing communication from x to y and one for 
communication from y to x. We will now discuss the topology corresponding to the 
connections from the boundary processors on the top and the bottom edge of block 
Bij. The physical topology corresponding to the connections from the boundary 
processors on the right and the left edge of block Bij are similar. Router Rij will be 
connected to the corresponding block Bij carrying incoming and outgoing optical 
signals as follows:  

1) the router Rij will be connected to block Bij with one fiber carrying signals from 
processors P(i, j, 1, k) of block Bij for communication to processor P(k, j, n, i) of  
block Bkj, for all k, 1 ≤ k ≤ n, k ≠ j.  This may be easily achieved by using a multi-

plexer U
ijM , shown in Figure 2, with inputs from processors P(i, j, 1, k),  for all k, 

1 ≤ k ≤ n. The fiber carrying the output of multiplexer U
ijM is connected as an in-

put to router Rij as shown in Figure 2. 
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2) the router Rij will be connected to block Bij with one fiber carrying signals from 
processors P(i, j, n, k) of block Bij to processor P(k, j, 1, i) of  block Bkj, for all k, 1 

≤ k ≤ n, k ≠ j.  This may be easily achieved by using a multiplexer D
ijM  shown in 

figure 2 with inputs from processors P(i, j, n, k),  for all k, 1 ≤ k ≤ n. The fiber 

carrying the output of multiplexer D
ijM is connected an input to router Rij as 

shown in Figure 2.  

3) the router Rij will be connected to block Bij with one fiber carrying signals from 
processors P(k, j, n, i) of block Bkj to processor P(i, j, 1, k) of  block Bij, for all k, 

1 ≤ k ≤ n, k ≠ j.  This may be easily achieved by using a de-multiplexer U
ijD , 

shown in figure 2 with inputs from processors P(k, j, n, i) for all k, 1 ≤ k ≤ n. The 

fiber carrying the input to de-multiplexer U
ijD  is an output from the router Rij as 

shown in Figure 2.  

4) the router Rij will be connected to block Bij with one fiber carrying signals from 
processors P(k, j, 1, i) of block Bkj to processor P(i, j, n, k) of  block Bij, for all k, 1 

≤ k ≤ n, k ≠ j.  This may be easily achieved by using a de-multiplexer D
ijD , shown 

in figure 2 with inputs from processors P(k, j, n, i) for all k, 1 ≤ k ≤ n. The fiber 

carrying the input to the de-multiplexer D
ijD  is an output from router Rij as shown 

in Figure 2. 

Figure 3 shows the ith column of a Multi-Mesh and the four fiber links between the 
router Ri1 and block Bi1.  Here the links are shown only in one direction (top to bot-
tom). There is also a link in the opposite direction that was omitted for clarity. All the 
routers have similar connections to the corresponding blocks. 

  

Fig. 1. Connections between Routers in a Multi-Mesh network of order 4 
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Fig. 2. Connections of multiplexers and demultiplexers to block Bij 

 

Fig. 3. Connection between router Ri1 and block Bi1 

3   The Logical Topology for a Fault-Free Multi-mesh 

Our task is to define a logical topology on the physical topology such that, for every 
undirected inter-block link between x and y in a Multi-Mesh, there is a logical edge x 
→ y and a logical edge y → x in the logical topology. For economic reasons, we wish 
to use as few wavelengths as possible. Since we are implementing a known pattern of 
connections (as defined by the inter-block connection rules of the Multi-Mesh), the 
lightpaths are already defined. As mentioned earlier, our logical topology must have a 
directed edge for each inter-block connection. Here we only discuss the vertical inter-
block links since the case for the horizontal inter-block links is identical. In a Multi-
Mesh of order n, the boundary processors on the top (bottom) edge of block B(α, β), 
 are connected to the boundary processors on the bottom (top) edge of block B(∗, β). 
In other words, processors P(α, β, 1, y) (P(α, β, n, y)) are connected to processors P(y, 
β, n, α) (P(y, β, 1, α)), for all y, 1 ≤ y ≤ n, y ≠ α.     

In our problem, we need two lightpaths from each block Bα, β to block By, β - one 
for the connection from processors P(α, β, 1, y)  to P(y, β, n, α) and one for the con-
nection from processors P(α, β, n, y) to  P(α, β, 1, y), for all α, y, 1  α, y  n. We 
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now look at the ring consisting only of the routers in column number β and the fibers 
connecting them. We may view the Bα, β, as the end-node connected by the multi-
plexer collecting lightpaths from all processors on the top edge of the block to router 
Rα, β. The set of lightpaths from the processors on the top edge define a completely 
connected ring. Similarly the set of lightpaths from the processors on the bottom edge 
define another completely connected ring.  In summary our problem is to define com-
plete connectivity for a bidirectional ring using a set of wavelengths say {λ1, λ2, … 

λK}. This constitutes the set of connections from all the processors on the top edge of 
block in column β. Then we define an independent second set of complete connec-
tions by using another set of wavelengths {λK+1,  λK+2, … λ2K.}. This second set consti-
tutes the set of connections from all the processors on the bottom edge of block in 
column β.  

Due to the symmetric nature of our network, we have chosen a straight forward 
route for our lightpaths - we will use only the fibers connecting routers in column 
β when defining lightpaths from any block in column β to any other block in the same 
column. The algorithm for assigning routes and wavelengths to each lightpath to de-
fine complete connectivity for a bidirectional ring [8] may be used directly here. They 
also chose a shortest path routing and have described a recursive algorithm to deter-
mine the wavelengths needed for complete connectivity[8]. We will use their algo-
rithm which requires (n2 – 1)/8 wavelengths for complete connectivity, giving one 
lightpath between every pair of end-nodes. Since we need to define two lightpaths 
from each end-node to every other end-node, we will need K = (n2 – 1)/4 wave-
lengths. 

4   Logical Topology for a Fault-Tolerant Multi-mesh 

Due to lack of space, only an outline of our scheme for handling single faults can be 
described. We have used shared path protection schemes [7] and have shown how 
define the primary paths as well the backup paths for each of the inter-block connec-
tions and have calculated the cost of such a scheme. The primary paths are the same 
as those used in section 3. The backup paths are routed in such a way that any single 
faulty link is bypassed. It has been shown that an additional 2/n  wavelengths are 

sufficient to achieve shared path protection. 

5  Conclusions 

In this paper we have described a scheme for realizing the long inter-block connec-
tions of a Multi-Mesh using optical technology. The physical topology of a torus 
network is convenient for realizing these connections.  Since wavelength-routed 
WDM technology has been used, the large power requirements of passive start or the 
careful alignment needed in free space optics have been avoided. The scheme may be 
easily extended to handle single link faults in the optical part without changing the 
routing algorithm. 
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Abstract. There has been considerable research interest in the use of path 
protection techniques for the design of survivable WDM networks. In this 
paper, we present a distributed algorithm for dynamic lightpath allocation, 
using both dedicated and shared path protection. The objective is to minimize 
the amount of resources (wavelength-links) needed to accommodate the new 
connection. We have tested our algorithms on a number of well-known 
networks and compared their performance to “optimal” solutions generated by 
ILPs. Experimental results show that our algorithm generates solutions that are 
comparable to the optimal, but are significantly faster and more scalable than 
corresponding ILP formulations. 

1   Introduction 

Optical networks are attractive candidates for wide-area backbone networks, due to 
their large bandwidth, low attenuation and low error rates 1. A lightpath in an 
optical network is an end-to-end all-optical communication path from a source node 
to a destination node through a number of intermediate router nodes. Each lightpath 
must be assigned a route over the physical network, and a specific channel on each 
fibre it traverses. This is the standard routing and wavelength assignment (RWA) 
problem 2.  

A wavelength routed optical network may use either a static or a dynamic
lightpath allocation strategy 3, 4. A number of ILP formulations for solving the 
RWA in survivable WDM networks have been presented in 5, 6. A centralized 
heuristic to solve this problem is given in 7. The main problem with such 
centralized algorithms (both ILPs and heuristics) is that the central agent can 
quickly become a bottleneck.  In this paper, we present a distributed algorithm for 
dynamic lightpath allocation that allocates resources based only on local knowledge 
available at each node. We assume that there are no wavelength converters 
available. Therefore, a lightpath must be assigned the same channel on each fibre it 
traverses. We use path protection techniques 8-9, so that for each new connection a 
primary path and an edge-disjoint backup path are established during call setup. We 
demonstrate through simulations that our algorithms generate solutions comparable 
to the optimal solutions (generated by the ILP formulations) but are much faster and 
more scalable than exact ILP formulations. 
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2   Distributed Algorithm 

The centralized algorithms require a single control node that stores information 
about the state of the entire network and about every connection that is currently 
active in the network. In the distributed scheme, a node does not have global 
knowledge of the state of the entire network, but operates based only on “local” 
information. In this scheme a single node need not know the routes between all 
source destination pairs, only the routes from itself to other nodes. Similarly, it is 
not aware of all connections established over the network, or the state of all 
channels on each edge of the network. It only knows about those connections that 
are routed through it and those edges that are directly connected to it. Each node 
stores two main types of information: 

i) Network Information: This includes information about the (partial) network 
topology as well as information about the state of each channel on the outgoing 
links from the node. The link-state information includes two parameters 
CurrentState( λ ) and NumLP( λ ) for each channel λ , on each outgoing edge.  The 
network information stored at a given node ix consists of the following five fields: 

• its own node_id 
• node_ids of its adjacent nodes and the outgoing link to be used to  connect to these 

nodes. 
• a set of R edge-disjoint routes from itself to all other nodes in the network.   
• the set of available channels eΛ , on each outgoing edge e.

• CurrentState ( λ ) for each channel on each outgoing link 
• NumLP( λ ) for each channel on each outgoing link (required for shared protection 

only). 

CurrentState ( λ ) for a channel on a particular link refers to one of four possible 
states:  

a) CurrentState ( λ ) = 0 indicates that the channel is “free” and is available for 
allocation to  a new lightpath on the link.   

b) CurrentState ( λ ) = 1 indicates that the channel is “busy” and has already been 
allocated for a primary or backup lightpath, on that particular link.  

c) CurrentState ( λ ) = 2 indicates that the channel is being considered as a 
potential candidate for allocation to a new lightpath. There is a “lock” on the channel, 
as it is temporarily reserved for the new lightpath.  

d) CurrentState ( λ ) = 3 indicates that the channel was already assigned to one or 
more backup lightpaths and is now being considered as a potential candidate for 
allocation to another backup lightpath (needed only for shared path protection). 

The value of NumLP( λ ), on a particular link, specifies the number of lightpaths 
that have been assigned to channel λ , on that link. This information is only needed 
in shared path protection, where more than one lightpath may be assigned to the 
same channel on a given link. For dedicated protection, the value of NumLP( λ ) is 
always 0 (1) if CurrentState( λ ) is 0(1).  
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ii) Lightpath Information: Each node in the network stores certain information for 
each lightpath that is routed through it, whether it is already established or currently 
being setup.  For a lightpath from a source node s to a destination node d, each 
node ix in its physical route stores a record called LP-record corresponding to the 
lightpath. An LP-record consists of seven fields, containing the following 
information about the lightpath:  

• Source  
• Destination  
• ConnectionNumber  
• PhysicalRoute  
• LightpathType (primary or backup)  
• SelectedWavelength (-1 indicates a channel has not yet been assigned)  
• LockedChannels (set of channels iL that have been temporarily reserved on 

edge 1+→ ii xx  for this lightpath). 

2.1   Control Messages 

In the distributed approach, each node works independently of the other nodes. 
Inter-node communication and co-ordination takes place by passing control 
messages between nodes. Each control message is associated with a specific 
lightpath and always contains the corresponding LP-record. The messages are 
processed at each node in the physical route of the lightpath and appropriate actions 
are taken at each step.  There are four types of control messages, as explained 
below. 

InitiateConnectionSetup. In our scheme a request for a new connection is generated 
randomly at a given time, based on a predetermined probability p,( 0 < p < 1). When a 
connection request is generated, a source node s and a destination node d are also 
selected randomly and an InitiateConnectionSetup message is added to the message 
queue of the selected source node. This type of message is processed at the source 
node s.

The first step is to assign a unique identifier (Cnew) to the new request. The 
combination (s, Cnew) can be used to uniquely identify a connection in the entire 
network. Next we select the primary and backup routes. This is done by selecting 
the two routes which have the maximum number of free channels on their first 
edge, with the expectation that this will increase the chances of success. Of course, 
this is not necessarily the best choice, because other edges in the route may be 
congested and may not have available channels. But, since we are operating based 
on local information only, it is a “reasonable” choice. If two such routes can be 
found, the connection setup phase is started by putting locks on the available 
channels on the appropriate outgoing edge and creating a LP-record for each 
lightpath (primary and backup) at the source node. 

ForwardRequest. A ForwardRequest control message is used in the setup phase of 
a lightpath. It is responsible for forwarding the LP-record form a node ix  to the next 
node 1+ix , along the selected route. At each intermediate node ix , the message is 
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processed and the usable channels (if any) are reserved on the appropriate outgoing 
link, before forwarding the LP-record to the next node.

If ix  is the destination node, it means that there is at least one free channel along 
the entire route. In this case, ix , selects a wavelength 1−∈ iLλ  and sends a 
ResponseSignal message back to 1−ix , indicating that the request was successful. If 

ix  is an intermediate node, then 1−iL  gives the set of usable channels for the 
lightpath up to node ix  and eii LL Λ∩= −1  is the set of usable channels on link e,
where 1+→= ii xxe . If iL is empty, then there are currently no usable channels 
available on edge e and  a response signal, indicating failure, is sent back to node 

1−ix .
If emptyLi ≠ , then all channels iL∈λ  are “locked” on edge e, for the current 

lightpath, and the LP-record is updated so that LockedChannels = iL . The updated 
LP-record is then sent to node 1+ix  in a ForwardRequest control message.  

ResponseSignal. This type of message is sent from a destination node or an 
intermediate node, back towards the source node, along the physical route of a 
lightpath. It indicates the lightpath setup request failed (SelectedWavelength = -1) 
or a suitable channel sλ was found and has been assigned to the lightpath 
(SelectedWavelength ≠ -1). 

When a node ix  receives a ResponseSignal message indicating a suitable 
channel sλ has been found, it releases the locks on all wavelengths siL λλλ ≠∈ , , 
and updates the local LP-record and status information of the relevant channels on 
edge 1+→= ii xxe . Then the ResponseSignal message is sent to node 1−ix .

There is some additional processing that must be done, when a ResponseSignal
message is received at the source node s. We know that there are two lightpaths 
(primary and backup) for each connection request. When the source node receives a 
ResponseSignal for one lightpath, it checks if it has already received a response for 
the other lightpath. If not, it simply waits until both responses are available. Once 
responses for both lightpaths have been received, we need to consider three 
possibilities. 

Case 1 (Both responses indicate success): In this case, the connection request is 
successful and communication can begin along primary path. 

Case 2 (Both responses indicate failure):  In this case, the connection is blocked 
and the corresponding entry is deleted from the node. 

Case 3 (One indicates success, the other failure): In this case, the connection is 
also blocked, but the resources allocated to the successful lightpath must be 
reclaimed. A FreeResources control message, containing the appropriate LP-record, 
is sent to the next node ( 1x ) along the physical route

r
sdρ  of the successful 

lightpath. Finally, the local copy of the LP-record (for the successful lightpath) and 
the entry corresponding to the new connection request are both deleted from the 
source node. 

FreeResources. This type of message is used to reclaim resources allocated to a 
lightpath, when they are no longer needed. A FreeResources message is generated 
at the source node of a connection for one of two reasons: a) a successfully 
established connection needs to be terminated and the corresponding resources 
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reclaimed b) one of the lightpaths for a new connection request was successfully 
established, but the other failed (Case 3 above).  A node ix  processes a 
FreeResources message by releasing the channel sλ allocated to the lightpath on its 
outgoing link. If there are no other lightpaths assigned the same channel on edge 

1+→= ii xxe (i.e. NumLP( sλ )=0), then the current state of sλ is reset to 0. This 
will always be the case for dedicated path protection, or if the lightpath being 
considered is a primary lightpath. Finally, the FreeResources message is sent to the 
next node 1+ix on the physical route for the lightpath and the local copy of the LP-
record is deleted from the node.  

3   Experimental Results 

In this section, we compare the performance of our algorithm with “optimal” 
solutions generated from exact ILP formulations as well as a centralized heuristic, 
in terms of the number of successful connections. Table 1 shows the total number of 
connections that can be accommodated by the network for dedicated protection and 
shared protection.  

Table 1. Number of successful connections for dedicated and shared path protection 

We see that the performance of the centralized heuristic is typically within 10-
15% of the optimal. However, the drop in the number of connections with the 
distributed algorithm is more noticeable. The lower performance of the distributed 
algorithm is expected and can be attributed to the following reasons: 

i) In the centralized approach (this includes optimal ILP formulations as well as 
our centralized heuristic), connection requests are presented to the control node 
sequentially. But in the distributed approach several connections may be in the 
setup phase simultaneously. This means many channels could be “reserved” and 
cannot be considered, even if they are ultimately released. 

ii) In the centralized approach, each of the R pre-computed physical routes are 
considered for a lightpath from s to d, based on global knowledge of network 
conditions. If one route fails, the next one is considered. In the distributed approach, 
we pre-select a single route for a lightpath (based on incomplete local information 
only). This can reduce the chances of success. 

 
No. of successful connections established 

Dedicated Shared 
Number of 
wavelengths 
per fiber optimal centralized distributed optimal centralized distributed 

4 13 11 10 17 16 12 
8 29 28 23 43 38 36 

16 65 62 54 101 85 73 
32 142 125 112 222 199 146 
64 289 263 251 454 419 293 
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4   Conclusions 

In this paper we have presented a distributed algorithm for dynamic lightpath 
allocation in survivable WDM networks. In this scheme the network nodes can 
operate independently, based only on local information, and communicate by 
passing control messages. We have compared our algorithm with “optimal” 
solutions, generated from ILP formulations. The simulation results demonstrate that 
this is a viable and attractive option for practical networks.  
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Abstract. Optical splitting capability at some nodes is necessary to get
efficient multicast routing in the wavelength routed wavelength division
multiplexing (WDM) networks. There is a growing interest in efficiently
protecting multicast sessions against the failure of network components.
We propose algorithms for protecting multicast sessions against failure
of network components such as links and nodes in a network with sparse
splitting and sparse wavelength conversion. The effectiveness of the pro-
posed algorithms is verified through extensive simulation experiments.

1 Introduction

A WDM network employing wavelength routing consists of wavelength routing
nodes interconnected by point-to-point fiber links in an arbitrary topology [1]. A
lightpath is an optical path established between two nodes in a network, created
by the allocation of the same wavelength throughout the path. The requirement
that the same wavelength must be used on all the links along a selected path is
known as wavelength continuity constraint. A wavelength converter is an optical
device, which can convert an optical signal on one wavelength to another wave-
length. This type of node is called as a wavelength conversion node or simply
a WC-node. A wavelength-routed node may have the capability to tap small
amount of optical power from the wavelength channel, which is forwarded by
that node. This type of node is called as a Drop and Continue node or simply a
DaC-node.

To support multicasting in a WDM network, nodes in the network need to
have light (optical) splitting capability. A node with splitting capability can
forward an incoming message to more than one outgoing link. If a network
has splitting capability at all nodes, then it is referred to as a network with
full splitting capability. A network with a few split-capable nodes is called a
network with sparse splitting capability. The multicast capability at the routing
nodes can also be achieved by converting the optical signal into electronic form
and transmitting in optical form onto all the required outgoing links. Here, by
default nodes are considered to have wavelength conversion capability. However
in our work, we assume that the intermediate routers forward the optical signal
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without converting it into electronic form as mentioned in [2]. A node having
both splitting and wavelength conversion capabilities is called a Virtual Source
(VS). Such a node can transmit every incoming message to any number of output
links on any wavelength. The benefit of VS node is discussed in [3].

In this paper, we dealt with protecting multicast sessions from single link and
single node failure. We consider a network with nodes having different capabil-
ities. We assume the lightpaths with wavelength continuity constraint and the
wavelength conversion at some nodes may happen in the optical domain. The
restoration schemes to protect against network components failures are broadly
classified into reactive and proactive methods. In a reactive method, when an
existing link in primary multicast tree fails, a search is initiated to find a new
multicast tree, which does not use the failed links. In proactive method, backup
tree is identified and resources are reserved along the backup tree at the time of
establishing primary tree itself. By doing so, this method yields 100% restoration
guarantee.

In literature, some proactive methods to achieve fault-tolerant multicast rout-
ing are proposed for a network with full splitting and wavelength conversion
capabilities. They are link-disjoint, arc-disjoint, segment-based and path-based
protection schemes [4], [5]. Full splitting and full wavelength conversion at ev-
ery node is achieved by converting the optical signal into electronic form. The
signal arriving at the input fiber link of a node is electronically converted and
replicated to as many outgoing ports as required. One copy may be dropped at
the local node. The algorithms proposed in [4], [5], generate the multicast trees
by either pruned Prim’s heuristic or minimum cost-path heuristic. These two
heuristics assume splitting capability at all nodes. Hence to apply these heuris-
tics to a sparse splitting network, we may either modify the generated tree or
these heuristics need to verify the splitting capability at the nodes while gen-
erating the tree. However, these methods if applied to a network with sparse
splitting may require more resources as mentioned in [3]. Also, in the algorithms
proposed in [4], [5], the cost of links, which are used for backup path, are made
zero to implement backup multiplexing. Since, all nodes are not having split-
ting and wavelength conversion capabilities, these set of links may not be used.
To incorporate the backup multiplexing it is necessary to verify the splitting
and wavelength conversion capabilities. Hence, the algorithms proposed in [4],
[5] require modifications to extend them to a network with sparse splitting and
wavelength conversion capabilities.

The rest of the paper is organized as follows. Section 2 explains our proposed
algorithms for protecting multicast sessions in a network with sparse splitting
and sparse wavelength conversion. Section 3 explains performance study of our
algorithms. Section 4 concludes the paper.

2 Our Work

In this section we present our algorithms for generating backup trees for a network
with sparse splitting and wavelength conversion. We use the heuristic mentioned
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in [3] for generating primary multicast trees, which exploits various capabilities
of optical nodes. We assume that all nodes in the network have the DaC capa-
bility. Some nodes may have both splitting capability and wavelength conversion
capabilities (VS nodes), whereas some other nodes have only splitting capabil-
ity (Split nodes). Our algorithms LFLD (LinkFailureLinkDisjoint), LFAD (Link-
FailureArcDisjoint), LFSD (LinkFailureSegmentDisjoint), and LFPD (LinkFail-
urePathDisjoint) deal with providing protection to multicast sessions from link
failures. The definitions mentioned in [4], [5] for link, arc, segment, and path dis-
jointness are also used in our paper. However, our algorithms aim at a network
with sparse splitting and sparse wavelength conversion and made use of special ca-
pabilities such as DaC. Split, and VS. Due to space limitation, we present here only
LFPD algorithm. We also propose NFND (NodeFailureNodeDisjoint), NFPD
(NodeFailurePathDisjoint), and NFCB (NodeFailureCapabilityBased) algorithms
to provide protection from node failures. Due to space limitation we present here
only NFCB algorithm.

2.1 LFPD (LinkFailurePathDisjoint) Algorithm

In a sparse splitting network only a few nodes have split capability. These split
capable nodes need to be used to generate primary and backup paths. Hence
all special capable nodes are maintained as a list (setN), so that they can be
used while generating the tree. This list contains all split capable nodes and
also the DaC nodes that are not used for extending the tree. . The backup tree
is computed as the least cost path among the following paths: Shortest path
from source to destination and shortest paths from VS or DaC node of setN the
destination.

Algorithm

– Create a primary tree by considering VS and DaC nodes.
– Find all DaC and VS nodes in the primary tree and add them to setN .
– For every destination node of the session, repeat the following steps.
– Compute a link-disjoint shortest path between the source and destination

node.
– Compute a link-disjoint shortest path from every node in setN to destination

node.
– Select the least cost path from the above computed paths as backup path.
– Find all DaC nodes and VS nodes in the backup path and add them to setN .

2.2 NFCB (NodeFailureCapabilityBased) Algorithm

Here, the restoration of various nodes is done based on their capabilities. For
example, if a DaC node is failed then only one path needs to be restored. This
is because, a DaC node can be used to send optical signal to only one node. If a
Split node is failed, then all paths that are passing through the Split node need to
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be restored. The failure of a VS node is dealt in a similar way, but paths passing
through a VS node may use different wavelengths. Hence, different methods need
to be used to restore the sessions affected due to failure of nodes with different
capabilities. The algorithm that takes care of capabilities of the nodes while
restoring the sessions is given below:

Algorithm

– Compute a primary tree by considering VS and DaC nodes.
– Find all DaC and VS nodes in the primary tree and add them to setN .
– For every node in the primary tree repeat the following steps.
– Remove a node F from the tree.
– If the node F is a DaC node, use NFND algorithm to

• Compute shortest paths from upstream VS or source node of node F to
the immediate down stream node of node F .

• Compute a path from every node of setN to the immediate down stream
node of node F .

• Select the least cost path from the above computed paths as backup
path.

– If the node F is a VS node, then use NFND algorithm to
• Compute shortest path from upstream VS or source node of node F to

the every immediate down stream node of node F .
• Compute a path from every node of setN to the every immediate down

stream node of node F .
• Select the least cost path from the above computed paths as backup

path.
– Find all DaC and VS nodes in the backup path and add them to setN .

3 Performance Study

The performance of our link failure protection algorithms and node failure pro-
tection algorithms are studied and compared. Extensive simulation experiments
are conducted on NSFNET. The network is assumed to have nodes with splitting
and/or wavelength conversion capabilities distributed uniformly and randomly.
The sessions are generated randomly and with a single source and a set of desti-
nations. Every node is equally likely to be a destination for a session. A node may
be the source in more than one session. The destination set is also chosen ran-
domly according to the cardinality G which is a fraction of nodes in the network.
We studied the effect of group size (G) and number of Virtual Source (VS) nodes
on the number of wavelength channels for a session (bandwidth consumed). To
find the effect of G, we consider 30% of nodes as VS nodes.

Figure 1 depicts the number of wavelength channels required for various
group sizes (G) when both VS and DaC nodes are present in the network for
LFSD and LFPD algorithms. As the group size increases the difference in wave-
length channel requirement of LFSD and LFPD algorithms also increases.
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Fig. 1. G vs. W with VS and DaC
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Fig. 2. VS vs. W with no DaC
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Fig. 3. G vs. W with VS and DaC
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Fig. 4. VS vs. W with no DaC

Figure 2 depicts the number of wavelength channels required for varying
number of VS nodes for LFSD and LFPD algorithms. Since the results are taken
when no DaC nodes are present, it explains the effect of VS nodes on LFSD and
LFPD algorithms. As the number of VS nodes increases, number of wavelength
channels increases for LFSD algorithm whereas it decreases for LFPD algorithm.

Figure 3 depicts the number of wavelength channels required for various
group sizes (G) when both VS and DaC nodes are present in the network for
NFPD and NFCB algorithms. NFCB algorithm shows better performance than
that of NFPD algorithm.
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Figure 4 depicts the the number of wavelength channels required for varying
number of VS nodes for NFPD and NFCB algorithms. Since the results are taken
when no DaC nodes are present, it explains the effect of VS nodes on NFPD and
NFCB algorithms.As the number of VS nodes increases, number of wavelength
channels decreases for both NFPD and NFCB algorithms.

4 Conclusions

In this paper, we proposed algorithms for protecting multicast sessions in a
wavelength routed WDM network with sparse splitting and sparse wavelength
conversion. These algorithms differ from the earlier protection schemes mainly
in, considering split and wavelength conversion capabilities while constructing
the backup tree. Our multicast protection algorithms are suitable for both full
splitting and sparse splitting networks and deals with both link and node failures.
The performance of the proposed algorithms are compared based on the amount
of bandwidth (number of wavelength channels) consumed by the primary and
backup trees. The performance of LFPD to restore the sessions due to link
failure requires less resources than that of LFSD algorithm. The performance of
NFCB algorithm to restore the sessions failed due to node failure requires less
resources than that of NFCB algorithm. At present we are developing distributed
algorithms for generating fault tolerant multicast sessions.
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Abstract. Peer-to-peer systems and applications are distributed systems without 
any centralized control. P2P systems form the basis of several applications, 
such as file sharing systems and event notification services. P2P systems based 
on Distributed Hash Table (DHT) such as CAN, Chord, Pastry and Tapestry, 
use uniform hash functions to ensure load balance in the participant nodes. But 
their evenly distributed behaviour in the virtual space destroys the locality be-
tween participant nodes. The topology-based hierarchical overlay networks like 
Grapes and Jelly, exploit the physical distance information among the nodes to 
construct a two-layered hierarchy. This highly improves the locality property, 
but disturbs the concept of decentralization as the leaders in the top layer get 
accessed very frequently, becoming a performance bottleneck and resulting in a 
single point of failure. In this paper, we propose an enhanced m-way search tree 
(EMST) based P2P overlay infrastructure, called Oasis. It is shown through 
simulation that Oasis can achieve both the decentralization and locality proper-
ties along with high fault tolerance and a logarithmic data lookup time. 

1   Introduction 

In recent years, peer-to-peer (P2P) systems have been the burgeoning research topic 
in large distributed system. Gnutella [1] and Napster [2] are the most famous peer-to-
peer file-sharing systems, but both of them have the scalability problem. All such un-
structured networks lead to a common problem of wastage of network resources due 
to heavy flooding. Peer-to-peer networks like CAN [3], Chord [4], Pastry [5], Tapes-
try [6] try to address this problem by using Distributed Hash tables (DHT). Although 
each of them has different location and routing algorithms, all of them use consistent 
hashing (like SHA-1) to let the participant nodes and objects be distributed uniformly 
in their virtual space. These systems can achieve fairly good load balancing. But the 
primitive DHT schemes have a significant disadvantage that they may violate the lo-
cality property. During the locating and routing process, the next hop is chosen with-
out considering the physical topology information. This produces inefficient effects in 
response time and overall physical path length for lookup service. 

To address this problem, the DHT based approaches should take into consideration 
the relative physical position among the participant nodes. Grapes [7] provide a hier-
archical virtual network infrastructure using physical topology information. It has a 
two-layered overlay network, the upper layer called super-network, the lower layer 
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called sub-network; in both layers, any DHTs routing algorithm can be used. Each 
sub-network has a leader that forms a part of the super-network and manages the sub-
network. The physically nearby nodes construct the sub-network. Because the physi-
cal distance of any node pairs in sub-network is short, it reduces the lookup distance. 
Although Grapes can highly improve the locality property of DHTs, it disturbs the 
decentralization property. The leader has to route all the queries of its sub-network 
and has to manage super-network routing too, thus becoming a performance bottle-
neck. Suppose a query has to go to Canada from India, it may first go to Pakistan, 
then to Europe and then to Canada. This route may get even longer, leading to inflated 
look-up latency. So a multi-hop route in the super-network is a great disadvantage. 

We propose a scheme- Oasis that solves the problem of decentralization by distrib-
uting the network traffic between multiple hosts. Every node is a cluster of hosts di-
viding the traffic load among them and saving the network from a single point of fail-
ure. Oasis also increases the fault tolerance of the system by sending multiple copies 
of a query through different paths so as to increase the probability of a query reaching 
its destination. Although the total load on the network gets increased, this does not af-
fect performance because the load is already extensively divided (Section 2.3). Fur-
ther, the nodes in the super-network are directly connected to each other i.e. the query 
would go directly from India to Canada, reducing the look up latency drastically. 

In this paper we discuss the design of Oasis, a self organizing hierarchical network. 
The rest of this paper is organized as follows. Section 2 describes the design of Oasis. 
Section 3 presents the Oasis protocol. Section 4 gives the simulation results and com-
parison. Finally Section 5 gives the conclusion and directions for future work. 

2   The Design of Oasis 

In this section we describe the basic structure of our system. The overlay has two 
structures: the nodes having physical proximity constitute a sub-network. Each sub-
network is an Enhanced m-way search tree (EMST, explained in Section 2.1). The 
super-network is composed of the leaders of all the sub-networks. Both these net-
works can use any of the standard hashing schemes (such as SHA-1) for locating and 
routing purposes. Fig. 1 shows the super-network where each node is the root node of 
the sub-network below it and is connected to all other nodes in the super-network so 
as to get fast transmission over large distances. Again, every node is a cluster of hosts. 

While a host inserts an object into the system, it sends a request to its sub-network 
leader. The leader first inserts the object into its own sub-network by the hashed key  
 

 

Fig. 1. The structure of Oasis 
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of that object. After that, it finds the associated leader in the super-network’s virtual 
space by its key. Finally, that leader inserts the object into the corresponding position 
in its sub-network, completing the inserting process of that object.  

While a host looks for an object, it first searches the sub-network by the key of that 
object. If it fails, it searches the super-network through its leader. After the leader 
finds the object outside its sub-network, it caches the object in its own sub-network. 
Consequently, a host will find the object in its sub-network with high probability.  

2.1   The Fundamental Hierarchy: The Enhanced m–Way Search Tree (EMST) 

The basic structure of our network is an EMST. It is basically an m-way search tree 
with a restriction that a node can have children only after it has m-1 elements. In other 
words, a branch of the tree will not grow in height until the capacity of the branch 
with the given height is fully utilized. 

To insert in an EMST at first, we search for the element to be inserted. If the clus-
ter at which the search terminates already has m-1 hosts then the new host is inserted 
as a child. For deletion we replace the leaving host by the host with the largest key in 
its left sub-tree or by the host with smallest key in its right sub-tree. Sometimes there 
might be a need of a rearrangement at the leaf level so as to complete the deletion 
process (Fig. 2a and Fig. 2b). If we delete the element with key 95, it is replaced by 
the largest element in its left sub-tree (70). Now the cluster which had 70 as an ele-
ment will have to do a rearrangement to get 61 at its position. Also, for the purpose of 
intra-cluster management like insertion and deletion we have a leader in each cluster. 

 

          Fig. 2a. The initial state of the tree  Fig. 2b. The rearrangement after the deletion 

2.2   The Parent Child Relationship 

All the children of a certain node are divided equally among the hosts of that node. 
”Divided” here is in terms of queries and maintenance. As shown in the figure 3, 
the first host of the parent node maintains the first hosts of its children nodes, the 
second maintains the second hosts and so on. Every host in the network maintains 
an address book with the information of (1) the sub-network leader, (2) brothers 
(and their children), (3) children (and their helpers), (4) parent and (5) helpers (Sec-
tion 2.3). Information here refers to {IP, Key (and query traffic limit for children 
and their helpers)}. 
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Fig. 3. Division of Children 

2.3   Total Decentralization 

At first, the load gets divided due to the presence of multiple hosts in a given node. 
Now there is a possibility that even after this division the host is unable to handle the 
query load. In that case a host from a leaf node (that would be free most of the time) 
is requested to share the load (the helper host). At the same time, the loaded host in-
forms its parent that if the network traffic crosses a certain limit then the extra queries 
should be sent to the helper host. This limit depends on the capacity of the host’s 
available bandwidth, processing power etc. e.g. if host B can handle at most 10 que-
ries/sec, then on getting overloaded, it requests host X (helper) to share the network 
load (Fig. 5), and informs the parent (A) to forward extra queries to X. 

Now host X also starts acting as a level h+1 host and will forward queries to level 
h+2 nodes (note that this will not interfere in the EMST key distribution). This help 
will also relieve the hosts at the root node i.e., the leader hosts. This decentralization 
also assures that the network does not have a single point of failure.  

 

Fig. 4. B informs its parent about X and also sends its address book to X 

The above procedure can be carried out again until the traffic load on hosts be-
comes bearable. This provision also gives a liberty to the user about how much band-
width (above a certain minimum) does he want to allocate for network service. 

2.4   Query Replication 

A host makes a query by sending it to more than one host in the leader node of its 
sub-network. Now each host forwards this query to its child in the relevant node. In 
this way, the query gets passed to the relevant child node but to multiple hosts in the 
same node and in this way it reaches the node which contains the host being searched. 
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Consider an example (Fig. 5): host X (91) generates a query for ‘25’. First it sends 
his query to three hosts (23, 46 and 59) of the sub-network leader. These hosts then 
find the appropriate child node (25 lies between 23 and 46 – node no. 2) and pass it to 
their respective children in that node. Again these hosts pass it to the relevant child 
node. Finally, when the query reaches the destination node, brothers 27, 26 pass it to 
25. The above scheme shows that the query fails only when at least one host on each 
of the paths fail simultaneously. This mechanism greatly reduces the probability (de-
tailed analysis in Section 4.4) of a fault.  

 

Fig. 5. The flow of a query. 91 originates a query for 25 which follows the above path. 

3   The Oasis Protocol 

In this section, we discuss the various algorithms and the entire procedures of inser-
tion, deletion and routing in Oasis. 

3.1   Host Insertion 

Whenever a new host, ‘H’ joins the network, the bootstrap provides it with an address 
of any sub-network leader (‘nxtldr’). Host H keeps on checking its physical distance 
from ‘nxtldr’ and if it finds a suitable leader(‘suitableldr’) i.e. a leader with physical 
distance less than the distance threshold(‘dist_thresh’) it inserts into that sub-network. 
In case there is no such sub-network then it inserts into the super-network forming a 
new sub-network without any sub-nodes. Finally, after forming a new sub-network it 
informs all other sub-network leaders about its arrival.  

When a new host has to be inserted into a sub-network, a query is made for its own 
key to find its proper position in the EMST which may take O (Log (N)) time (find-
pos). The node on which the query terminates (‘tmnode’) informs its cluster leader 
that a new host has to be inserted. Now the cluster leader sends an invitation to the 
new host to join as a child or a brother depending on whether the node capacity is full 
or not respectively. This is done in order to prevent multiple hosts in a node from in-
viting new hosts at the same time. The join requests are handled by the leader one by 
one. If the new host H joins as a child, it becomes the cluster leader of its new cluster 
with one host and stores the address of its parent host. Otherwise, if it joins as a 
brother, it stores all the information about its node (including cluster leader and ad-
dresses of its brothers) and informs all its brothers about its arrival (inform_arr).  
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The following function gives a pseudo code for the mentioned procedure: 

insert_host (host H) { 

  nxtldr = bootstrap.subnetldr;                       
  suitableldr = NULL; 

 
  while (suitableldr==NULL && nxtldr!=NULL) {                     

  d = distance(H, nxtldr); 
  if (d<dist_thresh) suitableldr =  nxtldr;          
  else nxtldr  = nxtsub(nxtldr,H);                     
} 
 
if (suitableldr == NULL) { //no subnet found   
  H = new subnetldr;  
  H.inform_arr(H, all subnetldrs);  
  return;  //insertion process complete     
} 
tmnode = suitableldr.findpos(H.key);  
if (tmnode.full())  {//insert as a child 
  H.store(parenthost.info);   
  H  = new clusterldr; 
} 
else{       //insert as a brother   
  H.store( node.info ); 
  H.inform_arr(H, all_brothers); 
} 
H.inform_arr(H, parentnode);   

} 

3.2   Host Deletion 

When a host ‘H’ logs off the network, it carries out the following procedure: it in-
forms all the brothers and the parent host about its departure (inform_dep). In case the 
leaving host is the cluster-leader it appoints a new leader (which is the host with the 
smallest key). Now the cluster-leader searches for a replacement ‘R’ for the leaving 
host ‘H’ (from a leaf node, no replacement is required if the leaving host is already in 
a leaf node). The replacement host, R before leaving its old node informs all its rela-
tives about its departure (rearrangement is done at the leaf level, if required). R takes 
its new address book from H and finally informs its new relatives about its arrival. 

3.3   Host Failure 

If a host H goes off the network without informing any other host, such a situation is 
referred to as ‘host failure’. In such a situation the host which discovers its failure 
first, X takes the responsibility of informing all other related hosts. The brothers and 
the parent of a host ping it at regular intervals so a failure is either discovered by a 
brother or its parent. Under the first possibility, the brother X informs H’s relatives 
and then the leader of the node. If H was the leader then the host with the smallest key 
becomes the new cluster leader. If X is the parent of H then it informs all hosts in H’s 
node. Now, the cluster-leader of H’s node carries out all the operations as in the case 
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of host deletion (finding a replacement and then giving it all the information about H). 
The total time that is required from the point of failure to the moment when finally the 
replacement R informs everyone about its arrival is called recovery period. The fault 
tolerance of the network is directly dependent on this parameter. The higher the time 
it takes to replace the failed node higher will be the probability of a query getting lost 
or stuck somewhere in the path. 

Host_failure (host H) {  

if ( X.ping(H) == fail) {      
  if ( H == X.brother ) { 
    X.inform_dep(H, {all brothers, parent node});  
    if ( H == X.clusterldr) 
    X.clusterldr = X.node->firsthost; 
 
    Host R = X.clusterldr.findreplacement(H); 
    R.inform_dep(R, {all brothers, parent host});   
    if (R.children()) rearrangement(R); 
    R.store ( X.clusterldr.info(H) ); 
  } 
 
  else   {  //H == X.child 
    X.inform_dep(H, all children); 
    Host R= X.child.clusterldr.findreplacement(H); 
    R.inform_dep(R, {all brothers, parent host}); 
    if(R.children()) rearrangement(R); 
    R.store ( X.child.clusterldr.info(H) );  
  } 
   R.inform_arr(R, {all brothers, parent host}); 
   R.inform_arr(R, {children}); 
}  

3.4   Query 

The originator (‘Orig’) of a query sends it to ‘r’ (replication factor) hosts in the leader 
node of its own sub-network. Every host on receiving a query checks its brothers and 
forwards it to him if his key matches the search otherwise forwards it to the relevant 
child. While forwarding a query to any host in its child node, a host checks if it has al-
ready forwarded more queries than the child’s bandwidth limit (the child is loaded). If 
it is so, it sends the query to the helper host in the leaf node. Otherwise, it will simply 
forward it to the child host. The query searching mechanism is the same as that in an 
m-way search tree, but the query proceeds through r parallel paths. This query is first 
searched in the sub-network and on failing to get a positive response from the sub-
network; the leader then forwards the query to the super-network. 

RecvQuery(Host Orig, key) {   

  if(storedkeys(key)==true) { 
    sendreply(Orig); 
    return;   
  } 
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  for i = m-1 downto 1 
    if(key== brother[i].key ) { 
      queryforward(brother[i], Orig, key) 
      return;  
    } 
       i = find_app_child(key); 
  if (i ==-1 ) sendreply(Orig); 
       if (child[i].traffic_limit() == true)  { 
    j = 0;  
         while(!child[i].helper[j].traffic_limit())  j++; 
         queryforward(child[i].helper[j],Orig,key);  

  } 
  else queryforward(child[i], Orig, key);  
       } 

In the next section we discuss the simulation and performance analysis of Oasis. 

4   Simulation 

The Oasis simulation software was implemented in C++. We used the following met-
rics to evaluate Oasis: 

1. Data lookup time 
2. Path Length 
3. Decentralization 
4. Fault tolerance in terms of data look up failures 

While conducting experiments on the simulation the following parameters were taken 
into account: 

Number of hosts: (N): This is a parameter which shows the scalability of the net-
work. For the analysis we made 128 sub-networks with varying N.  

Cluster Size: (m-1): This is a crucial parameter which can significantly affect the 
performance, especially the path length and consequentially the look up latency. Also, 
the fault tolerance of the system gets affected by this parameter. 

Replication Factor: (r): This factor indicates the number of copies of a query that 
is originally sent to the sub-network leader. 

Threshold (distance_threshold): When the new node joins Oasis, the threshold 
determines whether the node is inserted to one’s sub-network or super-network. In the 
following simulation, we fixed the threshold at 100ms (the ping interval). 

4.1   Data Lookup Time 

The data look up time in Oasis comes out to be logarithmic in nature which is as good 
as other DHT based network schemes (Fig. 6). 

The different curves for varying cluster size come out to be a straight line parallel 
to the x-axis indicating O(logN) complexity of the metric. The look up latency re-
duces as the cluster size is increased but at the same time the network overhead also 
increases because of the increased size of the address book and thus higher number  of 
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Fig. 6. (Average data look up latency)/Log (N) vs. number of hosts in the network 

hosts will have to be communicated with. This leads to a trade off and thus the cluster 
size can be chosen according to the requirements and capabilities of the network.  

4.2   Path Length 

Consider a network with ‘s’ no. of sub-networks. Assume that the height of the EMST 
is ‘h’ and the queries are uniformly distributed over the network, we have the follow-
ing average path length in terms of the above parameters.  

avg<path_len> = 1/s(avg<path_len> local query) + (1-1/s)(avg<path_len>local query  + 1)  

A query going into the super-network will have one hop extra for the forwarding 
between sub-network leaders; this is why we have one added in the expression with 
(1-1/s).  Now, avg<path_len>local query  = ((m-1) / N) * (1 + 2m + 3m2 + 4m3 +..+ hmh-1) 
= h – 1/(m-1), which implies avg<path_len> = h + 1 -1/(m-1) – 1/s. Now, the total no. 
of hosts in a complete EMST with a height ‘h’ is mh – 1, which is N. Thus, h = Log m 
(N + 1). Assuming 1/s to be small, 

avg<path_len> = Log m (N + 1) + 1 -1/(m-1) 

Fig. 7a and Fig. 7b show path length characteristics for the network size of 10000 
hosts. By increasing the cluster size, the path length of a query reduces significantly. 
The curve resembles Log (N), the system being basically a network of search trees. 

 

 Fig. 7a. The Path Length for Chord and Oasis       Fig. 7b . The Path-Length Probability   
                                                                                      Distribution with m = 6, m=8 and m=11 
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Fig. 8. Query load versus capacity of a host in terms of the bandwidth availability 

The above curve also shows that the path length decreases as the cluster size is in-
creased. Also, it is visible that the path length of Oasis is considerably less than that 
of CHORD. In Grapes, routing within the sub-network does not significantly add to 
the look up latency but multiple hops in the super-network is costly thus Oasis uses a 
fully connected super-network.  

4.3   Decentralization 

The most important and distinctive feature of Oasis is  its property of decentralization 
along with a proper structure for exploiting locality and at the same time giving loga-
rithmic search time. With the concept of a helper it seems quite obvious that no host 
will have to handle traffic load which is above its capacity. Also the network gets 
saved from a single point of failure. For N= 10000 and 500,000 uniformly distributed 
queries, Figure 8 shows a curve between query load (for highly loaded hosts, mostly 
the sub-network leaders) and the capacity of a host in terms of bandwidth availability. 

4.4   Fault Tolerance  

Next we evaluated the impact of a massive failure on Oasis’s performance and on its 
ability to perform correct lookups. Once the network becomes stable, each host is 
made to fail with probability ‘f’. We can safely assume that the average path length 
for a network having N hosts is log(N). Then for a query passing through log(N) 
number of hosts, the probability of it reaching the destination becomes (1-f)log (N) . 
Hence the probability of a query getting failed becomes 1  - (1-f)log (N). The probability 
of a successful query is the probability of at least one query reaching its destination 
i.e. 1- probability of all getting failed. Probability of a successful query becomes  
p = 1 -  (1  - (1-f)log (N)) r.  Table 1 shows the percentage of successful look ups under 
varying probability of failure, ‘f’ and at the same time 50000 queries were generated. 

Table2 gives the summary of the performance of various existing peer to peer net-
works together with that of Oasis, d being the no. of dimensions in CAN. It can be 
seen that the data look up complexity of Oasis is log(N) which is as good as other 
DHT schemes like CAN, Chord etc. but at the same time exhibits locality property. 
Grapes, Jelly [8] have the locality property but do not have decentralization and suffer 
from the problem of a single point of failure, where as Oasis is decentralized and is 
robust to host failures.  
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Table 1. Percentage of successful data lookups as a function of the size of the network, the 
probability of host failure for r = 2 and for r = 3, cluster size (m-1) = 5 

r = 2  r = 3 
Probability of host failure, f Probability of host failure, f 

Number of 
hosts 

0.10 0.25 0.50 0.10 0.25 0.50 

60000 99.51 94.21 79.67 99.95 98.70 90.98 

80000 98.95 94.10 78.14 99.89 98.57 89.78 

100000 98.89 93.17 76.82 99.88 98.21 88.84 

Table 2. Performance comparison (## : depends on the DHT used like CAN, Chord, Pastry etc) 

Network 
Design 

Hops Locality Fault Toler-
ance 

Decentralization 

CAN D(N)1/d No No Yes 

Chord Log N No No Yes 

Pastry Log N No Yes Yes 

Grapes ## Yes ## No 

Jelly ## Yes ## No 

Oasis Log N Yes Yes Yes 

5   Conclusion and Future Work 

Fault tolerance and decentralization are two important requirements of a peer to 
peer network. In this paper we have proposed a self organizing hierarchical topol-
ogy based network which exploits the proximity between hosts without any cen-
tralized support of a single host and also provides fault tolerance through query 
replication. Geographically closer hosts form the sub-network. We propose the 
concept of an enhanced m-way search tree (EMST) for constructing the sub-
network.  Use of multiple hosts at each node, distributes the network load between 
hosts and hence an appreciable degree of decentralization is achieved. Further, the 
concept of helper also ensures total decentralization among participant hosts. Also, 
query replication and its passage through different paths results in a high degree of 
fault tolerance. We are considering designing an adaptive network hierarchy with 
reduced overhead and higher flexibility in terms of the size of the cluster and intra-
cluster communication. 
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Abstract. Gnutella’s notoriously poor scaling led some to propose distributed 
hash table solutions to the wide-area file search problem. Contrary to that 
trend, in this paper, we advocate retaining Gnutella’s simplicity while propos-
ing GToS, a Gnutella-like Topology-oriented Search protocol for high-
performance distributed file sharing, by examining the role of overlay topol-
ogy on system performance improvement. Building upon prior research [10], 
we propose several modifications as enhancements and then refine these novel 
ideas, with the aim of trying to remedy the “mismatch” between the logical 
overlay topology and its projection on the underlying network. We test our de-
sign through extensive simulations and the results show a significant system 
performance improvement.  

1   Introduction 

1.1   Motivations 

The most dominant application currently in use on peer-to-peer (P2P) networks is still 
large-scale distributed file sharing [1], and such systems are usually designed as un-
structured networks (e.g., BearShare, LimeWire based on Gnutella [2], Kazaa based 
on FastTrack [3]). Unlike structured P2P networks (e.g., Chord [4], CAN [5], Pastry 
[6], and Tapestry [7]) where both the data placement and the overlay topology are 
tightly controlled, unstructured P2P systems do not have any association between the 
content and the location where it is stored, thereby eliminating the complexity of 
maintaining such an association in a dynamic scenario, adapt well to the transient 
activity of peers with very little management overhead, and allow users to perform 
more elaborate queries. These properties make such systems more suitable for appli-
cations of large-scale distributed file sharing. A major limitation and also the key 
challenging open-question of current unstructured P2P systems lie, however, in their 
“blind” and constrained broadcast search algorithms, which results in fatal scaling 
problems in two important ways: first, poor search performance, and second, heavy 
traffic load of underlying networks. The main difficulty in designing such algorithms 
is that currently, very little is known about the nature of the network topology on 
which these algorithms would be operating [8]. The end result is that even simple 
protocols, as in the case of Gnutella, result in complex interactions that directly affect 
the overall system’s performance. 
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In this paper, we focus on Gnutella-like decentralized and unstructured P2P file-
sharing systems. The main objective of this work is to develop techniques to render 
the search process more efficient and scalable with high network utilization, by exam-
ining the role of overlay topology on the performance improvement of such systems. 

1.2   Overview and Contributions 

In an earlier paper [10], we present ToA3, a novel P2P file-sharing system, focusing 
on surmounting the limitation of Gnutella-like unstructured P2P networks by utilizing 
topology-oriented adaptability, availability and underlying-network-awareness. In our 
current work, we refine those ideas and present an extended design (which we call 
GToS) by incorporating several significant modifications as enhancements. 

While GToS does build on these previous contributions, it is, to our knowledge, the 
first open design that (a) recognizes the intrinsic topological properties, like small-
world characteristics and power-law degree distributions [8, 9], and further more 
adapts its protocols to account for these properties, (b) considerss the viewpoints on 
how to remedy the mismatch between the logical overlay topology and its projection 
on the underlying network, (c) differentiates the proximity of neighbor nodes and 
applies different search strategies on them, (d) takes into account not only the search 
process but also the large-sized file download process, and most importantly, (f) de-
liberately synergizes these various design features to achieve total system perform-
ance improvements. 

1.3   Paper Organization 

The rest of this paper is organized as follows: we discuss related work in Section 2, 
some significant inspirations and guidelines from Gnutella topology in Section 3. 
Based on this knowledge, we then detail the GToS design in Section 4. Section 5 
describes the methodology used for the evaluation of GToS, and the simulation re-
sults. Finally, we conclude the paper and outline our future work in the last section. 

2   Related Work 

There have been numerous attempts to leverage aspects of the Gnutella design [1]. 
The authors in [11] reported, perhaps a little too bluntly, that the fixed “TTL-based 
mechanism does not work”. They argued that by making better use of the more 
powerful peers, Gnutella’s scalability issues could be alleviated. Instead of its 
flooding mechanism, they used random walks. Their preliminary design to bias 
random walks towards high capacity nodes did not go as far as the ultra-peer pro-
posals in that the indexes did not move to the high capacity nodes. Adamic et al. in 
[12] suggested that the random walk searches be directed to nodes with higher de-
gree, that is, with larger numbers of inter-peer connections. They assumed that 
higher-degree peers are also capable of higher query throughputs. However without 
some balancing design rule, such peers would be swamped with the entire P2P 
signaling traffic. In addition to the above approaches, there is the “directed breadth-
first” algorithm [13]. It forwards queries within a subset of peers selected according 
to heuristics on previous performance, like the number of successful query results. 
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Another algorithm, called probabilistic flooding [14], has been modeled using per-
colation theory. The authors in [15], propose Gia, a P2P file-sharing system ex-
tended from Gnutella, by focusing on strong guarantees of the congruence between 
high-capacity nodes and high-degree nodes. But they do not consider neighbors’ 
proximity in underlying networks and assume that high-degree nodes certainly 
process high capacity and be more stable than the average, which is in fact not the 
truth in highly dynamic and transient scenario of P2P networks. In [16], the authors 
introduce Acquaintances to build interest-based communities in Gnutella through 
dynamically adapting the overlay topology based on query patterns and results of 
preceding searches. Such a design, because of no feasible measures to limit the 
explosive increase of node degree, could quickly become divided into several dis-
connected sub-networks with disjoint interests. The authors in [17], explore various 
policies for peer selection in the GUESS protocol, and conclude that a “most re-
sults” policy gives the best balance of robustness and efficiency. However, they 
only concentrated on the static network scenario. 

In summary, these Gnutella-related investigations are characterized by a bias for 
high degree peers and very short directed query paths, a disdain for flooding, and 
concern about excessive load on the “better” peers. Generally, the analysis and utili-
zation of intrinsic topological properties for dynamic networks remains open. 

3   Inspirations and Guidelines from Gnutella Topologies 

We develop this section by introducing the following three questions and then explor-
ing the answers to them step by step:  

1. What are the intrinsic properties stemmed in the topologies of Gnutella?  
2. What kind of inspirations can be taken from the impacts of such properties on 

behaviors and performance of these networks?  
3. How can these inspirations guide us for the design of GToS? 

Many studies, through modeling and network simulations, verify the existence of such 
intrinsic properties of Gnutella-like topologies as: (a) “small-world” properties, (b) 
power-law degree distributions [8, 9], (c) heterogeneity and hierarchy that arise en-
tirely from the nature of degree distributions [18], and (d) a significant mismatch 
between logical overlay and its projection on the underlying network [19]. 

The existence of the above topological properties in Gnutella-like P2P networks 
presents significant inspirations for us when designing new, more efficient and scal-
able application-level protocols. 

First of all, dynamical systems with small-world coupling display enhanced signal-
propagation speed, computational power, and synchronization, which provide useful 
cues for efficient navigation of distributed algorithms such as routing and searching in 
large-scale information networks. 

Second, power-law degree distributions play a crucial role in the effectiveness of 
searching. The basic principle behind the discovery of short paths is that in such a 
graph the expected degree of a node following an edge is much larger than the aver-
age degree, which means most nodes are connected to a few high-degree nodes and 
whereby have many second neighbors. Most of the second neighbors would be local 
in a small range but a finite fraction would be randomly distributed throughout the 
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network. Since there would be so many second neighbors, with high probability one 
of those randomly placed ones would be located close to the target [20]. 

Third, the “mismatch” between Gnutella logical overlay and its projection on the 
underlying network indicates that, when building desirable topologies, it is a benefi-
cial idea to take into account the nature of underlying-network-awareness. 

Finally but not the least, due to the hierarchical nature and heterogeneity in 
Gnutella, queries in search process should be forwarded towards deliberately-chosen 
neighbors. That means, a more intelligent neighbor selection strategy is also a must.  

The above inspirations taken from intrinsic topological properties provide us with 
several significant guidelines as the design rationale for GToS: 

1. Algorithm design should be topology-oriented. This guideline is on the level of 
overlay topology. The topologies with desirable properties should be the ones that 
possess low diameter, large clustering, and are constructed obeying power-law dis-
tributions using just degree-focused local knowledge. 

2. Message duplication should be minimized. This guideline is on the level of search 
mechanism. Duplicated receiving and forwarding of messages makes major over-
head in flooding-based search [11]. In this sense, the key to scalable searches in 
unstructured networks is to cover the right number of nodes as quickly as possible 
and with as little overhead as possible. As for small-world-like topologies, the right 
nodes may mean the next neighbors on the characteristic path. As for high hetero-
geneity and dynamism, the right nodes should be identified as those with high 
availability, not just those with high capacity. Besides, adaptive termination is also 
very important. 

3. Being underlying-network-aware. This guideline is on the level of underlying net-
work. A proper search algorithm, if being aware of physical network, can speed up 
query process and improve network utilization without much reducing the success 
rate. 

4   GToS Design 

We begin this section with a brief introduction to our previously proposed ToA3 sys-
tem first and then present the key components of GToS, focusing on the enhance-
ments extended for ToA3. 

4.1   A Brief Introduction to ToA3 

ToA3 is a novel P2P file-sharing system [10], built upon Gnutella-like unstructured 
overlay networks. The key idea of ToA3 is to generate an overlay topology with de-
sirable properties, adapt peers towards better neighbors dynamically, and direct que-
ries towards right next hops with as few duplicated messages as possible. To achieve 
this goal, ToA3 introduces several innovative techniques such as: (a) a dynamic topol-
ogy adaptation algorithm with self-sustaining power-law degree distributions, (b) 
simply but efficient utilization of peer-to-peer network heterogeneity, (c) a proper 
implementation of the underlying-network-awareness, and (d) Smart Search, a biased 
search algorithm designed special for ToA3. 
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4.2   Dytopa 

As an extended and enhanced version, our GToS in this work mainly consists of three 
key components: (a) Dytopa—an extended dynamic topology adaptation protocol, (b) 
SSplus—an enhanced search algorithm coupled with several novel mechanisms for 
optimizations, and (c) BigDownload—a unique solution designed for large-sized file 
download process. 

Dytopa is the core component that connects the GToS node to the rest of the net-
work. Building upon the prior inspirations and guidelines, we then focus on construct-
ing topologies with desirable properties by introducing novel techniques detailed as 
follows. 

1. Self-sustaining power-law degree distribution and its resultant small-world 
properties. We prefer keeping such distributions and utilizing their resultant 
“small-world” properties. We achieve the goal by adding and deleting links in a 
way that the out-degree of each node is conserved (see Fig.1). We choose a 
node A at random, build a link from this node to a new node B chosen by a cer-
tain metric, and then immediately delete an existing link say with C to conserve 
links at A. By increasing the fraction of links rewired we get the required low 
diameter: If the fraction of links deleted and rewired is p, then for very small p 
the average path length L(p) comes down by orders of magnitude and is close to 
that of a random graph whereas the clustering coefficient C(p) is still much 
large similar to that of a regular graph [20]. This is just what we desire: “small-
world” properties. 
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Fig. 1. The way a GToS node self-sustains its out-degree during dynamic topologic changes 

2. Proximity-based neighbor classification. To realize the underlying-network-
awareness, links of a GToS node to its neighbors are divided into two catego-
ries: short links and long links. The fraction of links that are short, called the 
proximity factor , is a key design parameter that governs the overall structure 
of the topology. A node with out-degree d has d short links and (1- )d long 
links.  takes values from 0 to 1, inclusive: =0 corresponds to all-long-links 
(like a random graph) and =1 corresponds to all-short-links (like a regular 
graph). Different values of  let us span the spectrum of this class of overlay to-
pologies. In between these two ends of the spectrum, we foresee that the topolo-
gies, with many short links and few long links, have desirable properties: they 
not only have low diameter, large search space and connectedness, but are also 
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aware of the underlying network. We aim to find a suitable balance between 
these advantages by simulation through populating the range of  value. An ap-
propriate metric for distance (e.g., latency used in GToS) in the underlying net-
work defines the closeness  of neighbors. Given the dynamic conditions of P2P 
networks, nodes periodically evaluate the distance to their neighbors and replace 
them if necessary to maintain the invariant ratio of short/long links. Besides, we 
introduce  for another purpose: deploying biased searches for two kinds of 
neighbors respectively to obtain further performance improvement (to be ad-
dressed in Section 4.3). 

3. Availability-based better neighbor selection strategy. We prefer high-
availability as a proper measure of better neighbors, different from (but much 
better than) just the high node capacity that is used in [15]. The availability can 
characterize P2P network dynamics and heterogeneity more accurately than just 
node capacity [1], and we propose MaxDocRtd as a proper metric for high-
availability in the GToS design. A MaxDocRtd node is defined as the responder 
that has returned the maximum relevant results most frequently in the near past. 
Indeed, a peer that has consistently and frequently returned good results is actu-
ally the most available node to the requester and is likely to serve a large num-
ber of files it requires in the future. Moreover, the metric of MaxDocRtd can 
also help to realize the locality in interest-based semantic naturally, which is 
really a positive by-product. 

4. Dynamic neighborhood maintenance based on lease and migration. The greedy 
fashion of high-availability-based neighbors selection and replacement may re-
sult in such a problem: according to the above rules, if more and more queries 
issued by P are successfully responded by long-range but high-availability 
nodes, many existing local neighbors will be replaced by these remote ones, 
which means that the average diameter (with respect to the physical proximity) 
of P’s neighborhood is increasing. This case is not what we desired. As a rem-
edy, we propose a dynamic neighborhood maintenance strategy based on the 
concept of lease and migration. P re-computes the average diameter of its 
neighborhood at regular intervals of time. The interval between successive re-
computations is a tunable parameter T. whenever the recomputed average di-
ameter of P’s neighborhood increases beyond a pre-configured threshold , P 
chooses one of its neighbors (say L) and tags it with a lease, a random number 
drawn uniformly from [T, 2T]. Then all messages that pass through P, including 
both the incoming and the outgoing, are migrated to L. L contacts P only when 
its lease expires. At that time, it informs P about the changes of the physical 
proximity. If achieving a satisfied gain, P assigns it with a new lease; otherwise, 
P takes over its job and looks for another target in case the mentioned situation 
continues. 

The above four techniques designed for Dytopa is to ensure that high-availability 
nodes are indeed selected as better neighbors and that the neighborhood of a peer 
should evolve itself towards underlying-network-awareness. Below we give the 
pseudo code of Dytopa, showing how to achieve these goals. 
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Variables: 
   NbrsList: Ordered list of neighbors, ordered by  
   CandList: List of candidate neighbors, ordered by  
   short_NbrsList, long_NbrsList: List of short/long neighbors 
   (P): the availability of node P, measured by the number of rele-

vant results returned successfully by P in the near past 
   : Proximity factor, the fraction of links that are short 
   : Aging factor, with value in (0,1) 
   : closeness between two nodes in the underlying network 
   T: the interval of time, used for dynamic neighborhood maintenance 
 
// Upon a successful query from the requester Pr answered by Pa 
WHILE (min( (Pi, ∀Pi∈NbrsList)) < max( (Pj, ∀Pj∈CandList))) DO 
   {NbrsList cand_nodemax; CandList nbr_nodemin} 
age all nodes in NbrsList and CandList by a factor ; 
(Pa) ++; 
IF (Pa ∈ NbrsList)    // Pa is an existing neighbor 
   do nothing; return; 
IF ( (Pa) > min( (Pi, ∀Pi∈NbrsList)))//Pa is a candidate or a new node 
   {NbrsList Pa; CandList nbr_nodemin; 
    examine whether needs dynamic neighborhood maintenance; 
   } 
ELSE 
IF (Pa ∉ CandList) 
   {CandList Pa; return} 
 
// Upon a neighbor, say Py, leaving the network 
IF (CandList != Ø) 
  {NbrsList cand_nodemax; 
   examine whether needs dynamic neighborhood maintenance; 
  } 
ELSE 
initiate K peers in CandList randomly by means of existing neighbors; 
enforce a neighbor randomly chosen from CandList; 
 
// Ranking nodes in NbrsList by  incrementally, build short_NbrsList  
// and long_NbrsList by  for further utilization by SSplus 
short_NbrsList first ·N peers of all the N nodes in NbrsList; 
long_NbrsList the remaining peers of NbrsList; 

4.3   SSplus 

The deliberate combination of availability-focused better neighbor selection (whereby 
peers take more available and more relevant nodes as neighbors) and proximity-based 
neighbors classification (whereby the system is aware of the underlying network) 
ensure that increasing requests can be answered by neighbor nodes or by their nearby 
nodes on the overlay, and that many such answerers may be close to the requester. 
Based on such a design, SSplus conducts a bi-forked and directed search strategy as 
follows: rather than forwarding incoming queries to all neighbors (the typical way of 
Gnutella) or randomly chosen neighbors (the way of random walks), the algorithm 
forwards the query to: 

1. all short neighbors using scoped-flooding with a much smaller TTL value; 
2. k long neighbors using random walks coupled with the mechanisms of adaptive 

termination-checking and duplication-avoiding. 
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In order to further improve the search efficiency and the network utilization, we 
also incorporate into SSplus a novel load balancing solution based on free availability 
of nodes and an intelligent 2-level replication scheme, addressed as follows. 

A Novel Load Balancing Solution based on Free Availability. In our previously pro-
posed ToA3 system, a peer that has many neighbors could quickly become a hot-spot, 
not only because it receives more queries, but also because it typically sends more 
files to requesting peers. To avoid overloading these nodes, we use the following 
mechanism to better balance the traffic load. Before successfully answering a query, a 
peer first checks whether any of its neighbors also possesses the queried file. If YES, 
it delegates the responsibility for answering the query to the peer among those serving 
the file that has the highest free availability. Otherwise, it sends the file itself. Then 
the question is how to identify free availability of a node? In the SSplus algorithm, the 
free availability of a node is denoted as the remaining number of queries it can still 
process and is provided by the node itself as a variable observed by other peers. Based 
on the design principles of GToS in this paper, there is a good probability that some 
of the neighbors of a peer also have the same files. Therefore, we force the less loaded 
peer to assume part of the load. 

An Intelligent 2-Level Replication Scheme. To improve the search efficiency, we also 
introduce a novel intelligent replication scheme into the SSplus algorithm. Each 
GToS node actively maintains an index of the content of each of its neighbors. These 
indices are exchanged when neighbors establish connections to each other, and peri-
odically updated with any incremental changes. Thus, when a node receives a query, 
it can respond not only with matches from its own content, but also provide matches 
from the content offered by all of its neighbors. When a neighbor is lost, either be-
cause it leaves the system, or due to topology adaptation, the index information for 
that neighbor gets flushed. This ensures that all index information remains mostly up-
to-date and consistent throughout the lifetime of the node. It should be noted that this 
kind of replication is just at the level of index of files, not the files themselves. That 
means the download process for popular files may still overload the provider of these 
files if this provider is not the node with high availability. To make high-availability 
peers surely store more files, especially more popular files, we then introduce another 
kind of replication scheme that is at the level of content of files themselves (rather 
than simple pointers to files) [15]. In the SSplus algorithm, this is implemented in an 
on-demand fashion where the high-availability nodes replicate content only when 
they receive a query and a corresponding download request for that content. 

4.4   BigDownload 

If all of the above efforts we made could really solve the insurmountable scaling 
problems of Gnutella-like unstructured P2P file-sharing systems, we conjecture that 
the next bottleneck limiting scalability is likely to be the file download process. This 
will be particularly true if, as recent measurement studies indicate, increasing files in 
networks are large-sized (e.g., multimedia files) [21]. This situation also underscores 
the significance of distributed multimedia sharing applications.  In order to take into 
account this factor, we couple the GToS system with another unique technique named 
BigDownload based on mechanisms of resources booking and reservation. It should 
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be noted that, although this technique is mainly related to the file download process, it 
can also contribute significantly to improving the success rate of search, as well as the 
acceptance rate of incoming queries. In most proposed Gnutella flow-control mecha-
nisms [22], which are reactive in nature: receivers drop packets when they start to 
become overloaded; senders can infer the likelihood that a neighbor will drop packets 
based on responses that they receive from the neighbor, but there is no explicit feed-
back mechanism. As a remedy, we advocate that the overloaded receivers respond to 
the senders via a message like “Query hit, try to fetch it after an interval ” as a de-
layed but positive confirmation, rather than the above mentioned rejection of just 
dropping it. To detail the idea in an algorithmic perspective, a node P maintains a data 
structure variable of Overloading_Window, with its size sizeOW(P) set according to 
P’s capacity of processing queries, and its values recording the first sizeOW(P) in-
coming queries that arrive just after P reaches its capacity limit. In this case, the send-
ers of these queries (named S1, S2, …, SsizeOW(P) for convenience) are considered hav-
ing booked the availability of P and can access P after an given interval i (increased 
incrementally from 1 to sizeOW(P)). This is what we call, resources booking, which is 
expected to improve the network utilization. As for the other mechanism resources 
reservation, once a request for file-download has been accepted, the related resources, 
such as available network bandwidth, will be kept reserved during the download 
process, in order to support some kind of QoS (Quality of Service) that is often re-
quired in multimedia sharing applications. The detail design of these mechanisms is 
omitted due to the space limitations. 

5   Performance Evaluation 

In this section, we use simulations to evaluate GToS, mainly focusing on the perform-
ance gains when at the presence and absence of the above proposed modifications and 
enhancements. 

We consider a P2P network made of 4,096 nodes, which corresponds to an aver-
age-size Gnutella network [8]. We rely on the PLOD, a power-law out-degree algo-
rithm, to generate an overlay topology with desired degree distribution over the P2P 
network simulator [23]. In the simulations, 1,000 unique files with varying popularity 
are introduced into the system. Each file has multiple copies stored at different loca-
tions chosen at random. The number of copies of a file is proportional to their popu-
larity. The count of file copies is assumed to follow a Zipf distribution with 2,000 
copies for the most popular file and 40 copies for the least popular file. The queries 
that search for these files are also initiated at random hosts on the overlay topology. 
Again the number of queries for a file is assumed to be proportional to its popularity. 

We evaluate GToS by referring to the following four models: 

1. FG: Search using TTL-limited Flooding over Gnutella. This represents the classic 
Gnutella model. 

2. RR: Search using Random walks over uniform Random topologies. This represents 
the recommended search suggested by [11] against the flooding search. 

3. ToA3: using Smart Search on the ToA3 topologies [6]. 
4. GToS: the protocol suite proposed in this paper, using the Dytopa topology adapta-

tion procedure and the SSplus search algorithm. 
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We use the following performance metrics for evaluation: 

1. Pr(success): defined as the probability of finding the queried object before the 
search terminates. This is a metric of user aspect. 

2. avg. #msgs per node: defined as the average number of search messages each node 
in the P2P network has to process. This is a metric of average load. 

3. D and stress: D is defined as the average distance in the underlying network to the 
nearest results, showing whether the protocol is underlying-network-aware; stress 
is one of the most common definitions of traffic load in overlay networks [19], de-
fined as the number of logical links whose mapped paths include the underlying 
link. These two metrics examine the network utilization. 

Fig. 2 plots the success rate of query as a function of the average number of hops 
needed, showing that both GToS and ToA3 get a much higher success rate than the 
other two models, with the former performing a little better than the latter. To illus-
trate the performance gains of our modifications to the search algorithm, we plot Fig.3 
and Fig.4, concentrating on the comparisons between Smart Search used by ToA3  
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and SSplus used by GToS. Both the results indicate that, in the case of SSplus over 
GToS topology, we can achieve a higher success rate of query and distribute the 
query load more evenly across the network, which also verifies the success of our 
modifications. In addition, from Fig.5 we can see that, GToS and ToA3 generate much 
lower duplicate messages (they are pure overhead!) than the other models, especially 
after going through several hops. This is mainly due to the intelligent better neighbor 
selection strategy and the deliberate combination of related optimizations. 
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Fig. 6. The distance to search result (D) as a 
function of variable file popularities (P) 

Fig. 7. The variation of mean stress ( ) as a 
function of increasing node population (N) 

As for the aspect of the network utilization, we can see from both Fig.6 and Fig.7 
that our solution can make better use of the knowledge of underlying network, by 
dynamically optimizing the neighborhood quality to reduce the distance to search 
result, and by mapping more logical links to local physical links. These results further 
verify the significant performance gains of our solution. 

6   Conclusions 

In this paper, we propose GToS, a Gnutella-like Topology-oriented distributed Search 
protocol, by extending our previously proposed ToA3 protocol to include several 
novel techniques for optimizations and enhancements, with the aim of trying to rem-
edy the “mismatch” between the logical overlay topology and its projection on the 
underlying network. Our simulations suggest that these modifications provide signifi-
cant performance gains in both the search efficiency and the network utilization: 
while making search process much more scalable, the design also has the potential to 
improve the system’s file download process by more fully distributing the load. In 
addition, the improved performance is not due to any single design innovation, but is 
the result of the synergy of various modifications. Further optimizations to the Dytopa 
procedure and the SSplus algorithm, such as the considerations of query resilience 
and more intelligent replication strategies, are orthogonal to our techniques and could 
thus be used to improve the system performance of GToS. 
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Abstract. Partitioning is one of the main problems in p2p group membership.
This problem rises when failures and dynamics of peer participation, or churn,
occur in the overlay topology created by a group membership protocol connecting
the group of peers. Solutions based on Gossip-based Group Membership (GGM)
cope well with the failures while suffer from network dynamics. This paper shows
a performance evaluation of SCAMP, one of the most interesting GGM protocol.
The analysis points out that the probability of partitioning of the overlay topology
created by SCAMP increases with the churn rate. We also compare SCAMP with
DET – another membership protocol that deterministically avoids partitions of the
overlay. The comparison points out an interesting trade-off between (i) reliability,
in terms of guaranteeing overlay connectivity at any churn rate, and (ii) scalability
in terms of creating scalable overlay topologies where latencies experienced by a
peer during join and leave operations do not increase linearly with the number of
peers in the group.

1 Introduction

Peer to peer (p2p) systems are rapidly increasing in popularity. Their interest stems from
the fact that a peer-to-peer system is a distributed system without any centralized con-
trol. Thus, there is no need of a costly infrastructure for direct communication among
clients. Another specific characteristic of these systems concern peer participation that
is each peer joins and leaves the system at any arbitrary time. Indeed, the dynamics of
peer participation, or churn (the continuous arrival and departure of nodes) is an in-
herently property of a p2p system. The peers communicate through application-level
multicast protocols over an overlay network formed by the peers themselves [12], [6].
Due to churn, the overlay continuously changes. This implies that the group member-
ship management protocols are crucial to the success of multicasting. Two issues are
usually taken into account by such group membership protocols: (i) scalability, that is,
the operational overhead will not grow linearly with the size of the network and (ii) re-
liability which is the capacity to keep the overlay network connected in face of network
dynamics.

Epidemic or gossip-based protocols [9], [10] are considered good candidates to cope
with the issues of scalability and reliability. However, these kind of protocols emerged
in fairly static systems [10] and their behavior in systems with high churn rates has
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received little attention in the literature. Recently this issue has been addressed in [1]
which shows, through analytical model, that the probability of partitioning increases
with the increase of churn rate.

The contribution of this paper is in understanding the churn resilience of group
membership protocols in p2p systems in terms of reliability and scalability. More specif-
ically we compare SCAMP [10] against DET [2]. SCAMP is one of the most interesting
GGM protocols, it is an adaptive GGM in the sense that with the changing the size of
the group, it maintains a reasonable overhead for each node and a certain degree of re-
liability. DET is a protocol which deterministically maintains the overlay connectivity
assuming that a certain threshold of failures holds. In the experimental comparison we
evaluate (i) reliability by calculating the proportion of nodes reached by an application-
level multicast, and (ii) scalability by analyzing the overlay topology w.r.t. join/leave
latencies. Experimental results confirm that SCAMP suffers from churn in terms of re-
liability, while it scales for any churn rates. Specifically, under a churn rate equal to 1
membership change (a join or a leave) per second the proportion of nodes reached by
the multicast is the 80%. However, the node degree (for every node) remains always
equal to the logarithmic size of the group. The analysis of DET shows that the overlay
remains connected for any churn rate. This determinism is at the cost of an increase
of latency for join and leave operations (note that these operations are instantaneous
in SCAMP). In particular, it is shown that if either (i) DET protocol adopts policies to
maintain low latencies for join/leave operations, or (ii) the churn rate increases, then
the overlay converges to a star topology, thus resulting in an overloading of one node
completely – this means that scalability is compromised in any case.

The paper in Section 2 presents a brief description of SCAMP and DET protocols.
In Section 3 experimental results are shown. Section 4 discusses the related work and
Section 5 concludes the paper.

2 Group Membership Protocols

In the following we briefly describe the two protocols, namely SCAMP [10] and DET
[2], which are evaluated in the simulations. Before that let us introduce the system
model.

2.1 System Model

The system consists of an unbounded set of nodes Π (Π is finite). Any node may fail
either by crashing or by leaving the system without using the defined protocol. A node
that never fails is correct. The system is asynchronous: there is no global clock and there
is no timing assumption on node scheduling and message transfer delays. Each pair of
nodes pi, pj may communicate along point-to-point unidirectional fair lossy links[4].

Each node pi ∈ Π may subscribe (join) and unsubscribe (leave) from the group G.
The set of nodes constituting the group G at a certain point of time is a subset of Π with
size unbounded and finite. The rules defining the membership of G are the following:
(i) a node p ∈ Π becomes a member of G immediately after the completion of the
subscription operation, (ii) a node p ceases to be member of G immediately after the
completion of the unsubscription operation.
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2.2 The SCAMP Probabilistic Protocol [10]

Scamp is a gossip-based protocol, which is fully decentralized and provides each node
with a partial view of the membership. It is adaptive w.r.t. a-priori unknown size of the
group, by resizing partial views when necessary.

Data Structures. Each node maintains two lists, a PartialView of nodes it sends gossip
messages to, and an InView of nodes that it receives gossip messages from, namely
nodes that contain its node-id in their partial views.

Subscription Algorithm. New nodes join the group by sending a subscription request
to an arbitrary member, called a contact. They start with a PartialView consisting of
just their contact. When a node receives a new subscription request, it forwards the new
node-id to all members of its own PartialView. It also creates c additional copies of
the new subscription (c is a design parameter that determines the proportion of failures
tolerated) and forwards them to randomly chosen nodes in its PartialView. When a
node receives a forwarded subscription, provided the subscription is not already present
in its PartialView, it integrates the new subscriber in its PartialView with a probability
p = 1/(1 + sizeofPartialV iewn). If it doesn’t keep the new subscriber, it forwards
the subscription to a node randomly chosen from its PartialView. If a node i decides to
keep the subscription of node j, it places the id of node j in its PartialView. It also sends
a message to node j telling it to keep the node-id of i in its InView.

Unsubscription Algorithm. Assume the unsubscribing node has ordered the id’s in its
PartialView as i(1), i(2), ..., i(l) and the id’s in InView as j(1), j(2), ..., j(l). The un-
subscribing node will then inform nodes j(1), j(2), ..., j(l − c − 1) to replace its id
with i(1), i(2), ..., i(l− c− 1) respectively (wrapping around if (l− c− 1) > l). It will
inform nodes j(l−c), ..., j(l) to remove it from their list but without replacing it by any
node id.

Recovery from isolation. A node becomes isolated from the graph when all nodes con-
taining its identifier in their PartialViews have either failed or left. In order to reconnect
such nodes, a heartbeat mechanism is used. Each node periodically sends heartbeat
messages to the nodes in its PartialView. A node that has not received any heartbeat
message in a long time resubscribes through an arbitrary node in its PartialView.

Indirection. This mechanism lets new subscriptions to be targeted uniformly at existing
members. This is done by forwarding the newcomer’s subscription request to a node
that is chosen approximately at random among existing members. The interested reader
may refer to [10] for further details.

Lease mechanism. Each subscription has been given a finite lifetime called its lease.
When a subscription expires, every node holding it in its PartialView removes it from
the PartialView. Each node re-subscribes at the time that its subscription expires. Nodes
re-subscribe to a member chosen randomly from their PartialView. Re-subscriptions
differ from ordinary subscriptions in that the partial view of a re-subscribing node is
not modified.
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2.3 A Deterministic (DET) Protocol [2]

The DET algorithm deterministically avoids the partition of the overlay. In particular,
it provides each member with a partial view of at least 2f + 1 members, where f is
the number of tolerated failures. The other important feature of the algorithm consists
in imposing a partial order on nodes to manage concurrent leaves that potentially may
cause a partition.

Data Structures. Each node pi maintains two sets sponsorsi and sponsoredi. The
union of these two sets is the partial view of the nodes pi sends messages to. An integer
variable ranki gives an indication of the position of pi in the overlay, inducing a partial
order on nodes. A boolean variable leaving is initialized to ⊥.

Initialization of the group. A set of nodes {p1, ...p3f+1} ⊆ Π totally interconnected
and defined in the initialization phase instantiates the group. All these nodes have rank
ranki = 0. They are special nodes having the property that they never leave the group.

Subscription Algorithm. Each node pi joins the group by sending 1 a subscription
request to an arbitrary set of members, called contacts. When pi receives 2f + 1
acknowledgments: (1) pi includes in sponsorsi all the senders; (2) it sets ranki =
max(rankk, ∀senderpk)+1. The subscription operation locally returns. When pi re-
ceives a subscription request from pj and pi is already a member: (1) pi inserts pj in
sponsoredi; (2) it sends an acknowledgment to pj along with its own rank ranki. At
the end of subscription operation, a newly joined member has 2f + 1 members around
itself. Note that, differently from SCAMP, the newly node becomes a group member
only after 2f + 1 connections to current members have been established.

Unsubscription Algorithm. Each node pi leaves the group by setting leavingi = $
and by sending an unsubscription request to sponsorsi along with (i) its own rank
ranki and (ii) nodes is responsible for (sponsoredi). When pi receives a majority of
acknowledgments from its sponsors the unsubscription operation locally returns. When
pi receives an unsubscription request from pj and ranki < rankj and leavingi = ⊥
(pi is not concurrently leaving): (1) pi inserts the nodes pj that was responsible for in
sponsoredi; (2) it sends an acknowledgment to pj and (3) sends a notification to all
nodes previously sponsored by pj to notify that pj has been replaced by itself. When pi

receives a notification from pj it replaces the old sponsor with pj .

3 Simulations

Simulation is conducted by using Ns-2 simulator [14]2. Let us remark that the aim of
the simulation is to evaluate the real impact of the churn (joins and leaves/sec) on the

1 Each message is sent through a fair lossy link, the send primitive embeds a retransmission
mechanism that ends to retransmit until an acknowledgment is received. The send primitive is
supposed non-blocking.

2 The choice of Ns-2 was mainly due to the possibility of testing our protocol at the application
level by using the full protocol stack. But, also as remarked in [1], due to the exponential nature
of the phenomena it was only possible to simulate for small view size and/or high churn rates.
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SCAMP and DET behavior. Thus, we conducted simulations in which no failure is
simulated but only join and leave.

3.1 Simulation Framework

Each simulation involves a global number of nodes ntot. Each simulation is divided in
four intervals: the bootstrap interval, the perturbation interval, the transitory interval
and the measurement interval.

The bootstrap interval. The bootstrap interval Δb is intended as the phase in which
the group grows (until a desired value is reached) and no leave occurs. In the bootstrap
interval the group starts at time t0 with n0 bootstrap nodes. At the end of the bootstrap
interval (time t1) the group contains n1 nodes. This means that the membership changes
in the bootstrap interval consist in n1 joins.

The perturbation interval and the transitory interval. The perturbation interval Δp is
intended as the interval in which all membership changes (joins and leaves) are in-
jected in the system. The transitory interval Δt is intended as the interval in which all
membership changes injected in the perturbation interval take effect. In each simula-
tion the group starts the perturbation interval at t1 with a number of nodes n1 obtained
after the bootstrapping and it ends the transitory interval at t3 with a number of nodes
nf = 1

2ntot. In the perturbation interval we have a total number of leaves equal to 1
2ntot

and a number of joins equal to ntot − n1.

The measurement interval. In the measurement interval Δm all measures are taken.
In particular we test for both protocols (i) the proportion of nodes reached by a set of
(data) messages sent by each node during the measurement interval, (ii) the average
node degree and its distribution, where the node-degree is the number of active con-
nections per-node 3. The first and second metrics are related to the level of reliability
shown by the protocols. Moreover, the second metrics shows the overhead of the pro-
tocol. In the case of our protocol we also test the average latency of leaves, i.e. the
average time between the leave invocation and the actual departure of the node from
the group.

All measures are taken by varying the dynamics rate in the perturbation interval.
To characterize the dynamics we use the churn rate metrics. The churn rate is the ra-
tio between the number of membership changes, i.e. joins and leaves, and the dura-
tion of the perturbation interval. By considering a fixed number of joins and leaves,
the churn rate varies by varying the duration of Δp. In particular for each simula-
tion Δp varies from 5sec to 200sec. Arrivals and up-times follow an exponential
distribution.

Simulated Scenarios. All the following simulations have ntot = 160. We have com-
pared the two protocols in a scenario in which no bootstrap occurs. The following Table
resumes this simulated scenario. In this scenario, at the beginning of Δp, the starting
node has a partial view which contains only itself.

3 Active connections of a node pi are intended as the pairs (pi, pj) such that in the testing interval
pj is in the group and belongs to the pi’s partial view.
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n0 n1 joins during Δp leaves during Δp nf

Δb = 0 - 1 160 80 80

We have also evaluated SCAMP in another scenario to study the impact of boot-
strapping. Due to the lack of space the interested reader can find these experimental
results in [3] 4.

Each point in the plots has been computed as an average of 40 simulation distinct
runs. For each point all the results of these runs were within 4% each other, thus variance
is not reported in the plots.

Protocols parameters. As no failure is simulated, we consider for DET f = 0 and for
SCAMP c = 0. Even if we do not consider failures we have implemented for SCAMP
a heartbeat mechanism to avoid isolation due to leaves 5. The heartbeat mechanism we
figured out forces a node to re-subscribe if it has not received any heartbeat from its
InView in 2.5 seconds. In some plot we have implemented the lease mechanism for
SCAMP with a lease duration equal to 50secs.

The determination of the contacts in DET. In this version of DET we use the fol-
lowing mechanism to join the group: each joining node sends a message to a list of
contacts in which the node with rank 0 is always comprised and the other nodes are
arbitrary. This allows to always get an acknowledgment in a short time (from the node
with rank 0) when other contacts are not in the group. When the joining node gets more
than one acknowledgment it selects as its sponsor the node with highest rank. Since
all contacted members add the joining node in their partial views even if this node
will select only one sponsor among all contacts, extra-messages are needed to purge
non-necessary connections 6. More sophisticated mechanisms can be considered for
the join operation (as pointed out in [2]) at the cost of a high latency upon join/leave
operations.

The determination of the contacts in SCAMP. For SCAMP the contact is only one and
there is no special node that always belongs to the group (as the node of rank 0 in DET).
For this reason, in order to augment the probability of finding an active contact we have
implemented an extra mechanism in which the joining node broadcasts a message to Π
and chooses its contact inside the list of active nodes that have replied to the broadcast.
Clearly, for high churn rates this node may choose a contact that has become inactive
immediately after the reply. Note that for SCAMP once a subscription is sent, the node
is logically a member of the group. Then, an inactive contact is a real problem that
affects reliability. Note that even the indirection mechanism does not solve this problem
as it is a mechanism that works well in fairly static systems [10].

4 These experiments point out that SCAMP, in the bootstrapping interval, builds a cluster of
nodes which are very-well connected. But this cluster remains poorly connected to nodes that
join during the perturbation interval. At this point reliability depends on ”who leaves the sys-
tem”, i.e. if all the nodes forming the cluster leave, then the reliability of the overlay will be
low, leading to partitions and nodes isolations.

5 Isolation may occur since a contact leaves the system without giving a notice to nodes which
joined through it.

6 Mechanisms to purge non-necessary connections are discussed in [2].
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(a) (b)

Fig. 1. SCAMP vs DET after a Δp with churn rate equal to 240/Δp

3.2 Experimental Results

Evaluating Reliability of the Topology generated by SCAMP & DET. In the measure-
ment interval the group is freezed in a certain configuration. Thus, members at the
beginning of this interval remains in the group till the end of the simulation and no new
member is added.

The plot in Fig. 1(a) shows that DET is able to guarantee that each message sent
by a group member in the measurement interval is delivered by every group member
independently of the churn rate suffered during the perturbation. On the other hand,
SCAMP is sensitive to different churn rates suffered in the perturbation interval. In
particular, only with churn rates lower than 1.5 membership changes (joins or leaves)
per-second the proportion of nodes reached by a multicast is the 80% of nodes. Plot in
Fig.1(b) shows as the poor reliability of SCAMP is due to a small average degree (from
2.1 to 2.7). This degree is ever less than the threshold of log(nf = 80) = 4.38 to be
reached for a successful working of SCAMP. The average node-degree of DET only
points out that the built topology is a tree, it has no direct relation with reliability. In the
next paragraph we discuss scalability of DET considering the node-degree distribution.

Evaluating Scalability of the Topology generated by SCAMP and DET. To evaluate the
scalability for SCAMP and DET it is necessary to examine the structure of the topology
that they build.

In particular for DET the size of the contact list has a huge impact on the overlay
topology since a small contacts list contributes to keep the message overhead small but
the obtained topology converges to a star topology with the node of rank 0 in the middle.
In the Fig. 2 plots showing the distribution of the node-degree in case of a contact list
with size equal to ntot (Fig. 2(a)) and equal to ntot/10 (Fig. 2(b)). Note that the size of
the contact list is a predominant parameter with respect to the churn rate. In particular,
if the contact list is small the topology converges to a star even for low churn rates (Fig.
2(b) curve for Δp = 200sec). With a large contact list the topology converges to a star
(more properly, the topology shows a set of hubs) only for high churn rates (Fig. 2(a)
curve for Δp = 5sec), but the tree become deeper for low churn rates (Fig. 2(a) curve
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(a) (b)

Fig. 2. DET: Degree Distribution at t3 for |contacts| = ntot and |contacts| = ntot/10

(a) (b)

Fig. 3. Degree distribution and node-degree of each node for SCAMP

for Δp = 200sec). Thus, it is confirmed for DET that the faster joins (a join takes a time
equal to the maximum round-trip time between contacts links) the least scalable is the
topology 7. On the contrary, SCAMP is always able to balance the degree for each node
(see Fig. 3(b)) showing a great scalability. The churn rate impacts only on the average
degree and in the distribution degree (see Fig. 3(a)) affecting reliability.

Evaluating Leave Latency for DET. We evaluate leave latency as the average time that
passes from the invocation of a leave (the sending of an unsubscription message) to
the actual departure of the node from the group (the receiving of an acknowledgment).
Note that for each node of rank 1, this time is equal to the round-trip time on the link
connecting the node with the node with rank 0. As the rank increases the latency may
increase as well. In the worst case a node with rank i may concurrently invoke its
leave with all nodes with lower rank belonging to its branch. In this case the latency

7 Note that the more sophisticated mechanisms to join, pointed out in [2], try to maintain a small
contact list and a scalable generated topology at the same time. However, these mechanism
with high churn rates may lead to unpredictable latency of join/leave operations.



234 R. Baldoni et al.

(a) (b)

Fig. 4. Leave latency and conflicts number for a scalable topology built by DET

becomes proportional to the rank of a node. Three factors influence the latency of a
leave (i) the depth of the tree (deeper trees bring higher latency), (ii) the rate of leaves
(higher rates brings higher latency) and (iii) link delays. The first factor depends on the
size of the contact list. In practice, with a contact list very small (as pointed out in the
previous paragraph) the tree converges to a star. In this case the average latency is equal
to the round-trip time on the link connecting the node with the node with rank 0. The
third factor depends on the underlying network behavior, then it may unpredictable. To
avoid that an unexpected network behavior biases our analysis we consider (only for
this particular evaluation) that all links have a RTT equal to 0.02ms 8. Then, we have
chosen to evaluate the leave latency in the case in which (i) all node leaves the system
at the same time, (ii) the contact list is very large (|contacts| = ntot) and (iii) the
churn rate is low (Δp = 200s). In this way the tree is a branch and we can evaluate
the worst case for leave latency but the best case for scalability of the topology. In Fig.
4 the latency distribution and the number of conflicts for each node, i.e. the number of
unsubscription messages received by a node when it was leaving, is shown.

This behavior confirms that the most scalable topology for DET is at the cost of
latency of leaves and joins (as pointed out in the previous paragraph). For this reason
DET provides reliability at the cost of scalability (either in terms of a not scalable
topology or in terms of join/leave latency).

The impact of the lease mechanism in SCAMP. The plots in Fig. 5 shows as the lease
impacts the reliability of SCAMP under churn. In practice, the lease mechanism does
not influence in the average the reliability of SCAMP. What the lease produces is a high
clustering of the group, i.e. most of the nodes are very-well connected and some nodes
are isolated. To point out this behavior see (i) Figure 6(a) in which the average number
of isolated nodes is in SCAMP higher than in SCAMP without lease and (ii) Fig.6(b)
in which not isolated nodes have an average degree higher than in the case of SCAMP
without lease.

The reason underlying this behavior is that the lease mechanism forces even a con-
nected node to re-subscribe contacting an arbitrary member of its partial view. With

8 This value has been chosen so small only for convenience.
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(a) (b)

Fig. 5. The impact of the lease in SCAMP on reliability and on the average degree

(a) (b)

Fig. 6. Node isolation and degree for SCAMP with lease and SCAMP without lease

high churn this member may be inactive. Even if the lease is repeated the same sce-
nario may occur. On the other hand, for those nodes that find an active node upon the
re-subscription, there is a new dissemination in the system of their node identifiers that
enlarges partial views. It is clear that in fairly static systems (systems with very low
churn rates) the lease mechanism has a valuable impact as shown in [10].

4 Related Work

The group membership problem has been extensively studied, and many specifications
and implementations exist in literature ([8], [5], [7] just to name a few). These group
membership mechanisms ensure greater consistency of group views at the expense of
latency and communication overhead.

Probabilistic gossip-based algorithms are being widely studied now. While gossip
protocols are scalable in terms of the communication load imposed on each node, they
usually rely on a non-scalable membership algorithm. This has motivated work on
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distributing membership management [9], [10] in order to provide each node with a
random partial view of the system, without any node having global knowledge of the
membership. However, Jelasity et al. in [11], through an extensive and valuable exper-
imental analysis (not comprising SCAMP), point out the inability of GGMs to make a
uniform sampling of peers. Allavena, Demers and Hopcroft have recently proposed a
new scalable gossip based protocol[1] for local view maintenance without requiring the
assumption of uniformly random views but based on a so-called reinforcement mech-
anism. They have also given theoretical proofs regarding the connectivity of the graph
under churn. They prove that all GGM protocols that does not enjoy a reinforcement
mechanism converge to star topology under churn. Liben-Nowell et al. [13] has given
a theoretical analysis of structured p2p networks under churn. They define the half-life
metric which essentially measures the time for replacement of half the nodes in the net-
work by new arrivals. This metrics is coarser than churn rate and useful when the size
of the network is fixed.

5 Conclusion

Through an experimental analysis which compares two p2p group membership proto-
cols, this paper has pointed-out a sharp trade-off between reliability of the generated
overlay topology and its ability to scale under churn.

In particular, maintaining an overlay scalable under high churn rates and without
sacrificing reliability, latencies of joins and leaves operations become unpredictable.
On the other hand, keeping latencies reasonably small (at least predictable) under high
churn rates without sacrificing reliability means obtaining not-scalable overlays as stars.
In fact, the simulation study pointed out that to obtain overlay scalability and small
join/leave latencies in dynamic systems, reliability is compromised. On the contrary,
to obtain overlay reliability and join/leave latencies predictable in dynamic systems,
overlay scalability is compromised.
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Abstract. Peer-to-peer (P2P) overlay networks, such as CAN, Chord,
Pastry and Tapestry, lead to high latency and low efficiency because they
are independent of underlying physical networks. A well-routed lookup
path in an overlay network with a small number of logical hops can result
in a long delay and excessive traffic due to undesirably long distances in
some physical links. In these DHT-based P2P systems, each data item
is associated with a key and the key/value pair is stored in the node to
which the key maps, not considering the data semantic. In this paper, we
propose an effective P2P routing algorithm, called Uinta, to adaptively
construct a structured P2P overlay network. Uinta not only takes ad-
vantages of physical characteristics of the network, but also places data
belonging to the same semantic into a cluster and employs a class cache
scheme to reduce the lookup routing latency. Simulations make some
comparisons between Chord and our Uinta algorithm all running on the
GT-ITM transit stub topology. The results show Uinta routing algorithm
significantly improves P2P system lookup performance.

1 Introduction

A peer-to-peer (P2P) network is a specialized distributed system at the applica-
tion layer, where each pair of peers can communicate with each other through
the routing protocol in the P2P layer. Routing algorithm is the key component
of P2P networks. It nearly determines the total performance of P2P networks.

P2P systems can be classified into two main categories, namely unstructured
and structured. Unstructured systems like Gnutella [1], KazaA [2] and Freenet [3]
are composed of peers joining the network with some loose rules, without any prior
knowledge of topology. It is easier to build and maintain. Typically, new peers
randomly connect to existing alive nodes in the network and the searching process
for data is flooding across the overlay with a limited scope. However, the flooding-
based searching mechanism consumes too much bandwidth to be suitable for large
systems.
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Another type of P2P systems named structured P2P systems [4][5] [6][7] fol-
low some predetermined structures. These structures need to be maintained by
participant peer nodes. Such structured P2P systems use Distributed Hash Ta-
ble (DHT) as a substrate, Data object (or value) location information is placed
deterministically at the peers with identifiers corresponding to the data object’s
unique key, which makes the routing mechanism more efficient. However, these
systems are constructed in overlay networks at the application layer without
taking physical network topologies into consideration. Therefore it is possi-
ble to result in high lookup delays and unnecessary wide-area network traffic
when a routing hop takes a message to a peer with a random location in the
Internet.

In order to reduce lookup delays, some researchers have proposed several
DHT-based virtual network infrastructures using physical topology information
[8][9][12], which map the overlay logical identifier onto the physical network so
that neighboring nodes in the logical space are close in the physical network.
But all of these systems ignore the user’s interest and not consider the data
semantic.

The primary contribution of our work is that we propose an overlay network
named Uinta to address both the user’s interest and the physical topology. All
peers are divided into several clusters based on the physical topology of network,
which makes peers in the same cluster have small link latency and peers in the
different cluster have long link latency. Because users always retrieve data of
the same semantic with their interests, we store the data information based on
the data semantic, which makes data belonging to the same semantic content
be placed in the same cluster. A cache scheme is also employed to reduce the
routing cost. Not only data searched recently but also their category informa-
tion are cached. So it can use the information of the cache table directly if the
user searches data of this category next. It is obvious that P2P system work-
load has temporal and spatial localities just as that in the web traffic [10]. For
example, a user who retrieves a song is likely to retrieve other songs in subse-
quential requests. A high hit rate for this cache schema can be expected, thus a
reduced average number of routing hops and lower routing network latency can
be achieved.

Uinta is a two-layer overlay network in which peers are organized in dif-
ferent clusters. Routing messages are routed to the destination cluster through
the inter-cluster overlay first, and then routed to the destination peer using
an intra-group overlay. We take a torus overlay structure in Chord system to
construct Uinta for both layers because the ring geometry allows the great-
est flexibility, and hence achieves the best resilience and proximity
performance [11].

The remainder of the paper is organized as follows. Section 2 provides the
method to construct Uinta overlay network. Section 3 shows an overview design
of Uinta routing algorithm and the theoretical analysis of algorithm. Our exper-
imental results are described in Section 4. Related work is discussed in Section
5. Section 6 concludes the paper and gives future works.
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2 Uinta Overlay Network

In this section, we show how to incorporate the underlying topological informa-
tion and the data semantic in the construction of Uinta overlay to improve the
routing performance.

2.1 Construction of Uinta Overlay Network

Construction of Uinta overlay network involves three major tasks: 1) forming
peer clusters based on the physical topology of network; 2) assigning an identifier
to a peer or a key to locate a peer in the peer cluster; 3) constructing an overlay
network across peer clusters.

1) Cluster formation: The goal of our clustering scheme is to have a set of
peers partitioned into several clusters so that peers within a cluster are closer to
one another than to ones in a different cluster. So peers should be organized into
clusters based on the physical topology of network. Because the cluster formation
strategy has great impact on Uinta efficiency, it must be simple and fast with
minimal overhead. Also, it must be approximately accurate and can group the
close peers into the same cluster.

A simple and relatively accurate topology measurement mechanism is the
distributed binning scheme proposed by Ratnasamy and Shenker [12]. In this
scheme, a well-known set of machines are chosen as landmark nodes, and system
peers are partitioned into disjoint bins so that peers that fall within a given bin
are relatively closer to each other in terms of network link latency. Although
the network latency measurement method (ping) is not very accurate and de-
termined by many uncertain factors, it is adequate for Uinta to use the method
similar with [12] for cluster formation.

Table 1 shows 6 sample nodes A, B, C, D, E and F in Uinta system with
measured network link latencies to 3 landmark nodes L1, L2, and L3. We might
divide the range of possible latency values into 3 levels: level 0 for latencies in
the range [0,100] ms, level 1 for latencies between [100,200] ms and level 2 for
latencies greater than 200ms. The cluster name is created according to measured
latencies to the 3 landmark nodes L1, L2, and L3, and this information is used

Table 1. Sample peers in a Uinta system with three landmark nodes

Peer Dist-L1 Dist-L2 Dist-L3 Cluster Name

A 110ms 150ms 240ms 112
B 22ms 135ms 235ms 012
C 285ms 264ms 45ms 220
D 260ms 244ms 67ms 220
E 30ms 120ms 220ms 012
F 28ms 115ms 225ms 012
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P1 ……… Pm S1 ……… Sn 

 
Fig. 1. The binary format of identifier in Uinta

for peers clustering. For example, Peer A’s landmark information is 112. Peers
C and D have the same information: 220, so they are in the same cluster named
220. The other nodes belong to the cluster named 012.

2) Assignment of identifier: This task also includes four subtasks: assignment
of the peer id, the cluster id , the key id and the class id. In Uinta, the (m+n)-bit
identifier for each peer, each cluster and each key is composed of two parts: the
m-bit prefix and the n-bit suffix. For the peer id, the m-bit prefix is assigned to
the identifier of a cluster that the peer belongs to and the n-bit suffix is assigned
to the identifier chosen by hashing the peer’s IP address. For the key id, the m-
bit prefix is assigned to the identifier of a class that the key belongs to and the
n-bit suffix is assigned to the identifier chosen by hashing the key. For the cluster
id (or the class id), the m-bit prefix is assigned to the identifier generated by
hashing the cluster name (or the class name) and the n-bit suffix is assigned to
0. The consistent hash function such as SHA-1 [13] is used to avoid the possible
identifier duplication problem.

The binary format of identifier in Uinta is shown in Fig.1, in which Pi and
Sj(i = 1, 2, . . . , m, and j = 1, 2, . . . , n) are assigned to 0 or 1. P1 . . . Pm is referred
to the prefix of an identifier that is marked as P , which is the identifier of cluster
or class. S1 . . . Sn is referred to the suffix of an identifier that is marked as S,
which is hashed by the peer’s IP address or the key. So the identifier is equal to
D = P ∗ 2n + S.

3) Uinta overlay network construction: To construct the overlay, each peer
p in Uinta system maintains two finger tables: the c-finger table and the l-finger
table, and a class cache table. Let Dp be the identifier of peer p and Dp =
Pp ∗2n +Sp. The ith entry in the c-finger table with m entries at peer p contains
the identifier of first-joined peer q in the cluster that succeeds Pp ∗2n by 2i−1∗2n

on the inter-cluster identity circle, i.e., q = c-successor((Pp+2i−1) mod 2m∗2n),
where 1 ≤ i ≤ m. We call peer q the ith c-finger of peer p, and denote it
by p.c-finger[i]. The ith entry in the l-finger table with n entries at peer p
contains the identifier of peer q whose suffix identifier Sq succeeds Sp by 2i−1

on the intra-cluster identity circle, i.e., Sq = l-successor((Sp + 2i−1) mod 2n)
and q = Pp ∗ 2n + Sq, where 1 ≤ i ≤ n. We call peer q the ith l-finger of peer
p, and denote it by p.l-finger[i]. A class cache table entry includes both the
class identifier of data searched recently and the identifier of peer at which data
information stores (see Fig.2).

Besides the three tables above, in Uinta, each peer uses the landmark table
to maintain the information of landmark nodes. It simply records IP addresses
of all landmark nodes, which can help a peer joining decide in which cluster it
should be located.
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Notation Definition 

identifier (Pp+ 2i-1) mod 2m * 2n  
c-

finger[i] 
 

node 
the firstly-joined peer in the 

cluster that succeeds (Pp+ 2i-1) 
mod 2m * 2n, where 1 i m≤ ≤  

c-successor the firstly-joined peer in the 
next cluster  

 
 

c-finger 
table 

c-predecessor the firstly-joined peer in the 
previous cluster 

identifier (Sp+ 2i-1) mod 2n  
l-

finger[i] 
 

node 
peer q= Pp*2n+Sq in the same 

cluster, where  
Sq =l-successor ((Sp+ 2i-1) mod 

2n) and 1 i n≤ ≤  
l-successor the next peer in the same 

cluster 

 
 

l-finger 
table 

l-predecessor the previous peer in the same 
cluster 

class identifier the class identifier of data 
searched recently 

 
class 

cache table node a peer in the cluster data 
information stores 

 

Fig. 2. Definition of data structures for
peer p, using the (m + n)-bit identifier

Peer 0000000
l-finger table

identifier       node    
   0000001      0000010
   0000010      0000010
    0000100      0000101
    0001000      0001010

Peer 0000000
c-finger table

identifier       node    
   0010000      0010010
   0100000      0110001
  1000000      1000011

Peer 0000000
routing cache table

class identifier       node

          0100000          0110001
          1010000          1010100
           1100000          1110010

Fig. 3. An illustrative example of Uinta

Fig. 3 shows an example of Uinta (with m=3, n=4). As shown in the figure,
the search space is partitioned into 6 clusters after a series of peers join and leave.
Peer 0 in cluster 0 maintains three tables: the c-finger table, the l-finger table
and the class cache table. The first l-finger of peer 0 points to peer 2 because
peer 2 is the first node that succeeds peer 0 within cluster 0. Similarly, the first
c-finger of peer 0 points to peer 18 because peer 18 is the first-joined peer of
the first cluster that succeeds cluster 0. The class cache table can be established
after searching. From this table, we know the entry of class 5 is peer 84, which
can not get from the c-finger table directly. Tables of other peers are not shown
here for clarity of presentation.

2.2 Peer Operation

1) Peer joins: When a new peer p joins the system, it sends a join message to a
nearby peer q that is already a member of system. This process can be done in dif-
ferent methods. We simply assume it can be done quickly (this is the same assump-
tion as in other DHT algorithms). Then peer p gets the information of landmark
nodes from this nearby peer q and fulfills its own landmark table. It then decides
the distance between landmark nodes and itself and then uses the distributed bin-
ning scheme to determine the suitable cluster Pp it should join. The identifier Dp

of peer p can be gotten by Dp = Pp ∗ 2n + Sp (Sp is the hash value of IP address
of peer p). Consequently, peer p connects peer p′ in the cluster Pp through the
c-finger table of peer q and then is located in the cluster based on the suffix Sp.
In the following step, it creates routing data structures: the c-finger table and the
class cache table that are the same as that of peer p′ and the l-finger table. The
mechanism used in Chord [4] can be introduced without modification.

If Pp is among the prefix of c-finger[i].identifier and the identifier prefix of
c-finger[i].node denoted as peer x, peer p will form a new cluster with identifier
prefix Pp. Peer p acquires peer x as its c-successor and peer q as its c-predecessor
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which is the c-predecessor of peer x. Every peer in the cluster where peer x
located, when notified by peer p, acquires peer p as its c-predecessor. When
the peer whose origin c-successor is peer x next runs of stabilize [4], which is
periodically to learn about newly joined nodes, it asks its origin c-successor (for
example peer x) for its c-predecessor (peer p now); then this peer acquires peer
p as its c-successor. Because peer p already knows one peer x nearby the cluster
in the system, it can learn its c-fingers table by asking peer x to look them up in
the whole P2P overlay network. The detailed process is described in [4]. All data
structures of l-finger table point to itself. Keys between Pp ∗ 2n and Xp ∗ 2n are
moved form cluster Xp∗2n to cluster Pp∗2n. Peer p joins the system successfully.

2) Peer leaves or fails: To increase robustness, each Uinta peer maintains an l-
successor list of size r containing the first r successors of peer in the same cluster,
a c-successor list of size r containing first-joined peers in the first r successor
clusters and a cl-successor list of size r containing r peers in the cluster that the
c-successor of peer locates in. If a peer’s immediate c-successor or l-successor or
cl-successor does not respond, the peer can substitute the second entry in its
c-successor list or l-successor list or cl-successor list.

The method for a peer leaving or failure is similar with that for a peer leaving
in Chord. We do not give the detail description here any more.

2.3 Cache Scheme

The caching scheme is one of the most important aspects which distinguishes
Uinta from other P2P systems. OceanStore [14] and CFS [15] also use cache to
improve the system performance, where files are cached along the routing path.
Because of the large storage requirement for caching files and blocks, an individual
node can not cache many files or blocks, thus they can not anticipate a high cache
hit rate. Such a caching scheme is not very efficient, especially in a large-scale dy-
namic system with a large amount of files being shared. In Uinta, it caches the
information about classes of data rather than data, and therefore we can hold a
large amount of routing information with a relative small cache space and achieve
a high cache hit rate. The foundation for using the class cache scheme is that the
P2P system workload has temporal and spatial localities. The user tends to search
data he is interested in, which always have the same semantic and belong to the
same class. For example, a user who retrieves a song is likely to retrieve other songs
in subsequential requests. Thus, the user can know which cluster it stores at di-
rectly from the class cache table for the next request to search another song, and
then a significant fraction of searching will be intra-cluster transfers, which can
bypass inter-cluster transfers and generate a more efficient routing algorithm.

3 Uinta Routing Algorithm and Theoretical Analysis

3.1 Routing Algorithm

1) When a peer p wants to obtain the file associated with key k and its class c,
it gets the class identifier Pk of file hashed by SHA-1 with c;
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2) Check whether exists an entry (Pk ∗ 2n, q) for the class identifier Pk in the
class cache table; if does, jump to peer q directly, then to 6); otherwise, to 3);
3) Check whether Pk falls between the Pp of p and the Pq of its c-successor q;

if does, jump to q, then to 6); otherwise, to 4);
4) x = p;

repeat
Search peer x’s c-finger table for peer q whose prefix of identifier Pq immediately
precedes Pk;

x = q;
until Pk falls between the Px of x and the Pq of its c-successor q;

5) Jump to peer q;
6) Find a peer d through the l-finger table of peer q so as to make the suffix of

key identifier Sk hashed by SHA-1 with k fall between the Sx of x and the Sd

of its l-successor d;
7) Return the identifier of peer d and (key, value) pair searched to peer p, and

join (Pk ∗ 2n, d) to the class cache table of peer p.

3.2 Theoretical Analysis

In this section, we analyze the routing latency for Uinta. We suppose that there
are N peers in both Chord and Uinta and let M be the number of clusters
in Uinta. Assuming the average network latency for each hop (hop latency) in
Chord is LChord−hop, thus the average routing latency in Chord is:

LChord =
1
2
∗ log2 N ∗ LChord−hop (1)

While in Uinta, assuming the average network latency for each hop between
the clusters in Uinta is LUinta−inter , the average network latency for each hop
within the cluster in Uinta is LUinta−intra and there are Ni peers in cluster i,
thus the average routing latency in Uinta is:

LUinta =
1
2
∗ log2 M ∗ LUinta−inter +

1
M

∗ 1
2
∗ log2

M∏
i=1

Ni ∗ LUinta−intra (2)

In our simulations, we find the inter-cluster hop latency in Uinta is nearly the
same or slightly larger than the hop latency in Chord, the intra-cluster hop
latency is much smaller and N % M . Thus, we have

LChord−hop ≈ LUinta−inter (3)
LChord−hop > LUinta−intra (4)

and

(N1N2 · · ·Nm)
1

M ≤ 1
M

(N1 + N2 + · · ·+ Nm) (5)
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Then we get

LUinta ≤ 1
2 ∗ log2 M ∗ LUinta−inter + 1

M ∗ 1
2 ∗ log2(

N
M )M ∗ LUinta−intra

= 1
2 ∗ log2 M ∗ LUinta−inter + 1

2 ∗ log2
N
M ∗ LUinta−intra

< 1
2 ∗ (log2 M + log2

N
M ) ∗ LUinta−inter

≈ 1
2 ∗ log2 N ∗ LChord−hop

= LChord

(6)

From above discussions, we can expect a routing reduction by using the routing
algorithm in Uinta. Supposing in a P2P system with 220 nodes, the average la-
tency per hop in Chord is 100ms and the average latency between the clusters in
Uinta is 108ms. The average routing latency in Chord algorithm is 1000ms. As-
suming all the peers are formed 210 clusters in Uinta system, the average latency
within the cluster is only half of the latency between the clusters which is 54ms
each hop, thus the average routing network latency in Uinta is approximately to
810ms. The average system routing latency reduces by 19%. If we consider the
cache scheme used in Uinta and assuming the hit ratio is P , we get

LUinta−cache ≤ P (1 ∗ LUinta−inter + 1
2 ∗ log2

N
M ∗ LUinta−intra)

+ (1− P )(1
2 ∗ log2 M ∗ LUinta−inter + 1

2 ∗ log2
N
M ∗ LUinta−intra)

= [P + 1
2 (1− P ) log2 M ] ∗ LUinta−inter + 1

2 ∗ log2
N
M ∗ LUinta−intra

≤ 1
2 log2 M ∗ LUinta−inter + 1

2 ∗ log2
N
M ∗ LUinta−intra

< LChord

(7)

So we can reduce more routing latency using the cache scheme. Assuming P is
40%, LUinta−cache in Uinta is less than 637 ms, which reduces the latency by
36%.

4 Performance Evaluations

4.1 Simulation Methodology and Performance Metrics

In our simulation, we use the GT-ITM [16] transit stub topology generator to
generate the underlying network, the number of system nodes is varied from 1000
to 10000. As far as the logical overlay is concerned, we build Uinta based Chord
simulator. Each peer in the overlay is uniquely mapped to one node in the IP
layer. We choose 4 landmarks placed at random and there are three levels for the
latency from the landmark to the peer. 100 ∗N pseudo fields that are classified
into 100 categories are generated and distributed across all the peers in the
simulated network. For each experiment, 100000 randomly generated routing
requests (including fields and their types) are executed. We choose Chord as
the platform because the ring geometry allows the greatest flexibility. However,
Uinta can also be easily deployed in other structured P2P systems such as CAN
and Pastry.

We consider three metrics to verify the effectiveness of Uinta: (1) Routing
hop; (2) Routing latency; (3) Latency stretch: the ratio of the average latency
on the overlay network to the average latency on the physical network.
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Fig. 4. Uinta and Chord routing performance comparisons

4.2 Routing Cost Reduction

The primary goal of Uinta algorithm is to reduce the routing cost in the P2P
system. Fig.4 shows results of routing cost evaluation. In this simulation, we
compare routing performances of Uinta-origin, Uinta-cache10, Uinta-cache50,
Uinta-cache100 with that of Chord under different network sizes. Uinta-origin is
referred to the Uinta algorithm without the cache scheme, while Uinta-cachen
is referred to the Uinta algorithm with n cache entries.

Fig.4(a) shows the routing performance comparison result measured with the
average number of routing hops. Uinta, Uinta-cache10, Uinta-cache50, Uinta-
cache100 and Chord have good scalability: as the network size increases from
1000 nodes to 10000 nodes, average numbers of routing hops only increase around
25%, 27%, 26%, 30%, 38% respectively. Obviously, with the introduction of
class cache scheme, the routing cost in Uinta is reduced significantly. For the
original Uinta system, the average number of routing hops is a little smaller
than that of Chord, which only gets a 2.2% reduction. Using the class cache
scheme, the average number of routing hops drops significantly. The more en-
tries in the class cache table, the more performance gain achieved. With a 10-
entry class cache table, the average number of routing hops drops by 3.8%.
As the number of entries increases to 50, Uinta can get 19.3% reduction. As
the number of entries increases to 100, the average number of routing hops
decreases 38.5%.

As a proximate metric, the average number of routing hops cannot represent
the real routing cost. The actual routing latency highly depends on the average
latency for each hop. Fig.4(b) shows the measured results of average routing
latency in Uinta, Uinta-cache10, Uinta-cache50, Uinta-cache100 and Chord. Al-
though the original Uinta has the nearly equal average number of routing hops
with that of Chord, it has the smaller average routing latency. For the orig-
inal Uinta and Uinta-cache10, average routing latencies get 20.1% and 23.1%
reduction respectively compared with that of Chord. As the number of entries
increases to 50, Uinta can get 39.5% reduction. As the number of entries increases
to 100, the average routing latency decreases 59.9%.
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Fig. 5. Performance comparisons in case of a 10000-peer network

4.3 Routing Cost Distribution

In this section, we measure the probability density function (PDF) distribution
of average number of routing hops and the cumulative density function (CDF)
distribution of average routing latency to analyze the performance of Uinta
algorithm.

Fig.5(a) plots the PDF of average routing hops for a network with 10000
peers. The maximum numbers of routing hops for Chord, Uinta-origin, Uinta-
cache10, Uinta-cahce50 and Uinta-cache100 are 15, 13, 12, 11, and 9, respec-
tively. The average numbers are 6.64, 6.57, 6.42, 5.56, and 4.47 , respectively.
Routing hops for four Uinta algorithms get 1.1%, 3.3%, 16.3%, and 32.7% de-
creasing for a 10000 peer network, respectively. Fig.5(b) plots the CDF of av-
erage routing latency for a network with 10000 peers. Average routing laten-
cies for Chord, Uinta-origin, Uinta-cache10, Uinta-cahce50 and Uinta-cache100
are 531.51ms, 412.36ms, 395.50ms, 316.60ms, and 217.88ms, respectively. Aver-
age routing latencies for four Uinta algorithms decrease 22.4%, 25.6%, 40.4%,
59%, respectively compared with that of Chord. In Uinta, routing hops is di-
vided into two parts: inter-cluster hops and intra-cluster hops. The latency
for inter-cluster hops is more than that for intra-cluster hops, therefore the
latency have more decreasing even though the decreasing of routing hops
is little.

4.4 Stretch Reduction

The latency stretch is referred to the ratio of the average latency on the over-
lay network to the average latency on the IP network, which can be used to
characterize the match degree of the overlay to the physical topology. Table 2
summarizes stretch statistics in the case of a 10000-peer network. According to
it, we know that the stretch is reduced significantly using Uinta with the cache
scheme. This shows that using the topology-aware and semantic-aware overlay
construction with the cache scheme, we can achieve significant improvements in
the lookup performance.
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Table 2. Latency stretch result for Chord and Uinta

Algorithm Average routing latency Latency stretch

Chord 531.51ms 4.40
Uinta 412.36ms 3.51

Uinta-cache10 395.30ms 3.19
Uinta-cache50 316.60ms 2.69
Uinta-cache100 217.88ms 1.75

5 Conclusions and Future Work

We propose an overlay network named Uinta, in which peers are clustered ac-
cording to the physical topology and data information with similar semantics
into the same cluster. The user’s interest is taken into consideration, and we
employ the class cache scheme. From our simulation, we conclude that Uinta of-
fers significant improvements versus random overlay networks. We believe that
Uinta can help improve the lookup performance of current and future P2P sys-
tems where data information is naturally clustered and the physical topology
and users’ interests are taken into account. In the future, we plan to explore how
to express the data semantic instead of the method now in which the users give
the category of data. Load balanced placement of data information is also our
next consideration.
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Abstract. We present a new approach to find a collision-free transmission sched-
ule for mobile ad hoc networks (MANETs) in a TDM environment. A hexagonal
cellular structure is overlaid on the MANET and then the actual demand for the
number of slots in each cell is found out. We assume a 2-cell buffering in which
the interference among different mobile nodes do not extend beyond cells more
than distance 2 apart. Based on the instantaneous cell demands, we propose op-
timal slot assignment schemes for both homogeneous (all cells have the same
demand) and non-homogeneous cell demands by a clever reuse of the time slots,
without causing any interference. The proposed algorithms exploit the hexagonal
symmetry of the cells requiring O(log log m + mD + n) time, where m is the
number of mobile nodes in the ad hoc network, n and D being the number of
cells and diameter of the cellular graph.

1 Introduction

In a time division multiplexed (TDM) environment, the existing solutions to time slot
assignment in a MANET attempt to assign a globally unique time slot to each node
in the network, usually through graph coloring techniques [13, 14, 15], or by finding
an appropriate set of partitions of the set of nodes and then assigning a unique time
slot to each of these partitions [7, 10], so that no two nodes transmit during the same
slot. The algorithms described in [6, 7, 10] need more slots (non-optimal assignment)
than the optimal solution and also the number of slots increases rapidly with increase
in the maximum node degree of the network graph, although the average node degree
may be very small. [15] uses a maximal independent set of the nodes to generate a
self-organizing TDMA schedule.

In this paper, we introduce a novel strategy for assigning time slots to the nodes in an
ad hoc network based on the location information of the individual nodes. The proposed
solution significantly improves slot utilization by an elegant technique of re-using the
time slots by sufficiently distant nodes, avoiding any collision during transmission. For
this, we first partition the deployment zone into regular hexagonal cells, similar to the
cellular networks. Using the location information of the nodes, the number of active
nodes and hence, the actual demand of each cell at that instant of time is computed. We
use this cell demand information to assign time slots to each mobile node by a clever
re-use of the time slots which exploits the hexagonal symmetry of the imposed cellular
structure, and avoids interference among the nodes. The proposed technique ensures
an optimal collision-free assignment for every node of the network in O(m) time, m

A. Pal et al. (Eds.): IWDC 2005, LNCS 3741, pp. 250–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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being the number of nodes in the network. We term this problem of finding an optimal
time slot assignment schedule for the ad hoc network as the Slot Assignment Problem
(SAP). The slot assignment algorithm presented here supersedes the existing algorithm
in [10, 13] with respect to optimality, and require O(log log m + mD + n) time to
determine an optimal, collision-free slot assignment schedule for the entire network, n
being the number of cells in the overlaid cellular graph and D being the diameter of the
ad hoc network.

Mobility of the nodes is also considered by invoking the assignment algorithm
whenever a node moves from one cell to an adjacent cell. Appropriate protocols for
identifying such a situation through the use of special control slots and broadcasting the
id of the leader of every cell to all nodes within that cell during these control slots, have
been presented.

2 System Model

We assume the pre-existence of a partitioning of the MANET deployment area into
a number of disjoint cells. The nodes in the network are assumed to possess location
information which are either GPS enabled or able to use the network infrastructure to
determine their locations relative to the deployment zone [4, 9]. A mapping is used to
convert the geographical region to hexagonal grid cells [5, 8]. The nodes need to be
synchronized in time. GPS can provide highly accurate and synchronized global time,
besides accurate location information.

3 Preliminaries

We first consider the static model of the slot assignment problem, where the number
of slots required for each cell is known a priori. The available time space is partitioned
into equal length time slots and are numbered 0, 1, 2, . . . from the lower end. The in-
terference between two assigned time slots is represented in the form of co-slot con-
straints, due to which the same slot is not allowed to be assigned to certain pairs of cells
simultaneously.

We consider a 2-cell buffering slot assignment problem (similar to 2-band buffering
in [1, 2, 3]) for a hexagonal cellular network overlaid on an ad hoc network, in which
a slot can be reassigned to a cell more than distance 2 away. Following the notations
in [1, 2], let s0, s1 and s2 be the minimum slot separations between assigned slots in
the same cell, in cells at distances one and two apart respectively. In our case of slot
assignment in a TDM environment, s0 = s1 = s2 = 1. A cellular graph is a graph
G = (V, E), where each cell of the hexagonal grid is represented by a node and an
edge exists between two nodes if the corresponding cells are adjacent to each other, i.e.,
they share a common cell boundary. Cells i and j are distance-k apart if the minimum
number of hops it takes to reach node i from j in G is k. All edges are assumed to be
symmetrical.

Figure 1 shows a cell a and its six adjacent cells. The diagram on the right models
this scenario as a hexagonal cellular graph of seven nodes. The notation Ni(u) denotes
the set of all cells that are at a distance ≤ i from cell u.
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Definition 1. Suppose G = (V, E) is a cellular graph. A subgraph G′ = (V ′, E′) of
G is said to be a distance-k clique, if every pair of nodes in G′ is connected in G by a
path of length at most k and V ′ is maximal.

Definition 2. A distance-2 clique of 7 nodes in a hexagonal cellular network is defined
as a complete distance-2 clique. The node that is at a distance-1 from all other nodes
in the complete distance-2 clique is termed as its central node or central cell and the
remaining nodes are termed as its peripheral nodes or peripheral cells.

In a 2-cell buffering environment, the co-slot interference may extend up to cells at
distance 2 apart. In view of this, we define a cellular distance-2 clique as follows.

Definition 3. A cellular distance-2 clique G2 = (V2, E2) is a graph generated from a
complete distance-2 clique G1 by adding edges to G1 between every pair of nodes that
are at a distance two in G1.

Figures 3(a) and 3(b) illustrate a complete distance-2 clique and the corresponding cel-
lular distance-2 clique. Cell 0 is the central node of the graph. The dashed edges in the
cellular distance-2 clique are the edges joining the distance-2 neighbors.

Definition 4. If G1 is a cellular distance-2 clique with node u as the central node, then
a cellular distance-2 clique G2 is said to be adjacent to G1 iff, i) u is a peripheral node
of G2, ii) the central node of G2 is also a peripheral node of G1, and iii) G1 and G2
have a total of 4 nodes in common, including the central nodes of G1 and G2.

4 Minimum Slot Requirement for Cellular Networks

Let D(2)
7 (G) be the sum of demands of all cells of a cellular distance-2 clique, G =

(V, E), where the cardinality of V , |V | ≤ 7. Then, D(2)
7 (G) =

∑
i ε G

wi, where wi is the

demand from the cell i.
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Fig. 3. A complete distance-2 clique and the corresponding cellular distance-2 clique

Definition 5. A 7-node cellular distance-2 clique G or its subgraph is called a critical
block, CB7, which is composed of a maximum of 7 cells, such that the sum of the
demands of the cells in CB7 is maximal over all possible cellular distance-2 cliques in
the network.

We denote the demand of a critical block by D(2)∗
7 . Thus D(2)∗

7 = max
∀ G

D(2)
7 (G). Note

that there may be more than one such cellular distance-2 clique. We first consider the
simpler case of homogenous cell demand, where all cells have the same demand.

4.1 Homogeneous Cell Demand

Let w represent the homogeneous demand for all cells in the network. For w = 1,
the critical block demand D(2)∗

7 would be 7 time slots. Referring to figure 4(a), we
see that due to structural symmetry, any distance-2 clique can be chosen as the critical
block. Without any loss of generality, let the cellular distance-2 clique abcdefg be
designated as the 7-node critical block, with node g as the central node. Considering
now the cellular distance-2 clique gbpqrdc, centered at c, we note that, node p can be
assigned the same time slots as those of nodes e and f , node r can be assigned the same
time slots as those of nodes a and f , while node q can be assigned the time slots as those
of nodes a, e and f . Thus, we find that the demand of the cellular distance-2 clique
gbpqrdc can be satisfied completely by the time slots assigned to the critical block.
Figure 4(b) depicts a possible assignment scheme for the cellular graph of figure 4(a).
We now state the following results.

Lemma 1. For any given unsatisfied node u, adjacent to one or more satisfied cellular
distance-2 cliques, it is always possible to find a satisfied node v at a distance-3 from u
such that the slot assigned to v is unused within a distance two of u.

We now extend the results of homogeneous demand with w = 1 to the general case
of w > 1 by simply assigning blocks of w consecutive slots to each node, instead of a
single slot, leading to the following result.

Lemma 2. The optimal number of slots required for a cellular graph with homoge-
neous demand of w slots per cell is 7w time slots.

For all positive and negative integer values (including 0) of m and n, we define the op-
eration (m, n) mod k as returning the slot numbers starting from m mod k to n mod k,
(including both m and n). The algorithm to handle w slots per cell demand is presented
below, which uses only the optimal number of required slots.
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Fig. 4. Slot assignment for a cellular graph with homogeneous unit demand

Algorithm homogeneous slot assignment

Step 1 : Assign slot numbers (0, w − 1) to the central cell of the critical block.
Step 2 : Assign slot numbers (iw, (i + 1)w − 1) mod 7w, i ≥ 1 to the ith cell to

the right of the central cell along a particular direction, say along the horizontal
line as shown in figure 4(b). That is, we assign the increasing order slot numbers
(0, w− 1), (w, 2w− 1), . . ., (6w, 7w− 1) repeatedly to the cells to the right of the
central cell along the horizontal direction.

Step 3 : Assign slot numbers (−iw,−(i − 1)w − 1)) mod 7w, i ≥ 1 to the ith cell
to the left of the central cell. That is, we assign the decreasing order slot values
(7w− 1, 6w), (6w− 1, 5w), . . ., (w− 1, 0) repeatedly to the cells to the left of the
central cell.

Step 4 : For rows below the central cell, shift the (0, w − 1) slot value 3 cells to the
left and then repeat steps 2 and 3 to obtain a slot assignment for each such row.

Step 5 : For rows above the central cell, shift the (0, w − 1) slot value 3 cells to the
right and then repeat steps 2 and 3 for each such row.

4.2 Heterogenous Cell Demand

We now consider the general case of SAP, where cells have different demands,i.e.,
∃wi, wj , i �= j, such that wi �= wj . The 7-node critical block is insufficient to determine
the optimal number of slots of the cellular graph, as demonstrated below.

Example 1. Consider the cellular graph as shown in figure 5. The numbers in paren-
theses beside each cell denotes the demand of the cell. The cellular distance-2 clique
abfihde has a demand of 62 slots. The subgraphs bcgjief and abcef have demands
of 61 and 62 time slots respectively. Thus, we see that there are two candidate criti-
cal blocks in the network : either subgraph abfihde or subgraph abcef . We arbitrarily
choose the subgraph abfihde as our 7-node critical block. For the distance-2 clique
bcgjief adjacent to the critical block, cells g and j can have their demands satisfied
from the slots assigned to the cells a and d. However, the demand of cell c (wc = 12)
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Fig. 6. An assignment scheme requiring 64 slots

is greater than the slots assigned to its two distance-3 neighbors, d and h of the 7-node
critical block. The demand sum of cells d and h, wd + wh = (4 + 6) < wc = 12.
Hence, it is necessary to assign slots in addition to those assigned to the critical block
to satisfy the demand of cell c. Thus, we see that for heterogeneous demand, in general,
the 7-node critical block will not always give the optimal number of slots of the cellular
network. Figure 6 shows a possible slot assignment scheme for the graph in figure 5.
The 2-tuple beside each cell denotes the slots assigned to that cell - (m, n) indicates the
slots in the range m to n, both inclusive.

The 7-node critical block fails to give the optimal number of slots as it is possible for
one of the nodes adjacent to a node of the critical block but not a part of it, to have a
demand that exceeds the sum of the demands of its distance 3 neighbors in the critical
block. From the cellular graph we see that for every peripheral node of the critical
block, there are three neighbors which are at a distance 3 from some other peripheral
node of the critical block. Consider for example the node f in figure 5 with neighbors
c, g and j. Node d can contribute to satisfying the demands of all of these three nodes
while the node a can only satisfy the demands of j and g, and node h can only satisfy
the demands of c and g. Hence, each of these three neighbors is a potential source
of excess demand over that of the D(2)∗

7 , either individually or in combination with the
others. This suggests that it is necessary to include all of these three nodes in computing
the optimal number of slots. Using a 8-node or 9-node critical block would also fail
to obtain a lower bound on the number of slots for the same reasons as for a 7-node
critical block. So, we consider a 10-node block consisting of a 7-node distance-2 clique
and three other nodes outside this distance-2 clique which are neighbors of a peripheral
node of this distance-2 clique. We thus get the following result.

Lemma 3. For a cellular network with a heterogeneous demand vector, to find the opti-
mal bandwidth requirement of the network, it is necessary to consider a 10 node critical
block, as using a critical block with fewer than 10 nodes would not be sufficient to com-
pute the minimum slot requirement of the network.

In order to compute the demand of the 10-node critical block for which the num-
ber of slots will be maximum among all such 10-node blocks, let C = (V, E) be a
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cellular distance-2 clique. Let freeu denote the number of slots of node u ε C that
can be used by a node which is at a distance three from u and not a part of C, and
usedu(j) be the number of slots assigned to u ε C that are reused by node j � ε C
and at a distance three from u. Noting that N3(u) is the set of all distance-3 neigh-
bors of node u, we define residual demand resj of node j ε N1(i), i ε C, j � ε C as,

resj = max(0, wj −
∑

u ε N3(j)∩V

usedu(j)). For i ε C, the sum of residual demands of

N1(i) which are not in C will be termed as the residual sum of neighbors of i and is

defined as Resi =
∑

j εN1(i),j �ε C
resj .

We demonstrate the procedure for computing the 10-node critical block with the
help of the following example.

Example 2. Consider the cellular graph shown in figure 7. Let abcdefg be a candidate
critical block. Without any loss of generality, we consider the three neighbors x, y and
z of node c. Initially, freea = wa, freef = wf and freee = we. The computation of
Resc would be as follows,

Step 1 : Assign slots to node x using maximum number of slots from node e, and the
rest, if any, from the node f .
usede(x) = min(wx, freee); freee = freee − usede(x)
usedf(x) = min(wx − usede(x), freef ); freef = freef − usedf (x)
resx = max(0, wx − (usede(x) + usedf (x)))

Step 2 : Assign slots to node z using maximum number of slots from node a, and the
rest, if any, from the node f .
useda(z) = min(wz, freea); freea = freea − useda(z)
usedf(z) = min(wz − useda(z), freef ); freef = freef − usedf(z)
resz = max(0, wz − (useda(z) + usedf(z)))

Step 3 : Assign slots to y using available number of slots from nodes e, a and f .
resy = max(0, wy − (freea + freee + freef ))

Step 4 : Sum the residual demands of x, y and z, i.e., Resc = resx + resy + resz .
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Fig. 7. A 10 node critical block
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Let Resmax(C) = max
i ε C

[Resi]. Referring to figure 7, let D(2)
10 (G) represent the de-

mand of the 10-node subgraph, G ≡ abcdefgxyz, where D(2)
10 (G) = D(2)

7 (C) +
Resmax(C). The demand of the 10-node critical block, D(2)∗

10 is then defined as the

demand of a 10-node subgraph that has the maximal D(2)
10 (G) in the network, i.e.,

D(2)∗
10 = max∀ G [D(2)

10 (G)]

LetRC represent the set of nodes that are outside C, but adjacent to some peripheral
node of C, corresponding to Resmax(C). We callRC as the maximum residual set of C.

Theorem 1. The demand sum D(2)∗

10 is the optimal bandwidth requirement of a hexag-
onal cellular network having a heterogeneous demand vector.

Proof. We established from lemma 3 that it is necessary to consider at least a 10 node
critical block in order to compute the minimum slot requirement of a cellular network.
We now prove that the demand of a 10-node critical block is necessary and sufficient to
compute the optimal bandwidth requirement of a hexagonal cellular network.

Let CB10 denote the 10-node critical block in a cellular network. Suppose the sub-
graph abcdefgxyz in figure 7 is our critical block. Let G = abcdefg be the cellular
distance-2 clique of the 10-node critical block. Let RG denote the maximum residual
set of G. Thus, RG = {x, y, z} in figure 7. We note that our 10-node subgraph for
a hexagonal cellular network is actually composed of two adjacent cellular distance-2
cliques.

To establish theorem 1, consider an assignment scheme which proceeds in a spiral,
layer by layer fashion, starting with the 10-node critical block. Layer 0 is composed
only of CB10, layer 1 composed of all unassigned cellular distance-2 cliques adjacent
to CB10. Layer 2 includes all unassigned distance-2 cliques adjacent to the distance-2
cliques in layer 1, and so on. Once the demand of CB10 has been satisfied, we first
start with the unassigned distance-2 clique in layer 1 that includes all the nodes of RG

and then move in an anti-clockwise spiral order. Call this distance-2 clique C1. Now
in figure 7, the nodes c, x, y and z of C1 are already satisfied. For the remaining three
unassigned nodes in C1, the nodes a, f , g and e can be used to satisfy their demands.
As the slots assigned to CB10 are from slot 0 to D(2)∗

10 − 1, if the remaining three nodes

in C1 were to require slots beyond D(2)∗
10 − 1, it would imply that D(2)

10(C1) > D(2)∗
10 ,

which is a contradiction. For the remaining distance-2 cliques adjacent to CB10, we see
that for any such distance-2 clique, C, there can be maximum of three unassigned nodes
in C. The assigned nodes are a part of CB10. To prove that D(2)∗

10 slots are sufficient to
satisfy their demands, we partition the set of the remaining distance-2 cliques adjacent
to CB10 into two sets :

1. Set of distance-2 cliques which has at least one but not all unassigned nodes within
distance 2 of the nodes in RG.

2. Set of distance-2 cliques whose unassigned nodes are all at a distance 3 from any
node in RG.

We first consider the scenario when there is at least one unassigned node within
distance two of RG. Without any loss of generality, let u and v be two unassigned
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nodes of the distance-2 clique C = auvxcgb within distance two of RG as shown in
figure 7. Node u is 2-hop and v is 1-hop away from x. From figure 7 it is apparent
that any such C would have to be adjacent to CB10. Now, D(2)∗

10 for a cellular network
would not be optimal if node u or v would require slots beyond that required by CB10.
Suppose, without any loss of generality, u requires slots beyond that assigned to CB10.
This implies that resu must be greater than resy + resz , or else these two nodes could
additionally be used along with the nodes d and e from the subgraph abcdefg of CB10
to satisfy the demand of u. Now, if resu > resy + resz

⇒ resu+resx > resx+resy+resz ⇒ resu+resv+resx > resx+resy+resz

This would imply that the nodes u, v and x form the setRG of the distance-2 clique
abcdefg. In other words, the clique abcdefg and the three nodes u, v and w would form
the 10-node critical block, which would be a contradiction to the original assumption
that the nodes x, y and z form the set RG for the cellular distance-2 clique G.

Considering now the second scenario of a distance-2 clique C such that all its unas-
signed nodes are no less than distance 3 from all nodes of RG. If C is adjacent to G,
then the demand of any unassigned node u ε C can be satisfied using all nodes of RG,
in addition to the nodes in G that are at a distance three from u. If the slots from 0 to
D(2)∗

10 − 1 were not sufficient to satisfy the demand of node u, then arguing as before, if
the residue demand of an unassigned node u ε C, resu is greater than Resmax(G), then
it implies that, resu > resx + resy + resz , which would again be a contradiction to
our original assumption thatRG = {x, y, z} represents the maximum residue set of the
distance-2 clique G. Thus, it is possible to satisfy the demands of all distance-2 cliques
adjacent to CB10, using the slots from 0 to D(2)∗

10 − 1.
Using a similar assignment procedure and argument as above, we can show that

the slots from 0 to D(2)∗
10 − 1 are sufficient to satisfy the demands of all unassigned

distance-2 cliques in layer 2 that are adjacent to satisfied distance-2 cliques in layer 1.
The process can be repeated for distance-2 cliques in layer 3, 4, 5, . . ., to obtain an
assignment scheme that requires only slot values from 0 to D(2)∗

10 − 1. Hence, D(2)∗
10 is

the optimal required bandwidth for a cellular network. �

Note that the cellular distance-2 clique of a 10-node critical block may not be a 7-node
critical block, as may be seen from figure 8. In figure 8 we see that the 7-node critical
block demand is 62 slots, while the 10-node critical block demand is 65 slots. Subgraphs
abfjide and abcef both have demands of 62 slots (corresponding to a 7-node critical
block), while the subgraphs pqrstuvwxy and pqwvrstu both have demands of a 10-
node critical block. If, abfjide (abcef ) is chosen as the 7-node critical block, then the
demand of the 10-node subgraph abfjidecgk (abcefdij) would be 64 time slots.
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Fig. 8. A 10 node critical block not formed by a 7 node critical block
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The algorithm for finding an optimal slot assignment for a cellular network with
heterogeneous demand, while satisfying the 2-cell buffering constraint is as follows :

Algorithm heterogeneous slot assignment

Step 1 : For each cell i of the network, construct a cellular distance-2 clique, C with i

as the central node. Compute the demand sum, D(2)
7 , of the cells belonging to C.

Step 2 : For each peripheral node j ε C, compute the residual sum set, Resj .
Step 3 : The maximum residual sum set,RC corresponds then to the set of neighbors of

a peripheral node k ε C such that Resk = Resmax(C) = max
j ε C

[Resj ]. Let G denote

the 10-node subgraph corresponding to central node i of C. Then, G = C ∪ RC .
Step 4 : Compute the demand of G, D(2)

10 (G) = D(2)
7 + Resmax(C).

Step 5 : Repeat step 1 to 4 to obtain the demand D(2)
10 (G) of all 10-node subgraphs in

the network. The maximum of these demands is the 10-node critical block demand.
D(2)∗

10 = max
∀ G

[D(2)
10 (G)]

Step 6 : Now arbitrarily choose one of the 10-node candidate critical blocks as the
10-node critical block of the cellular network.

Step 7 : Satisfy the demand of the nodes of CB10 under the 2-cell buffering constraint.
Step 8 : Satisfy the demands of all distance-2 cliques in layer 1, adjacent to CB10.

Begin with the one formed by the nodes of maximum residual set of CB10.
Step 9 : Continue the process of assigning slots to distance-2 cliques in layer 2, layer

3 and so on, in a spiral, layer by layer fashion as described in theorem 1.

5 A Centralized Optimal Slot Assignment Algorithm (COSA)

We present in this section a centralized slot allocation algorithm for assigning slots as
per demand of each cell in the cellular network, while utilizing the minimum number
of slots required for generating a collision-free transmission schedule that satisfies the
2-cell buffering constraint, s0 = s1 = s2 = 1.

Each MT is assigned a unique identifier (id) from the set {1, 2, 3, . . . , m}, where m
is the total number of mobile terminals. Initially, each mobile terminal (MT) knows its
positional co-ordinates.

In order to handle mobility of the mobile terminals, each cell keeps a few slots for
transmitting control messages and some unused slots for handling new MTs joining the
network and hand-off scenarios. In general, a cell i computes its demand wi as the sum
of the number of mobile terminals in the cell, the number of slots allocated for control
messages and an additional few unused slots. We assume the number of unused slots
to be some fraction f of the number of mobile terminals currently in the cell. If mi is
the number of MTs currently in cell i and c slots are used for control purpose, then the
demand, wi of cell i is, wi = mi + c + max(1, �fmi�), 0 ≤ f ≤ 1.

5.1 Algorithm COSA

The steps of the algorithm are as follows :

Step 1 : Elect an MT as the network leader through some leader election protocol
[11, 12] and call this MT as L.
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Step 2 : L broadcasts the mapping to convert the geographical region into a hexagonal
grid structure to all the nodes of the network. Each node, on receiving this message,
appends it with its own location co-ordinates to be known to all other nodes. An
MT i transmits its message in ith slot to avoid collision during this step.

Step 3 : For each cell i, a cell leader Li is elected from the MTs residing in cell i,
based on some metric such as remaining battery power, load, location, etc. [12].

Step 4 : The demand of each cell i, wi is communicated by each cell leader Li to the
network leader L. L produces an optimal, collision-free transmission schedule by
executing either homogeneous slot assignment or heterogeneous slot assignment
algorithm.

Step 5 : L broadcasts the slot assignment schedule of the network to each cell leader.
The slot assignment schedule details the slots assigned to each cell i, which had
demanded wi slots. Once a cell leader Li of cell i receives the information about
the slots assigned to it from L, it generates a transmission schedule for the MTs in
the cell i and does a periodic local broadcast of this schedule within the cell i.

Due to space constraints, we briefly describe the handling of various dynamic situations
like joining/leaving of mobile terminals and hand-off.

– New mobile terminal joining the network : When a new MT joins the network in
some cell i, it first waits to hear a cell status message broadcast by the cell leader,
Li and then tries to join the network by sending a request to Li. A recomputation
of global slot assignment by L is required if not enough free slots exist in cell i.

– Mobile terminal leaving cell or network: If a cell (network) leader leaves a cell
then a new cell (network) leader is elected from the remaining MTs (cell leaders).

– Hand-off of mobile terminals : The process of hand-off is treated in the same way
as a new MT u joining cell j, from cell i, with an additional message from Lj to
Li to indicate the new cell in which u can be found.

5.2 Complexity Analysis

The leader election process in step 1 of algorithm COSA takes O(log log m) time
[11, 12]. Steps 2 and 5 each takes O(mD) time for round-robin broadcast, assuming
∀ i, di ) D and wi = O(m) for step 5 of algorithm COSA. Step 3 of algorithm
COSA takes O(1) time. Computation of an optimal slot assignment schedule by either
algorithm homogeneous slot assignment or algorithm heterogeneous slot assignment
takes O(n) time, n being the number of cells in the cellular network. Thus, step 4
takes O(mD) + O(n) time. Hence the complexity of our proposed algorithm COSA is
O(log log m + mD + n) time.

6 Conclusion

We have presented a novel approach to the problem of generating a collision-free trans-
mission schedule for mobile terminals in a mobile ad hoc network. Our proposed algo-
rithm overlays a MANET with a hexagonal cellular grid structure and then generates
a collision-free transmission schedule with the minimum number of time slots, while
satisfying the 2-cell buffering constraint using a low overhead. Due to the absence of
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collisions in the network and use of optimal number of time slots, the proposed scheme
provides smaller network latency, higher network throughput and increased battery life
of the mobile terminals.
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Abstract. Ad Hoc LAN systems are noncooperative MAC settings where 
regular stations are prone to "bandwidth stealing" by greedy ones. The paper 
formulates a minimum-information model of a LAN populated by mutually 
impenetrable groups. A framework for a noncooperative setting and suitable 
MAC protocol is proposed, introducing the notions of verifiability, feedback 
compatibility and incentive compatibility. For Random Token MAC protocols 
based on voluntary deferment of packet transmissions, a family of winner 
policies called RT/ECD-Z is presented that guarantees regular stations a close-
to-fair bandwidth share under heavy load. The proposed policies make it hard 
for greedy stations to select short deferments, therefore they resort to smarter 
strategies, and the winner policy should leave the regular stations the possibility 
of adopting a regular strategy that holds its own against any greedy strategy. 
We have formalized this idea by requiring evolutionary stability and high 
guaranteed regular bandwidth shares within a set of heuristic strategies. 

1   Introduction 

In the field of medium access control for single-channel AD Hoc wireless LANs, a 
wide class of protocols prescribes random deferment of packet transmissions upon 
detection of the beginning of a protocol cycle. This is meant to avoid packet 
collisions, while retaining the simplicity of distributed contention. The prevailing 
approach is to synchronize deferments to a global slotted time axis, with each slot 
spanning at least the LAN's maximum end-to-end propagation delay, and each 
deferment being a slot multiple. The generic term Random Token (RT) subsumes a 
class of deferment-based MAC mechanisms where the duration of a deferment 
(counted in slots) is drawn at random from some finite range of integers. A typical 
condition for a LAN station to access the medium in the present protocol cycle – i.e., 
its deferment being extreme among the contending stations – is in that case not unlike 
                                                           
∗ Effort sponsored by the Air Force Office of Scientific Research, Air Force Material 

Command, USAF, under grant FA8655-04-1-3074. The U.S Government is authorized to 
reproduce and distribute reprints for Governmental purpose notwithstanding any copyright 
notation thereon. The views and conclusions contained herein are those of the author and 
should not be interpreted as necessarily representing the official policies or endorsements, 
either expressed or implied, of the AFOSR or the U.S. Government. 
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capturing a unique token that visits stations at random rather than along a logical ring. 
RT mechanisms have been described in a pure form in [2]. They are part of the 
leading standard solutions, cf. the CSMA/CA technique of IEEE 802.11 [6] (where 
the shortest deferment wins) and the elimination phase of HIPERLAN/1 [3] (where 
the longest deferment, advertised as elimination burst, wins). Reference RT 
mechanisms and their suitability for AD Hoc systems are discussed in Sect. 2. 

An RT-type MAC protocol exemplifies an election process with deferments 
representing elective actions. Thus, the protocol breaks up into: 

• an (election) strategy, entirely within a station's discretion, dictates elective 
actions in successive protocol cycles, and 

• a distributed winner policy, common to all stations, defines the feasibility of 
selected actions (whether they fit into a feasible action range) and defines 
winning actions in each protocol cycle, producing one winner or none. 

An interesting line of research deals with distributed communication mechanisms 
in a noncooperative setting in which adherence to the common rules cannot be 
counted on for global optimization [13]. In the context of RT-like MAC, two types of 
stations can be envisaged, regular and greedy. Regular stations are the cooperative 
type: they use regular strategies e.g., based on a predefined probability distribution 
over the action space, optimized with a view to improve global performance indices 
such as bandwidth utilization and fairness (e.g., uniform in IEEE 802.11 DCF or 
truncated geometric in HIPERLAN/1). Greedy stations are free to adopt any greedy 
strategies to self-optimize their bandwidth share to the detriment of regular stations. 
There is a strong motivation for stations to become bandwidth-greedy on account of 
the growing volumes of offered traffic; enter advanced chip technology offering 
increasingly tailor-made and self-programmable station interfaces [12]. In choosing 
more sophisticated strategies, greedy stations only have to keep their complexity 
within reason and adhere to the winner policy for synchronization; otherwise they 
may reasonably hope to get away with the "bandwidth stealing" they commit. This is 
particularly true in AD Hoc systems given the inherent station mobility (meaning that 
a station's actions are difficult to trace down, enforce or prevent), and anonymity (e.g., 
stations' identities may be temporary and/or unavailable at MAC level). Still, most 
studies of noncooperative MAC settings, unlike ours, assume that stations' identities 
are recoverable [1], [10], [12]. Few exceptions include [8], [11]. 

One should guarantee regular stations a fair bandwidth share regardless of the 
greedy stations' behavior, especially at heavy load. We advocate self-regulatory rather 
than administrative measures, an appropriate approach for AD Hoc systems and one 
that promises more flexibility at less cost. A framework for a noncooperative setting 
is proposed in Section 3 with a focus on preventing certain brute-force "bandwidth 
stealing" strategies; in this context, the notion of verifiability is discussed. Leaving 
greedy strategies to backstage designers, we focus on the design of a winner policy 
enabling some regular strategies to hold their own against any greedy strategies.1 
                                                           
1 Alternatively, a regular strategy might induce a predictable learning process in greedy 

stations, drawing on the rich theory of learning in games [5]. For example, "aggressiveness" 
might be responded to in kind (cf. the backoff freeze mechanism of IEEE 802.11). However, 
it is difficult to distinguish other stations' "aggressive" play from a traffic increase, leading to 
poor bandwidth utilization [9]. 
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A framework for a reasonable winner policy and greedy strategy is proposed in 
Section 4. In Section 5 we describe a family of winner policies called RT/ECD-Z, and 
in Section 6 evaluate them via simulation against a reference RT-type winner policy, 
assuming a number of heuristic election strategies. The idea behind the evaluation is 
that a good winner policy should admit a clear candidate for a standard election 
strategy; we are especially after strategies that exhibit a form of evolutionary stability 
and fare well when played against any other strategy. Section 7 concludes the paper. 

2   Random Token Winner Policies for Ad Hoc Systems 

An Ad Hoc LAN uses a wireless medium, has no fixed communication infrastructure 
and little administration. For simplicity we assume that all stations remain within the 
hearing range of one another, use a single channel and perceive a common slotted 
time axis. We adopt a minimum-information model whereby a station 

 is free to join and leave without prior notification, and change location and/or 
identity at will, and 

 relies on binary per-slot channel feedback i.e., can only distinguish an empty slot 
from a carrier one, except that recipients of a successful (non-colliding) 
transmission are also able to interpret the slot's content; non-recipients perceive 
successful and colliding transmissions alike as just bursts of carrier. 

We thus envisage a wireless LAN populated by mutually impenetrable groups 
(Fig. 1). Stations of each group know one another, may use a full packet encryption 
scheme and need not exchange any user or control data with other groups, whose 
presence they only perceive as bursts of carrier reducing the available bandwidth. 

 

 

 

 

 

Fig. 1. Perception of transmission in mutually impenetrable groups 

RT-like winner policies employ CSMA/CA [2]. To further suppress collisions, a 
two-phase policy we refer to as RT/CA-Y (cf. HIPERLAN/1's EY-NPMA [3]), in the 
elimination phase has a station willing to transmit a packet defer its transmission for a 
random number of slots from the range [0, E – 1]. Then, unless the channel is sensed 
busy, the station transmits a 1-slot burst of carrier called pilot to discourage stations 
that have selected longer deferments. Finally, along with other stations that 
transmitted their pilots in the same slot, it enters a yield phase where a deferment is 
selected at random from the range [0, Y – 1] (Y = 1 produces pure CSMA/CA). 

interpretable data
 

bursts of carrier

interpretable data
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Our reference policy is called RT with Extraneous Collision Detection (RT/ECD). 
The winners of the elimination phase each transmit an interpretable 1-slot pilot 
containing the addresses of the intended packet transmission's recipient(s), and await 
reaction in the following slot (Fig. 2). On sensing a successful pilot, a recipient issues 
a reaction burst of carrier, while refraining from reaction if a collision of pilots is 
sensed. The presence of reaction prompts the (single) winner to start its packet 
transmission in the ensuing slots, whereas the absence of reaction prompts the 
winners to back off, thereby starting a new protocol cycle (Although similar to the 
RTS and CTS of IEEE 802.11 [6], pilots and reactions serve to ensure verifiability, 
discussed further, rather than cope with hidden stations.) 

 
Fig. 2. RT/ECD: stations 3 and 4 transmit pilots, no reaction follows and a new protocol cycle 
begins in which station 4 transmits pilot successfully, reaction follows and station 4 starts 
packet transmission 

RT/ECD outperforms RT/CA-Y in terms of bandwidth utilization. Let the actions 
(deferments) be drawn from a probability distribution (pl, l = 0,...,E − 1). Suppose the 
stations transmit packets of constant size L slots; denote by O the average scheduling 
overhead per protocol cycle (number of slots not devoted to packet transmission), and 
by W the probability of exactly one winner per protocol cycle. Then, if all stations are 
always ready to transmit packets, the total bandwidth utilization, U, equals W⋅(1 + 
O/L) for RT/CA, and 1/(1 + O/(W⋅L)) for RT/ECD. Calculation of O and W given the 
above description is a simple exercise in probability. Fig. 3 plots U against E for 
RT/ECD and RT/CA-Y, assuming N = 10, L = 50, Y = 7, and pl = const.⋅ql with q = 2, 
1 or 0.5. These three values of the parameter q typify, respectively, "gentle," 
"moderate," and "aggressive" behavior. Proper choice of q ensures that RT/ECD is 
distinctly superior to RT/CA-Y regardless of E and N, as is RT/CA-Y to pure 
CSMA/CA. The benefits of extraneous collision detection are thus tangible. 
Unfortunately, under both RT/CA-Y and RT/ECD, straightforward greedy strategies 
exist that consist in selecting "shorter-than-random" deferments. To prevent frequent 
collisions with other greedy stations using similar strategies, a greedy station may 
draw its deferments from a probability distribution biased toward 0. 

3   Framework for a Non-cooperative MAC Setting 

It might seem unnatural that a greedy station should commit "bandwidth stealing" 
given that typically it is willing to both transmit and receive packets. Within our 
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model of mutually impenetrable groups, however, a station is indistinguishable from – 
and thus an adequate model of – a group of stations. What the outsiders perceive as a 
sequence of actions (elimination deferments) of a station can in fact be produced by a 
group of stations that have reached an intra-group agreement as to how to take turns at 
transmitting pilots. Thus more transmission opportunity for a greedy station models 
more communication opportunity for a group. A noncooperative setting will 
henceforth be modeled as one with N stations, of which G are greedy (0 ≤ G ≤ N). 
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Fig. 3. Bandwidth utilization under CSMA/CA, RT/CA-Y and RT/ECD (values of q indicated) 

Brute-force strategies should be prevented that consist in deviations from the MAC 
protocol being used. E.g., a station under RT/CA-Y may join in the yield phase having 
issued no pilot; a station under RT/ECD may jam any pilot it senses. (While the 
former strategy is rational, the latter is not.) Under RT/ECD, a greedy station might 
also start its packet transmission claiming to have sensed a reaction, or refrain from 
reaction on the claim that channel errors corrupted the pilot into a perceived collision. 
(Again, the former strategy is rational, while the latter is not, as it prevents reception 
of data.) Deviations such as the above raise the issue of a winner policy's verifiability. 

A conceptual verifier (meant as a deterrent but not necessarily deployed) can be 
thought of as an extra station complete with a directional and an omnidirectional 
antenna. It is able, which the greedy stations are aware of, to lock the directional 
antenna upon a station and, upon detection of a deviation, impose predefined 
sanctions e.g., jam all that station's pilots. A verifiable winner policy defines relevant 
actions so that any rational deviation from the MAC protocol is verifier detectable. 
For example, pure CSMA/CA does not qualify: starting a packet transmission 
immediately is a rational but not detectable deviation (may pass as drawing a 0-slot 
deferment). It is advisable that elective actions consist in transmission of some 
physical signals; a rational deviation on the part of a station then involves making 
false claims as to sensing or not sensing carrier on the channel. Such behavior will not 
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go unnoticed if a verifier has locked its directional antenna upon that station, while 
using its omnidirectional antenna to correctly perceive the signals of other stations. 

4   Framework for a Winner Policy and Greedy Strategy 

Recall that a station having a packet ready to transmit selects its elective action from 
the range [0,...,E−1]. Selecting an action a means transmitting a pilot after an a-slot 
deferment. Let ca be the number of stations that have selected action a in the current 
protocol cycle, thus the vector C = (c0,…,cE−1) reflects the actions selected by all the 
stations. A winner policy defines a winning action (or a no-winner contention) by 
specifying a binary-valued payoff function ua(C), with ua(C) = 1 naming a as the 
winning action. It also defines feasible actions for each station given its recent 
behavior. In a plausible winner policy, 

• ua(C) = 1 implies that ca = 1 and ux(C) = 0 for all x ≠ a, and 
• for any a there exists a C such that ca > 1 and ux(C) = 1 for some x ≠ a. 

The latter condition, related to the notion of protectiveness [13], precludes "fail-
safe" actions that render any other action non-winning, as well as trivial strategies 
based on repeatedly taking such actions in order to discourage other stations (note that 
neither CSMA/CA nor RT/ECD qualifies, the action 0 being "fail-safe").  

Let F(C) be the observable channel feedback upon a set of actions reflected by C. 
For example, take Fig. 2 and assume that E = 4. In the first protocol cycle, C = (0, 0, 
2, 2) and F(C) = (empty, empty, carrier, empty) i.e., no station selects 0 or 1 (two 
empty slots), next a pilot collision in slot 3 (a carrier slot) is followed by no reaction 
(an empty slot). In the second protocol cycle, C = (0, 0, 1, 3) and F(C) = (empty, 
empty, carrier/successful, carrier) i.e., the non-recipients of the pilot in slot 3 perceive 
a carrier slot, whereas the recipients perceive a successful slot and react thus 
producing another carrier slot. Denote Ca = (c0,…,ca). A winner policy should be 

• feedback compatible i.e. (with a slight abuse of notation), ua(C) = ua[F(Ca)], 
• incentive compatible i.e., if ca = 1 and ux[F(Cx)] = 0 for all x < a such that cx > 0,  

then ua[F(Ca)] = 1, and 
• verifiable i.e., a station selecting an infeasible action a or attempting a rational 

deviation from the protocol by generating a channel feedback F such that ua(F) = 
1 is verifier detectable. 

Feedback compatibility ensures that all stations perceive the same winner based on 
the observed channel feedback and that each station is able to determine its payoff 
immediately upon the action it has selected. E.g., this rules out hash-based policies [9] 
whereby winning actions are only decided upon gathering the whole C. Incentive 
compatibility ensures that no action is dismissed a priori as non-winning based on the 
channel feedback observed so far − otherwise stations might be unwilling to take any 
actions or certain slots would be unused. This rules out an RT-like policy whereby a 
second-shortest deferment wins or one whereby a shortest deferment only wins if it is 
"sufficiently large." Checking a station for action feasibility should be based on recent 
past since a verifier may be unable to track a station for long. 
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A regular station calculates (and a greedy station also self-optimizes) its bandwidth 
share based on its payoffs in a number of protocol cycles. Let the respective shares be 
Ur and Ug, and let Urc correspond to a cooperative MAC setting (G = 0). We seek a 
winner policy that is both fair, in that Ur is comparable with Urc, and efficient, in that 
Urc is comparable with Urc under RT/ECD. Fairness and efficiency are not a winner 
policy's features; rather, they depend on the class of permissible greedy strategies. 
Assuming verifiability, the only viable greedy strategy consists in selecting "shorter-
than-random" deferments. A permissible greedy strategy is isolated i.e., not colluding 
with other greedy stations (whose number and status it has no means of knowing), and 
rational i.e., aiming to maximize Ug and not to just diminish Ur at the price of self-
damage; this implies that stations currently without packets to transmit select no 
action, and that a greedy strategy may revert to regular if Ug < Ur or Ug < Urc.2 

5   RT/ECD-Z Winner Policy 

Intuitively, a smart enough greedy strategy quickly "learns the game" against a simple 
regular strategy based on randomization. This it does by systematically selecting 
"shorter-than-random" deferments. In view of feedback and incentive compatibility, 
discrimination of short deferments is not possible via the payoff function alone. The 
idea of the proposed family of policies, called RT/ECD with Collision Count and 
Penalties, is to combine a suitable payoff function and recent behavior-based 
definition of action feasibility to create a tension between the immediate gain from a 
short deferment and a diminished performance in near future. Given a parameter Z 
from the range [0,...,E – 1], put ua(C) = 1 if ca = 1 and 

• there is no x < a such that cx = 1 i.e., a yields the first successful pilot, and 
• the number of distinct x's such that x < a and cx > 0 is less than Z i.e., Ca yields 

fewer than Z pilot collisions. 

If no such a exists, a no-winner contention is perceived; in that case, let xZ be the 
maximum deferment followed by a pilot from any station (reaction slots not counting) 
i.e., xZ is the Zth smallest x such that cx > 0. Action feasibility is checked based on 
penalties a station self-imposes, motivated by the possibility that a verifier has locked 
upon it and is tracing the intervals between successive pilots. An action a is feasible if 
a ≥ b, where b is the current penalty self-imposed by the station. If the previous 
protocol cycle ended with a packet transmission then b = 0; otherwise 
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where a' and b' are the station's selected action and self-imposed penalty in the 
previous protocol cycle. In particular, if a no-winner contention was perceived and  

                                                           
2 However, not knowing N or the other stations' identities, a greedy station cannot reliably 

detect either. Gradient-based search for a higher Ug may not help if the current play is close 
to a Nash equilibrium [5]. Thus an ill-designed greedy strategy may lead to a lose-lose 
situation where both Ug and Ur are low. For a discussion of rational behavior see e.g., [4]. 
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a' = 0 then a = E – 1, if a' = 1  then a ≥ E – 2 etc., whereas stations that had no chance 
to transmit their pilots reduce their penalties, a mechanism resembling backoff 
freezing in IEEE 802.11. The above specification will be referred to as RT/ECD-Z.  

Fig. 4 illustrates a possible scenario. Each elimination slot containing a pilot is 
followed by a reaction slot. Stations whose pilots collide and thus are not reacted to 
perceive themselves as non-winners and back off, while the rest may take their 
actions later. The protocol cycle continues until a successful pilot is reacted to and 
followed by a packet (in which case the penalties become irrelevant), or Z pilot 
collisions occur (and the penalties are recalculated), or E elimination slots elapse. 

 

 

 

 

Fig. 4. RT/ECD-1, E = 4 (penalties at station i are denoted bi); initially, b1 = b2 = 2, b3 = 1, b4 = 
0; stations 3 and 4 select deferment 1; no reaction and no-winner contention after pilot collision 
(xZ = 1); in the next protocol cycle, b1 = b2 = 2 – 1 = 1, b3 = b4 = 4 – 1 – 1 = 2 enable station 2 to 
select deferment 1 and win (note that active deferments are frozen during reaction slots) 

The choice of Z is a compromise between no-winner contentions and penalty 
relevance: for Z = E – 1 penalties are irrelevant, but no-winner contentions are rare.  
(Z = 1 combined with bi ≡ 0 yields RT/ECD.) We summarize Sects. 4 and 5 as 
follows. 

Proposition: RT/ECD-Z is plausible, feedback compatible, incentive compatible, and 
verifiable. 

Note that any rational deviation should consist in either disregarding the penalty, or a 
packet transmission not preceded by a pilot, or transmitting more than one pilot in one 
protocol cycle, or finally, jamming other stations' pilots and subsequently transmitting 
one's own. All these deviations are verifier detectable. At most 2E slots of continuous 
lock on a particular station are required on the part of a verifier. Moreover, it need not 
distinguish successful pilots from pilot collisions: refraining from a reaction upon the 
former or issuing one upon the latter is not rational. 

6   Performance Evaluation 

In a series of simulation experiments under heavy load, various strategies were used 
to obtain Ur and Ug for RT/ECD-Z against the backdrop of RT/ECD. Simulation 
imitated the slot-wise channel state evolution as exemplified in Figs. 2, 3, and 5. Runs 
were repeated until the 95% confidence intervals shrank to 10% of the sample 
averages. In each run, N = 8, E = 10, L = 50, and G were fixed. Escalation of 
"aggressiveness" (suggested in the footnote in Sect. 1) was found to lead to poor 
efficiency. Each of the eight heuristic strategies briefly described below was adopted 
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in all regular stations and played against itself and each of the other seven, employed 
in all greedy stations, producing 36 regular vs. greedy strategy scenarios. Strategies 1 
and 2 are better suited for regular stations because of their simplicity, while strategies 
3 through 8 are better suited for greedy stations as they employ reinforcement 
learning [4]. The latter define an update period (UP) spanning a number of recent 
protocol cycles (20 except for the initial UP, which was of random length to make the 
learning asynchronous across the stations). The experimented strategies featured: 

1. uniform probability distribution of actions (designated "neutral" in Fig. 3), 
2. truncated geometric probability distribution of actions with parameter q = 0.5 i.e., 

biased toward 0 (designated "aggressive" in Fig. 3), 
3. adjustment of the truncated geometric probability distribution parameter based on 

the comparison of own and winning actions within the previous UP, 
4. uniform probability distribution of actions over a subset of {0,…,E – 1} adjusted 

similarly, 
5. probability distribution of actions corresponding to the constructed histogram of 

fictitious winning actions over the previous UP; given C, a is a fictitious winning 
action if ca = 0 and ua(C') = 1, where C' coincides with C except that 1=′ac , 

6. cyclic sequence of actions within UP e.g., 1, 2, 3, 4, 1, 2, ..., with length and 
starting point adjusted based on own payoffs over the previous UP (this strategy 
is supposed to mimic token passing among a set of anonymous stations), 

7. schedule of actions within an UP adjusted based on a technique similar to 
simulated annealing [7]: an action yielding the lowest sum of payoffs in the 
previous UP is tentatively replaced by another one whose sum of payoffs over the 
next UP, k, determines the probability of its final admittance into the schedule 
according to the formula Pr[admittance] = 1/(1 + exp(−k)), and 

8. schedule of actions within an UP adjusted based on somewhat modified 
simulated annealing, with an action admitted similarly as above except that k is 
the sum of payoffs and the number of no-winner contentions over the next UP. 

Ideally Ur = Ug = 1/N of the available bandwidth, an "ideally fair and efficient" 
share. Scheduling overhead causes it to drop even in a cooperative MAC setting (at G 
= 0), whereas "bandwidth stealing" (at G > 0) may bring about discrepancies between 
Ur and Ug and a further decrease in Ur. We take the viewpoint of a regular station and 
examine Ur (normalized with respect to 1/N) as a function of G, the winner policy 
parameter Z and adopted election strategies. 

Sample results are plotted in Fig. 5 for RT/ECD-Z with Z = 1, …, 4 (since N = 8, 
the maximum number of pilot collisions per protocol cycle is 4). In Fig. 5a, regular 
strategy 1 was played against greedy strategy 2. It can be seen that strategy 1 
completely fails for RT/ECD, but copes with strategy 2 for RT/ECD-Z with Z > 1 
regardless of G. Unfortunately, as seen in Fig. 5b, should greedy stations adopt 
strategy 7, Ur can fall as low as 30% to 40% of the "ideally fair and efficient" 
bandwidth share for intermediate values of G unless Z = 1. Interestingly, the smart 
strategy 7 appears a little capricious: for small Z and large G it fails to "learn the 
game" and permits Ur in excess of 60%; however, in other cases strategy 1 is 
distinctly cut off from the channel. When greedy stations adopt any of the strategies 4, 
5, or 6, we get a similar picture. It turns out from further experiments that strategy 7  
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Fig. 5. Strategy 1 performance under RT/ECD-Z and RT/ECD vs. a) strategy 2, b) strategy 7 

copes well with any other strategy regardless of G and Z; being somewhat capricious, 
it requires more research in order to be standardized as a regular strategy. The other 
strategies fare better or worse depending on Z and the strategy they play against. 

A more systematic approach to winner policy evaluation is possible given an 
exhaustive set S of conceivable strategies within the framework of Sec. 4. Since the 
above eight strategies do not constitute such a set, although they do cover a wide 
range of common-sense heuristics, our further considerations are only indicative of 
results obtainable with a broader set of strategies. A conjecture based on research into 
a number of heuristic election strategies other than 1,...,8 is that there is little chance 
of finding a strategy which exhibits a qualitatively different behavior. 

Let Ur(s, t; G) denote the regular bandwidth share when a regular strategy s ∈ S 
plays against a greedy strategy t ∈ S, there being G greedy stations. Define the 
guaranteed regular bandwidth share U(s, t) = min1≤G≤N–1Ur(s, t; G). In search for good 
candidates for a standard regular strategy, an important consideration is related to the 
notion of evolutionary stability [5, 14]. Informally, a standard regular strategy s 
should be among the best opponent strategies to s, and for any best opponent t ≠ s, s 
should be the single best opponent to t. This precludes any rational deviations from s 
from being regarded "as good as the standard" and thus from initially being adopted at 
some stations while most stations adopt s, subsequently competing with s and finally 
supplanting s in a process that models natural evolution. We shall modify this notion 
with reference to the set S and considering that estimation of the obtained bandwidth 
share may be subject to error ε > 0. Thus a strategy s will be called evolutionarily (S, 
ε)-stable if it fulfills the following two conditions:   

∀t ∈ S  U(t, s) ≤ U(s, s)               (2) 

∀t ≠ s [if U(t, s) ≥ (1 − ε)U(s, s) then ∀ s' ≠ s  U(s', t) < U(s, t)]      (3) 

Strategies fulfilling the "if" condition in (7) may be called (S, ε)-best opponents of 
strategy s. Furthermore, it is natural to require of an evolutionarily (S, ε)-stable 
strategy s that both U*(s) = U(s, s) and U**(s) = mint∈S U(s, t) be large. The former 
represents the regular bandwidth share in a cooperative setting when all the stations 
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adopt strategy s i.e., Urc, whereas the latter represents the guaranteed regular 
bandwidth share achieved by strategy s against the hardest opponent strategy 
(possibly itself) and should be comparable with Urc. In designing a winner policy, one 
should ensure that a strategy fulfilling the above requirements exists (ideally exactly 
one, so that no ambiguity arises as to which regular strategy to adopt). Table 1 lists 
evolutionarily (S, ε)-stable strategies under RT/ECD-Z and the corresponding values 
of Z and Urc (normalized with respect to the "ideally fair and efficient" bandwidth 
share), assuming that S = {1,...,8} and ε = 0.1. 

Table 1. Evolutionarily (S, 0.1)-stable strategies 

strategy Z Urc (% of ideal share) w.r.t. each Z value 
1 1 93.8 
2 1 65.2 
5 1, 2, 3, 4 97.5, 97.5, 97.5, 97.5 
7 1, 2, 3, 4 78.2, 88.7, 88.2, 87.9 
8 1 87.9 
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Fig. 6. Minimum guaranteed bandwidth share against hardest opponent 

Considering evolutionary stability alone may be misleading since in general a 
strategy s may fare worse against a strategy t that is not its (S, ε)-best opponent than 
against one that is. For example, greedy stations may come up with "not too rational" 
a strategy or may be unable to compute a (S, ε)-best opponent to s. Take Z = 2, and s 
= 7. We have U(7, 7) = 88.7% and yet it turns out that U(7, 5) = 67.1% < U(7, 7) even 
though strategy 5 is not strategy 7's (S, 0.1)-best opponent (U(5, 7) = 43.9%). In view 
of this, U**(s) is a more conservative measure. Fig. 6 depicts U**(s), with 
evolutionarily (S, 0.1)-stable strategies indicated by arrows. Note in passing that the 
supposedly token passing-like strategy 6 fares poorly against any opponent strategy, 
apparently failing to establish a valid token ring in our anonymous setting. Of the two 
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strategies that remain evolutionarily (S, 0.1)-stable for all Z, strategy 7 yields a higher 
U**(s) for Z > 1, its relatively high complexity and capriciousness notwithstanding. 
For Z = 1, the simple strategy 2 makes a good candidate, yielding a distinctly lower 
U**(s), however. In our experiments, Z = 3 looks like optimal design, rendering only 
strategies 7 and 5 evolutionarily (S, 0.1)-stable, the former clearly superior with 
respect to U**(s). The fact that a distinctly superior candidate emerges and that Z = 3 
is an intermediate rather than extreme value confirms the usefulness of RT/ECD-Z. In 
view of the discussion related to Fig. 5 it is obvious that RT/ECD is not satisfactory. 

7   Conclusion 

Designing contention mechanisms for anonymous stations is a reasonable approach, 
as it gives some "safety upper bounds" for mechanisms relying on permanent station 
identities. A framework for a noncooperative MAC setting, winner policy and greedy 
election strategy has been proposed. For a class of Random Token MAC protocols 
based on voluntary deferment of packet transmissions, a new family of winner 
policies under the name RT/ECD-Z has been presented that guarantees regular 
stations a close-to-fair share of the available bandwidth under saturation load. The 
proposed policies make it hard for a greedy station to decide a priori on short 
deferments, which are advantageous under existing policies. Therefore greedy stations 
resort to smarter strategies and the task of the winner policy is to enable a regular 
strategy that holds its own against any greedy strategy. We have formalized this idea 
by requiring evolutionary stability and high guaranteed regular bandwidth shares 
within a set of heuristic strategies. Directions for future research include extensions to 
multihop wireless topologies, more complex traffic environments and QoS issues. 
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Abstract. This paper addresses the problem of power aware data routing strate-
gies within ad hoc networks using directional antennas. Conventional routing 
strategies usually focus on minimizing the number of hops or route errors for 
transmission but they do not usually focus on the energy depletion of the nodes. 
In our proposal, if a node in the network has depleted its battery power, then an 
alternative node would be selected for routing so that not only the power is used 
optimally but there is an automatic load sharing or balancing among the nodes 
in the network. The usage of directional antenna in this scheme has some key 
advantages outperforming the omni-directional counterpart. The space division 
multiple access, range extension capabilities and power requirement of the di-
rectional antenna is itself a reason for its choice. We illustrate how directional 
antenna can be combined with the power aware routing strategy and using 
simulations, we quantify the energy benefits and protocol scalability.  

1   Introduction 

In an ad hoc network mobile, hosts depends on the assistance of the other nodes in the 
network to forward a packet to the destination in case the destination node is multi-
hop away from the source. Thus each node may also act as a router.  

One of the major concerns here is how to decrease the power usage or battery deple-
tion level of each node among the network so that the overall lifetime of the network 
can be stretched as much as possible. In conventional routing schemes, the same node 
may be selected repeatedly, thereby causing severe depletion in its energy level. In our 
proposal, if a node in the network has heavily depleted its battery power, then an alter-
native node would be selected for routing so that not only the power of each node is 
used optimally but there is an automatic load sharing or balancing among the nodes in 
the network. The usage of directional antenna has some key advantages which outper-
forms the omni-directional counterpart. The space division multiple access and the 
range extension capabilities of the directional antenna is itself a reason for its choice. 
The power requirement of the directional antenna is also much less than that of the 
omni-directional version covering the same range. A salient feature of directional  
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antenna is that it doesn’t overhear the nodes outside its own cone of coverage and 
allows simultaneous communication without interference. This additionally helps to 
reduce power depletion of nodes. We illustrate how directional antenna can be com-
bined with the power aware routing strategy and, using simulations, we quantify the 
energy benefits and protocol scalability. Our initial evaluation offer encouraging re-
sults, indicating the potential benefits of power aware routing using directional  
antenna. 

2   Related Work 

A survey of power optimization techniques for routing protocols in wireless networks 
can be found in [1]. Suresh Singh et al. [2] presented five power aware metrics. The 
protocol is based on the original MACA protocol with the addition of a separate sig-
naling channel. The manner in which nodes power themselves off in this scheme does 
not influence the delay or throughput characteristics of the protocol. However, the 
power balancing among the nodes cannot be guaranteed, thereby causing non-uniform 
power conservation characteristics of nodes. 

An online approximation algorithm for power-aware message routing has been pro-
posed in [3]. An algorithm that requires accurate power values for all the nodes in the 
system at all times. They further proposed a second algorithm which is hierarchical, 
known as Zone-based power-aware routing partitioning the ad-hoc network into small 
number of zones. Each zone can evaluate its own power level. These power estimates 
are then used as weights for the zones. A local path for the message is computed so as 
not to decrease the power level of the zone too much moreover, formation of hierarchi-
cal zone and its maintenance is a serious problem in dynamic ad hoc networks. 

In our proposed strategy, each node knows the approximate battery power status of 
the other nodes and topology information. This is done through periodic propagation 
of power status along with topology information. To minimize the power usage, di-
rectional ESPAR antennas [4] have been used. We illustrate how directional antenna 
can be combined with the power aware routing strategy using a modified version of 
the Mac protocol, developed in our earlier work [5]. 

3   System Description 

In order to fully exploit the capabilities of directional antenna, all the neighbors of a 
source and destination should know the direction of communication so that they can 
initiate new communications in other directions, thus preventing interference with on-
going data communication between source and destination. Thus, it becomes impera-
tive to have a mechanism at each node to track the direction of its neighbors and get 
some vital information like power status and neighborhood information. A model of 
an ESPAR antenna, a low-cost, low-power, small-sized smart antenna, has been used 
in our simulation experiments.  

3.1   Location Tracking and MAC Protocol 

In our framework, each node waits in omni-directional-sensing mode while idle. 
Whenever it senses some signal above a threshold, it enters into rotational-sector-
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receive-mode. In rotational-sector-receive mode, node n rotates its directional antenna 
sequentially in all directions at 30 degree interval, covering the entire 360 degree 
space in the form of the sequential directional receiving in each direction and senses 
the received signal at each direction. After one full rotation, it decides the best possi-
ble direction of receiving the signal with maximum received signal strength. Then it 
sets its beam to that particular direction and receives the signal. We have used three 
types of broadcast (omni-directional) control packets: Global Link State Table 
(GLST), RTS (Request to send) and CTS (clear to send) for medium access control. 
Data packets and the control packet ACK is a directional control packet. A detailed 
description of directional MAC is illustrated in [6]. 

3.2   Information Percolation Mechanism in the Network 

The purpose of information percolation mechanism is to make each node aware of the 
approximate topology and the power depletion status of each node in the network. 
The objective here is to get accurate local, but approximate global perception of the 
network information. This awareness would be helpful to implement both MAC and a 
power-aware routing protocol using directional antennas.  

3.3   Global Link-State Table (GLST) 

It contains the global network topology information as well as the battery power 
status of the corresponding nodes as perceived by a node n at that instant of time. 
Each node broadcasts a beacon at a periodic interval, say TA. When a node n receives 
a beacon from all or any of its neighbors (say node i, j and k), node n forms the 
GLST(n) to include node i, j and k as its neighbors and records the best possible di-
rection of communicating with each of them and even their battery power status. 
Initially when the network commences, all the nodes are just aware of their own 
neighbors and are in a don’t-know-state regarding the other nodes in the system. Peri-
odically, each node broadcasts its GLST as update to its neighbors thereby slowly 
updating the entire network about the topology [6].  

4   Power Aware Routing Strategy  

A lot of effort is currently going on to reduce the power consumed in a mobile device 
within the ad hoc network and our power aware routing strategy can ensure optimal 
usage of battery power of each node. It is to be noted that our proposed strategy not 
only balances the battery usage of each node extending the network life but it also 
ensures network traffic balancing when the congestion is high.  

When following only the shortest path algorithm it will be observed that source 
and intermediate nodes will deplete their power much more early then their neighbors. 
Consider the following topology, as shown in Fig 1. 

Here, packets are to be sent from node 1 to node 3. Let us assume that the shortest 
path algorithm selects 1 -> 6 -> 3 as the best path.  Disregarding the source node 1 
and destination node 3 (which are fixed in this case), it will be observed that the in-
termediate node 6 will suffer heavy depletion in its battery power because only node 6 
is selected repeatedly as intermediate node by the shortest path algorithm.  
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Now let us shift our focus on our proposed algorithm for route selection using re-
sidual power aware routing strategy. Fig 2 represents the case where data packets are 
forwarded using this strategy from the same source to destination. After phase 1, the 
battery of intermediate node 6 has depleted by 10 % (say) and so in phase 2, node 6 
will not be considered. An alternate path 1 -> 2 > 3 will be selected (say next shortest 
path), since node 6 has less battery power than that of node 2.   

Now let us consider phase 3 in Fig 2. Both node 2 and 6 have depleted their power by 
10% (say). For transmission of next set of data packets, both the intermediate nodes 
would be rejected and intermediate nodes 5 and 4 will be selected (1 -> 5 -> 4 -> 3), 
since they have their battery power much higher than node 2 and 6. It is to be noted that 
not only the power is used optimally but there is an implicit property of the algorithm to 
automatically balance the network traffic and distribute it in an even fashion choosing 
different best paths from source to destination. 

5   Performance Evaluation  

The simulations are conducted using QualNet 3.1 network simulator using the 
ESPAR antenna model. 60 nodes are placed over 1000 x 1000 sq. meter area using 
the grid topology with transmission power of 10dBm. Nodes are randomly chosen to  
 

Fig. 1. Battery Status without Power Aware Routing with Shortest Path Algorithm 

                  Phase 1            Phase 2                                     Phase 3 

Fig. 2. Battery Status with Power Aware Routing together with Shortest Path Algorithm 

                  Phase 1                Phase 2                  Phase 3 
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Fig. 4.  Throughput in Static scenario 

be CBR (constant bit rate) sources, each of which generates 512 bytes data packets to 
a randomly chosen destination at a rate of 2 to 500 packets per second. The entire 
simulation period is of 7 minutes with 4 pairs of CBR traffic. 

Fig 3a and 3b shows the power depletion graphs in a static scenario. Fig 3a repre-
sents the nature of power depletion characteristics among the nodes when our power 
aware routing strategy is used. Fig 3.b on the other hand shows the power depletion 
characteristics without our power aware routing strategy but using only the shortest path 
algorithm. A close study reveals the fact that some nodes in Fig 3.b suffer heavy deple-
tion, although most of the nodes have nearly the same initial power. These results in 
early die out of some nodes in the network and thus the entire network may get parti-
tioned into two or more sub networks. In other words, multi-hop communication would 
be restricted to a great extent because the intermediate nodes have died out much earlier 
than the neighbors which still have more battery power. Now we shift our focus on Fig 
3.a which shows the power depletion graph characteristics when our power aware rout-
ing strategy is used. This graph represents a uniform power depletion curve, leading to 
increased life-time of the network. Fig 4. represents the throughput of the network in a 
static scenario. The underlying reason for improved throughput with power-aware rout-
ing is the automatic load balancing nature of the algorithm, as illustrated in Section 4. 
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6   Conclusion 

This strategy mainly optimizes the power depletion and maintains a more or less uni-
form power usage among all the nodes in the network while maintaining effective 
throughput. In our simulation, we observe a sharp performance and power usage gains 
using the proposed algorithm. Our initial evaluation offer encouraging results, indicat-
ing the potential benefits of power aware routing using directional antenna. 
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Abstract. In Ad Hoc networks a routing protocol is either proactive or reactive. 
The former maintains consistent up-to-date routing information from each node 
to every other node in the network, whereas the latter creates route to the 
destination only when desired by the source node using “flooding”. In flooding 
packets are broadcast to all destinations with the expectation that they 
eventually reach their intended destination. This proves to be very costly in 
terms of the throughput efficiency and power consumption. For reactive 
protocols, researchers have tried to enhance the throughput efficiency and 
reduce power consumption using techniques that cut down flooding. In this 
paper we propose a routing protocol called Power Aware Cluster Efficient 
Routing (PACER) protocol for multi-hop wireless networks. In PACER, the 
network is dynamically organized into partitions called clusters with the 
objective of maintaining a relatively stable effective topology. The protocol 
uses the Weight Based Adaptive Clustering Algorithm (WBACA), developed 
by us for cluster formations. The main objective is to significantly reduce the 
number of overhead messages and the packet transfer delay. We demonstrate 
the efficiency of the proposed protocol with respect to average end-to-end 
delay, control overheads, throughput efficiency and the number of nodes 
involved in routing. 

1   Introduction 

Ad Hoc networks are peer-to-peer, multi-hop mobile wireless store-and-forward 
packet transfer networks. The low resource availability in these networks necessitates 
their efficient utilization; hence the motivation for optimal routing in mobile Ad Hoc 
networks (MANETs). With an increase in the size of the networks flat routing 
schemes do not scale well in terms of performance. The routing tables and topology 
information in the mobile stations also gets tremendously large. Routing schemes 
such as DSR [3] that perform well for small networks results in low bandwidth 
utilization in large networks because of high load and longer source routes. To solve 
this problem some kind of organization is required in large mobile Ad Hoc networks. 
The nodes in the network are grouped into easily manageable sets known as clusters 
[7]. Certain nodes, known as clusterheads, are responsible for the formation of 
clusters and maintenance of the topology of the network. 
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In this paper we are proposing a power aware cluster efficient routing (PACER) 
protocol that is highly efficient in terms of control overhead and delay in 
communication. The performance evaluation of the various routing algorithms is done 
in terms of achievable efficiency. The rest of this paper is organized as follows. The 
related work done in the area of routing is reviewed in Section 2, which includes an 
overview of AODV and DSR algorithms. The proposed routing algorithm is 
described in detail in Section 3. In Section 4, the simulation results demonstrating the 
efficiency of the proposed algorithm are presented. Finally, Section 5 concludes this 
paper. 

2   Related Work 

Routing in a MANET depends on many factors, such as modeling of the topology, 
selection of routers, initiation of request, and specific underlying characteristics that 
could serve as a heuristic in finding the path efficiently. The existing routing 
protocols can be classified either as proactive or reactive [5]. Proactive protocols 
attempt to evaluate continuously the routes within the network, so that when a packet 
needs to be forwarded, the route is already known and can be immediately used. The 
family of distance vector protocols such as Destination-Sequenced Distance Vector 
(DSDV) [2] routing is an example of a proactive protocol. Reactive protocols, on the 
other hand, invoke a route determination procedure only on demand. The family of 
classical flooding algorithms belongs to the reactive group of protocols. Some 
examples of reactive Ad Hoc network routing protocols are Ad Hoc On-Demand 
Distance Vector (AODV) protocol [1], Dynamic Source Routing (DSR) protocol, etc. 

3   Proposed Routing Protocol 

This section describes the proposed Power Aware Cluster Efficient Routing (PACER) 
protocol. This routing algorithm uses our previously developed Weight Based 
Adaptive Clustering Algorithm (WBACA) [11]. PACER is based on the concept of 
clustering and is a highly adaptive, loop-free, on-demand routing protocol. The key 
design concept of PACER is the minimization of control messages by limiting them 
to a very small set of nodes. To accomplish this, nodes need to maintain information 
about adjacent one-hop and two-hop nodes, which is obtained at the time of cluster 
formation. The route discovered for the destination node is stored at the clusterheads 
only that lie on the discovered path and not at the other intermediate nodes. This 
protocol performs two basic functions: route creation and route maintenance. The 
steps in the routing process are: 

STEP1. Nodes in the network are identified as clusterheads, gateways and 
ordinary nodes using WBACA. 

STEP2. When a packet is to be transmitted, the node checks if the destination node 
is present in its neighbor table. 

STEP3. If the destination node is found in the neighbor table, the source node 
directly transmits the packet to the destination. 
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STEP4. If the destination node is not found in the neighbor table, then the source 
node checks its two-hop neighbor table. If the destination node is found 
there, then the transmission takes place through the intermediate node. 

STEP5. If the entry of the destination node is not found in the two-hop neighbor 
table, then 
(a) If the node is an ordinary node, the node initiates a route discovery 

by sending a Route Request (RREQ) packet to its clusterhead. 
(b) If the node is a clusterhead, then it initiates a route discovery by 

sending a RREQ packet to all its gateway nodes. 
(c) If the node is a gateway, the node initiates a route discovery by 

sending a RREQ packet to its clusterhead. 
In the case of an intermediate node, the node is either a clusterhead or a 

gateway. 
(a) If the node is a clusterhead, it stores the path list from the source 

node up to the current node in its route cache table and, then 
forwards the RREQ packet to all its gateway nodes. 

(b) If the node is a gateway, it forwards a RREQ packet to all one-hop 
clusterhead neighbors, leaving the clusterhead from which it 
received the RREQ packet. If the gateway node is not having any 
clusterheads as its neighbors, but has other gateway nodes as its 
neighbors, then the RREQ packet is forwarded to these gateway 
nodes. 

STEP6. Each intermediate node appends itself in the path list. Whenever a 
clusterhead is encountered in the route, the clusterhead stores the path list. 

STEP7. This process (i.e. steps 5, and 6) is continued till a route to the destination 
is found. 

STEP8. Once the RREQ packet reaches the node, which has the destination node 
present in its two-hop neighbor table, it responds by unicasting a Route 
Reply (RREP) packet to the source node using the path list. 

The route maintenance procedure is accomplished through the use of route update, 
route modify and route error messages. Steps involved in the route maintenance are: 

STEP1. If the next-hop node on the route has moved or is not reachable, the 
current node generates a Route Update (RUPDT) packet and sends it to all 
the nodes in the path list up to the source node. 

STEP2. The current node then tries to find if it can reach the next-hop node, by 
consulting its two-hop neighbor table. 
(a) If the current node finds the next-hop node in its two-hop neighbor 

table, it modifies the route in the path list and generates a Route 
Modify (RMOD) packet. This message is then sent to all the nodes 
up to the source node and each node then modifies its path list 
accordingly. 

(b) If the current node does not find the next-hop node in its two-hop 
neighbor table, it checks if it can reach the node next to the next-hop 
node in the path list by consulting its one-hop and two-hop neighbor 
tables. If found, it modifies the route in the path list and generates a 
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RMOD packet. This message is then sent to all the nodes up to the 
source node and each node then modifies its path list accordingly. 

STEP3. In case step 2 fails, the current node starts the route creation procedure. 
On receiving a RREP, it modifies the route in the path list and generates a 
RMOD packet. This message is then sent to all the nodes up to the source 
node and each node then modifies its path list accordingly. 

STEP4. In case both step 2 and step 3 fail, the current node generates a Route 
Error (RERR) packet and sends it to all the nodes up to the source node. 
This results in a new route creation procedure by the source node. 

4   Simulation Study 

The simulation experiments conducted for the performance evaluation were implemented in 
the Global Mobile Information System Simulator (GloMoSim) library [9]. GloMoSim is a 
scalable simulation environment for large wireless and wireline communication network 
systems using the parallel discrete-event simulation language called PARSEC [10]. The 
IEEE 802.11 [6] is used as the MAC layer. The roaming space considered is 2000x2000 
meters square. Nodes move according to the random waypoint model [4]. 

To determine the efficiency of the proposed PACER protocol, we monitored four 
parameters: the control packet overhead, the average end-to-end delay, the number of 
nodes involved in routing, and the throughput. The control packet overhead is 
computed by counting the total number of control packets transmitted during the 
simulation period. 

Figure 1 shows the average end-to-end delay for the three routing protocols as a 
function of the number of nodes in the network. The graph shows that PACER gives 
better performance than the other two protocols. DSR has the largest end-to-end delay. 

Figure 2 shows the control overheads for the three routing protocols as a function 
of the number of nodes in the network. The larger the number of control packets, 
more is the power consumed in routing the data. Here, we observe that the control 
overheads increase with the increase in the number of nodes. It is found that PACER 
performs very well. 

Fig. 1. Avg. End-to-End Delay vs. No. of 
Nodes 

Fig. 2. Control Overhead vs. No. of Nodes 
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Fig. 3. Routing Nodes vs. No. of Nodes Fig. 4. Throughput vs. No. of Nodes 

Figure 3 illustrates the total number of nodes involved in the routing process. More 
number of nodes leads to more power dissipation in the network. As can be seen from 
the graph, PACER performs best. AODV gives the worst performance. AODV has 
almost all the nodes involved in routing. This is due to the flooding of packets in route 
discovery. 

Figure 4 demonstrates the throughput achieved in case of the three routing 
protocols. PACER achieves better throughput than AODV and DSR. For a small 
number of nodes, the three protocols give almost the same performance. But, for a 
large number of nodes PACER is found to be the best. DSR is seen to have the lowest 
throughput. 

5   Conclusion 

In this paper, we have shown how routing can be applied with clustering in wireless 
mobile Ad Hoc networks. The proposed on-demand Power Aware Cluster Efficient 
Routing (PACER) is one such routing protocol, which can adapt itself to the changing 
topology of the network. The simulation experiments show that the proposed PACER 
protocol outperforms the existing AODV and DSR protocols with respect to power 
consumption, control overhead, throughput, number of nodes involved in routing and 
the average packet transfer delay. Currently, we are in the process of conducting 
simulation experiments for comparing PACER protocol with the Cluster Based 
Routing Protocol (CBRP) [8]. Our study till now shows that the PACER performs 
better than the CBRP. 
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Abstract. Most of the proposed algorithms in ad hoc networks assume
homogeneous nodes with similar transmission range and capabilities.
However, in heterogeneous ad hoc networks, it is not necessary that all
nodes have bidirectional link with each other and hence, those algorithms
may not perform well while deployed in real situations. In this paper, we
propose a scheme for an ad hoc on-demand routing protocol which uti-
lizes the unidirectional links during the data transmission. Simulation
shows that it is not only possible to use unidirectional links but it is also
better in terms of performance metrics we defined in different situations.

1 Introduction

Ad hoc networks have emerged as a solution for the type of network where no
infrastructure exists and various types of devices communicate with each other
in a self-organizing fashion. Military scenarios, disaster relief situations are the
examples where diverse communication equipments communicate in multi-hop
fashion without any infrastructure. Since devices vary in types and capabili-
ties, heterogeneity prevails in such network scenarios. However, many proposed
algorithms assume homogeneous nodes with similar transmission radius and ca-
pabilities [1], and hence may not perform well while deployed in real situations.

A unidirectional link arises between a pair of nodes in a network when a node
can send a message to another but not vice versa. Let us consider two nodes A
and B. If A has the higher transmission range compared to B and the distance
between them is greater than the transmission range of B, acknowledgement
from B cannot be received by A. In this case both will assume that the link
does not exist between them. One of the major causes for the existence of such
links is the variation in transmission range of nodes. These links also arise due
to collision or noise, which however does not persist for a long time.

The detection of unidirectional links provides two options for routing pro-
tocols: (1) either avoid the route or (2) utilize it for current data transmission.

� This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (R05-2003-000-10607-02004) and and also supported by the
MIC (Ministry of Information and Communication), Korea, under the ITRC support
program.
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Avoiding the path with such links incur higher cost of route re-discovery and also
lead to network partitions. On the other hand, utilization may cause variability
in path affecting upper layer protocols. In this paper, we propose to utilize these
links resulting from the disparity of transmission range due to heterogeneity.
Using such links has an advantage of retaining the connectivity and using the
shortest path route. We show that the routing protocols can effectively use it for
data transmission without having to restart route discovery process.

In the performance analysis, proposed scheme is compared with AODV-
EUDA [1] using random mobility and static model. We show that the proposed
scheme is better based on metrics implying that using unidirectional links for
on-demand ad hoc routing protocol is not only possible but also better in terms
of efficiency. For the sake of readability, we refer to [1] as the AODV-EUDA.

In the next section we briefly describe research efforts that is close to our
work. In Section 3 we present our scheme. In Section 4 we present performance
analysis and finally conclude in Section 5.

2 Related Works

Problems encountered due to unidirectional links are uncommon as many rout-
ing protocols cannot function normally in such conditions. Unidirectional links
affect AODV protocol [2] by causing route discovery failures even in presence of
alternate bidirectional paths between source and destination. This is due to the
occurrence of such links in the shortest path, where route replies fail to reach the
source and re-discovery process recurrently attempts to find the path through
same set of nodes. This problem is well illustrated in [1] and [3]. Some of the
schemes that handles unidirectional links are studied in [4], [6], [7]. All of these
previous approaches avoid the path containing unidirectional links. Our paper
extends upon the recently proposed algorithm that detects unidirectional links
called AODV-EUDA [1]. In AODV-EUDA detection is immediately done when
it receives a RREQ packet during route discovery process. A node embeds its
power information either in RREQ or a MAC frame. Each receiving node cal-
culates the distance between itself and the RREQ sender from the parameters
in RREQ and compares with its maximum transmit range. The link is unidi-
rectional if its transmit range is shorter than the computed distance and hence
discards that RREQ and waits for other RREQs from other bidirectional links.
Unlike avoiding unidirectional links detected in AODV-EUDA, in our scheme,
we utilize unidirectional links for data packet delivery.

3 Routing with Unidirectional Link

For the purpose of utilizing unidirectional links our scheme requires two steps. In
first step, a node detecting a unidirectional link (as in AODV-EUDA) initiates
election mechanism for selecting a monitor node. A monitor node is a node in
a routing path that has a bidirectional link with both sender and receiver. In
second step we utilize unidirectional link for successfully transmitting data by
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Fig. 1. E and F sends RREQ to C that decides one as a monitoring node. Here,
E (monitor) replies with ACK to B.

local broadcast and receive acknowledgement from the monitor node. Detailed
operation of our scheme is presented below.

3.1 Election of Monitoring Node

During route discovery process, while RREQ is being forwarded from the source
to destination, node that detects the unidirectional link buffers them instead of
forwarding immediately to other nodes for some time period. During this period,
if it receives RREQs from the node that has a bidirectional link with itself and
the sender, it selects a monitor node from which the first RREQ is received. Note
that the collected RREQs must be the ones from the sender node with which
the receiver has a unidirectional link. A sender is made aware about the monitor
node when RREP is received back from the receiver.

In Fig 1, both E and F send RREQ to C and have bidirectional links with
both B and C. C does not immediately forward the RREQ that was received
from B, unless other RREQs are received from E and F. So assuming that E’s
RREQ is received earlier then F, C will select E as the monitor. In the process
of sending RREP back to the source, sender B receives RREP from the monitor
and hence is informed about the unidirectional link with C.

3.2 Utilizing Unidirectional Links

A sender node aware of unidirectional link needs to locally broadcast data pack-
ets so that they can be received by its neighbor nodes. A receiver node with a
path further unicast these data packets towards the destination.

A monitor node in between receives passive acknowledgement through over-
hearing and passes it over to the sender. From this indirect acknowledgement,
sender with the outgoing unidirectional link gets confirmation about the proper
delivery of the data. This mechanism is illustrated in Fig. 2. Following from the
previous example B is aware of the unidirectional link with C. First, when B
receives the packets from A, it is locally broadcasted so that both E and C will
receive the packet. C delivers this packet to D and at the same time, passive ac-
knowledgement is received by E (a monitor node) through overhearing. Finally,
the acknowledgement is sent from E to B. This ensures the proper delivery of
the packet through unidirectional link.
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Fig. 2. Local broadcasting of data packets from node, Overhearing by and receiving
acknowledgement from E

It is also possible that monitor node can change its location due to mobility
and may not be reachable for overhearing. For example, E shifts its position
from the current location and becomes unreachable from B. In such cases B
will try to re-transmit the data packet three times, and if not successful it will
send the route failure error back to source S for route re-discovery. In another
situation, if the monitor node is not present in the scene, our protocol subsumes
to AODV-EUDA.

4 Performance Evaluation

4.1 Simulation Environment

In this section, our scheme is compared with AODV-EUDA. We performed a sim-
ulation using the network simulator ns-2 in static and random mobility model
with 100 nodes. In random mobility model all nodes move around a rectangular
region of size 1500x300m2. Speeds ranging from 0m/s to 20m/s are used without
pause. Total simulation time is 900 sec and each scenario is repeated ten times.
Traffic pattern consists of 10 CBR connections running on UDP generating four
512-byte data packets per second. In static model we linearly increased unidirec-
tional links from 1 to 5, around the rectangular region of size 2000x300m2 with
a simulation time of 300sec.

4.2 Simulation Results

In our experiments, we capture the performance based on packet delivery ra-
tio, delay and energy consumption for both protocols. Fig. 3(a) shows that the
packet delivery ratio of the proposed scheme and AODV-EUDA is similar in
static model. Both algorithms achieve route on the first attempt by the source,
for AODV-EUDA (at least if one bidirectional link is available) and for the pro-
posed scheme even if unidirectional link is present. Fig. 3(b) shows the packet
delivery ratio as a function of variation of the maximum speed of nodes. As
the mobility of node increases, our proposed scheme shows weaker performance
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Fig. 3. Results on (a) Packet delivery ratio in static model (b) Packet delivery ratio
in mobility model (c) Delay in static model (d) Delay in mobility model (e) Energy
consumption

than AODV-EUDA. By analyzing the traces, we found that the stability of uni-
directional links becomes poor with the increase in the mobility of nodes. Next,
in Fig. 3(c) and (d) we report average end to end delay in static and mobile
scenario respectively. Our scheme provides better shortest path in using unidi-
rectional links, and hence shows lesser delay than AODV-EUDA. However, if
the mobility of nodes becomes high and the route break occurs more frequently,
the route re-discovery time is added to the end-to-end delay. Fig. 3(e) shows
the normalized consumed energy per node of the two protocols as a function of
the maximum speed of nodes. We can see that, AODV-EUDA consumes more
energy then the proposed scheme. It is due to the fact that the number of nodes
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participating in route discovery decreases when we utilize the unidirectional
links. As the mobility of nodes becomes high and the number of control packet
increases, both protocols consume more energy. However, the normalized con-
sumed energy is consistently lower for the proposed scheme as it is affected by
total bytes (or bits) of data transmitted by nodes. As the amount of successfully
delivered packet dominate total bytes, despite of high mobility, proposed scheme
consumes less energy than AODV-EUDA.

5 Conclusion

In this paper, we have described a novel scheme that shows how unidirectional
links can be effectively used by routing protocols. Results show that our scheme
shows better performance in many cases as compared with protocols running over
bidirectional links. Our protocol consistently selects the shortest route, consumes
lesser energy and shows comparable throughput. So we conclude that utilizing
unidirectional link can be beneficial in heterogeneous mobile ad hoc networks. In
this research, utilization of unidirectional links has been done over AODV proto-
col, however any other situation routing protocols can also utilize this technique.
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Abstract. Columbia is a 10,240-processor supercomputer consisting of
20 Altix nodes with 512 processors each, and currently ranked as one of
the fastest in the world. In this paper, we briefly describe the Columbia
system and its supporting infrastructure, the underlying Altix architec-
ture, and benchmark performance on up to four nodes interconnected
via the InfiniBand and NUMAlink4 communication fabrics. Addition-
ally, three science and engineering applications from different disciplines
running on multiple Columbia nodes are described and their performance
results are presented. Overall, our results show promise for multi-node
application scaling, allowing the ability to tackle compute-intensive sci-
entific problems not previously solvable on available supercomputers.

1 Introduction

During the summer of 2004, NASA began the installation of Columbia, a 10,240-
processor SGI Altix supercomputer, at its Ames Research Center. Columbia
is a constellation comprised of 20 nodes, each containing 512 Intel Itanium2
processors and running the Linux operating system. In October of 2004, the
machine achieved 51.9 Tflop/s on the Linpack benchmark. According to the
June 2005 Top500 supercomputing list, Columbia is ranked as the third fastest
system in the world. The system increased NASA’s total high-end computing
capacity ten-fold, and helped put the U.S. back on the technology leadership
track. Through unprecedented collaboration between government and industry
partners, this world-class system was conceived, designed, built, and deployed in
a mere 120 days. Since its installation, Columbia has garnered worldwide interest
among scientists, industry, academia, and the public.

The system currently has over 650 users solving problems across many scien-
tific and engineering disciplines. In this paper, we give a detailed system descrip-
tion and examine the performance characteristics of its 2,048-processor capability
subsystem. Through benchmarking tests and real-world applications in the ar-
eas of large-scale molecular dynamics, computational fluid dynamics in aerospace
design, and high-resolution global ocean modeling, we demonstrate Columbia’s
current and potential impact on science and engineering applications.

A. Pal et al. (Eds.): IWDC 2005, LNCS 3741, pp. 293–305, 2005.
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Fig. 1. The 10,240-processor Columbia constellation

2 Columbia Overview

The Columbia system and its supporting infrastructure (see Fig. 1) are housed at
the NASA Advanced Supercomputing (NAS) Division in California. Beyond the
physical facility upgrades for power and cooling, significant upgrades were made
to the mass storage system, local area network, and security perimeter. Dur-
ing installation, NAS computer scientists conducted extensive benchmark tests
to further understand the performance characteristics and to grasp the magni-
tude of the computational capabilities of this massive Altix system. Upgrades to
NASA’s wide area network to 10-gigabit Ethernet (10 GigE) are underway.

2.1 System Description

Columbia is a 10,240-processor constellation comprised of 20 nodes, each con-
sisting of 512 Intel Itanium2 processors employing single system image (SSI)
technology and running the Linux operating system. Twelve nodes are SGI Al-
tix 3700 and eight are Altix BX2 (doubled processor count in rack from 32 to
64). All 512 processors within a node are interconnected via NUMAlink (SGI’s
proprietary non-uniform memory access advanced interconnect technology for
clusters). In turn, all of the nodes are connected together via five networks:
InfiniBand (IB) (high performance, switched fabric interconnect standard for
servers), 10 GigE, and three GigE. Four of Columbia’s BX2 nodes are linked
via NUMAlink4, making a 2,048-processor SMP (symmetric multiprocessing)
system with a peak of 13.1 Tflop/s.

The Columbia storage array consists of 16 RAID racks, eight of which each
have 20 TB of FibreChannel (FC) storage; the other eight each have 35 TB of
Serial ATA (SATA) storage. Each RAID array is quad-connected to two 128-
channel FC switches and each node has two to four FC dual-ported Host Bus
Adapters connecting between the two switches. SGI’s CXFS shared file system
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is currently being installed to allow sharing of file systems among groups of
nodes. These file systems provide users with temporary scratch storage available
for the duration of a computation. In addition, users have assigned permanent
storage provided through a network file system (NFS) via GigE connections. The
Columbia tape robot mass storage system enables storage of up to 200 GB of
data per tape, with a total theoretical capacity of 10 PB. This StorageTek system
holds data from several NASA centers and takes approximately 20 seconds to
mount data from the tape robots, creating a transparent process to the user.

The physical cable plant for Columbia consists of patch panels with Category
5e Unshielded Twisted Pair (UTP), Multi-Mode Fiber (MMF), and Single-Mode
Fiber (SMF) for each node in centrally located cabinets along with Ethernet,
IB, and FC switches. SMF primarily supports connections to storage servers in
remote locations, while MMF and UTP are heavily used to provide GigE, 10
GigE, CXFS, and MetaData Server (MDS) interconnects between nodes. Patch
panels are key to addressing the dynamic configurations, with approximately 15
added, moved or removed connections per week.

The overall Columbia perimeter protection system includes the Secure Front
Ends (SFE), Secure Unattended Proxies (SUP), and Perimeter Enforce and Con-
troller, which collectively serve as the security reference monitor for access to
systems located within the Columbia enclave. The SFE mediates all interactive
accesses to the enclave and is the point at which a user must be identified and au-
thenticated using RSA’s SecurID authentication. The SUP supports unattended
file transfers (where the user is not present to perform two-factor authentica-
tion) by allowing the use of SecurID to acquire a ticket based on public key
technology.

SGIs Linux Environment 7.2 with the SGI ProPack kernel enables a single
system image on each 512-processor node. Programming paradigms available
on Columbia include MPI, OpenMP, multi-level parallelism (MLP), and hybrid
(MPI across nodes and OpenMP/MLP within a node).

2.2 Altix Architecture

The 64-bit processors used in the 3700 architecture run at 1.5 GHz and can
issue two MADDs (multiply and add) per clock, with a peak performance of
6 Gflop/s. These processors are grouped in sets of four—each set is called a “C-
brick.” All 128 C-bricks within a 3700 node are connected via SGI’s NUMAlink3
(a high-performance network with fat-tree topology). Each brick has 8 GB of
local memory and two SHUBs, a proprietary Application Specific Integrated
Circuit (ASIC) designed by SGI. Peak bandwidth between bricks in a single
3700 node is 800 MB/s per processor.

Being twice the density of a 3700, each C-brick in a BX2 node contains eight
processors, for a total of 64 bricks. Each of these 64 bricks is interconnected
via NUMAlink4, yielding twice the bandwidth of that between bricks in a 3700.
Each brick in a BX2 has a 16 GB memory capacity and four SHUBs. The
64-bit processors used in the BX2 architecture run at 1.6 GHz and can issue two
MADDs per clock with a peak performance of 6.4 Gflop/s.
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The memory hierarchy of the Itanium2 processor consists of 128 floating point
registers and three on-chip data caches: 32 KB of L1; 256 KB of L2; and 6 MB of
L3. The memory hierarchy of the processors in the BX2 nodes is identical except
for a larger 9 MB L3 cache. As a Cache Coherent Non-Uniform Memory Access
(CC-NUMA) system, local cache-coherency is maintained between processors on
the Front Side Bus (FSB) in both the 3700 and BX2 architectures. Global cache
coherency is implemented via a SHUB chip and is a refinement of the protocol
used in the DASH computing system (a scalable shared-memory multiprocessor
developed at Stanford University).

2.3 Benchmark Performance

Several microbenchmarks, low-level benchmarks, computational kernels, and real
applications for various regression testing, verification, validation, and planning
purposes are employed to enable scientists and administrators to research, de-
sign, and develop an optimized and tuned computing system. Here we present
some performance data using a subset of the NAS Parallel Benchmarks (NPB)
[6, 12]; detailed characterization results can be found in [2].

Figure 2 shows the per-processor Gflop/s rates reported from NPB runs, a
horizontal line indicating linear scaling. The four graphs on the left show MPI
and OpenMP results on three types of the Columbia nodes: 3700, BX2a with
1.5 GHz CPUs and 6 MB caches, and BX2b with 1.6 GHz clock and 9 MB
caches. Results demonstrate that the double density packing for BX2 produces
shorter latency and higher bandwidth in NUMAlink access. The effect of doubled
network bandwidth of BX2 on OpenMP is evident; it is less profound on MPI
performance until communication starts to dominate. A bigger cache in the
BX2b produces substantial performance improvement for MPI codes on large
processor counts when the data can fit into local cache. However, no significant
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difference is observed for OpenMP codes because the cost of accessing shared
data from each thread increases substantially with the number of processors. In
the case of MPI, the falloff from the peak is due to increased communication-to-
computation ratio as this is a strong scaling test. The slightly larger processor
speed of the BX2b brings only a marginal performance gain.

The four graphs on the right of Fig. 2 show performance of the hybrid
MPI+OpenMP codes of the NPB multizone benchmarks. These were tested
across four Columbia nodes connected with both the NUMAlink4 network and
the IB switch. The Class E problem size (4096 zones, 1.3 billion grid points)
was used for these experiments. The top two graphs compare multi-box NU-
MAlink4 results with those from a single BX2b node. For 512 or fewer CPUs,
multi-node performance is comparable to or even better than single-node results.
The bottom two graphs compare runs using NUMAlink4 with those using IB,
taking the best process-thread combinations. The IB results are only 7% worse;
however, performance is sensitive to a few SGI runtime environment parameters
that control how MPI accesses its internal message buffers.

3 Applications

The following applications are examples of compute-intensive work being per-
formed on Columbia, all of which have been scaled beyond a 512-processor node.

3.1 Large-Scale MD Simulations

There is growing interest in large-scale molecular dynamics (MD) simulations [13]
involving several million atoms, in which interatomic forces are computed quan-
tum mechanically [3] to accurately describe chemical reactions. Such large reac-
tive MD calculations provide the requisite coupling of chemical reactions, atom-
istic processes, and macroscopic materials phenomena, to solve a wide spectrum
of science and engineering problems. One example of technological significance
is that of energetic nanomaterials used to boost the impulse of rocket fuels
in which chemical reactions sustain shock waves (see Fig. 3). Petaflops-scale
computers could potentially extend the realm of quantum mechanics to macro-
scopic scales, but only if scalable simulation technologies were developed. A
multidisciplinary team of physicists, chemists, materials scientists, and com-
puter scientists at NASA and several academic institutions are working to-
ward solving this challenging problem. They have developed a scalable parallel
computing framework for reactive atomistic simulations, based on data locality
principles.

Density functional theory (DFT) has reduced the exponentially complex
quantum mechanical (QM) N -body problem to O(N3), by solving N one-electron
problems self-consistently instead of an N -electron problem [7]. Unfortunately,
DFT-based MD simulations [3] are rarely performed for N > 102 atoms because
of the excessive computational complexity, which severely limits their scalabil-
ity. Over the past few years, two promising approaches have emerged toward
achieving million-to-billion atom simulations of chemical reactions.
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Fig. 3. Reactive force-field MD simulation of shock-initiated combustion of an energetic
nanocomposite material (nitramine matrix embedded with aluminum nanoparticles)

Fig. 4. Schematic of an embedded divide-and-conquer (EDC) algorithm

One approach is to perform a number of small DFT calculations on-the-fly
to compute interatomic forces quantum mechanically during an MD simula-
tion. The team has recently designed an embedded divide-and-conquer DFT
algorithm (EDC-DFT) and used it to simulate a 1.4 million-atom problem. An
alternative to this concurrent DFT-MD approach is a sequential DFT-informed
MD strategy, which employs environment-dependent interatomic potentials to
describe charge transfers, and chemical bond formation and breakage. A first
principles-based reactive force-field method (ReaxFF) where parameters in the
interatomic potentials are trained to best-fit many DFT calculations on small
(N∼10) clusters of various atomic-species combinations has been developed. A
new O(N) parallel implementation of ReaxFF enabled a 0.56 billion-atom MD
simulation of chemical reactions.

Linear-Scaling EDC Algorithms. The embedded divide-and-conquer (EDC)
algorithms, based on data locality principles, solve spatially localized subprob-
lems in a global embedding field, which are then efficiently computed with tree-
based methods. Examples of the embedding field are the electrostatic field in MD
simulations and the self-consistent Kohn-Sham potential in DFT. A suite of these
linear-scaling EDC algorithms developed by the team solves multiresolution MD
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(MRMD) based on a many-body interatomic potential model; environment-
dependent ReaxFF MD; and QM calculation based on DFT.

Figure 4 shows a schematic of an EDC algorithm. In the left panel, the phys-
ical space is subdivided into spatially localized cells, with local atoms (spheres)
constituting subproblems that are embedded in a global field (shaded) solved
with a tree-based algorithm. To solve the subproblem in domain Ωα in the EDC-
DFT algorithm, coarse multigrids (shaded in right panel) are used to accelerate
iterative solutions on the original real-space grid (corresponding to the grid re-
finement level, l = 3). Fine grids are adaptively generated near the atoms to
accurately operate the ionic pseudopotentials on the electronic wave functions.

Performance Results. Major design parameters for MD simulations of ma-
terials include the number of atoms in the system and the methods to com-
pute interatomic forces (classically in MRMD, semi-empirically in P-ReaxFF, or
quantum-mechanically in EDC-DFT). Figure 5 shows parallel performance for
each of the three algorithms on Columbia and a design-space diagram on 1,920
processors. Execution and communication times are shown per MD step. The
largest benchmark tests include 18,925,056,000-atom MRMD, 557,383,680-atom
P-ReaxFF, and 1,382,400-atom EDC-DFT calculations. Results demonstrate ex-
cellent linear scaling for all three algorithms, spanning five orders of magnitude
in problem size. The only exception is P-ReaxFF below 100 million atoms, due
to the high communication-to-computation ratio. Parallel efficiency on 1,920
processors is 0.87, 0.91, and 0.76 for MRMD, P-ReaxFF, and EDC-DFT, re-
spectively. Further code optimizations are currently underway to understand
and eliminate the jumps in timings at and beyond 480 processors.

3.2 High-Fidelity Aerospace Applications

Computational fluid dynamics (CFD) techniques have been applied to aerospace
analysis and design problems since the advent of the supercomputer; however,
their historical impact on the vehicle design process has been limited. Platforms
like Columbia now promise to unlock the full potential of these simulation sys-
tems both by producing more optimal designs and by permitting parametric
analyses that examine a vehicle’s performance over the complete flight envelope.
The large-scale parallel hardware improves accuracy in all phases of the process
both by enabling simulations employing grids with one or two orders of magni-
tude higher resolution, and simultaneously permits tens of thousands of runs to
be made as part of design optimization or parametric performance studies.

NASA’s Cart3D is a high-fidelity simulation package aimed at design and
aero-performance prediction for vehicles with complex geometry. It is in wide-
spread use both within NASA, and throughout other government agencies and
industry. The package is based upon the solution of the Euler equations of fluid
motion on locally adapted Cartesian grids with embedded boundaries. This ap-
proach permits fully automated mesh generation for extremely complex geome-
tries and gives it the ability to dynamically re-mesh configurations when control
surfaces are deployed, or when the underlying CAD geometry is significantly
modified by a shape optimizer [11].
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Fig. 5. Total execution and communication times, and design space diagram for three
linear-scaling MD algorithms: MRMD, P-ReaxFF, and EDC-DFT

Parallel Implementation. Cart3D employs several techniques to enhance its
efficiency on distributed parallel machines. It uses multigrid for convergence ac-
celeration and employs a domain-decomposition strategy for subdividing the
global solution among the many processors of a parallel machine [1]. The mesh
coarsener and the partitioner in Cart3D take advantage of the hierarchical nest-
ing of adaptively refined Cartesian meshes. This structure permits the efficient
use of Space Filling Curves (SFCs) both for domain decomposition and mesh
coarsening. The same SFC that partitions the fine mesh is also used to partition
the coarser meshes. This approach produces meshes with generally good overlap
between coarse and fine mesh partitions; however, they are not perfectly nested.
Thus, while most of the communication for multigrid restriction and prolonga-
tion in a particular subdomain will take place within the same local memory,
these operators will incur some degree of off-processor communication. This ap-
proach favors workload balancing on each mesh in the hierarchy at the possible
expense of increased communication [1, 10].

Performance Results. Several performance experiments were devised to ex-
amine Cart3D’s scalability for a typical large grid case based on the full Space
Shuttle Launch Vehicle (SSLV) shown in Fig. 6. For scalability testing, the mesh
density was increased to 25 million cells, with approximately 125 million degrees-
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Fig. 6. Cartesian mesh (left) and pressure contours (right) around full SSLV configu-
ration. Mesh color indicates 16-way decomposition of 4.7 million cells using the SFC
partitioner, while pressure contours are at Mach 2.6 and 2.3◦ angle-of-attack.
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Fig. 7. Parallel scalability of Cart3D solver for SSLV using a 25 million cell mesh on
one node (left) and four nodes (right) of Columbia

of-freedom. An aerodynamic performance database and virtual-flight trajectories
using this configuration were presented in [11].

Cart3D’s solver module can be built against either OpenMP or MPI com-
munication libraries. On Columbia, cache-coherent shared memory is not main-
tained between nodes; thus, pure OpenMP codes are restricted to a single box.
The left panel in Fig. 7 shows scalability for the test problem using both OpenMP
and MPI on a single Altix node. In calculating parallel speedup, perfect scala-
bility was assumed on 32 CPUs. Performance with both programming libraries
is very nearly ideal; however, the OpenMP results display a break near 128
processors. Beyond this point the curve is again linear, but with a slightly re-
duced slope. This degradation is probably attributable to the routing scheme
used within the Altix nodes. They are built of four 128-processor double cab-
inets; within any one of these, addresses are dereferenced using the complete
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pointer. More distant addresses are dereferenced by dropping the last few bits
of the address. On average, this translates into slightly slower communication
when addressing distant memory. Since only the OpenMP version uses the global
address space, the MPI results are not impacted by this pointer swizzling.

The graph on the right in Fig. 7 examines parallel speedup for the prob-
lem spread across four nodes of Columbia using the NUMAlink4 interconnect.
Simulations were run using one and four grids in the multigrid hierarchy, and
reducing the number of multigrid levels clearly de-emphasizes communication
(relative to floating-point performance) in the solution algorithm. Scalability for
the single grid scheme is nearly ideal, but deteriorates at around 688 processors
for multigrid because the coarsest mesh in the sequence has only about 16 cells
per partition when using 2016 CPUs. Given this relatively modest decrease in
performance, it appears the bandwidth demands of the solver are not greatly in
excess of that delivered by NUMAlink4. Detailed performance results are in [10].

3.3 High-Resolution Global Ocean Model

Finally, we describe how we are using Columbia’s 2,048-processor SMP subsys-
tem to simulate ocean circulation globally at resolutions up to 5km (≈ 1

16
◦).

The simulations employ the M.I.T. General Circulation Model (MITgcm), a fi-
nite volume ocean code that can scale efficiently to large processor counts. The
study is aimed at developing a clearer understanding of the physical processes
that underly the skill improvements that eddy resolving ocean models show, and
at gaining insights into what resolution is sufficient for a particular purpose.

The model configurations employed are significant in that, at the resolutions
Columbia makes possible, numerical ocean simulations begin to truly represent
the key dynamical process of oceanic meso-scale turbulence. Meso-scale turbu-
lence in the ocean is the analog of synoptic weather fronts in the atmosphere.
However, because of the density characteristics of seawater, the length scale of
turbulent eddy phenomena in the ocean is around 10 or less kilometers. In con-
trast, in the atmosphere, where the same dynamical process occurs, it has length
scales of thousands of kilometers. Although it has been possible to resolve ocean
eddy processes well in regional ocean simulations [5] for some time, global scale
simulations that resolve or partially resolve the ocean’s energetic eddy field are
still rare [8, 9] because of the immense computational challenge they represent.

Altix Implementation. The MITgcm algorithm is rooted in the incompress-
ible form of the Navier-Stokes equations for fluid motion in a rotating frame
of reference [4]. The equations are discretized in time and stepped forward ex-
plicitly using an Adams-Bashforth procedure that is second order accurate. The
equations are discretized in space using a finite volume technique yielding a so-
lution procedure that requires at each time step explicitly evaluated local finite
volume computations and an implicit two-dimensional elliptic inversion.

Our parallel formulation takes a global finite volume domain with Nx×Ny×
Nz cells in three dimensions, and decomposes it into Nsx × Nsy sub-domains
each of size (Snx + 2 × Ox) × (Sny + 2 × Oy) × Nz such that Snx × Nsx = Nx
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Fig. 8. Performance of key primitives used on the 1
16

◦ resolution simulation of 1.25
billion grid cells: exchange times for a sub-domain of size 96×136 with Ox = Oy = 3
(left), and overall scaling and performance on 960, 1440, and 1920 processors (right)

and Sny × Nsy = Ny. The Ox and Oy values are overlap region finite volume
cells that are added to the boundaries of the subdomains to hold replicated data
from neighboring subdomains. Each computational process integrating forward
the MITgcm is then given a static set of one or more subdomains.

A single time-step is split into a series of Compute, Exchange, and Sum
phases. Compute contains only local computations (predominantly arithmetic
and associated memory loads/stores) and I/O operations. Performance is sen-
sitive to the volume of I/O and computation involved, local CPU and memory
capabilities of the hardware, and to the system I/O capacity. Exchange involves
point-to-point communication between neighbor processes. Performance hinges
on the interconnect and inter-process communication software stack. Sum in-
volves all subdomains collectively combining locally calculated 8-byte floating
point values to yield a single global sum. It is sensitive to how system perfor-
mance for collective communication scales with processor count. Scaling behav-
ior for the Sum and Exchange phases are shown in the left panel of Fig. 8, and
overall scaling, with and without diagnostic I/O, is shown in the right panel.

Performance Results. A series of numerical simulations at 1
4
◦, 1

8
◦, and 1

16
◦

resolutions were performed on the Columbia 2048-processor SMP subsystem.
Results in Fig. 9 show significant changes in solution with resolution. The plots
capture changes in sea-surface heights due to eddy activity over a single month.
The Gulf Stream region at 1

4
◦ resolution shows a relatively small area of vigor-

ous sea-surface height changes, but the 1
8
◦ and 1

16
◦ resolution simulations show

more extensive areas of changes. Key behaviors like how tightly waters “stick”
to the coast, or how far energetic eddies penetrate the ocean interior, change
significantly between resolutions and can be seen in these images.

At first glance, the three different resolution runs show significant differ-
ences. There does, however, seem to be a smaller change between the 1

8
◦ and

1
16

◦ simulations. A next step is to undertake a fourth series of runs at even
higher resolution. Formally quantifying the changes between these runs would
provide important information on whether ocean models are reaching numeri-
cally converged solutions. Performance on Columbia shows it is well suited for
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Fig. 9. Gulf Stream region sea-surface height difference plots at different resolutions
for one month: 1

4
◦ (left), 1

8
◦ (middle), and 1

16
◦ (right). Color scale -0.125m to 0.125m.

addressing these questions. The code achieved a sustained performance of 12% of
peak on 1,920 processors. The scaling across multiple Altix nodes is encouraging
and suggests that configurations that span eight or more nodes, and that would
therefore enable 1

20
◦ and higher resolution simulations, are today within reach.

4 Summary and Conclusions

Through innovative engineering techniques by NASA computer scientists and
industry partners, some of today’s most computationally challenging problems
are being solved on the Columbia supercomputer. It has proven itself to be a
valuable national resource, running massive computationally intensive programs
in relatively short time periods, and giving scientists and engineers a tool to
effectively and efficiently solve the most difficult problems in diverse areas such
as materials science, aeronautics, and earth science.
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Abstract. For a connected graph, representing a sensor network, dis-
tributed algorithms for the Set Covering Problem can be employed to
construct reasonably small subsets of the nodes, called k-SPR sets. Such
a set can serve as a virtual backbone to facilitate shortest path routing,
as introduced in [4] and [14]. When employed in a hierarchical fashion,
together with a hybrid (partly proactive, partly reactive) strategy, the
k-SPR set methods become highly scalable, resulting in guaranteed min-
imal path routing, with comparatively little overhead.

1 Introduction

Recent advances in micro-electro-mechanical systems (MEMS) and wireless re-
search led to the development of sensor networks that show a lot of promise
for future mobile applications [1]. Research efforts have been made to build low
cost micro-sensors that possess processing capability as evidenced in the Smart
Dust Project [7], [15], the PicoRadio Project [11] and WINS Project [12]. A large
number of wireless sensor networks consist of portable mobile devices with lim-
ited battery power. In order to address this limitation, energy-efficient routing
algorithms and protocols are a major focus of current research.

In our work, we model sensor networks by a connected weighted graph having
bidirectional links. For the sake of simplicity, the network nodes are presumed
to be identical in nature and to have the same transmission radii. Edge weights
are used as a measurement of the impact on the network of using a given link.
These weights will be referred to as “costs”, and the exact details of how such
costs are assigned will not be important in our discussion.

It will simply be understood that the higher the cost of a link, the less
desirable it is to transmit using this link. Costs might be a function of the
minimal transmission energy required for the link, and/or the relative impact on
the battery levels of the nodes involved in the link. The minimal transmission
energy is of course a function of the proximity of the two nodes, as well as any
interference. The relative impact on a node’s battery energy level is additionally
sensitive to the node’s current battery level. Ideally, the links at a node with a
weak battery should all have a high cost.

A. Pal et al. (Eds.): IWDC 2005, LNCS 3741, pp. 306–317, 2005.
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2 Our Approach

Our routing strategy is based on special k-dominating sets of nodes, namely
k-SPR sets, that generalize similar sets from our earlier work [4], [14]). The
nodes in such a set serve as “routers” and play a central role in facilitating
route requests. Moreover, the nature of a k-SPR set is such that this guarantees
minimal path routing under reasonable assumptions, where minimal path means
shortest weighted path based on edge weights.

k-SPR sets can be used in a hierarchical way, based on an increasing finite
sequence of numbers ki, with one of these numbers corresponding to each of
the levels of the hierarchy. This leads to an easily maintained and quite natural
hybrid hierarchical routing strategy. It too guarantees minimal path routing. We
supply detailed algorithms for forming such a hierarchy of k-SPR sets, which we
call a K-SPR sequence.

A reasonable choice for these numbers would be ki = ki, for some fixed integer
k ≥ 2. Since the largest ki can be assumed not to exceed the diameter of G, the
number of hierarchy levels in this case would be bounded by the logarithm of
the diameter of G. Consequently, our hybrid routing strategy is highly scalable.
Moreover, it is quite unique in its ability to also ensure minimal path routing.
Although dominating sets have been used to construct virtual backbones in
ad hoc and sensor networks, this is the first attempt to use k-hop connected
k-dominating sets for hierarchical routing that is also minimal path routing.

3 Related Work

Routing protocols for sensor networks are active areas of research and several
researchers have proposed several protocols/heuristics in this regard. Since our
framework for routing is based on minimum connected dominating set, we will
here focus on only some of these, ones that are highly relevant to our own
approach and that utilize a (k-)dominating set. The nodes in such a set provide
a virtual backbone of router nodes, and in general, must be supplied with global
routing information.

Span [2] is one of several ad hoc networking protocols based on the notion of a
dominating set. In Span, “coordinators” - a group of nodes that form a connected
dominating set over the network - do not sleep. Non-coordinator nodes follow a
synchronized sleep/wake cycle, exchanging traffic using an algorithm based on
the beaconing and traffic announcement methods of IEEE 802.11 IBSS power
save. The routing protocol is integrated with the coordinator mechanism so that
only coordinators forward packets, acting as a low latency routing backbone for
network. Span is intended to maximize the amount of time nodes spend in the
sleep state, while minimizing the impact of energy management on latency and
capacity.

The algorithm of J. Wu and H. Li is a distributed algorithm [16] that is used
to construct a connected dominating set in a connected graph of radius at least
two. The set produced by their algorithm is used to form a virtual backbone of
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a wireless ad hoc network. In [14], the authors generalized the Wu-Li algorithm
so as to produce a k-hop connected k-dominating set that work as routers. (See
Section IV for definitions.) One of the important aspect of their routing scheme
was that it also guaranteed shortest path routing through the network along
a path that was guaranteed at any point along the way, to encounter another
router node within every k steps. Later the authors modified this algorithm and
proposed a number of variations on it [4]. These were largely motivated by the
following study of k-hop dominating sets.

In [8], B. Liang and Z. J. Haas proposed a distributed greedy algorithm to
produce a small k-dominating set. In order to do so, they reduced the problem
to a special case of the Set Covering Problem. A similar but different reduction
to this problem was also used in [4]. For a given value of k, though, the latter
requires fewer steps than the Liang-Haas method. In addition it produces a set
that is not only k-dominating, but is also k-hop connected, and has a special
property to facilitate shortest path routing.

Hierarchical routing has gained special attention for sensor networks for their
scalability and flexibility. In order to orchestrate hierarchical routing, various
clustering algorithms have been developed for this purpose [3]. However, all
these clustering strategies do not guarantee shortest path routing.

Low-energy adaptive clustering hierarchy (LEACH) is a hierarchical-based
protocol that minimizes energy dissipation in sensor networks [5]. The purpose
of LEACH is to randomly select sensor nodes as cluster-heads, so the high energy
dissipation in communicating with the base station is spread to all sensor nodes
in the sensor network. Clusterhead selection is difficult to optimize in many
situations.

The Power-Efficient Gathering in Sensor Information Systems (PEGASIS)
[9] is another hierarchical protocol that is an improvement of the LEACH pro-
tocol. As opposed to forming clusters like LEACH, PEGASIS first constructs
chains consisting of sensor nodes so that each node transmits and receives from
a neighbor and only one node is selected from that chain to transmit to the
base station (sink). Performance evaluation of PEGASIS indicates that it out-
performs LEACH for different network sizes and topologies. However, one of the
major drawback of PEGASIS is that it introduces excessive delay for distant
node on the chain. Moreover, the single node acting as a leader of the chain can
sometimes become a bottleneck.

Hierarchical-PEGASIS [10], which is an extension of PEGASIS, is designed
to addresses the delay incurred for packets during transmission to the base sta-
tion. In order to improve the performance by reducing the delay in PEGASIS,
messages are transmitted simultaneously.

4 k-SPR Sets and K-SPR Sequences

The k-SPR sets to be presented are a straightforward generalization of the
k-SPR sets defined in [4] (where they are called “d-SPR sets”) and essentially
introduced in [14]. The generalization is for the purpose of handling graphs that
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are equipped with link weights. After a discussion of k-SPR sets, sequences of
such will be considered and ultimately used to facilitate hierarchical routing.
Throughout this discussion, G will denote a finite connected graph representing
a sensor network, with positive link weights referred to as “costs”.

4.1 Basic Definitions and a Relationship Between These

Given a path in G, the cost of the path is the sum of the costs of the links
along the path. Given two nodes, u and v, the cost c(u, v) between these is the
minimum of the costs of the paths connecting these two nodes. A path from u
to v is said to be a minimal path if its cost is c(u, v). The radius of G is the
largest number R ≥ 0 such that for each node u, there exists a node v satisfying
c(u, v) ≥ R. Let V denote the set of nodes of G. Let N = |V |.

Some fundamental definitions concerning subsets of V and claims about these
required for the routing strategy to be described in the next section will now be
presented.

Definition 1. Fix a positive number k. Fix a subset S of the set of nodes in V .

(a) S is k-dominating if every node in V is within a cost k of some node in S.
(b) S is k-hop connected if, given any two nodes u and v in S, there is a path in

G from u to v such that the cost between consecutive elements of S along
this path never exceeds k.

(c) S is a k-SPR set if, given any two nodes u and v in V satisfying c(u, v) > k,
there exists some node w in S such that w �= u, w �= v, and c(u, w)+c(w, v) =
c(u, v).

The definition of a k-SPR set was formally introduced in [4], and is a central
concept in [14] as well. It essentially means that whenever two nodes are suf-
ficiently far apart, there is certain to be at least one node from the k-SPR set
lying between them along a minimal path. The three types of subsets of V are
related via the following facts, which generalizes [4–Theorem 1], and whose proof
is similar.

Theorem 1. Assume that S is a k-SPR set for G. Then the following are true.

(a) Given any two nodes u and v of G, there exists a minimal path connecting
u to v such that the set of nodes along this path that are also in S ∪ {u, v}
is k-hop connected.

(b) S is k-hop connected.
(c) If the radius of G exceeds k, then S is k-dominating.

4.2 Local Views

When G represents an ad hoc network, [14] and [4] produce a k-SPR set to
serve as a virtual backbone for routing purposes. To achieve practical distributed
algorithms for finding such a k-SPR set, the following subgraphs of G need
to be considered. These generalize similar subgraphs in [14] and [4], but the
terminology is altered slightly. A “(d+1)-local view” there is called an “extended
d-local view” here.
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Definition 2. Let v be a node of V . Let r ≥ 0. The r-local view of v is the
subgraph induced by all of the nodes within a cost r of v. The extended r-local
view of v is the subgraph of G obtained by extending the r-local view of v by
including also any nodes at a cost greater than r from v that are adjacent to a
node in the r-local view, plus the links that realize these adjacencies.

It is clear that the cost from v to another node u in v’s r-local view is also
the cost between these nodes in G, that is, c(v, u). We will suppose that nodes
employ some sort of “extended hello” messages in order that each node be able
to learn about its extended r-local view, for some r. It is important for the
purposes of shortest path routing to know when the cost between two nodes in
some extended r-local view agrees with the corresponding cost in the graph G
as a whole. This issue is partly addressed in the first part of [4–Theorem 2].
A somewhat more general claim is the following, which is proved in a similar
manner.

Lemma 1. Let x and y be in the extended r-local view of v. Let c′ denote the
cost between x and y as measured in this r-local view. If c(v, x)+c(v, y)+c′ ≤ 2r,
then c′ = c(x, y).

4.3 A Covering Problem

Another common feature of the routing algorithms to be considered is that they
all rely on a bipartite graph B = B(G), based on G, a portion of which is
maintained in a data structure by each network node. The bipartite graph B is
described as follows.

Definition 3. The nodes of the bipartite graph B = B(G) constitute two sets
V and P , each of which is an independent set in B. V is simply the set of all
nodes of G. The elements of P are certain unordered pairs of nodes {x, y} of G.
To describe which, first consider the set P̂ of all such pairs satisfying c(x, y) > k.
Partially order P̂ by taking {x′, y′} ≤ {x, y} if (after possibly reordering x′ and
y′) c(x, x′) + c(x′, y′) + c(y′, y) = c(x, y). (This means that x′ and y′ lie along
some minimal path connecting x and y.) Now P is defined to be the subset of
P̂ consisting of the minimal elements with respect to this partial order. The
description of the bipartite graph B is completed by indicating that v ∈ V is
taken to be adjacent to {x, y} ∈ P if and only if c(x, v) + c(v, y) = c(x, y), but
v �= x and v �= y.

When all the link costs are one, B is the same as the bipartite graph considered
in [4]. The following claim is straightforward to check using Definition 2 and part
(c) of Definition 1.

Theorem 2. A subset S of V is a k-SPR set for G if and only if every element
of P is adjacent in B to some element of S.

When this adjacency condition holds, we say that S covers P . The second part
of [4–Theorem 2] may now easily be generalized to produce the following needed
fact.
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Lemma 2. Let e be an upper bound on the link costs of G. Suppose that u, v ∈ V
both cover the pair {x, y} ∈ P . Then c(u, v) ≤ k + e.

4.4 K-SPR Sequences

The constructs presented in this subsection anticipates the hierarchical nature
of the routing strategy to be introduced in the next section. Given a k-SPR set,
it will be helpful to consider the following derived link-weighted graph.

Definition 4. Let S be a k-SPR set for G. Define the link-weighted graph
G[S, k] as follows. The node set for the graph G[S, k] is S. Two elements u and
v of S are made adjacent in G[S, k] if c(u, v) ≤ k (in G). In this case, the link
connecting u and v in G[S, k] is assigned the cost c(u, v).

By part (b) of Theorem 1, this graph is connected. Moreover, the cost between
any two nodes in G[S, k] when measured in this graph agrees with the cost
between them when measured in G. To accommodate a hierarchical version
of k-SPR routing, this derived graph notion will now be used to introduce a
generalization of the notion of a k-SPR set.

Definition 5. Fix a set of positive numbers K = {k1, ...., kl} with k1 < k2 <
· · · < kl. A K-SPR sequence for G is a collection S = {V1, ..., Vl} of sets of nodes
of G with the following property. Letting G0 = G and V0 = V , and letting Gi

denote Gi−1[Vi, ki] for i = 1, 2, ..., l, the set Vi is required to be a ki-SPR set for
the graph Gi−1, for i = 1, 2, ..., l. The following numbers will also be needed. Let
r0 = k1 and for i > 0, let ri = ki+1 + 2ki + · · ·+ 2k1.

Thus V = V0 ⊇ V1 ⊇ · · · ⊇ Vl. Part (a) of Theorem 1 now generalizes as follows,
and is proved by induction on k.

Theorem 3. Let K = {k1, ...., kl} be a set of positive numbers with k1 < k2 <
· · · < kl. Let S = {V1, ..., Vl} be a K-SPR sequence for G. Given any two nodes
u and v in V , there exists a minimal path p connecting u to v such that, for
i = 1, 2, ..., l, the set of nodes consisting of the all the nodes along p and belong-
ing to Vi, together with the first and last nodes along p and belonging to Vi−1,
form a ki-hop connected set for G. Moreover, Vi is a ri−1-SPR set for G, for
i = 1, 2, ..., l.

4.5 An Example

Consider the following example using k1 = 3 and k2 = 9. The graph on the left
in Figure 1 is the original graph G. The dashed edges have cost one, while the
solid edges have cost two. The dark vertices form a 3-SPR set V1 for G. The
graph on the right is then G1 = G[V1, 3]. It has two types of edges. The dashed
edges have cost two, while the solid edges have cost three. Here V2 consists of
the lone dark vertex in the figure. This is a 9-SPR for G1. Thus G2(= G1[V2, 9])
would consist only of one vertex, and the process terminates.
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Fig. 1. G and G1

Now, in Theorem 3, consider the case where u and v are the top-left node and
bottom-right node of G, respectively. There are several minimal paths connecting
u and v, and we see that their cost is 15. One of these path starts at u, and
repeatedly moves down one hop and then right one hop, zigzagging until arriving
at v. Call this path p. Notice that it goes through the only node in V2, which
we’ll call w. Consider the claim in Theorem 3 when i = 2. The first and last
nodes along p that belong to V1 are u and v. The fact that {u, v, w} is 9-hop
connected in G gives evidence in support of Theorem 3.

Let’s try a different choice for u and v, say by taking these to be the top-right
node and the bottom-left node, respectively. Now the cost between u and v is
only 10 and there is an evident unique minimal path connecting them. Let p
now denote this path, which uses only edges of cost one, and which alternates
between nodes in V1 and nodes not in V1. Letting x and y denote the first and
last nodes along the path that belong to V1, we see that c(x, y) = 8. There are
no nodes from V2 along p. So using i = 2 again, we now notice that {x, y} is
9-hop connected in G, as required.

5 Hierarchical Routing Via K-SPR Sequences

5.1 Establishing a K-SPR Sequence

Let k0 be an upper bound on the link costs of G. Let K = {k1, ..., kl} be a set of
positive numbers satisfying k0 < k1 < · · · < kl. The distributed algorithms of [14]
and [4] can now be altered to handle graphs with weighted links. By iteratively
applying such an algorithm, it then becomes straightforward to obtain a K-
SPR sequence for G. Once this has been accomplished, the routing strategies
described in the next section can be implemented.

For example, the greedy algorithm approach in [4] is easily adapted to handle
a graph with link costs, as will now be outlined. The following algorithm shows
how this would proceed at level i, that is, when applied to the graph Gi in order
to find a ki+1-SPR set for it. Note however that when i > 0, the processing at
level i begins locally only after processing at level i − 1 has completed locally.
The distributed greedy algorithm used here, at each level, does not require strict
synchronization though.

Each node in the network has a unique ID number. Each node that becomes
a level-i node (element of Vi) begins participating in the process of selecting
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level-(i+1) nodes (elements of Vi+1). Initially it is in the “undecided” state, but
ultimately ends up in either the “selected” or “not selected” state after complet-
ing the algorithm. The selected nodes are of course the level-i nodes that are
selected to become level-(i+1) nodes, that is, the nodes of Gi+1. The distributed
greedy algorithm is as follows.

Distributed Greedy Algorithm

Step 1: Each node v ∈ Vi gathers information about its ri-local view of Gi,
which will henceforth be referred to as v’s level-i view. This requires several
rounds of passing local link-state information. Some nodes in this local view
may still be actively participating in the greedy algorithm at a lower level. If
this happens, then the level-i algorithm must stall until these nodes complete
the lower level algorithms.
Step 2: v determines Pv and Cv, where these are defined as follows. Pv denotes
the set of all the nodes pairs {x, y} covered by v in the bipartite graph B. Cv

denotes the set of all the nodes that cover some node pair in Pv. (v ∈ Cv, and
by Lemma 2, v is able to “see” the elements of Pv and Cv. Actually, only a
(ki+1 + ki)-local view is required for this.) v also computes its current covering
number |Cv| (the size of Cv).
Step 3: v multi-casts a message containing its covering number and its status
(undecided, selected or not selected) to each node in Cv. (Note that the first
time this step is executed, v is undecided, and the last time it executes this step,
it will be in one of the two decided states.)
Step 4: If v has entered one of the two decided states (selected or not selected),
then it essentially terminates its participation in this algorithm (at the current
level), except to help route messages between other nodes. Otherwise, if it is still
undecided, then ....
Step 5: v waits until it receives messages as in Step 3 from each node in Cv.
For each such node u that has become decided, v removes u from Cv, and if
u has become selected, then v also removes any pairs from Pv that u covers.
Accordingly, v recomputes its covering number as necessary.
Step 6: If v’s covering number is now zero, then v enters the “not selected”
state, and loops back to Step 3. Otherwise....
Step 7: v checks to see if its own priority is the highest among all the nodes
of Cv. Priority here is defined to be the ordered pair (covering number, ID),
lexicographically ordered (as in [6–Subsection 2.1]). If v has the highest priority,
then v enters the “selected” state. In either case, it loops back to Step 3.

Remarks:

1. Once a selected node has terminated the greedy algorithm at level i, it can
proceed to initiate its participation in the greedy algorithm at level i + 1,
where it is of course initially undecided at this level.

2. In Step 3, a node v is obliged to send a message to some of the nodes in its
level-i view. This can be handled efficiently by means of “optimal routing
trees” and lower level local routing.
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3. It is also possible to let the ultimate number of levels be initially unspecified,
perhaps until a level is reached consisting of a single node. The set K would
then grow according to some formula, as new levels are constructed.

4. Other algorithms can be used in place of the greedy algorithm. For example,
it is possible to adapt the “d-SPR-C method” of [4]. Unlike the greedy al-
gorithm, and assuming that link costs reflect transmission time delays, this
algorithm completes in a time period that does not depend on the overall
size of the network, but rather only depends on the maximum link cost and
maximum node degree.

5.2 Local Unicast Routing at a Given Level

Once a K-SPR sequence has been established up to some level, say i, it is possible
for a level-i node v to efficiently route a message to another level-i node u within
its level-i view, as follows. Recall that if j < i, a level-i node is also a level-j node.
Now v can easily discover a minimal path in the level-i view connecting it to u.
Let ui−1 denote the first node on this minimal path after v. Since c(v, ui−1) ≤ ki,
the node ui−1 is visible to v in its level-(i− 1) view. It can then find a minimal
path connecting itself to ui−1 at this level. Let ui−2 be the node after v on this
minimal path. And so forth, down to level zero.

Letting ui = u, v can append the sequence {uj}i
j=1 as routing information

to the message, before sending it to its neighbor (in G) u0. The level-zero views
of the nodes along the way now aid to easily route the message to u1. By similar
reasoning, requiring both level-one and level-zero views, the message can then
delivered to u2. And so forth, until it ultimately arrives at u. Moreover, the path
(in G) used to route the message from v to u is guaranteed to be a minimal
path.

5.3 Special Multicasting to Routers

We now consider a very specific multicasting problem for a network with an
established K-SPR sequence. This will be employed for both the proactive and
reactive aspects of the hybrid routing scheme proposed in the next subsection.
We will need the following definition and lemma.

Definition 6. Consider an arbitrary node v. For i ≥ 1, a level-i node vi will be
called a level-i router for v if the only level-i node u satisfying c(v, u)+c(u, vi) =
c(v, vi) is u = vi.

Thus a level-i router for v is a level-i node such that any shortest path connect-
ing it to v contains no other level-i nodes. The following is straightforward to
establish, using induction on i.

Lemma 3. A level-i router vi for v satisfies c(v, vi) ≤ k1 + k2 + · · ·+ ki.

The goal now is to allow v to send a message to all of its routers, at all levels. In
fact, this goal will be accomplished in such a way that forwarded messages always
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move along minimal paths, moving away from the source node v. Moreover, there
will be no redundancy in the message forwarding, in the sense that no node will
receive more than one copy of the message. That is, the message will move along
a tree rooted at v, and each path from v in this tree will be a minimal path.
This sort of “multicasting to routers” will provide a basis for the hybrid routing
scheme described in the next subsection.

To manage the proposed multicasting, it is necessary for a level-i router vi

for v that receives the message along a given minimal path, to decide to which of
the level-(i + 1) routers for v it must forward the message. As a technical detail,
in order for vi to make this decision, it will be necessary that a list of all the
level-i routers for v, along with their costs from v, be included in the header of
the message that vi receives. Under reasonable conditions, this list will not be
large. Before vi forwards the message to level-(i + 1) the routers, it will likewise
be necessary for it to append a list of all the level-(i+1) routers for v, and their
costs from v. However, the level-i router information can be removed from the
header at this point.

Now vi is within a cost k1 + · · · + ki of v, as are all of the level-i routers
for v. Moreover, vi has received a list of these together with their costs from
v. Let u denote one such level-i router. Consider a level-(i + 1) node w within
a cost ki+1 of u. Such a node is potentially a level-(i + 1) router for v, and all
level-(i + 1) routers for v fit this description for some u. Now, with w fixed, it
turns out that vi is able to determine which level-i routers u lie along a minimal
path in G connecting v to w. In the first place, w is in the level-i view of vi,
which can be seen by considering a shortest possible path from vi to v, and then
to u, and then to w. The cost of this does not exceed ri, so c(vi, w) ≤ ri. Also,
c(vi, u) ≤ 2(k1 + · · · + ki) and c(u, w) ≤ ki+1. It follows by Lemma 2 that vi is
able to correctly compute c(u, w), using its level-i view (of level-i nodes within
a cost ri). It is now straightforward to see that vi is able to determine whether
or not w is a level-(i + 1) router for v. If it is, then vi is also able to determine
any level-i routers for v that lie along a minimal path connecting v and w.

There is one last detail. In order to avoid redundant messages, for each level-
(i + 1) router vi+1 for v, exactly one of the level-i routers for v lying between
v and vi+1 along a minimal path should be selected to forward the message to
vi+1. Each of these routers is aware of the others and so some criterion can be
used that they will all agree on in order to make the selection. For example, this
decision could be made by using a simple criterion such as choosing the level-i
router for v with the largest ID.

5.4 A Hybrid Hierarchical Routing Strategy

The routing strategy that will be developed here has the following theorem as
its foundation. (Choose i here as large as possible such that ki < c(u, v).)

Theorem 4. Given any two nodes u and v, there exists a minimal path p con-
necting u and v, and a positive integer i, such that p contains a level-i router ui

for u and a level-i router vi for v with c(ui, vi) ≤ c(u, v) ≤ ki+1 ≤ ri.
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During the process of establishing a K-SPR sequence in a sensor network, say by
the greedy algorithm method, it is easy to arrange for each node v to be known
to all of the nodes within a cost k1, as well as all of the level-one nodes that are
within a cost k2 of a level-one node that is within a cost k1 of v, as well as all of
the level-two nodes that are within a cost k3 of a level-two node that is within
a cost k2 of a level-one node that is within a cost k1 of v, and so forth. In fact,
this does not require any additional messages, but rather only the inclusion of
more information in the already required selection overhead messages.

It may be assumed that in this way each level-i router vi of v maintains a
list of nodes {v = v0, v1, v2, ..., vi} with the property that there exists a minimal
path in G connecting v to vi such that vj is a level-j router for v (j = 1, ..., i). In
addition, all level-i nodes within a cost ki+1 of one of the level-i routers vi of v
will be made aware of v, and we may assume that these too have been provided
with routing information to v. If the network is allowed to change dynamically,
then any new node that joins the network later would be obliged to announce
itself to its routers and to each level-i node within a cost ki+1 of one of its level-i
routers. This could be managed using a variation of the multicasting to routers
method discussed in the previous subsection.

Now, after establishing the K-SPR sequence and the above routing informa-
tion, suppose that a node u has a need to contact a node v, say to establish a
virtual circuit in order to conduct an extended conversation with v. Suppose too
that u is currently unaware of where v is in the network, and so has no routing
information concerning it, other than the ID number of v or some other identifier
such as a unique name. In particular, this would mean that c(u, v) > k1 = r0.

As a result of Theorem 3 and the assumptions we are making about the local
information maintained by each node, at each level, the node u is able to find the
node v as follows. u multicasts a request message to its routers, as described in
the previous subsection. Eventually some node receiving the request will know
about the existence of v, and will know a shortest path to it. This node can then
reply by relaying this information back to u along with the information that de-
scribes a minimal path from itself to u. It does not need to forward the message
to higher level routers. In this way, u learns a path to v, as well as its cost. At
least one of the paths thus discovered will be a minimal path from u to v.

Point-to-point communication between u and v can now be effected via rout-
ing information placed in the header. However, this only needs to involve a
sequence u = u0, u1, · · ·ui, vi, · · · v1, v0 = v of nodes, where uj and vj are level-j
routers for u and v, respectively (j = 1, ..., i) and c(ui, vi) ≤ ki+1. The routing
between these nodes can be managed by means of the appropriate local views
of the various nodes along the way.
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Abstract. Energy efficient self-organization is a crucial method to pro-
long the lifetime of wireless sensor networks consisting of energy con-
strained sensor nodes. In this paper, we focus on a distributed node
scheduling scheme to extend network lifespan. We discuss the network
coverage performance when sensor nodes are deployed according to Pois-
son point process and reveal the internal relationship among the required
coverage performance, expected network lifetime and the intensity of
Poisson point process. Also the impact of uniformly distributed time
asynchrony on network coverage performance is analyzed. Simulation re-
sults demonstrate that the proposed scheme works well in the presence
of time asynchrony.

1 Introduction

Because of advances in micro-sensors, wireless networking and embedded
processing, wireless sensor networks (WSN), which consists of a large number
of tiny sensor nodes with limited computation, communication capabilities and
constrained energy resource, are becoming increasingly available for commercial
and military applications, such as environmental monitoring, chemical attack
detection, and battlefield surveillance [1],[2].

Energy is the most precious resource in wireless sensor networks. First, sen-
sor nodes are usually supported by batteries with limited capacity due to the
extremely small dimensions. Second, it is usually hard to replace or recharge
the batteries after deployment, either because the number of sensor nodes is
very large or the deployment environment is hostile and dangerous (e.g. remote
desert or battlefield). But on the other hand, the sensor networks are usually
expected to operate several months or years once deployed. Therefore reducing
energy consumption and extending network lifetime is one of the most critical
challenges in the design of wireless sensor networks.

One promising approach to extending network lifetime is node scheduling,
which only keeps a subset of sensor nodes active and puts other sensor nodes
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into low-powered sleep status. Most of existing work [3],[6],[7],[11],[12] on node
scheduling relies on exact location information, which is expensive and difficult
to obtain in large scale wireless sensor networks.

In this paper we propose a distributed node scheduling scheme for random
wireless sensor network. The network lifetime can be extended to be about kTs

(Ts is the lifetime of individual sensor node) when sensor nodes are organized
into k node disjoint sensor covers and each of these sensor covers is activated in
a round-robin manner. In our scheme, sensor nodes randomly select a number
i between 1 and k, then joins node set NSi, works during set NSi’s working
shift and sleeps during the rest of time. This scheme is lightweight as it does not
require any message communication among sensor nodes and the computation
cost is low. It is also location free and does not rely on the expensive localization
service in wireless sensor networks. As shown later in this paper, the proposed
scheme can achieve good coverage quality if the intensity of node deployment
is large enough. Our theoretical analysis also reveals the relationship between
expected network lifetime and node deployment intensity. Further, the proposed
scheme can work well even in the presence of clock asynchrony among sensor
nodes.

2 Related Work

Many research efforts have been made to exploit the inherent coverage redun-
dancy to extend the lifetime of wireless sensor networks. Slijepcevic et al. [3] pro-
pose a centralized heuristic solution for the NP-hard problem of finding the max-
imal number of disjoint sensor sets, where each set can cover the target region
completely. Abrams et al. [4] address a variation of the problem, where the ob-
jective is to partition the sensors into mutually exclusive covers such that the
number of covers that include an area, summed over all areas, is maximized. Ye
et al. [5] present a distributed, probing based algorithm to extend network life-
time. Tian et al. [6] propose a distributed node scheduling scheme that exploits
the coverage overlap among neighboring sensors to prolong network lifespan.
Chen et al. [7] propose a grid-based approach for selecting working nodes in sen-
sor networks. Carbunar et al. [8] propose a distributed algorithm with a view to
improving energy efficiency while preserving network coverage. Yan et al. [9] ad-
dress the issue of providing differentiated surveillance service for various target
area. Zhang et al. [10] present a decentralized density control algorithm (OGDC)
to choose a minimal set of working sensor nodes while these active sensor nodes
can maintain the initial coverage and the communication connectivity. Wang
et al. [11] introduce a coverage configuration protocol that aims to maintain
both the sensing coverage and the network connectivity when scheduling sleep
intervals for redundant sensors. Gupta et al. [12] propose a centralized greedy
algorithm to construct a minimal connected sensor cover, which covers the tar-
get region completely and forms a connected communication network. The most
closely related work is [13] by Liu and Wu, where a similar idea is discussed. Here
our work focuses on different node deployment and time asynchrony model.
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3 Lightweight Node Scheduling Scheme

3.1 Basic Idea

The work in [3] proposes to organize sensor nodes in node disjoint sensor covers
to prolong the network lifetime. It aims to calculate the maximal number of
such sensor cover because the network lifetime is proportional to the number
of sensor cover. Here we consider another related problem. Given the expected
lifetime requirement, kTs, how to organize sensor nodes into these k disjoint
node sets in a distributed, lightweight and location-free manner?

Given the parameter k, in the initial phase each sensor node randomly selects
a number between 1 and k with equal probability of 1/k, and all nodes choosing
number i form the i’th node set. In the following working phase, these k node
sets work in a round-robin manner and there is only one node set working at
any time instance.

3.2 Performance Analysis

A. System Model

We consider static sensor networks in a two-dimensional region. And we use
binary sensing model to model sensor node’s sensing capability. In binary sensing
model, sensor can reliably detect events within the circle centered at the sensor
node with radius of sensor’s sensing range. Such circle is called sensor node’s
sensing disk and the radius of the sensing disk is called sensor node’s sensing
radius (denoted by Rs). We assume that the sensor network is homogeneous,
i.e., all sensor nodes have the same sensing radius.

We consider the random sensor network where sensor nodes are randomly
deployed (e.g., dropped form airplane) according to Poisson point process [14],
which has been widely used in researches [15],[16],[17] on random wireless sensor
networks. In Poisson point process, the probability of that an region A contains
m sensor nodes is given by

Pr {N (A) = m} =
(λ ‖A‖)m

e−λ‖A‖

m!
(1)

where ‖A‖ denotes the area of A, N (A) denotes the number of nodes in region
A, and λ is the intensity of Poisson point process.

B. Performance Analysis

Definition 1. Coverage Intensity for a Specific Point [13]
For a given point p in the deployed region, the coverage intensity for this

point is Cp = Tc/T , where T is any given long time period and Tc is the total
time during T when point p is covered by at least one active sensor node.

Definition 2. Network Coverage Intensity [13]
The network coverage intensity, Cn, is defined to be the expectation of Cp:

Cn = E (Cp).
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Theorem 1. With the proposed scheduling scheme,

Cn = 1− exp

(
−‖λA‖

k

)
(2)

where k is the given network lifetime requirement, λ is the intensity of the Pois-
son point process, and ‖A‖ = πRs

2 is the area of sensor node’s sensing disk.

Proof. For any given point p in the deployment region, suppose there are to-
tally Np sensor nodes that cover point p . Let Sp denote the set of these Np sen-
sor nodes. Using the proposed scheduling scheme, each node in Sp assigns it-
self to one of the k node sets with equal probability 1/k . Let Ai denote the
event that the i (1 ≤ i ≤ k)’th node set NSi does not include any node in Sp,
then Pr {Ai} =

(
1− 1

k

)Np , and Pr
{
Ai

}
= 1−

(
1− 1

k

)Np .
Let’s define an indicator function as follows:

Ii =

{
1 if Ai not holds
0 else

Then I =
k∑

j=1
Ij is the total number of the node set that can cover point p.

As E [I] = E

[
k∑

j=1
Ij

]
=

k∑
j=1

E [Ij ] and E [Ij ] = 1 −
(
1− 1

k

)Np , we have E [I] =

k×
[
1−

(
1− 1

k

)Np
]
. Therefore Cp = E[I]×T

k×T = 1−
(
1− 1

k

)Np . According to the
binary sensing model and the definition of Poisson point process,

Cn = E [Cp] = 1− E

[(
1− 1

k

)Np
]

= 1−
∞∑

Np=0

(
1− 1

k

)Np

× (λ ‖A‖)Np e−λ‖A‖

Np!

= 1− exp
(
−λ ‖A‖

k

)
where ‖A‖ = πR2

s. �

Corollary 1. For a given λ, the possible maximal number k of disjoint node
sets while the network coverage intensity is at least α is given by λ‖A‖

− ln(1−α) .

Proof. Cn ≥ α ⇒ 1− exp
(
−λ‖A‖

k

)
≥ α ⇒ ln (1− α) ≥ −λ‖A‖

k

As 0 ≤ α < 1, ln (1− α) < 0, so k ≤ λ‖A‖
− ln(1−α) . �

Corollary 2. For a given k and a required network coverage intensity α, the
lower bound of the intensity of the Poisson point process, λ, is given by −k ln(1−α)

‖A‖ .



322 J. Jiang et al.

Proof. Cn ≥ α ⇒ λ ‖A‖ ×
( 1

k

)
≥ − ln (1− α) ⇒ λ ≥ −k ln(1−α)

‖A‖ . �
These two corollaries, which point out the internal relationship among the net-
work coverage intensity, the expected network lifetime, and the intensity of
the Poisson point process, are instructive in practice when determining the
largest number of disjoint node sets (k) if the required network coverage in-
tensity (α) and the intensity of Poisson point process (λ) are given a priori.
Also with given k and α, we can determine the required smallest intensity of
Poisson point process.

4 Network Coverage Intensity with Clock Asynchrony

The proposed scheduling scheme organizes sensor nodes into different node dis-
joint node sets and these node sets work alternately to prolong the network
lifetime. This requires that each sensor node should know the starting and the
ending time of the working shift of the node set which it belongs to. But exact
time synchronization is hard to realize in large scale wireless sensor networks. In
this section, we analyze the impact of clock asynchrony on the performance of
the proposed scheduling scheme. The analysis here is similar to that in [13]. But
we consider different model of time asynchrony under Poisson point process.

Consider any point p in the target region. Assume there are totally Np sensor
nodes that can cover point p initially and Np

i sensor nodes are assigned to node
set NSi. Point p will not be covered during the working shift of node set NSi only
in three situations. First, all Np

i sensor nodes start working ahead of the starting
time of NSi. Then there will be a time interval at the end of the working shift
of NSi when all the Np

i sensor nodes have stopped and p will not be covered.
Second, all Np

i sensor nodes start working behind the starting time of NSi. In
this situation, there will be a time interval at the beginning of the working shift
of NSi when all the Np

i sensor nodes haven’t waken up and therefore p will not
be covered. Third, and finally, a part of Np

i sensor nodes starts working ahead
of the starting time of NSi while the remains are behind the time, and there is
a gap period between them. Therefore in this gap period p is not covered by any
sensor node.

Note that both the sensor nodes in Np that are assigned into node set NSi+1
and with ahead-of-starting time, and the sensor nodes in Np that are assigned
into node set NSi−1 and with behind-of-starting time can help to reduce the
uncovered time period during the working shift of node set NSi. But we ignore
these cases in our following analysis because of the complexity induced by the
correlation among neighboring node sets. Therefore, the calculated network cov-
erage intensity in the following sections is the lower bound of the actual value.
That is, the actual network coverage intensity is larger or at least equal to the
theoretical value presented.

We make the following assumptions in our following analysis.

(1) The starting time of each sensor node may not be synchronized precisely
with the standard time, but the internal time ticking frequency is accurate.
So there will be no accumulation of time drift.
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(2) Let T denote the working duration of each node set in one round. We as-
sume that the difference between the starting time of each sensor node and
the standard time, Δt, is less than T/2. We assume that Δt ≥ T/2 is an
extremely rare case and could be ignored. This assumption eliminates the
possibility of the third case described above and reduces the complexity of
analysis.

(3) The time difference, Δt, is a random variable which is uniformly distributed
between (−T/2, T/2), i.e, Δt ∼ U (−T/2, T/2).

We are interested in the expectation of the length of time when point p is not
covered by any of these Np

i sensor nodes during the working shift of node set NSi.
Let Euc

i denote this expectation. Obviously, Ei
uc = T if Np

i = 0. When Np
i > 0,

Ei
uc =

∫ ∞

0
xf1 (x)dx +

∫ 0

−∞
−yf2 (y)dy (3)

where x = min {Δtj , 0 ≤ j ≤ mi − 1} , y = max {Δtj , 0 ≤ j ≤ mi − 1} and Δtj
denotes the difference between node j’s starting time and the standard time,
f1 (x) and f2 (y) are the p.d.f of x and y respectively. The first and the sec-
ond item in equation (3) correspond respectively with the time interval when
point p is not covered due to the first and the second reasons described pre-
viously. Since Δt1, Δt2, . . . , Δtj are independently random variables uniformly
distributed in (−T/2, T/2), we can get

Ei
uc =

∫ T/2

0
xf1 (x)dx +

∫ 0

−T/2
−yf2 (y)dy

Since x = min
{
Δtj , 0 ≤ j ≤ Np

i − 1
}
,

Pr {x ≥ α} ⇔ Pr
{
∀j ∈

[
0, Np

i − 1
]
, Δtj ≥ α

}
= [1− F (α)]Np

i

where F (x) is the c.d.f of uniform distribution. Therefore Pr {x < α} = 1 −
Pr {x ≥ α} = 1− [1− F (α)]Np

i

. Then we can get the p.d.f of x:

f1 (x) = Np
if (x) [1− F (x)]Np

i−1

where f (x) is the p.d.f of uniform distribution. According to the definition of
uniform distribution, we have

f1 (x) =

⎧⎪⎨⎪⎩
Np

i

T

(
1
2
− x

T

)Np
i−1

, −T/2 < x < T/2

0, otherwise

So by symmetry,

Ei
uc = 2

∫ T
2

0
xf1 (x)dx =

T

2Np
i ·

1
Np

i + 1
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then

Euc = E
(
Ei

uc

)
=

Np∑
j=0

Ei
uc × Pr

{
Np

i = j
}

= T ×
(

1− 1
k

)Np

+
Np∑
j=1

Ei
uc × Pr

{
Np

i = j
}

= T ×
(

1− 1
k

)Np

+ T

Np∑
j=1

1
j + 1

(
Np

j

)(
1
2k

)j (
1− 1

k

)Np−j

= T ×
(

1− 1
k

)Np

+
2kT

Np + 1

[(
1− 1

2k

)Np+1

− Np + 1
2k

(
1− 1

k

)Np

−
(

1− 1
k

)Np+1
]

Let Ec = T −Euc, then the expectation of the time interval when point p is
covered in the working shift of any node set is given by

E (Ec) = E (T − Euc)

= T − T ×
∞∑

Np=0

(
1− 1

k

)Np

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

−
∞∑

Np=0

2kT

Np + 1
×
(

1− 1
2k

)Np+1

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

+T
∞∑

Np=0

(
1− 1

k

)Np

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

+
∞∑

Np=0

2kT

Np + 1
×
(

1− 1
k

)Np+1

× e−λ‖A‖ × (λ ‖A‖)Np

Np!

= T − T × exp
(
−λ ‖A‖

k

)
−
{

2kT

λ ‖A‖ ×
[
exp

(
−λ ‖A‖

2k

)
− exp

(
−λ ‖A‖

k

)]
− T exp

(
−λ ‖A‖

k

)}
The network coverage intensity with time asynchrony uniformly distributed
Cn

′ is:

Cn
′ =

k × E (Ec)
k × T

= Cn −Δ (4)

where

Δ =
2k

λ ‖A‖ ×
[
exp

(
−λ ‖A‖

2k

)
− exp

(
−λ ‖A‖

k

)]
− exp

(
−λ ‖A‖

k

)
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The second item in equation (4), Δ, indicates the impact of the uniformly
distributed time asynchrony on network coverage intensity.

5 Simulation

5.1 Simulation Setup

In our simulation, we use the binary sensing model describe in section 3. Based
on the information from [18], we set the sensing radius to be 6. This is consis-
tent with other current sensor types, such as Smart Dust (U.C.Berkeley), CTOS
dust, Wins (Rockwell) [19], and JPL [20]. And the target region is a square of
50 × 50. Sensor nodes are randomly distributed in the target region according
to the Poisson point process with intensity λ. All simulations are conducted
using MATLAB and the simulation of Poisson point process is implemented
based on the information from [21]. We are interested in the network cover-
age intensity with different network lifetime requirement k, different intensity
of Poisson point process λ and with or without time asynchrony among sensor
nodes. We also investigate the impact of time asynchrony on network coverage
intensity when time asynchrony is uniformly distributed. For each simulation
scenario, ten runs with different random node distributions are conducted and
only the average is presented.

5.2 Simulation Results

Fig. 1 shows how the network coverage intensity varies with the intensity of Pois-
son point process when the value of k equals to 3, 6, 9, and 12 respectively. From

Fig. 1. Cn vs. λ
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Fig. 2. Cn
′ vs. λ

Fig. 3. Δ/Cn vs. λ

this figure, we see that the simulation results are very close to the theoretical re-
sults. We observe that the network coverage intensity increases with the increase
of the intensity of Poisson point process when given a fixed k. Larger deploy-
ment intensity will deploy more sensor nodes in the network and each node set
will include more sensor nodes when k is fixed. Therefore the network coverage
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intensity of each node set is improved. But the network coverage intensity be-
comes saturated at some node intensity. For example, the network coverage
intensity is larger than 99.9% when λ = 0.5 and k = 6. This means that larger
node intensity will not benefit the network coverage intensity remarkably, but in-
crease the deployment cost hugely. We also observe that when λ is fixed, smaller
k will lead to better network coverage intensity. This is because when the node
number is fixed, smaller k means fewer node sets and each node will include
more sensor nodes.

Fig. 2 shows how the network coverage intensity varies with the intensity of
Poisson point process when sensor nodes are not precisely synchronized and the
time difference is uniformly distributed in interval (−T/2, T/2). It can be seen
that the simulation curves match the theoretical analysis very well when the
value of k is 3, 6, 9, and 12 respectively. Fig. 3 shows how the impact of time
asynchrony on the network coverage varies with the intensity of Poisson point.
Even for k = 12, when the node intensity λ increases up to about 0.5, this ratio
of Δ/Cn decreases rapidly to about 0.036. These simulation results demonstrate
that the proposed scheduling scheme can work well even in the presence of time
asynchrony.

6 Conclusions

In this paper, we discuss a distributed, lightweight and location-free node schedul-
ing scheme that aims to extend the lifetime of wireless sensor networks. This
scheme neither incurs any communication overhead nor relies on expensive local-
ization service. Thus it is scalable to large scale sensor networks. We focus on the
network coverage performance when sensor nodes are deployed randomly in the
target region according to Poisson point process. Theoretical analysis reveals the
internal relationship among the required coverage performance, expected network
lifetime and the intensity of Poisson point process. We also discuss the impact of
time asynchrony on network coverage intensity when the time asynchrony is uni-
formly distributed. Simulation results demonstrate that the proposed scheme is
robust to time asynchrony.
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Abstract. Key pre-distribution is an important area of research in Dis-
tributed Sensor Networks (DSN). Two sensor nodes are considered con-
nected for secure communication if they share one or more common secret
key(s). It is important to analyze the largest subset of nodes in a DSN
where each node is connected to every other node in that subset (i.e.,
the largest clique). This parameter (largest clique size) is important in
terms of resiliency and capability towards efficient distributed computing
in a DSN. In this paper, we concentrate on the schemes where the key
pre-distribution strategies are based on transversal design and study the
largest clique sizes. We show that merging of blocks to construct a node
provides larger clique sizes than considering a block itself as a node in a
transversal design.

1 Introduction

A sensor node is a small, inexpensive and resource constrained device that op-
erates in RF (radio frequency) range. It has limitations in different aspects such
as communication, computation, power and storage. A DSN (distributed sen-
sor network) is an ad-hoc network consisting of sensor nodes. The sensor nodes
are often deployed in an uncontrolled environment where they are expected to
operate unattended. In many situations, the DSN is also very large. In either
case, though one might try to control the density of deployment, the only de-
ployment option is to randomly scatter the nodes to cover the target area. The
consequence is that the location or topology is not available prior to deployment.

Given the various limitations, the security of the DSN hinges on efficient
key distribution techniques. Even with the present day technology, public key
cryptosystems are considered too computation intensive for DSNs and typically
a DSN establishes a secure network by the use of pre-distributed keys. The
following four metrics are often used to evaluate key pre-distribution solutions.

1. Scalability: The distribution must allow post-deployment increase in the size
of network.

2. Efficiency:
(a) storage: Amount of memory required to store the keys.
(b) computation: Number of cycles needed for key establishment

A. Pal et al. (Eds.): IWDC 2005, LNCS 3741, pp. 329–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(c) communication: Number of messages exchanged during the key genera-
tion/agreement phase.

3. Key Connectivity (probability of key share): The probability that two nodes
share one/more keys should be high.

4. Resilience: Even if a number of nodes are compromised, i.e., the keys con-
tained therein are revealed, the complete network should not fail, i.e., only
a part of the network should be affected.

One of the challenges in DSNs is to find efficient algorithms to distribute the
keys to sensor nodes before they are deployed. The solutions may be categorized
as follows:

1. Probabilistic: The keys are randomly chosen from a given collection of keys
and distributed to the sensor nodes.

2. Deterministic: The key distribution is obtained as the output of some deter-
ministic algorithm.

3. Hybrid: A combination of deterministic and probabilistic approaches.

A trivial (and obvious) deterministic solution to the problem is to put the
same key in all the nodes. However, the moment a single node is compromised,
the network fails. To guard against such a possibility, one can think of using
distinct keys for all possible pair of nodes in the DSN. The very good resilience
notwithstanding, the solution is not viable for even networks of moderate size
due to the limited storage capacity of the nodes. If there are N nodes, then there
will be

(
N
2

)
keys in total and each node must have N − 1 many keys. It is not

possible to accommodate N − 1 many keys in a node given the current memory
capacity of sensor hardware when N is moderately large, say ≥ 500.

Let us now briefly refer a few state of the art key pre-distribution schemes.
The well known Blom’s scheme [1] has been extended in recent works for key pre-
distribution in wireless sensor networks [5, 7]. The problem with these kinds of
schemes is the use of several multiplication operations (as example see [5–Section
5.2]) for key exchange. The randomized key pre-distribution is another strategy
in this area [6]. However, the main motivation is to maintain a connectivity
(possibly with several hops) in the network. As an example [6–Section 3.2],
a sensor network with 10000 nodes has been considered and to maintain the
connectivity, it has been calculated that it is enough if one node can communicate
with only 20 other nodes. Note that the communication between any two nodes
may require a large number of hops. However, only the connectivity criterion
(with too many hops) may not suffice in an adversarial condition. Further in
such a scenario, the key agreement between two nodes requires exchange of the
key indices. The use of combinatorial and probabilistic design (also a combination
of both – termed as hybrid design) in the context of key distribution has been
proposed in [2]. In this case also, the main motivation was to have low number
of common keys.

In [8] transversal design (see Subsection 2.1 for more details) has been used
where the blocks correspond to the sensor nodes. In our recent works [3, 4], we
have proposed to start from a combinatorial design and then apply a probabilistic
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extension in the form of random merging of blocks to form the sensor nodes and
in this case there is good flexibility in adjusting the number of common keys
between any two nodes. In our earlier works [3, 4], we dealt with the cases of
(i) unconstrained random merging of blocks and (ii) random merging of blocks
with the restriction that the nodes are composed of disjoint blocks (do not share
common keys among themselves). The computation to find out a shared key
under this framework is of very low time complexity [8, 3, 4], which basically
requires calculation of the inverse of an element in a finite field. That is the reason
this kind of design becomes popular for application in key pre-distribution.

In the domain of distributed computing, the nodes forming a complete graph
is an “ideal situation”. As mentioned earlier, one gains a lot in terms of resilience.
Moreover, the communication complexity decreases because fewer messages are
exchanged between the nodes in order to generate/agree upon a key. In such a
scenario, there is no question of “multi-hop” paths and since there is a unique
key shared between any two nodes, the computational complexity decreases as
well.

Thus, in a DSN, it is important to study the subset of nodes (clique, in graph
theoretic terminology) that are connected to each other. By connectivity of two
nodes we mean that the nodes share one or more common secret key(s) for secure
communication. In this paper we study the basic combinatorial designs [8] and
their extensions in terms of merging [3, 4] to estimate the cliques of maximum
size. We show that if one uses a (v = rk, b = r2, r, k) configuration, where each
block corresponds to a node [8], then the maximum clique size is r =

√
b. We also

study the extension of the basic design where a few blocks are merged to get a
node [3, 4] and show that in such a strategy the clique size becomes considerably
larger than what is available in the basic design [8].

2 Preliminaries

2.1 Basics of Transversal Design

Let A be a finite set of subsets (also known as blocks) of a set X . A set system
or design is a pair (X, A). The degree of a point x ∈ X is the number of subsets
containing the point x. If all subsets/blocks have the same size k, then (X, A) is
said to be uniform of rank k. If all points have the same degree r, (X, A) is said
to be regular of degree r.

A regular and uniform set system is called a (v, b, r, k) − 1 design, where
|X | = v, |A| = b, r is the degree and k is the rank. The condition bk = vr is
necessary and sufficient for existence of such a set system. A (v, b, r, k)−1 design
is called a (v, b, r, k) configuration if any two distinct blocks intersect in zero or
one point.

A (v, b, r, k, λ) BIBD is a (v, b, r, k) − 1 design in which every pair of points
occurs in exactly λ many blocks. A (v, b, r, k) configuration having deficiency
d = v − 1− r(k − 1) = 0 exists if and only if a (v, b, r, k, 1) BIBD exists.

Let g, u, k be positive integers such that 2 ≤ k ≤ u. A group-divisible design
of type gu and block size k is a triple (X,H,A), where X is a finite set of
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cardinality gu, H is a partition of X into u parts/groups of size g, and A is a
set of subsets/blocks of X . The following conditions are satisfied in this case:

1. |H
⋂

A| ≤ 1 ∀H ∈ H, ∀A ∈ A,
2. every pair of elements of X from different groups occurs in exactly one block

in A.

A Transversal Design TD(k, n) is a group-divisible design of type nk and block
size k. Hence H

⋂
A = 1 ∀H ∈ H, ∀A ∈ A.

Let us now describe the construction of a transversal design. Let p be a prime
power and 2 ≤ k ≤ p. Then there exists a TD(k, p) of the form (X,H,A) where
X = Zk × Zp. For 0 ≤ x ≤ k − 1, define Hx = {x} × Zp and H = {Hx : 0 ≤ x ≤
k − 1}.

For every ordered pair (i, j) ∈ Zp × Zp, define a block Ai,j = {x, (ix +
j) mod p : 0 ≤ x ≤ k − 1}. In this case, A = {Ai,j : (i, j) ∈ Zp × Zp}. It can be
shown that (X,H,A) is a TD(k, p).

Now let us relate a (v = kr, b = r2, r, k) configuration with sensor nodes and
keys. X is the set of v = kr number of keys distributed among b = r2 number of
sensor nodes. The nodes are indexed by (i, j) ∈ Zr×Zr and the keys are indexed
by (i, j) ∈ Zk × Zr. Consider a particular block Aα,β . It will contain k number
of keys {(x, (xα + β) mod r) : 0 ≤ x ≤ k − 1}. Here |X | = kr = v, |Hx| = r,
the number of blocks in which the key (x, y) appears for y ∈ Zr, |Ai,j | = k,
the number of keys in a block. For more details on combinatorial design refer
to [9, 8].

Note that if r is a prime power, we will not get an inverse of x ∈ Zr when x
is not a unit of Zr i.e., gcd(x, r) > 1. This is required for key exchange protocol.
So basically we should consider the field GF (r) instead of the ring Zr. However,
there is no problem when r is a prime by itself. In this paper we generally use
Zr since in our examples we consider r to be prime.

2.2 Lee-Stinson Approach [8]

Consider a (v = rk, b = r2, r, k) configuration. There are b = r2 many sensor
nodes, each containing k distinct keys. Each key is repeated in r many nodes.
Also v gives the total number of distinct keys in the design. One should note that
bk = vr and v − 1 > r(k − 1). The design provides 0 or 1 common key between
two nodes. The design (v = 1470, b = 2401, r = 49, k = 30) has been used as an
example in [8]. The important parameters of the design are as follows.

The expected number of common keys between any two nodes is p1 =
k(r−1)

b−1 = k
r+1 . In the given example, p1 = 30

49+1 = 0.6.
There is a good proportion of pairs (40%) with no common key, and two such

nodes will communicate through an intermediate node. Assuming a random ge-
ometric deployment, the example shows that the expected proportion such that
two nodes are able to communicate either directly or through an intermediate
node is as high as 0.99995.

Under adversarial situation, one or more sensor nodes may get compromised.
In that case, all the keys present in those nodes cannot be used for secret
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communication any longer, i.e., given the number of compromised nodes, one
needs to calculate the proportion of links that cannot be used further. The ex-
pression for this proportion is fail(s) = 1−

(
1− r−2

b−2

)s

, where s is the number
of nodes compromised. In this particular example, fail(10) ≈ 0.17951. That
is, given a large network comprising as many as 2401 nodes, if 10 nodes are
compromised, almost 18% of the links become unusable.

3 Analysis of Clique Sizes

First we study the maximum clique size where the (v = rk, b = r2, r, k) configu-
ration is used and each block in the design corresponds to a sensor node, which
is the idea proposed in [8].
Theorem 1. Consider a DSN with b many nodes constructed from a (v =
rk, b = r2, r, k) configuration. The maximum clique in this case is of size r.

Proof. First we prove that there is a clique of size r. It is known that a key is
repeated in r many different blocks. Fix a key. Thus, there are r many distinct
blocks which are connected to each other by the fixed key. Hence there is a clique
of size r.

Now we prove that there is no clique of size r + 1, because that will rule out
the possibility of cliques of larger size. Let there be a clique of size r + 1. Note
that the (v, b, r, k) configuration results from TD(k, r) (see Subsection 2.1). In
this case each block is identified by two indices (i, j), 0 ≤ i, j ≤ r − 1. Further
two blocks having same value of i (i.e., in the same row) can’t have a common
key. The moment one chooses r + 1 blocks, at least two of the blocks must be
from the same row (by pigeon hole principle as there are at most r many rows)
and are disjoint, which is a contradiction to the basic assumption of a clique
having size r + 1. ��

It should be observed that the clique size r is exactly the square-root of the
number of nodes b = r2. Note that in such a case two nodes/blocks either share
a common secret key or not. Consider the graph with b2 many nodes/vertices
where each block corresponds to a node. Now two vertices are connected by an
edge if they share a common secret key, otherwise they are not connected. Now
a block contains k many distinct keys. For each key, a clique of size r is formed.
Thus a vertex/node in this graph participates in k many cliques each of size
exactly r.

Given two keys, which never occur together in the same block, will form
cliques which are completely disjoint. On the other hand, two keys may occur
together at most in a single block. In such a case, the two different cliques
generated by them can intersect on a single node/vertex corresponding to the
block that contains both the keys.

3.1 The Merging Approach

To overcome certain restrictions in the strategy provided in [8] (explained in
the previous subsection), we have provided a strategy to merge certain blocks
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to construct a sensor node [3, 4]. The basic idea is to start from a (v = rk, b =
r2, r, k) configuration. Then we merge z many blocks to form a single sensor
node. Thus the maximum number of sensor nodes available in such a strategy
is � r2

z �. We have studied a random merging strategy in [3], where randomly
chosen z many blocks are merged to get a sensor node. In such a scenario, we
found that the number of common keys among any two nodes approximately
follows the binomial distribution B(z2, k

r+1)). The expected number of common

secret keys among any two nodes is z2k
r+1 (see [3–Theorem 1] for more details).

It has been shown that this strategy provides favorable results compared to [8].
Note that in [3], the blocks are merged randomly. So it may happen that the
blocks being merged may have common secret key(s) among themselves. This is
actually a loss, since we really do not need a common key among the blocks that
are merged to get a single node. Hence, in [4], we improved the strategy such
that only disjoint blocks are merged to construct node. This provides little better
parameters compared to [3]. In this paper we will show that our strategy [3, 4]
provides better clique size than that of the design presented in [8].

Now we concentrate on the cliques where blocks are merged to get a node [3,
4]. It is worth mentioning that the number of blocks is

⌊
r2

z

⌋
in this case. From [3–

Theorem 1], each key will be present in Q many nodes, where average value of
Q is Q̂ = 1

kr

(⌊
b
z

⌋) (
zk −

(
z
2

)
k

r+1

)
≈ r. So cliques of size ≈ r are available in the

design where merging strategy is employed.
We like to highlight that the value of z is much less than r (as example,

r = 101, z = 4) though it is not a serious restriction in the proof of our results
in the following discussion.

Thus we like to point out the following improvement in the merging strategy
over the basic technique.

1. In the basic design, there are r2 many nodes (each block corresponds to a
sensor node) and the maximum clique size is r.

2. Using the merging strategy, there are
⌊

r2

z

⌋
many nodes (z many blocks are

merged to get a sensor node) and the maximum clique size is ≈ r. Thus
there is an improvement by a factor of

√
z in the size of clique.

Let us present some examples to illustrate the comparison. The design (v =
1470, b = 2401, r = 49, k = 30) has been used as an example in [8]. Hence
there are 2401 nodes and the largest clique size is 49. Now consider a (v =
101 · 7, b = 1012, r = 101, k = 7) configuration and merging of z = 4 blocks to
get a node. Thus there will be 2550 (we take this value as it is comparable to
2401) many nodes. We have cliques of size ≈ 101 on an average, which shows
the improvement.

Next we provide a more improved result by increasing the clique size
beyond r. We present a merging strategy where one can get a clique of size
r + z − 1 ≥ r for z ≥ 1. The result is as follows.

Theorem 2. Consider a (v, b, r, k) configuration with b = r2. We merge z many
blocks to form each node in achieving a DSN having N = � b

z � many sensor nodes.
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Then there exists an initial merging strategy which will always provide a clique
of size r + z − 1.

Proof. Let’s denote the nodes by ν1, ν2, . . .. Initially choose the first column
of the TD(k, r) and place the r blocks (indexed by (i, 0) for 0 ≤ i ≤ r −
1) successively to fill up the first slot (out of the z slots) of the first r nodes
ν1, ν2, . . . , νr. That will obviously yield a clique of size r as any two blocks in a
specific column always share a common key.

The rest of the available blocks will always be traversed in column-wise man-
ner. That is the next available block is now the one indexed by (0, 1). Let us
refer to the next available block by (i, j) for the rest of the present discussion.
Once a block is used, we apply the update function on its index to get the next
available node. Update (i, j) to ((i + 1) mod r, j + δ), where δ = 0, if i < r − 1
and δ = 1 when i = r − 1.

We go on adding new nodes for t = 1 to z − 1 to generate a clique of size
r + z − 1 at the end.

To add a new node νr+t, proceed as follows. Choose the first available block
(i, j) and put it in νr+t. Place the next available blocks in ν1, ν2, . . . , νk as long
as i ≤ r−1. After using the last element of current column, the update function
provides the first block of the next column. In that case, we add this new block
(0, j) to the node νr+t. Then again the next available blocks are put into the
nodes νk+1, νk+2, . . . , in the similar manner. Once the blocks in that column
gets exhausted, we again add the first block of the next column to νr+t and the
following blocks to the nodes as long as we reach νr+t−1. Thus it is clear that all
the nodes ν1, . . . , νr+t−1 are connected to νr+t increasing the size of the clique
by 1.

In this strategy, the value of t is bounded above by z − 1 as otherwise the
number of blocks in a node will increase beyond z . The remaining blocks will
be arranged randomly to have z blocks in each node to get

⌊
r2

z

⌋
many nodes in

completing the merging strategy. ��
Now we present an example corresponding to the strategy presented in The-

orem 2.

Example 1. Consider the TD(k, r = 25). Let z = 2. Consider the 52 blocks
of the TD arranged in the form of a 5 × 5 matrix. If we adopt the strategy
outlined in the proof of Theorem 2, initially, the following clique is obtained:
ν1 → {(0, 0)}, ν2 → {(1, 0)}, ν3 → {(2, 0)}, ν4 → {(3, 0)}, ν5 → {(4, 0)}. Next
(0, 1) is put in the new node ν6 and then (1, 1) is added to ν1, (2, 1) is added
to ν2, (3, 1) is added to ν3, (4, 1) is added to ν4. As the second column gets
exhausted, (0, 2) is added to the new node ν6 and then (1, 2) is added to ν5.
Thus we get, ν1 → {(0, 0), (1, 1)}, ν2 → {(1, 0), (2, 1)}, ν3 → {(2, 0), (3, 1)},
ν4 → {(3, 0), (4, 1)}, ν5 → {(4, 0), (1, 2)}, ν6 → {(0, 1), (0, 2)} and they form a
clique of size 6.

Next we observe that the clique size we present in Theorem 2 is not the
maximum achievable one. One can indeed find a different merging strategy that
provides a clique of larger size. Here is an example.
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Example 2. Taking a different arrangement compared to Example 1, we get
a clique of size 7 as follows: ν1 → {(0, 0), (2, 1)}, ν2 → {(1, 0), (3, 1)}, ν3 →
{(2, 0), (4, 1)}, ν4 → {(3, 0), (0, 2)}, ν5 → {(4, 0), (1, 2)}, ν6 → {(0, 1), (2, 2)},
ν7 → {(1, 1), (3, 2)}.

Thus it will be interesting to device a merging strategy which will provide
the largest clique size when the (v, b, r, k) configuration and z are fixed.

Note that in the basic (v, b, r, k) configuration or after our merging strategy,
the size of cliques are not dependent on the number of keys in each block/node.
It is clear that the connectivity of the DSN increases with the increasing number
of keys in each node. However, increasing the number of keys is constrained by
the limited memory capacity of a sensor node. It is a nice property that the
clique size does not increase with number of keys in each node as otherwise one
may be tempted to obtain cliques of larger sizes by increasing the number of
keys in each node (i.e., by increasing the edges in the graph).

3.2 Configurations Having Complete Block Graphs: Projective
Planes

Since we are talking about cliques, we should also revisit the designs where the
entire DSN forms a clique. In [8–Theorem 11, 12], it has been pointed out that
the block graph of a set system is a complete graph if and only if the set system
is the dual design of a BIBD and in particular, there exists a key pre-distribution
scheme for a DSN having q2 + q + 1 nodes, in which every node receives exactly
q + 1 keys and in which any two nodes share exactly one key. It is also stated
that such designs are not recommendable as a key pre-distribution scheme in
large DSNs because of storage limitation in each sensor node. We like to point
out that even if the storage space is not a limitation, then also this scheme is
not suitable. The reason is as follows.

In this design any two nodes share a common key. However, for better re-
siliency one may like to have more common keys among any two nodes (this is
one important motivation for our merging strategy [3, 4]). Even if one maintains
multiples keys against each identifier, the projective planes does not help be-
cause compromise of a single node results in discarding the identifiers contained
in each node (block) and all the corresponding keys for each identifier also get
discarded. Thus the resiliency measure fail(s), (the probability that a given link
is affected due to the compromise of s number of randomly chosen nodes) does
not improve (i.e., does not reduce).

4 Conclusion

In this paper we consider the DSNs where the key pre-distribution mechanism
evolves from combinatorial design. Such schemes provide the advantage of very
low complexity key exchange facility (only inverse calculation in finite fields). In
terms of distributed computing and communication among the sensor nodes, it is
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important to study the subset of nodes that are securely connected to each other
(clique). In this paper we have studied that in details. We studied the cliques
corresponding to the (v, b, r, k) configuration where each block corresponds to a
node. Further we study the scenario when more than one blocks are merged to
generate a node. We show that the clique size gets improved in such a scenario.
An interesting future work in this area is to implement a merging strategy such
that one can get cliques of maximum size after the merging.
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Abstract. In this paper, we propose a stochastic rate control method
to provide seamless video streaming for vertical handoff between WLAN
and 3G cellular network. In the proposed method, we first estimate
the channel rate by using the state transition probabilities that can be
found from the relationship between the packet loss ratio (PLR) and the
medium access control (MAC) layer parameters. The proposed method
performs bit allocation at the frame level using the estimated channel
rate, minimizing the average distortion over an entire sequence as well
as variations in distortion between frames. Experimental results indicate
that the proposed method provides better visual quality than the existing
TMN8 rate control method in heterogeneous wireless network.

1 Introduction

The rapid growth of wireless communications and networking protocols, such
as 802.11 [1] and 3G cellular network [2],[3], and the combination of wireless
technologies, offer the possibility of achieving anywhere, anytime communica-
tion, bringing benefits to both end users and service providers. The movement
of a user within or among different types of networks is referred to as vertical
mobility. One of the major challenges for seamless service with vertical mobility
is vertical handoff, where handoff is the process of maintaining a mobile user’s
active connections with changes in the point of attachment [4].

In recent years, since digitized multimedia applications such as videophone
and video conference have intensified, the latest application trends have created
an increasing interest in providing practical multimedia streaming systems to
meet the needs of mobile computing. A successful video streaming solution is to
implement an adaptive multimedia streaming system that allows a mobile user
to receive uninterrupted service of the best quality multimedia in any commu-
nication environment.

The rate control scheme in TMN8 is optimized for a CBR channel in a wired
channel, not for a VBR channel [5]. Unlike a wired channel where the signal
strength is relatively constant and the errors at receiver are mainly due to ad-
ditive noise, the errors in a wireless channel are mainly due to the time varying
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signal strength caused by the multi-path fading. Wireless radio networks suffer
from high bit error rates with channel characteristics that are time varying. Espe-
cially, vertical handoff that effects in heterogeneous network must be considered
in the rate control system because the rate can be changed dramatically after
handoff. Several rate control schemes for wireless channel have been proposed
in [6],[8]. In these papers, it is proposed to use the automatic repeat request
(ARQ) scheme with an adaptive source rate control that dynamically changes
both the number of the intra-coded macroblocks and the quantization scale
used in a frame, based on the packet-error-rate in a sliding window. In the ARQ
scheme, a lot of retransmissions occur in poor channel conditions and this will
increase the delay. Such a retransmission scheme is not good for a real time sys-
tem. Furthermore, in conventional schemes, the channel status of heterogeneous
networks is not considered.

In this paper, we provide an alternative practical solution to allocate the
number of bit-budgets adaptively and to determine the rate of channel coder
depending on the channel conditions obtained from the stochastic channel in-
formation. To enhance the image quality, we propose a stochastic rate control
method that exploits the channel rate estimated by using a three-state Markov
model to predict the channel condition and dynamically re-allocatates the tar-
get number of bits for each frame. This method dynamically changes the target
bit rate by using the relation of the RSSI, Ec/Io and PLR. Fig. 1 shows overall
system block diagram. Experimental results indicate that the proposed rate con-
trol method provides better visual quality than the existing TMN8 rate control
method in heterogeneous wireless network.

This paper is organized as follows. In Section 2, we describe a wireless chan-
nel model for vertical handoff. The proposed stochastic rate control scheme is
presented in Section 3. Section 4 shows the experimental results. Finally, our
conclusions are given in Section 5.

2 Wireless Channel Model for Heterogeneous Network

As described in Section 1, wireless networks suffer from high bit error rates
since wireless channel conditions frequently vary over time. In particular, it is
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essential to monitor the vertical handoff status because the rate can be changed
dramatically after handoff. In order to estimate the time varying channel status,
we first define a wireless channel model. The wireless channel is modelled as a
three-state Markov model considering vertical handoff.

2.1 Vertical Handoff Scenario

A horizontal handoff is defined as a handoff between base stations (BSs) that
use the same type of wireless network interface. This is a traditional definition
of handoff for homogeneous cellular systems. A vertical handoff is defined as
a handoff between BSs that use different wireless network technologies such as
WLAN and 3G cellular network. Vertical handoff can be divided into upward
vertical handoff and downward vertical handoff. Upward vertical handoff is a
handoff from a smaller network with higher bandwidth to a larger network with
lower bandwidth. Downward vertical handoff is a handoff from a larger network
to a smaller network [9].

Fig. 2 shows the network architecture to integrate WLAN and 3G cellular net-
work. As shown in Fig. 2, WLAN covers a smaller network with higher bandwidth
and 3G cellular network covers a larger network with lower bandwidth. In Fig. 2,
a upward vertical handoff occurs when a mobile station (MS) moves from location
A in WLAN to location C in 3G cellular network. As the MS leaves the access
point (AP), the strength of the beacon signal received from the AP weakens.
If its strength decrease below a threshold value, the MS tries to connect to 3G
cellular network and starts synchronizing with the system to prepare the handoff.

2.2 Channel Rate Estimation for Vertical Handoff

The specific channel under consideration is a wireless channel such as WLAN
and 3G cellular network, for a mobile transmission environment, where channel
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errors tend to occur in bursts during channel fading periods and vertical handoff.
The packet loss results in the quality degradation of streaming video. In order to
reduce the video quality degradation in vertical handoff, we first define a wireless
channel model. The wireless channel is modelled as a three-state Markov model.

Fig. 3 shows the three-state Markov model of upward vertical handoff. This
Markov model has three channel states, s0, s1, and s2 where s0, s1, and s2, re-
spectively, are the “normal state”, the “handoff initiation state”, and the “hand-
off execution state”. The transition probabilities can be obtained by using the
channel characteristic information such as the RSSI and the Ec/Io measured in
our experimental platform. When the channel is in state sn, n ∈ {0, 1, 2}, the
transition of the channel state goes to the next higher state or back to state s0
based on the channel information. If the channel is in state s2, it will always
transit to state s0.

Define pn = Prob(sn+1|sn) as the transition probability from state sn to
sn+1. The transition probability matrix for the three-state Markov model can
be set up as

P =

⎡⎣1− p0 p0 0
1− p1 0 p1

1 0 0

⎤⎦ . (1)

We define the state probability πn(k|S(t)) as the probability that the channel
is in state sn at time k given the channel state observation S(t). Note that t and
k are all discrete values.

−→π (k|S(t)) = [π0(k|S(t)), π1(k|S(t)), π2(k|S(t))]. (2)

The initial state probability πn(t|S(t)) at time t can be set up as

∀n ∈ {0, 1, 2},

πn(t|S(t)) =
{

1, if S(t) = sn

0, otherwise.
(3)

In the Markov model, the vector of state probabilities −→π (k|S(t)) at time k
can be derived from the state probabilities −→π (k − 1|S(t)) at the previous time
slot and the transition probability matrix P in (1) as

−→π (k|S(t)) = −→π (k − 1|S(t)) · P. (4)
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The vector of state probabilities at time k can be obtained by using (4) recur-
sively as

−→π (k|S(t)) = −→π (t|S(t)) · Pk−t. (5)

We consider the heterogeneous wireless channel, where each bandwidth pro-
vides the different data rate. Thus, we define the channel transmission rates R̄
as the number of bits sent per second as follows:

R̄ =
{

Rmax
w , for the WLAN,

Rmax
c , for the 3G network,

(6)

where Rmax
w and Rmax

c are the maximum channel rates in WLAN and 3G cellu-
lar network. In our channel model, packets are transmitted correctly when the
channel is in state s0, while errors occur when the channel is in any other state
si, i ∈ {1, 2}. Therefore, π0(k|S(t)) is the probability of correct transmission
at time k. Let C(k) be the future channel transmission rate where k > t. The
expected channel rate E[C(k)|S(t)] given the observation of channel state S(t)
can be calculated as

E[C(k)|S(t)] = R̄ · π0(k|S(t)). (7)

Finally, we define the wireless channel rate R̂E as follows:

R̂E = E[C(k)|S(t)]. (8)

In this paper, we show how to make use of both a probabilistic model of
the channel and observations of the current channel state in the context of this
rate-control problem.

3 Improved Frame-Layer Rate-Control Scheme

In this section, we describe the framework of the proposed rate-control scheme
to reduce the video quality degradation when the vertical handoff occurs in the
heterogeneous mobile network and when the wireless channel state is poor. The
frame-layer rate control scheme uses the channel model to estimate the current
channel rate and adjusts the frame target bit rate by using the estimated channel
rate. The obtained target bit budget is optimally allocated to each frame by using
the frame-layer rate control scheme to minimize the average distortion over an
entire sequence as well as variations in distortion between frames [10].

Before encoding of the current frame, the encoder buffer will be updated as
the number of bits. In the conventional TMN8, if the encoder buffer is larger
than, or equal to, some maximum value M , the encoder skips encoded frames
until the buffer fullness is below M . For each skipped frame, the buffer fullness
is reduced by an additional R/F bits where R is the channel rate and F is the
frame rate. In our proposed scheme, R can be replaced by the expected channel
rate obtained by the proposed channel model. The number of bits in the encoder
buffer, W , is modified as follows:

W = max(Wprev + B
′
− R̂E/F, 0). (9)
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First, we estimate the target bandwidth for video transmission over wireless
network. We estimate the target bandwidth for the period that is the time inter-
val between two successive measurements of the link status. Next, the target bit
budget is optimally allocated to each frame using the frame-layer rate control
method. Fig. 4 shows the basic concept, where the bundle of frames during the
time interval is referred to as the temporal frame segment.

For the frame-layer rate control,an empiricaldata-based frame-layerR-Dmodel
is employedusing the quadratic ratemodel and the affine distortionmodel [11]with
respect to the average quantization parameter (QP) in a frame, which is given by

R̂(q̄i) = (a · q̄−1
i + b · q̄−2

i ) ·MAD(f̂ref , fcur), (10)

D̂(q̄i) = a
′
· q̄i + b

′
, (11)

where a, b, a
′
, and b

′
are the model coefficients, f̂ref is the reconstructed reference

frame at the previous time instant, fcur is the uncompressed image at the current
time instant, MAD(·,·) is the mean of absolute difference between two frames, q̄i

is the average QP of all macroblocks in the ith frame, and R̂(q̄i) and D̂(q̄i) are the
rate and distortion models of the ith frame, respectively. The model coefficients
are determined by using the linear regression analysis and the formula consisting
of the previous encoding results as follows:

a =

N∑
i=1

( Ri·q̄i

MAD(f̂i−1,fi)
− b · q̄−1

i )

N
, (12)

b =
N ·

(
N∑

i=1

Ri

MAD(f̂i−1,fi)

)
N ·

(
N∑

i=1
q̄−2
i

)
−
(

N∑
i=1

q̄−1
i

)2 −

(
N∑

i=1

Ri·q̄i

MAD(f̂i−1,fi)

)(
N∑

i=1
q̄−1
i

)
N ·

(
N∑

i=1
q̄−2
i

)
−
(

N∑
i=1

q̄−1
i

)2 , (13)

a′ =

N∑
i=1

Di ·
N∑

i=1
q̄i −N ·

N∑
i=1

Di · q̄i(
N∑

i=1
q̄i

)2

−N ·
N∑

i=1
q̄2
i

, (14)

b′ =

N∑
i=1

Di − a′ ·
N∑

i=1
q̄i

N
, (15)

where N is the number frames observed in the past, Di and Ri are the actual
distortion and bit rate of the encoded ith frame, respectively.

A new formulation of frame-layer rate control based on the R-D model is
considered as follows: Determine q̄i, i = 1, 2, ..., NSEG

k to minimize

NSEG
k∑
i=1

D̂i(q̄i) · (D̂i(q̄i)−Di−1), (16)
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Fig. 4. Bandwidth estimation using network status information and bit allocation for
a frame

subject to
NSEG

k∑
i=1

Ri ≤ R̂SEG
k · T SEG

k , (17)

where D̂i is the estimated distortion of the current frame, Di−1 is the actual
distortion of the previous frame, NSEG

k is the number of encoding frames in the
kth temporal segment, R̂SEG

k and T SEG
k are the expected channel rate and the

time interval of kth temporal segment, respectively. In (16), a formulation is
introduced to minimize the average distortion over an entire sequences as well
as variations in distortion between frames.

The optimization task in (16) and (17) can be solved using Lagrangian opti-
mization where a distortion term is weighted against a rate term. The Lagrangian
formulation of the minimization problem is given by

Ji(q̄i) = D̂i(q̄i) · (D̂i(q̄i)−Di−1) + λi ·max(B̂res
i , 0), (18)

B̂res
i =

i−1∑
j=1

Rj + R̂i(q̄i)−
i∑

j=1

MADj
k

Ave MADk−1

R̂SEG
k · T SEG

k

NSEG
k

, (19)

where the Lagrangian rate-distortion function Ji(q̄i) is minimized by the par-
ticular value of the Lagrange multiplier λi for the ith frame, Rj is the used
bit-rate for the jth frame, MADj

k is the MAD between (j-1)th and jth frames
of the kth temporal frame segment, and Ave MADk−1 is the average of MADs
of the (k − 1)th temporal frame segment, respectively. Note that B̂res

i denotes
the estimated bit based on the R-D model.

Based on the rate and distortion models, the optimal QP can be determined
to minimize the above penalty function. It was shown in [12] that Ji(q̄i) is a
convex function generally. Thus, its optimal solution can be obtained by using
the gradient method as described in (20).

q̄∗i = arg min
q̄i

Ji(q̄i). (20)
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Note that what is finally needed is not q̄∗i , but R̂i(q̄∗i ) which is the target bit
budget for the ith frame.

The proposed frame-layer rate control algorithm consists of two steps. The
first step is to find the optimal bit-rates with the current Lagrange multiplier,
and the second step is to adjust the Lagrange multiplier based on residual bit-
rates. The properties of the Lagrange multiplier method are very appealing in
terms of computation. Finding the best quantizer for a given λ is easy and can
be done independently for each coding unit. In order to achieve the optimal
solution at the required rate, an optimal λ must be found. Several approaches
including the bisection search algorithm [13] are proposed to find a correct λ.
However, the number of iterations required in searching for λ can be kept low
as long as an exact match of the budget rate is not required. Moreover, since
allocations may be performed on successive frames having similar characteristics
in video coding, it is possible to adjust λ for a frame using the value achieved for
the previous frame. Thus, the adaptive adjustment rule [14] is employed given
by

λi+1 = λi + Δλ, Δλ =
Bi

Btarget,i
− 1, (21)

where λi is the Lagrange multiplier for the ith frame and

Bi =
i∑

j=1

Rj , (22)

Btarget,i =
i∑

j=1

MADj
k

Ave MADk−1

R̂SEG
k · T SEG

k

NSEG
k

. (23)

Therefore, the proposed rate control algorithm does not produce encoding time
delay. However, a negligible performance loss due to its intrinsic sub-optimality
is inevitable in this design.

Once the bit rate is allocated to the frame using the aforementioned frame-
layer rate control, the TMN8 macroblock layer rate control algorithm allocates
the bit budget to each macroblock with the solution R̂i(q̄∗i ).

4 Experimental Results

The channel state transition of the proposed wireless channel model is performed
by experimental thresholds which are 35 of RSSI and 10.8 of Ec/Io. The transi-
tion probabilities are acquired by using the relationship between the PLR and
the MAC layer parameters. Using the relationship in Fig. 5, the transition prob-
ability matrix can be found to be p0=0.8125, p1=0.6667 in WLAN, p0=0.9545,
p1=0.4285 in 3G network.

With the proposed wireless channel model, we simulated vertical handoff ac-
cording to the vertical handoff scenario to show the effectiveness of the proposed
video streaming method. Our stochastic rate-control system has been imple-
mented in a H.263+ standard codec. The test video sequences are “FOREMAN”,
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Fig. 5. Channel state determination. (a) PLR vs RSSI in WLAN and (b) PLR vs Ec/Io
in 3G cellular network.

Table 1. Performance comparison of the proposed algorithm with TMN8 in upward
vertical handoff (WLAN to 3G cellular network)

Test Rate-control Average Frame
sequence method PSNR skipping

FOREMAN TMN 8 31.14 11
Proposed method 35.19 5

CARPHONE TMN 8 34.40 8
Proposed method 36.23 4

AKIYO TMN 8 38.76 9
Proposed method 39.71 4

NEWS TMN 8 36.47 10
Proposed method 38.22 5

“CARPHONE”, “NEWS”, and “AKIYO”. The test sequences are encoded to
the H.263+ CBR bitstream of 128kbps with 30fps.

The performance of the proposed stochastic rate-control scheme is compared
with that of TMN8. For the performance comparison, we show the average PSNR
value and the frame skipping reduction in Table 1.

It is clearly seen that the proposed rate control algorithm can reduce the
video quality degradation as compared with TMN8. Fig. 6 shows plots associ-
ated with the “FOREMAN” sequences as a function of the frame number. Thus,
the proposed frame rate control can reduce the quality degradation better than
TMN8. The average PSNR results for different channel status are depicted in
Fig. 6. It can be seen that the proposed rate control algorithm significantly
improves the video quality, especially for the environment that the channel
status is not good or the handoff execution status because the proposed al-
gorithm considers channel status. Fig. 6-(b) shows that we obtain better PSNR
for QCIF “FOREMAN” sequence in the vertical handoff from WLAN to 3G
network.



Stochastic Rate-Control for Real-Time Video Transmission 347

0 100 200 300 400
10

15

20

25

30

35

P
S

N
R

 [d
B

]

Frame Number

 TMN8
 Proposed Method

(a)

0 100 200 300 400
10

15

20

25

30

35

P
S

N
R

 [d
B

]

Frame Number

 TMN8
 Propsed Method

WLAN 3G Network
Handoff Latency

(b)

0 100 200 300 400
10

15

20

25

30

35

P
S

N
R

 [d
B

]

Frame Number

 TMN8
 Proposed Method

Lower  Ec/Io

(c)

Fig. 6. PSNR comparison: (a) QCIF FOREMAN with the RSSI at 59 in WLAN (b)
QCIF FOREMAN with the RSSI at 35 in WLAN (c) QCIF FOREMAN with the Ec/I0
at 10.8 in 3G cellular network
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5 Conclusions

When video streams are transmitted in heterogeneous mobile networks, the com-
pressed video can suffer from the video quality degradation. To reduce degra-
dation of video quality, we have proposed the stochastic rate-control scheme for
real-time video transmission in vertical handoff. The experimental results show
that the proposed scheme can reduce the video quality degradation even in the
vertical handoff. The proposed algorithm has been tested on several sequences,
and it has been found to provide better PSNR performance than that of the
existing TMN8 rate-control algorithm. Furthermore, the proposed algorithm is
robust and can handle channel variations very well.
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Abstract. An efficient deployment of a mobile Ad Hoc network (MANET) re-
quires a realistic approach towards the mobility of the hosts who want to com-
municate with each other over a wireless channel. Since Ad Hoc networks are 
driven by the human requirements, instead of considering the random move-
ment of the mobile nodes, we concentrate on the social desire of the nodes for 
getting connected with one another and provide here a framework for the mo-
bility model of the nodes based on Social Network Theory. In this paper, we 
capture the preferences in choosing destinations of pedestrian mobility pattern 
on the basis of social factor (ΨF) and try to find out the essential impact of ΨF 

on the pause time of the nodes. Further, our paper also provides a mobility dis-
tribution pattern, and a relative comparison has been done with Random Way-
Point (RWP) Model under a certain constrained simulation.  

1   Introduction 

In an Ad Hoc network, the network topology may be subjected to a rapid change due 
to frequent link failure and due to the mobility of the nodes. A good number of re-
search works have been published regarding different issues like routing protocols, 
mobility model, Quality of Service (QoS), bandwidth optimization for mobile Ad Hoc 
networks (MANETs). However, in the absence of established properties of real mo-
bility patterns, it is not yet clear today, what are the essential parameters to consider 
while constructing a mobility model. The current scenarios on the available mobility 
models for MANETs are synthetic models based on simple, homogeneous, random 
processes [1], [2]. For example, Random Walk Mobility Model is used to represent 
pure random movements of the entities of a system. A slight enhancement of this, is 
the Random Way-Point (RWP) Model, in which waypoints are uniformly distributed 
over the given convex area and the nodes have so called “thinking times” (pause 
times) before next destination. However, all such synthetic movement models gener-
ally do not reflect the real world situations regarding the mobility of nodes. In prac-
tice, a mobile user, within a campus or in any geographic location does not roam 
about in a random manner. Though the present synthetic models are more tractable 
for mathematical analysis and easy for trace generation, they do not capture the deli-
cate details like time-location dependence and community behavior of pedestrian  
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mobility. Human decisions and socialization behavior play a key role in typical Ad 
Hoc networking deployment scenarios of disaster relief teams, platoon of soldiers etc. 

In this paper, we emphasize on the mobility pattern of individual nodes biased by 
the strength of social relationships. The reviews of the social networks may be found in 
[3]. Here, we have systematically developed some social indicators out of the needs of 
an Ad Hoc environment and then we have transformed them into mathematical domain 
to formulate key factors. These factors are then mapped to a topographical space to 
show the distribution pattern for our model. Thus we present the design and analysis of 
the individual as well as group mobility model based on the social network theory. 

The rest of the paper is organized as follows. In Section 2, we give a brief over-
view of the related works. Section 3 provides the proposed mobility model. Section 4 
provides our simulation results and analysis. The conclusion is given in Section 5. 

2   Related Works 

In [2], an example of realistic mobility model for MANETs, which enables the inclu-
sion of the obstacles in the network simulation, is given. Mathematical models of 
complex and social networks have been shown to be useful in describing many rela-
tionships, including real social relationships [4]. In [5], an approach has been pre-
sented towards a mobility model on the relationships of people though the paper lacks 
a rigorous mathematical representation of the relationship between individuals. The 
authors of [6] have presented a mobility model based on Social Network Theory from 
theoretical point of view. Though their work provides a general framework for the 
mathematical analysis based on the social relationships of the nodes, certain assump-
tions make their formulations unsuitable for implementation in real world cases. 

3   The Proposed Model 

Instead of using heuristic approach, we develop our mobility model on the basis of the 
following assumptions. The assumptions are: 

A1: The mobile nodes tend to select a specific destination and follow a well-
defined path to reach that destination.   

A2: Path selection process is biased by the social interaction and community de-
mand and it is different at different locations and time.  

A3: The pause time of the nodes, being a function of social network, is not ran-
dom instead it follows a specific user oriented distribution at different loca-
tions. 

With the help of these assumptions, we try to find out the factors controlling the mo-
bility of nodes, and then study the effect of the factors on both the individuals and the 
groups. 

3.1   Different Social Issues Controlling Mobility 

We represent a social network using a weighted graph where weights associated with 
each edge of network are an indicator of the direct interactions between individuals. 
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We assign a value in the range [0, 1] to signify the degree of social interaction between 
two people, where ‘0’ indicates no interaction and ‘1’ indicates strongest social interac-
tion. Here, we use a symbolic matrix M, called Interaction Matrix [6] whose diagonal 
elements are 1 and the generic element ‘mij’ represents the interaction between two indi-
viduals ‘i’ and ‘j’. For the sake of simplicity, the matrix used in this model is symmetric. 

Since, every relation between two mobile nodes is not strong; we introduce here 
the term connection threshold (CT), which indicates a limit of social connectivity. 
Contrary to [6] we do not assign an arbitrary value to CT and express it as a function 
of time, network parameters and social issues. Here, in context, we define the follow-
ing terms- 

• Link Duration [LD (t)]: The average time duration along which a channel is 
formed between two mobile nodes.          

• Frequency of Connectivity [FC]: The number of times a mobile node i is 
connected to j over a single existing time of Ad Hoc network.            

Let us first discuss how CT depends on LD (t) and FC. A high value of link duration 
between two nodes suggests that the social interaction between them is considerably high. 
Again frequent connectivity between two nodes through out the life-time of the MANET 
is indicative of the fact that the nodes prefer specific social relation instead of general so-
cial relation involving large amount of nodes. On the basis of above, the connection 
threshold of a node j denoted by CTj in a group of ‘n’ number of nodes can be defined as: 

total

n

i
i

j Tn

FCtLD
CT

*

*)(
1==  

    (1) 

where, n = the total no. of nodes present in the current MANET with whom the node j 
gets connected, and Ttotal = the total time elapsed by the node j in an Ad Hoc environ-
ment.  
    Since the total time elapsed by the node j in an Ad Hoc environment is much 
greater than the total communication time between two nodes, we can argue that 

1<CT  As
=

n

i
i FCtLD

1

*)( < totalT      (2) 

    Till now, we have considered only a single network topology. However, the social 
behavior of a node essentially depends on its community behavior; i.e. the involve-
ment of the node to different social scenarios. In this context, we define another pa-
rameter called Community Factor (CF), as follows: 

=
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NNCC
CF
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where, NNC = New Network Coefficient whose value is either 0 or 1, and Ci = Spe-
cific grade assigned to a particular social network e.g. battlefield, cafeteria etc.  
    Here, the term NNC indicates whether it is exposed to a new network or not. 
Clearly, for a new network, its value is 0, since we do not consider the contribution of 
a new network to the value of CF. 
    With the help of these factors, we now try to find out an indicator of the attitude of 
a node towards the interaction with others. To this end, we introduce Social Factor 
(ΨF), which gives a measure of the degree of interaction between a node and others 
present in the Ad Hoc network. For a node i, the social factor (ΨF) is given as: 

ΨFi

N

CFCFm

CTm
ij

j
jiij

ij >
≠
=

=

1

**

 

    (4) 

where, N = Total no. of social neighbors above the CT level in a social network of i. 
From (2), we can state that CT approaches a steady state value less than 1.Since, 

for a highly social node the value of N is very high compared to the numerical values 
of CFs, in that case, ΨFi also tends to a steady value less than 1. 

3.2   Formulation of Pause Time 

We explicitly define pause time (PT) for our mobility model as the time elapsed by a 
node when it meets a social neighbor over a wireless channel, or in a geographic loca-
tion in a MANET, and try to develop an expression of pause time based on our social 
issues as in section 3.1. This is being done, because instead of taking a random value 
of pause time (as in the case of RWP), as we make pause time as a function of social 
network parameters. 
    Again, we define another quantity namely, Previous Average Connectivity (PAC), 
which is the average time of connection with a node i to a social group Gi. Thus, asso-
ciating all the variables together (including ΨF), we give an empirical relation con-
necting ΨF and PT: 

PT = ΨF *GAi*[1+PAC (t)] (5) 

where, GAi is the individual group attraction force of the node i to the group Gi and 
has a value in the range [0, 1] i.e. a node may have no pause time at all. The term 
PAC (t) also serves as a history parameter for different nodes. Thus, instead of using 
random pause time for the mobile users scattered across a social gathering, we try to 
find out a node specific pause time. 

3.3   Effect of Group Velocity on the Mobile Nodes 

For the sake of clarity, we use the basic relationship between the group velocity and the 
position of the group members as in [6]. But, here we introduce a slight modification 
such that instead of direct relationship between Vn and Vg, there is also an influence of 
GA, which is defined in section 3.2. The new position of a mobile node (Nn) is given as: 
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Nn = Np GAdt
t

Vg
dt
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where, Np = Previous Node position, T = Total time elapsed by a node in the present 
group and Vn and Vg are the node and group velocity respectively. It is obvious from 
(6) that there will be a tendency for the mobile host to change its present group, if a 
strong group attraction force is exerted on it from an outside group. This is an impor-
tant issue since, joining a group or leaving a group is analogous to a new link set-up 
and link failure respectively. Using the same relation, we can also gather information 
about the social connectivity of the nodes after a period of time. 

4   Simulation Results and Analysis 

We have considered an Ad Hoc environment in which we have arbitrarily placed a 
node as a group centre (Gc), velocity of which indicates the overall cluster velocity or 
group-velocity. The transmission range of Gc has been considered to be 250 meters 
and other mobile nodes are placed randomly around it with about 80% of the nodes 
within this range. A node is said to be within the group, if it is within the transmission 
range of Gc. Now, we have considered an indicator variable (Iv) through out the simu-
lation process, which is defined as:          

Iv = 1; if the node is within the range. 
   = 0; if the node is out of the group. 

Under this scenario, we have placed 100 nodes in an arbitrary fashion with a velocity 
within the range 1-3 m/s. The group centre has been assigned a velocity within the 
range 0-1 m/s. Nodes (including Gc) move in a random direction with an angle 
θ [ ]π2,0∈  and after a random interval of time, it takes a pause-time generated from 

(5). Again, a node is connected to a group at a particular time if the value of Iv for the 
node is 1 at that instant. Readings have been taken at an interval of 5 sec to measure 
the number of nodes connected to the group. 
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    From the simulation results, we have extracted the node distribution pattern within 
an Ad Hoc clustered network.  Fig.1 shows a comparison of the proposed model for 
two scenarios (campus and battlefield) with the RWP model. It is evident from the 
graph that unlike RWP model, our proposed model is able to capture the time location 
dependence of mobility distribution for different social scenarios since it does not as-
sume random pause time. Moreover, the degree of connectivity of mobile nodes will 
suffer a major change for different communities. Thus, our model reflects the near ac-
tual pattern of pedestrian mobility distribution. 

5   Conclusion 

In this paper, we presented a theoretical framework for the mobility distribution of the 
nodes in a MANET. We have considered the effect of social behavior on the move-
ment of a node which is basically a move and pause type of motion. Instead of assum-
ing random pause-time distribution for the mobile hosts, we have designed a theoreti-
cal background for the pause-time formulation. The simulation result of our model 
shows a marked improvement over the existing RWP model. Finally, we plan to re-
fine our model by considering the presence of obstacles within the transmission range, 
which is left as a future work. 
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Abstract. This paper proposes and analyzes the performance of an effi-
cient error control scheme for time sensitive applications on wireless sen-
sor networks. The proposed scheme divides DCF into HDCF and LDCF
without changing PCF, aiming at maximizing the successful retrans-
mission of a packet that carries critical data. While channel estimation
obviates the unnecessary polls to the node in channel error during PCF,
two level DCF enables prioritized error recovery by making only the high
priority packet be retransmitted via HDCF. A good chop value can dis-
tribute the retransmission to each period, maximizing recovered weight,
or criticality as well as keeping low the possible loss of network through-
put. The simulation results show that the proposed scheme can improve
recovered weight by 8% while showing 97% successful transmission at
maximum for the given simulation parameter.

1 Introduction

In the past few years, smart sensor devices have matured to the point that it is
now feasible to deploy a large, distributed network of such sensors [1]. Some mo-
bile devices such as telematics terminals can carry the sensors to the spot of con-
cern. Communication between the sensors and sinks requires wireless networks,
and all nodes in the network share one common communication media. Message
flows exchanged in a sensor network are mainly periodic and need guaranteed
delay for a computing node to make a meaningful and timely decision [2]. Many
real-time scheduling and fair packet scheduling algorithms have been developed
for wired networks. However, it is not clear how well these algorithms work for
wireless sensor networks where channels are subject to unpredictable,location-
dependent, and time-varying bursty errors [3].
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The IEEE 802.11 was developed as a MAC (Medium Access Control) stan-
dard for WLAN. The standard consists of a basic DCF (Distributed Coordina-
tion Function) and an optional PCF (Point Coordination Function). The DCF
exploits CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
protocol for non-real-time messages. While collision-free PCF can provide a QoS
guarantee, the error-prone nature of wireless network makes indispensable the
error control procedure during DCF. The retransmission should carefully con-
sider the priority of a packet, and network should try to enhance the successful
retransmission of higher priority packets [4]. To meet such requirement, this
paper proposes and analyzes an error control scheme for sensor data on DCF
interval of IEEE 802.11 WLAN, aiming at supporting, though limited, level of
priority in recovering the packet transmission error, during DCF. To this end,
AP divides the DCF into two subperiods, makes their loads different, and gives
more chance to the higher priority message by transmitting it via lower load
network.

The rest of this paper is organized as follows: Section 2 introduces the back-
ground of this paper, including IEEE 802.11 WLAN standard, and real-time
communication on WLAN. Then Section 3 proposes the communication archi-
tecture for time-sensitive sensor traffic. After demonstrating the simulation result
in Section 4, Section 5 finally concludes this paper with a brief summarization
and the description of future works.

2 Background

2.1 IEEE 802.11 WLAN

The wireless LAN operates on both CP (Collision Period) and CFP (Collision
Free Period) phases alternatively in BSS (Basic Service Set) as shown in Fig. 1.
Each superframe consists of CFP and CP, which are mapped to PCF and DCF,
respectively. PC (Point Coordinator) node, typically AP, sequentially polls each
station during CFP. In contrast, DCF is the basis of the standard CSMA/CA
access mechanism and it uses the RTS (Request To Send)/CTS (Clear To Send)
clearing technique to further reduce the possibility of collisions. The PC attempts
to initiate CFP by broadcasting a Beacon at regular intervals derived from a net-
work parameter of CFPRate. Round robin is one of the popular polling policies
for CFP, in which every node is polled once in a polling round. Senders expect
acknowledgment for each transmitted frame and are responsible for retrying the
transmission. After all, error detection and recovery is up to the sender station,
as positive acknowledgments are the only indication of success.

1H HnH2 ....

CFP (PCF)

PollStart CFP End CFP Start CFP

NRT

CP (DCF)
Time

Ack

Fig. 1. Time axis of wireless LAN
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2.2 Real-Time Communication on WLAN

The traffic of sensored data is typically isochronous (or synchronous), consisting
of message streams that are generated by their sources on a continuing basis and
delivered to their respective destinations also on a continuing basis [5]. In case of
a change in the active flow set, bandwidth is to be reallocated or network schedule
mode is changed. This paper follows the general real-time message model which
has n streams, namely, S1, S2, ..., Sn, and for each Si, a message sized less than
Ci is produced at the beginning of its period, Pi. Each packet must be delivered
to its destination within Pi units of time from its generation or arrival at the
source, otherwise, the packet is considered to be lost.

As for the outstanding real-time communication scheme on WLAN, M. Cac-
camo and et. al. have proposed a MAC that supports deterministic real-time
scheduling via the implementation of TDMA (Time Division Multiple Access),
in which the time axis is divided into fixed size slots [6]. Unfortunately, to im-
plement implicit contention, each node must schedule all messages in the net-
work and their scheme didn’t consider the network error at all. Choi and Shin
suggested a unified protocol for real-time and non-real-time communications
in wireless networks [2]. To handle location-dependent, time-varying, and bursty
channel errors, the channel state can be predicted via channel probing before the
packet is transmitted. Adamou and his colleagues have addressed the scheduling
problem of achieving fairness among real-time flows with deadline constraints
as well as maximizing the throughput of all the real-time flows over a wireless
LAN [3]. This scheme is built on the assumption that BS knows which station
has messages to retransmit as well as their deadlines, and decides which one to
poll among them according to the criteria.

3 Message Scheduling Scheme

3.1 Channel Management

According to the operation of AP, the time axis of WLAN consists of a series of
superframes and each of them consists of PCF, H-DCF, and L-DCF. Naturally,
each channel can interfere with one another, due to the deferred beacon problem,
that is, a beacon message can get delayed and the start of PCF can be put
off, if another packet is already occupying the network. The maximum amount
of deferment coincides with the maximum length of a data packet, as can be

PCF H−DCF L−DCF H−DCF

Superframe

PCF H−DCF L−DCF

Beacon DCF Stretch Deferred Beacon

PCF

PCF H−DCF

Time

L−DCF

L−DCF

Fig. 2. Time axis of proposed network
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inferred in Fig. 2. Additionally, we assume that the length of PCF and that of
H-DCF are not reduced even if their starts are delayed. Only L-DCF shrinks its
length when its start gets delayed, as shown in the right-hand part of Fig. 2.
Each node transmits its message on each poll for the predefined time duration
decided by a specific bandwidth allocation scheme. AP polls only those nodes
whose channel is estimated to be good, since bad channel has no possibility to
success considering the error characteristics of wireless channel. If a transmission
fails or is deferred, the sender moves the packet to the retransmission queue via
H-DCF or L-DCF according to its priority.

The 802.11 radio channel is modeled as a Gilbert channel [7]. We can denote
the transition probability from state good to state bad by p and the probability
from state bad to state good by q. The average error probability, denoted by ε,
and the average length of a burst of errors are derived as p

p+q and 1
q , respectively.

We take the estimation method from Bottiglieno’s work [8]. To trace the channel
status, AP maintains a state machine, or simply flag, associated to each sensor
node. If the ACK/NAK is sent from the receiver to AP as soon as it receives
a packet, AP sets the state to good. Otherwise, a timeout triggers the state to
bad. Each bad channel has its own counter, and when a counter expires the AP
attempts to send a single data frame to check the channel status.

3.2 Bandwidth Allocation

By allocation, we mean the procedure of determining capacity vector, {Hi},
for the given superframe time, F , as well as message stream set, {Si(Pi, Ci)}.
Though there have been plenty of bandwidth allocation schemes for the real-time
message stream or sensor data stream, we exploit Lee’s scheme form which the
basic scheduling policy stems [9]. Let δ denote the total overhead of a superframe
including polling latency, IFS and the like, while Dmax the maximum length of
a data packet. If Pmin is the smallest element of set {Pi}, the requirement for
the superframe time, F , can be summarized as follows:∑

Hi + δ + Dmax ≤ F ≤ Pmin (1)

The minimum value of available transmission time, Xi is calculated as Eq. (2).

Xi = (�Pi

F � − 1) ·Hi if(Pi − �Pi

F � · F ) ≤ Dmax

Xi = �Pi

F � ·Hi Otherwise
(2)

For each message stream, Xi should be greater than or equal to Ci (Xi ≥ Ci).

Hi = Ci

(�Pi
F �−1)

if(Pi − �Pi

F � · F ) ≤ Dmax

Hi = Ci

�Pi
F �

Otherwise
(3)

By this, we can determine the length CFP period (TCFP ) and that of CP (TCP )
as follows:

TCFP =
∑

Hi + δ, TCP = F − TCFP ≥ Dmax (4)
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3.3 Scheduling of Retransmission

The proposed system has 3 virtual transmission links, PCF link, high-priority
DCF link, and low-priority DCF link, while each of them is mapped to PCF,
H-DCF, and L-DCF periods, respectively. The lower the load, the higher the
probability of successful transmission, so we are to make the load of H-DCF
lower than that of L-DCF, actually differentiating the upper bounds of max-
imum load for two periods. H-DCF transmits those packets whose priority is
higher than c. If a packet recovery fails in H-DCF, it can be retried in the
L-DCF with a normal CSMA/CA procedure. The value c is a tunable para-
meter that can be set according to the network load, current error rate, weight
distribution, and so on [10]. It ranges from the lowest priority value, Wmin to the
highest one, Wmax. The optimal value of c which maximizes value of recovered
weight, can be found empirically or via analytical model for the given network
parameters.

4 Performance Analysis

This section measures the performance of the proposed scheme via simulation
using SMPL [11]. With SMPL, we implemented restricted contention protocol
based on RTS/CTS mechanism for DCF. The number of active sensors is 5 and
their utilization is 0.5. Each packet fits to the length of 0.1F , being associated
to a priority randomly picked from 0 to 19.

The first experiment measures the effect of chop value with fixed error rate,
ε, set to 0.01, while the length of error duration, denoted as 1

q in Gilbert error
model, distributes exponentially with average 2.0F .

The y-axis of Fig. 3 plots the ratio of total weights of recovered packets
to those of packets that failed in the first transmission. The gap between the
proposed scheme and the non-partitioned DCF through ordinary CSMA/CA
protocol is maximized when chop value is 0.55. Fig. 4 exhibits the measurement
result of recovered weights according to the ε ranging from 10−3 to 10−2. As
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shown in the figure, the proposed scheme always outperforms the non-partitioned
retransmission and achieves almost 97% of success of transmission for the given
network and error parameter.

5 Conclusion

In this paper, we have proposed and analyzed the performance of commu-
nication architecture capable of efficiently dealing with channel error on the
wireless sensor network for the time-sensitive sensor application based on the
IEEE 802.11 WLAN standard. The proposed scheme makes AP always esti-
mate channel status between itself and each sensor node, to avoid polling a
node whose channel is not in normal condition. Once the packet transmission
fails, it should be retried in a best-effort manner within its deadline. After all,
it can support the prioritized error recovery by dividing the DCF into two sub-
periods and differentiating their loads. The experiment performed via simula-
tion using SMPL shows that the proposed scheme can improve the recovered
weight compared with the traditional non-partitioned scheme with a good chop
value. For the given parameters, it shows about 8% improvement when the chop
value is 0.55. In addition, for the sum of weights of successfully transmitted
packets, the proposed scheme always outperforms non-partitioned scheme. As
a future work, we will investigate a method to find the optimal chop value
for the given importance distribution as well as other real-time communication
parameters.
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Abstract. Location area (LA) planning in PCSN is a NP-hard problem. In this 
paper we modeled it as a clustering problem where each LA is considered to be 
a cluster. Agglomerative Hierarchical Algorithm (AHA) is applied to form the 
cell clusters. The algorithm starts assuming each cell as a separate cluster. In 
successive iterations the clusters are merged randomly in a bottom up fashion 
based on a total cost function (TCF) till the desired numbers of clusters are ob-
tained. Total Cost Evaluation Metric (TCEM) is proposed to compare AHA 
with other schemes.  Experimental results show that AHA provides better re-
sults in most of the cases compared to Greedy Heuristic based approach.  

1   Introduction 

In Personal Communication Service Network (PCSN) [1] a set of LAs form the Ser-
vice Area (SA). Each LA consists of a group of cells and is served by a Mobile 
Switching Center (MSC). The mobile terminals (MT) within each cell are controlled 
by a Base Station (BS). Each BS is connected to the MSC by a cable. BSs within the 
same LA communicate with each other through the (MSC) of that LA. If the MT 
moves from one cell to other within same LA there is no location update, but if MT 
crosses LA boundary then the handoff invokes a location update (LU). Given a set of 
cells, MSC/switches and their call handling capacity the problem is to assign the cells 
to a switch such that it minimizes the total hybrid cost including LU cost due to hand-
off and cabling cost under the constraint of call handling capacity of the switches. It is 
known as the static LA planning or cell to switch assignment (C2S) problem and is 
NP hard [1], [3]. 

Several Integer Programming based and heuristic based [1-2], [4], [9] approaches 
have been proposed to solve the C2S problem. Till now the approaches made towards 
solving the above problem, requires explicitly prior knowledge of MSC location, 
further none of these has used a common evaluation metric to compare the efficiency 
of the proposed scheme with others.   

The goal of this paper is to propose a common cost evaluation metric and design an 
algorithm to explore the possibility of composing better solution by applying Ag-
glomerative Hierarchical Clustering Algorithm (AHA) [10]. Clustering technique is 
used to group the cells among which traffic flow (handoff) is maximum and the dis-
tance is minimum.  We define an objective function called Total Cost Function (TCF) 
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which contains two factors (a) Handoff cost which is proportional to traffic flow in 
between the cells (b) Cabling cost which is proportional to distance. AHA starts by 
initializing each cell SA as a separate cluster. In successive iteration a randomly cho-
sen cluster say cK, is merged with adjacent cluster cJ for which TCF is optimum. After 
successive iteration of merging in bottom up fashion desired number clusters are 
obtained. Experimental results show that AHA gives better result than greedy heuris-
tic algorithm (GHA) [5] in terms of the proposed cost evaluation metric. 

2   The Proposed Approach 

We consider fixed spatial distribution of inherently adjacent hexagonal cells. The 
entire SA in modeled as a 2D Graph. Let there be N Cells and M switches. The 
problem is to form M clusters of cells. All cells belonging to a particular cluster are 
assigned to the corresponding switch which is assumed to be located at the mean 
position of each cluster. We have considered single homing i.e. non-overlapping 
clusters. 

If cell i and j are assigned to different switches i.e. different clusters, then cost is 
incurred every time a handoff occurs between cell i and cell j. Let hij be the handoff 
cost between cell i cell j per unit time where i, j = 1,2…N. Obviously, hij is propor-
tional to the handoff frequency between cell i and cell j which is known before hand 
form statistics derived from simulation model or vehicular traffic measurement [2]. 
The amortized fixed cabling cost between cell i and switch k is proportional to the 
distance between the cell i and switch k. Let i denotes the number of calls that cell i 
handles per unit time. Let Sk is known to be the call handling capacity of switch k.   

The objective is to group the cells into optimal clusters so that total cost including 
handoff cost and amortized cabling cost per unit time is minimized such that call 
handling capacity of switches are not exceeded.  

2.1   Problem Formulation  

To formulate the problem mathematically we consider following notations:  
If cell i belong to cluster ck then  Xik  = 1 otherwise Xik  = 0. The constraint on call 
handling capacity of switch k is as follows,                         

kSikXii ≤λ  ,     ∀i=1,2…N        (1) 

It means the total traffic from all cells belonging to a particular cluster must be less or 
equal to the call handling capacity of the switch corresponding to the cluster. To find 
the cost between a pair of clusters ck and cl, total cost function (TCF) is defined. The 
two components of TCF are as follows:  

1. Total handoff cost per unit time say, Hkl between ck and cl . It is defined as the 
sum of handoff  cost of the cells belonging to ck  which are adjacent to cl : 

Hkl=  ..
1,1 ==

n

ji
jlikij XXh  

(2) 
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2. Cabling cost which is proportional to distance. Distance between mean position 
of cluster ck and cl say, Dkl . Let Cord_Xi and Cord_Yi be the x and y coordinate 
of cell i respectively and Mean_Xk and Mean_Yk   be the x and y coordinate of 
mean position of cluster ck. 

Mean_Xk=(
=

N

1  i

ikik X . Cord_X )/n(ck);    Mean_Yk=(
=

N

1  i

iki X . Cord_Y )/n(ck) 
(3) 

Dkl  is obtained using the Euclidian distance metric 

Dkl = (4) 

We normalize both the components since Hkl and Dkl are in different scale,  

norm(Hkl)= Hlk/ ( Hkm ) ;  norm(Dkl)=Dkl / ( Dkm ) ,  ∀ m of cm adjacent to ck (5) 

TCF is used as the key condition to be checked while merging clusters. A given 
cluster k will be merged with one of its adjacent cluster l iff norm (Hkl) is maximum 
and norm (Dkl) is minimum among all its adjacent clusters. Therefore we define TCFkl 
as a maximizing function as follows,   

TCFkl =norm(Hkl) + 1/ norm(Dkl) (6) 

A randomly selected cluster is merged with one of its adjacent cluster in aech itera-
tion such that the objective function TCF in (6) is maximized subject to the con-
straints in (2). Thus clusters are merged in a bottom up fashion based on TCF till the 
desired numbers of clusters are obtained. Finally, a Cost Evaluation Metric (CEM) is 
defined as half of the sum of TCFi,j ( i j) between each adjacent pair of clusters to 
compare the final solutions obtained from different schemes i.e. 

CEM = (
ji,

ji,TCF )/2,  ∀ i of ci adjacent to ck  and i j (7) 

2.2   The AHA Algorithm 

Input: 

a) Number of switches M to be installed in the SA. 
b) Traffic handling capacity of each switch Sk where k=1, 2….M. 
c) Call volume of each cell j where i=1, 2…N. 

Output:  

  Set of M clusters with the set of cells in each cluster and CEM for the solution. 

Procedure:  

a) Initialize each cell as clusters i.e. cluster i={cell i}. Form initial set of clusters 
CLST_SET={ci} where i=1,2….N. Make a list of available switches 
AVAIL_MSC={switch j} where j=1,2….M sorted in descending order of their-
call volumes. Initialize list of assigned switches ASSIGN_MSC={NULL}.  
Finally it contains (switch#, cluster#) tuples. 

Mean_Xk- Mean_Xl)
2 + ( Mean_Yk – Mean_Yl)

2 
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b) Compute call handling capacity of each cluster as the sum of call volume of  the  
cells  corresponding  to  that cluster i.e. Clust_callvoli= i  , ∀ j belonging to ci    

c) Iteration: 

1)   Randomly choose a cluster, say ci  that has not been considered in this iteration.  
2)   Find set of clusters adjacent to ci , not considered in this iteration, say ADJ_SETi                   
3)  Make a list Li of TCFij corresponding ci for all j adjacent to ci. 
4)   Sort the list Li in non-increasing order of TCF. 
5)   Select a cluster from the list Li for which TCF is maximum, say ck.  
6) Let CV=Clust_callvoli+Clust_callvolj and call volume of 1st switch in 

AVAIL_MSC is MSC_callvol. If MSC_callvol>=CV then merge ci with ck and 
set Clust_callvoli = CV. Mark the ci as considered. If n(CLUST_SET) > M goto 
Step 9. 
else Select next cluster from TCFij and repeat Step (c6). 

7) If ci is not merged in (c6). Check if there exists a switch that best fits the capacity 
of ci. Remove ci from CLST_SET, make an entry in ASSIGN_MSC. Repeat Steps 
(c1-c7) till atleast two clusters remain unmarked in CLST_SET. 

8)  If n(CLST_SET) is same after last iteration then split the cluster with maximum 
call volume into two as it was before merging. Goto Step (c) for the next iteration. 

9)  Compute cost evaluation metric CEM of the final solution. 

3   Results and Discussion 

To test the effectiveness of AHA in solving the C2S problem for large SA, we com-
pare the results with Greedy Heuristic Algorithm (GHA)[5]. Comparative results 
corresponding to a 15 cell SA shown in Fig.1, with two switches are presented in 
Table1. Results corresponding to a 27 cell SA shown in Fig.1, with 2 switches are 
given in Table2 along with the same SA with 3 switches. Results are compared by 
varying switch positions for both the cases with 2 switches within the SA, except the 
3 switch case with 27 cells. Location of switches and cells and their call handling 
capacity is provided as input. Both tables lists the LAs formed with the set of cell 
identifiers within parenthesis and CEM of each solution in italics. As randomness is 
involved in selecting a cluster for merging different results are produced in different 
runs. For each input, the best obtained result out of five runs is tabularized. 

Table 1. Results obtained by using GHA and AHA on a 15 cell SA layout of Fig.1 with 2 
switches with call volume capacities 33.14 each. CEM is shown in italics. 

GHA Output AHA Output MSC 
Loca- 
tion  

LAs formed - Cost of solution (CEM) LAs formed - Cost of solution (CEM) 

3,14 (3,4,6,7,10,11,2,8),(14,15,13,9,12,5,1) -13.1 (3,6,7,1,4,5,8,2),(14,13,12,15,9,11,10) -7.9 

6,11 (5,6,10,13,9,2,1),(11,14,15,12,3,4,8,7) - 4.3 (6,10,13,9,2,1),(11,14,15,12,3,4,8,7) - 4.3 

9,7 (9,13,5,10,6,2,1,14),(7,4,8,11,3,12,15) - 4.5 (7,8,4,3,15,14,12,11),(9,10,13,6,2,1,5)- 4.3 
1,15 (1,2,3,5,9,6,13,10),(15,14,11,12,8,7,4) - 5.0 (7,8,4,3,15,14,12,11),(9,10,13,6,2,1,5)- 4.3 
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Fig. 1. A sample SA with 15 cell layout and a sample SA with 27 cell layout. Call volume of 
each cell is written in italics beside the cell in the figures. The handoff cost for each pair of 
adjacent cells is labeled at the corresponding edge. 

Table 2. Results obtained by using GHA and AHA on a 27 cell SA layout of Fig. 1 with 2 
switches with call volume capacities 55.0 each for switch locations. The last row gives solution 
for the same layout with 3 switches with capacities 35.0 each. CEM is shown in italics.  

GHA Output AHA Output MSC 
Loca-
tion  

LAs formed: Cost of solution (CEM) LAs formed: Cost of solution (CEM) 

15,14 Unsuccessful (12,15,16,17,19,20,21,22,23,24,25, 26), 
(1,2,3,4,5,6,7,8,9,10,11,13,14,18) - 21.5 

1,24 (1,2,3,4,5,6,7,8,9,11,12,16),(13,14,15,17,18,
19,20,20,22,23,24,25,26,27) - 15.9 

(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27) - 12.9 

11,20 (1,2,6,7,11,12,16,17,22,25,26), (3,4,5,8 
,9,10,13,14,15,18,19,20,23,24,27) - 14.2 

(11,12,17,21,16,19,18,24,23,27,26,22,25), 
(1, 2,3,4,5,6,7,8,9,10,13,14,15) - 14.2 

10,20 (1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16, 
17,18,19,20,21,22,23,24,25,26,27) – 12.9 

(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27) -12.9 

7,23 (1,2,3,4,5,6,7,8,9,10,11,12,13,16,17),(14, 
15,18,19,20,21,22,23,24,25,26,27) – 13.1 

(1,2,3,4,5,6,7,8,9,10,11,12,13,16,17), (14, 
15, 18,19,20,21,22,23,24,25,26,27) – 13.1 

5,25 (1,2,3,4,5,6,7,8,910,13,14,15,20),(25,26,27,
24,22,23,21,11,12,16,17,18,19) – 14.2 

(1,2,3,4,5,6,7,8,9,10,11,12,13,16),(14,15,17,
18,19,20,21,22,23,24,25,26,27) – 13.8 

   
2, 9, 25 (1,2,3,6,7,11,12), (4,5,8,9,10,13, 14,15, 19 

20),(16,17,18,21,22,23,24,25,26,27) - 23.1 
(1,2,3,6,7,11,12,13,16,17),(4,5,8,9,10,14,15,
20),(18,19,21,22,23,24,25,26,27) – 20.6 

As observed in most of the cases AHA produces optimal or near optimal results 
which are better in most cases or atleast equally good compared to GHA. Further, 
in AHA the CEM remains unchanged in spite of small change in switch location in 
some cases. Thus, using AHA we can find the best possible switch position within 
the SA through a series of experiments. The first experiment in Table 2 shows 
GHA may not provide a solution even if exist because of its greedy nature. But 
AHA always explores and gives some solution if exist, because it allows  
backtracking. 
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4   Conclusion and Future Work 

In this paper, we have modeled the C2S problem as a clustering problem and used 
Agglomerative Hierarchical approach to cluster the BSs. Experiments results have 
demonstrated the effectiveness of the AHA algorithm. AHA requires several runs, 
therefore takes more computation time than the GHA but finds much better solution. 
Computation time is not a major concern because here computation is an offline activ-
ity. Some of the results show that change of switch position does not alter the quality 
of solution, if they are nearer to the center of the LAs. So AHA provides more flexi-
bility as any of these locations can be used to place the switch while designing a new 
SA. The AHA can be used effectively both for designing new SA and extending  
existing SA. 

We can find the optimal number of switches to be placed in a SA by analyzing the 
behaviors of cost evaluation metric against number of clusters. Multihoming i.e. as-
signing boundary cells to more than one switch to reduce location update cost may be 
implemented if we consider fuzzy clusters. 
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Abstract. Two Internet-based frameworks, IntServ and Differentiated DiffServ, 
have been proposed to support service guarantees in the Internet. Both 
frameworks focus on packet scheduling; as such, they decouple routing from 
QoS provisioning. This typically results in inefficient routes, thereby limiting 
the ability of the network to support QoS requirements and to manage resources 
efficiently. To address this shortcoming, we propose a scalable QoS routing 
framework to identify and select paths that are very likely to meet the QoS 
requirements of the underlying applications. Scalability is achieved using 
selective probing and clustering to reduce signaling and routers overhead. A 
thorough study to evaluate the performance of the proposed d-median clustering 
algorithm is conducted. The results of the study show that for power-law graphs 
the d-median clustering based approach outperforms the set covering method. 
The results of the study also show that the proposed clustering method, applied 
to power-law graphs, is robust to changes in size and delay distribution of the 
network. Finally, the results suggest that the delay bound input parameter of the 
d-median scheme should be no less than 1 and no more than 4 times of the 
average delay per one hop of the network. This is mostly due to the weak 
hierarchy of the Internet resulting from its power-law structure and the 
prevalence of the small-world property. 

1   Introduction 

The Internet has emerged as the most prominent communication infrastructure, 
carrying an ever broadening range of protocols and applications. The traditional best-
effort service of the Internet, however, is inadequate to support diverse characteristics 
and different Quality-of-Service (QoS) requirements of multimedia applications. 
Depending upon the application and media type, such requirements may involve 
stringent temporal constraints. Different multimedia applications are sensitive to 
different factors and possess a variety of service constraints, including bandwidth, 
delay bounds and loss bounds. To meet these constraints, two service models, namely 
IntServ and Differentiated DiffServ, have been proposed to support service guarantees 
in the Internet. IntServ supports service guarantees on a per-flow basis. The 
framework, however, is not scalable due to the fact that routers have to maintain a 
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large amount of state information for each supported flow. DiffServ was proposed as 
an alternate solution to address the lack of scalability of the IntServ framework. 
DiffServ uses class-based service differentiation to achieve aggregate support for QoS 
requirements. This approach eliminates the need to maintain per-flow states on a hop-
by-hop basis and reduces considerably the overhead routers incur in forwarding traffic. 

DiffServ focuses on packet scheduling; as such, it decouples routing from QoS 
provisioning. This typically results in inefficient routes, thereby limiting the ability of 
the network to support QoS requirements and to manage resources efficiently. To 
address this shortcoming, we propose a scalable cluster-based scheme to support QoS 
routing in Internets. The tenet of our approach is based on seamlessly integrating 
routing into the DiffServ framework to extend its ability to support QoS requirements. 
Scalability is achieved using selective probing and clustering to reduce signaling and 
router overhead, while identifying paths that satisfy a specific constraint, such as delay. 

In the proposed cluster-based scheme, nodes whose metrics are highly correlated 
are clustered together, and the metrics inquiries are performed on a per-cluster basis. 
In this work, we focus on delay as the metric of interest. Therefore, the nodes located 
in the same cluster are said to share equivalent delay. Furthermore, each cluster is 
represented by one anchor node, usually located at the “center” of the cluster. The 
QoS metric dissemination and measurements are performed by the anchor node; the 
delays to the rest of the nodes in the same cluster are estimated to be equal to the 
anchor delay. The actual delay measured from the anchor, however, may be slightly 
different from those of the rest of the nodes in the same cluster. This difference is 
referred to as the estimation error, and should be bounded for each cluster. The 
estimation error determines the accuracy of the scheme. 

There is a trade off between scalability and accuracy of the scheme. Suppose the 
network of n nodes is clustered into k clusters; the routing overhead is then reduced 
by a factor of (n/k). For scalability, the number of clusters k should be small, which 
implies large cluster sizes must be used. This approach, however, may result in high 
estimation errors caused by the highly likely delay diversity among the large number 
of nodes in the cluster. On the other hand, using small-sized clusters may reduce the 
estimation error. This, however, can only be achieved at the cost of reduced 
scalability as the number of clusters in large networks is likely to increase. As a result, 
a design tradeoff between accuracy and overhead must be carefully considered.  

To address this issue, the paper proposes a delay-based clustering approach, 
referred to as d-median, which efficiently clusters large-scale networks, based on 
delay such that scalable routing can be achieved, while maintaining the routing 
accuracy to an acceptable level. A thorough study to evaluate the performance of the 
proposed d-median clustering algorithm is conducted. The results show that the d-
median algorithm outperforms the existing approach and the clustering results are 
robust to the changes in network topologies. We also observe that a range of very 
small cluster sizes, in terms of delay, must be used due to the loosely hierarchical 
nature of the Internet. 

The rest of the paper is organized as follows. Section 2 reviews work related to 
clustering in computer networks. Section 3 discusses the proposed clustering and 
probing framework. Section 4 describes the d-median clustering approach. Section 5 
defines the methodology for evaluating the d-median. Section 6 discusses the results 
of the performance evaluation study. Finally, Section 7 concludes the work. 
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2   Related Work  

Clustering is widely used to solve a diverse set of problems in the area of computer 
networks. Typically, the models proposed are often referred to as discrete location 
models or facility location models. These models deal with optimally locating a set of 
facilities in order to satisfy one or more requirements, e.g., to minimize the number of 
facilities used to cover the entire network, or to minimize the average distance from 
every node to its nearest facility. In this paper, we use the terms facility and distance 
to represent anchor and delay, respectively. Discrete location problems can be 
formulated as Integer Programming problems and are known to be NP-hard. 
Therefore, approximation algorithms are generally required to obtain near-optimal 
solutions.  

For the past several years, discrete location models were used in network design to 
solve problems such as placement of Internet routers or cache servers [12], [8] or 
replication of web server in Content Distribution Networks (CDN) [9].   

In [13], a scheme is proposed to determine the location of web server replicas in 
CDNs. The approach formulates the problem as k-median problem. Various 
algorithms for solving the k-median problem were proposed and evaluated. The 
evaluation was performed on various network configurations. Results indicated that 
the greedy-based algorithm outperforms other approaches in terms of accuracy and 
robustness. In [3], an overlay network scheme, referred to as Iso-bar, is proposed for 
distance monitoring and estimation in the Internet. The framework divides an overlay 
network into clusters and estimates the distance (delay) between any pair of nodes 
using both distance between clusters and distance within clusters. The Iso-bar scheme 
clusters the network using three discrete location models, namely set covering, k-
center, and k-median. 

Set covering is one of the simplest models used in discrete location models. The 
objective of the set covering problem is to find a minimum number of facilities from 
among a finite set of candidate facilities so that every demand node is covered by at 
least one facility. The set covering problem in a general graphs is NP-hard [6]. 
Despite the intensive studies on the set covering problem, the best approximation 
algorithm known is greedy-based [11]. In this algorithm, the approximation factor is 
ln(n) and the running time is proportional to n2, where n is the number of nodes in the 
network. In practice, a comparative study of nine different approximation algorithms 
for the set covering problem  was conducted on 60 randomly generated problem sets, 
for which the optimal solutions were known [7], [2]. The greedy-based algorithms 
(both in the case of randomized and deterministic variants) yield the best results. The 
solutions obtained from a greedy-based algorithm deviate only by 5%, in average, 
from the optimum.  

The k-median approach uses the concept of the linear cost function to locate k 
facilities in the network so that the total cost, in terms of distance, is minimized. This 
results in three constraints: the first that each node is connected to exactly one facility, 
the second ensures that this facility must be available, and the third ensures that the 
number of facilities does not exceed k. The k-median problem in general graphs is 
NP-hard [6]. Approximation algorithms are generally required. A simple greedy-
based algorithm for k-median has been proposed in [4]. The running time of this 
algorithm is O(kn2), where k is the maximum number of clusters and n is the number 
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of nodes in the network. A major shortcoming of the greedy-based approach is that it 
has no guaranteed approximation factor. However, the algorithm was run against 40 
problem sets, for which the optimal solutions are known [2]. The results show that, in 
the worst case, the solution obtained by the algorithm deviates from the optimum one 
by less than 5% [10].  

The k-median based approach has a desirable property in that it tries to minimize 
the delay between every node and its nearest anchor. However, the model cannot 
guarantee the maximum delay bound from an anchor to the farthest node in its cluster. 
Similarly, a set covering based approach is inadequate to address our clustering 
criteria. To address this shortcoming, the d-median scheme takes the coverage 
distance (maximum delay bound), dc, as an input and determines the number of 
clusters, k. The d-median scheme tries to locate the minimum number of anchors such 
that the sum of the connection cost is minimized and the maximum delay of every 
cluster does not exceed the delay bound input, dc. 

3   Clustering and Probing Framework 

Scalability and efficiency of the QoS routing architecture may be achieved using 
efficient network clustering and selective probing. Network clustering reduces the 
number of nodes which participate in routing information dissemination and path 
selection.  Nodes, whose delay variations are bounded by a network-wide specified 
delay value, dc, are said to be in same class of equivalence. These nodes are grouped 
to form a cluster. A cluster can be viewed as a logical node, called meta-node. The 
topology, derived from the physical connectivity of the meta-nodes, represents a 
meta-graph. 

Once the network is clustered into meta-graph, selective probing can be used for 
metric acquisition and dissemination among meta-nodes, on a per-cluster, as opposed 
to a per-node, basis. For each cluster, an anchor node representative of its equivalence 
class is selected to probe its peers in other clusters and exchange QoS metric 
information.  Once the QoS metric information has been exchanged between meta-
nodes, path computation can be undertaken to locate appropriate paths that satisfy the 
QoS requirements of the underlying applications. Note that the process of metric 
acquisition and estimation, and the process of path selection can be done periodically 
or upon request. Network may also be re-clustered to update the meta-graph topology 
following significant changes in the underlying physical topology or after a long 
period of time. In the following section, we describe the clustering approach used in 
the proposed framework to minimize the number of anchors, while guaranteeing the 
maximum delay bound within a cluster.   

4   The d-Median Based Strategy  

The main objective of the proposed d-median strategy is to keep the estimation error 
bounded while minimizing the signaling overhead. Before we describe the clustering 
scheme, we need to define the desirable properties of the clustering strategy. First, the 
clustering method must minimize the number of clusters k to reduce the signaling 



372 N. Jariyakul and T. Znati 

 

overhead in routing process. The smaller number of clusters k results in increased 
performance of the clustering method. Second, the coverage distance dc of every 
cluster must be bounded to limit the effect of estimation error. The coverage distance 
dc is referred to as the delay bound input of the clustering method. Finally, the average 
delay for each node to reach its nearest anchor (the connection cost) should be small 
in order to reduce the effect of estimation error. Based on the above, the Integer 
Programming formulation of the d-median can be expressed as follows: 

MINIMIZE 
∈∈ CjFi

ijij xd
,

 

SUBJECT TO: 1: =∈∀
∈Fi

ijxCj  

   0:, ≥−∈∈∀ iji xyCjFi  

   ijijc xddCj ≥∈∀ :  

   }1,0{:, ∈∈∈∀ ijxCjFi  

   }1,0{: ∈∈∀ iyFi  

In the above formulation, F is a set of facilities and C is a set of all nodes in the 
network. dij denotes the connection cost associated with node j and facility i. dc 
denotes the coverage distance. yi and xij are the decision variables. yi has its value 
set to 1 if and only if an anchor i is selected. Similarly, xij has its value set to 1 if 
and only if node j is served by the anchor i. Based on this formulation, each cluster 
is bounded with coverage distance dc and the total connection cost is minimized. 
The d-median problem is NP-hard. To solve this problem, we propose an 
approximation algorithm based on the k-median heuristic. The algorithm is 
described in Figure 1. 

Note that, in the set covering problem, a node is said to be covered if dij  dc. Once 
a node is covered, no weight or cost associated with dij is taken into further 
consideration. However, in the proposed framework, a smaller dij indicates a smaller 
delay and, hence, more accuracy in metrics estimation; larger values of dij, however, 
implies less accuracy and therefore is less desirable. This suggests that we should 
include the weight associated with dij when deciding about locations. The simplest 
way to achieve this is by treating dij as a linear cost function. 

The d-median approximation algorithm uses an inverse approach of the original  
k-median counterpart. Note that each algorithm takes either dc or k as an input and 
determines the other. Therefore, we can say that dc determines k, and vice versa. 
Given a network topology, the d-median algorithm and the k-median algorithm will 
produce the same clustering results, when the appropriate values for dc and k are used.  
Consequently, the accuracy of the algorithm is identical to that of k-median. However, 
the running time of the d-median algorithm is O(n3). 
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Fig. 1. Approximation algorithm for the d-median algorithm: greedy-based approach 

5   Evaluation Methodology 

To evaluate the performance of the d-median and the set covering clustering methods, 
we simulate their corresponding approximation algorithms on a variety of network 
topologies. In the following,   we first discuss the network topologies and a set of 
performance metrics used in our evaluation.  

5.1   The Internet Topology 

In this work, we consider the performance of the clustering methods over large-scale 
Internets. Recent work has shown that the node degree in the Internet induced graph 
exhibits power law properties [5], [14]. Several algorithms have been proposed to 
generate power-law graphs. It is widely accepted, however, that the degree-based 
network topology generators are superior to structural generators in generating graphs 
with power-law degree distributions [15]. In this study, the degree-based network 
topology generator INET 3.0 was used to generate the Internet topologies [16]. 

In this work, we study the behavior of the two clustering methods, using various 
network sizes, namely 3,037, 3,500, 4,000, and 4,500 nodes. The reason behind 
choosing these network sizes stems from the fact that power laws hold only for large 
data sets. Furthermore, the power laws properties of the Internet were first discovered 
when the number of Internet nodes was 3,037. 

In general, the Internet topology consists of routing nodes and connectivity 
information associated with these nodes. Therefore, metrics, such as hop-count, can 
be easily derived. However, our work is based on the delay metric. Unfortunately, due 
to the high variability of this metric in the Internet, neither the generated Internet 
topologies nor the measured Internet topologies supply this information [1]. To 
overcome this problem, the delay associated with each link in a simulated power-law 
graph is assigned based on one of the following standard distributions: Uniform, 
Normal, Exponential, and Heavy-tailed. 

5.2   The Performance Metrics 

In this section, we introduce the performance metrics that we will use as the tools to 
study the behavior and performance of set covering and d-median clustering methods.  

1. Set F = φ 
2. If every node has a connection cost less than or equal to dc, go to (5) 
3. For each node i ∉ F 

a. Calculate the total connection cost with the set of facilities F ∪ { i} 
(assuming that each node connects to the nearest facility) 

4. Select i that yields the minimum connection cost 
a. F := F ∪ { i} 
b. Go to (2) 

5. Return F. 
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Table 1 lists each performance metric used in this study and provides a brief 
description of its meaning. 
    The number of clusters is used for performance comparison between the two 
clustering schemes. More specifically, for a given delay bound, it is assumed that 
clustering method, which produces the smaller number of clusters, is considered to 
yield superior performance. However, it was observed that, in several cases, a large 
portion of the clusters contained only one node, thereby resulting in inefficient 
clustering. To address this concern, the concept of effective clusters was introduced. 
Based on this concept, single node clusters are not considered. Both number of 
clusters and number of effective clusters are shown in the percentage of clusters to the 
total number of nodes in the network. The average delay denotes the average delay 
between a node and its nearest anchor. A small value of the average delay indicates a 
small estimation error. The last performance metric is the average cluster size, which 
represents the expected number of nodes in the clusters.  

Table 1. List of the main performance metrics used in this study 

Performance Metrics Descriptions 
Number of clusters (%) Total number of clusters 
Number of effective clusters (%) Total number of clusters consisting of more 

than 1 node 
Average delay Average delay from each node to the nearest 

anchor 
Average cluster size Average number of nodes in each cluster 

6   Results and Evaluation 

To evaluate and compare the performance of the d-median and the set covering 
clustering approaches, the corresponding approximation algorithms were executed 
using the same range of delay bounds, against a variety of synthetic Internet 
topologies. In the following, we report on the performance of these experiments.  

6.1   Performance Comparison 

In the preliminary analysis, several experiments were conducted. Each experiment is 
dedicated to one of four performance metrics, namely the number of clusters or effective 
clusters expressed as a percentage of the total number of nodes, the average cluster delay 
and the average cluster size. Furthermore, for each experiment the link delay distribution 
and the network size were varied. Both d-median and set covering require the delay bound 
dc as an input. We normalized the dc unit so that one unit equals the mean of the delay 
assigned to every link in the network. This normalized unit is hereafter referred to as 
mean-hop-delay. The optimal or near-optimal clustering results of each clustering method, 
computed over a specific set of network topologies and delay bounds, are then computed. 
The results show that for both set covering and d-median, the number of clusters decreases 
as we increase the delay bound input. This is due to the fact that the larger coverage-area 
clusters cover more nodes, and hence the number of clusters required to cover entire 
network is reduced. This behavior holds for all network topologies.  
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Fig. 2. The number of clusters produced by the d-median and set covering heuristics 

Fixing the network size to 4,500 nodes, an experiment was carried out to determine 
the number of clusters produced by each method for different delay distributions. The 
results are as shown in Figure 2. In most cases, we observe that d-median yields smaller 
number of clusters than set covering for any given delay bound input. In general, a 
smaller number of clusters imply a smaller amount of signaling exchange in the 
network. This suggests the performance of d-median is better than that of set covering. 

Also note that, in the case of the d-median, the number of clusters decreases rapidly 
in the beginning and becomes stable after 1 or 2 mean-hop-delays. We named the point 
where the steep slope ends and the graph becomes stable the knee point, as indicated in 
Figure 2. We will discuss the importance of these knee points in Section 6.3. 

As mentioned previously, considering only the number of clusters may be 
misleading. One possible reason is that many of these clusters are one-node clusters, 
as nodes may be located in remote areas. A one-node cluster may also occur because 
of inefficient clustering. In this case, the clustering method fails to identify and avoid 
one-node clusters, thereby increasing the total number of clusters.  

Considering only the number of effective clusters, the results show both the  
d-median and set covering start with a steep ascent to reach a peak before the number 
decreases as delay bound increases.  When the delay bound is relatively small, most of 
the nodes scattered in the network form their own one-node clusters. As the delay 
bound increases, the one-node clusters merge with other clusters in their vicinity, 
thereby increasing the number of effective clusters. As the boundaries of clusters grow 
larger, at the total number of clusters required to cover the network is reduced, and so 
is the number of effective clusters, as shown in the plot. In all cases, however, the 
results show that the d-median always yields larger number of effective clusters than 
set covering. This is depicted in Figure 3 which presents the ratio of the number of  
 

knee points
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Fig. 3. Ratio of the number of effective clusters to the total number of clusters 

effective clusters to the total number of clusters, for the case of 4,500 nodes. We can 
see that d-median can reach the point where every cluster is a non-one-node cluster, for 
a delay bound around 2 to 4 mean-hop-delay. However, set covering does not exhibit 
such a performance, thereby failing to eliminate unnecessary one-node clusters. 

With respect to the average delay, defined as the estimated delay, in mean-hop-
delay units, necessary for each node to reach its nearest anchor, results show that set 
cover exhibits in some cases smaller average delays than the d-median. Theoretically, 
the d-median’s objective function is to minimize the overall delay; as such it should 
yield smaller average delay in every case. A closer look at the results, however, 
reveals that the portion of one-node clusters obtained by set covering is high. These 
one-node clusters have zero delay and consequently artificially reduce the average 
delay. We conclude that, based on our performance metric, d-median outperforms set 
covering as it produces a smaller number of clusters, a larger ratio of effective 
clusters, and a smaller average delay. 

6.2   Sensitivity Analysis 

The sensitivity analysis to the network sizes is performed to study the effect of 
changes in network sizes on the behavior of the two clustering approaches. To our 
surprise, the two clustering approaches exhibit a high degree of similarity. 
Specifically, the correlation coefficient ranges from 0.8376 to 1.0000 for the case of 
d-median and from 0.9014 to 1.0000 for the case of set covering. The high correlation 
coefficient indicates that the proposed scheme leads to acceptable performance as the 
network size increases, assuming a power-law topology. Sensitivity to delay, 
however, is more subtle. Unlike the impact of network sizes, changes in delay 
assignments show direct impact on the clustering results. The dissimilarities among 
the results produced by each clustering method for different delay assignments are 
noticeable, as indicated by a correlation coefficient that can be as low as 0.3382 in the 
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worst case. Furthermore, the results show that for all delay assignments, d-median 
always yields smaller number of clusters than set covering, around the knee points, 
and a higher number of effective clusters. Finally, it was observed that the average 
cluster size obtained by d-median is always smaller. This confirms that, overall  
d-median outperforms set covering. 

6.3   The Delay Bound Input 

Both d-median and set covering take the delay bound as an input. The delay bound is 
the maximum allowable delay from an anchor to the rest of the nodes in the cluster. We 
believe that it is beneficial to find a range of practical delay bounds for which the d-
median clustering scheme performs efficiently, as a small delay bound may result in 
unnecessary one-node clusters, while a large delay bound may result in exceedingly 
large clusters and consequently high estimation errors. A careful analysis of the results 
show that when the delay bound is around 5 mean-hop-delays, the network is dominated 
by a single cluster (average cluster size equal to network size and the number of clusters 
is one). Actually, the single-cluster domination starts around 4 mean-hop-delays when 
the average cluster size starts to rise abruptly and the number of clusters is reduced to a 
few clusters.  The upper bound of the delay bound input of the d-median clustering 
approach should, therefore, be no larger than 4 mean-hop-delays.  

 

Fig. 4. Average delay for d-median and set covering heuristics 

Results also show that inefficient clustering also occurs when the delay bound 
input is very small, as small delay bounds cause the number of clusters either to 
become exceedingly high or in some cases even equal to the number of nodes in the 
network. Now consider the average delay obtained for the 4,500-node network, as 
depicted in Figure 4. In this case also, knee points can be identified. Note that these 
knee points are located in exactly the same locations as in Figure 2. The knee points 

knee points
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represent the points at which clustering results become stable, i.e., the number of 
clusters and the average delay do not change considerably as the delay bound 
increases. We propose using these knee points as the lower bound of the delay bound. 
Therefore, the lower bound should be around 1 and 2 mean-hop-delays.  

It is also important to note that a very small delay bound input can efficiently 
cluster various network topologies, independently of their size and delay assignments. 
Recall that the mean-hop-delay is an average delay on one hop in the network. 
Therefore, in most cases, the cluster size is bounded by a few hops away from its 
anchor. In particular, if we cluster the network using d-median, the average delay for 
each node to reach its nearest anchor is merely around 1 mean-hop-delay, as shown in 
Figure 4. This is a remarkable result since it implies that the large scale topology of 
the Internet can be efficiently clustered, where the nodes within a cluster are located 
only a few hops away from each other. This is due to the loosely hierarchical nature 
of the Internet as mentioned in [14]. This fact is also confirmed by the works of [5] 
and [14], which estimate that the diameter of the Internet is between 4 and 5 hops. 

7   Conclusion 

In this work, we considered the clustering-based metrics acquisition scheme that aims 
to reduce the routing overheads in the Internet, where the metrics acquisitions are 
done on a per-cluster basis, rather than on a per-node basis. Our two major concerns 
are the scalability of the scheme and the accuracy of the routing information. We 
considered two existing discrete location models that are used to solve the problems 
of network clustering in the literature. We proposed a d-median clustering approach 
and its approximation algorithm. We then evaluated the performance of d-median 
approach, compared to set covering approach, using power-law graphs with various 
network sizes and delay assignments. The results showed that d-median outperforms 
set covering based on our performance metrics.  Furthermore, the results show that 
the behavior of the clustering scheme is stable for different network sizes and delay 
assignments. The results suggest that the delay bound input to the d-median heuristic 
should be around 2 to 4 times the per-hop mean delay, for Internet clustering. 
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Abstract. In this paper we present a fair and reliable e-commerce model
for P2P network, in which communication parties can buy and sell prod-
ucts by P2P contact. In particular, we focus on a fair exchange protocol
that is based on collaboration with distributed communication parties
and distinguished from the traditional fair exchange protocols based on
a central trusted authority. This feature makes our model very attractive
in P2P networking environment which does not depend on any central
trusted authority for managing communication parties.

1 Introduction

Recently Peer-to-Peer (P2P) networking paradigms and its applications offer
opportunities for new services over both Internet and Mobile Ad-hoc Networks
(MANETs). Specially, mobile devices such as mobile phones and PDAs are al-
ready used widespread, and functionality and performance of these devices are
improved day by day. Due to the rapid growth of these technologies, mobile
devices are expected to have capability to provide various services beyond the
request of desired services. Hence, new services have appeared in P2P network,
in which contents are bought and sold among parties by using mobile devices.
Moreover, P2P network encourages an efficient model for contents distribution
among communication parties. Since each communication party in P2P net-
work does not depend on any central trusted authority for management, it is
inherently scalable to implement communication models. Therefore, designing
an e-commerce model in P2P network is a promising challenge which we have
never met before in Internet environment.
� This research was supported by University IT Research Center Project, MIC, Korea.
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However, due to the lack of the central trusted authority, P2P network does
not efficiently provide all the services required by e-commerce transaction such
as reliability and fairness. In particular, guaranteeing fairness is a major chal-
lenge in e-commerce model. Moreover, since the dynamic nature of P2P network
implies that the consecutive connectivity between communication parties is not
provided, it is more difficult to guarantee fairness for e-commerce transaction in
P2P network.

Our Contribution. In this paper we design a new e-commerce model for guar-
anteeing fairness and reliability in P2P network, in which communication par-
ties can buy and sell digital contents by P2P contact. Especially, we focus on
an optimistic fair exchange protocol based on collaboration with distributed
communication parties and distinguished from the traditional optimistic fair ex-
change protocols relied on a central trusted authority. Moreover, the proposed
fair exchange protocol provides desirable property such as availability for P2P
e-commerce model since we consider the threshold cryptography to design the
protocol.

The rest of the paper is organized as follows. The next section identifies the
security requirements for the P2P e-commerce services we have considered and
describes cryptographic tools to induce the motivation of the paper. We outline
the proposed e-commerce model suitable for P2P network in Section 3. An op-
timistic fair exchange protocol with Distributed TTP that provides fairness and
reliability for the model is presented and analyzed in Section 4. Finally, we have
a conclusion in Section 5.

2 Preliminaries

2.1 Security Requirements for P2P e-Commerce Service

Not all the P2P services are offered with a robust central server, and collabora-
tion among peers in P2P commercial transaction is performed under ad-hoc and
temporal connection. Therefore, these characteristics result in formidable chal-
lenge as far as providing the security services required by e-commerce service
such as confidentiality, authentication, integrity, non-repudiation. Furthermore,
the following requirements are desirable in e-commerce service:

– Fairness : No party should be able to interrupt or corrupt the protocol to
force an outcome to his or her own advantage. The protocol should terminate
with either party having obtained the desired information, or with neither
one acquiring anything useful.

– Effectiveness : If no messages are lost, both parties behave according to
the protocol and do not abandon the exchange, then both parties receive the
desired items.

– Timeliness : It guarantees that both parties will achieve their desired items
in the exchange within finite time.
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Specially, fairness is the most considerable requirement in e-commerce service.
Consequently, it is crucial that the protocol guarantees fairness between com-
munication parties in P2P e-commerce model.

2.2 Cryptographic Tools

Threshold Cryptography. Threshold cryptography distributes the ability to
provide a cryptographic service such as signing or decryption[3][10]. In a t out of
n threshold scheme, any subset of greater than t peers (out of a total of n peers)
can compute the desired functionality while any subset of less than or equal to
t peers cannot. It offers better fault tolerance than non-threshold cryptography:
even if some peers are unavailable, others can still perform the desired function-
ality. Threshold cryptography also provides better security since no single peer
is entrusted to perform the desired functionality in its entirety. Consequently, it
seems like an ideal choice to provide security services, such as reliable and fair
exchange in P2P network.

Fair Exchange Protocol. A fair exchange protocol ensures that, at the end
of the exchange, either each party receives the item it expects or neither party
receives any information about the other’s item. The classical solution to the fair
exchange problem is based on the idea of gradually exchanging small parts of
the items. Works in this approach generally rely on the unrealistic assumption
that the two parties have equal computational power or require many rounds to
execute properly.

The practical approach to resolve the problem is to use a trusted third
party(TTP) as arbitrator. Specifically, this approach can be classified as on-line
protocol and optimistic protocol according to their involvement of TTP[1][8][11].
On-line protocol requires the presence of the TTP as a delivery channel, inter-
vening in each transaction. As the TTP is always involved in every transaction,
this protocol considerably implies the communication and computational bottle-
neck. In optimistic protocol the TTP is not used during the transaction when the
communication parties behave correctly, but is involved only in case of disputes
with one of the parties. Since the TTP is mostly off-line, this protocol reduces
the communication and computational overhead of the TTP.

3 A Fair and Reliable P2P e-Commerce Model

3.1 System Components and Communication Model

In this section we describe the proposed P2P e-commerce model, in which com-
munication parties can buy and sell their products. The proposed model consists
of peers who play both roles of a seller and a buyer, and DTTP (Distributed
TTP) which manages the service key of a peer community. The description of
system components is as follows:

– Peer : An entity who plays either role of a seller or a buyer according as
the demand that it desires.
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– DTTP(Distributed TTP) : DTTP is composed of a set of n special
peers(n ≥ 3t + 1) which are called master peers, each runs on a separate
device in a network. Each master peer has the service secret key share ssi

of a peer community and performs threshold cryptographic operations for
assuring fairness and reliability between commercial transaction parties in
the peer community.

In addition, we introduce an adversary who can easily steal or otherwise com-
promise all peers including master peers. Thus, our adversary model includes
active(or Byzantine) adversary who can compromise some bounded fraction of
peers in the network. However, we assume that fewer than or equal to 1/3 of the
master peers are corrupted or malicious during the entire lifetime of the shared
service secret key. This means that at least 2t + 1 master peers are available at
any time.

Generally, the quality of communication channels can be classified as reliable,
resilient and unreliable. Previously proposed fair exchange protocols[1][2][8][11]
assume that communication channel between the party and the TTP is resilient
in order to resolve the dispute, because it is impossible to guarantee fairness
without at least resilient channel between those parties. However, resilient chan-
nel assumption is not sufficient for our model since P2P network implies that
no robust central servers are offered and the consecutive connectivity is not
provided between communication parties including master peers. Therefore, to
clarify our communication model for real P2P networking environment, we em-
ploy the idea used in Byzantine environment[4] with respect to communication
channel between a peer and an available master peer.

Definition 1 (Fair Communication). A communication channel between two
correctly behaving parties is fair if no part of the network becomes permanently
unavailable, given sufficient number of retransmissions, every message is deliv-
ered eventually.

Consequently, in our model we assume that communication channel between
peers who carry out e-commerce transaction is unreliable by the nature of P2P
network, and that communication channel between a peer and an available mas-
ter peer is fair by the definition above. Upon taking into consideration of the
nature of P2P network, our qualitatively weaker communication model is very
reasonable and realistic. Finally, we assume that communications is carried over
confidential and broadcast channels.

3.2 Initialization of Peer Community

In the initial phase, each peer who wants e-commerce transactions of its contents
constitutes a peer community as a virtual market. Every peer community has
a service public key and a corresponding service private key for guaranteeing
fairness and reliability for e-commerce transaction in the peer community. The
high-level description of initialization is as follows:
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1. To provide fairness and reliability for e-commerce transaction, master peers
are chosen from the constructed peer community. The master peers can be
chosen by the peer community founder, or can be the participants at the
beginning of the peer community.

2. Each master peer obtains his service secret key share ssi for obvious reasons
and service public key of the peer community from a centralized dealer or
by collaborative computation among master peers using a t out of n thresh-
old scheme. For example, the threshold scheme described in [3] provides
share distribution by collaboration among master peers, while the threshold
scheme presented in [10] supports share distribution by a trusted dealer.

3. Each master peer publishes his identity and the service public key. After
obtaining the identity of master peer and the service public key, a peer
who wishes to buy or sell its own digital contents, of course including master
peers, performs membership enrollment protocol presented in the subsequent
section to affiliate himself with the peer community.

3.3 Notations

We use the following notations to describe our protocols:

– B, S : the identities of buyer and seller, respectively.
– MPi : the identity of i-th Master Peer, where 1 ≤ i ≤ n.
– f : a flag that indicates the purpose of a message.
– itemX : an item of the peer X .
– payX : a payment information of the peer X .
– descitemX , descpayX : the description of the item and the payment of the peer

X , respectively.
– tX : the local timestamp value of the peer X .
– comX : a randomly chosen commitment value by the peer X .
– DTTP : a set of Master Peer’s identities.

DTTP := {MP1, · · · , MPn}
– PH : the protocol header, which contains relevant information such as the

identities of the peers involved, the description of the desired item and pay-
ment.

PH := {B, S, DTTP, descitemX , descpayX}
– H() : a collision resistant one-way hash function.
– K : a randomly chosen secret key for symmetric-key encryption function.
– EK() : a symmetric-key encryption function under secret key K.
– C := EK(itemX) : the cipher of itemX under secret key K.
– SigX() : a signature function under X ’s private key.
– PUX() : an asymmetric-key encryption function under X ’s public key.
– PDX() : an asymmetric-key decryption function under X ’s private key.
– X → Y : m : message m is sent from a peer X to a peer Y .
– X → ∀Yi : m : message m is broadcasted from a peer X to every peer Yi,

where 1 ≤ i ≤ n.
– ∀Xi → Y : m : message m is sent from every peer Xi to a peer Y , where

1 ≤ i ≤ n.
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3.4 Membership Enrollment Protocol

Every peer who wishes to buy and sell digital contents in a peer community needs
to affiliate himself with the peer community. Figure 1. describes the detailed steps
of the protocol.

Step 1. A prospective peer Pnew who wishes to perform e-commerce transaction gen-
erates his own public key/private key pair, and constitutes a membership creden-
tial request message to enroll in the peer community. Then the prospective peer
broadcasts the credential request message to all the master peers.

[E-1] Pnew → ∀MPi : SigPnew (fEnrollReq, Pnew , tPnew , PKPnew )

Step 2. Each master peer verifies the received [E-1]. Each MPi who want to approve
enrollment of the peer community for the prospective peer computes a partial
signature Sigssi(fEnrolled, Pnew , tPnew , PKPnew) with its service secret share ssi,
then sends confirmation of enrollment to the prospective peer.

[E-2] ∀MPi → Pnew : SigMPi(Sigssi(fEnrolled, Pnew, tPnew , PKPnew ))

Step 3. To generate a valid membership credential, the prospective peer needs at
least t+1 correct partial signatures. Hence, the prospective peer chooses t+1 cor-
rect partial signatures, and finally obtains the membership credential CrePnew =
SigDTTP (fEnrolled, Pnew , tPnew , PKPnew) that can be used to prove admission of
the peer community. Finally, the peer broadcasts its own credential to all master
peers

Fig. 1. Membership Enrollment Protocol

After becoming a member of the peer community, the peer who plays the role
of seller can broadcast the information of its digital contents and its membership
credential to all other peers of the peer community at any time.

Finally, common issues associated with peer community that we have to con-
sider are a peer community policy, an advertisement of digital contents and
payment mechanisms. However, it remains beyond the scope of this work.

4 Optimistic Fair Exchange Protocol with Distributed
TTP

In this section, we present and analyze an optimistic fair exchange protocol with
Distributed TTP, which is used for guaranteeing the fairness and the reliability
in our P2P e-commerce model.

The proposed protocol is composed of three sub-protocols: the main protocol,
the abort protocol, the recovery protocol. The main protocol consists of messages
exchanged directly between a buyer and a seller. In case of problematic hap-
pening during this main protocol, two possibilities are offered to the parties.
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Either the buyer can execute the abort protocol in order to cancel the exchange,
or the buyer(or the seller) can launch the recovery protocol to complete the
exchange.

4.1 Main Protocol

We assume that a buyer has already obtained the description of the desired item
and all parties agree on the DTTP to be possibly invoked in case of conflict.
When a buyer wishes to receive the desired item from a seller against a payment
of the item, the buyer can launch the main protocol. The detailed steps are
described in Figure 2.

Step 1. A buyer who wants to perform e-commerce transaction constitutes a protocol
header PH . The buyer also selects a commitment value comB and a timestamp
value tB , then computes H(payB), H(comB), PUDTTP (payB). The buyer config-
ures a purchasing message including all above parameters and signs the purchasing
message, then sends it with her credential to the seller as [M-1].

[M-1] B → S : SigB(PH,H(payB), H(comB), tB , PUDTTP (payB)), CreB

Step 2. The seller who receives [M-1] checks whether the signature of purchasing
message is valid. If the check is invalid, the seller quits the exchange. Otherwise
the seller constitutes the protocol header PH, then chooses a random secret key
K and computes C, H(itemS, K), PUDTTP (K). The seller forms a selling message
and signs the selling message, then sends it to the buyer as [M-2].

[M-2] S → B : SigS(PH, H(items, K), C, PUDTTP (K))

Step 3. After having checked the validity of the received message in step 2, the buyer
sends PUS(payB, comB) together with its signature on those information to the
seller as [M-3]. If the validity of [M-2] is not satisfied, or the buyer gives up receiving
the [M-2] message, then the buyer runs the abort protocol.

[M-3] B → S : SigB(PUS(payB, comB))

Step 4. The seller checks the validity of [M-3]. If the check is valid, the seller obtains
the desired payment information payB. The seller sends the encrypted secret key
PUB(K) to the buyer together with its signature. If any problem occurs in above
process, the seller may quit the protocol.

[M-4] S → B : SigS(PUB(K))

Step 5. After receiving the [M-4] message from the seller, the buyer verifies the sig-
nature and obtains the desired item by using the secret key K. If the validity of
the received message is incorrect or the buyer gives up finishing the protocol, then
launches the recovery protocol.

Fig. 2. Main Protocol
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The protocol headers are constituted of both parties, PH and PH , contain
not only the identities of the parties involved, but also the description of the
desired item and payment, respectively. Hence, each protocol header has to be
checked, by both parties, to confirm the correctness of information relevant to
the protocol.

The use of the commitment comB , in steps 1 and 3, prevents a malicious seller
from launching the recovery protocol without sending the second message to a
buyer. Unless receiving commitment comB, the DTTP does not run the recovery
protocol to resolve the conflict.

Timestamp tB is used to identify the execution for buyer requests. Timestamps
for buyer’s requests are totally ordered such that later requests have higher
timestamps than earlier ones, e.g., the timestamp could be the value of the buyer’s
local clock when the request is issued.

4.2 Abort Protocol

If the seller does not send the second message of the main protocol, the buyer
can collaborate with DTTP in order to abort the protocol. The detailed steps
are described in Figure 3.

By using fair communication, the buyer periodically repeats step 1 until it
receives sufficient [A-2] messages as the response to its abort request. In fact,
the buyer can try to compute the abort token as soon as it has received t + 1
partial signatures from master peers. So, the buyer has to wait for more partial
signatures only if some partial signatures it received are incorrect.

Our protocol has been designed by considering threshold RSA schemes be-
cause threshold schemes based on discrete logarithms may require an agreement
upon random number to generate partial signature. Furthermore, threshold RSA
scheme can be applicable to threshold decryption. Since the validation of partial

Step 1. The buyer broadcasts an abort request and her credential to all the master
peers.

[A-1] B → ∀MPi : SigB(fAbortReq, tB, [M-1]), CreB

Step 2. Each master peer verifies the received [A-1]. If [A-1] is correct, each master
peer computes partial signature Sigssi(fAborted, tB , [M-1]) with its service secret
share ssi, then sends an abort confirmation to the buyer.

[A-2] ∀MPi → B : SigMPi(Sigssi(fAborted, tB, [M-1]))

Step 3. To generate a valid signature of DTTP, the buyer needs at least t + 1 correct
partial signatures. Hence, the buyer chooses t + 1 correct partial signatures, and
computes an abort token SigDTTP (fAborted, tB , [M-1]). This abort token can be
used to guarantee the fairness in case of potential dispute.

Fig. 3. Abort Protocol
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signature depends on the underlying threshold scheme, the buyer can check the
validation of partial signature by means of applying threshold RSA schemes that
provide the robustness [5][10] to our protocol.

4.3 Recovery Protocol

If the seller does not send her final message of the main protocol, the buyer can
launch the recovery protocol by means of collaborating with DTTP in order to
complete the exchange. Figure 4. describes the detailed steps of the recovery
protocol.

Since the recovery protocol is performed in the same manner as the abort
protocol by using fair communication, the buyer periodically repeats step 1 until
it receives sufficient [R-2-B] messages. Also, each master peer who intervenes in
the recovery protocol periodically resends the recovery information to the seller
until it receives the acknowledgment of [R-2-S] from the seller.

Step 1. The buyer broadcasts the received [M-1],[M-2] and her commitment comB

along with her signature to all the master peers.

[R-1] B → ∀MPi : [M-1], [M-2], SigB(fRecoverReq, tB , comB)

Step 2. Each master peer checks all the validity of received [R-1]. If the check is
valid, each master peer performs the followings:
– To complete the exchange for the buyer, each master peer generates partial

decryption PDssi(PUDTTP (K)) of the secret key with its service secret share
ssi, then sends recovery information to the buyer.

[R-2-B] ∀MPi → B : SigMPi(fRecovered, tB, PDssi(PUDTTP (K)))

– Also, each master peer computes partial decryption PDssi(PUDTTP (payB))
of the payment information with its service secret share ssi, then sends corre-
sponding information to the seller.

[R-2-S] ∀MPi → S : [M-1],[M-2],

SigMPi(fRecovered, tB, comB , PDssi(PUDTTP (payB)))

Step 3. Finally, Each buyer and seller performs the followings, respectively.
– To generate the secret key K, the buyer chooses t + 1 correct partial decryp-

tions, and computes the secret key K. Therefore, the buyer can obtain the
desired item by using secret key K.

– The seller selects t + 1 correct partial decryptions, then obtains the desired
payment with respect to her item. Then the seller sends
SigS(fRecovered, tB , PDssi(PUDTTP (payB)) as acknowledgment of [R-2-S] to
all master peers corresponding to received message.

Fig. 4. Recovery Protocol
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The seller does not engage in the recovery protocol with DTTP in the main
protocol, basically the seller needs not launch the recovery protocol for assuring
fairness. However, the seller is able to recognize the activity of recovery caused
by receiving [R-2-S] message when the buyer runs the recovery protocol. Thus, if
the seller does not receive sufficient information to generate the desired payment
information in desired amount of time, the seller can launch the recovery proto-
col together with commitment comB,[M-1],[M-2] within [R-2-S] for assuring her
fairness.

4.4 Analysis

Here we give an analysis of our fair exchange protocol, checking the require-
ments described in Section 2, and then we discuss additional desirable property
provided by our protocol. Our claim is as follows:

Claim. The optimistic fair exchange protocol with distributed TTP is a fair
exchange protocol which provides fairness, timeliness, effectiveness, authentica-
tion, confidentiality, integrity, and non-repudiation.

Proof Sketch. Clearly our protocol provides authentication, non-repudiation,
and integrity by means of the signatures of each communication parties on the
exchanging messages and the hash values of H(payB) and H(itemS, K) in [M-1]
and [M-2], respectively. Furthermore, these hash values can be used for potential
dispute resolution.

Regarding confidentiality, it is sufficient to prove that: any master peer which
belongs to DTTP cannot open PUDTTP (payB) or PUDTTP (K) while interven-
ing in the exchange. Since any master peer has not entire service secret key, but
has service secret key share ssi through the threshold scheme, it is possible for
any master peer to open PUDTTP (payB) or PUDTTP (K) if and only if it must
conspire with at least t + 1 other master peers.

It is obvious that both parties obtain the expected items if the main protocol
is executed without errors. Therefore, our protocol provides effectiveness.

Before proving the fairness and the timeliness of our protocol, let us consider
the availability of the entire DTTP in terms of fair communication model that
is applied to a peer and an available master peer. In contrast to previously
presented fair exchange protocols that assume a robust central TTP in terms of
resilient communication model between a party and the TTP, communication
channel among all parties is really unreliable and no robust central server are
offered in P2P network. To overcome the nature of P2P network, our protocol is
based on collaboration with distributed communication parties for guaranteeing
fairness by the use of threshold scheme. This feature inherently implies that any
single party is not wholly entrusted to guarantee the desired fairness. Hence,
regarding the availability of the DTTP, it is sufficient to show that: a peer who
wishes to contact the DTTP should eventually receive enough information from
any available subset of the DTTP and stop retransmitting its own requests.
Since we have assumed that the entire DTTP contains at least 2t + 1 available
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master peers at any time, all peers are able to eventually contact at least 2t + 1
master peers among DTTP, and further, obtain the desired information through
sufficient number of retransmissions. Consequently, the entire DTTP is always
available in terms of fair communication model.

Now let us prove the fairness and the timeliness of our protocol. When re-
garding timeliness, we consider three situations:

1. The main protocol ends up successfully without any time-out.
2. The buyer aborts the protocol and receives the abort confirmation signed by

DTTP within a time period which may be arbitrarily long, yet finite amount
of time.

3. The buyer(or if necessary, the seller) has the ability to launch the recovery
protocol to complete the exchange, and eventually receives the desired item
in a finite period of time.

Therefore, our protocol provides timeliness.
Finally, let us show the fairness of our protocol for both the seller and the

buyer. We start by proving the fairness of the seller.

1. In the main protocol the seller does not basically need to engage in both the
abort protocol and the recovery protocol for assuring fairness, because the
seller sends the secret key to the buyer after receiving the desired payment
information.

2. Also, if the buyer starts the recovery protocol to complete the exchange, the
seller can recognize the activity of the recovery. In this case, the seller may
receive sufficient information to generate the desired payment information
from DTTP, otherwise he can launch the recovery protocol to complete the
exchange.

For the fairness of the buyer, we analyze the following case in which the buyer
does not obtain the desired item itemS.

1. If the seller stops the main protocol after receiving the [M-3] message, the
buyer can perform the recovery protocol with collaborating DTTP in order
to compute the secret key K. All information sent to the buyer by DTTP
may be eventually arrived as our communication model.

2. If the seller does not send the [M-2] message to the buyer, the buyer can
launch the abort protocol through collaborating with DTTP to obtain the
abort token which can be used in case of potential conflict.

3. Also, we note that the seller can not perform the recovery protocol without
the commitment comB as discussed earlier. The seller can launch the recov-
ery protocol to complete the exchange if and only if the buyer has launched
the recovery protocol in advance. So, in this case, it will never happen that
the seller gains payB while the buyer does not receive itemS .

Therefore, our protocol provides fairness. �

Finally, our protocol provides additional interesting property that a seller
does not basically need to engage in both the abort protocol and the recovery
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protocol in order to guarantee her fairness. Therefore, the seller does not need
to maintain state information regarding the transaction in the main protocol.
This feature makes our protocol more practical in e-commerce environments in
which seller would be prefer to involve in commercial transactions rather than
being involved by buyer.

5 Conclusion

In this paper, we have presented a fair and reliable e-commerce model suitable for
P2P network, in which communication parties can buy and sell digital contents
by P2P contact. In particular, we have proposed and analyzed a new optimistic
fair exchange protocol with distributed TTP which is used to guarantee the
fairness and the reliability for presented P2P e-commerce model.

Compared with the traditional fair exchange protocols that are required a
central trusted authority for providing fairness and reliability, our protocol does
not require any central trusted authority since it guarantees fairness and reliabil-
ity by means of collaboration with distributed community parties. Consequently,
our protocol is very attractive in P2P networking environment which does not
naturally depend upon any central trusted authority for managing communica-
tion parties.
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Abstract. For a secure highly distributed computing environment, we suggest 
an efficient role based access control using attribute certificate. It reduces man-
agement cost and overhead incurred when we change the specification of the 
role. In this paper, we grouped roles and structured them into the role group re-
lation tree. It results in secure and efficient role updating and distribution. For 
scalable role specification certificate distribution, multicasting packets are used. 
We take into account the packet loss and quantify performance enhancements 
of structuring role specification certificates.  

1   Introduction 

Traditional access control mechanisms are inherently centralized and existing at-
tempts to distribute the functionality suffer from problems of scalability. Our access 
control is a new distributed access control paradigm designed for a highly distributed 
computing environment. It defines a hierarchical access control mechanism, which 
relies exclusively on role based access control using specific attribute certificate. It is 
particularly designed to operate in un-trusted environments where the lack of global 
knowledge and control are defining characteristics. Due to the lack of central control, 
the autonomous entities form trust relations [3]. They can be chained to represent 
recommendations and the propagation of trust. 

For scalability, we use multicast for group communication. It makes distribution of 
role specifications faster. In the experimental section, we will show the performance 
enhancements gained. 

This paper is organized as follows. Section 2 gives a brief overview of related 
work. Section 3 describes the secure role group model with group communication. 
Section 4 shows the performance of our method. Section 5 concludes this paper. 

2   Related Work 

In [1], D. Ferraiolo et al. modeled RBAC (Role Based Access Control) as combinations 
of user, role, permission, administrator and others. They also gave it the priority rela-
tion. Following their research, many variants were suggested. However they dealt with 
the group of subjects only. No research considers group of roles. In [6], J. Joshi et al. 
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introduces a temporal privilege delegation. It provides flexible permission delegation for 
dynamically changing environments. However it did not consider the group of roles or 
multicasting. Our method distributes the role specifications according to the levels of 
access. It accords with the characteristics of the distributed environments and sometimes 
it is inevitable. So our method is different from the privilege delegation. It can be 
thought of as the distribution of privileges in groups of roles.  

In relation to security of highly distributed computing, multicasting packets are 
used mainly for distribution of cryptographic keys [7]. We applied the ideas for dis-
tribution of attribute certificates.  

3   Secure Role Group Model 

The secure role group is an extended version of the secure group [7]. It consists of a 
finite and nonempty set of role groups, a finite and nonempty set of permissions and 
there exists a binary relation between the set of role group and the set of permission.  

 According to the ITU-T X.509 Recommendation (ISO/IEC 9594-8) [2] Attribute 
Certificate (AC) is composed of version, holder, issuer, signature, serialNumber, 
attrCertValidityPeriod, attributes, issuerUniqueID, extensions. IETF RFC 3281[4] 
defines AC similarly. AC fields match PKC (Public Key Certificate) fields which are 
composed of version, serialNumber, signature, issuer, validity, subject, subjectPub-
licKeyInfo, issuerUniqueIdentifier, extensions. AC and PKC should be related 
through holder and subject. You can find specific descriptions of each field in [2], [4]. 
We need to make it simple for terse explanation by including the related fields only. 
So in the following explanations, we will use the abbreviated figures as shown in Fig. 
1 and 2.  

The holder field conveys the identity of the attribute certificate’s holder. It should 
match to the subject field of PKC. In the roles model of PMI (Privilege Management 
Infrastructure), role name shall also appear in the holder field of the role specification 
certificate.  

The roles model [1], [2], [4] provides a means to indirectly assign privileges to in-
dividuals. Individuals are issued role assignment certificate that assign one or more 
roles to them through the role attribute contained in the certificate. Specific privileges 
are assigned to a role name through role specification certificate. This level of indirec-
tion enables the privileges assigned to a role to be updated, without impacting the 
certificates that assign roles to individuals.  

In role extensions field, if a certificate is a role assignment certificate, a privilege 
verifier needs to be able to locate the corresponding role specification certificate. So 
the role name used as a role specification certificate identifier would be the same as 
that in the holder component of the role specification certificate being referenced by 
this extension. Role certificate serial number or role certificate locator can do the 
same function. We propose the extension that role extension fields can be included in 
role specification certificate as well as in role assignment certificate. It makes a chain 
of role specification certificates.  

We group roles and structure in a role specification certificate. The role groups are 
different from the subject groups. And its structure differs from the delegation of 
roles. It gathers common roles and builds the trust structure similar to [3]. The chain 
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of role specification certificates can incur the overhead when a subject is going to use 
some privileges. The problem can be solved through the use of coherent caching of 
role specification certificates [5]. In highly distributed environments the distribution 
of the specifications of roles is inevitable. We consider the case of updating the roles, 
specifically changing the role specification certificates.  

Attribute certificates or public key certificates can be used as role assignment cer-
tificates. When the public key certificates are used, the extensions field should have 
the information about role specification certificates.  

On the other hand if the attribute certificates are used, the attribute certificate 
should have the contents as shown in Fig. 1.  

In other words holder field has pkc subject and attribute field has roles and exten-
sions field has the information for the role specification certificates. According to Fig. 
1 role specification certificate should have the structures as shown in Fig. 2.  

For the role specification certificates shown in Fig. 2, extensions field can have an-
other role specification certificate information repeatedly such as role name or serial 
number.  It forms the tree structure as shown in Fig. 3. 

Field 
Name 

Holder attributes extensions 

Content pkc subject 
role  

information  
role specification cer-
tificate information 

Fig. 1. Contents of a role assignment certificate 

Field 
Name 

holder attributes extensions 

Content role name 
role  

information  
role specification cer-
tificate information 

Fig. 2. Contents of a role specification certificate 

 

Fig. 3. Role grouping of a role assignment certificate 
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We call the node that corresponds to the role specification certificate having child 
role specification certificate as role group. Although there should be overhead in-
curred when privileges are applied, it can be overcome by the use of caching. But if 
the nodes are distributed geographically, the performance enhancements gained when 
the role specifications should be changed are overwhelming. We are going to show 
the performance gains quantitatively in Section 4. 

If role group notion is not used, in Fig. 3, role holder should possess all the upper 
level role specifications. In that case, the application of the role can be done directly, 
but each holder/subject should have all the role specification certificates required and 
the small memory devices used in ubiquitous computing environment cannot afford it. 

Updated role specification certificates are delivered by the multicast communica-
tion. The distribution of updated role specification certificates of our method is mod-
eled as having R roles, G role groups constructing the tree structure of height h and 
degree d. In general, the roles are included in subset of role groups. Thus, an unneces-
sary role group creation can be avoided by determining the proper value of h. From 
the viewpoint of the reliable delivery, a role specification certificate at level l of the 

tree structure has to be delivered to lhd −  receivers. If the roles are grouped, it needs 
to be delivered to only d members. Let M be the number of times a role specification 
certificate will need to be transmitted in order to successfully deliver it to all the re-
lated receivers. The probability that one of the receivers will not receive the updated 
role specification if it is transmitted once is equal to the probability of packet loss, p, 
for that receiver, since all the packet loss events for some receiver, including repli-
cated packet and retransmissions, is mutually independent and is geometrically dis-
tributed. Thus the probability that the role specification certificate is delivered suc-

cessfully within m packet transmissions is mp−1  . Thus the expected number of 

packet transmission is 1/(1-p) . Since lost packet events at different receivers are in-
dependent of each other, the probability that all the receivers will receive the packet 

within m transmissions is receiversmp #)1( − . Thus the average expected role specifi-

cation packet transmission time is 
∞

=

−−−
1

#1 ))1(1(
m

receiversmp . We can compute it 

by truncating the summation when the mth value falls below the threshold.  

4   Performance Evaluation 

For each given packet loss p, we examine the average packet transmission for the 
various values of threshold.  We used Visual Studio and Gnuplot. Fig. 4 shows the 
impact of packet loss p on the average packet transmission E when m=10. When roles 
are not grouped (ung-diff-pm2-m10.dat) E results in higher value. However when 
roles are grouped (g-diff-pm2-m10.dat) E results in lower value. 

In Fig. 5 we plot the expected packet transmission E for packet loss p and the degree 
difference (h-l). For better readability we plot two dimensional graph for the case of 
p=0.04, 0.1, 0.2. In Fig. 5 we can see that E shows great increase when the roles are 
not grouped (ung-*.dat) and it shows very little increase when the roles are grouped (g-
*.dat). So we can see that when the quality of network is more inferior (so p is greater) 
the performance enhancements obtained through role grouping becomes greater. 
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5   Conclusion 

For efficient access control considering the characteristics of highly distributed com-
puting environment, we adopt the trust model. As an efficient access control using 
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attribute certificate, we use the technique of structuring role specification certificates. 
It can reduce the management cost and overhead incurred when changing the specifi-
cation of the role. Highly distributed computing environments such as ubiquitous 
computing that  cannot  have  global  knowledge  and  control, need  another attribute 
certificate management technique. Therefore we group roles and make the role group 
relation tree. It results in secure and efficient role updating and the distribution of role 
specification certificates. For scalable role specification certificate distribution, multi-
casting packets are used. We took into account the packet loss to some large values of 
unreliable network and quantified performance enhancements. And we showed that 
our scalable access control technique improved the existing access control techniques. 
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Abstract. A multisignature scheme for implementing safe delivery rule in group
communication systems (MSGC) was recently proposed by Rahul and Hansdah.
In this paper we show that the MSGC scheme is insecure against forgery attack
and signature integrity attack. We propose an improved scheme that resists the
weaknesses of MSGC scheme.

1 Introduction

A multisignature is a digital signature that allows multiple signers to generate a signa-
ture in sequential and/or parallel manner. For example, an approval requires signatures
in a sequential manner, whereas, signing a contract by two or more parties is an example
of parallel multisignature. In 1983, Itakura and Nakamura [4] first introduced the notion
of multisignature. Since then, several schemes and improvements have been proposed
[2], [3], [8], [9] for multisignatures; however, a formal security model on multisignature
was absent until the work by Micali et al. [7]. Afterwards, Lin et al. [5] and Boldyreva
[1] generalized the security notion of multisignatures.

Recently, Rahul and Hansdah [10] proposed a multisignature scheme for implement-
ing safe delivery rule in group communication systems (MSGC). They claimed that the
MSGC scheme can be used in client-server model for safe delivery rule in group com-
munication systems. In this paper, we show that the MSGC scheme is insecure against
forgery and signature integrity attacks. We give two scenarios where an adversary can
easily forge individual partial signatures or multisignature without the knowledge of
signers’ private key. Moreover, the adversary can modify partial signatures or multisig-
nature without being detected by the verifier. We present an improved scheme that re-
sists the weaknesses of MSGC scheme. The rest of the paper is organized as follows. In
the next Section, we review the MSGC scheme and show its vulnerability in Section 3.
We present an improved scheme in Section 4. Finally, we conclude the paper in Section
5.
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2 The MSGC Scheme [10]

The following are the notation used in the rest of the paper.

pq product of two primes p and q.
g g < pq and has a large order.
αi private key of the party Mi.
xi ≡ gαi mod pq public key of the party Mi.
H(·) a collision–resistant hash function [6].

The public parameters are pq,g,xi,H(·), and the private key is αi. The scheme consists
of two phases, namely the partial signature generation phase and the partial signature
aggregation phase. The phases work as follows.

2.1 Partial Signatures Generation

Suppose the group consists of n members. For i = 1,2, · · · ,n, the member Mi creates
partial signature on message m as follows:

1. Select a random number ri

2. Compute si = αi + H(m)ri

3. Compute ti = gri mod pq
4. The tuple (si,ti) is Mi’s partial signature on m.

Now, the member Mi sends (si,ti) to the group communication system (GCS). Then, the

GCS verifies the partial signature by whether gsi ≡ xi · tH(m)
i mod pq.

2.2 Partial Signatures Aggregation

The GCS combines the partial signatures of the group members into a multisignature
(s,t) as follows:

1. Compute s =
n

∑
i=1

si

2. Compute t =
n

∏
i=1

ti mod pq.

The GCS sends (s,t) to the sender of m. The validity of (s, t) on m is verified by checking

whether gs ≡ x · tH(m) mod pq, where x =
n

∏
i=1

xi mod pq.

2.3 Correctness of Multisignature

gs ≡ g∑n
i=1 si mod pq ≡

n

∏
i=1

gsi mod pq ≡
n

∏
i=1

gαi+H(m)ri mod pq

≡
n

∏
i=1

xi · tH(m)
i mod pq

≡ x · tH(m) mod pq.
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3 Cryptanalysis of the MSGC Scheme

In this section, we show that the MSGC scheme [10] suffers from forgery attack and
signature integrity attack.

3.1 Forgery Attacks

In the MSGC scheme, a valid partial signature on message m is the tuple (si,ti), where
si is computed by the signer’s private key αi. The verification algorithm needs signer’s
public key xi to prove that the signature was created by the signer.

Forgery attack on partial signatures: An adversary1 can forge any member’s (say Mi)
partial signature by the following computations:

1. Select a random number R
2. Compute σi = H(m)R

3. Compute Ti = (xi)
− 1

H(m) ·gR mod pq
4. The partial signature on m is the tuple (σi,Ti).

Now, the adversary sends (σi,Ti) to the GCS. The GCS validates the partial signature

by verifying whether gσi ≡ xi ·T H(m)
i mod pq.

We note that the signature was generated without signer’s private key and the verifica-
tion still holds good by the following checks:

gσi ≡ (gR)H(m) mod pq ≡ (x
1

H(m)
i Ti)H(m) mod pq ≡ xi ·T H(m)

i mod pq.

Forgery attack on multisignature: The above attack is also applicable to the combined
partial signatures (i.e., multisignature). The attack works as follows:

1. Select a random number R
2. Compute σ = H(m)R

3. Compute T = (x)−
1

H(m) ·gR mod pq
4. The tuple (σ,T ) is the multisignature of m.

Correctness: gσ ≡ (gR)H(m) mod pq ≡ (x
1

H(m) T )H(m) mod pq ≡ x ·T H(m) mod pq.

3.2 Attack on Signature Integrity

Here we show that if an adversary modifies a valid partial signature (si,ti), the verifica-
tion algorithm is unable to detect the modified signature. Thus, the signature does not
posses signature integrity. The attack works as follows:

1. Select a random number R
2. Compute σi = si + H(m)R
3. Compute Ti = ti ·gR mod pq
4. The partial signature on m is the tuple (σi,Ti).

1 The adversary could be any third party or any malicious group members.
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The adversary sends (σi,Ti) to the GCS. The GCS validates the partial signature by

verifying whether gσi ≡ xi ·T H(m)
i mod pq. The verification holds as follows:

gσi ≡ gsi ·gR·H(m) mod pq ≡ xi · tH(m)
i gR·H(m) mod pq ≡ xi ·T H(m)

i mod pq.

We note that the same attack is also applicable to the combined partial signatures
(i.e., multisignature).

4 An Improvement and Analysis

We present an improved scheme which can resist the weaknesses of the MSGC scheme.
The improved scheme is based on Schnorr’s signature [11], where the security assump-
tion is based on the hardness of the discrete logarithm problem. The improved scheme
works as follows.

For i = 1,2, · · · ,n, the group member Mi selects a random number ri, computes ti =
gri mod pq and broadcasts ti.

Then, all members and GCS compute t =
n

∏
i=1

ti mod pq. Now, Mi computes his partial

signature on message m as si = ri · t + αi ·H(m, t).
The tuple (si,m) is the partial signature of Mi on m. The member Mi sends (si,m) to

the GCS. The GCS validates the partial signature by verifying whether

gsi ≡ tt
i · x

H(m,t)
i mod pq.

After validation of all partial signatures, the GCS computes s =
n

∑
i=1

si and sends

multisignature tuple (s, t) to the sender of m. The validity of (s, t) is checked by whether

gs ≡ tt · xH(m,t) mod pq. (1)

If it holds, the signature is valid, else invalid.

Correctness:

gs ≡ g∑n
i=1 si mod pq

≡
n

∏
i=1

gsi mod pq

≡
n

∏
i=1

gri·t+αi·H(m,t) mod pq

≡
n

∏
i=1

tt
i · x

H(m,t)
i mod pq

≡ tt · xH(m,t) mod pq.

4.1 Analysis

We show that the improved scheme withstands the weaknesses of the MSGC scheme.

Security against Forgery attack: In order to forge any Mi’s partial signature, the ad-
versary has to perform the following computation in line with the attack mentioned in
Section 3.1 without the knowledge of the private key αi:

Cryptanalysis and Im rp ovement of a Multisignature Scheme
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1. Select a random number R
2. Compute σi = H(m, t)R

3. Compute Ti = (xi)
− 1

H(m,t) gR mod pq.

The signature tuple (σi,m) fails to validate the verification algorithm eq. (1) of
Section 4, because

gσi ≡ gH(m,t)R mod pq ≡ (Ti · x
1

H(m,t)
i )H(m,t) mod pq ≡ T H(m,t)

i · xi mod pq,

which is incorrect for a valid partial signature. For successful forgery, the adversary

needs to select R such that t
t

H(m,t)
i xi ≡ gR mod pq, but this leads to solve the discrete

logarithm problem (DLP) which is computationally hard. Thus, the adversary can not
forge partial signatures. With the same argument, we articulate that the adversary can
not forge the multisignature, as the verification algorithm is similar for both partial
signature and multisignature.

Security against Signature Integrity: If an adversary modifies a valid partial signature
(si,m), the verification algorithm can detect it. Suppose an adversary modifies the sig-
nature as follows:

1. Select a random number R
2. Compute σi = si + H(m, t)R
3. Compute Ti = ti ·gR mod pq

The signature tuple (σi,m) fails to validate the verification algorithm eq. (1) of
Section 4, because gσi ≡ gsi+H(m,t)R mod pq

≡ gsi ·gH(m,t)R mod pq

≡ T Ti
i · xH(m,t)

i (Ti
ti
)H(m,t) mod pq,

which is incorrect for a valid partial signature. Thus, any fraudulent attempts on signa-
ture tampering is detected in the verification stage.

The improved scheme is based on Schnorr’s scheme [11] and the underlying security
is based on the hardness of DLP. The adversary who wants to forge the multisignature of
a message m requires the knowledge of individual group members private keys. With-
out the knowledge of group member’s private key, a party can not forge the member’s
signature as well as the multisignature, as it leads to break Schnorr’s signature which is
proven to be secure as long as DLP is hard.

5 Conclusion

In this paper we studied a recently proposed MSGC scheme [10] and showed that the
scheme is vulnerable to forgery and signature integrity attacks. The design of the MSGC
scheme was so weak that it neither requires the signer’s private key to create valid
signature nor detects the integrity of the signature. We proposed an improved scheme
that can successfully resist the weaknesses of the MSGC scheme, where the security of
the improved scheme is based on the discrete logarithm problem.
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Abstract. In this paper we propose an improved alternative for the
path key establishment phase of bootstrapping in a sensor network. Our
scheme lets the network adapt to the deployment configuration by secure
transmission of predistributed keys. This results in better connectivity
than what path key establishment can yield. The communication over-
head for our scheme is comparable with that for path key establishment.
Moreover, the assurance of good connectivity allows one to start with
bigger key pools, thereby improving resilience against node capture.

1 Introduction

Sensor networks are widely deployed in a variety of applications ranging from
military to environmental and medical research. Chiefly for military applica-
tions, data collected by sensor nodes need be encrypted before transmission.
Due to resource limitations in sensor nodes, it is not feasible to use public key
routines. A symmetric cipher (like DES, RC5, IDEA, or AES) is the only viable
option for encryption or decryption of secret data. However, setting up symmet-
ric keys among communicating nodes continues to remain a challenge. Pairwise
key establishment between neighboring sensor nodes in a sensor network is done
by using a protocol which is popularly known as the bootstrapping protocol. A
bootstrapping protocol involves several steps. In the key-predistribution phase,
each sensor node is loaded with a set of pre-distributed keys. This is done be-
fore the deployment of the sensor nodes in a target field. After deployment, a
direct key establishment (shared key discovery) phase is performed by the sensor
nodes in order to establish direct pairwise keys between them. Path key estab-
lishment phase is an optional stage and, if executed, adds to the connectivity of
the network. When two physical neighbors fail to establish a direct key during
the shared key discovery phase, they attempt to find out a secure path to trans-
mit a new pairwise key.

Key predistribution in sensor networks has received considerable research at-
tention in recent years [1], [2], [3], [4], [5], [6]. Eschenauer and Gligor [1] proposed
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the first basic random key predistribution called the EG scheme. Chan et al. [2]
proposed several modifications of the EG scheme. Liu and Ning’s polynomial-
pool based key predistribution scheme [3] and the matrix-based key predistribu-
tion proposed by Du et al. [5] improve security considerably.

In this paper, we propose a modification of the existing bootstrapping frame-
work. We introduce the concept of key forwarding as an alternative to the path
key establishment phase. Our technique yields better connectivity at a cost com-
parable to (if not better than) that associated with path key establishment, and
does not degrade the security of the network.

2 Location-Adaptive Key Forwarding Scheme

The deployment topology of a sensor network cannot usually be determined be-
fore the actual deployment of the nodes. If, however, an approximate deployment
configuration is known a priori, a host of modifications can be incorporated in
the key predistribution schemes so as to achieve substantially improved connec-
tivity and high resilience against node captures. Such location aware schemes
[4], [5] lose their performance enhancements as the error between the actual and
the expected deployment locations of the sensor nodes increases. For sufficiently
large errors, a location aware scheme essentially degrades to a random scheme
without a priori knowledge of deployment configuration.

A location adaptive scheme, on the other hand, may or may not start with
prior knowledge of the deployment configuration, but adapts to the geography
of deployment, thereby improving local connectivity in the sensor network. The
path key establishment phase is a location adaptive feature in the bootstrapping
process. We propose an alternative to the path key establishment scheme, namely
the key forwarding scheme, which leads to considerably better connectivity than
the path key establishment scheme. Our scheme works on any geographic distri-
bution of sensor nodes in the deployment area.

The key forwarding scheme is motivated by the following consideration. Con-
sider the basic scheme (EG scheme) with each node capable of storing m (say
200) keys. Assume also that each node has at most d (for example, 100) physical
neighbors. Even when a node is connected securely to all of these neighbors, at
least (m − d) keys remain unused in the node. Loading a key ring with more
keys than the neighborhood size is necessitated by the desire to achieve decent
local connectivity. Now imagine a situation where a node v is in the physical
neighborhood of two other nodes u and w. Suppose that u and v share a pre-
distributed key and so also do u and w, but not v and w. The nodes u and w
may or may not be in the physical communication ranges of one another. The
node u then forwards the key k shared between u and w to node v. Since u and
v have a secure link between them, k can be forwarded securely. Once v receives
k, a secure link between v and w is established by using either k or any other
pairwise key set up using this key k. Each round of the key forwarding phase
involves the following steps:
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Algorithm KeyForwarding
1. for each node v in the network:
2. for each physical neighbor w of v with which v does not share a key:
3. v broadcasts a request whether any of its neighbors shares a key with w
4. if a neighbor u of v responds affirmatively and if u and v share a key,
5. then u securely forwards to v a key k shared between u and w.
6. v generates a new pairwise key k′, encrypts k′ with k, and sends the

encrypted key and the id of u to w.
7. w retrieves k′ by decrypting using k.
8. both v and w record k′ for future communication between them.
9. v deletes k from its memory, if k happens to occupy large space (like

polynomial shares).

The above steps are to be carried out after the shared key discovery phase
and can be repeated multiple times. In order to reduce communication overhead,
the number of rounds of the key forwarding stage may be restricted to 2 or 3.

The security of the key forwarding stage is based on the assumption that
bootstrapping is done securely, i.e., no nodes are captured during the initial key
establishment phase. Incidentally, this is the assumption inherent in the path
key establishment phase too.

Here we shall analyze our scheme applied only to the EG scheme [1] and the
poly-pool scheme [3].

2.1 Network Connectivity of Key Forwarding Under the EG
Scheme

Let M be size of the key-pool, m the number of keys pre-distributed in each
node, and p the probability that two physical neighbors share one or more keys
in their key rings. It is easy to deduce (see [1]) that p = 1 −

∏m−1
i=0

M−m−i
M−i .

Let us now calculate the theoretical probability pr that a secure link exists
between two physical neighbors v and w after r rounds of key forwarding. Let d
denote the (average) physical neighborhood size of each node. After the direct
key establishment phase, we have: p0 = p.

For the derivation of p1, let us take two physical neighbors v and w that
do not share a key. A new pairwise key is established between v and w if there
exists a neighbor u of v sharing a key with both v and w. The probability that a
physical neighbor u of v has this property is p2. So the probability that neither
of the d neighbors of v can help to establish a secure v-w link is (1− p2)d. Thus
among the (1 − p)d neighbors of v with whom v does not share a key, about
d(1− p)(1− p2)d links remain insecure. We then have p1 = 1− (1− p)(1− p2)d.
This analysis can be repeatedly generalized as: pr = 1− (1− pr−1)(1− ppr−1)d

for all r ≥ 1.
The probabilities pr are plotted in Figure 1 for M = 100000, m = 100 (so

that p = 0.0953) and for several values of d. From the figure, it is clear that
when the average number of neighbors increases, the connectivity also increases.
This is expected, since the probability that two unconnected nodes v and w can



Key Forwarding: A Location-Adaptive Key-Establishment Scheme 407

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3

ne
tw

or
k 

co
nn

ec
ti

vi
ty

number of rounds

Analysis (p=0.0953,d=20)

Simulation (p=0.094,d=20)

Analysis (p=0.0953,d=60)

Simulation (p=0.094,d=60)

Analysis (p=0.0953,d=100)

Simulation (p=0.094,d=100)

Fig. 1. Analysis and simulation of net-
work connectivity for key forwarding un-
der the EG scheme (n = 10000, d = 20,
40, 60, 80, 100, M = 100000, m = 100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3

ne
tw

or
k 

co
nn

ec
ti

vi
ty

number of rounds

Analysis (p=0.049,d=20)

Simulation (p=0.0484,d=20)

Analysis (p=0.049,d=60)

Simulation (p=0.0484,d=60)

Analysis (p=0.049,d=100)

Simulation (p=0.0484,d=100)

Fig. 2. Analysis and simulation of net-
work connectivity for key forwarding un-
der the poly-pool scheme (n = 10000,
d = 20, 40, 60, 80, 100, s = 500, s′ = 5)

establish a pairwise key between them increases with the number of nodes that
can help in this process. The figure also illustrates that one obtains high network
connectivity after two rounds of key forwarding.

2.2 Network Connectivity of Key Forwarding Under the Poly-Pool
Scheme

Let s be the polynomial pool size, and s′ the number of polynomial shares given
to each node. Analogous to the EG scheme, the local connectivity p can be com-
puted as (see [3]) p = 1−

∏s′−1
i=0

s−s′−i
s−i .

The probability pr of two sensor nodes sharing a key after r rounds of key
forwarding can be derived analogously as before and can be given by the equa-
tions: p0 = p, p1 = 1 − (1 − p)(1 − p2)d, pr = 1 − (1 − pr−1)(1 − ppr−1)d for all
r ≥ 1.

For s = 500 and s′ = 5, we have p = 0.0492, that is, the network is likely
to remain disconnected with high probability after shared key discovery. From
Figure 2, it is clear that after executing two to three rounds of key forwarding
we expect to achieve high network connectivity.

3 Simulation Results

3.1 Connectivity Measurement

For the EG scheme, we have taken the parameters n = 10000, M = 100000,
m = 100, d = 20, 40, 60, 80, 100. The theoretical and simulated connectivity
probabilities are plotted in Figure 1. For the poly-pool scheme, we have consid-
ered the parameters: s = 500, s′ = 5, n = 10000, d = 20, 40, 60, 80, 100. The
theoretical and simulated probabilities are plotted in Figure 2.

In Figures 3 and 4 we compare simulated connectivity between key forward-
ing and path key establishment. Key forwarding is found to clearly outperform
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path key establishment, particularly for the poly-pool scheme. In fact, key for-
warding may render an initially disconnected network connected, whereas path
key establishment can never achieve this.

3.2 Resilience Measurement

Following conventional practice, we measure the resilience of the network against
node capture by the fraction of compromised links among uncaptured nodes
and express this resilience as a function of the number of nodes captured. We
assume that bootstrapping is done securely, i.e., no nodes are captured during
bootstrapping. If the adversary also does not intercept any transmission during
bootstrapping, the resilience of the network against node capture becomes the
same as that of the original EG or poly-pool scheme under the given parameters.
Since considerable connectivity is guaranteed by key forwarding, we can start
with parameters leading to extremely high resilience.
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So we assume now that an eavesdropper does not capture any node during
bootstrapping but records every transaction made during bootstrapping. Later
the eavesdropper manages to capture some nodes. The record of bootstrapping
transactions reveals to the eavesdropper the following secret information: (i) All
the pairwise keys resulting from the initial key predistribution based on captured
keys or polynomial shares, (ii) All the pairwise keys established using forwarded
keys or polynomial shares that are captured, (iii) For the poly-pool scheme, if
more than t shares of a polynomial f are captured, any pairwise key established
using any share of f during both shared key discovery and key forwarding.

Simulation results for resilience measurement under the EG scheme are shown
in Figure 5 for various parameter values. Results for resilience measurement
under the poly-pool scheme are shown in Figure 6 for various parameter values.

4 Conclusion

In this paper, we have proposed an alternative to the path key establishment
phase of bootstrapping in a sensor network. Our scheme offers markedly better
connectivity compared to path key establishment. We have corroborated this
claim both theoretically and by running simulations. Better connectivity lets
one start with bigger networks and/or bigger pool sizes, both leading to better
resilience against node captures. The extra communication overhead incurred by
key forwarding is comparable with, if not better than, that associated with path
key establishment.
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Abstract. Recently, Wu and Hsu showed that Lee and Chang’s anony-
mous user identification and key establishment protocol was insecure
with regard to two attacks and proposed an improved protocol, called
the WH protocol. In this paper, we show that the WH protocol is still vul-
nerable to an unknown-key share attack. Then, we propose an improved
protocol to address this problem by applying a mutual authentication
method.

1 Introduction

We will demonstrate an unknown-key share scenario in the following: This sce-
nario was first described by Diffie, van Oorschot and Wiener [1]. Let B denote
a bank branch and A denote an account holder. Suppose that the protocol for
an electronic deposit of funds is to exchange a key with a bank branch via an
authenticated key agreement with a key confirmation protocol. At the end of the
protocol run, A sends encrypted funds to B. Suppose that no further authenti-
cation is done in the encrypted message which is needed to save the bandwidth.
If the unknown-key share attacks are successfully launched, the deposit will be
made to the adversary’s account instead of B’s.

In 2000, Lee-Chang proposed a anonymous user identification and key estab-
lishment protocol based on the security of the factoring problem and the one-way
hash function, called LC protocol [2]. In 2004, however, Wu-Hsu showed that the
LC protocol suffers from two weaknesses [3]. They also proposed a modified ver-
sion to overcome these weaknesses, called WH protocol.

In this paper, we show that the WH protocol is still vulnerable to an
unknown-key share attack. In addition, we will propose an improved protocol to
overcome this weakness.
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2 Review of the WH Protocol

The WH protocol consists of two phases: Key generation phase and an anony-
mous user identification phase. The key generation phase that is performed in
the WH protocol is described as follows:

Ui Pj

Service Request−−−−−−−−−−−−→ choose k

choose t z = gkSj←−−−−−− compute z = gkSj

compute a = ze/IDj

x = Sif(at ‖ T )
y = get

x, y, T−−−−→ check T and verify

IDi
?=(x/f(yk ‖ T ))e

kij = atx = gektx kji = ykx = gektx

Fig. 1. Illustration of the WH protocol

Step 1 The Smart Card Producing Center (SCPC) first chooses two large primes
p and q, computes N = pq, picks an element g ∈ Z∗

N and a hash function
f , and selects e and d such that ed = 1 mod φ(N), where φ(N) is the
Euler totient function. After that, N , e, g, and f are considered published
and d, p and q are kept secret by the SCPC.

Step 2 With a secure channel, the SCPC then sends each user Ui (or service
provider Pi) a secret token Si = IDd

i mod N , where IDi is the identity
of Ui (or Pi).

The anonymous user identification phase that is performed in the WH pro-
tocol is described as follows.

Step 1 In order to request service from the service provider Pj , Ui first submits
a service request to Pj .

Step 2 After receiving the request, Pj chooses a random number k and computes
z = gkSj mod N , which is then sent to Ui.

Step 3 Ui in turn, randomly chooses a number t and computes a = ze/IDj mod
N , x = Sif(at ‖ T ) mod N , y = get mod N , where T is the time-stamp.
After that, Ui sends (x, y, T ) to Pj .

Step 4 Finally, Pj checks T and verifies the equality IDi
?=(x/f(yk ‖ T ))e mod

N . If it holds for some IDi that exists on the identity list, Ui is accepted
as an authorized user and the service request will be granted.

Note that the user and the service provider share one common session key
after the identification protocol as kij = atx = ykx = gektxmod N , which can
be used in subsequent communications for confidentiality. The illustration of the
WH protocol is provided in Fig. 1.
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3 Weakness of the WH Protocol

In this section, we show that the WH protocol is vulnerable to an unknown-key
share attack. An illustration of the unknown-key share attack scenario is given
in Fig. 2.

Ui Ue Pj

Service
Request−−−−−→

Service
Request

′
−−−−−→

choose k

compute z = gkSj

z = gkSj←−−−−−−
replay z = gkSj

z = gkSj←−−−−−−
choose t

compute a = ze/IDj

x = Sif(at ‖ T )
y = get

x, y, T−−−−→
choose t

′

compute a
′
= ze/IDe

x
′
= Sef(at

′
‖ T

′
)

y
′
= get

′

x
′
, y

′
, T

′

−−−−−→
IDe

?=(x
′
/f(y

′k ‖ T
′
))e

kij = atx = gektx kej = at
′
x

′
= gekt

′
x

′
kje = y

′kx
′

= gekt
′
x

′

Fig. 2. Illustration of an unknown-key share attack scenario

Suppose that Ue intercepts the communication between Ui and Pj . An
unknown-key share attack scenario in the WH protocol is described as follows:

Step 1 Ui sends a Service Request to Pj .
Step 2 Ue intercepts the message from the network during the legal user Ui and

sends the Service Request to the legal service provider Pj .
Step 3 After intercepting the Service Request, Ue sends the Service Request to

the legal service provider Pj .
Step 4 After receiving the Service Request, Pj chooses a random number k and

computes z = gkSj mod N , which is sent to Ue.
Step 5 Ue pretends to be the service provider Pj in order to re-send the replayed

value z = gkSj mod N to user Ui.
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Step 6 Ui in turn, randomly chooses a number t and computes a = ze/IDj mod
N , x = Sif(at ‖ T ) mod N , y = get mod N , where T is the time-stamp.
After that, Ui sends (x, y, T ) to Ue.

Step 7 Then Ue computes his own x
′
= Sef(at

′
‖ T

′
) mod N , y

′
= get

′
mod N ,

T where T
′
is the time-stamp. After that, Ue sends (x

′
, y

′
, T

′
) to Pj .

Step 8 Finally, Pj checks T
′

and verifies the equality IDe
?=(x

′
/f(y

′k ‖ T
′
))e

mod N . If it holds for IDe that exists in the identity list, Ue is accepted
as an authorized user.

Then, Ue and the service provider Pj share a common session key kej =

at
′
x

′
= ykx

′
= gekt

′
x

′
mod N . While in fact, Ui believes that the session key

kij = atx = ykx = gektx mod N is shared between Pj and Ui. Hence, the
WH protocol can not achieve the security requirement of an unknown-key share
resilience.

4 The Proposed Protocol

Also, the proposed protocol can be divided into two phases, as are those in the
WH protocol. The key generation phase is also the same as those in the WH
protocol. In the following, we describe the anonymous user identification phase
of the proposed protocol. Note that all values are generated in modulus N .

Ui Pj

choose t choose k
compute S · R = gtSi S · R−−−→ compute u = (S · R)e/IDi

z = gkSj , v = f(gke ‖ u)
z, v←−−

compute a = ze/IDj

and verify f(a ‖ gte)
?=v

x = Sif(at) x−→ verify IDi
?=(x/f(uk))e

kij = atx kji = ukx

Fig. 3. Illustration of the anonymous user identification phase of the proposed protocol

The anonymous user identification phase that is performed in the proposed
protocol, is described as follows:

Step 1 In order to request service from the service provider Pj , Ui chooses a
random number t and submits a S · R = gtSi to Pj .

Step 2 After receiving the request, Pj chooses a random number k and computes
z = gkSj , u = (S · R)e/IDi and v = f(gke ‖ u). Then z and v are sent
to Ui.
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Step 3 Ui in turn computes a = ze/IDj. After that, Ui verifies the equality
f(a ‖ gte) ?

=v. If it holds, Ui assures that z and v came from the legal
service provider Pj . After verifying the service provider Pj , Ui computes
x = Sif(at). After that, Ui sends x to Pj .

Step 4 Finally, Pj verifies the equality IDi
?=(x/f(uk))e. If it holds for some IDi

that exists in the identity list, Ui is accepted as an authorized user and
the service request will be granted.

An illustration of the proposed anonymous user identification phase is pro-
vided in Fig. 3. After the identification phase, the user and the service provider
share a common session key kij = atx = ukx = gektx. In order to avoid unknown-
key share attacks, we applied a mutual authentication method in our proposed
protocol.

5 Security Analysis

In this section, we analyze our proposed protocol under the difficulty of a factor-
ing problem, a discrete logarithm problem and the intractability of the one-way
hash function.

Theorem 1. The proposed protocol provides user anonymity.

Proof : If the adversary knows the service provider’s random number k, he/she
can obtain the participant’s identity from the following equation IDi=(x/f(uk))e.
In order to compute k from the public value, however, this is the equivalent to
solving the discrete logarithm problem.

Theorem 2. The proposed protocol resists a user impersonation.

Proof : An adversary tries to impersonate Ui by forging the S · R and x. It,
however, is impossible to compute S · R = gtSi and x = Sif(at) without the
legal user’s secret token Si, which is stored in each user’s smart card.

Theorem 3. The proposed protocol resists a service provider impersonation.

Proof : An adversary tries to impersonate the service provider Pj by replaying
the previously captured messages or forging messages. It, however, is impossible
to compute z = gkSj and v = f(gke ‖ u) without a legal service provider’s secret
token Sj .

Theorem 4. The proposed protocol resists a session key compromise.

Proof : An adversary wishes to derive the session key from the transmitted mes-
sages of an identification phase. The adversary can obtain M = {S · R, z, v, x}.
In order to compute the session key kij = kji = gektx, the adversary can obtain
a service provider’s random value k and user’s random value t.
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6 Comparisons

Table 1 summarizes the main features of the previously-proposed protocol and
our proposed protocol.

Table 1. A comparison of the previously proposed protocols and our proposed protocol

Features LC protocol WH protocol The proposed
Number of rounds 3 3 3

Time-stamp ◦ ◦ ×
Challenge-response × × ◦

Providing user anonymity × ◦ ◦
Mutual authentication × × ◦

Unknown-key share attack resilience × × ◦

7 Conclusions

This paper has demonstrated the weakness of the WH protocol, the anonymous
user identification and the key distribution protocol using smart card. Their
protocol use one-way user authentication, in that only a service provider can
verify with whom he is communicating. Their protocol is vulnerable to unknown-
key share attacks. In order to overcome this weakness, we have proposed a new
anonymous user identification and key distribution protocol.
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Abstract. Service routing across different MPLS and access networks domains 
is a critical issue in next generation networks. In spite of being a de facto inter 
domain routing standard, BGP can not fulfill the inter domain traffic 
engineering needs and it does not take into account service metrics, which 
results in the  low routing efficiency of BGP. We set up a system model by 
decomposing the problem. Based on the model, we set up a service network 
reduction algorithm. At the initial stage we use a grid service instance to map 
service paths of different MPLS domains, then we construct service network 
graph, and set up index for service routing based on ontology. At the last stage, 
we get a single service metric to set up service routing by applying the service 
ontology metric function. 

1   Introduction 

Next Generation Network (NGN) is expected to support services across different 
networks with diverse requirements. It brings great challenges to the MPLS networks, 
which will be the core networks in NGN. Service routing is an overlay network 
routing, which provides corresponding service capability. For example, we often need 
to set up VPN services across different MPLS network domains. The objective of 
service routing is three-fold: to find a feasible path for each service; to optimize the 
usage of the network by balancing the load; and to satisfy different MPLS domain’s 
requirements. 

Since the Border Gateway Protocol (BGP) [1] is a de facto standard for inter 
domain routing, it can also be used as a inter domain routing protocol between 
MPLS domains. As a path vector routing protocol, BGP is similar to any other 
distance vector routing protocol that doesn’t take into account service metrics and 
its criteria for selecting the best path are based on the length of AS path, which 
result in the failure on the part of BGP to support different service routing between 
MPLS domains. Each domain, owned by different network providers, has different 
service providing methods and policies. Different MPLS domains lack common 
languages to understand each other. At the same time, in order to set up service 
routing across different MPLS domains, multi service constraints must be 
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considered in the service routing algorithm. This is a NP hard problem. Due to these 
reasons, service routings across different network domains are difficult to be set up 
only through BGP. 

To address these problems, we introduce an innovative idea — service semantic 
P2P overlay network to organize the resources of service routing across different 
network domains based on ontology. In this paper, we propose a new model and some 
related algorithms for the problems.  

In Section 2, we introduce the related research works. Based on the above, we 
analyse and decompose the problem to set up a model in Section 3. In Section 4, we 
set up service routing based on the model. In Section 5, we do experiments to evaluate 
our model and algorithm. Finally, a conclusion is reached. 

2   Related Work 

There are many researches to improve BGP protocol [2], [3]. Many heuristics also 
have been proposed due to its NP-completeness [4], [5]. Due to the complexity 
imposed on the router, their improvements are limited. High complexity prevents their 
practical applications. Some algorithms only suit a specific network, and can’t support 
different service routing.  

To reduce the online overhead, A. Orda proposed a considerable reduction through 
precompution [6]. Recently, overlay network is proposed to decompose the functions 
from routers [7], [8]. However, these solutions have not considered different service 
routing requirements and search complexity is still high. To expose network 
capability through open APIs, Parlay/OSA [10] has been proposed. In Parlay, MPLS 
traffic engineering capability can be mapped up. All kind of traffic engineering 
requirements can be computed in all kinds of Parlay service capability servers. 
However, service convergence and virtualization is the key to reduce online overhead 
for establishing routing across heterogeneous MPLS domains. Parlay is tightlyly 
coupled and can’t provide such kind of capability. OGSA (Open Grid Services 
Architecture) [11] is proposed to provide such kind of service convergence and 
virtualization platform. It is loosely coupled. At the same time, it can manage network 
resource status which can not be supported by Parlay and web services. It provides a 
feasible way to reduce overhead for setting service routing. 

Scalability is also very important for MPLS inter domain service routing. P2P 
routing can provide such scalability. Xiaohui Gu of University of Illinois gave a 
framework to compose the QoS-aware service for large-scale peer-to-peer systems 
[12]. However, current P2P routing algorithms are based on single key words, which 
don’t solve multi services problem according to traffic engineering.  

In order to let different MPLS domains understand each other, semantic network 
can be used. Semantic Overlay Networks (SONs) [13] appear to be a way to group 
peers sharing the same schema information. This approach facilitates routing, since a 
peer can easily identify relevant peers instead of broadcasting query requests on the 
networks. 
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3   System Model 

The system model is to expose the capability of different MPLS domains and 
optimize placement of service routing across the traffic trunks provided by different 
MPLS domains. BGP is not enough to expose the capability of MPLS domains. 
Computational time complexity and space complexity is very large as the size of 
network becomes large. In fact, it will be NP-hard for any optimal problem whose 
dimensions are higher than two in large network systems. Current routing 
architectures and algorithms force all computation in a component, which makes it 
hard to reduce the problem space. To solve the problem, we formulate a model and 
setup a realization model for it. 

3.1   Formulation of Model 

We can define a service overlay network G = (V, E, C) for service routing. We denote 
the set of service nodes in the network as V, the set of service links in the network as 
E and the set of constraints as C. C is a vector set of service routing constraints. 

We decompose the problem space by decomposing network functions into 
different components. In order to do this, we can formulate the problem by 
decomposing it into three sub problems. One sub problem is to expose the capability 
and map service into single service ontology according to the related constraints 
based on traffic engineering. The second sub problem is to setup a single service 
metric according to the service ontology. The last sub problem is to optimize the 
service routing according to the single service metric. Through such kind of 
decomposition, we reduce the problem dimension to 1 for service routing in large 
networks, while addressing complex computing problems in local systems. Then the 
three sub problems can be formulated as the following: 

1) Service Ontology Mapping Function: 

S ij = M(S, xij, t) (1) 

2) Service Ontology Metric Function: 

Cij (S) = F (R(S), xij, t) (2) 

3) Service Routing Optimization Function:  

ji
ijij SxSCMin

,

)(*)(
 

(3) 

where S is a kind of service ontology, xij is the network path between node i and j, t is 
the time for the service routing, Cij(S) is service ontology metric, xij(S) is the service 
path between node i and j for service ontology S, R(S) is the resource requirement of 
service ontology S. 

Ontology [14] is a formal, explicit specification of a shared conceptualization. 
Service Ontology Mapping Function in formula (1) maps the underlying MPLS traffic 
trunk into the service ontology according to the requirement of traffic engineering and 
different MPLS management domains. Through ontology, we can get a single service 
metric for a service routing. Service Ontology Metric Function in formula (2) is to 
map local resource status to a single service metric according to the requirement of 
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traffic engineering. Service Routing Optimization Function in formula (3) is to 
optimize service routing based on the single service metric.  

3.2   Realization Model 

To implement the model, we use semantic P2P overlay network in system architecture 
as shown in Fig. 1, which will be used to set up service routing across different MPLS 
networks and access network domains. In the model, resources in MPLS domains are 
mapped by Parlay Gateway. Every MPLS service will be mapped to service ontology. 
Using service ontology mapping, we can solve the first problem and the second 
problem. The Services Semantic P2P Overlay Network forwards according to the 
service ontology. Due to P2P function, we can solve the last problem.  

 

Fig. 1. System Architecture 

At first, we need to use Parlay API to open the MPLS network capability, which 
includes connectivity management [15] and policy management [16]. To get network 
resource status between different MPLS domains, we use common network 
measurement platform. These capabilities are wrapped as Grid Services, which can 
effectively manage MPLS network resources and their states. On the foundation, we 
set up a single semantic image — ontology. Through ontology, we can get, describe, 
express and compose services to set up service routing across different MPLS 
domains and other networks. At the same time, different service relationships can be 
set up through semantics. In semantic grid level, different MPLS domains and other 
access networks can understand each other through ontology, and become a 
transparent homogeneous network. In such a homogeneous network, we can use 
semantics to set up P2P service routing.  

4   Setup of Service Routing 

Actually, the above model reduces the network graph into a service network graph of 
the same ontology. Instead of trying to find multiple metrics, the single metric can be 
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used to move new load applied to lightly loaded paths in the reduced graph. We can 
use the Service Network Graph Reduction (SNGR) algorithm (in Table 1), which 
executes two consecutive actions on the path set G to construct  a service network 
based on ontology and applies selection criteria on the resulting subset to set up 
service routing. The time complexity of general routing is O(mn2), where n is number 
of  network nodes and m is the number of service constraints. However, SNGR’s time 
complexity is only O(kn), where k is the number of service ontology based on the 
index structure below. 

Table 1. Service Network Graph Reduction algorithm 

SNGR( ) 
{ 

        Step 1: Transform the directed graph G into G’ = (V ’, E’, C’ ), V ’∈V, E’∈E, 
C’ ∈ C. We select only those service paths that can bear service 
ontology S. 

        Step 2: Compute P(a, d, S) according to a single service metric, and let it be 
the set including one minimum-cost path from each source to each 
destination. 

} 

4.1   Constructing Service Network Based on Ontology 

We can conceive that an inter domain MPLS service path across inter domain paths 
consists of a sequence of intra domain segments. Using semantic grid, we can set up 
grid services to represent these paths. Each grid service wraps service pipes exposed 
by Parlay Gateway. It is mapped based on service ontology. The inter domain service 
routing consists of a list of composable grid services, which is connected into a 
service path.  According to such a  model, we can setup service network graph and its 
index structure. 

4.1.1   Service Network Graph Construction 
In the model, the service network graph (SNG) (Fig. 2) represents a “snap-shot” of 
the P2P resource requirement and availability. A, B, C, D are MPLS domains, As, Bs, 
Cs, Ds are service network domains. There are several attributes of traffic engineering. 
S is the service vector of the service pipe which is provided by parlay gateway. 
Formally, we define the vectors S as follows: S = [s1, s2, …, sn]. These vectors 
represent the service capability of the service ontology. These capabilities include a 
set of attributes associated with service paths which collectively specify their 
behavioral characteristics and a set of attributes associated with resource which 
constrain the placement of service paths through them. These can also be viewed as 
topology attribute constraints. The SNG is defined as follows: 

(1) SNG nodes: The service node of SNG represents the border node of a MPLS 
domain. In service network domain Bs, both as and bs are the border service 
nodes, which is mapped from a and b, but c isn’t the border node. 
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(2) SNG edges: Edges from source service border node to destination service border 
node within a MPLS domain. In domain Bs, <as, bs> is the service edge which is 
mapped from underlay network edge. 

(3) SNG service instances: In a SNG edge, a grid service instance wraps a service 
pipe across an underlay physical path. Its resource requirement vector Sreq (a, b), 
can be satisfied by the current availability of the corresponding service pipe 
provided by the Parlay gateway. In domain B, S1 and S2 are two grid service 
instances, which represent different service pipe. S1 is across the physical path (a, 
b), S2 is across the physical path (a, c) and (c, b). 

sA

sB
sC

sa

sb

sD

 

Fig. 2. Service Network Graph 

4.1.2   Index Structure Based on Ontology 
Service network graph will become very complex when the size of network becomes 
larger. Maintaining the global view of the service network graph is difficult. So we 
adopt super node P2P architecture. Semantic grid built on Parlay gateway is a super 
peer, which is a node that acts both as a server to a set of clients, and as an equal in a 
network. A peer group is based on the same ontology to be set up. 

Based on ontology, we can summarize the service relationships within a MPLS 
domain which is managed by Parlay gateway. We have employed three levels of 
summarization in our framework (Fig. 3). The lowest level is Parlay Gateway level. 
The second level is named as service ontology peer level; all information owned by a 
peer is summarized according to service ontology. In this level, peers are the service 
instances that are grid services which wrap service pipes provided by Parlay gateway. 
Finally, in the third level, named as semantic grid level, all information contained by a 
peer group is registered. Each semantic grid maintains two pieces of summaries: the 
super level summaries of its group and its neighboring groups, and peer level 
summaries of its group. According to ontology, a super peer can determine which 
peer group is relevant. To further improve the efficiency of the system, we maintain 
indexes on the ontology information. We name the three indexes for Parlay gateway, 
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Fig. 3. Index Structure Based on Ontology 

service ontology peer, and semantic grid level summaries as local index, group index, 
and global index, respectively. Using the index structure based on ontology, we can 
find the entry to the service ontology peer group. 

4.2   Service Routing Based on Ontology 

Based on the above work, we can setup service routing. At first, different service 
routing will have different strategies, which will be discussed first. Then we will setup 
a single service metric and service routing algorithm. 

4.2.1   Local Strategies 
At first, we need to discuss the service instances finding by using local strategies. 
Our algorithm must effectively balance the network load among different MPLS 
domains and efficiently utilize the network resources. Suppose Cij is the required 
capability of service routing (i, j) and DCx is the capability of MPLS domain which 
service routing (i, j) goes across. Then Overhead Rate in the domain can be  
defined as: 

OverheadRateij = Cij/DCx (4) 

Our algorithm is based on the following criteria. If the capability DCx of the 
domain x is larger than the capability DCy of domain y, then we require that the 
probability of choosing DCx should be larger than DCy. The overhead rate will be 
used to select the service instance group.  

When we select service instance in a service group, we also need to consider the 
resource utility of the service path. The resource utility can be defined as in formula 
(5), where Bandwidthij is the used bandwidth of the service instance, and Bij is the 
total bandwidth of the link which is represented by the service instance. 

ResourceUtilityij(S) = Bandwidthij/Bij (5) 
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In order to balance the load, we select the service instance among the service 
instance group according to the largest resource utility rate as in formula (6), where 
{Sij} is the service instance set between service node i and j. 

Max(ResourceUtilityij){Sij} (6) 

4.2.2   Service Ontology Metric Computation 
The service ontology allows different MPLS management domains to understand 
each other. Different domains have different constraint conditions for service 
ontology. We must compute service ontology metric for a single peer selection in 
which the current peer needs to choose the next hop peer according to its local 
resource information to decide the metric. 

Table 2. Service Routing Algorithm 

SRA(a, d, S)  { 
    FindServiceNetworkGraphEntry(a, d, S). 
    Bellman-Ford(G, w, c, a, d) 
} 
Bellman-Ford(G, w, c, a, d) { 
    For i = 0 to |N(G)|-1 
        PATH(i) =  

PATH(a) = {
→
0 } 

For i = 0 to |N(G)|-1 
        For each edge (u, v) ∈  E(G) 
            FindServiceInstance(u, v, S, G)  
            If there are service instance in the edge 
                Evaluate(u, v, w) 

For each w(p) in PATH(d) 
          If (w(p) < c) then return “yes” 

Return “no” 
} 
 
Evaluate (u, v, w) { 

For each w(p) in PATH(u) 
 flag = 1 

      For each w(p) in PATH(v) 
          If (w(p) + w(u, v) >= w(q) 
              flag = 0 
          Else 
             Remove w(q) from PATH(v) 

If (flag = 1) 
         Add w(p) + w(u, v) to PATH(v) 
} 
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The weight of a service path vector as defined in (2) is a vector sum. As in linear 
algebra, the length of a service path vector requires a vector norm to be defined. The 
definition of the service path length is needed to be able to compare paths since the 
path weight components all reflect different service ontology metrics with specific 
units. We propose a straightforward choice of a linear path length to compute service 
ontology metric in formula (7), where wi is the service constraint factors 

=
⋅=

k

i
iiij waSC
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Vector a = (a1 , a2 ,…, am+1) satisfy forma (8), where ai are positive real numbers. 
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4.2.3 Service Routing Algorithm 
Using the set {Cij(S)} of service routing of service ontology S which is pre-computed, 
we can compute the single metric path problem by using service routing algorithm as 
shown in Table 2. In the inter domain service routing, scalability must be considered, 
so we use dynamic programming to optimize service routing. Using the service 
ontology S and service nodes a and d, we use the index structure based ontology to 
get the entry of a reduced service network graph which is suitable for the service 
routing. This greatly reduces the search space for the routing. In the algorithm, 
FindServiceNetworkGraphEntry(a, d, S) uses the index based on service ontology to 
find the service network graph entry. There are many service instances in a service 
edge. FindServiceInstance(u, v, S, G) is used to find service instances. w(p) is the 
service ontology metric, which will be computed in service ontology metric function. 

5   Experiments 

In this section, we evaluate the performance of the SNRG model by simulation. 

5.1   Experimental Set Up 

In the experiment, a semantic overlay is built over a simulated MPLS network. The 
inter domain topology is generated based on power-law model [15], and the intra 
domain topology is generated based on the Waxman model [9]. The number of 
domains is 100, while the number of paths in a MPLS domain is randomly selected 
from 10 to 100. The degree of a domain is defined as the total number of inter domain 
links adjacent to the border nodes of the domain. 15% of the domains have a degree 
of one, and the degrees of the other domains follow the power law. Every path is 
randomly assigned initial resource constraints S = [ServiceConstraints, Bandwidth, 
Delay] from [1, 100, 1] to [10, 1000, 10]. ServiceConstraints refers other service 
constraint. The service instances are created over these paths. Every service instance 
is assigned initial resource constraints according to service ontology definition.  
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We select three kinds of services. Service 1 needs to consider only delay across 
different MPLS domains; we use the delay as the cost. Service 2 needs to consider 
bandwidth, delay is not an important factor; we use a threshold to control bandwidth 
(Bandwidth {Sij} < Th, where Th is the threshold of packet loss rate). Service 3 needs 
to consider both bandwidth and delay. At the same time, we define a set of traffic 
attributes as the service vector.  

5.2   Experimental Results and Discussions 

1) Success ratio:  
A feasible request may be rejected due to imperfect approximation of service routing 
requirement. Success ratio is used to measure quantitatively how well an algorithm 
finds feasible paths and it is defined as:  

requests ofnumber  total

requests feasible accepted ofnumber  total  (9) 

The dividend represents all connection requests that are accepted by inter domain 
service routing in MPLS network. The divider is the total number of feasible requests 
(not the total number of requests). Therefore, in our simulation, success ratio 
measures the performance with respect to the optimal performance.  

Fig. 4 shows the performance of SNGR algorithm for three kinds of services, and 
compares it with BGP. AS0, AS1, and AS2 represent three services of SNGR. B0, B1 
and B2 represent three services of BGP. From the figure, we can see the success ratio 
of SNGR algorithm is higher than BGP. The constraint condition of service 3 is more 
stringent than other services. The success ratio of the service is lower than other 
services. As the request number increases, the network resource will decrease, and we 
can see that the success ratio is also decreasing. The decreasing rate of success ratio 
of service 3 is also higher than that of other services. 

 

Fig. 4. Success Ratio 

2) Balancing Service Path Capacity among different MPLS Domains:  
SNGR also needs to balance the service routing overhead among different MPLS 
domains. It can achieve this goal by balancing the residual capacity of different 
MPLS domains. We use service network domain load rate deviation (SNLRD) 
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(formula (10)) to evaluate the performance of traffic balancing among different MPLS 
domains. SCi is the load rate of the i th service network domain; SC is the average 
value of load rate, while NSND is the number of service network domain. 

SND

N

i i

N

SCSC
SNLRD

SND

=
−

= 1

2)(  (10) 

Fig. 5 shows the service network domain load rate deviation of SNGR algorithm 
and BGP algorithm. It shows that the balancing capability of the SNGR algorithm is 
better than that of BGP algorithm. At the same time, we find that the deviation 
increases with the increase in request number. This is because as the request number 
increases, the network resource becomes more disordered. This makes the balancing 
more difficult. 

 

Fig. 5. Service network domain load rate deviation 

6   Conclusion 

In this paper, we propose a model using semantic P2P overlay service network to set 
up service routing across different MPLS domains. The Parlay gateway abstracts the 
capability of MPLS domain. We use grid service instance to represent traffic trunk 
provided by Parlay gateway. By using ontology, we can set up a transparent service 
network for different MPLS domains. 

We also propose the SNGR algorithm and the following things: 1) using grid 
service instances to set up reduced service network graph based on ontology, 2) using 
index to organize the service ontology for a MPLS domain which is managed by 
semantic grid, and 3) set up a service routing algorithm based on the reduced service 
network graph. 
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Abstract. Effective task scheduling is crucial for achieving good performance 
in high performance computing. Many scheduling algorithms have been de-
vised for heterogeneous computing, but most of algorithms have not been con-
sidered in realistic heterogeneous environments which are not arbitrarily het-
erogeneous but have locality in communication. In this paper we present new 
scheduling algorithms by considering the locality. It is thought that critical-path 
tasks are often important in reducing schedule length, however one of the pre-
vious scheduling algorithms, CPOP (Critical-Path-On-a-Processor) does not 
show good result against to expectation. Our first heuristic uses a cluster of 
processors for critical-path tasks while a single processor is used in the CPOP. 
This heuristic well exploits realistic computing environments in which commu-
nication costs are not arbitrarily heterogeneous. In an additional heuristic the 
critical-path tasks are considered to finish (or start) as early as possible when 
even non critical-path tasks are scheduled. For a performance study five sched-
uling algorithms are compared by experimenting on three different environ-
ments. The experimental results show our scheduling algorithm outperforms the 
others in the realistic heterogeneous environments. 

1   Introduction 

The task scheduling problem includes assigning the tasks of an application to proces-
sors and determining the execution order of tasks on the processors. The goal of task 
scheduling is usually to minimize the schedule length (makespan). Most scheduling 
problems are known to be NP-complete except a few restricted cases [1], [2]. Many 
sub-optimal algorithms have been devised to reduce the schedule length because of its 
importance on performance. 

The scheduling algorithms could be classified into static or dynamic scheduling 
according to whether it is done at compile time (static scheduling) or on-the-fly (dy-
namic scheduling) [3]. In static scheduling an application is usually represented by 
DAG (Directed Acyclic Graph). 

Our research focuses on a comparative study of several static DAG scheduling al-
gorithms including our own algorithms in realistic heterogeneous environments. In 

g
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this paper five scheduling algorithms, HEFT, CPOP, CPOP_E, CPOC and CPOC_E 
will be described and compared in three different environments: realistic, non-
clustered and unrealistic heterogeneous environments. The first two algorithms HEFT 
and CPOP have been proposed by Topcuoglu et al. [4], and the others by us. 

Even though it seems critical paths are important to reduce schedule length, the 
CPOP has lower performance than the HEFT and the HEFT gives good quality of 
schedules with low cost. However, our scheduling algorithm which was modified 
from the CPOP to adapt to more realistic environments can give more efficient sched-
ules than the HEFT.  

In the CPOP critical-path tasks are allocated on a single processor, however, we al-
locate those tasks on a cluster of processors among which the communication cost is 
relatively low. We call it CPOC (Critical-Path-On-a-Cluster). As we exploit a cluster 
instead of a processor for critical-path tasks, we can get more chance to reduce com-
putation time of critical path while the communication cost still keeps low. Our ulti-
mate scheduling algorithm, CPOC_E(Enhanced CPOC) of which processor selection 
rule is different from the CPOC shows better performance than the others in the real-
istic environment, although the CPOC_E does not show better performance than the 
HEFT in the unrealistic or the non-clustered environments. 

The rest of the paper is organized as follows. In section 2 we describe related work 
about task scheduling and in section 3 five scheduling algorithms including ours are 
described and compared. In section 4 the experimental results are presented and dis-
cussed. Finally section 5 gives concluding remarks. 

2   Related Work 

The heuristic-based algorithms can be classified into a few categories: TDB (Task-
Duplication Based) [5], UNC (Unbounded Number of Clusters) [6], [7], [8], and other 
scheduling algorithms. The other groups are further classified into BNP (Bounded 
Number of Processors) [9] and APN (Arbitrary Processors Network) [10], [11] sched-
uling algorithms. While the BNP assumes contention-free network and no routing 
strategies, the links are not contention-free in the APN. The idea of TDB algorithms is 
to reduce the communication overhead by duplicating tasks and allocating them on 
multiple processors redundantly. In each step of the UNC algorithms some clusters 
(or tasks) are merged to reduce the completion time. The UNC needs an additional 
step for mapping the clusters onto the available processors. 

Most popular scheduling technique is list scheduling. The common idea of list 
scheduling heuristics is to make a scheduling list and schedule tasks from the front of 
the list. So it consists of two phases: a task prioritizing phase and a processor selec-
tion phase. On the task prioritizing phase priority of each task is computed to make a 
ready list, and the most appropriate processor is selected for the current highest-
priority task on the processor selection phase. 

For task prioritizing t-level (top level) and b-level (bottom level) are often used 
(they could be comparable to downward rank and upward rank respectively). 
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The upward rank, ranku, is based on average computation time and average com-
munication time. The upward rank of a task i is defined by 

))((max)(
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jrankcwirank uij
isuccj

iu ++=
∈

 . (1) 

where succ(i) is the set of immediate successors of task i, ijc is the average communi-

cation cost of edge (i, j) and 
iw  is the average computation cost of task i. 

The downward rank of task i, )(irankd  is defined by  
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where pred(i) is the set of immediate predecessors of task i. 

3   Scheduling Algorithms 

In this section we describe and compare five scheduling algorithms. Those algorithms 
use ranku or ranku+rankd on task prioritizing phase, and use one or more of the fol-
lowing heuristics on processor selection phase. 
• H1: earliest-finish-time-first 
• H2: assigning critical-path tasks to a processor 
• H3: assigning critical-path tasks to a cluster 
• H4: not earliest-finish-time-first for immediate predecessors of critical-path tasks. 

H4 means when immediate predecessors of critical-path tasks are scheduled earli-
est-finish-time of critical-path tasks (not immediate predecessors itself) is pursued. H1 
and H2 were proposed by Topcuoglu et al.[4] while H3 and H4 are proposed by us. 

3.1   HEFT (Heterogeneous Earliest Finish Time) 

The HEFT was proposed by Topcuoglu et al. [4], which uses ranku, for task priority 
and H1 for processor selection. On the processor selection phase the task with the 
highest priority is picked for allocation and a processor which ensures the earliest-
finish-time is selected. The earliest-finish-time is considered especially using inser-
tion-based allocation. If we allocate tasks in the insertion-based way, a task can be 
inserted at the point of previously allocated task as long as there is free time slot. 

The HEFT scheduling algorithm reflects two heuristics. First, a task which has 
higher upward rank is more important and preferred to other tasks. Intuitively, the 
upward rank of a task reflects the average remaining cost to finish all tasks after that 
task starts up. Second, simple but effective idea is earliest-finish-time-first approach 
(H1). However, as it pursues the earliest-finish-time-first of the current task, it may 
fall into local optima like a greedy method. 

3.2   CPOP (Critical-Path-On-a-Processor) 

The CPOP scheduling algorithm was introduced in the same literature as the HEFT. It 
differs from the HEFT in not only the priority of a task but also processor selection 
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for the tasks with the highest priority (critical-path tasks). The priority of a task i is 
given by )()( irankirank du + . H1 and H2 are used for processor selection. 

The task with the highest priority should be on a critical path, and in that case the 
priority is thought of as critical path length, |CP|. Intuitively, the upward rank of a task 
is the expected time to finish the exit task after the task starts, and the downward rank 
of a task is the expected elapsed time (not including its computation time) after the 
entry task. So if the summation of the upward rank and the downward rank of a task is 
the highest, the task is thought of as being on a critical path. 

For the set of tasks which are on a critical path, CP, the algorithm finds a proces-
sor, CPp , which minimizes the sum of computation time of all CP tasks. On the proc-

essor selection phase each task of a ready queue is selected for allocation and if the 
selected task is on a critical path, the processor CPp  is used; otherwise a processor 

which ensures the earliest-finish-time of the task is used. 

3.3   CPOC (Critical-Path-On-a-Cluster) 

The CPOP algorithm schedules all CP tasks on a processor which minimizes overall 
computation cost of the critical path. Since only one processor is used for the critical 
path, obviously there is no communication cost among CP tasks. However, we think 
that communication cost among processors which are located in the same local area 
network are relatively negligible. So we use a cluster of processors to execute CP 
tasks instead of using a single processor. This heuristic is profitable since it is possible 
to choose any processor within the cluster for each CP task. It gives more chance to 
minimize the sum of computation time of CP tasks. 

 
<task prioritizing phase> 

1 Compute )(iranku  and )(irankd  for each task i. 

2 Assign )()( irankirank du +  to each task i as priority. 

<processor selection phase> 
3 Find a set CP of tasks having the largest value of 

)()( irankirank du + . 

4 CPc  = find_critical_path_cluster(CP) 

5 ReadyQ.insert(k) where k is the entry task. 
6 while (not ReadyQ.empty()) { 
7   i = ReadyQ.delete() 
8   if (task i is in CP) 

9     schedule i on a processor within cluster CPc  to minimi

ze EFT(i). 
10   else 
11     schedule i on a processor to minimize EFT(i). 
12   for each immediate successor k of task i, 
13     if (every immediate predecessor of task k has been alr

eady scheduled) 
14        ReadyQ.insert(k) 
15 } 

Fig. 1. CPOC scheduling algorithm 
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Fig. 1 shows the CPOC algorithm, which uses ranku+rankd for task prioritizing like 
CPOP, and uses H1 and H3 for processor selection. On the processor selection phase, 
for CP tasks the algorithm tries to find a cluster, CPc , which minimizes the sum of 

computation time of all CP tasks. Each task of a ready queue is considered in turn for 
allocation. If the selected task is on a critical path, the cluster CPc  is used and a proc-

essor is selected within the cluster to ensure the earliest-finish-time of the task. Oth-
erwise a processor is selected among all processors. 

3.4   Enhancement of Algorithms: Earliest Start Time for CP Tasks 

The processor selection scheme based upon earliest-finish-time-first reflects the heu-
ristic that the current task is most important now and should finish as early as possi-
ble. In the HEFT scheduling algorithm the task having the highest priority is always 
selected for allocation at each step, so the earliest-finish-time-first approach matches 
with it well. In the CPOP or the CPOC algorithms, however, tasks will not be selected 
in order of priority because only ready tasks can be selected and the tasks having 
higher priority may not be ready. 

Since the current ready task is not of the highest priority among unscheduled tasks, 
our goal should not be completion of the current task as early as possible. Instead, we 
should try to shorten the CP length, in other words, make the CP tasks finished as 
early as possible. So we could pursue the earliest start (or finish) time for the CP tasks 
when we even schedule other than CP tasks. The goal is to make the CP tasks start as 
early as possible when we schedule the immediate predecessors of the CP tasks. This 
processor selection heuristic is H4. 

Enhanced CPOP. The scheduling algorithm (CPOP_E) differs from original CPOP 
in allocating the immediate predecessors of CP tasks. It uses heuristics, H1, H2 and 
H4 for processor selection instead of H1 and H2.  

Enhanced CPOC. The scheduling algorithm (CPOC_E) differs from original CPOC 
in allocating the immediate predecessors of CP tasks. It uses heuristics, H1, H3 and 
H4 for processor selection instead of H1 and H3. Just three lines are modified for the 
CPOC_E algorithm compared with line 10 of Fig. 1 (see Fig. 2). 

 
10-1  else if (let j = succ(i) and j is in CP) 
10-2     schedule i on a processor to minimize EST(j). 
10-3  else 

Fig. 2. CPOC_E scheduling algorithm 

4   Experiments 

In this section we would describe experimental results over randomly generated task 
graphs and network graphs. Five scheduling algorithms will be compared in three 
different heterogeneous environments. 
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4.1   Task Graph Generation 

Task graphs are randomly generated by a task graph generator which has been devel-
oped in this work. Most of input parameters for the task graph generator are similar to 
those of the HEFT. The followings are the list of the parameters: 

• d: Out-degree. 
• α: Shape of a task graph. α/v  is the mean of height of the task graph where v 

is the number of tasks. 
• β: Heterogeneity of processor speed. If β=0, it is exactly homogeneous. 
• γ: Heterogeneity of processor architecture. If γ=0, it is exactly homogeneous. 
• ccr: Communication to computation ratio. If ccr>>1, it represents communica-

tion cost is very high compared to computation cost. 
• π : Ratio of non-terminal tasks. 

Among the above parameters γ and π  are newly introduced in this work. Also, β 
has somewhat different meaning compared to Topcuoglu's. While all heterogeneity is 
represented only by β in Topcuoglu's, we use both β and γ. We can generate more 
various task graphs with both parameters. If γ=0, there would be no architectural 
difference among processors which mean there can be only heterogeneity of processor 
speed. 

4.2   Network Graph Generation 

Three different types of networks have been used for experiments: realistic, non-
clustered and unrealistic. For the first two types a network generator has been 
used[12]. The generator could generate not only the realistic global networks which 
range from WAN to LAN but also just LANs. A LAN just consists of a single cluster, 
so it is denoted by non-clustered in this paper. Fig. 3 shows examples of the two 
types. The third type, unrealistic, can not be visualized, in which arbitrarily random 
communication costs are assigned to each pair of processor-to-processor. 

 

 

              (a) Realistic                                                        (b) Non-clustered 

Fig. 3. Examples of networks 
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As shown in Fig. 3, the network generator gives node-to-node distances. For our 
experiments, we convert it into latency and bandwidth matrices. The latency matrix 
can be computed by multiplying the distance by the unit delay and adding the fixed 
delay. Every node-to-node latency is determined as the smallest value among the 
values of all possible paths using the Floyd-Warshall shortest path algorithm. The 
bandwidth matrix can be obtained from the smallest value along the node-to-node 
path. Table 1 shows parameters for computation of the latency and the bandwidth 
matrices. 

Table 1. Bandwidth and delay parameters 

 bandwidth(MB/s) fixed delay(ms) delay / unit distance(ms/unit) 

WAN-to-WAN 1000 15 0.1 

WAN-to-MAN 100 100 0.01 

MAN-to-MAN 100 10 0.1 

MAN-to-LAN 100 5 0.01 

LAN-to-LAN 1 1 0.01 

4.3   Performance Results 

To compare the schedule of each algorithm, we would use two performance metrics. 
Though performance goal is to minimize schedule length, we need a normalized met-
ric since each task graph has various schedule length. The first metric, SLR(Schedule 
Length Ratio) is defined by the following[4]. 

∈

=

MINCPi
ikw

lengthschedule
SLR

}min{

_  . (3) 

min{ ikw } is the minimum value among computation costs of task i when it is as-

signed to processor k, and MINCP  is the set of tasks on a critical path assuming every 

task has the minimum computation cost. Since the denominator would be lower 
bound of schedule length, SLR cannot be less than 1. 

The other metric is speedup which is given by dividing the upper bound of sched-
ule length by the actual schedule length. The upper bound is computed by assigning 
all tasks to a single processor which minimizes the sum of computation time, i.e., 
ensures the best sequential execution time. 

Comparative performance data are presented by Fig. 4. In the figure all values are 
normalized so that each value is relative to the value of the HEFT. So the value of the 
HEFT is always 1. The reason of normalization is as follows. Different environments 
show different levels of values, so it is difficult to visualize all values in the same 
figure. It does not make sense to compare the algorithms crossing the three environ-
ments from an absolute point of view. Generally, performance is better if the results 
present the smaller SLR or the higher speedup. 

In cases of 'Unrealistic' or 'Non-clustered' the HEFT algorithm shows the best per-
formance. We think that the HEFT generally gives good schedules in arbitrarily  
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heterogeneous computing environments. However, as the environments reflect more 
realistic configuration which may be biased by constituting several clusters, the win-
ner becomes the CPOC_E algorithm. The CPOP and the CPOP_E algorithms show 
poor performance in 'Unrealistic' or 'Non-clustered', but the performance is greatly 
improved in 'Realistic'. 

 

Fig. 4. Performance comparison of HEFT, CPOP, CPOC, CPOP_E and CPOC_E 

 

 

Fig. 5. Experiments on unrealistic heterogeneous environments 

Fig. 5, 6 and 7 show results for α, β and γ parameters in three different heterogene-
ous environments. Note that there is very little difference between the CPOP and 
CPOP_E, and also between the CPOC and the CPOC_E in 'Unrealistic' or 'Non-
clustered' environments. However, the enhanced algorithms show better performance 
in the 'Realistic' environment. This accounts for effectiveness of heuristic H4. H4 
pursues earliest-start-time-first of CP tasks instead of that of its immediate predeces-
sors when we schedule the immediate predecessors. It means that the heuristic con-
siders communication cost between CP tasks and its immediate predecessors as well 
as computation time of the immediate predecessors. The communication cost does not 
affect performance if it would be given in arbitrarily random style. However, the 
heuristic is effective  in  a  biased  environment  that  some  communication  costs  are 
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Fig. 6. Experiments on non-clustered heterogeneous environments 

 

 

Fig. 7. Experiments on realistic heterogeneous environments 

relatively higher than others. Although 'Realistic' environments ranged from WAN to 
LAN in the experiments, we think that H4 is still effective in any environments in 
which communication costs are asymmetric and biased. 

Generally, as the SLR decreases the speedup increases, and vice versa. However, 
in cases of α or γ, the results are not accordance with the general tendency. 

As α increases the lower bound rapidly decreases compared to the actual schedule 
length. So SLR would increase as α increases. However, the upper bound hardly 
changes over α. Undoubtedly the shape of a task graph does not have any correlation 
to the upper bound. Since the schedule length can be reduced for increment of α, 
speedup may increase. As shown in Fig. 5 and 6, the SLRs of CPOP and CPOP_E 
present different tendency from the others. If α is very small i.e., height of a task 
graph is very high, critical path would be very long. Since only one processor is used 
for the critical path in cases of CPOP and CPOP_E, SLR could be very high. As α 
increases this situation would be mitigated. 
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γ  represents heterogeneity of architecture, so the higher γ  gives a chance to obtain 
less computation time for each task. It means very rapid decrement of the lower 
bound, which results in rapid increment of SLR. Though it is obvious that architec-
tural heterogeneity gives more chance to shorten the length of each task, when we use 
a single-processor assignment it hardly affects the upper bound. So speedup would 
quickly increases. 

5   Conclusions 

In this paper we presented two new heuristics (H3 and H4) for processor selection and 
devised new scheduling algorithms, CPOC and CPOC_E by applying those heuristics. 
Five scheduling algorithms including ours have been discussed with four heuristics 
and compared experimentally in three different environments. 

Compared to HEFT scheduling algorithm, the CPOC_E does not have good per-
formance in arbitrarily (unrealistic) heterogeneous environments. However, the 
CPOC_E generates better schedules than the others in realistic heterogeneous  
environments. 

From a comparative study it is confirmed that the heuristics H3 and H4 are effec-
tive in the realistic heterogeneous environments. This is mainly due to that locality of 
communication can be exploited in the realistic environments. Especially the commu-
nication latencies are possibly not arbitrarily heterogeneous. So the heuristic H3 uses 
a cluster to allocate CP tasks instead of a single processor. The heuristic H4 also re-
flects the realistic heterogeneous environments. It differs from H2 in that it pursues 
the earliest-start-time-first of CP tasks instead of the immediate predecessor's own 
earliest-finish-time-first. 

The experimental results show CPOC_E outperforms CPOC and CPOP_E outper-
forms CPOP in the realistic environments. This accounts for effectiveness of H4. 
However, in the unrealistic environments there is very little difference between the 
CPOC and the CPOC_E, and also between the CPOP and the CPOP_E. The results 
also show CPOC outperforms CPOP, and this accounts for effectiveness of H3. 
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Abstract. Current TCP congestion control can be inefficient and un-
stable in high-speed wide area networks due to its slow response with a
large congestion window. Several congestion control proposals have al-
ready been suggested to solve these problems and two properties have
been considered: TCP friendliness and scalability, to ensure that a pro-
tocol does not take away too much bandwidth from TCP, while utilizing
a bandwidth of high speed networks efficiently. In this paper, we pro-
pose a new variant of TCP for a high-speed network which combines
delay-based congestion control with loss-based congestion control. Our
simulation results show that proposed scheme performs better than the
existing high-speed TCP protocols in terms of fairness, stability and
scalability, while providing friendliness at the same time.

1 Introduction

TCP has already been widely adopted as a data transfer protocol for the Internet.
The demand for high-speed applications such as bulk-data transfer, multimedia
web streaming, high energy and nuclear physics, astronomy, bioinformatics, earth
sciences, storage area network, and grid networking has increased. However,
it has been reported that as the bandwidth-delay product continues to grow,
TCP underutilizes the bandwidth and it will eventually become a performance
bottleneck itself [1]-[5]. For example, according to [2], for TCP to increase its
window to a full utilization of 10Gbps with 1500-byte packets, it will require over
83,333 RTTs. With 100ms RTT, this would take approximately 1.5 hours, and
for full utilization in a steady state, the loss rate cannot exceed 1 loss event per
5,000,000,000 packets, which is less than the theoretical limit of the network’s
bit error rate. Consequently, it is impossible to achieve such a large throughput
with TCP, mainly because TCP decreases its congestion window too drastically
when packet losses occur, yet only it increases congestion window very slightly
when there is no packet loss.

Recently, various adaptive schemes have been designed to offer more flexibil-
ity, wider bandwidth scalability, and fairer competition with the standard TCP.
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Such schemes include eXplicit Control Protocol (XCP) [1], High Speed TCP
(HSTCP) [2], Scalable TCP (STCP) [3], FAST TCP [4], and Binary Increase
TCP (BIC) [5]. XCP generalizes the Explicit Congestion Notification (ECN),
enabling more (or explicit) information to be sent about the degree of conges-
tion in the network. XCP resembles the Explicit Rate (ER) allocation algorithm
in the available bit rate (ABR) service in ATM networks. XCP provides pre-
dominant efficiency, fairness, and stability. However, since XCP requires XCP
senders, routers, and receivers to be deployed, deployment issues still remain.
In this paper, the above-mentioned protocols such as HSTCP, STCP, and BIC
are referred to as high-speed TCP protocols. As an alternative TCP implemen-
tation, delay-based congestion avoidance algorithms such as TCP Vegas [6] and
most recently FAST TCP have been proposed. To detect and avoid congestion,
TCP Vegas estimates the backlog which is the number of buffered packets inside
the network. Many studies have shown that TCP Vegas outperforms TCP Reno
in terms of link utilization, jitter, and packet loss rate. But if the network con-
gestion occurs in the backward path, TCP Vegas underutilizes the bandwidth
on the forward path [7]. FAST TCP is a high-speed version of TCP Vegas for
fast, long distance networks.

In this paper, we propose a new variant of HSTCP, called as eHSTCP (en-
hanced HSTCP), which is a hybrid scheme between loss-based congestion control
and delay-based congestion control. First, by using the TCP timestamp option,
eHSTCP estimates the effective RTT (eRTT) that is a delay that may be mea-
sured if there is no queueing delay along the backward path. Thus eHSTCP
avoids the effect of backward path congestion. Second, instead of using Vegas’
backlog to prevent packet loss proactively, eHSTCP refines the additive increase
multiplicative decrease (AIMD) mechanism of HSTCP to enhance scalability,
TCP friendliness, stability, and fairness.

The remainder of this paper is organized as follows: Section 2 briefly discusses
some high-speed TCP congestion control algorithms and Vegas-like delay-based
congestion control algorithms. Section 3 describes the eHSTCP protocol. Section
4 presents the simulation results and conclusions are given in Section 5.

2 Related Work

The importance of congestion control is now widely acknowledged and extensive
research has already been done to enhance the performance of TCP. TCP con-
gestion control is composed of two major algorithms: slow-start and congestion
avoidance algorithms which allow TCP to increase the data transmission rate
without overwhelming the network. TCP uses a variable called congestion win-
dow (cwnd) and cannot inject more than cwnd segments of unacknowledged data
into the network. The TCP congestion avoidance algorithm is called AIMD and
it is the basis for steady state congestion control. In the congestion avoidance
phase, TCP increases the congestion window by one packet for each RTT and
halves the congestion window in the event of a packet loss. The TCP congestion
control is briefly explained in Table 1.
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Table 1. TCP congestion control in congestion avoidance

Regular TCP ACK:w ← w + α/w
LOSS:w ← w − β × w

αTCP = 1, βTCP = 0.5

HSTCP ACK:w ← w + αHSTCP /w
LOSS:w ← w − βHSTCP × w

if w > Low Window(= 38)
αHSTCP = 0.1578 × w0.8024

× βHSTCP /(2 − βHSTCP )
βHSTCP = −0.052 ln w + 0.6892

else
regular TCP congestion control

STCP
ACK:w ← w + αSTCP

LOSS:w ← w − βSTCP × w

if w > Low Window(= 16)
αSTCP = 0.01, βSTCP = 0.125

else
regular TCP congestion control

BIC

ACK:
if αBIC < Smax

w ← w + αBIC/w
else

w ← w + Smax/w
LOSS:
max w ← w
w ← w − βBIC × w
min w ← w
target ← (max w+min w)/2

if w > Low Window(= 14)
Smax = 32, βBIC = 0.125
αBIC = max (target − w), 0.001

else
regular TCP congestion control

HSTCP was introduced by S. Floyd in [2] as a modification of the TCP con-
gestion control mechanism, to improve the performance of TCP in fast, long
delay networks. HSTCP is designed to have a different response in an environ-
ment with a very low congestion event rate, and have the regular TCP response
in an environment with a packet loss rate of maximum 10−3. HSTCP introduces
a new relation between the average congestion window w and the steady state
packet drop rate p. For simplicity, HSTCP response function provides a straight
line on a log-log scale. The HSTCP response function is specified using three
parameters: Low Window, High Window, and High P . The Low Window is
used to establish a point of transition and to ensure TCP friendliness. The
HSTCP response function uses the same response function as the regular TCP
when the current cwnd is at most Low Window, and uses the HSTCP response
function when the current congestion window is greater than the Low Window.
Meanwhile, High Window and High P are used to specify the upper end of
the HSTCP response function, where High P is the specific drop rate needed
in the HSTCP response function in order to achieve a High Window as the
average congestion window. The HSTCP response function is represented by a
new additive increase and multiplicative decrease parameters. These parameters
modify both the increase and decrease parameters according to the cwnd.
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STCP was described by T. Kelly in [3]. Instead of using an additive increase,
the increase is exponential and the multiplicative decrease factor βSTCP is set
to 0.125. Here, the congestion avoidance algorithm of the STCP is MIMD (Mul-
tiplicative Increase and Multiplicative Decrease).

[5] revealed that HSTCP and STCP have a fairness problem when multiple
flows with different RTTs are competing. Also, [5] introduced BIC that attempts
to correct the RTT unfairness. BIC regards congestion control as a searching
problem in which the system can give binary feedback through packet loss as to
whether the current congestion window is larger than the network capacity. BIC
uses a binary search scheme to quickly find an estimated equilibrium window
size, and then slowly increases the congestion window.

The congestion avoidance algorithms of HSTCP, STCP, and BIC are briefly
expressed in Table 1. For more details, see [2], [3], and [5], respectively. Since most
existing schemes concentrate on bandwidth scalability and TCP friendliness,
the performance of high-speed TCP and the impact of its use on the present
implementation of TCP have been highlighted. As such, the results show that
existing high-speed TCP schemes can relieve bandwidth scalability problem to
a certain extent. However further studies in TCP friendliness and fairness are
still needed.

TCP and most high-speed TCP protocols are loss-based congestion avoidance
protocol. The problem with loss-based congestion avoidance scheme is that a TCP
sender keeps increasing its congestion window until it causes a buffer overflow.
These “self-induced” packet losses cause increased loss rate, decreased throughput,
and significant jitter. Delay-based congestion avoidance protocols attempt to con-
trol the congestionwindow based on RTT measurements. If the congestionwindow
is large enough to saturate the available bandwidth, queueing delay will increase
at the congested node, and thus the RTTs will increase. So, the TCP sender de-
creases the congestion window when the RTTs start increasing to prevent packet
loss proactively. There are several variations of the delay based congestion avoid-
ance schemes, including TCP Vegas [6] and most recently, FAST TCP [4]. TCP
Vegas performs better regular TCP in terms of link utilization, stability, fairness,
packet loss. FAST TCP is a stabilized version of TCP Vegas for high-speed net-
works. As opposed to constant increase/decrease factor of TCP Vegas, FAST fully
exploits delays as a congestion measure and window increments depend upon the
current window size and RTT decrements and vice versa.

When a TCP Vegas competes with a TCP Reno, TCP Vegas does not receive
a fair share of bandwidth due to its conservative congestion avoidance mecha-
nism. That is, while TCP Vegas tries to maintain a smaller queue, TCP Reno
keeps increasing congestion window until a packet loss is detected. Therefore,
the performance of TCP Vegas degrades significantly when TCP Vegas coexists
with TCP Reno [7], [8]. FAST TCP is still vulnerable to this problem. Choosing
a large target backlog can make Vegas-like protocols compatible with Reno-like
protocols [9]. However, it is a challenge to choose suitable backlog parameter,
since the correct choice will depend on the number of flows and the buffer size
of the bottleneck router.
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In addition, the correlation between increased delays (or RTTs) and con-
gestive losses has recently been challenged [10], thereby raising serious doubts
as to the effectiveness of DCA algorithms given that their main assumption
is that RTT measurements can be used to predict and avoid network
congestion.

3 eHSTCP Protocol: Mechanisms and Deployment

In this section we propose eHSTCP (enhanced HSTCP), a new variant of TCP
for high-speed networks that provides high utilization, stability, and fairness.
In contrast to TCP Vegas, eHSTCP uses effective RTT to avoid the effects
of reverse path congestion. And rather than preventing packet loss as in TCP
Vegas, for additive increase mechanism, eHSTCP uses a backlog as a binary
feedback to determine whether the network is fully utilized. Also, effective RTT is
used to refine multiplicative decrease mechanism of HSTCP to achieve high link
utilization, while guaranteeing TCP friendliness comparable to that of HSTCP.

3.1 Delay Measurement

If network congestion occurs in the backward path, TCP Vegas-like protocols
may overestimate RTT and unnecessarily decrease congestion window. By using
the TCP timestamp option, our mechanism obtains samples of queueing delay
on the forward and backward paths separately. Note that the sender and receiver
clocks do not have to be synchronized since we are only interested in the rela-
tive time difference. By distinguishing the direction in which congestion occurs,
eHSTCP is robust in the case of backward congestion.

To remove the effect of reverse path congestion, we redefine the effective RTT
(eRTT) as

eRTT = RTT − db,q (1)

db,q = db −min(db) (2)

where RTT is a newly measured round trip time, db,q is the backward queueing
delay, db is a measured backward delay, and min(db) is the minimum of all
measured backward delays. Consequently, the eRTT indicates a round trip time
when there is no backward path congestion. We compute the smoothed eRTT by
using an exponential weighted moving average (EWMA), with a delay smoothing
parameter of 1/8. This value is typically used for computing the smoothed RTT
for TCP.

3.2 Congestion Control Based on Effective RTT

Since previous research shows that HSTCP provides acceptable bandwidth scal-
ability and friendliness [2], [5], we modified HSTCP’s AIMD mechanisms as
follows:
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Additive Increase Algorithm: The TCP Vegas estimates a proper amount
of extra data to be kept in the network pipe (i.e. backlog) and controls the
congestion window size accordingly. The amount is between the two thresholds
α and β, as shown in the following:

α ≤ N = (Expected−Actual)×RTTmin ≤ β (3)

where Expected is the current congestion window size divided by RTTmin (the
minimum of all measured RTTs), and Actual represents the current conges-
tion window size divided by the newly measured RTT. According to Little’s
Law, N represents the backlog at the bottleneck router queue. Thus, TCP Ve-
gas tries to keep at least α packets, but no more than β packets queued in
the network.

For our scheme, first, to prevent throughput degradation from the reverse
cross-traffic, we redefine N and Actual as follows:

Actual′ = cwnd/eRTT (4)

N ′ = (Expected−Actual′)×RTTmin = cwnd× df,q/eRTT (5)

where df,q is the forward queueing delay. Consequently, N ′ and Actual′ rep-
resent the backlog and Actual, respectively, if there is no backward queueing
delay.

Since random noise in the RTT measurements (due to time resolution, OS
interrupts, etc) cannot be avoidable in practice, FAST-like congestion control,
which fully exploits delay to congestion control, seems unfeasible in most cases.
Nevertheless, a delay is still valuable information as the indication of network
congestion. Therefore, we use N ′ as a binary feedback signal of whether the
network is fully utilized or not. More specifically, if measured backlog N ′ is
lower than N∗, we assume the bottleneck is underutilized and uses HSTCP’s
congestion control algorithm, where N∗ is the target backlog. If N ′ is higher
than N∗, we use TCP Reno’s congestion control algorithm. When the network
is fully utilized, eHSTCP behaves equally to TCP Reno, so that the eHSTCP
can stay in this region longer. This mechanism leaves buffer space for other
traffic and thus makes eHSTCP TCP friendly. Unchanging or decreasing the
congestion window size like TCP Vegas are not considered because TCP Vegas
can not keep fairness with TCP Reno and to prevent convergence stalling. Also,
it is important to note that flows with small RTTs do not gain a competitive
advantage over flows with long RTTs. Proposed additive increase mechanism
can significantly correct the RTT fairness problem as compared with other high-
speed TCP protocols.

Multiplicative Decrease Algorithm: After a packet loss, TCP Reno halves
the congestion window. If we size the router buffer to match the delay-bandwidth
product, this mechanism ensures that the buffer does not underflow and goes
empty. However, it is generally impractical; because there is no clear way to get
average RTT information (even if it exists). Moreover, in high-speed networks
large buffers are problematic for both technical as well as cost reasons. HTCP
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suggests a backoff scheme which makes a more informed decision by using min-
imum and maximum RTTs [11]. The rationale of the HTCP’s backoff scheme is
as follows: When congested, the total throughput through the link is given by

Throughput− =
n∑

i=1

cwndi

RTTmax,i
(6)

where n is the number of flows and RTTmax,i is the maximum RTT experienced
by the i’th source. After the backoff, the throughput is given by

Throughput+ =
n∑

i=1

(1− βi)× cwndi

RTTmin,i
(7)

To ensure the buffer is empty while preventing buffer underflow, HTCP sets
1− βHTCP as RTTmin/RTTmax. eHSTCP, in contrast to HTCP, uses:

1− βeHSTCP =
RTTmin

eRTT
(8)

w ← w − w ×min(βeHSTCP , βHSTCP ) (9)

By inspecting the raw data from our simulation results, we found that the mea-
sured RTTs are frequently smaller than the maximum RTT when a packet loss
occurs. The main reason behind this phenomenon is TCP burstiness. In previous
work [12], we pointed out that since the congestion window achieved by a high-
speed TCP flow can be quite large, there is a strong possibility that the sender
may send a large burst of packets in response to a single acknowledgement.
Since the bursty behavior of high-speed TCP can lead to bursty traffic flows in
high speed networks, actual measured RTTs are lower than the maximum RTT.
This mismatching violates HTCP’s assumption and causes link underutilization.
Thus, we use RTT instead of RTTmax. Also, to exclude reverse path congestion,
we use effective RTT.

From the equation 9, eHSTCP reduces the congestion window by a smaller
size than HSTCP. Reducing the congestion window less drastically improves
utilization and throughput fluctuation but it hurts convergence speed and TCP
friendliness since larger window flows give up their bandwidth slowly. To pro-
vide comparable TCP friendliness and bandwidth scalability of HSTCP at least
while to avoid drastic decreasing congestion window, we employ the following
algorithm. After packet loss, if βeHSTCP is smaller than βHSTCP , eHSTCP re-
duces its congestion window using βeHSTCP and enters a safety check phase.
At the same time, w desg is calculated using βHSTCP . During this safety check
phase, eHSTCP does not increase its congestion window and monitors the back-
log. If N ′ exceeds N∗ in the safety check phase, eHSTCP assumes that βeHSTCP

is too aggressive and reduces its congestion window again to w desg. Therefore,
it takes one RTT time for eHSTCP to decrease its window size to the size of
HSTCP used. Otherwise, after safety check phase, eHSTCP enters the additive
increase phase. Below, we present the pseudo-code of eHSTCP.
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ACK:

if (low_window > w)

w � w + 1/w; // regular TCP congestion control

else

if(InSafetyCheckPhase)

if (N' > N
*

) // backlog exceeds threshold during SafetyCheckPhase

w � w_desg;

else

w � w;

else

if (N' < N
*

) // not fully utilized � HSTCP congestion control

w � w + �
HSTCP

/w;

else // fully utilized � regular TCP congestion control

w � w + 1/w;

LOSS:

if (low_window <= w){

if (InSafetyCheckPhase){ // another packet loss during SafetyCheckPhase

w �w_desg – �
eHSTCP

×w_desg;

} else{

if (�
eHSTCP

< �
HSTCP

){

w_desg �w – �
HSTCP

×w;

w �w – �
eHSTCP

×w;

InSafetyCheckPhase �1;

}else

w � w – �
HSTCP

×w;

}

} else

w � w×0.5;                                 // regular TCP

4 Simulation Results and Discussion

In this section, we compare the simulated performance of eHSTCP with that
of HSTCP, STCP, and BIC. Unless explicitly stated, the same amount of back-
ground traffic is used for all experimental runs. eHSTCP is implemented into
the ns [13] simulation code for TCP SACK. The TCP timestamp option is used
to obtain accurate RTT samples. The topology used for the simulation exper-
iments is shown in Fig. 1. Various bottleneck capacities and delays are tested.
The bottleneck router uses FIFO scheduling and a drop tail buffer management
scheme. By default, the buffer size at the bottleneck router is set to 2000 pack-
ets. All high-speed TCP flows use the forward direction. To reduce the phase
effect and synchronized feedback, a significant amount of background traffic is
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Fig. 1. The network topology for the simulation
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used in both directions, along with randomized RTTs and starting times. For
background traffic, web traffic, 25 small TCP flows with a limited congestion
window size under 64, and 4 long lived TCP flows are created in both directions
for all simulations, unless otherwise specified. The packet size is 1000 bytes. In
our experiments, we use N∗ = 10 and the safety check phase =5×RTTmax.

4.1 Utilization, Fairness, and Stability

In this experiment, RTT of all flows is around 40ms and the bottleneck band-
width is 2.5Gbps. To evaluate bandwidth scalability, we measure link utilization
and the average packet loss rate of the link between router R1 and R2. We also
measure the fairness using Jain’s fairness index among high-speed TCP flows.
And the sample standard deviation normalized by the average throughput is
used to evaluate stability. From Table 2, it can be seen that link utilization
of eHSTCP is relatively comparable to that of STCP. Also, eHSTCP shows
the best performance among all protocols under packet loss rate evaluation cri-
terion. It is found that for HSTCP, BIC, and eHSTCP, the fairness index is
approximately equal to 1 and STCP has some fairness issues. eHSTCP stays
at the fully utilized region longer and proposed multiplicative decrease mecha-
nism avoids unnecessarily drastic decreasing of congestion window. Therefore,
we observe that eHSTCP shows the best stability.

Table 2. Comparison of utilization, fairness, packet loss rate, and stability

HSTCP STCP BIC eHSTCP
Link Utilization 0.92 0.99 0.95 0.99
Packet loss rate(%) 0.0197 0.1281 0.0206 0.0065
Fairness index 0.99 0.91 0.99 0.99
stddev 0.148 0.149 0.107 0.047

4.2 RTT Fairness

In this experiment, two high speed flows with a different RTT are used. The RTT
of flow 1 is 40ms, while the RTT of flow 2 is computed for 120ms and 240ms. The
bottleneck bandwidth is 1Gbps. Table 3 depicts the throughput ratio of the two
high-speed flows. In Table 3, we see the bias against connections with long RTT.
As predicted in [5], there is a serious fairness problem with flows of different RTTs

Table 3. The throughput ratio of two high-speed flows over various RTT ratios under
1Gbps

HSTCP STCP BIC eHSTCP
Ratio = 3 42.46 111.45 12.03 3.88
Ratio = 6 197.80 341.65 84.65 4.77
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for HSTCP and STCP. HSTCP and STCP tend to starve long RTT flows under
high bandwidth environments, since short RTT flows quickly dominate the link
bandwidth, starving out the other flows. eHSTCP’s RTT fairness outperforms
HSTCP, STCP and BIC.

4.3 TCP Friendliness

Fig. 2. shows the percentage of the bandwidth shared by each flow type. For
20Mbps, all high-speed TCP protocols show similar TCP friendliness. As the
bandwidth gets larger than 300Mbps, the share of bandwidth taken by the web,
small TCP, and long-lived TCP flows is substantially reduced due to the TCP
bandwidth scalability problem. STCP achieves higher throughput for various
scenarios but also, STCP shows the worst TCP friendliness followed by BIC
and HSTCP in most cases. eHSTCP utilizes the link bandwidth as efficiently
as HSTCP. That is, eHSTCP consistently gives good friendliness relatively to
all high-speed TCP protocols for all bandwidths while providing with the band-
widths scalability of HSTCP at least. Note that, under 2.5Gbps, eHSTCP flows
consume more bandwidth than HSTCP flows. The increase in eHSTCP band-
width shares can be accounted by the reduction in unused bandwidth. Although
eHSTCP consumes more bandwidth than HSTCP, it does not take bandwidth
away from TCP, but instead from the unused bandwidth.

high-speed reg. tcp web small unused
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4.4 More Dynamic Scenario

In this scenario, we add 100 UDP flows with ON and OFF times drawn from
a heavy-tailed distribution. The mean ON and OFF time is 1 second and the
mean OFF time is also 1 second, with each source sending at 5Mbps during
an ON time. Table 4 shows the percentage of the bandwidth shared by each
flow type. And table 5 shows the average loss rate and the sample standard
deviation normalized by the average throughput. BIC searches the equilibrium
congestion window size by using loss history. In a dynamic scenario, loss history
might be out of date, and thus unused bandwidth increases in BIC scenario. Note
that the bandwidth scalability of eHSTCP is comparable to that of STCP and
also, eHSTCP is the friendliest protocol of all the high-speed TCP protocols. To
summarize, eHSTCP provides good TCP friendliness for all bandwidths while
providing bandwidth scalability, which is comparable to STCP in high-speed
environments.

Table 4. Comparison of the bandwidth shared by each flow type

HSTCP STCP BIC eHSTCP
high-speed flows 71.70 77.39 72.66 74.35
regular TCP 4.54 2.51 4.78 5.24
web 0.59 1.50 0.59 0.66
small TCP 2.42 1.82 2.34 2.8
UDP 9.69 10.31 9.86 10.50
unused 11.06 6.47 9.76 6.45

Table 5. Comparison of packet loss rate and stability

HSTCP STCP BIC eHSTCP
loss rate(%) 0.0375 0.167 0.0514 0.0272
stddev 0.1441 0.1061 0.1073 0.0581

5 Conclusion

In this paper, we propose a new variant of TCP for high-speed network which
combines delay-based congestion control with loss-based congestion control. Al-
though existing high-speed TCP schemes solve bandwidth scalability to some
degree, there are still problems with fairness, friendliness, and stability. We de-
fine the effective RTT as the RTT that may be measured if there is no backward
queueing delay along the path. Then, we refine HSTCP’s AIMD mechanism.
Since delay is error-prone, proposed additive increase algorithm uses effective
RTT as binary feedback signal as to whether a network is full utilized. Pro-
posed additive increase mechanism provides enhanced stability, reduced packet
loss rate, and TCP friendliness. To guarantee the comparable TCP friendliness
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and scalability of HSTCP at least while to avoid drastic decreasing conges-
tion window, proposed multiplicative decrease algorithm uses the effective RTT
and deploys the safety check phase. We have shown through simulations that
the proposed scheme outperforms other high-speed TCPs in terms of fairness,
friendliness, and stability, while utilizing a link bandwidth efficiently.
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Abstract. Research in embedded networked sensing has primarily fo-
cused on the design of hardware architectures for sensor nodes and infras-
tructure protocols for long lived operation of resource constrained sensor
network deployments. There is now an increasing interest in the pro-
gramming aspects of sensor networks, especially in the broader context
of pervasive computing. This paper provides a brief overview of ongoing
research in programming of sensor networks and classifies it into layers
of abstraction that provide the application developer with progressively
higher level primitives to express distributed, phenomenon-centric col-
laborative computation. As a specific instance of a macroprogramming
methodology, we discuss the data driven Abstract Task Graph (ATaG)
model and the structure of its underlying runtime system. ATaG sepa-
rates the application functionality from non-functional aspects, thereby
enabling end-to-end architecture-independent programming and auto-
matic software synthesis for a class of networked sensor systems. A pro-
totype visual programming, software synthesis, functional simulation and
visualization environment for ATaG has been implemented.

1 Introduction

Distributed sensor networks allow intelligent, dense monitoring and control of
physical environments and have a wide range of applications such as home and
office automation, habitat monitoring, intruder detection, etc. Advances in VLSI
technology have enabled the integration of sensing, computation, and wireless
communication capabilities into small, inexpensive hardware platforms. Ad hoc
wireless sensor networks (WSNs) comprised of such untethered nodes provide
embedded sense-and-response capability. The unprecedented degree of access to
information about the physical world could provide context awareness to other
applications, making WSNs an integral part of the vision of pervasive, ubiquitous
computing – with the long term objective of seamlessly integrating this fine
grained sensing infrastructure into larger, multi-tier systems. A comprehensive
overview of state of the art in wireless embedded sensing can be found in [1].
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With continuing advancements in sensor node design and increasingly com-
plex applications, interest in automatic synthesis of sensor network applications
is inevitable, given the fact that ease of programming is perhaps the single most
important determinant of the ubiquity and acceptance of a computing platform.
In other words, there should be a well-defined methodology to translate high
level intentions of the programmer expressed in a suitable formalism into an
executable specification for the underlying deployment.

In this paper, we focus on programming of networked sensor systems from a
distributed systems perspective. We assume that protocols and services for the
basic communication and collaboration infrastructure are already available for
the target platform. The job of the programming model is to suitably abstract
these existing services and define a model of computation for the distributed
system that is useful for application development. A collection of autonomous
sensor nodes passing messages through a communication network fits the defi-
nition of a distributed computing system. However, some of the fundamentally
new characteristics of networked sensing systems that differentiate them from
traditional parallel and distributed computing are as follows:

– Transformational vs. reactive processing: Most of the traditional par-
allel and distributed applications are transformational systems characterized
by a function that maps input data to output data. The main purpose of
parallelism for such systems is to reduce the overall latency of computation
and to provide robustness through replication [2]. A networked sensor system
is not transformational but is primarily reactive in that it has to continu-
ously respond to external and internal stimuli. An event of interest in the
environment triggers computation and communication in one or more nodes
of the network, usually in the immediate vicinity of the event.

– Nature of input data: In transformational distributed systems, a given
set of input data is statically and/or dynamically distributed among vari-
ous computing nodes in order to perform the ‘transformation’ with lowest
latency. In sensor networks, however, most the data is continuously created
in the network through the act of sampling the sensor interfaces. The time
and location of origin of a particular piece of data influences the process-
ing performed on it. The typical untethered wireless sensor node is energy
constrained. It is desirable to process the data as close to the source as pos-
sible, and collaborative, in-network data processing is hence an important
consideration in networked sensing.

– Spatial awareness: From the end users’ perspective, an embedded sensor
network ultimately represents a discrete sampling of a continuous physical
space. Instead of specifying applications in terms of sensor nodes and the
network connectivity, behaviors can be naturally specified using spatial ab-
stractions. For instance, the exact placement of sensor nodes will probably
be of incidental interest as long as the set of sensing tasks mapped onto a
subset of those nodes at any given time collaboratively ensure the desired
degree of coverage.
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Macroprogramming of sensor networks broadly refers to an application devel-
opment methodology – supported by a suitable programming model, compiler,
and runtime support – that liberates the programmer from having to compose
the complex control, coordination, and state maintenance mechanisms at the
individual node in order to accomplish the desired global behavior.

Low level optimizations especially related to the networking layer are impor-
tant for long lived operation of untethered resource-constrained networks, and
protocols for positioning, time synchronization, etc., provide the basic infrastruc-
ture for distributed computing in the sensor network. The challenge in defining
high level macroprogramming models is achieving the right balance between long
lived operation through low level optimizations and ease of application develop-
ment by hiding most of the low level details from the programmer.

In the next section, we analyze the layers of programming abstractions that
naturally emerge from the ongoing research in programming models in the sen-
sor network community. Section 3 discusses our macroprogramming model called
the Abstract Task Graph (ATaG) [17] that builds upon the core concepts of the
data driven computing paradigm to allow domain experts to develop sensor net-
work applications. ATaG provides support for reactive processing, mechanisms
to concisely indicate distributed, in-network collaborative computation, and sup-
port for space awareness both for expressing collaborative computation in terms
of spatial neighborhoods, and to express notions such as spatial density of task
placement that can be used to provide a desired degree of sensing coverage. De-
tails of the ATaG programming model and the runtime system can be found
in [3] and [4] respectively. We conclude in Section 4 with a discussion of our
broader vision and related work in the context of design automation for sensor
networks.

2 Layers of Programming Abstraction

Figure 1 depicts our view of the emerging layers of programming abstraction for
networked sensor systems. Many protocols have been implemented to provide the
basic mechanisms for efficient infrastructure establishment and communication
in ad hoc deployments. These include energy-efficient medium access, position-
ing, time synchronization, and a variety of routing protocols such as data cen-
tric and geographic routing that are unique to spatial computing in embedded
networked sensing. Ongoing research, such as MiLAN [5] is focusing on sensor
data composition as part of the basic infrastructure. A sensor data composition
framework delegates the responsibility of interfacing with physical sensors and
aggregating the data into meaningful application-level variables to an underlying
middleware instead requiring its incorporation as part of the application-level
logic [6].

2.1 Service-Oriented Specification

To handle the complexity of programming heterogeneous, large-scale, and possi-
bly dynamic sensor network deployments and to make the computing substrate
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Fig. 1. Layers of abstraction for application development on WSNs

accessible to the non-expert, the highest level of programming abstraction for
a sensor network is likely to be a purely declarative language. The Semantic
Streams markup and query language [7] is an example of such a language that
can be used by end users to query for semantic information without worrying
about how the corresponding raw sensor data is gathered and aggregated. The
basic idea is to abstract the collaborative computing applications in the network
as a set of services, and provide a query interpretation, planning, and resource
management engine to translate the service requirements specified by the end
user into a customized distributed computing application that provides the re-
sult. A declarative, service-oriented specification allows dynamic tasking of the
network by multiple users and is also easier to understand compared to low level
distributed programming.

2.2 Macroprogramming

The objective of macroprogramming is to allow the programmer to write a dis-
tributed sensing application without explicitly managing control, coordination,
and state maintenance at the individual node level. Macroprogramming lan-
guages provide abstractions that can specify aggregate behaviors that are au-
tomatically synthesized into software for each node in the target deployment.
The structure of the underlying runtime system will depend on the particular
programming model. While service-oriented specification is likely to be invari-
ably declarative, various program flow mechanisms - functional, dataflow, and
imperative - are being explored as the basis for macroprogramming languages.
Regiment [8] is a declarative functional language based on Haskell, with sup-
port for region-based aggregation, filtering, and function mapping. Kairos [9]
is an imperative, control-driven macroprogramming language for sensor net-
works that allows the application developer to write a single centralized pro-
gram that operates on a centralized memory model of the sensor network state.
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ATaG [3] (discussed in more detail in the next section) explores the data flow
paradigm as a basis for architecture-independent programming of sensor network
applications.

2.3 Node-Centric Programming

In node-centric programming, the programmer has to translate the global appli-
cation behavior in terms of local actions on each node, and individually program
the sensor nodes using languages such as nesC [10], galsC [11], C/C++, or Java.
The program accesses local sensing interfaces, maintains application level state
in the local memory, sends messages to other nodes addressed by node ID or lo-
cation, and responds to incoming messages from other nodes. While node-centric
programming allows manual cross-layer optimizations and thereby leads to ef-
ficient implementations, the required expertise and effort makes this approach
insufficient for developing sophisticated application behaviors for large-scale sen-
sor networks.

The concept of a logical neighborhood – defined in terms of distance, hops, or
other attributes – is common in node-centric programming. Common operations
upon the logical neighborhood include gathering data from all neighbors, dis-
seminating data to all neighbors, applying a computational transform to specific
values stored in the neighbors, etc. The usefulness and ubiquity of neighborhood
creation and maintenance has motivated the design of node-level libraries [12],
[13] that handle the low level details of control and coordination and provide a
neighborhood API to the programmer.

Middleware services [5], [14], [15] also increase the level of programming ab-
straction by providing facilities such as phenomenon-centric abstractions. Mid-
dleware services could create virtual topologies such as meshes and trees in the
network, allow the program to address other nodes in terms of logical, dynamic
relationships such as leader-follower or parent-child, support state-centric pro-
gramming models [16], etc. The middleware protocols themselves will typically
be implemented using node-centric programming models, and could possibly but
not necessarily use communication libraries as part of their implementation.

3 Data Driven Macroprogramming with the Abstract
Task Graph

The Abstract Task Graph (ATaG) [3], [17] seeks to raise the level of programming
abstraction by (a) allowing the architecture-independent specification of applica-
tion behavior through a mixed imperative-declarative program specification, and
(b) transferring the responsibility of low level coordination, communication, and
optimization to an underlying runtime system, thereby allowing the application
developer to focus on high level behavioral aspects.

Macroprogramming broadly refers to the collaborative tasking of sensor
nodes as opposed to configuring individual node behaviors. ATaG support macro-
ness at the application level by allowing the programmer to define and manipu-
late information at the desired level of abstraction without worrying about how
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the information is created. ATaG also supports macro-ness at the architecture
level by allowing concise specification of common patterns of in-network dis-
tributed processing such as neighbor-to-neighbor, many-to-one, tree-based, etc.

3.1 Objectives and Key Concepts

ATaG is designed to support intuitive expression of reactive processing, spatial
awareness, network awareness, architecture independence, and composability.
The first three are the functional objectives that allow concise and intuitive
expression of the behavior of a networked sensing application. The non-functional
objectives – architecture independence and composability – are motivated by
software development concerns such as ease of programming and code reusability.

To accomplish these objectives, ATaG employs a data driven programming
model and mixed imperative-declarative program specification for separation of
concerns. Tasks are defined in terms of their input and output data objects. An
underlying runtime system manages task scheduling and inter-task communica-
tion. Availability of operands triggers task execution, subject to firing rules. This
model is attractive for computing in distributed systems for programming con-
venience, and the modularity and extensibility of the programs. Also, a sensor
network can be viewed as a system for domain-specific transformation of sensor
data and many applications can be naturally expressed as a set of transforma-
tions on raw and processed sensor readings.

The mixed imperative-declarative specification separates the ‘when and
where’ of processing from the ‘what’. The same program can be compiled for a
different network size and topology by interpreting the declarative (‘when and
where’) part in the context of that network architecture, while the imperative
(‘what’) part remains unchanged. The ATaG programmer, who writes only the
task implementations, is free to focus on application-level design without being
concerned about low level details of the sensor node platform and the specifics
of a particular deployment.

3.2 Illustrative Example

Figure 2 is a complete ATaG program for a sensor network application with two
distinct behaviors. The first is to periodically sample the temperature at each
node (through a temperature sensor), continuously compute the average reading,
and log it at a designated root node. The second is to detect an object in the
network through acoustic sensors, and report the current location of the target
to a designated root node.

The figure shows the declarative part of the ATaG program, which consists
of the set of abstract tasks (ovals), abstract data items (square rectangles), I/O
dependencies or channels (arrows), and annotations (shaded rectangles). The im-
perative part consists of the user-supplied code associated with each of the five
abstract tasks in the program, and the user-supplied data structures that repre-
sent the four abstract data items. Abstract tasks represent the types of processing
in the application, abstract data items represent the types of application-specific
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Fig. 2. An ATaG program for temperature monitoring and object tracking

data exchanged between instances of abstract tasks, and the abstract channels
denote the I/O relationship between tasks and data. Task annotations govern
the placement of task instances and the firing conditions of each instance. Chan-
nel annotations govern the scope of dissemination (collection) of instances of a
particular data item produced (consumed) by an instance of the abstract task.

The dependencies and annotations in this program specify that the Sampler
and Aggregator tasks are to be instantiated on each node. The Sampler period-
ically produces a Temperature reading which is routed to the Aggregator task
on the same node. The Aggregator receives temperature readings from its own
node and from its child nodes in a logical tree structure maintained by the run-
time. The Aggregator is fired whenever an instance of Temperature is produced
on its node or on its child nodes. The aggregated reading is conveyed up the tree.
The object tracking algorithm depicted here is based on the one discussed in [12].
Briefly, each node determines whether the object is in its vicinity by periodically
sampling and thresholding the reading from its acoustic sensor. If a target is de-
tected (a TargetAlert is produced), all the nodes that detect the target broadcast
their readings to all other nodes that might have detected the same target - in this
example, the assumption is that a 10mradius includes this set of nodes.TheLeader
task on each node receives all such readings, including its own. The Leader task on
the node that has the highest reading calculates the target position and transmits
the TargetInfo to the designated Supervisor on the root node.

The ATaG program has data driven semantics. A particular task instance is
scheduled for execution when the firing rules of the abstract task are satisfied.
A task can be specified as periodic with a specified period of execution, or
its execution can be predicated on the occurrence of either (any-data) or all
(all-data) of its input data items. This paradigm intuitively supports reactive
processing because abstract data items can represent the occurrence of events
such as the detection of an intruder, in addition to carrying information about the
occurrence such as the location of the intruder. Each execution of a task may not
necessarily result in the production of each of its output data items; depending
on the (application-specific) semantics of the abstract data items, the output
can be produced only when certain conditions are satisfied. For instance, in this
example, SampleAndThreshold produces a TargetAlert only if the sampled
reading exceeds a specific threshold and not otherwise.

Architecture independence is evident in the fact that both the task and
channel annotations are independent of a particular network deployment. Task
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annotations indicate requirements such as density of placement and can be
generic (e.g., instantiate task on each node) or specific (e.g., instantiate task
on node ID 0). The exact physical node which hosts an instance of the task
will be determined when this program is compiled for a particular deployment.
Spatial awareness and network awareness is also supported through channel an-
notations that allow a task to control the scope of input and output of data items.
For instance, when an instance of the SampleAndThreshold task produces an
instance of TargetAlert, it is disseminated by an underlying runtime system to
all nodes within 10m of the producer. Similar annotations can be used to spec-
ify the neighborhood in terms of nodes, e.g., ‘k-hop’. The application developer
need not worry about how the neighborhood information is maintained at that
node, what routing protocols are used for the communication, etc.

Finally, the data driven paradigm makes ATaG programs highly composable.
The ATaG program in Figure 2 actually consists of two disjoint abstract task
graphs, and can be considered as a larger application that is composed by concate-
nating the ATaG programs of two smaller applications, corresponding to temper-
ature averaging and object tracking respectively. Composability is also enabled by
the fact that the onlymethods available to a task for producing and consuming data
items are the put() and get() methods respectively. Similar to the communica-
tion orthogonality of tuple spaces, these methods do not require the producer and
consumer to know each other’s identity. This enables distributed sharing of data
both in space and in time. Also, since tasks are not coupled to each other, there is a
high degree of code reuse since a new task can be added to the application without
modifying the code associated with existing tasks.

3.3 Application Development Methodology

Figure 3 depicts the process of application development using ATaG. The input
to the process is an ATaG program and a description of the target deployment

Target network description
[Annotated Network Graph]

Application specification
[Abstract Task Graph]

Analyze ATaG
and ANG

Generate
configuration

files

COMPILE

Generate task
code template

Application-specific
task code

U
SE

R
 I

N
P

U
T

Runtime system
template

Synthesize
compile-ready

code

Fig. 3. Application development with ATaG



Programming Paradigms for Networked Sensing 459

in the form of an annotated network graph (ANG), which is not discussed in
this paper. The ANG contains information such as the number of nodes, the
co-ordinates of each node, network connectivity, etc.

The graphical interface to the programming and synthesis environment is
through a configurable graphical tool suite called the Generic Modeling Envi-
ronment (GME) [18]. The declarative part of the ATaG program which consists
of the various declarations and their annotations is specified visually. GME stores
the model defined by the user in a canonical format. Tools called model inter-
preters can read from and write to this model database. In our case, model
interpreters were written for the components represented by unshaded boxes in
Figure 3.

4 Towards Design Automation: System-Level Support for
Macroprogramming

In the context of programming methodologies for sensor networks, design au-
tomation refers to the automatic customization of the underlying system level
support for a high level language. As depicted in Figure 1, the highest level
of abstraction is a declarative specification that expresses the desired seman-
tic information to be extracted from the system. This specification will ideally
be translated into a macroprogram after suitable identification, selection, and
composition of the individual behaviors that collaborative provide the desired
service. The macroprogram in turn is compiled into a distributed software sys-
tem that includes the application-level functionality as well as the mechanisms
for control and coordination within a node and between nodes in the system.

The design of the underlying runtime system is critical for design automation
because a well designed runtime system can (i) greatly simplify the compilation
and code generation process, and (ii) allow plug and play integration of the var-
ious low level protocols and services whose choice could be influenced at compile
time by the performance requirements of the end user. The data-driven ATaG
runtime (DART) [4] is designed to separate application-independent mechanisms
for control and coordination from application-specific configuration information
to customize the individual node behavior.

Figure 4 is a high level overview of the modular structure of the data driven
ATaG runtime called DART. Each module offers a well-defined interface to other
modules in the system, and has complete ownership of the data and the pro-
tocols required to provide that functionality. This reduces interactions and de-
pendencies among modules, and hiding the module implementation allows an
entirely different set of protocols to be used within a module as long as the
interface is not affected. We briefly summarize the purpose of each module -
details can be found in [4]. The ATaGManager stores the information from the
user-specified ATaG program that is relevant to the particular node. This infor-
mation includes task annotations such as firing rule and I/O dependencies, and
the annotations of input and output channels associated with the data items
that are produced or consumed by tasks on the node. Datapool is responsible
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Fig. 4. The structure of the DART runtime system

for managing the instances of abstract data items produced or consumed at the
node. NetworkArchitecture is responsible for maintaining all information about
the real and virtual topology of the network. NetworkStack is in charge of com-
munication with other nodes in the network, and manages the routing, medium
access, and physical layer protocols. Dispatcher is responsible for disseminating
data items that are produced on the node to other nodes in the network as
specified in the ATaG program. In addition, a Startup module is responsible for
initializing node-level services such as the transceiver functionality, the protocols
for topology discovery, etc., and then starting the initial set of application-level
tasks. The remainder of the execution is driven by the side-effects of the get()
and put() calls made by the tasks, and the data items arriving over the network
interface for addition to the data pool.

During the normal course of application execution, there are three main
events that can occur: (i) a get() invocation by a user task, (ii) a put() invo-
cation by a user task, or (iii) a put() invocation by the receiver thread when
a data item arrives from another node. When a get() invocation occurs, Dat-
aPool merely decrements the reference count of the data item in question. When
a local task invokes a put(), DataPool first checks if the corresponding data
item is inactive before adding the newly produced data instance to the pool.
This check ensures that all currently scheduled tasks that have been triggered
by the production of a particular data instance get a chance to consume the
data before it is overwritten by the same or different producer. DataPool the
informs ATaGManager about the production of the data. ATaGManager deter-
mines the list of tasks that depend on this data item, checks their firing rules, and
schedules the eligible tasks for execution. DataPool then notifies Dispatcher and
finally returns control to the user task. Dispatcher interacts with ATaGManager,
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NetworkArchitecture, and NetworkStack to send the data item to other nodes as
indicated by the ATaG program. When the third type of event - an invocation
of put() by the receiver thread of the NetworkStack - occurs, it is handled in
much the same way as a local invocation, except that Dispatcher is not part of
the loop.

There are three classes of APIs available to the ATaG programmer: (i)
get()/put() calls to the data pool, (ii) the network-awareness and spatial-
awareness API that allows a task instance to determine the composition of its
neighborhood, and (iii) the API to the sensor interface. Since the runtime sys-
tem does not know the access pattern of each task to the sensing interface, it
cannot optimize resource usage. To enable resource management by the runtime
requires, there should be a way for tasks to specify their sensor data requirements
at a high level and leave the details of interfacing with sensors to the runtime
system. In future work, we plan to extend the ATaG model with a special class
of abstract data items to represent readings (scalar values, images, etc.) from
the sensing interface(s). A set of annotations will be defined for the abstract
‘sensor data’ items, to indicate the type of sensing interface and other param-
eters such as spatial coverage and temporal coverage. This extension will allow
the runtime a greater flexibility in task placement and resource management.
An important problem in this context is resource allocation in face of conflict-
ing requests from application tasks. The challenge is to develop a robust and
scalable mechanism and a common utility scale to arbitrate across disparately
developed ATaG libraries that are combined into a larger application. The key
challenge in extending the basic model to handle such scenarios is to maintain
the core design objectives - especially application neutrality - while enabling the
expression of increasingly sophisticated behaviors.

5 Conclusion

The complexity of programming large scale embedded networked sensor sys-
tems has stimulated interest in high level programming paradigms that ease
the task of application development. Many of the concepts from traditional dis-
tributed computing such as different program flow mechanisms (control driven,
data driven, and demand driven) and coordination structures (distributed shared
memory, tuple spaces, etc.) are applicable at various levels of abstraction in the
“programming stack” for sensor networks.

The Abstract Task Graph was discussed in this paper as a demonstration
of the applicability of data driven computing for code modularity, reuse, and
extensibility, and of mixed imperative-declarative programming for separation
of concerns to the programming of networked sensor systems. Programming lan-
guages such as ATaG will ultimately act as the intermediate representations that
are generated from high level service-oriented specifications and synthesized into
deployable software for a target system.
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Abstract. The revoke mechanism in generalized relaxed distributed mutual
exclusion algorithm GRME [1] for eliminating a potential deadlock can cause
extensive unnecessary revoke actions by the nodes which fail to receive the
required granted-replies to their resource requests within a certain predefined
time limit. It may happen that there is actually no deadlock present or that only
a few nodes need to revoke some of their resource requests to eliminate the
deadlock. We show that if the interference graph G is triangle-free (no three
nodes are mutually adjacent), then we can choose the request-sets Ri in GRME
in such a way that deadlocks are prevented altogether and there is no need to
use revoke-messages, while keeping the resource-use decisions fully distributed
and allowing non-interfering nodes to use the resource simultaneously.

The  distributed Generalized  Relaxed Mutual  Exclusion  algorithm (GRME) was
introduced in [1] to address the dynamic frequency allocation problem to the base
stations in a mobile telephone system. Here, each frequency is a separate shared
resource for which the base stations compete with each other, and thus there is one
mutual exclusion problem for each frequency. A frequency can be shared by two
non-interfering base stations, i.e., when they are physically separated by a certain
minimum distance. Since there is a limited number of frequencies available to a
given wireless service provider and the number of customers far exceeds the number
of those frequencies, the sharing of frequencies among the base stations (for their
customers) plays a key role in improving the service-performance by reducing the
call blocking, which occurs when a base station cannot be assigned a suitable fre-
quency in response to one of its customer’s attempt to place a call. (No two cus-
tomers within a base station cell can share a frequency at any giv en moment.) The
term "relaxed" in GRME refers to the fact that several mutually non-interfering
nodes (base stations) can simultaneously use a resource, and the term "generalized"
refers to the use of the abstract information structure approach introduced in [6].

In the simplest distributed mutual exclusion algorithm by Ricart and Agrawala
[2], a node sends a request-message to all other nodes for permission to use the
resource and enters the critical section when it receives all N − 1 permissions (N
being the number of nodes in the network). It uses only 2(N − 1) messages per
resource-access compared to 3(N − 1) in Lamport’s algorithm [3]. The algorithm by
Suzuki and Kasami [4] uses N − 1 request-messages and one granted-message
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message has N pieces of information (one per node). Here, the node which is cur-
rently using the resource determines single-handedly the next node to get the
resource and sends that node the granted-message. The granted-message contains
for each node i the most recent resource-access number ri , which is increased to
ri + 1 when node i completes a resource-use before it sends granted-message to the
next node to access the resource. Maekawa [5] uses a new approach, where a node
sends request-message only to a subset of nodes and it accesses the resource when
granted permission by each of those nodes; it uses only O(√⎯ ⎯N ) messages. In [6],
Sanders generalizes Maekawa’s idea to an information-structure-based approach. In
each of [2-6], at most one node can use the resource at a time, whereas in GRME
several non-interfering nodes can access the resource simultaneously.

The resource (frequency) sharing problem is modeled in [1] by an interference
graph G = (V (G), E(G)) whose nodes are the processes (base stations) and whose
links (i, j) indicate that process i and process j interfere, i.e., they cannot access the
resource at the same time (mutual exclusion). Two nodes i and j can use the
resource simultaneously if and only if (i, j) ∉ G. In GRME algorithm [1], which
generalizes Sanders’ algorithm [6], each node i sends a request-message to a subset
of nodes Ri , and when each node j ∈ Ri grants the request to i, node i can access the
resource. Likewise, when node i is done with resource, it informs a set of nodes Ii ⊆
Ri . The behavior of GRME is completely determined by the choice of the sets Ri

and Ii , except for the variation of message arrivals due to arbitrary transmission
delays. We first review GRME algorithm and show that we must have Ii = Ri for all
i in order for GRME to be a meaningful solution to the mutual exclusion problem.

The initial GRME algorithm, which can easily give rise to deadlocks, is modified
further in [1] using an abort mechanism that allows a node to withdraw all its pend-
ing resource requests using a revoke-message if it does not get the resource within a
predetermined time. The later is simply interpreted as a deadlock (there being no
explicit test for deadlock detection) although there may not be an actual deadlock. If
there is an actual deadlock, it may happen that all nodes involved in the deadlock will
exercise the abort mechanism although it might be possible to eliminate the deadlock
by aborting only some of the resource requests of one or a few deadlocked nodes.
The approach used in [1] has therefore the potential of a significant and unnecessary
increase in message load, and indeed the system remains vulnerable to the same
deadlock once again. We address the deadlock avoidance problems by focusing on
the appropriate selection of the sets Ri so that no deadlock can occur and hence no
need to use the revoke-messages. We show this can be done for triangle-free inter-
ference graphs G, while keeping the workload fairly distributed among all nodes.

Fig. 1 shows a finite-state model (FSM) of  the  algorithm GRME  in  [1],  where  the
algorithm was presented simply as a set of rules. The finite-state model shows more
clearly the actions available at a node i at various stages. Each transition in Fig. 1 is
labeled with a "condition/action" pair. If node i is currently in state σ, then each

(which is called privilege-message in [4]) per resource access, but the granted-

2 Review of GRME Algorithm
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enabled transitions is selected at random for execution. The action-part of the
selected transition is then carried out and the head of the transition becomes the new
state of node i. The empty-condition, denoted by "−", means that it is always satis-
fied; the empty-action, also denoted by "−", means no action is performed. Each
node i in the interference graph G acts according to this FSM. Table 1 shows the
three kinds of messages (M1)-(M3) used in GRME for coordinating the resource
allocation to achieve mutual exclusion. The list Li at node i contains the messages at
i that are yet to be processed (or need further processing). The FSM in Fig. 1 is non-
deterministic because at each state σ ≠ start-state one may have sev eral transitions
enabled at a given moment. We also do not specify any particular order in which
messages are to be selected from Li for processing. We write R′i = { j: i ∈ R j}, the
nodes which send request-message to node i.

σ0 =
start-state

σ1 =
doesn’t hav e
the resource

−/CRUi = Li = ∅

Li ≠ ∅/process a mssg in Li
(no granted-mssg in Li)

σ2 = waiting
for the resource

granted

−/send request-mssg to each
j ∈ Ri and let numPending-
GrantedMssgsi = |Ri |

Li ≠ ∅/process a mssg in Li
(all mssg types can be in Li)

σ3 = has
resource

numPending-
GrantedMssgsi = 0/−

−/send released-mssg
to each j ∈ Ii

Li ≠ ∅/process a mssg in Li
(no granted-mssg in Li)

(M1) Resource request message: A node i sends request(i, j) message
to a each node j in a fixed  set Ri = request-set(i) when it cur-
rently does not have the resource and wishes to acquire it.

(M2) Resource granted message: A node j ∈ Ri sends granted( j, i)
message to node i as a response to a request(i, j) message from
i if certain conditions hold.

(M3) Resource released message: A node i sends released(i, j) mes-
sage to each node j in a fixed  set Ii = inform-set(i) when it is
done with the current use of the resource. The released-mes-
sages to nodes in Ii as a whole can be thought of as the response
of node i to the set of granted-messages it received (from nodes
in Ri) as a whole.

Fig. 1. The finite-state machine for node i in algorithm GRME

Table 1. Messages use in GRME algorithm

transition in state σ whose condition-part is satisfied becomes enabled and one of the
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It is convenient to define the digraph GR which has the same nodes as G and the
arcs {(i, j): j ∈ Ri , 1 ≤ i ≤ |V (G)|}. Thus, Ri is the set of nodes that are adjacent
from node i and R′i is the set of nodes that are adjacent to node i. As will be seen,
the behavior of GRME in regard to mutual exclusion and deadlock is completely
determined by GR (in spite of its non-deterministic nature) when Ri = Ii for all i,
which is the case of primary interest.

We denote  a  message  from i to j by  mssg(i, j), where mssg =  request,  granted,  or
released. Each node i maintains, in addition to its message-list Li , the set CRUi of
nodes j to which it has sent the message granted(i, j) and from which it has not
received the corresponding message released( j, i). Thus, j ∈ CRUi means that node
j is either currently holding the resource or it is waiting to receive granted-message
from some other nodes or it may have released the resource but i does not know
about it (i.e., the released( j, i)-message has not been processed at i); it may even be
the case that i will never know about it because i ∉ I j . In particular, CRUi ⊆ R′i .

(P1) Processing of request(i, j) at j: If i ∉ CRU j and there is no node k such that
(i, k) ∈ G and k ∈ CRU j , then add i to CRU j , send granted( j, i) to i, and
remove request(i, j) from L j . (Otherwise, the message request(i, j) is put
back in L j .)

(P2) Processing of released(i, j) at j: CRU j = CRU j − {i} and remove
released(i, j) from L j . (If we were to keep the request(i, j) that was post-
poned in (P1) in a separate queue D j at node j, then one could go through
them and see if any of them can be granted now and in that case we would
remove that request from D j and add i to CRU j .)

(P3) Processing of granted(i, j) at j: Decrement numPendingGrantedMssgs j

(which is initialized to |R j in the transition from σ1 to σ2 in Fig. 1) by 1 and
remove granted(i, j) from L j .

The states σ1 and σ3 in Fig. 1 differ only in that node i sends out different mes-
sages (to nodes in Ri or Ii , respectively) in the transitions (σ1, σ2) and (σ3, σ1); none
of these transitions changes Li . The processing of a particular kind of message does
not depend on the state, but the content of Li can depend on the state.

Example 1. Consider the interference graph G in Fig. 2 and let Ri = {4} and Ii =
{2} for each i. On completion of processing the messages in the sequence
〈request(1,4), request(3,4), granted(4,1), granted(4,3)〉, nodes 1 and 3 will have the
resource simultaneously and we have CRU4 = {1, 3}, L1 = L3 = L4 = ∅, and
numPendingGrantedMssgs1 = numPendingGrantedMssgs3 = 0. (In contrast, for any
message-sequence we have CRU1 = CRU2 = CRU3 = ∅, with L2 having zero or
more messages.) Node 4 cannot now grant future request for resource from nodes 1
and 3 and thus nodes 1 and 3 cannot access the resource again. Also, a request from
node 2 or from node 4 for the resource will not be granted by node 4, even after both
nodes 1 and 3 have sent released-message to node 2. However, had we chosen I1 =

2.1 Message Processing
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A node i cannot  send its (n + 1)th request-message, n > 0, until  its nth  request
was granted by every one in Ri and node i has subsequently sent released-message to
ev ery node in Ii when it finished the nth use of the resource. It follows that L j can
contain at most one copy of the message request(i, j) because the previous copies of
request(i, j) were removed from L j when node j issued the corresponding
granted( j, i). Likewise, the list Li can contain at most one copy of granted( j, i) for a
given j. In reg ard to release-message, if j ∈ Ii − Ri , then i never enters the set CRU j

and L j may contain multiple copies of released(i, j). Other than the multiple copies
of released(i, j) in L j , the removal of j from Ii does not prevent or provide access to
the resource for node i or any other node for any message sequence. Thus, we can
assume (as in [1]) that Ii ⊆ Ri for all i. In that case, there can be at most one
released(i, j) in L j for j ∈ Ii because for the case Ii ⊂ Ri node i cannot even get
access to the resource more than once and for the case Ii = Ri node i cannot send
(n + 1)th released-message until its nth released-message was processed by each j ∈
Ii = Ri . Also, both request(i, j) and released(i, j) cannot occur simultaneously in L j

because that would require j ∈ Ri∩Ii , but then request(i, j) would have been deleted
from L j as node j sent granted( j, i) before node i could send released(i, j). This
suggests the following lemma.

Lemma 1. If Ii ⊆ Ri for all i, then |Li | ≤ |R′i | + numPendingGrantedMssgsi (≤ |R′i | +
|Ri |).

Proof. Suppose R′i = { j1, j2, ⋅⋅⋅, jn} and  currently CRUi = { j1, j2, ⋅⋅⋅, jm},  where
0 <= m ≤ n (m = 0 means CRUi = ∅). Then, Li can contain at one most one
request( j, i) for j = jk , m + 1 ≤ k ≤ n. Let I ′i = { j: i ∈ I j} ⊆ R′i; these are the nodes
j who can send released-message to node i. Since only the nodes that have received
granted-message can send released-message, there is at most one released( j, i) for j
= jk′, 1 ≤ k′ ≤ m. The first  term in the bound for |Li | then gives the number of
request( j, i) and released( j, i) messages in Li . The second term gives the bound for
the number of granted( j, i) messages in Li , with j ∈ Ri . Since Ri and R′i may be
disjoint, the lemma is proved.

2.2 Analysis

Fig. 2. A simple interference graph G (shown on the left) and its GR (shown on the right) where
Ri = 4 for each i

is true for node 4, although both nodes 1 and 4 cannot have the resource at the same
time. Note that we can remove 2 from an Ii without having any impact on the acces-
sibility of the resource for that node or any other node.

{2, 4} ⊇ R1, say, only node 1 can access the resource again and again, and the same
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First,  we  argue that  we can assume (i, i) ∉ G for  each i (in [1], it is assumed that
(i, i) ∈ G for each i). The only role (i, i) can play is in processing request(i, j) at a
node j ∈ Ri if i ∈ CRU j . This condition can arise only after a request for resource
from node i was granted by each node in Ri and i has already released that instance
of the resource (and informed the nodes in Ri), but j ∉ Ii and node i making the next
request for resource. However, by removing (i, i) from G we can only allow more
access to resource at node i, without violating mutual exclusion. Note that if Ii = Ri ,
then we cannot have request(i, j) ∈ L j and i ∈ CRU j .

Next, we argue that we can assume Ii = Ri for each i (Theorem 1 in [1], which we
will show to be wrong, assumes that Ii ⊆ Ri for each i). We begin with the simple
observation that removing a node j ∈ Ii − Ri does not affect the resource allocation
to node i or any other node; this can be seen from Example 1 with j = 2, which does
not belong to any Ri . Now, suppose j ∈ Ri − Ii for some i. Then, following the pro-
cessing of the first  request(i, j) at j, we hav e i ∈ CRU j permanently. There are two
cases to consider. If we did not eliminate (i, i) ∈ G, then node i will not ever receive
granted( j, i) from j and hence will not receive the resource more than once, leading
to starvation. On the other hand, if we have eliminated (i, i) from G, then other
problems can arise when there is a node k such that (i, k) ∈ G and j ∈ Rk . In that
case, node k cannot receive the granted( j, k) message and hence cannot get access to
the resource following the first  access to resource by node i, which is again a case of
starvation. On the other hand, if there is no such k, then removing j from Ri will not
lead to any new cases of failure of mutual exclusion that were not there before. This
shows that we can assume Ii = Ri .

Lemma 2. A necessary and sufficient  condition to assure that each node i can access
the resource  infinitely often, assuming a first-come-first-serve processing of the 
messages from each Li , is Ii = Ri ≠ ∅.

Henceforth, we assume that Ii = Ri ≠ ∅ for each node i.

The purpose  of Theorem 1  in [1] is only to  assure the relaxed mutual exclusion,
i.e., two nodes i and j can get simultaneous access to the resource if and only if (i, j)
∉ G. It is not intended to prevent deadlock or starvation. We can achieve the relaxed
mutual exclusion property by simply taking each Ri = {1}, say, and each Ii = ∅. If
we do not want empty sets for Ii , then we can take each Ri = V (G) and let each Ii be
arbitrarily assigned to {1} or {2}, say. But this shows that the condition "[(i ∈
Ii∩R j) ∧ ( j ∈ I j∩Ri)] ∨ [Ii∩I j ≠ ∅] for each (i, j) ∈ G" in [1]] is not necessary.
The corrected necessary and sufficient  condition for RME is then given by the fol-
lowing Theorem. The condition given in [1] reduces to this if we assume that Ii = Ri

for each node i.

Theorem 1. If Ii = Ri for each node i, then a necessary and sufficient  condition for
GRME to provide mutual exclusion is Ri∩R j ≠ ∅ for (i, j) ∈ G.

2.3 Two Simplifications

2.4 Corrected Necessary and Sufficient Condition
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To  prevent starvation of node i, node j should not repeatedly  process
request(i′, j), i′ ≠ i, and send granted( j, i′) message while there is a pending
request(i, j) ∈ L j . To see this, consider G with three nodes and the links (1, 2) and
(2, 3) and Ri = Ii = { j} for some j. It may happen that first  node 1 is granted the
resource, then request(2, j) is not granted because of (1, 2) ∈ G and subsequently
request(3, j) is granted. Now before node 3 releases the resource it may happen that
node 1 has released the resource and has its next request(1, j) granted while node 2
is still waiting with its request(2, j) ∈ L j pending. In this fashion, as long as one of
nodes 1 and 3 has the resource, node 2’s request is not granted, leading to its starva-
tion. This can be easily prevented by each node j keeping a separate local count(i) =
the number of requests granted to other nodes while a previous request(i, j) ∈ L j for
each i ∈ R′j ; initially, each count(i) = 0. When a count(i) exceeds a predetermined
maximum limit M j = |R′j | − 1, say, node j does not grant a request to any node that
interferes with node i. Moreover, when node j processes a released(i′, j)-message,
count(i) for each node i which interferes with node i′ is increased by one, indicating
its higher preference for granting resource by node j. In other words, if there are
several request(i, j) messages in L j , node j will select a random i with the largest
count values > M j (if any, and hence currently having no interfering node granted its
request by node j) for granted( j, i) message.

Definition  1. We  say that a link (i, j) ∈ G is supervised by a node k if k ∈
Ri∩R j , i.e., {i, j} ⊆ R′k . The node k then prevents nodes i and j getting access to
the resource at the same time. (A given link (i, j) may be supervised by more than
one node.)

It is clear that for one successful access-use-release cycle to the resource for node
i, it sends |Ri | request-messages, receives that many granted-messages, and finally
sends that many released-messages, giving a total of 3|Ri | message load. Thus it is
important to keep the sets Ri as small as possible satisfying Theorem 1.

Lemma 3. If the sets Ri minimize the total message load, then Ri ⊆ ∪{R j : (i, j) ∈
G} for each i.

Proof.  If k ∈ Ri − ∪{R j : (i, j) ∈ G},  then  removal of k from Ri cannot destroy
the property "Ri∩R j ≠ ∅ for (i, j) ∈ G" needed for the mutual exclusion. Thus, we
can replace each Ri by Ri − ∪{R j : (i, j) ∈ G}, say in the order i = 1, 2, ⋅⋅⋅, N =
|V (G)| and repeat the process till none of them changes in a cycle. The finiteness of
the various sets implies that the process will terminate (in no more than N 2 cycles).
The final values of Ri satisfy the lemma and the intersection property "Ri∩R j ≠ ∅
for (i, j) ∈ G" in Theorem 1.

It is clear that if we select a  granted or  a  released  message  from Li at node i for
processing, then it can always be processed successfully. Till now we hav e not
imposed any restriction like first-in-first -out for selection of messages in Li for pro-
cessing, and this worked fine  because the only messages from a node j to i for which

3 Deadlock Prevention
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other nodes’ access to the resource who depend on granted-message from j) are
request( j, i) and released( j, i) and only one of them can be in Li at any time. We
will continue to assume that any message can be selected from Li for processing at a
node i, except for "busy-looping" situation where node i attempts unsuccessfully to
process the same request( j, i) message again and again without being able to send
granted(i, j) to j, or cycling in that fashion through a set of request-messages for dif-
ferent j.

A deadlock in the present context means that there is a non-empty subset of nodes
D ⊆ V (G) which are unable to receive additional granted-message and progress fur-
ther towards having access to the resource (after having received some granted-mes-
sages). The nodes in D may, howev er, continue to process other messages sent to
them, including sending granted-messages to nodes not in D. A minimal message-
scenario in a deadlock is therefore one where the only messages present in the sys-
tem are the unfulfilled  (and unprocessable) request-messages from nodes in D. The
following definition  is a refinement of an observation in [1].

Definition 2. An alternating  cycle in GR is a cycle C = 〈s1, t1, s2, t2, ⋅⋅⋅, tm, s1〉,
where the conditions (1)-(3) below hold. In particular, C has an even number of arcs,
which are traversed alternately in the forward direction and the backward direction.

(1) The nodes si’s are distinct from each other and so are the arcs (si , ti) and
(si+1, ti); in contrast, the nodes t j’s need not be distinct and, moreover, we may
have si = t j for some i and j, including the cases j = i or i + 1.

(2) Each arc (si , ti) ∈ GR corresponds to a granted request, and

(3) Each arc (si+1, ti) ∈ GR is a blocked request due to the granted request (si , ti)
and (si , si+1) ∈ G (with sm+1 = s1).

Note that the arcs (si , ti) and (si+1, ti) form an Eulerian graph on the nodes in an
alternating cycle C in the sense that each node in C has an even (2 p ≥ 0) number of
arcs to it and an even (2q ≥ 0) number of arcs from it, with p + q > 0 for each node si

and t j . This gives a simple method of showing the absence of a possible alternating
cycle in GR without being concerned with which arcs represent granted requests and
which arcs represent blocked requests. Each alternating cycle C = 〈s1, t1, s2, t2, ⋅⋅⋅,
tm, s1〉 in GR has associated with it the cycle 〈s1, s2, ⋅⋅⋅, sm, s1〉 in G and thus the
existence of C depends on both G and the sets Ri , i.e., GR.

Example 2. Figs. 3(i)-(iii) show an interference graph G, a possible graph GR, and a
deadlock state. Here, node 3 has sent granted(3, 1) to node 1 and node 4 has sent
granted(4, 2) to node 2, which now prevent node 3 to send granted(3, 2) and also pre-
vent node 4 to send granted(4, 1). Since neither of nodes 1 and 2 can proceed fur-
ther, we hav e a deadlock with D = {1, 2}. In this case, the deadlock is caused due to
the fact that the interference (1, 2) is being supervised by both nodes 3 and 4. A
deadlock can occur even if each interference is supervised by exactly one node. This
is shown in Figs. 3(iv)-(vi). In each case, we have an alternating cycle C; C = 〈1, 3,
2, 4, 1〉 in Fig. 3(iii) and C = 〈1, 2, 5, 1, 4, 5, 3, 4, 2, 3, 1〉 in Fig. 3(iv). Note that if

node i can influence node j’s behavior in terms of node j’s access to the resource (or
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in Fig. 3(v) because node 2 is the supervisor of (5, 1) ∈ G, then (1, 3) ∈ GR is not
part of an alternating cycle since this is the only arc from node 1 and this in turn
means (2, 3) ∈ GR is not in part of alternating cycle since this is now the only arc to
node 3, and so on. It follows that the reduced G −(5, 1) and its associated reduced
GR −{(1, 2), (5, 2)} is deadlock-free. (If we apply Theorem 3 to G −(5, 1), then we
get a different GR which is also deadlock-free; we can also get a deadlock-free fam-
ily of Ri for the interfernce graph G in Fig. 3(iv) using Theroem 3.)

1 2

3 4

(i) An interference
graph G.

1 2

3 4

(ii) A digraph GR that
can create a deadlock.

1 2

3 4

(iii) A deadlock
state.

1

2

34

5

(iv) A more
complex G.

1

2

34

5

(v) GR; each (i, j) ∈ G
has a unique supervisor.

1

2

34

5

(vi) A deadlock
state.

Lemma 4. A giv en family of sets Ri (= Ii) allows a deadlock in GRME algorithm
[1] if and only if there is an alternating cycle in GR.

Proof.  We prove the "only if" part, the "if-part" being trivial. Consider a minimal
set of nodes D involved in a deadlock. Each node si ∈ D has therefore at least one
of its requests granted that causes at least one request in some other node in D to be
blocked, because otherwise we could remove the requests from si (i.e., pretend they
did not take place), including those that have been granted to si , and D −{si} would
still be deadlocked, contradicting the minimality of D. Let ti be a node that granted
a request to si and is blocked from granting a request to si+1 ∈ D, si+1 ≠ si . Starting
with a node s1 ∈ D, we can successively traverse the links (s1, t1), (t1, s2), (s2, t2),
etc as in an alternating cycle till we have either (tm, sm+1) where sm+1 = si , i ≤ m, or
we have (sm, tm) where tm = ti for i < m. In either case, we get an alternating cycle
involving s j and t j , for i ≤ j ≤ m. By minimality of D, it follows that i = 1 and D =
{s1, s2, ⋅⋅⋅, sm}.

Fig. 3. Illustration of deadlock state; solid arcs show requests granted and dashed arcs show
requests blocked

we remove (5, 1) from G in Fig. 3(iv) and remove the arcs (1, 2) and (5, 2) from GR
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a deadlock-free mutual exclusion with GRME.

Proof. Immediate from Theorem 1 and Lemma 4.

Example 3. Figs. 4(i)-(ii) illustrate a simple method for choosing the sets Ri so that
the resulting GRME provides mutual exclusion property in a deadlock-free fashion.
For each link (i, j) ∈ G, we simply let the larger node max{i, j} be a supervisor for
the link. Note that if G does not contain three nodes which are mutually adjacent to
each other, i.e., G is triangle-free, then this gives a unique supervisor for each (i, j)
∈ G. For a cycle on the nodes i < j < k in G, the above scheme makes both j and k
a supervisor of the link (i, j) in G and hence it can create a deadlock due to the alter-
nating cycle C = 〈i, k, j, j, i〉, where s1 = i, t1 = k, and s2 = j = t2 (cf. Example 2).
We argue that no deadlock can occur in Fig. 4(ii). Since (4, 4) is the only arc leaving
node 4, the Eulerian property of an alternating cycle C implies that the arc (4, 4) can-
not be part of an alternating cycle. Thus, the only way node 4 can be in an alternat-
ing cycle C is that it acts in the role of a ti node implying that the arcs (2, 4) and (3,
4) are in C, but then (2, 3) must be of the form (si , si+1) and belong to G, which is
not the case. It follows that node 4 is not in C, but then clearly GR −{4} has no non-
empty Eulerian subgraph and hence there is no alternating cycle in GR. This exam-
ple suggests the next definition.

1 2

3 4

(i) An interference graph
G with no 3-cycle.

1 2

3 4

(ii) GR; each (i, j) ∈ G
has a unique supervisor.

Definition  3. Let Ri = { j: (i, j) ∈ G and i < j} if there is no link (i′, i) ∈ G for i′
< i; otherwise, let Ri = { j: (i, j) ∈ G and i < j} ∪ {i}. In particular, Ri = ∅ if and
only if i is an isolated node (is not adjacent to any node). We call this the max-
scheme for defining the sets Ri or equivalently the digraph GR, whose arcs are now
given by {(i, j), ( j, j): (i, j) ∈ G and i < j}.

Lemma 5. If G is triangle-free and the sets Ri are defined by the max-scheme, then
they satisfy the property in Theorem 1 and the property in Lemma 3.

Proof.  First, if  (i, j) ∈ G and i < j, then j ∈ Ri∩R j and hence the sets Ri satisfy
Theorem 1. Now we show that the sets Ri satisfy Lemma 3. For an isolated node i,
Ri = ∅ and the union ∪{R j : (i, j) ∈ G} in Lemma 3 is also ∅. Now consider a

Fig. 4. Illustration of a deadlock-free scheme Ri when there are no triangles in G

node i which is not isolated and is not adjacent to any node i′ < i; let the nodes adja-

Theorem 2. If the sets Ri give a deadlock-free mutual exclusion with GRME and
π (x) is a permutation of the nodes V (G), then the sets Rπ

i = {π ( j): j ∈ Ri} also give
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any other node i, there is at least one node i′ < i, i′ ∈ A(i); there may be other nodes
smaller than i which are in A(i). Let { j1, j2, ⋅⋅⋅, jm}, m ≥ 0, be the nodes in A(i) that
are larger than i. Then, Ri = {i, j1, j2, ⋅⋅⋅, jm} and once again Ri ⊆ ∪{R j : (i, j) ∈
G} because Ri′ ⊇ {i} and Ri′ is included in the union and each R jk

⊇ { jk}.

Theorem 3. For each triangle-free interference graph G, the request-sets Ri defined
by the max-scheme gives a deadlock-free GRME and degree(i) ≤ |Ri | + |R′i | ≤ 2 +
degree(i), where degree(i) = the number of links at i in G.

Proof. We may  assume that G is a connected graph  because  otherwise GR can  be
constructed separately for each component, with each Ri contained in the component
that contains node i. Suppose G has N nodes {1, 2, ⋅⋅⋅, N}, N ≥ 2. From Def. 3, it
follows that R′1 = ∅, RN = {N}, |R1| + |R′1| = degree(1), and degree(i) ≤ |Ri | + |R′i | =
2 + degree(i) for i > 1.

The proof for the deadlock-freeness follows a similar argument as in Example 3
together with the induction on the number of nodes N in G. We first  show that node
N does not participate in an alternating cycle C. Since there is only one arc (N , N )
leaving node N in GR, this node can participate in C only as a ti-node. But then the
corresponding (si , si+1) ∈ G and also (si , ti) and (si+1, ti) ∈ GR because of the max-
scheme. Since G is triangle-free, this means si = N = ti and si+1 is a node adjacent
to N in G, say, the node k. It follows that there is no ti−1 with (si , ti−1) ∈ GR so that
it can be traversed backwards in C and it is distinct from (si+1, ti). This shows that N
is not part of an alternating cycle. By induction (G −{N})R = GR −{N} has no alter-
nating cycle and hence GR has no alternating cycle.

The bounds degree(i) ≤ |Ri | + |R′i | ≤ 2 + degree(i) in Theorem 3 shows that the
message-load 2(|Ri | + |R′i |) = #(messages sent and received by node i for one access
to the resource by each node) for node i is proportional to the number of nodes with
which it interferes. In this sense, the scheme used in Theorem 3 is fair. Of course,
the choice Ri = {N} for each i is also deadlock-free, but it has the disadvantage that
node N has a disproportionate message-load compared to the other nodes. If G is a
tree (and hence triangle-free), with each node i ≠ N adjacent to node N , then the
max-scheme gives each Ri = {N}. In this case, we can reduce max(|Ri | + |R′i |) from
N+2 to 3 if we interchange the node labels 1 and N . Note that we can combine The-
orem 3 with Theorem 2 and get many alternative family of sets {Ri: i ∈ V (G)} to
provide a deadlock-free GRME for a triangle-free interference graph G.

We hav e provided a  simple  sufficient condition "triangle-free property  of the
interference graph G" and a method for selecting the request-sets Ri to achieve dis-
tributed generalized relaxed mutual exclusion, where no deadlock can happen and
where the processing load is fairly distributed among the nodes.

4 Conclusion

cent to i in G be A(i) = { j1, j2, ⋅⋅⋅, jm}, where m ≥ 1 and each jk > i. Then, Ri =
{ j1, j2, ⋅⋅⋅, jm} and each R jk

⊇ { jk}, which shows Ri ⊆ ∪{R j : (i, j) ∈ G}. For
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Abstract. In this paper a fault tolerant routing algorithm for unicasting
on star graph is proposed. The routing algorithm does not involve back
tracking and uses fault-vectors. Each node in an n-star has a fault-vector
of � 3(n−1)

2 � bits. The kth bit of a node’s fault-vector is a measure of its
routing ability to nodes which are at distance k from itself. The fault-
vector of each node can easily be calculated through � 3(n−1)

2 � rounds of
information exchanges among neighbor nodes. For a given source des-
tination pair (u, v), the routing algorithm finds a path of length d + h
where d is the length of the shortest path between u and v in a fault-
free star graph and h = 0, 2 or 4. The space requirement for storing the
fault vector is O(n) in each node. Simulation results show that the pro-
posed algorithm far outperforms the routing algorithm based on safety
vectors [13].

1 Introduction

The star graph originally proposed in [1] has emerged as an attractive intercon-
nection network for distributed memory systems. Both star graph and hypercube
fall under one class of graphs called Cayley graphs [3]. Cayley graphs have many
desirable properties like node symmetry, edge symmetry, recursive substructure
etc. But compared to hypercubes the star graphs have smaller degree and di-
ameter for the same number of nodes. The n-star has n! number of nodes with
degree n− 1 and diameter � 3(n−1)

2 �.
Interprocessor communication plays an important role on the performance

of a multicomputer. Several routing problems like unicasting, single node broad-
cast, all-to-all broadcast have been studied in the context of star graphs [3], [8].
Also, adaptive and fault-tolerant routing algorithms have been the subject of
extensive research in recent years. These routing algorithms can be broadly clas-
sified as i) with restricted number of faults and ii) where the number of faults is
unrestricted.

The routing algorithm proposed in [10] falls under the first category. The star
graph is shown to be maximally fault tolerant, i.e., the n-star remains connected
in presence of up to n−2 faults. The routing algorithm is based on finding n−1
node-disjoint paths between the source and the destination. So, if the number of
faults is restricted to n−2 at least one fault-free path is available. The length of
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the path found by routing algorithm is d + e where d is the minimum distance
between source and destination, and e is 0, 2, or 4.

Those routing algorithms which do not require the number of faults to be
less than n− 1 again can be put into 3 classes as follows:

Local information based method [6], [7]: Each node knows only the status of
its neighbors. This method is based on depth first search and backtracking is
required when all forward links are blocked by faulty nodes or links. Hence, the
length of the routing path is unpredictable. The algorithm presented in [7] is
better than the one in [6] in the sense that it guarantees liveness and deadlock
free transmission. Even then this backtracking algorithm has some shortcomings.
It incurs some heavy penalty on the length of the path. Even with the number of
faults ≤ n− 2 in an n-star, the penalty can be as large as 12 in a 10-star. When
the number of faults is more, a message is routed from source to destination
after at most 2(n! − 1) − h0 hops, where h0 is the number of hops needed to
route the message on an optimal path in the absence of faults.

Global information based method [9] : Each node knows the status of all the
nodes in the network. But a separate process is needed to collect the global
information. So, this method may be too costly with respect to time and storage
space.

Limited global information based method : Each node knows the exact fault infor-
mation within distance d and the fault information about nodes that are outside
distance d is coded in a special way. This approach requires a relatively simple
process to gather and maintain fault information and can be more cost effective
than the ones based on global information or local information. Examples of this
approach are safety vector (d = 1) and extended safety vector (d = 2), which are
quite successful in hypercube [11], [12]. The safety vector approach was used in
star graph where path patterns are taken into account [13]. But the performance
of the routing algorithm presented in [13] degrades drastically as the number of
faults increase.

The proposed approach is simpler than the one in [13] as we do not take the
path patterns into consideration but it still outperforms the one based on safety
vector by a great extent. Here, each node is associated with a fault-vector of
� 3(n−1)

2 � bits. For the safety vector model the size of the safety vector associated
with each node is

∑
pi where pi is the number of distinct path patterns for paths

of length i. For example, when n = 7, the length of the fault vector is 9, and the
length of the safety vector is 30.

The organization of the paper is as follows. Section 2 describes some ba-
sic properties of star graph relevant to our routing algorithm. Section 3 in-
troduces the fault vector and presents the fault tolerant routing algorithm.
Section 4 presents some experimental results and Section 5 concludes the
paper.
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2 Preliminaries and Basic Properties

The n-star graph denoted as Sn consists of n! nodes, each of degree n− 1. Each
node is identified by a permutation of digits 1 through n. Two nodes u and v
are connected by an edge if and only if the node label of v can be obtained from
the node label of u by interchanging the first symbol with any other symbol. If
u is obtained from v by switching the ith symbol with the first, then we write
gi(u) = v, where gi is a generator of Sn. So, the degree of each node in Sn is
n− 1 corresponding to the generators g2, g3, · · · , gn.

The 3-star and 4-star graphs are shown in Fig. 1 and Fig. 2 respectively.
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2.1 Properties of Shortest Path

In this paper we focus on the communication problem which is called unicasting,
i.e, sending a message from a particular source to a particular destination. The
path from a node s to another node t can be identified as a sequence of generators
gi1, gi2, . . . gim where m is the length of the path. For example in a 4-star, the
path from 1234 to 4321 can be represented by the sequence g4g2g3g2.

Any path from a node u to another node v can be represented by a generator
sequence S = gi1gi2 . . . gim, gij ∈ {g2, g3, . . . gn}. In such case we write S(u) = v.

Definition 1. Two paths S1 and S2 are equivalent if S1(u) = S2(u).

The following lemmas are taken from [5] with a little modification.

Lemma 1. Let S = gi1gi2 . . . gingi1, where gi1, gi2, . . . gin are all distinct.
Then S is equivalent to a set of n− 1 node-disjoint paths listed as follows :

gi2gi3 . . . gingi1gi2
gi3gi4 . . . gi1gi2gi3

...

gingi1 . . . gin−1gin

Such a path is denoted by C(gi1gi2 . . . gin) and is called a path of type C.

Definition 2. Let S = gi1gi2 . . . gin where all gij are distinct. Such a path is
called a path of type O.

Let X(S) denote the set of generators any of which can be the first generator
in the shortest path from u to S(u). If S is of type O then the shortest path is
unique and X(S) contains only the first generator in S. If S is of type C, then
by lemma 1 X(S) = {gi1, gi2, . . . , gin} where S = gi1gi2 . . . gingi1.

Any path between two nodes u and v can be written as S = AC1C2 . . . Ck,
where A is a path of type O and Ci, 1 ≤ i ≤ k are paths of type C. Paths of
either type can be absent in S.

Lemma 2. [5] If S = AC1C2 . . . Ck then X(S) = ∪k
i=1X(Ci) ∪X(A).

Definition 3. The neighbor of u along generator gi is denoted by ui.

The set NS(u) = {ui|gi ∈ X(S)} is called the set of preferred neighbors of u for
the destination S(u). The other neighbors of u are called non-preferred neighbors
for the destination S(u).

Let S give a shortest path from u to S(u) and gi ∈ X(S). Then the shortest
path from ui to S(u) is denoted by S − gi. If S is of type O then S − gi is
obtained by removing the first generator gi from S. If S is of type C and S =
gj1gj2 . . . gjngj1 where gi = gjk then S − gi = gjk+1gjk+2 . . . gjngj1 . . . gjk.
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If S = AC1C2 . . . Ck and gi ∈ X(S) then S − gi is obtained as follows : If
gi ∈ X(A) then remove gi from the beginning of S. If gi ∈ X(Cj) then remove
Cj from S and append Cj − gi to the beginning of S.

An algorithm which finds the generator sequence S for a source destination
pair (u, v) in the form given in lemma 2 is presented below. The algorithm is a
straight forward adoption of the method described in [3].

Algorithm to generate S such that S(u) = v
Let u = u1u2 . . . un and v = v1v2 . . . vn

t = u; Let t = t1t2 . . . tn; S = ε;
while (t �= v) do
if (t1 �= v1)

find j such that t1 = vj

t = gj(t);
append gj to S.

else /* t1 = v1 */
find j such that tj �= vj

t = gj(t);
append gj to S

end while

Next we give the algorithm to find X(S) from S based on lemma 2.

Let S = S1S2 . . . Sm; X(S) = ε
while scanning S from left to right
if Si = Sj for some i, j, i < j

add Si, Si+1, . . . Sj−1 to X(S)
mark the generators in S from Si to Sj

end while
Append the first unmarked generator in S
/* generator from path of type O */ to X(S)

3 Fault Tolerant Routing

Before giving the idea of fault-vector we describe briefly the safety vector defined
in [13]. In the star graph, routing can be represented as a permutation and
the permutation can be represented as the product of p-cycles [7]. A product
structure is called a pattern. Let A denote the first symbol of the destination
and X denote any other symbol in the destination. Then, a pattern is denoted
by a product structure with one A and some Xs. For example, for the source
nodes 2143 and 3412 and the destination node 1234, their product structures
are (21)(34) and (31)(24) respectively. They both belong to the same pattern
(XA)(XX). For source 1342 and destination 1234, the permutation is (234) and
the pattern is (XXX).

If α is the pattern for the source destination pair (u, v) and ui is a preferred
neighbor of u and α′ is the pattern for the pair (ui, v), then α′ is a preferred
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pattern of α. The set of preferred patterns of α is denoted by p(α). The number
of preferred neighbors (of pattern α′) of a node (of pattern α) is denoted by
n(α, α′).

Definition 4. If one node is at one end of a faulty link, then it treats the other
end as a faulty node. The safety vector u[] of a node u is defined as follows :

If u is a faulty node, then let u[α] = 0 for all α. If u is not a faulty node,
then let

u[(XA)] =
{

0, if u is on one end of a faulty link,
1, otherwise.

Then, for all α, α �= (XA), let

u[α] =

⎧⎨⎩ 1, if ∃α′ ∈ p(α), |Ωu,α′ | < n(α, α′)
1, if | ∪α′∈p(α) Ωu,α′ | <

∑
α∈p(α) n(α, α′),

0, otherwise.
where Ωu,α = {i|2 ≤ i ≤ n, ui[α] = 0}.

Although the above definition of safety vector is quite complicated compared
to the definition of safety vector in hypercube [11], we see that the routing
algorithm based on safety vector performs poorly in star graphs. So, we design
a heuristic based on a much simpler idea of fault vector. The fault-vector for
a node u is a d length vector (u1, u2, . . . ud), where d is the diameter of the
star-graph. (d = � 3(n−1)

2 � for an n-star) For the definition, we use a threshold
n− f(k) where the function f(k), for integer k, is defined as follows.

Definition 5. f(k) =
{ 2k

3 , if k mod 3 = 0
2�k

3�+ 1, otherwise

It can be seen that for an n-star, the value of n − f(k) is greater than 0 for
k = 1, 2, · · ·d, where d is the diameter of the n-star.

Let ui = gi(u), i ∈ {2, 3 · · ·n}. where gi is a generator of the star graph. Then
the fault-vector is defined recursively as follows : If a node u is faulty then its
fault-vector is (0, 0, · · · 0). If node u is an end node of a faulty link, the other end
node will be registered with a fault-vector of (0, 0, · · ·0) at node u.

For a non-faulty node u,

u1 =
{

0, if u is an end-node of a faulty link
1, otherwise

for k = 2, 3 · · ·d,

uk =
{

0, if
∑

i ui
k−1 < n− f(k)

1, otherwise
Example of fault-vector is given in Fig. 3, where in a 4-star two nodes and a

single link are faulty.
The fault tolerant routing algorithm (named as FTR) takes help of the fault-

vector which is computed at every node after � 3(n−1)
2 � rounds of communication

among nodes of the n-star. For routing from a source node u to destination node
v first the generator sequence S such that S(u) = v is computed at the source
node u. Let k = |S|, i.e., k is the length of the shortest path from u to v. Then
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Fig. 3. Fault-vectors in a 4-star

X(S) gives the set of generators any of which can be the first generator in the
shortest path from u to v. The algorithm first checks if any preferred neighbor of
u has the (k−1)th bit of fault vector set as 1, and if so send the message to such
a node. If there are no such nodes the algorithm checks if any preferred neighbor
of u has the kth bit of fault-vector set as 1, and if so sends the message to such a
node. Otherwise, the message is sent to any preferred fault-free node ui provided
that the link (u, ui) is also fault-free. If no such node is found, the message is
sent to a non-preferred neighbor chosen by the function best-suboptimal-option.
This function finds among the fault-free non-preferred neighbors of u, a neighbor
ui such that X(S(ui, v)) is of maximum size and returns gi. If no such neighbor
is found it returns 0.

Routing algorithm for the source node:
Algorithm FTR(u, v, m) /* u: source, v : destination, m : message */
Step 1: Get the generator sequence S such that S(u) = v.

k ← |S|; extra = 0;
Step 2: Get X(S)
Step 3: If (|X(S)| = 1) /* Unique path */

Let X(S) = {gi}.
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If ui is fault-free and the link (u, ui) is fault-free
send (m, S − gi, v, extra) to ui; return;
else go to Step 7.

Step 4: If (|X(S)| > 1) /* Not a unique path */
if there exists gi ∈ X(S) such that ui

k−1 = 1
send (m, S − gi, v, extra) to ui; return;

Step 5: If there exists gi ∈ X(S) such that ui
k = 1

send (m, S − gi, v, extra) to ui; return;
Step 6: /* routing using fault vector fails */

If there exists gi ∈ X(S) such that
ui is fault-free and the link (u, ui) is fault-free

send (m, S − gi, v, extra) to ui; return;
Step 7: gi = best-suboptimal-option(u, S, v);

if (gi �= 0)
extra = 2;
send (m, S + gi, v, extra) to ui

else return(“no path found ”);

S + gi is obtained by appending gi to the beginning of the generator
sequence S.

The above algorithm is for routing from the source node. For intermediate
nodes the algorithm (Algorithm FTRI) is almost the same except that inter-
mediate nodes won’t have to compute the generator sequence S, as it will receive
it along with the message. If the message is sent from u along a sub-optimal path
to a node x, while routing from x, u becomes a preferred neighbor. In order to
ensure that the message is not again sent back to u, we keep a variable back
which is the link along which the message is received. We also restrict the length
of the suboptimal path to at most 4 more than the length of the shortest path.
Since, star graphs do not have any odd cycle, every time we use a suboptimal
path the path length is increased by 2. We use the variable extra to keep track
of this overhead.

Routing algorithm for intermediate node:
Algorithm FTRI(m, S, t, extra)
/* m : message , S: generator sequence received, t : destination,
extra : number of extra hops in the path;
s : current node
back : gj, if the message is received from sj ; */
Step 1: If (s = t) Stop else go to Step 2
Step 2: If (|X(S)| = 1) /* Unique path */

Let X(S) = {gi}.
If gi �= back and si is fault-free and the link (s, si) is fault-free

send (m, S − gi, t, extra) to si; return;
else goto Step 6;

Step 3: If (|X(S)| > 1) /* Not a unique path */
if there exists gi ∈ X(S)− {back} such that si

k−1 = 1
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send (m, S − gi, t, extra) to si; return;
Step 4: If there exists gi ∈ X(S)− {back} such that si

k = 1
send (m, S − gi, t, extra) to si; return;

Step 5: /* routing using fault vector fails */
If there exists gi ∈ X(S)− {back} such that
si is fault-free and the link (s, si) is fault-free

send (m, S − gi, t, extra) to si; return;
Step 6: If (extra = 4) return(“no path found”);

else
gi = best-suboptimal-option(s, S, t);
if (gi �= 0)

extra = extra + 2;
send (m, S + gi, t, extra) to si

else return(“no path found ”);

4 Experimental Results

We simulated our fault tolerant routing algorithm on 6-star and 7-star (the
algorithm is applicable to star-graphs of any size though) with number of faults
ranging from 10 to 120. We compare the routing capability of the proposed
algorithm using fault-vector with the one using safety vector. We consider 3
cases, i) when all the faults are node faults, ii) When half of the faults are node
faults and iii) all the faults are link faults.

For a fixed number of faults we have taken a random fault distribution and
the routing algorithm is applied for different source destination pairs. For a given
fault distribution we have taken 100,000 source destination pairs randomly and

Table 1. In a 6-star, when all faults are node faults

Fault-vector Safety vector Optimum
#of faults shortest path +2 +4 shortest path +2 +4 shortest path +2 +4

10 97.26 2.68 .05 71.23 15.45 2.33 98.14 1.86 0.0
20 94.61 5.10 .22 51.69 11.43 1.62 96.31 3.67 .005
30 91.89 7.45 .50 38.99 8.45 .86 94.48 5.50 .016
40 89.19 9.66 .83 31.25 6.83 .58 92.76 7.21 .027

Table 2. In a 6-star, when half the faults are node faults

Fault-vector Safety vector Optimum
#of faults shortest path +2 +4 shortest path +2 +4 shortest path +2 +4

10 97.96 1.83 .20 64.18 14.73 2.54 98.59 1.40 .000
20 95.88 3.59 .46 42.07 9.49 1.12 97.16 2.83 .009
30 93.66 5.37 .82 30.22 6.89 .62 95.74 4.24 .016
40 91.47 7.07 1.14 24.26 5.50 .44 94.43 5.55 .024



484 R.K. Das

noted the % of cases where the routing algorithm is able to find the shortest
path or a sub-optimal path (path of length 2 or 4 more than the shortest path).
We compare this value with the optimum value which is obtained by breadth
first search. Although no simulation results were presented in [13] for the safety
vector model, we have implemented the routing algorithm presented in [13] and
obtained the results. Finally, we found the average value over 25 different fault

Table 3. In a 6-star, when all faults are link faults

Fault-vector Safety vector Optimum
#of faults shortest path +2 +4 shortest path +2 +4 shortest path +2 +4

10 98.62 .99 .38 58.01 13.70 2.42 99.016 .980 .002
20 97.21 1.93 .82 35.52 8.27 .89 98.037 1.954 .009
30 95.65 2.93 1.29 25.41 5.97 .51 97.066 2.918 .016
40 94.05 3.90 1.77 19.69 4.52 .37 96.109 3.865 .025

Table 4. In a 7-star, when all faults are node faults

Fault-vector Safety vector Optimum
#of faults shortest path +2 +4 shortest path +2 +4 shortest path +2 +4

20 99.02 .98 .00 59.63 13.07 2.02 99.38 .62 .00
40 98.06 1.91 .03 40.34 8.86 1.62 98.76 1.24 .00
60 97.12 2.80 .06 29.56 6.19 1.04 98.16 1.84 ,00
80 96.16 3.70 .11 22.70 4.51 .53 97.55 2.45 .00
100 95.18 4.61 .17 18.16 3.61 .32 96.93 3.07 .00
120 94.15 5.56 .24 15.17 3.08 .24 96.33 3.67 .00

Table 5. In a 7-star, when all the faults are link faults

Fault-vector Safety vector Optimum
#of faults shortest path +2 +4 shortest path +2 +4 shortest path +2 +4

20 99.60 .30 .09 45.37 10.06 1.81 99.74 .25 .00
40 99.22 .58 .19 26.72 5.68 .92 99.49 .51 .00
60 98.82 .88 .29 18.09 3.78 .38 99.23 .77 .00
80 98.39 1.18 .41 13.67 2.96 .25 98.98 1.02 .00
100 97.93 1.52 .53 11.09 2.47 .19 98.73 1.27 .00
120 97.44 1.86 .66 9.30 2.11 .16 98.48 1.52 .00

Table 6. In a 7-star, when half the faults are link faults

Fault-vector Safety vector Optimum
#of faults shortest path +2 +4 shortest path +2 +4 shortest path +2 +4

20 99.31 .64 .05 52.04 11.48 1.98 99.56 .44 .00
40 98.65 1.24 .10 32.47 7.05 1.31 99.13 .87 .00
60 97.97 1.86 .16 22.69 4.65 .59 98.70 1.30 .00
80 97.25 2.50 .23 17.00 3.50 .32 98.25 1.75 .00
100 96.50 3.15 .31 13.77 2.93 .23 97.83 2.17 .00
120 95.72 3.84 .39 11.58 2.52 .19 97.41 2.59 .00
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distributions with same number of node-faults or link-faults. The experimental
results are shown in Table 1 to 6. The second column in each table corresponds
to the case where shortest paths are found using fault-vector. Percentage of
sub-optimal routing are also reported (in the third and fourth column). The
corresponding values for safety-vector model are given in column 5 to 7. The
last 3 columns give the optimal values.

From the tables it is evident that the heuristic using fault-vector is much
superior to the one using safety vectors. Also, the percentage of cases where a
sub-optimal path is found is very small compared to the cases where shortest
path is found. The shortest paths and sub-optimal paths found by the proposed
heuristic covers more than 99% of all the cases.

5 Conclusion

A fault-tolerant algorithm for routing in faulty star graph has been presented
in this paper. First, each node computes its fault-vector after O(n) rounds of
information exchanges and then the routing algorithm uses these fault-vectors
as navigation tool. The algorithm does not involve back-tracking and can toler-
ate large number of node as well as link faults. It is superior to the one based
on safety-vector with regard to 3 factors i) The fault-vector requires less stor-
age space than safety vector; ii) Computing the fault-vector is simpler; and iii)
Routing algorithm based on fault-vector performs much better both for small
and large number of faults.
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Abstract.  Concurrency control algorithms for real-time database sys-
tems satisfy not only consistency requirements but also meet transac-
tion-timing constraints. Two Phase Locking (2PL) is used often in tradi-
tional database systems. However, it has some inherent problems such 
as the possibility of deadlocks as well as long and unpredictable block-
ing times. Optimistic concurrency control protocols are non-blocking 
and deadlock free, but they have the problems of late conflict detection 
and transaction restarts. Other Concurrency Control techniques, such as 
Dynamic Adjustment of Serialization Order (DASO) have been found 
to be better at reducing number of transaction restarts. In this paper, we 
propose a new optimistic concurrency control algorithm based on 
DASO using firm deadline in order to effectively reduce number of un-
necessary restarts. Since firm real time transaction imparts no value to 
the system once its deadline expires, therefore in our algorithm, we ad-
just the timestamp intervals of all conflicting active transactions only 
after the validating transaction is guaranteed to meet its deadline during 
the validation phase. A simulator is designed to verify the effectiveness 
of the proposed method. The simulation results show that the proposed 
method can significantly reduce the number of unnecessary restarts and 
thereby improve the miss ratio, commit ratio. 

1   Introduction 

In real-time database systems (RTDBS), the correctness of a result depends on not 
only the logical results and functional behavior of the execution, but also the temporal 
behavior, i.e. the time when the result is delivered [1]. Effective concurrency control 
algorithms are needed to ensure predictable and timely response in these systems. 
Most concurrency control algorithms for RTDBS are based on one of the two basic 
concurrency control mechanism: locking [1], [2] or optimistic concurrency control 
(OCC) [4], [5], [7]. 
    Optimistic concurrency control [3], [9] is based on the assumption that conflict is 
rare, that it is more efficient to allow transactions to proceed without delays. There are 
three phases to an optimistic concurrency control method. During the read phase, the 
transaction reads the values of all data items it needs from the database and stores 
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them in local variables. Concurrency control scheduler stores identity of these data 
items to a read set. However, writes are applied only to local copies of the data items 
kept in the transaction workspace. Concurrency control scheduler stores identity of all 
written data items to write set. In the validation phase it is ensured that all the com-
mitted transactions are in a serializable fashion. For read only transactions, this con-
sists of checking that the data values read are still the current values for the corre-
sponding data items. For transaction with write operations, the validation consists of 
determining whether the current transaction has executed in a serializable manner. 
The third phase, called write phase, follows the successful validation phase for trans-
action including write operations. During the write phase, all changes made by the 
transaction are permanently stored into the database.   
    Optimistic concurrency control protocols have properties of being non-blocking 
and deadlock free.  However, these protocols have two problems: late conflict detec-
tion and transactions restart. So, it is important to design new methods to minimize 
the number of transaction restarts. One efficient way is to avoid unnecessary restarts. 
The OCC-DA [4], [5], OCC-TI [3] and OCC-DATI [5], [6] concurrency control pro-
tocols based on dynamic adjustment of serialization order [4], [5], [6] can avoid some 
unnecessary restarts. So the number of transaction restarts with these protocols is 
smaller than with other optimistic concurrency control protocols, such as OCC-BC, 
OCC-WAIT, and WAIT-X [1], [3], [10].  
    In this paper, we propose a new optimistic concurrency control algorithm based on 
DASO using firm deadline with an objective of further reducing unnecessary restarts. 
Since firm real time transaction imparts no value to the system once its deadline ex-
pires, therefore, in our approach, we adjust timestamp intervals of all conflicting ac-
tive transactions only after the validating transaction is guaranteed to meet its dead-
line. 

2   Proposed Optimistic Concurrency Control Algorithm 

This section presents an optimistic concurrency control method named Revised OCC-
DATI. It is based on forward validation. The number of transaction restarts is reduced 
by dynamic adjustment of serialization order using timestamp interval same as in 
OCC-DATI [5]. In our approach we consider the deadline of validating transactions. 
Since OCC-DATI is used for firm real time system. As we know, firm real time trans-
actions impart no value to the system once their deadlines expire. In OCC-DATI, it 
may be possible that after adjustments of timestamp interval in conflicting transac-
tions, the validating transaction misses its deadline. In such a situation, the adjustment 
is wasteful. Therefore in our approach, we adjust the timestamp intervals of all con-
flicting active transactions only after the validating transaction is guaranteed to meet 
its deadline during the validation phase. 
    Our algorithm resolves conflicts using the timestamp intervals of the transactions. 
Every transaction is bound to execute within a specific time interval. When an ac-
cess conflict occurs, it is resolved using the read and write sets of the conflicting 
transactions together with the allocated time interval. The timestamp interval is 
adjusted during the validation phase of transaction. In revised OCC-DATI every 
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transaction is assigned a timestamp interval (TI). At the start of the transaction, the 
timestamp interval of the transaction is initialized as [0, ∞]. This time stamp inter-
val is used to record a temporary serialized order during the validation of the  
transaction. 
    At the beginning of the validation, the final timestamp of the validating transaction 
TS (Tv) is determined from the timestamp interval allocated to the transaction Tv. 
The timestamp intervals of all other concurrently running and conflicting transactions 
are adjusted to reflect the serialization order. The final validation timestamp TS (Tv) 
of the validating transaction Tv is set to be the current timestamp if it belongs to the 
timestamp interval TI (Tv), otherwise TS (Tv) is set to be the maximum value of  
TI (Tv). 
    The adjustment of timestamp intervals is done for Read set (RS) and Write set 
(WS) of a validating transaction. First, it is checked that the validating transaction has 
read from the committed transactions. This is done by checking the each data item’s 
read and write timestamp. These values are fetched when the first read and write to 
the current data item is made. Then, the Read set (RS) and Write set (WS) of validat-
ing transaction is compared with the Read set (RS) and Write set (WS) of active con-
flicting transactions. When access is been made to the same data item both in the 
validating transaction and in the active transaction, the temporal time interval of the 
active transaction is adjusted.  

Therefore timestamp intervals of all conflicting active transactions are adjusted af-
ter the validating transaction is guaranteed to meet its deadline. If the validating trans-
action misses its deadline, no adjustments are done. Non-serializable execution is 
detected when the timestamp interval of an active transaction becomes empty. If the 
timestamp interval of a transaction becomes empty, the transaction is restarted. 

3   Performance Evaluation 

This section describes the simulation model which is used to test the new optimistic 
algorithm. We simulate an RTDBS Model to evaluate the performance of different 
optimistic concurrency control methods (OCC-TI, OCC-DATI, Revised OCC-
DATI). The simulator model is developed in C++ and consists of four major com-
ponents: Source, Transaction Manager, Concurrency controller, Resource Manager. 
Source - It generates the workload of the system with a specified arrival rate. It 
creates a transaction and put the transaction into the ready queue.  Transaction 
Manager - This module receives generated transactions from the source and coordi-
nates their execution. 

Concurrency controller - This module manages the data conflict detection and resolu-
tion between transactions through one of the optimistic algorithms presented earlier. It 
checks the read and write set of the validating transaction with read and write set of 
other concurrently executing transactions. Resource Manager - It models system 
resources, such as buffers, CPUs, disks, and their associated queues. 
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Fig. 1. Simulation Model 

 
The primary performance metrics used in the experiments are as follows: 

Miss Ratio - The miss ratio is the ratio of user transactions that miss their deadlines 
and total number of entered transactions. Miss ratio = Nmiss / (Nmiss + Nsucceed ), Where 
Nmiss is the number of transactions that miss deadlines and Nsucceed is the number of 
transactions that succeed. 
Restart Ratio - Let Norestart and Nosubmitted represent the number of user transac-
tions restart due to conflict and number of transaction submitted to the system respec-
tively. Then Restart ratio is defined as: Restart ratio = Norestart / Nosubmit-
tedCommit Ratio - Let #timely and #submitted represent the number of user transac-
tions committed within their deadlines and number of user transactions submitted to 
the system respectively. The Commit ratio is defined as: Commit ratio = #timely / 
#submitted. 

4   Experimental Results and Discussions 

The simulator described in section 3 is used for experimentation. The number of 
aborted transaction attempts could be any number greater than or equal to zero. The 
simulation run was carried out by varying the load from 10 to 100 transactions per 
second. Load variation was done by changing inter arrival rate of user transactions. 
The following experiments were conducted to compare the miss ratio, restart ratio, 
commit ratio of OCC-TI, OCC-DATI and Revised DATI algorithms. The results 
obtained through simulation are shown in the figures 2, 3 and 4.  

Figure 3 shows the Restart ratio. The results show that the Restart ratio increases as 
the load increases but in Revised DATI it was drastically reduced after a certain load 
increment. The reason is that in Revised DATI, as load increases, more number of 
transactions miss their deadline during validation phase. So, the timestamp interval 
adjustment of other active conflicting transactions is discarded, resulting in reduced 
restart ratio. 

As show in Figure 4, it is observed that as the load is increased, the Commit ratio 
of revised DATI is greater as compared to other algorithms as more number of trans-
actions is committed. 
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Fig. 2. Application Load vs. Miss ratio 

 

Fig. 3. Application Load vs. Restart ratio 

 

Fig. 4. Application Load vs. Commit ratio 

5   Conclusions 

A new optimistic concurrency control algorithm based on DASO using firm deadline 
is proposed in this paper. Since firm real time transaction imparts no value to the 
system once its deadline expires, therefore we have adjusted the timestamp intervals 
of all conflicting active transactions only after the validating transaction is guaranteed 
to meet its deadline during the validation phase. Experimental studies prove that the 
number of transactions restart with this algorithm is considerably lower as compared 
to other algorithms. We intend to extend this work by studying the behavior of the 
proposed algorithm over a replicated real-time database. 
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Abstract. This study deals with the VOD system having limited number of 
channels and servicing of requests for mixed movies of different durations and 
popularity.  The performance measures such as channel utilization, number of 
channels in use, blocking probability of channels, etc. are quantified in terms of 
various design parameters like, total number of channels, users request arrival 
rate,  batching interval and request service rate etc. 

1   Introduction 

The design of VOD systems faces significant challenges to support large number of 
concurrent customers. Having a hierarchy of servers can reduce the load on the 
storage servers and network channels [1][2]. In a typical two level hierarchy of such 
servers, the local servers placed near to the user clusters distribute requested video 
locally. These servers stream through the desired video from the central repository 
server using network channels. Such systems can also further efficiently utilize 
storage and network resources by incorporating various batching and caching 
techniques.  

  The different service classes can be characterized in terms of throughput and 
delay that a network will guarantee. These guarantees are expressed as quality of 
service (QOS) parameters. The network users must select the appropriate service class 
and QOS with well-defined pricing structure for their application. Thus, the designed 
VOD systems in this environment have to be evaluated on two factors: received video 
quality and pricing of resources [3]. 

The VOD system proposed in [1] is analyzed for three different caching schemes, 
and the tradeoff for each scheme has been presented. The work in [4] focuses on 
analyzing enterprise media server workloads in terms of access pattern, locality and 
content evolution. The authors in [5] proposed a model for handling mixed workloads 
of long and short movies and a Generalized Interval Caching (GIC) scheme. 
Similarly, Wong and Chan in [6] proposed a model of VOD in broadband networks, 
assuming that sufficient number of network channels is available. However, in 
practice the network channels are leased at vary high cost, and are available in limited 
number. In this study, we present the development of a general model to analyze a 
VOD system which can playback several video movies of varying durations using 
limited number of network channels. The model is generalized for M movies and N 
channels. The system is evaluated using number of system design parameters and 
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performance parameters such as blocking probability, channel utilization, average 
number of users served in a VOD service. The analysis results in the optimum number 
of network channels to be leased out for the desired values of performance 
parameters.  

2   Model Development 

The channels in the VOD system may be leased by the video content service provider 
and are assumed to be always available.  In such environment, the users request for 
playback of videos of their choice at any time. Before playing the video, a logical 
channel is allocated to that request. This corresponds to the set of resources required 
for the playback of a stream. If multiple users request the same video within a short 
time interval then these requests can be batched together so that single channel is used 
to satisfy all users. This short interval is called batching period. As the batching 
period increases the channel utilization increases, thereby user’s start up delay also 
increases. If the start up delay exceeds the users waiting tolerance then user may leave 
or renege. Therefore, the way batching period is chosen, the usage cost is amortized 
while allowing an acceptable user loss. In this batching scheme when the first request 
arrives, the batching interval starts, during this time all the requests for the same 
movie are grouped and serviced together. The movie is shown after batching interval 
time (say W). A request arriving beyond the batching interval is serviced in the next 
batch. The batching interval is kept small enough, so that the user never reneges.  

In the proposed system m movies of varying durations are permitted on the 
available channels. However, due to popularity difference in the demand between the 
movies, the batching interval is kept variable for optimum utilization of the channel 
capacity. The behavior of such system is modeled as Continuous Time Markov Chain 
(CTMC) process, discussed further. At any instance of time the system is capable of 
serving movies of variable durations simultaneously.  Further the different movies are 
classified among type-1 to type-M categories based upon its characteristics. The 
objective here is to quantify the number of users served, blocking probability and 
channel utilization. For this analysis, following system operating assumptions are 
made: 

• Total Number of repository channels which can be allocated for the movies are N. 
• Maximum numbers of movie types in the system can be requested by users are M.  
• User’s requests arrive in Poisson stream at the rate i for movie mi. Its value 

depends upon the popularity of the movie and modeled after Zipf’s law. If all M 
movies are arranged in decreasing order of their popularity and let m1 be the most 
popular movie whose request rate is 1 then according to Zipf’s law, the request 
rate of mi movie is given by 1/ i . 

• Service rate for a movie mi is μi. Thus duration of the mi movie is 1/μi.   
• Batching interval for the movie mi is wi, thus channel request rate for the same   

movie is αi = 1/(wi+1/ i). Number of users requested per batching interval for the 
movie mi is Uri and given by Uri = i / αi. . 
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Fig. 2 shows CTMC for M=2 movies, namely m1, m2 and N=3 channels. A state (m,n) 
in the CTMC represents that channels m and n  out of  N are  currently allocated to m1 
and m2, respectively. Various transitions from a state (m,n) may occur in the 
following ways : 

• When requests for channel for m1 movie arrive with channel request rate α1, the 
transition occurs to state   (m, n+1). When requests for channel for m2 movie arrive 
with channel request rate α2, the transition occurs to state (m+1, n). 

• When requests for channel for m1 movie serviced with rate nμ1, the transition 
occurs to state (m, n-1).When requests for channel for m2 movie serviced with rate 
mμ2, the transition occurs to state (m-1, n). 

There is no further transition from a state if m + n = N. This condition represents that 
allocation of channels for any two types of movies cannot be more than the total 
number of channels.   

 

Fig. 1. CTMC model for N=3 & M = 2  

3   Analysis 

In a generalized Markov model of M movies (m1,m2..mM) and N channels, channel 
request rates of movie m1 to mM are 1 to M and service rate are μ1 to μM. A state 
(i1,i2…iM) in the model represents that i1 channels are allocated to movie m1 and im 
channels are allocated to movie mM such that i1+i2+i3…iM  N. The steady state 

probability 
mii ...1

π of the system staying in state (i1,i2….iM) is given by the product 

formula 
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The average number of channels in use in the system can be expressed as the expected 
reward rate in the steady state. These expected reward rates can be obtained by 
attaching suitable weights to the steady state probabilities which is dependent upon 
the total number of channels in use, therefore average number of channels in use 
combining all the movies is given by 
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The user’s requests are batched together and per batching interval one channel is 
allocated. Hence, average no of user’s requests served at any instant of time 
combining all M movies is  
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When all the channels are allocated and a request arrives, then it is rejected. The 
amount of traffic rejected by the system is an index of the quality of the service 
offered by the system. This is termed as Grade of Service (GOS) and is defined as the 
ratio of lost traffic to offered traffic. The smaller the value GoS the better is the 
service. When all channels are busy and a request is generated by the Poisson process 
then it is rejected by the system. Such traffic on the network is known as Erlang 
traffic [6] and the Grade of Service is equal to blocking probability PB. The blocking 
probability is the sum of steady state probabilities of all those states where number of 
channels are allocated N. Therefore, 
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Utilization of channel can be expressed as 

Channel Utilization  = Avg. number 
                                    of channels in use / Total number of  channels                         (5) 

                                 = Cuse / N          (6) 
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4   Results and Discussions 

The optimal values of various system design parameters such as total number of 
channels, batching interval and request arrival rate can be found out, and several 
results obtained are plotted, but due to space limitation few graphs are shown through 
Figs. 2-4, and discussed below: 
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Fig. 2. Average number of channels in use Vs Total number of channels 
(lemda0=2req/min, mue=120min., window size=10min) 

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50
Total number of channels

B
lo

ck
in

g
 P

ro
b

ab
ili

ty

No of movies=2

No of movies=3

No of movies=4

 

Fig. 3. Blocking Probability Vs Total number of channels 
(lemda0=2rew/min, mue=120 min., window size=10min) 

Fig. 2 shows the variation in average number of channels in use against the number 
of channels for different number of movie types 2-4. The various input parameters 
such as request rate of most popular movie 1 is kept 2 req./min, service time of 
movies is assumed to be 120 minutes and batching period is kept 10 minutes. The 
parameter average channels in use vary exponentially with N and saturates for N > 25. 
This graph gives the estimate about number of channels needed in the system for 
given set of input parameters. Provision of any additional channels will only increase 
the cost. It can also be seen that as the number of movie types increase the number of 
channel needed also increase. The parameter blocking probability gives the estimate 
about how many requests are dropped because of the unavailability of free channels. 
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Figs.3 illustrates the variation in blocking probability versus total number of channels 
for the same input parameter values as mentioned above. The blocking probability 
decreases fast as the total number of channels needed increase in the system similar 
variation is observed with window size (figure not shown due to space limitation). 
The blocking probability should be sufficiently low (< 0.005) accordingly total 
number of channels and window size may be deployed in the system for different 
number of movie types. Fig.4 plots channel utilization against window size. The 
utilization decreases as the window size increases. The utilization should be 
sufficiently high (50% or more) accordingly the value for window should be chosen.  
Thus a tradeoff is obtained among blocking probability, channels utilization and 
window size. 
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Fig. 4. Utilization Vs Window size 
(lemda0=2req/min, mue=120 min,) 

The VOD operators can use this model to design and dimension their systems. For 
example, using this model the optimum number of channels can be obtained for 
desired values of channel utilization (Fig. 2) and blocking probability (Fig. 3). While 
designing a system to meet specified quality of service requirements (e.g., channel 
utilization), the appropriate values for window size (Fig. 4) can be chosen. 

5   Conclusions 

The study has dealt with the development of a Continuous Time Markov Chain model 
to analyze a Video-On-Demand system, where movies of different types are allocated 
channels appropriately to yield profit.  Various design and performance parameters have 
been identified based on which the proposed system is analyzed. The various 
performance parameters such as channel utilization, number of channels in use, 
blocking probability, etc., are statistically quantified in terms of various design 
parameters. 
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Abstract. Most of the past researches [1], [2], [3] investigate the behavior of 
distributed real time commit protocols either under update or blind write model. 
The effect of both types of models has not been investigated collectively.  
These protocols also require a considerable amount of memory for maintaining 
temporary objects (data structure) created during execution of transactions and 
block the WORKDONE message if cohort is dependent. This paper presents an 
optimized distributed real time commit protocol (MEFCP) based on new 
locking scheme and write operation divided into update and blind write. The 
proposed protocol optimizes the memory required for maintaining the transient 
information of lender & borrower [1]. It also sends the WORKDONE message 
if borrower has locked the data in mode 2 only. We also compared MEFCP 
with PROMPT and 2SC commit protocols through simulation. 

1   Introduction 

Many real time applications handle large amount of data and an intensive transactions 
processing by using disk resident database because the amount of data they store is 
too large (and too expensive) to be stored in the non volatile main memory. The 
buffer is used to store the execution code, copies of files & data pages, and any 
temporary objects produced. The buffer manager does this in the main memory [4]. 
Before the start of execution of a transaction, buffer is allocated to the transaction. 
When memory is running low, a transaction may be blocked from execution. The 
amount of memory available in system thus limits the number of concurrently 
executable transactions [4] in large scale distributed real time database systems 
(DRTDBS). The execution of transaction will be significantly slowed down. This 
problem needs to be taken into account to ensure that transactions receive their 
required resources in time to meet their deadlines. So, it is important for the database 
designer to develop memory efficient and fast protocols, so that more number of 
transactions can be executed concurrently at any instant. In this paper, we design an 
optimized distributed real time commit protocol which optimizes memory usage and 
processing time. Several commit protocols such as 2PC and its variants have been 
proposed in past. Soparkar et al. have proposed a protocol that allows individual sites 
to unilaterally commit. Gupta et al. proposed optimistic commit protocols. 
Enhancement has been made in PROMPT proposed in [2], which allows executing 
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transactions to borrow data in a controlled manner from the healthy transactions in 
their commit phase. The technique proposed by Lam et al. [3] maintains three copies 
of each modified data item for resolving execute-commit conflicts. Biao Qin and 
Yunsheng Liu [1] proposed a protocol, double space commit (2SC), which classifies 
the dependencies between lender and borrower cohorts into two types; commit and 
abort. All above protocols consume a considerable amount of memory for temporary 
records which, in turn, create additional workload on the system. MEFCP, based on 
update and blind write model, and new locking scheme reduces the number of 
temporary records needed, and thus relieves the system from additional load. It also 
sends the WORKDONE message, if borrower has locked the data in mode 2 only.  

Section 2, discusses data access conflict resolving strategies and pseudo code of 
the protocol, whereas Section 3 describes memory optimization achieved by MEFCP. 
Section 4 discusses our simulation model and results. Section 5 concludes the paper 
with future directions. 

2   Data Access Conflicts Resolving Strategies 

A flag is attached with each data item. The flag is set in any one of three modes given 
below, if a data item is being locked by a cohort at the time of its arrival. 

Mode 1: If a cohort want to use a data item and it is not locked by any other 
cohort, it sets the flag of data item in Mode 1. 

Mode 2: If a cohort T2 wants to update a data item read by another cohort T1 in its 
committed phase, it convert  the flag of data item in Mode 2 from Mode 1. T2 is not 
allowed to commit until T1 is committed. However, if T1 aborts, T2 does not abort. 

Mode 3: If a cohort T2 reads/writes an uncommitted data item written by another 
cohort T1, it converts the flag of data item in Mode 3 from Mode 1. Here, T2 is not 
allowed to commit until T1 is committed. However, if T1 aborts, T2 also aborts. 
 
Each site Si maintains a list which contains the following information. 

List (Si) :{(Tj, D) |Tj is borrower and has locked the dirty data D} 
Let T1 be the committing cohort holding lock on data item X. T2 be the cohort 
requesting lock on same data. X is in mode 1. Six possible cases of data conflict are: 

Case 1: Read-Write(Blind OR Update) Conflict: If cohort T2 requests a Write 
(Blind OR Update) - Lock while cohort T1 is holding a Read-Lock, the flag 
associated with data item is set in Mode 2 from Mode 1. 

Case 2: Write (Blind) –Write (Blind) Conflict. If cohort T2 requests a Write 
(Blind)-lock while cohort T1 is holding Write (Blind)-Lock, the flag associated with 
data item is set in Mode 2 from Mode 1. 

Case3: Write (Update)–Write (Update) Conflict: If both locks are Write 
(Update)–Locks, then flag associated with data item is set in Mode 3 from Mode 1. 

Case 4: Write (Update)–Write (Blind) Conflict. If cohort T2 requests a Write 
(Blind)-Lock while cohort T1 is holding a Write (Update)-Lock, flag associated with 
data item is set in Mode 2 from Mode 1. 

Case 5: Write (Blind)–Write (Update) Conflict. If cohort T2 requests a Write 
(Update) -Lock while cohort T1 is holding Write (Blind) -Lock, flag associated with 
data item is set in Mode 3 from Mode 1. 
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Case 6: Write (Blind OR Update)-Read Conflict. If cohort T2 requests a Read-
Lock while cohort T1 is holding a Write (Blind OR Update)-Lock then flag associated 
with data item is set in Mode 3 from Mode 1. 
 
Three Possible Cases (when T2 has accessed the data item locked by T1): 

1   T1 receives decision before T2 has completed its local data processing: 
1. If global decision is to commit, T1 commits.  
• Execute all cohorts using the data items locked by T1 whose flag is in either 

Mode 2 or Mode 3 as usual. 
• Flag either in Mode 2 or Mode 3 of data items locked by T1 is set to Mode 1. 
2. If the global decision is to abort, T1 aborts.  
All cohorts using the data items whose flag is in Mode 2 and already locked by T1 
will execute as usual. Flag in Mode 2 on data items locked by T1 is set to Mode 1. 
All cohorts using the data items with Mode 3 flag and locked by T1 abort. Flag in 
Mode 3 on data items locked by T1 is set to 0. The cohorts dependent on data set of 
T1 will be deleted from the List. 

2   T2 completes data processing before T1 receives global decision:    
if T2 has locked the data item in mode 2 only, it sends WORKDONE message; 
otherwise, T2 does not send WORKDONE message and blocked until its deadline 
expires or T1 gets decision. In the first case, T2 aborts and is deleted from the List. In 
the second case, if T1 aborts/commits, the system will execute as the first case; 

3   T2 aborts before T1 receives decision: 
In this case, T2’s updates are undone and T2 will be removed from the List. 
At time of YES-Voting, if cohort is still dependent, YES-Voting message is deferred  

The complete pseudo code of the protocol is given as below: 
if (T1 receives global decision before, T2 ends execution) then 
{One: if (T1’s global decision is to commit) then       

 {T1 commits; 
  All cohorts using data items in Mode 2 or 3 locked by T1 will execute as usual; 
  Flag either in Mode 2 or Mode 3 of data items locked by T1 is set in Mode 1; 
  The cohorts dependent on T1 will be deleted from the List ;}  
 else {T1 aborts; 

All cohorts using data items with Mode 2 flag and locked by T1 will execute 
as usual. Flag in Mode 2 on data items locked by T1 is set in Mode 1; 
All cohorts using data items with Mode 3 flag and locked by T1 abort. Flag 
in Mode 3 on data items locked by T1 is set to 0. The cohorts dependent on 
data set of T1 will be deleted from the List;}} 

else  if ( T2 ends execution  before T1 receives global decision )   
{if( T2 has locked the data items in Mode 2 only) 
T2’s WORKDONE message is sent; 
else{ 
T2’s WORKDONE message is blocked; 
Do {T2 wait for next event/message; 
      Switch (type of event/message) 
      {Case 1: if (T2 misses deadline) 
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              {Undo computation of T2;Abort T2;Delete T2 from the List; }  
        Case 2: if (T1 commits/aborts) GoTo One;} 
       } while (1);}} 
else //T2 is aborted by higher transaction 
       // before T1 receives decision  
      {Undo the computation of T2; Abort T2; Delete T2 from the List;} 

3   Optimization of Memory 

It is assumed that the number of data items in the database at each site is N. The 
memory required for maintaining the record of data items lent by a single cohort is 
computed below. 

Case 1: Memory Required in 2SC [1] 
At least, a flag is required corresponding to every data item to show its locking status 
when it is locked by a cohort. So, the minimum memory required to keep the 
information of locking status of the data items is N/8 bytes (a flag needs at least single 
bit storage). Again, each site maintains a list of lenders, and also each lender 
maintains two lists: commit dependent cohorts and abort dependent cohorts with dirty 
data used by them. This can be implemented as given below. 

Linked List: A dependency list is  maintained which contains the id of committing 
cohorts (lenders) who have lend their modified data to newly arrived cohorts. Each 
lender in this dependency list also maintains two lists which contain id of abort and 
commit dependent cohorts with dirty data items utilized by them. The memory 
required for keeping the record of data items lend by a single cohort is computed 
below. Let us assume that on an average each lender has p cohorts in dependency list 
and q cohorts in abort dependency list. 

M=M1+ (M2 OR M3)*N, where 

M 
M1 

 
M2 

 
M3 

 
Nd 

Total Memory Required by one node of lender. 
Memory required for the dependency list is 14 bytes (4*3 bytes for 
address + 2 bytes for id). 
Memory required for the list of commit dependent cohorts and dirty data 
item is 8*p bytes. 
Memory required for the list of abort dependent cohorts and dirty data 
item is 8*q bytes. 
No. of data items lent by the cohort = p + q. 

Case 2: Memory Required in Proposed scheme 
Minimum memory required to keep the record of Modes of every data item at a site is 
two bit. So, the total required memory is N/4 bytes. Here, a single list is being 
maintained for keeping the information of borrower and dirty data used by it. This 
requires 8 bytes of memory (2 bytes for borrower id + 2 bytes for dirty data + 4 bytes 
for address of the next node). Comparing to case 1, there is additional need of N/4 
bytes memory at each site to keep the information about the Mode of every data item. 
With the increase in the transaction arrival rate and transaction size, there are chances 
of more conflicts resulting in more number of dependent cohorts on committing 
cohorts. If there are L cohorts lending data at any instant of time, the additional 
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memory required is 14*L bytes in case 1 as compared to case 2 (see in table 1). 
Although, it seems initially more number of bytes are needed for keeping the Mode 
information of data items, the proposed protocol competes with [1] at high transaction 
arrival rate and long transaction size. 

Table 1. Study of Memory Requirement 

Commit Protocol flags at each site (in bytes) Single lender (bytes) 

2SC N/8 14+8*Nd 

MEFCP N/4 8*Nd 

It is clear from table 1 that MEFCP will require lesser memory than 2SC, whenever L 
> N/112. 

4    Model Parameters and Simulation Results 

A distributed real time database system [5], [6] consisting of N sites have been 
simulated. The default values of different parameters and concurrency control scheme 
are same as in [5]. MEFCP is compared with PROMPT and 2SC.  

4.1   Impact of Transaction Arrival Rate 

Fig.1 and Fig. 2 show impact of transaction arrival rates on transaction miss 
percentage at transaction length 3-20 (uniform distribution). Miss percentage 
increases with increase in transaction arrival rate. At higher arrival rate, the 
probability of lock conflicts for the data items and queuing delay for the use of system 
resources are more. The performance of the MEFCP is better with 2SC and PROMPT 
due to the better approach used for resources utilization, minimizing the queuing 
delay and sending of WORKDONE message if cohort’s locked data is in Mode 2 
only.  
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Fig. 1. Miss % with(RC+DC),Communication 
Delay 0ms,Normal & Heavy Load 

Fig. 2. Miss % with(RC+DC),Communication 
Delay 100ms Normal & heavy load 
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4.2   Impact of Transaction Size 

Fig. 3 and Fig. 4 show the miss percentage for the protocols at different transaction 
size at communication delay 100ms & 0ms and transaction arrival rate 10. In this 
case, MEFCP outperforms as compared to PROMPT and 2SC at higher & low 
transaction size due to better buffer management and sending of WORKDONE 
message if locked data is in Mode 2 only. 
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Fig. 3. Miss % with (RC+DC) at Communi-
cation Delay=0ms 

Fig. 4. Miss % with (RC+DC) at Communi-
cation Delay=100ms 

5   Conclusion 

This paper deals with a new commit protocol with blind and update, and optimizes the 
storage space by only maintaining the information of borrower cohort along with data 
item used by it in conflicting way. This protocol outperforms as compared with 
PROMPT and 2SC due to not blocking the WORKDONE message of cohort locked 
the data item in Mode 2 only. It is well suited to data intensive application where the 
transaction arrival rate and transaction size are high. Further, the devices used in 
mobile applications have limited memory capacity. MEFCP may be useful for these 
applications due to its reduced memory requirements. 
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Abstract. In this paper we approach the solution of large instances of
the distribution design problem. Traditional approaches do not consider
that the size of the instances can significantly affect the efficiency of
the solution process. This paper shows the feasibility to solve large scale
instances of the distribution design problem by compressing the instance
to be solved. The goal of the compression is to obtain a reduction in
the amount of resources needed to solve the original instance, without
significantly reducing the quality of its solution. In order to preserve
the solution quality, the compression summarizes the access pattern of
the original instance using clustering techniques. In order to validate
the approach we tested it on a new model of the replicated version of
the distribution design problem that incorporates generalized database
objects. The experimental results show that our approach permits to
reduce the computational resources needed for solving large instances,
using an efficient clustering algorithm. We present experimental evidence
of the clustering efficiency of the algorithm.

1 Introduction

Distributed databases applications are developed using Distributed Database
Management Systems (DDBMS’s). Despite the advanced technology of
DDBMS’s, the design methodologies and tools have many limitations. Conse-
quently, database administrators carry out the distribution design using empir-
ical and informal approaches due to the problem complexity.

The distribution design problem consists of determining data allocation so
that the communication costs are minimized. Like many other real problems,
it is a combinatorial NP-hard problem. The solution of large scale instances
is usually carried out solving a simplified version of the problem or using ap-
proximate methods [1], [2]. General purpose nondeterministic heuristic meth-
ods are at present the best tools for the approximate solution of this class of
problems [3], [4].
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2 Related Work

The distribution design problem has been dealt with by many investigators [5],
[6], [7], [8], [9], [10], [11], [12], [13]. The approach proposed in [5] has been the
most successful in solving large scale instances. The main limitation of these
approaches is that they do not consider that the size of the instances can sig-
nificantly affect the efficiency of the solution process. Conversely, in [14] the
relevance of the compression is recognized, but the effect of compression on
the solution quality is not considered; consequently, the compression methods
proposed are inefficient and do not guarantee the scalability of the tools for
automatic database design.

In order to overcome these limitations, we propose an instance compression
processing. We test this approach on a new model of the replicated version of
the distribution design problem that incorporates generalized database objects,
and applying a method for efficient instance compression that uses clustering
techniques [15], [16].

3 Description of the Distribution Design Problem

The DDB distribution design problem consists of allocating DB-objects, such
that the total cost of data transmission for processing all the applications is
minimized. A DB-object (or simply object) is an entity of a database that re-
quires to be allocated at the sites of the network, which can be an attribute, a
tuples set, a relation or a file.

A formal definition of the problem is the following: let us consider a set
of objects O = {o1, o2, . . . , ono}, a set of sites S = {s1, s2, . . . , sns}, where
a set of operations Q = {q1, q2, . . . , qnq} are executed, the objects required
by the operations, an initial allocation schema, and the access frequencies of
the operations in a given time. The problem is to obtain a new allocation
schema that adapts to a new database usage pattern and minimizes trans-
mission costs.

4 Mathematical Model

Traditionally it has been considered that the DDB distribution design consists
of two sequential phases. Contrary to this widespread approach, it is simpler to
solve the problem using our approach which combines both phases. A key element
of this approach is the formulation of a mathematical model that integrates both
phases [5].

The problem is modeled using binary integer linear programming.The math-
ematical model objective function (1) includes four terms that model the costs
of processing read-only operations, read-write operations, object migration, and
storage cost. A detailed description of the model can be found in [17].

A Model for the Distribution Design of Distributed Databases
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5 Instance Transformation Using Clustering

5.1 Description of the Transformation Method

When an instance of the DDB distribution design problem has repetitive opera-
tions, it is possible to transform it into an instance with fewer operations, since
repetitive queries are represented by similar rows in the access matrix. There-
fore, such operations can be considered as a single (clustered) operation that
is issued with larger frequency. The instances reported in [12], characterized as
typical on the Internet, are an example of instances with this property.

All the objects needed by a clustered operation constitute a single object of
the compressed instance. The reduction such transformation can yield is directly
proportional to the number of repeated operations.

The binary vector that indicates from which sites a operation is issued is called
access pattern. In the access pattern matrix Pki, for every k and i, Pki = 1 if
and only if fki �= 0. This binary vector can be used to code a decimal number.

5.2 Adjustment of the Transformed Instance Formulation

Once the query and object clusters are created, it is necessary to adjust the
access frequencies, the selectivity and the objects (cluster) size of the transformed
instance. The adjustment process is carried out as follows.

Given the original instance i, matrix fk, operation selectivities skm and object
sizes bm, then the access frequency of each clustered operation c at site i is given
by: f�

ci =
∑

k∈OperCluster(c) fki, ∀c, i, k. The size of object cluster c is given by
b�
c =

∑
m∈ObjCluster(c) bm, ∀ c, m. The selectivity of query k to DB-object group

c is given by: s�
kc = (

∑
m∈ObjCluster(c) skm×bm)/(

∑
m∈ObjCluster(c) bm), ∀c, k, m.

5.3 Codifier Clustering Algorithm

In this method, a decimal code is assigned to each pattern, which is used to
identify the cluster to which the operation belongs (Figure 1). This algorithm
clusters the operations with the same decimal code. Since the algorithm com-
plexity is nq × ns, if we limit the number of sites (ns) the complexity will be
linear. This is a most desirable characteristic for solving large problem instances.

6 Experimental Results

To validate our approach, a set of experiments were conducted using randomly
generated instances of different sizes and characteristics, configured according

H. Fraire H. et al.
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For Each query k of fki

Code ←− 0
For Each site i of fki

If fki > 0 then
Code ←− Code + 2i

Groupk ←− Code
CardCode ←− CardCode + 1

End For

Fig. 1. Codifier clustering algorithm

to typical access patterns found on the Internet. To simulate several access pat-
terns, test cases with 10, 20, 30, and 40 % access probability of the operations to
the sites were generated. For each instance of a particular experiment, the clus-
tering method was applied to compress it. Once the compression was performed,
the original instance i and the compressed instance i′ were solved using an ex-
act method, and the costs of both solutions were compared. Table 1 shows the
characteristics of a representative sample of test cases used in the experiments.
The table includes a test case identifier (Ci), the numbers of DB-objects (O),
sites (S), and operations (Q) of the included instances in the test case, the size
in bytes (Size) of the test case, and the operations to sites ratio (Q/S).

Table 1. Test cases used in the experiments

Characteristics
Test
case

Objects
(O)

Sites
(S)

Operations
(Q)

Size in
Bytes

Q/S

C 1 100 3 100 86,060 33
C 2 200 5 200 338,560 40
C 3 500 7 500 2,062,252 71
C 4 1,200 15 1,200 11,823,420 80
C 5 1,000 10 1,000 8,172,480 100

Figure 2(a) shows the reduction observed in the experiments. Notice that, for
instances with access probability of 10% and 20%, the reduction of resources is
at least 65%. The minimal and maximal reductions are 65% and 99%, which
constitute a considerable reduction of resources. Figure 2(b) shows the impact
on the solution quality. The error percentage varies from 0.10% to 3.20%, which
shows that the degradation is relatively small. Therefore, the feasibility of re-
ducing the resources required to solve large scale instances at the expense of a
reasonable loss in the solution quality, is demonstrated.

In Figure 3, we show that the clustering efficiency of the codifier algorithm (�)
is better than the clustering efficiency of two hierarchical clustering algorithms
(� and -) based on the approach proposed in [18]. We can see that the efficiency
of our algorithm increases faster than that of the other algorithms.

A Model for the Distribution Design of Distributed Databases
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(a) Size (b) Quality

Fig. 2. Reduction level

Fig. 3. Efficiency of the clustering algorithm

7 Conclusions and Future Work

This paper shows the feasibility to solve large scale instances of the distribu-
tion design problem by compressing the instance to be solved. The goal of the
compression is to obtain a reduction in the amount of resources needed to solve
the original instance, without significantly reducing the quality of its solution.
In order to preserve the solution quality, the compression summarizes the access
pattern of the original instance using clustering techniques.

A set of experiments, using instances configured with typical access patterns
on the Internet were conducted for evaluating quantitatively the size reduction
that can be achieved and its effect on the solution quality. The compression
process shows high levels of reduction in the amount of resources needed, without
a significant loss in the solution quality, and its efficiency increases faster than
that of the other clustering algorithms. We present experimental evidence of the
clustering efficiency of the proposed algorithm, which shows that, given a set
of computing resources, it is now possible to solve instances larger than those
previously solvable.

H. Fraire H. et al.
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Abstract. This paper presents a new location management scheme that
integrates two key ideas, namely, (i) Subscriber Movement Profile (SMP)
based on spatial and temporal locality of the movement of a mobile
terminal and (ii) localized updates known as Time-bound Self Purging
Indicators (TSPI) generated by a probabilistic approach when a mobile
terminal does not adhere to registered profile. The SMP registered by
a mobile host is used to predict its cell location based on time specific
movement history. The transient deviations from the registered SMP are
handled efficiently by TSPIs using a Regional Route Map (RRM).

1 Introduction

Personal Communication Service (PCS) networks enable people to communi-
cate independent of their locations. The system facilitates communication by
maintaining a location database that maps a subscriber number to its current
location. However, wireless network pose significant challenges due to several fac-
tors including unconstrained movements of subscribers, limited radio frequency
spectrum, radio channel impairments, among others. A number of efficient loca-
tion management schemes have been proposed [1], [2], [3] for tracking locations
of mobile users. The focus of this work is on some of the recently proposed loca-
tion management schemes [4], [5], [6] which subsume location data with various
degree of imprecisions. In particular we are concerned with the location man-
agement scheme proposed in [4], [5]. Both the schemes use subscriber’s mobility
pattern (SMP) to predict a small set of probable locations of the callee when
a call arrives. The call delivery will then be possible through a selective paging
executed on the set of those predicted locations. The scheme proposed in this
paper is a hybrid of above two schemes. Our motivation here is three-fold:

� Supported by MHRD, Govt of India sponsored project on Contex-Aware Program-
ming and Information Dissemination over Mobile/Ad Hoc Networks.
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– To reduce signaling traffic for tracking a mobile by making it responsible for
predicting, maintaining and registering its own SMP.

– To efficiently handle the predictive transient deviations from registered SMP
by using secondary cluster of cells determined through a regional route map.

– To reduce global signaling traffic at the cost of limited increase in local
traffic to tackle unexpected deviation of a mobile from its registered SMP.
The deviation of a mobile is considered as unexpected when it is not covered
by secondary cluster.

The paper is organized as follows. Section 2 is concerned with the system
model. It presents an overview of the database to be maintained in the mobile
terminal as the network changes dynamically. The location management scheme
proposed in this paper is described in Section 3; and the call setup protocol is
discussed in Section 4. Experimental results have been presented in Section 5.
The papers ends with concluding remarks in Section 6.

2 System Model

The coverage area of a mobile service provider can be represented by a finite
set of cells C = {c1, c2, c3, . . . , cn}. Location areas (LAs) define a partition of
cells of C. An LA may consist of one to few geographically adjacent cells of C.
The union of LAs form a complete covering of C. The information of a user Ui

will be maintained at the base station of his/her Home Location Area (HLA).
This will include the currently registered Subscriber Mobility Patterns (SMPs)
of Ui and his/her call profiles. Call profiles will be used to calculate the call to
mobility ratio (CMR) values. Let ρ denote the arrival rate of calls for the user
Ui and κ denote the mobility rate of Ui, then ω = ρ/κ represents CMR for Ui.

A Subscriber Mobility Database (SMD) will be maintained by the mobile
terminal itself. An SMD consists of a number of Subscriber Mobility Patterns
(SMPs), one of which will be registered with the network. The registered SMP is
a sequence of LAs (base stations) which the Mobile Terminal (MT) is expected
to visit. If a mobile terminal deviates from its registered SMP, it will rely the
local network for fuzzy determination of the location area where the local Time
bound Self Purging Indicator (TSPI) has to be stored. The important SMP
related data are as follows:

– SMP: {LA1 → LA2, . . . , LAn−1 → LAn}
– Pa: Prob(MT) moves to a new LA not in SMD.
– Pb: Prob(MT) moves to a LA ∈ SMD but not in registered SMP.
– Pc: Prob(MT) moves in its registered SMP.

An LA ID which is a part of two SMPs will be stored twice in SMD. The ad-
vantage this is apparent when a new record gets added to the database. The
SMP which has aged most, will be removed. Deletion of an LA ID will not af-
fect its other duplicates which may be present in other SMPs. The overhead
of maintaining duplicate LA IDs in different SMPs also retrieved in the form of
amortization of cost for extra deletions.
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The set of global attributes and cell related attributes stored in SMD are
provided in the table below.

Global attributes Cell attributes
Nnd: Number of consecutive deviations from reg-
istered SMP.
Psid: SMP Id currently in use.
SCcids: Secondary clusters’ cell Ids
REPcallerSMP : Replicated caller SMPs
Pcid: Present Cell Id
Tr: Total number of records
NRsmp: Registrations count each SMP
LFSMP : Lifetime of each SMP

Cell Id: Cell identifier
SMP Id: SMP identifier
Eat: Expected arrival time
Eet: Expected exit time
Est: Expected slack limit for
arrival
Next LA: Next location area
Previous LA: Previous loca-
tion area

3 Algorithm Description

There are three key concepts, namely, secondary clusters, regional route map
and TSPI, which categorize the input requirements for the proposed location
management scheme.

3.1 Secondary Clusters

Our protocol requires some inputs from the mobile users at the time of subscrip-
tion to a new service. This information will be utilized by the HLA in selection
of places that have a high probability of being frequented by the user apart from
the those specified by the user profile. These alternative cells are collectively
referred to as secondary clusters. One of the important attribute for secondary
cluster, for example, could be the information about the subscriber’s occupation.
A mobile user may be an official, a travel agent, a student, or a house wife. Such
an information will help to select certain cells which are not in user’s profile, but
may be visited in future.

3.2 Regional Route Map (RRM)

Another key input is the Regional Route Map (RRM). A RRM indicates the
physical route map of roads in the neighborhood of a location area. Such a
map along with the user supplied profiles will be stored at the base station
of home location. It helps in a quick discovery of cells that fall in the vicinity
of the registered SMP of the user. These are LAs in which the user can roam
without including them either in the registered SMP or generating a TSPI. The
motivation of employing RRM is driven by the fact that the users might not
usually go to certain cells. But these places match the places of highest interest
to the users. So, a high probability is attached to these places of being visited by
a user. If an MT visits one of these places, it need not send a location update.
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3.3 Time-Bound Self Purging Indicators (TSPI)

If a user has moved into a location which is not a part of its registered SMP or its
secondary cluster, it first creates a Time Bound Self Purging Indicator (TSPI).
TSPI is a special register entry maintained at the VLR of the expected LA as per
the registered SMP of the mobile terminal. TSPI stores the new location where
the MT is found at present. It may be considered as a forwarding pointer [3]
stored in the VLR of the base station of the expected LA. An expiry time is
also associated with the TSPI. The motivation here is to increase small amount
of local traffic in place of multiple hops that may be needed to register in the
HLR, thus saving valuable network bandwidth. Associating an expiry time with
TSPI eliminates the need for extra signaling which MT otherwise have to do for
removing the pointer [3].

The LA where the TSPI will be registered is decided by a fuzzy network
controlled machine colocated with the VLR location. It chooses between the
base stations of the expected LA and the HLA of the MT, based on a number
of dynamic network parameters such as: (i) relative number of hops required to
reach MT at its current position from HLA and from the expected LA in the
registered SMP, (ii) available network bandwidth, (iii) tariff, and (iv) certain
other network specific runtime parameters.

3.4 Creation of SMP

Each MT creates and maintains its SMPs. A new SMP creation procedure
buildNewSMP is given below.

procedure buildNewSMP(LA) {
if (Day is over) { /* New SMP creation is complete */

reset the smpBuild flag;
Increment the LF values of all SMPs;

}
else {

if (SMPbuild == false ) {
SMPbuild ← true; newSMP Id ← getNewSMPId;
/* Create a replication of registered SMP from

beginning till the LA visited last.*/
newSMP ← copyAllNode(currSMP,currTIME);
}
Create a new node of this LA;
LastNode of SMP.next ← newNode;
Prev.newNode ← LastNode of SMP;
newNode.next ← NULL;

}
}
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When an MT moves into a LA (base station) not in its SMP and its smpBuild
flag is false, then MT sets the flag to true. The MT then copies the nodes
(LAs) of the current SMP as the preceding nodes of the new SMP till the last
perfectly followed LA as per the registered SMP. The MT continues to add
subsequent new nodes into the new SMP, till the time of the day is over. The
span of each SMP is 24 hours. Thus after an SMP has been created a 24-hour
period, it is included as a complete SMP in the SMD and the smpBuild flag
is reset.

3.5 Maintenance of SMP

It may be argued that instead of building a new SMP, we could do by only
updating the time field in an already present SMP when a time lag is noticed in
visiting an LA but the order of the nodes in the SMP remains same. The reason
for not following this approach is: even a small amount of transient deviation
can make us loose a carefully formed otherwise frequently used SMP. So it is
always better to keep track of the deviations as a freshly built SMP.

If the MT moves into a new LA that is present in its SMD but not a part of
the registered SMP, then we store this LA into a separate data structure called
the Transient Deviation Pattern (TDP). A TDP is allowed grow to as a sequence
of maximum of three LAs to which the MT has deviated. When a TDP grows to
its full size, the SMD is searched for the TDP. If the TDP is found to be a part
of an existing SMP then the update algorithm returns a value 3. This indicates
that the MT is following a new SMP; and, hence, needs to register the same. It
also resets the current SMP building process or purges the partially built SMP.
The reason for this can be explained as follows. If an MT consecutively follows
three locations of another SMP in the SMD leaving its own registered SMP, then
it is highly likely that MT would continue to move according to the former SMP
as indicated by its stored movement pattern. If the TDP match returns a false,
it means that the user is moving in an entirely new patten which is not present
in the SMD. So this TDP is retained as a part of a new SMP which is under
creation. Notice that we keep track of only the last three consecutively deviated
locations, and update them by swapping the locations.

There might be a condition of SMD overflow. It occurs when no more nodes
can be added to it. In this case an entire SMP deleted. There are two factors in
support of this deletion, namely

(i) The partial SMP can not be registered unless it is padded with the missing
LAs by arbitrary data.

(ii) Since the process of building a new SMP has been initiated, it is likely that
there will be a requirement of additional space to accommodate more newly
created data.

The victim SMP to be selected for deletion is decided on the basis of ϕ =
NRi/LFi, which is the ratio of number of times a SMP has been registered to
the number of days it has been formed. Since NRi gives a count of the number
of times SMP i has be registered it also determines the aging SMPs. The SMP
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which have been registered to the network the least number of time provides
a low NRi value. The ratio ϕ helps in determining obsolescence of an SMP. It
ensures that recently formed SMPs are not selected as victims. After the deletion
of an SMP, NRi and LFi values for all other SMPs are reduced by a factor ϕ.
This ensures that these values do not increase to some large values for other
SMPs present.

Let expected slack time Est (see the cell attributes described in section 2) be
defined on the basis of certain fuzzy runtime conditions represented by θ. The
argument θ is decided by the central network taking into account the importance
of the place. A MT need not update the network registration if it is within the
slack bound. So the permissible time of stay in an LA before a TSPI creation
procedure is initiated is specified by the following bounds.

Eat − (Est + θ) ≤ T (stay) ≤ Eet + (Est + θ)

Based on the above bounds it is straightforward to determine the when TSPI
generation could be initiated. The procedure CurrentSMPfollowed provide be-
low returns true if a mobile user is following the registered SMP or has deviated.

procedure CurrentSMPfollowed(LA) {
if (LA-ID matches expected LA)

if (Eat − (Est + θ) ≤ t ≤ Eet + (Est + θ)) return true;
else return false;

}

On the basis of above discussion, we can now put together the process of
maintenance of SMP in the form of a procedure UpdateSMP. We summarize the
key points concerning update process as follows. When a mobile terminal moves
to a new LA it gets the corresponding LA ID in its incoming signal. If the user has
moved into a location which matches the expected LA in its currently registered
SMP, then the update process exits with a value 1, indicating no action. There
will not be any increase in network traffic due to the MT in this situation.
Though the above scenario appear to be the best case, indeed this scenario is
the usual case. Most users will likely to continue a fixed schedule for weeks at a
stretch [7]. More precisely, there are only two cases under which an MT creates
traffic for location update. These cases are characterized as: (i) when an MT is
switched on for the first time, or (ii) when an MT moves out of a region of its
registered SMP.

The updateSMP procedure will be executed by an MT whenever it moves to a
different LA (base station). The values returned by this procedure represent four
states of location updates. These are: (i) state 1: perfect schedule is followed, (ii)
state 2: deviation is expected, (iii) state 3: deviations match with another stored
SMP which should be registered, and (iv) state 4: deviations indicate a new SMP
to be built. In states 3 and 4, a TSPI has to be registered in expected LA.
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procedure UpdateSMD (currentLA) {
expectedLA = getPredictedLA(SMP);
if (currentLA == expectedLA)

return 1;
TDPcount++; TDP[TDPcount] = currentLA;
if (currentLA ∈ SecondaryCluster) {

if (TDPcount == 3) {
TDPcount--; TDP[1] ← TDP[2]; TDP[2] ← TDP[3];

}
return 2;

}
else {

CreateNewTSPI(currentLA, expectedLA, validTime);
if (TDPcount==3) {

if (new SMP is identified) {
TDPcount=0; return 3;

}
if (SMD is full) {

find victim SMP with least ϕ value
remove victim-SMP from SMD;
for (each remaining SMPs ∈ SMD) {

NRi ← [NRi ∗ ϕ]; LFi ← [LFi ∗ ϕ]
}

}
smpBuild = true;
BuildNewSMP(LA);
return 4;

}
}

}

Whenever a new SMP is registered in the HLA, this new SMP is also cached
at m most frequently calling mobile terminals. The value of m can be de-
cided based on network parameters, and this value may vary over the
network.

4 Call Set-Up Protocol

There are two distinct cases for call setup. First one is where the callee MT’s
SMP is replicated in the SMD of caller MT. The second case is when the SMP
of callee is not available in SMD of the caller.
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4.1 Callee’s SMP Replicated in Caller’s SMD

In this case the call setup process is realized as follows.

– The caller looks up the current location area of the callee from latter’s profile
and sends a message to its local LA/MSC specifying the expected LA of the
callee to which it wants to connect.

– The local LA/MSC instead of going to HLA of the callee, just pages the LA
in which callee is expected to be present, so the callee is located either in its
first page or it pages to the link pointed by the TSPI. So the lookup at the
home location is saved.

4.2 Callee’s Registered SMP Not Replicated in Caller’s SMD

This case caters to the situation where caller does not frequently call up the
callee. The call setup in this case is more expensive than the previous case as
indicated below.

– The caller sends a request to the local LA(BS)/MSC specifying the callee’s
MT Id. The LA finds the home location of the callee, and sends a call con-
nection request.

– The home location of the callee then looks up the SMP registered by the MT
and fetches the current expected location. After which the paging protocol is
initiated. The callee is located either in its first page or on second page to the
link pointed by the TSPI if the callee has deviated from its registered SMP.

4.3 Paging Procedure

The paging procedure has to take several cases into account.

Case 1: The callee is in an LA in registered SMP or has a TSPI.
The first page is done at the expected LA which is obtained from the registered
SMP based on the current time. If there is no answer at the first page, but a
TSPI register set to true, the second page is done at the LA pointed to by the
TSPI. The MT must answer at the second page otherwise the mobile is not in
this state.

Case 2: The callee is not present in its SMP or TSPI indicated LAs.
In this case the Home LA prepares a priority list of the secondary cluster LAs
present in its registered SMP. The priority list is created taking the following
into account: (i) The Regional Route Map ( RRM) which is a map of the paths
in the city indicating places and routes. (ii) The Slack time specified in the SMP.
(iii) The importance of the place based on the preferences given by the user at
the time of registration. (iv) Congestion rates at those points. The paging is done
in all these secondary clusters based on the priority list thus created above.

Case 3: MT can not be located in any of the secondary clusters.
A second level priority list will be created which will include the LA based on:
(i) the proximity to the expected LA in its SMP. (ii) proximity to the expected



520 R.K. Ghosh et al.

LA in the time frame. The paging is done again in all these LA given in the
secondary level priority list thus created above till a page time-out is reached.

Case 4: A page time-out is encountered.
All the LAs in the current registered SMP are paged.

Case 5: If callee still can not be located.
It is considered to have been one of the following state: (i) has switched off
without de-registering itself, (ii) has encountered a power failure, (iii) has moved
to a region not covered by the network.

5 Simulation and Performance Evaluation

The performance was evaluated for a MSC with 50 cells. The topology of the
network, i.e. the connectivity between the nodes and their weights is randomly
generated. The simulation time is taken to be 200 units. The calls for the host
were also randomly generated during this time. The deviation for the host were
randomly generated. The scheme is simulated for varying call to mobility ratios
(CMR) and percentage deviations ranging from 5% to 90%. The total number
of moves made by host is taken to be 10. Here, we only mention some extracts
of the simulations due to lack of space.

The simulation results are compared with the two previous location manage-
ment schemes, viz., User Mobility Pattern Based [4] and Movement Prediction
Based [5]. The various costs are averaged over a number of simulations and
varying input patterns.
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Fig. 1. Update and paging costs for the present scheme

Figures 1 and 2 respectively show the location update costs and paging costs
and the network signaling costs respectively for the present scheme with respect
to varying percentage deviations and CMR values. It may be observed that the
number of paged cells reduces considerably due to the TSPI entry and secondary
cluster search even for large deviations. Of course, the TSPI updates increase
signaling cost slightly. The average paging cost is found to be 1-3 cells per call.
Even for large deviations, it is found to restrict the number of paged cells to
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Fig. 2. Network signaling costs for the present scheme

less than 3 which will be quite high in two other schemes. This is possible since
the TSPI entry allows fast tracking of the transient deviations. Although it will
increase in case the host deviates appreciably without coming back to regular
patterns, resulting in expiration of TSPI entry more frequently. Hence, selection
of TSPI expiration timer should also be set carefully.

The increase in update rate for larger deviations reduces for higher mobility
as the pattern is registered only if TDP entry is found to be full, i.e the pattern is
registered only if the host possess high probability to follow it and the transient
deviations are tackled through the TSPI entry.
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Fig. 3. Comparison of update and search costs for the three schemes for CMR=3

Figures 3, 4 and 5 provide comparison of update and paging costs for the
three schemes for different CMR ratios. From the results it is clear that the
present scheme leads in significant reduction in the paging costs even for larger
deviations compared to two other schemes. The present scheme restricts the
paging costs to 3 cells per call while the other schemes reach higher values for
high mobility.
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Table 1. Comparison of the requirements of computation times∗ of two schemes

Percentage of CMR=3 CMR=5 CMR=7
deviation Ref [5] Present Ref [5] Present Ref [5] Present

10 48.1539 0.6734 46.8386 0.6722 51.4070 0.7078
20 47.0098 0.7010 47.2671 0.6761 46.5180 0.6798
30 49.2073 0.7111 48.8414 0.6898 46.9925 0.7131
40 49.0009 0.7409 47.5483 0.7045 52.1262 0.7460
50 47.5154 0.7452 47.3935 0.7290 47.0002 0.7149
60 48.5142 0.7874 47.7017 0.7986 47.2307 0.7567
70 48.2995 0.8181 47.6270 0.7757 47.2038 0.7694
80 50.0146 0.8291 47.4702 0.8172 47.4376 0.8028
90 49.3896 0.8503 47.6759 0.8597 47.1307 0.8541

* All times are in microseconds

The movement prediction based location management scheme proposed in [5]
employs best-first search in the neighborhood of the expected locations of the
MT with the help of a regional route map to find its location in case of un-
expected deviations. The present scheme handles transient deviations through
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TSPI entries which helps in quickly locating the mobile host instead of best-first
search. The computational requirements for best-first search puts significant load
at base stations. Therefore the scheme proposed in [5] can not scale up easily.
Table 1 provides a comparison of the requirements of computation time of the
scheme proposed in [5] and the present scheme.

6 Conclusion

In this paper we proposed a new location tracking scheme for mobile users.
The scheme can be viewed as an amalgamation of the two previously proposed
schemes [4], [5]. Each mobile device stores a small number of movement patterns
as in [4]. One of the stored patterns is registered by the user as current pattern
of movements. When the mobile user deviates from the registered SMP he/she
is most likely to follow one of the other pre-declared SMPs. But there may be
instances when a user makes either a predictive or an unexpected deviation.
Unexpected deviations result in creation of a new movement pattern. But a
predictive deviation is transient in nature and typically the user is expected
resume registered pattern very soon. To minimize the extra computation load
on base station and also to minimize signaling, we introduced the use TSPI. The
scheme proposed in this paper relies on the MT to update the TSPI entries.
Though it increases signaling cost slightly, but leads to significant reduction in
paging costs. Moreover, the present scheme also tackles the expected deviations
through secondary clusters found with the aid of regional route map. This is not
handled by any of the two previous schemes [4], [5]. So, the proposed scheme
not only designed to keep track of evolving new movement patterns but also to
handle predictable but transient deviations.
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Abstract. The next generation wireless communication devices are ex-
pected to be capable of communicating with the best possible network
as well as to utilize multiple networks, simultaneously. Existing solutions
such as the interoperability mechanisms and the Always Best Connected
(ABC) paradigm limit the access of wireless devices to only one, prefer-
ably the best possible network. Such schemes, though found to be better
than the traditional single interface communication, are limited in their
ability to utilize the services in the best possible way. Existing work fo-
cuses mainly on network layer or transport layer bandwidth aggregation
mechanisms which either need to change the existing TCP protocol or
require proxy nodes to perform the bandwidth scheduling process. We, in
this paper, propose a new wireless access paradigm for multi-homed hosts
based on a session layer bandwidth aggregation mechanism. The major
advantages of our solution are the high end-to-end throughput, glitch
free transition during both mobility and interface changes, dynamic se-
lection of number of end-to-end paths, and above all our solution can
work with existing transport and network layer protocols in today’s In-
ternet. In this paper, we provide the architectural and protocol solutions
for the proposed scheme and results from extensive simulations and a
Linux based implementation.

1 Introduction

The wireless spectrum is shared by several terrestrial wireless access mechanisms
ranging from Wireless Personal Area Networks (WPANs), Wireless Local Area
Networks (WLANs), Wireless Wide Area Networks (WWANs), and the satellite
wireless communication systems. Traditionally wireless enabled communication
devices were designed to use only one kind of access mechanism. However, the
developments in the last two decade resulted in several new medium access mech-
anisms such as Bluetooth [1], IEEE 802.11b [2], GSM, GPRS, and CDMA-based
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data cellular systems such as 1xEVDO. In the recent past, a number of new
network access mechanisms are proposed which provided a new kind of wireless
access scheme which selectively uses one of the many possible multiple com-
munication interfaces to provide a seamless communication experience for the
end users. The interoperability mechanism for communication systems provided
by Joseph et al. in [3] and [4], the Always Best Connected (ABC) [5], [6], [7],
and [8] and the Bandwidth Aggregation (BAG) mechanisms proposed in [9] are
examples for solutions for using multiple networks.

It is essential for the next generation wireless communication devices to seam-
lessly utilize multiple network interfaces simultaneously to achieve the following:
(i) high end-to-end throughput, (ii) glitch free communication experience, (iii)
connectivity in the presence of heterogeneous wireless networks, and (iv) ability
to aggregate bandwidth over multiple interfaces. We, in this paper, propose a
new wireless communication access paradigm called Session Layer Bandwidth
Aggregation mechanism (SEBAG) which utilizes multiple network interfaces to
provide end-to-end multiple paths in order to improve the end users’ communi-
cation experience. Our solution is considered to be at session layer because it
operates between transport and application layer. Therefore, applications that
use either TCP or UDP protocol need not be aware of the use of multiple end-
to-end paths. This mechanism also need not make any modifications at the
transport or network layer protocols. Existing multipath transport layer solu-
tions such as parallel TCP (pTCP) [10] require radical changes at the transport
layer and hence extending it to traditional TCP is not easily possible. Applica-
tion layer solutions such as XFTP proposed in [11] use multiple TCP streams
but over a single interface and hence it cannot fully exploit the benefit with
multi-homed hosts. Even if the XFTP is modified to operate over multiple inter-
faces, extending that solution to a wide variety of applications is unforeseeable.
The motivation behind our work is to provide an efficient and transparent so-
lution that operate at session level to exploit the presence of a wide variety of
access networks including wired and wireless access networks. We provide a cross
layer interaction based solution centered at the session layer in order to provide
a very high end-to-end throughput, a solution for the transport layer head-of-
line blocking problem, provisioning of seamless transition across networks, and
a glitch free communication experience while switching from one network to the
other. We propose the SEBAG framework to achieve the above mentioned ob-
jectives. The rest of this paper is organized as follows: Section 2 describes our
solution and Section 3 presents the experimental results. The existing work in
this area is described in Section 4 and Section 5 summarizes the paper.

2 Our Work

In this section, we present the Session layer Bandwidth Aggregation (SEBAG)
scheme which is an always-all-connected communication access paradigm that
provides end-to-end multiple paths over multiple communication interfaces. In
this case, we have a thin module that operates logically between the application
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layer and the transport layer. This session layer module operates both at the
client-side and at the server-side. The primary responsibility of these modules is
to dynamically initiate and manage end-to-end transport layer connections.

At the client node, we have a module called Client-side SEBAG Aggregator
Module (CSAM) and its equivalent at the server’s end is Server-side SEBAG
Aggregator Module (SSAM). The CSAM and SSAM are generally implemented
as thin layers between application and (transport) TCP layer. The network layer
solution proposed in [9] depends on a proxy node in the network that schedules
the data traffic over to multiple interfaces. The most important disadvantage for
this system is the single point of failure formed by the proxy node. pTCP [10]
is a recently proposed transport layer solution which requires radical changes at
the transport layer and is a serious limitation for large scale deployment in to-
day’s Internet. Therefore, in our solution, we intend to keep the transport layer
protocol intact. Existing work in [11] shows that delinking the bandwidth aggre-
gation process from application layer is important as it simplifies and optimizes
the operation of bandwidth aggregation mechanisms. The primary responsibility
of SEBAG Aggregator modules (SAMs) is to manage packet striping and aggre-
gation based on the availability of network resources over multiple end-to-end
paths. For example, when a mobile node moves into the coverage area of a new
network, the CSAM identifies it and communicates to the SSAM and initiates
another transport layer connection to utilize the new access network. The SSAM
would now start including the new transport connection in the packet scheduling
process at the server side. Similarly, when mobile hosts move out of the coverage
of a particular network, it removes the transport layer connection which was
setup through that network.

Figure 1 shows the schematic diagram of SEBAG scheme. When users open
an application that needs file transfer, the application layer requests a transport
layer connection. This request is captured by the CSAM which in turn sets up
the first transport layer connection. Over this transport layer connection, CSAM
transfers data and control information to SSAM module. The CSAM has several
associated modules, such as the Cross Layer Interaction Module, which monitor
the availability of additional active network interfaces through which end-to-
end connections can be setup. CSAM communicates the information about the
additional network connections to the SSAM and additional end-to-end paths
are setup. This end-to-end multi-path setup is dynamic and therefore, it adds
and removes additional paths as and when the mobile node comes in the pres-
ence of multiple heterogeneous networks. The communication model we used
for studying this scheme is similar to a multi-homed mobile host which commu-
nicates over multiple heterogeneous wireless or wired interfaces to a server in
the Internet. The number of multiple transport layer connections is determined
by the number of different wireless interfaces which can connect to the wired
networks. This connection establishment policy is called Always-All-Connected
(AAC) where the CSAM and SSAM establish as many connections as the num-
ber of access networks available to the mobile host. Once a control channel
is established between CSAM and SSAM, it proceeds to the identification of
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potential networks that can be used with the server through CSAM. The CSAM
generates multiple TCP connections, each over a different interface. The CSAM
also aggregates the throughput received from each TCP pipe and delivers it
to the application layer in order. At the server side, the TCP connections are
similar to normal connections and it need not go through the SSAM.

2.1 The Cross-Layer Interaction Module

The Cross Layer Interaction Module (CLIM) of SEBAG interacts with trans-
port, network, and MAC layers. The major advantage of using CLIM is that
we can dynamically update the properties of the end-to-end transport session
depending upon the changes in the network access system. The number of TCP
connections serving a single communication session is limited by the number
of access networks present. Choice of access networks include 802.3, Bluetooth,
802.11b/g/a, 3rd generation cellular networks, CDMA data networks, and satel-
lite links. The number of multipath transport connections can be decided based
on policies such as cost of access, bandwidth of access networks, and power
consumed by the interfaces. As an initial approach, we, in this work, studied
only one scheme in which we use the number of transport layer connections
(TCP connections) proportional to the number of active interfaces. Figure 2
shows Cross Layer Interaction Module within the CSAM and its interactions
with different modules. Figure 2 shows the major modules in the CLIM and
its interactions with other layers. The user interface provides a user with the
facility to do the following: (i) control the interfaces manually, (ii) overriding
the default policy of AAC operation, (iii) definition of new policies, (iv) moni-
toring the current end-to-end bandwidth achieved, and (v) other configuration
utilities. The access manager handles the overall aggregation management and
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maintenance of multiple connections. The link manager monitors and updates
the status of different network interfaces. Upon instructions from access man-
ager a link manager brings the interfaces up or down as and when necessary. The
connection management intelligence is implemented at the access manager. In
the access manager, the DynamicMultipathControlModule holds the responsi-
bility to add or remove transport layer connections over multiple interfaces. This
module periodically checks the activity on each transport layer connection and
removes inactive ones or those presumed to be inactive due to the absence of any
packet transmission over a long period of time. Upon the instruction from the
access manager the link manager resets the interfaces associated with inactive
connections. Similarly, upon detection of new networks, link manager reports to
the access manager and the access manager initiates additional transport con-
nections through that interface. This is periodically repeated to maintain an
always-all-connected network access paradigm with additional capability of end-
to-end bandwidth aggregation. The DynamicMultipathControlModule briefly
listed below.

DynamicMultipathControlModule()
While(Communication Session Active)

CheckForActivePaths()
RemoveInActivePaths()
CheckNewActiveInterfaces()
SetupNewTransportConnsThroughTheNewInterfaces()

end while

2.2 Connection Setup Process

In order to achieve high throughput for an end-to-end data transfer session,
SEBAG utilizes an efficient traffic aggregation mechanism. For example, con-
sider the end-to-end transport layer connection where each connection (for ex-
ample TCP) is identified by IP addresses and TCP ports of both the sender
and the receiver. When an application layer at the client side needs to open
a connection, it passes the request to the Client-side SAM. Instead of set-
ting up a single TCP connection, the CSAM sets up multiple TCP connec-
tions with the server end-point. All these connections are listed as part of a
session layer connection. Now each of these connection can operate as an in-
dependent TCP connection. Each TCP connection established between CSAM
and SSAM transfers data and in-band signaling packets for SEBAG. For ex-
ample, the first packet sent over a new transport layer connection contains
the connection identifier. Application layer protocols need not be aware that
it uses multiple transport layer connections. Therefore, SEBAG is transpar-
ent to the higher layer protocols. This is achieved by handling all the interface
primitives between application and transport layers. The CSAM communicates
with a Cross Layer Interaction Module (CLIM) which in turn interacts with
other layers. CLIM understands the number of communication interfaces, sta-
tus of connectivity, and the raw data rate of each of them. By periodically
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updating the network access capability of the node, the CLIM aids the CSAM
to change the number of transport connections dynamically.

2.3 Connection Management and Congestion Control

SEBAG manages and dynamically updates the number of transport layer con-
nections depending on the availability of access networks at the client’s end. It
completely disassociates itself from the congestion control mechanism and de-
pends on the transport layer to provide it. That is, when TCP is used at the
transport layer, SEBAG depends on the TCP’s congestion control. Similarly
when transport layers such as UDP are used for communication, our scheme
does not interfere with the use of congestion control at the transport layer. The
dynamic connection management and packet scheduling at the SSAM can also
lead to indirect congestion mitigation. In this work, we do not focus on the
implicit congestion control caused by the SEBAG’s scheduling mechanism.

2.4 Operation of Link Manager

Figure 3 shows the flow diagram representation of the algorithm that is running
at the link manager. The major actions carried out by the link manager are
the monitoring and conveying the status of each of the available communication
interfaces and executing the commands from the access manager. Every interface
at the MH has one link manager. Upon the instructions from the access manager,
a link manager initiates several actions such as turning up or down, enables IP
connectivity to the responding node (either server or client), and monitoring
the availability of link. In addition to all the above, the link manager has the
capability to attach a specific route to a particular node.

2.5 Dynamic Packet Scheduling Algorithm

When we use multiple end-to-end transport layer solutions, it is important to
utilize the independent paths to achieve maximum efficiency. We studied two
packet (or segment) scheduling systems here (i) Round Robin scheduling and (ii)
an Expected Earliest Delivery Path First (EEDPF) scheduling. The application
layer data units to be transferred will be divided into large number of semi coarse
chunks (data segments) which will be scheduled for transmission over chosen
paths. The round robin mechanism allocates equal number of data segments for
each path. In cases where the segments are of variable sizes, then a surplus round
robin scheme can be used. In our studies we used a fixed sized segments while
allotting data segments to different transport layer connections. We discuss both
the schemes in the following sections.

Round Robin Scheduling: As per this scheme, after setting up multiple
(say k connections) transport connections through k different interfaces, the
CSAM starts sending or receiving segments through each of the connections.
SSAM assigns the data segments (or application layer protocol data units) in a
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round robin fashion so that each connection will be assigned an equal size data
segment to be transferred. Note that we do not intend to duplicate the data
through multiple connections. In the case of variable length of application layer
protocol data units, one needs to use surplus round robin scheme to achieve an
equal share of data packets across all the paths.

Expected Early Delivery Path First Scheduling: The use of above men-
tioned round robin mechanism may cause congestion and buffer overflow for some
wireless interfaces which have low end-to-end transmission rate. Therefore, a bet-
ter policy is to allot more data segments over the end-to-end path that has the
highest end-to-end data rate. Since we do not have the accurate information about
the end-to-end data rate of each of the paths, we propose to use a new scheme called
Expected Earliest Delivery Path First (EEDPF) scheduling. In this case, we esti-
mate the end-to-end bandwidth and assign a data segment to the connection which
is expected to deliver the data segment at the earliest. When a data segment is to
be scheduled, the SEBAG module finds the connection which could deliver it to
the destination at the earliest. The SAM modules obtain the end-to-end through-
put as well as the average end-to-end latency of each connection to determine this.
The expected delivery time is estimated as the sum of the end-to-end latency and
the segment transmission time. The segment transmission time is obtained as Lp

Be

where Lp is the length of the segment to be assigned to the transport layer and Be is
the average end-to-end bandwidth obtained on that path. These information are
obtained by the sender-side SAM module from the received SAM-level acknowl-
edgment packets. Each TCP connection is assigned a number of chunks that is
effectively proportional to its end-to-end data rate. The end-to-end data rate is
obtained from acknowledgment packets received by SSAM from CSAM over each
of these connections. This in turn leads to a scheme where a faster interface is more
likely to be provided with more segments.

Inform Access manager
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UpCheck for 
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on every interface
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Inform Access manager
and execute commands 
from Access Manager

Flow diagram of operations in link manager

Fig. 3. The flow diagram of link manager
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3 Experiments and Results

We have carried out extensive experiments to study the performance of our
system. Figure 4 shows the network topology used for simulation experiments.
We have used a server and a client with three end-to-end disjoint paths be-
tween them. The client node is connected to the network using three interfaces.
Two of these interfaces are wireless and the third one is a wired interface. We
studied different bandwidth values for the wired and wireless interfaces. Unless
otherwise specified, we used a 10Mbps 802.11b interface for the first wireless
interface. For the second wireless interface, a 1Mbps wireless WAN interface is
used. The default value for all the wired links including the client node’s wired
link is 10Mbps. The MAC protocol used for WLAN interface is IEEE 802.11b.
The transmission power used for WLAN and WWAN interfaces are 7.5dBm and
13.5 dBm, respectively. The simulation engine is built around Glomosim. The
number of nodes in the network is 10 with a topology shown in Figure 4. The
network is exposed to background traffic that contents with the SEBAG flow
under study. Figure 5 shows the throughput result obtained by the Always Best
Connected (ABC) mechanism, SEBAG with round robin scheduling over two
interfaces, SEBAG with round robin scheduling over three interfaces, and SE-
BAG with EEDPF scheduling mechanism. In this case, we have the client node
with three interfaces: the WLAN interface with 10Mbps, the WWAN interface
with 1Mbps, and a wired interface with 1Mbps. In this case, we find that the
ABC system performs worse in comparison to other solutions and SEBAG with
EEDPF scheduling scheme performs better than all others.

Figure 6 provides the throughput performance of our SEBAG system with
three interfaces the WLAN interface with 1Mbps, the WWAN interface with
10Mbps and the wired interface with 1Mbps. Similar to the above result, our
solution out performs existing systems.

We have also studied the throughput performance when all the interfaces
are with 1Mbps in Figure 7. In this case, we noted a reduction in throughput
in all the results. Even then SEBAG with round robin scheduling and EEDPF
scheduling out perform the ABC scheme.
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Fig. 8. A snapshot of the user and admin-
istration interface for SEBAG system

3.1 Prototype Implementation Details

In this section, we discuss the implementation details of our prototype. We have
developed a prototype of the proposed SEBAG scheme at the University of
California at San Diego, in association with Ericsson CalIT2 Research Center.
Figure 8 shows the Multi Access Control Center which is the user interface for
SEBAG. Multi Access Control Center provides information that can be used to
manage different interfaces. Multi Access Control also provides the current end-
to-end bandwidth obtained through each one of the currently active interfaces.
Users can also activate or deactivate appropriate interfaces to control the access
mechanism if they so desire. SEBAG maintains connection through all interfaces
all the time and hence the throughput achieved is found to be maximum. We
used a Linux based laptop computer with Pentium III processor as a client node.
This client node is fitted with an Ethernet card, an IEEE 802.11b card, and a
1xEVDO card. The 1xEVDO card provides a maximum data rate of 2.4Mbps
with a sector throughput of 700Kbps. WLAN interface operates at 11Mbps and
the wired interface for this setup is operating at 10Mbps. The experimental
prototype topology is illustrated in Figure 9. The measurements for 1xEVDO
link is obtained using the data services of Verizon Wireless service provider.

Figure 10 shows the results obtained through our prototype system with
WLAN and 1xEVDO networks. In this experiment, we have not used the Ether-
net interface. With WLAN interface, we observed much higher performance com-
pared to 1xEVDO. Our SEBAG scheme with EEDPF scheduling provided very
high throughput which is almost equal to the aggregated throughput through
each of the interfaces, as shown in Figure 10.

4 Related Work

The Always Best Connected system [5], [6], and [7] proposes to use the best
network among the available ones. The decision of best network is based mainly
on available bandwidth. The ABC system enables a client node to seamlessly
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switch across the networks. The two major approaches used for implementation
are the end-to-end approach and the proxy based approach. In the end-to-end
approach, the network connection is re-initiated by a connection manager. In
the end-to-end approach, during the network switching process, the connection
manager would request the end-node – in most cases a server in the Internet,
the remaining part of the file which was already under transmission. This is
mainly achieved through application protocols such as HTTP, FTP, or RTSP.
The ABC project [8] at University of California at San Diego is an example
for an experimental system. The proxy-based approach uses a network layer
proxy to split the end-to-end connection. In this case, the use of multiple in-
terfaces or the choice of the best possible network service is to communicate
with the proxy. The main issue of the proxy-based system is the scalability re-
quirement of the proxy node and the head-of-line blocking problem faced at the
proxy node.

The solution proposed by Joseph et al. in [3] and [4] provides an application
layer mechanism which enables seamless communication across WWANs and
WLANs. At the wireless LAN side, they used 802.11b based system. They also
listed out issues related to the timing of the switching, billing and revenue shar-
ing, user profiles, load balancing, and hand-off issues. They proposed three user
profiles such as bandwidth conscious, cost conscious, and glitch conscious user
profiles. A bandwidth conscious user would switch whenever they find a network
which has better bandwidth to offer. In addition, they discussed the important
issue of revenue sharing such as pricing, revenue sharing, and use of pricing sys-
tem to balance the load across different networks. They also proposed a dynamic
pricing system by which the system decreases the access cost for the networks
with light load such that the large number of cost conscious users may shift to
lightly loaded networks. They also built the interoproxy – an application layer
proxy-based system that provides interoperability across WANs and LANs.

The Bandwidth Aggregation (BAG) mechanism proposed in [9] utilizes a
network layer proxy to achieve bandwidth aggregation at the nodes. An IP-in-
IP tunneling is used to connect the proxy with the ABC client. The proxy may
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identify multiple interfaces to distribute the load. The work in [9] also provides a
dynamic scheduling mechanism to distribute the load across the interfaces. This
system also faces the head-of-the-line blocking problem.

Hsieh and Sivakumar proposed a new transport layer protocol in [10] which
has the inbuilt capability of using traffic striping across multiple transport layer
micro flows. Even though they obtain good performance, their scheme needs
extensive changes in the protocol and it does not interwork with the existing
TCP.

Allman et al. proposed an extension of FTP in [11] that can use multiple TCP
connection for handling with throughput issues on satellite links. Extension of
their solution to every other application demands enormous effort.

5 Summary

The presence of heterogeneous wireless and wired access mechanisms raises sev-
eral challenges in choosing and using the best possible access mechanism. We,
in this work, propose a new network access mechanism by proposing to make
use of multiple interfaces simultaneously. This is achieved by using a session
level traffic aggregation mechanism which provides multiple end-to-end paths.
Such a mechanism not only provides very high throughput compared to existing
schemes, also provides high flexibility in using any available network interfaces.
This system can also dynamically choose a specific set of interfaces that are
available. We propose a framework with a cross layer interaction module, which
enables the interaction between session layer and lower layers. We studied the
performance of our system using simulations and a prototype implementation
and found that it provides very high throughput and flexibility.
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Abstract. Caching has been widely used to improve system performance in 
wireless mobile environment. Mobility management is a key component in al-
lowing a client to maintain normal communication with the server while on the 
move, independent of its location. A cache invalidation strategy ensures that 
any cached item by a client has same value as on the origin server. Mobility of 
clients makes the cache maintenance task more complex. This paper extends 
our previous caching strategy in a wireless environment to handle inter-cell cli-
ents’ mobility. Experiments are performed to evaluate the proposed strategy and 
compare the results with other existing strategies. 

1   Introduction 

Today, the most popular use of wireless networks is for personal communication 
applications such as mobile phone calls, and short messaging service (SMS). As the 
price of mobile computing devices drops and the cost of accessing wireless networks 
decreases, users have begun looking for a wide variety of services including on-
demand information access, the ability to surfing the World Wide Web (WWW) 
while on the move, access to remote data independent of location and time, etc. Cach-
ing at mobile client can relieve bandwidth constraints imposed on wireless and mobile 
computing. This not only reduces the uplink and downlink bandwidth consumption 
but also the average query latency.  

Barbara and Imielinski [4] provide a caching solution where the server periodically 
broadcasts invalidation report (IR) in which the changed data items are indicated. 
Early work in mobile caching focused on solving the problem of client disconnection 
[5], [6], while recent work [1], [2], [3] addresses the issues of long query latency with 
updated invalidation report (UIR). Similar to IR strategy, the UIR based strategy also 
suffers from the disadvantage of long query latency due to cache miss. 

To overcome the limitations of IR and UIR strategies, we have developed update 
report (UR) based synchronous stateful caching strategy [7], [8]. The design idea of 
UR strategy includes reducing the query latency, minimizing the client disconnection 
overhead, better utilization of wireless channel and conserving the client energy. The 
track of cached items for each client is maintained at the home mobile support station 
(MSS) in the form of cache state information (CSI). Use of CSI reduces the size of IR 
by filtering out non-cached data and handles arbitrarily long disconnection. Our  
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previous work [7], [8] doesn’t support inter-cell mobility of clients. In this paper, we 
extend the UR based caching strategy to maintain consistent cache for dynamic data 
accessed from remote database server while a client is on the move. 

The rest of the paper is organized as follows. Section 2 gives a brief description of 
UR caching strategy. Section 3 presents the caching framework to handle client mo-
bility. Section 4 describes the simulation model and studies the performance through a 
number of experiments. Concluding remarks are given in the last Section. 

2   UR Based Caching Strategy 

The model consists of two distinct sets of entities: Mobile Hosts (MHs) and Fixed 
Hosts (FHs). Some of the FHs called Mobile Support Stations (MSSs), are augmented 
with a wireless interface in order to communicate with the MHs, which are located 
within a cell. MSSs are also known as Base Stations (BSs). Server database D is a 
collection of N data items. Each data item di is of same size Sdata (in bits) and has two 

timestamps: ti is the most recent timestamp when di got updated at the server and r
it , 

called latest request time, represents the most recent time when di was last requested 
by any client. Clients only issue simple requests to read the most recent copy of data 
items. Frequently accessed data items are cached on the client side. Each client has 
same cache capacity of C items. To ensure cache consistency, the server broadcasts 
UR every L seconds and it also broadcasts (m-1) RRs between two URs as shown in 
Fig. 1. To answer a query, the client listens to the IR/UIR part of UR/RR report and 
uses it to decide cache validity. If there is a valid cached copy of the requested item, 
the client returns the item immediately; otherwise, it sends an uplink query request. 

 

Fig. 1. Reducing the query latency. 

For each client MHx, the home MSS maintains cache state information CSIx (i.e. 
list of cached items). To save energy a client may power off and only turns on during 
the report broadcast. Our strategy reduces the size of IR by filtering out non-cached 
items, thus enhancing the overall performance. Reduced size of IR/UIR reports im-
proves the downlink channel utilization. Further, it enhances the uplink channel utili-
zation by adopting delayed uplink (DU) technique [8]. 
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3   Handling Client Mobility 

A client wants its connection to be retained even if it moves to another cell. Handoff 
is the process which guarantees that the client will keep its connection without any 
interruption. The cell residency time (the time for which a mobile client stays in a 
particular cell) has an impact over the client caching strategy. The cell residency time 
of a client depends on the mobility behavior of the user carrying the mobile host. For 
example, when users are driving their cars, they can move between cells faster than 
while they are walking. When MHi moves from old cell to a new cell, it will be regis-
tered in the new cell and a copy of CSIi from the home MSS will be replicated at the 
new MSS. If the old MSS is not the home MSS, it (old MSS) deregisters MHi by 
deleting CSIi from its local disk and transfers pending request (if any) of MHi to the 
new MSS. MHi resumes its operation in the new cell and more requests can be di-
rected to the new MSS after the pending data items have been received. While away 
from the home cell, the changes which occur in the contents of CSIi at current MSS 
will also be propagated back at the home MSS so that both the copies are consistent. 

 

Fig. 2. Client mobility process. 

Consider a client MHi who belongs to home cell A, is presently located in cell B. 
As shown in Fig. 2, when MHi moves from old cell B to new cell C, six messages 
namely 1 - ADMIT, 2 – ENTRY, 3 – DEREGISTER, 4 – DELETED, 5 – 
REGISTER, and 6 – PERMIT are exchanged among home MSS, old MSS and new 
MSS. 

The following sequence of events takes place: 
1. On entrance to new cell, the MHi sends ADMIT message to the new BS MSSC. 

The message contains the id of host and address of its home BS. When MSSC re-
ceives the ADMIT message, it sends ENTRY message to the MSSA, saying that 
MHi has entered into its cell. 
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2. When MSSA receives the ENTRY message, it sends DEREGISTER message to the 
old BS (MSSB). The DEREGISTER contains id of MHi and when received at 
MSSB, it forwards pending request (if any) of the MHi to MSSA as part of message 
DELETED and deregisters MHi by deleting related information including CSIi. 

3. MSSA sends a message REGISTER to MSSC. The message contains CSIi and list 
of all the pending items of MHi. 

4. On receiving REGISTER from MSSA, the MSSC registers MHi in the new cell. The 
received CSIi is used as state information about MHi and list of pending items will 
be processed during the next UR/RR broadcast whichever arrives earlier. 

5. MSSC sends a PERMIT message to MHi confirming the registration. MHi on re-
ceiving PERMIT resumes its operation so that more requests can be directed to the 
new MSS after the pending request have been processed. 
The above scheme can be easily integrated with Mobile IP (MIP). The CSI of a 

mobile host can be maintained by the home agent. Further, the CSI can be replicated 
with the foreign agent when the mobile host moves to a foreign network. 

4   Performance Evaluation 

Table 1 shows system parameters and corresponding values. Clients generate queries 
following exponential distribution. The mean inter-arrival time of queries generated 
by all clients is Tq. The inter-arrival time of updates at the server is distributed expo-
nentially with a mean of Tu. A client has a probability pd to enter the disconnection 
mode only when the outstanding query has been served. A client follows exponential 
distributed disconnection with mean time Td. The client’s roaming process is also 
assumed to follow exponential distribution with the mean residency time Tr in a cell. 

Table 1. Simulation parameters. 

Parameter Value Parameter Value 
Server database size (N) 1000 items Uplink channel bandwidth (Bup) 100 Kbps 
Number of clients (M) 100 clients Downlink channel bandwidth (Bdown) 2 Mbps 
Item size (Sdata) 4096 bits Mean update arrival time (Tu) 10 sec 
Item id size Sid 32 bits Percentage of updates on hot data (pu) 40 
Update timestamp size (Tdata) 32 bits Client cache size (C) 50 items 
RR/UIR broadcasts (m-1) 4 Mean query generate time (Tq) 100 sec 
Broadcast interval (L) 20 sec Mean disconnection time (Td) 0-400 sec 
Broadcast window (w) 10 intervals Hot data access percentage (pa) 80 
Hot data subset (NH) 1-50 Client disconnection probability (pd) 0.10 
Cold data subset (NC) Remaining D Mean residency time in a cell (Tr) 1-4096 sec 

To evaluate the performance of proposed strategy, we consider four performance 
parameters: cache hit ratio, query latency, throughput (number of requests served per 
UR interval) and number of uplink requests. For performance comparison with pro-
posed strategy, UIR and IR strategies are also implemented. 

Fig. 3 shows the cache hit ratio as a function of the cell residency time (Tr). It can 
be seen that the cache hit ratio for all the strategies improves with an increase in Tr. 
Due to frequent movement of a client at very low Tr (e.g., less than 8 seconds), the 
cache hit ratio is very low because the client hardly has time to download the  



540 N. Chand, R.C. Joshi, and M. Misra 

requested items. In the IR, when a client moves to a new cell, all the data items are 
purged from the cache, thus the cache hit ratio is almost zero for Tr less than 8  
seconds. 

Our strategy outperforms the UIR strategy because for a cache miss request, the 
data broadcast is made every 2 (i.e., L/(2*m)) seconds. As Tr grows longer than 2 
seconds, the cache hit ratio of our strategy starts improving, whereas in case of UIR 
strategy, the hit ratio improves only for Tr > 10 (i.e., L/2) seconds.  

Cell residency time (sec)

1 2 810 64 512 4096

C
ac

he
 h

it
 r

at
io

0.0

0.2

0.4

0.6

0.8

1.0

IR strategy
UIR strategy
Our strategy

Cell residency time (sec)

1 8 64 512 4096

Q
ue

ry
 la

te
nc

y 
(s

ec
)

0

5

10

15

20

25

30

35

40

IR strategy
UIR strategy
Our strategy

 

    Fig. 3. Cache hit ratio                                         Fig. 4. Query latency. 

From Fig. 4, it is clear that our strategy has the lowest query latency. When the Tr 
is very low (e.g. less than 8 seconds), a client frequently moves among the cells and a 
request due to cache miss is hardly processed by the server. Thus under low cell resi-
dency time the query latency is very high.  
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                 Fig. 5. Throughput                                 Fig. 6. Number of uplink requests 

Fig. 5 shows that the throughput increases with an increase in Tr. Since our strategy 
has higher hit ratio than the IR and UIR at all Tr, it can serve more queries locally, and 
clients send lower number of requests to the server. Due to delayed uplink (DU) [8], 
our strategy further reduces the number of uplink requests. As a result our strategy has 
always the highest throughput. As shown in Fig. 6, our strategy has the lowest number 
of uplink requests. 
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5   Conclusions 

Due to various constraints of mobile environment and frequent mobility of clients 
from one cell to another, the task of cache maintenance becomes more complex. This 
paper presents a mobility handling strategy so that a client can maintain consistent 
data while on the move. Simulation experiments show that our strategy performs 
better than IR and UIR schemes. 
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Abstract. In this paper, we analyze the performance of hierarchical multicast 
protocol in IP micro mobility networks. The most important parameters to pro-
vide multicast service in IP micro mobility networks are the connection recov-
ery time and the reconstruction cost of multicast tree according to the host mo-
bility. So we derive the average connection recovery time and total tree 
reconstruction cost due to the handoff of mobile hosts by considering the hier-
archical structure of IP micro mobility networks. We also verify the analytical 
results by simulation. 

1   Introduction 

Mobile IP [1] enables host mobility by allowing global IP mobility by transparently 
maintaining IP connections regardless of changes in the location of the mobile host. 
However, in the cellular based mobile access networks providing micro mobility of 
hosts, Mobile IP has many constraints when the network is handling frequent hand-
offs [2]. A new address has to be obtained for every handoff and the address should 
be registered to Home Agent (HA) which is located at a far distance. Therefore, Mo-
bile IP increases handoff delay time and increases the burden on global internet. 
Moreover, severe decrease in quality occurs during the handoff period. To solve these 
problems, researches to support micro mobility such as Cellular IP [3], HAWAII [4] 
have been proposed. These researches aim at supplementing Mobile IP rather than re-
placing it by another and enabling Mobile IP to handle micro mobility without mutual 
interaction with global Internet. To do this, in IP micro mobility networks, access 
network is being configured as tree type for easier routing. By proposing domain 
based method, problems of triangle routings delivered via home agent (HA) have 
been resolved even if node delivering datagram is located near to the mobile host. 
However, these researches are only focusing on the transmission of unicast datagram 
and the study of multicast service is required. In this paper, we analyze the perform-
ance of hierarchical multicast protocol in IP micro mobility networks. The most im-
portant parameter is handoff of mobile hosts on multicast service. To deal with the 
dynamic group membership and the dynamic member location due to handoff of  



 Analysis of Hierarchical Multicast Protocol in IP Micro Mobility Networks 543 

mobile hosts, the multicast protocol in mobile networks reconstructs a multicast tree 
every time when a host moves to a new network. So the analysis of the connection re-
covery time and the reconstruction cost of multicast tree with respect to the host mo-
bility is required. 

2   Analytical Model 

To process the micro mobility without frequent mutual interaction with global internet 
backbone network and for easier routing, IP micro mobility networks have the net-
work domain based hierarchical structure. That is, routers are configured with tree 
type structure. Therefore, in this paper, modeling of multicast agents is performed for 
tree type network structure for compatibility with IP micro mobility networks. Fig. 1 
shows the structure of network for the performance analysis of the hierarchical multi-
cast protocol in this paper. 

 

Fig. 1. The structure of network for performance analysis 

Network structure for the performance analysis has a hierarchical structure that 
forms a tree which binds 4 base stations by multicast agents. In this paper, the number 
of cells increases by multiples of 4 by extending the hierarchy of the multicast tree. In 
performance analysis, we derive the average connection recovery time and total tree 
reconstruction cost by considering handoff of mobile hosts. We define assumptions 
on the characteristics for the analysis of hierarchical multicast as follows. 

• There exist calls that require multicast service only. 
• The arrival rates for the new call and the handoff call follow a Poisson distribu-

tion. 
• Service time for a call follows an Exponential distribution. 

Because of limited number of wireless channels, a base station can provide a ser-
vice to a limited number of mobile hosts at a time and since each mobile host is get-
ting service independently from other mobile services, performance analysis is per-
formed through M/M/∞//M queuing model [5]. In this paper, we represent the 
probability that there are k mobile hosts in a cell as pk.  
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3   Performance Analysis 

3.1   Average Connection Recovery Time (T) 

Average connection recovery time is the one that calculates the average of the delay 
time for the cell to be subscribed to a multicast group in the case that the mobile host 
moves to the cell not subscribed to the multicast group. Average connection recovery 
time is given by Eq. (1). 

T = E[HCB] × (2TDLINK+TDGROUP) × PJ + TDGROUP (1) 

where E[HCB] is average number of hops required for a cell to join a multicast group 
when a mobile host moves to the cell, which is not subscribed to the multicast group. 
As shown in Fig. 1, the tree that binds four areas together is defined with hierarchical 
structure. This is done by expanding binary tree to two dimensions. Therefore, when 
tree is defined by K levels, the value for E[HCB] can be obtained by dividing average 
distance between two adjacent cells, that are randomly selected, by 2. E[HCB] can be 
given by Eq. (2). 
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PJ is the probability of the cell to be subscribed to multicast group in the case that 
the mobile host moves to the cell not subscribed to multicast group. PJ is derived from 
the average of PJ(t) that is the probability of mobile host to move to the cell which is 
not subscribed to multicast group at time t. PJ(t) and PJ are given by Eq. (3). 
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From the Eq. (3), the probability for the cell to be subscribed to multicast group in 
the case that the mobile host moves to the cell which is not subscribed to multicast 
group, PJ is equal to p0. 

Consequently, when the derived equations are applied to Eq. (1), the average con-
nection recovery time, T is obtained as follows. 
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3.2   Total Tree Reconstruction Cost (C) 

Total tree reconstruction cost is calculated in accordance with tree paths that is newly 
connected and released due to the handoff of mobile host. In this paper, the cost has 
been applied by converting it into delay time. 
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C = N×PJ×(E[HCB] × (2TDLINK+TDGROUP)+ TDGROUP)  

+ N×PL×(E[HRB] × (2TDLINK+TDGROUP)+ TDGROUP) 
(5) 

where E[HRB] is average number of hops required for cell to be released from multi-
cast group due to the handoff of mobile host. As shown in Fig. 1, when tree is defined 
by K levels, the value for E[HRB] can be obtained by dividing average distance be-
tween two adjacent cells, that are randomly selected, by 2. 
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N× PJ is the average value of cells that are newly connected to the multicast tree 

due to the handoff of mobile host. That is, N× PJ is to be N× M)1(1
μ
λ+ . PL is the 

probability of removal of previous cell from multicast group due to the handoff of 
mobile host. PL is derived from the average of PL(t) as the probability for handoff or 
service closure after mobile host’s receiving of service being completed at time t, in 
the case that there is only one mobile host in the cell. PL(t) and PL are given by  
Eq. (7). 
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From the Eq. (7), the probability of removal of previous cell from multicast group 
due to the handoff of mobile host, PL is equal to p1.  

Therefore, when the derived equations are applied to Eq. (5), total tree reconstruc-
tion cost, C is obtained as follows. 
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3.3   Performance Results 

Table 1 shows parameters for performance analysis. The parameter values refer to 
those in existing studies [6]. In this paper, we assume that λN, λH and μ are 2.75E-04 
calls/sec, 5.91E-02 calls/sec and 4.88E-02 calls/sec, respectively. We also assume that 
TDSG, TDLINK and TDGROUP are 50ms, 3.5ms and 10ms, respectively. 
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Table 1. Simulation Parameters 

 

Fig. 2 shows the graph that compares the mathematical analysis results and simula-
tion results on average connection recovery time, that is, the average of delay time for 
the cell to be subscribed to multicast group when the mobile host moves to the cell 
not subscribed to multicast group. The performance of the average connection recov-
ery time is determined according to the value of M, that is, average number of multi-
cast mobile hosts in a cell. If the value of M is small, the probability that a mobile 
host moves to a cell that is not subscribed to the multicast group is very high. Hence it 
results in relatively high connection recovery time compared with that for other val-
ues of M. If the value of M is over 4, most cells are subscribed to the multicast group 
and so the average connection recovery times have constant value regardless of the 
number of cells. 

 

     Fig. 2. Average connection recovery time             Fig. 3. Total tree reconstruction cost 

Fig. 3 is the graph that compares the mathematical analysis results and simulation 
results on total tree reconstruction cost due to host mobility. Total tree reconstruction 
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cost is calculated by total delay time of multicast links that is newly connected and re-
leased due to the handoff of mobile host. The performance is determined according to 
the average value of cells that are newly connected to the multicast tree due to the 
handoff of mobile host and the average value of cells that are released from multicast 
group due to the handoff of mobile host. In the case that the value of M is 1, the prob-
ability that mobile host moves to a cell that is not subscribed to multicast group is 
very high because around half of the total number of cells are not members of the 
multicast group. So it shows a relatively high total tree reconstruction cost because 
the number of cells that is subscribed to and released from the multicast group is high 
compared with that for other value of M. It can be found that as the value of M in-
creases, the cost decreases. Fig. 2 and Fig. 3 also show that the simulation results 
match closely with the analysis results and perfect match was not done since infinite 
simulation time is physically not achievable. 

4   Conclusions 

In this paper, we derive the average connection recovery time and total tree recon-
struction cost to analyze the performance of a hierarchical multicast protocol in IP 
micro mobility networks. Modeling of multicast agents is performed for it having tree 
type structure for compatibility with IP micro mobility networks. The performance of 
the average connection recovery time is determined with respect to the average num-
ber of multicast mobile hosts in a cell. The performance of total tree reconstruction 
cost is also determined with respect to the average value of cells that are newly con-
nected to the multicast tree due to the handoff of mobile hosts and the average value 
of cells that are released from multicast group due to the handoff of mobile hosts. The 
analytical and simulation results are useful to design and implement IP micro mobility 
networks to provide efficient mobile multicast service.  
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Abstract. Passive clustering does not employ control packets to collect
topological information in ad hoc networks. In our proposal, we avoid
making frequent changes in cluster architecture due to repeated election
and re-election of cluster heads and gateways. Our primary objective has
been to make Passive Clustering more practical by employing optimal
number of gateways and reduce the number of rebroadcast packets.

1 Introduction

Mobile Ad hoc Network (MANET) is an infrastructure-less network which con-
sists of a collection of wireless mobile hosts to form a temporary network without
the aid of any base station. Since bandwidth is limited in an ad hoc network, it
is important to construct a virtual backbone consisting of only a subset of nodes
that have the privilege to forward packets. Such a virtual backbone called spine
plays an important role in routing, broadcasting and connectivity management
in wireless ad hoc networks. An effort should be made to keep this backbone
thin and connected [1].

A cluster is a set of nodes which can be treated as a single entity during packet
transmission. Each node in a cluster assumes a role depending on its position
and other topological information. The most important role in a cluster is played
by the Clusterhead. A node which belongs to more than one cluster becomes a
Gateway. A gateway is responsible for routing packets across two clusters as they
are reachable from both the clusters in a single hop. Passive Clustering mech-
anism does not use any explicit control messages to maintain clusters. Instead,
it piggybacks the control information on the out-going data packets and has the
advantage of reducing the control overhead. The active clustering algorithm was
proposed by Lin and Gerla [2] based on Least Id principle. An innovative mech-
anism for cluster formation called Passive (On Demand) clustering is provided
in [3]. This method does not use any explicit control messages. The existing
reactive protocols such as DSR [4], AODV [5] have high control overhead and
rebroadcast messages.

This paper addresses the issue of scalability with respect to increase in the
number of control packets using Passive clustering. A new Gateway Selection
Heuristic which eliminates redundant gateways during Passive Clustering has
been proposed.
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2 Problem Definition

Given a wireless network Gw(V, E, n) of a finite set of nodes, V = {v1, v2, .....,
vn} and a finite set of links E = {(vi, vj) | vi, vj ∈ V ∧ vi �= vj}, a link is
said to exist between two nodes vi and vj if they are within the transmission
range of each other. The objectives are to (i) reduce the number of rebroad-
casts by reducing the number of redundant gateways between the overlapping
clusters and (ii) reduce the quantity of control information loaded on the data
packets.

2.1 Topological Problems Associated with Passive Clustering

Problem 1: An ordinary node may move into other clusters and generate a spu-
rious gateway.

When a node moves from one cluster to another cluster, it starts receiving
packets from the new cluster head. It updates the cluster table with the infor-
mation about the new cluster head, while retaining the information about the
previous cluster head. In this situation, it enters into a gateway ready state and
further, it may become a gateway.

This is highly unacceptable, because (i) after the movement, it may not be
in the common region of both clusters (ii) it may cause the real gateway can-
didate to become ordinary, resulting in the loss of connectivity between two
clusters. (iii) it will have privilege to rebroadcast, which it should not have, re-
sulting in an increase in the number of rebroadcasts and hence an increase in the
traffic.

Problem 2: A gateway may move away from the intersection area into a single
cluster without relinquishing the status of the Gateway.

Ideally, such a gateway must become an ordinary node, since it now belongs
to one cluster only. Instead, it continues to assume that it belongs to two clusters
and hence it will stay in gateway state, rebroadcasting all the incoming packets.

Problem 3: Spurious generation of multiple gateways.
In a dense wireless network, there will be a number of nodes in the intersec-

tion region of any two clusters. All of them compete for the Gateway status and
the one with the least id wins. However, if all the candidates do not hear from
same cluster heads, then all of them become gateways. This creates redundant
gateways and causes a broadcast storm [6] in the wireless network.

Problem 4: Formation of redundant clusters.
During the initial setup, all the nodes that receive packets from the ordinary

nodes, become cluster heads. This results in dense and overlapped clusters.

Problem 5: Problems associated with the cluster head moving out of a cluster.
If an ordinary node does not receive packets from its cluster head for a long

time, it assumes that the cluster head is still present but it has no packets to send.
The ordinary node knowing nothing about its cluster head’s absence continues
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to send packets to the cluster head to route them to the destination resulting in
the loss of packets and redundant broadcasts by the source.

3 Algorithm: Efficient Passive Clustering (EPC)

In the cluster architecture, a node can be in any of the following states: ini-
tial, ordinary node, gw ready, gateway, dist gw, cluster head. The algorithm is
as follows:

1. All nodes are in the initial state and they are assigned a unique ID.
2. A node that first wants to transmit packets becomes the source node. It

sends a packet to all its neighbors and declares itself as a Cluster Head.
3. If the initial node hears from a cluster head, it becomes an ordinary node.
4. If a node (other than initial and cluster head) hears from a non-Cluster

Head,
(a) It checks whether the sender node was a Cluster Head before. This check

is carried out by scanning its cluster table in search of the sending node’s
ID. (Cluster Table maintains a list of Cluster Heads reachable from the
node).

(b) If the sender node was a Cluster Head before, then its entry is cleared
from the cluster table of the receiving node. Packets from this node are
not forwarded henceforth.

(c) If cluster set of the node becomes null, the node changes its state to
cluster head.

5. Contention between the Cluster Heads is resolved by the Least ID method.
This is because the Cluster Head does not monitor the cluster. The purpose
of this step is to have only one Cluster Head per cluster.

6. An ordinary node receiving packets from more than one cluster head enters
into gw ready (gateway ready) state.

7. A gw ready node becomes a gateway based on the Intelligent Gateway Se-
lection Heuristic.

8. A gateway on receiving packets from other gateway or gw ready nodes, may
change its state based on the Intelligent Gateway Selection Heuristic.

9. If an ordinary node hears from another ordinary node or dist gw of another
cluster, and if there are no gateways in the intersection area, it becomes a
Distributed Gateway (dist gw).

10. If a dist gw hears from gateway or gw ready of the same cluster-pair, it
becomes ordinary node.

11. No node remains in the intermediate state for a long time.
12. If the node times out its state is set to initial.

3.1 Intelligent Gateway Selection

The number of rebroadcast packets is directly proportional to the number of
gateways. Redundant gateways increase the number of rebroadcasts. Hence, we



Efficient Passive Clustering and Gateway Selection in MANETs 551

give a heuristic that selects a optimum number of gateways. The Intelligent
Gateway Selection Heuristic takes into account the history of competitions that
a node underwent using Competition count(Cc), while deciding its status [7].
The Competition Count (Cc) of a node is the number of times a node com-
petes for the gateway status. It is set to zero, each time a node acquires either
initial or Cluster Head status. The Redundancy Factor (Rf ) of the network is
the maximum number of common clusters that any two neighboring gateways
can connect. Every node has a data structure called a Cluster Set, which is the
set of all cluster heads from which it can receive packets.

Case 1:Only one node in the intersection area: When the node receives packets from
two cluster heads, it enters into the gw ready state and it becomes a gateway.

Case 2:Two or more nodes in the region of intersection of clusters: When a node
receives packets from the other Gateway or gw ready, it compares its cluster set
with that of the sending node. If both the sets are same, then the one with the
least ID becomes the gateway.

Case 3:The cluster-set of one node in the intersection area is a subset of the
cluster-set of another node: Suppose there are two nodes in the intersection area
of clusters such that, the cluster-set of one node is a subset of the cluster-set of
another node. Then the node with the superset will be selected as the gateway.
Every gateway performs this comparison by intercepting the packets from its
neighboring gateways.

Case 4:Two nodes such that (cluster-set(node1)∼cluster-set(node2))�=0: In this
case both the nodes have a tendency to declare themselves as gateways when
they receive packets from each other. But this may not be optimal, since there
may be a difference of just one cluster head between the cluster-sets. This leads
to creation of redundant gateways. The receiving node computes the number
of clusters that are common to both the sending node’s and receiving node’s
cluster-sets. If this value is less than or equal to the Redundancy Factor(Rf),
then both nodes are designated as Gateways. Otherwise, the node with the least
Competition count(Cc) is designated as the Gateway. The heuristic intelligently
selects the best gateway in the intersection area of two or more clusters.

4 Performance Analysis

Passive clustering is simulated in the NS-2 (version 2.26) simulation environment.
Simulation results reveal that there is a reduction in the control overhead and the
number of rebroadcasts by the application of the EPC algorithm. The number
of gateways and the number of cluster heads are also reduced. The IEEE 802.11
DCF and two-ray propagation model is employed for simulation. The broadcast
range for each node is 250 meters and the area of experiment is 2x2 sq. km.
Mobility is measured in meters per minute. Both the simple passive clustering
and improved passive clustering algorithm are implemented on AODV [5].
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By employing the efficient gateway selection heuristic, with the Redundancy
Factor set to one, minimal number of gateways are chosen. Not more than one
gateway is chosen between two clusters. The gateways form a thinner backbone
while maintaining the connectivity among all the clusters within the designated
area. Also, inclusion of more nodes will not increase the number of clusters and
the number of gateways will remain fairly constant. Hence, the gateway curve
of our algorithm is linear compared to that of the simple passive clustering as
shown in Fig. 1.

The Number of Rebroadcasted Packets (NRP) is the total number of pack-
ets that are broadcast and rebroadcast from all the nodes, irrespective of their
states. This is a very important parameter because an increase in NRP results
in broadcast storm. The number of rebroadcasts is directly proportional to the
total number of cluster heads, gateways and distributed gateways in the ad hoc
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network. This is because in passive clustering, only the cluster heads, gateways
and distributed gateways of a cluster have the privilege to forward the packets
they receive. As depicted in Fig. 2, the number of rebroadcasts is the lowest for
EPC. With the application of the gateway selection heuristic and other improve-
ments over passive clustering, the number of rebroadcasts is reduced consider-
ably. The curve corresponding to our EPC algorithm is more stable (flatter) than
others. The number of rebroadcasts is the highest for AODV since every node
forwards the incoming packets. The number of rebroadcast messages in passive
clustering is lower than AODV, but much higher than EPC.

5 Conclusion

The simulation results show that the EPC clustering algorithm is inexpensive,
efficient and stable even under mobile conditions. The number of clusters is found
to be optimal in dense wireless networks. This paper has proved that Passive
Clustering becomes practically possible by implementing the intelligent gate-
way selection heuristic and on-demand timeout mechanism. Frequent changes
in cluster architecture are avoided by precluding repeated re-election of cluster
heads. This improves the network performance. Future work can be carried out
by employing distributed gateways to route packets.
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Abstract. The wide availability of mobile devices together with the technical 
possibility to form ad-hoc networks paves the way for building highly dynamic 
communicating communities of mobile users. A challenge is how to deliver 
messages in such networks incurring least routing overhead. Cooperative rout-
ing is a mobile-agent assisted team approach, which utilizes a set of fixed clus-
ter head nodes to provide proper coordination and cooperation for exchanges 
and sharing of messages in the team. Our routing strategy aims at reducing rout-
ing overheads, message traffic and unnecessary random node visits in the net-
work for delivering data. The main benefit provided by cooperative routing is 
considerable network traffic reduction at high load. We highlight the main 
components of the system and discuss the agent life cycle in detail together with 
the parameters and strategies governing the migration of agents, their merging 
and termination. 

1   Introduction 

A mobile ad-hoc network is a multihop fully autonomous network that can be set up 
anywhere any time. An interesting application in such an environment is decentral-
ized rapid message delivery services while incurring the least routing overheads. For 
this environment to operate properly several of the well-established protocols at the 
different telecommunications layers are revisited. Most of these protocols are based 
on flat architecture where each node maintains complete routing information and thus 
the overhead increases considerably with the network size and traffic [1], [2], [6].  
    In this paper we propose a mobile agent-based cooperative routing protocol for 
delivering short messages in a large clustered network whose performance increases 
with  the  increasing  traffic  in  the network due to high degree of cooperation among 
the agents. In our previous works [3],[4],[5] the mobile agents were used to deliver 
messages where they acted as a messenger that will migrate from a source to a desti-
nation individually to deliver the message. Thus when there are a number of sources 
to send messages to a common destination simultaneously; a group of parallel redun-
dant traffic vested with similar responsibility will be generated. This traffic will even-
tually consume the bandwidth and other crucial resources of the ad-hoc wireless  
network. 
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Fig. 1.  Delivery of messages without and with agent cooperation at cluster head node 15 

    The novelty of this paper is the introduction of a cooperating agent team that will 
meet for the purpose of cooperative task- oriented behaviors like sharing of each oth-
ers responsibilities, exchanging network information and merge all the individual 
agents carrying messages for the same destination into a single agent. The agents, 
which are relieved of their responsibilities in the process, will be terminated if possi-
ble and thus reducing the traffic load heavily. This mode of cooperation can be made 
clear from the Fig. 1. All these cooperation essentially works directly through inter-
agent communication. The entire algorithm works on the fact that agents “need to be 
on the same place at the same time” i.e., they must know the existence of each other.  
     Now in our work to extend the chance of meeting of agents, we have made ar-
rangement of meeting points at the fixed cluster heads distributed randomly within the 
network. Agents navigating through the network for delivering messages must visit 
these cluster heads whenever they are entering a new cluster domain. This compul-
sory agent visit increases the degree of spatial coordination (agents must be on the 
same place) at the cluster heads. The temporal coordination (agents must meet at the 
same time) has been enhanced with the introduction of a short waiting delay offered 
to each mobile agent by the cluster heads. This waiting time will further increase the 
chance of meeting with other agents and can highly reduce the agent-chasing prob-
lem. The meeting place hosted at the cluster heads can be called as the Rendezvous 
points within the network and the detainment period of the agents can be called Ren-
dezvous periods. 

The rest of the paper is structured as follows. We discuss design view of the pro-
posed framework for message communication in Section 2. Agents and the message 
delivery using cooperative routing protocol have been described in Section 3.  Simu-
lation results are presented in Section 4. The paper is concluded in Section 5. 

2   Proposed Framework for Message Communication 

A hierarchical partitioning of networks into clusters offers several advantages like 
improvement of routing and mobility management, increment of system capacity, 
reduction in signaling and control overhead that makes the network more scalable. 

7 Msg2(15) 

Msg1(15) 

4 

Msg1(15) Msg2(15) 

Msg3(15)

5 
4 

Msg3(15) 15 

7 Msg2(15) 

Msg1(15)

4
Msg1(15) 
Msg2(15) 

Msg3(15) 

5 4

Msg3(15) 
15



556 P. Bhaumik and S. Bandyopadhyay 

Such architecture is relatively stable due to the localized nature of route computation 
and can be used in a large mobile ad-hoc wireless environment. 
     Motivated by the advantages of clustering we have proposed a framework consist-
ing of a collection of clusters of mobile nodes. We have assumed of a wireless ad-hoc 
network where each node is equipped with GPS (Geographical Positioning System) 
for extraction of geographical co-ordinates, routing and direction of movement of 
each node [4]. To support the idea of stable adaptive clusters we have assumed cluster 
heads to be fixed and have distributed some fixed nodes as our cluster heads over a 
geographical area covered by ad-hoc wireless networking infrastructure (randomly 
placed autonomous nodes). These stationary nodes are then allowed to form clusters 
within a specific geographical boundary from their own geographical coordinate posi-
tion. The philosophy of forming the clusters is a fixed node with say coordinate 
(X=40, Y=30) forms a cluster with boundary X=X+15 to X=X-15 and Y= Y+20 to 
Y=Y-20. This way each cluster head forms almost rectangular partitioned overlapping 
clusters. The nodes whose GPS lies within the boundary, receive the membership 
binding request from the cluster head and send their node identity number along with 
their GPS to the head as acknowledgement.  Once the clusters have been formed all 
packet transfer take place through geographical routing i.e. knowing the GPS of the 
destination the route decision to the next hop must minimize the geographical path 
length between source and destination [4],[5].  
     When a member node becomes mobile it informs the cluster head about its migra-
tion and on traveling to a new region boundary it will send request packet to the cur-
rent cluster head for membership. Thus our cluster heads are vested with the respon-
sibility of keeping neighborhood integrity record with periodic refreshment. 

The functionalities of the cluster head are specifically designed for providing 
maximum cooperation with the mobile agents and also to act as the mail server within 
the cluster. The responsibility vested on to a cluster head can be classified under the 
following headings: i) Membership List Formation and Modification, ii) Accepting 
and delivering the messages to its members, iii) Handling mobile nodes by acting as 
temporary mail servers, and iv) Detainment of mobile agents for some time. 

3   Agents and the Co-operative Routing Protocol 

Information carried by mobile agents for extending cooperation: Here the mobile 
agents are allowed to carry the information of already visited clusters along with 
them. The idea behind this is to capture and share the partial network information 
present  with  roaming  agents.  The  integration  of  all  such  partial  information at a 
common Rendezvous point helps cooperative tasks like taking the decision for next 
destination, suitable exchange of messages between agents, getting up-to-date knowl-
edge of the network and reducing unnecessary redundant visit of nodes without the 
need for exchanging huge chunks of routing table data.  

Navigation policies followed by mobile agents:  The movement from node to node is 
made in a way to minimize the distance between the agent’s current location (current 
location of the node where the agent is residing) and the cluster head location using 
the GPS technology [4], [5]. Though the order of cluster visits take place in a random 
manner still the redundancy in the path visit has been avoided by maintaining the path 
visit list. 
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Fig. 2. Cooperative message exchanges at rendezvous points using the information list carried 
by each agent  

Creation and termination of mobile agents: When a mobile node wants to send some 
message, it immediately creates an agent. Each such agent attaches with itself a bag to 
carry the message and puts the message in its bag. These agents will be terminated 
automatically when there is, no more messages to deliver in their bags. 

Mobile agents at Rendezvous points: When an agent visits any cluster head the cluster 
head cooperates with the agent by allowing it to consult the node membership list 
maintained by it .The cluster head will further take the responsibilities of delivering 
the messages if the mobile agent has any message for this local cluster. If a mobile 
agent does not have any message to deliver to the current cluster head (Rendezvous 
point) then the cluster head will host the mobile agent for a pre specified period of 
time (Rendezvous period). The main idea behind the detainment of any agent is to 
give it a fair chance to meet with other mobile agents currently present in the system.  

Inter-agent cooperation: The sharing of network information carried by them willable 
the agents to have free consultation on the already visited clusters along with their 
members. The agent starts passing on the undelivered message to another if the desti-
nation node of one’s message lies on the back home journey path of another. This 
cooperative view is clear from Fig. 2.  

4   Performance 

 In this section, we evaluate the performance of the cooperative routing scheme for 
short message delivery within an ad-hoc wireless network setup. The results confirm 
that the cooperative routing algorithm using Rendezvous periods at Rendezvous 
points are very efficient in delivering messages under high traffic. The network used 
for the simulation consists of 1000 nodes in a 500m X 500m simulation area. Nodes 
are allowed to move randomly at speeds between 0 and 30m/sec. The performance of 
the entire routing protocol has been evaluated using the following two criteria: i) total 
number of agent traffic in the network ii) the time period selected as Rendezvous 
period for the network.  

Msg (19) 
Msg(50) 
Msg (42) 

    List carried by Agent
1 
    CH= 4  {13,  7,  9..} 
    CH=11 {6, 17, 36..} 

Msg 
(21) 

Msg
List carried by Agent 2 
CH=56  {19, 10, 72..} 
CH=5   {3, 1, 31…} 

 

Msg (19) will be shared by agent 2

Msg (61) will be shared by 
Msg (50) and Msg (42) will be shared 

by agent 3 Msg 
(42) 

Msg 
List carried by Agent 3 
CH= 91 {50, 57 ,53.} 
CH=88  {61, 27, 39.} 

Rendezvous 
Point offered at 
the cluster head



558 P. Bhaumik and S. Bandyopadhyay 

   Following figures give the impact of Rendezvous periods on network traffic, re-
quired number of node visits and the impact is clear when the load in the network is 
considerably high. A larger Rendezvous period ensures the increased chance of meet-
ing with other agents. It is clear from the graphs of Fig. 3 that when there is a single 
agent in the system there is no impact at all.   
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Fig. 3. a) Average traffic reduction in the network with increasing Rendezvous period. b) Aver-
age number of node visits with Rendezvous period. c) The impact of mobility on number of 
node visits with 500 agents in the network. d) Average message delivery time with increasing 
Rendezvous Period. 

    The graph of Fig. 3d gives the end-to-end delay for message delivery.  At the be-
ginning, the increasing nature of the curves show a definite delay of message delivery 
due to the waiting delay introduced at each cluster head. After the Rendezvous period 
of 5 secs the end-to end delay remains same. With further increase in this delay period 
the effect of cooperation among the agents cannot be realized any more.  
    The impact of Rendezvous points on mobility is clear from Fig. 3c where the num-
ber of node visits for delivering messages with mobility 30m/sec is higher than the 
node visits for delivering messages with low mobility like 10m/sec. The average num-
ber of nodes required to deliver a message also gets increased if the member node is 
not currently available. In that case after waiting for a pre specified time for the node 
to come back the cluster head handovers the undelivered message to any one of the 
agents available at its site. Thus the message begins a fresh journey with the newly 
attached agent. This case has been encountered when the mobility of the nodes are 
kept high i.e., 30m/sec. 
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5   Conclusion 

In this paper we have developed an agent-based message transfer system ensuring 
minimal consumption of network resources, which accomplish the task of delivering 
messages through groups of cooperative agents. The paper has tried to formalize co-
operative autonomous mobile agents through capturing the dynamic character of 
agent group. In essence, cooperative routing may be employed in any large ad-hoc 
wireless network with little overhead. Our future work will include addressing the 
impact of number of Rendezvous points i.e., the number of cluster heads on the 
scheme and as well as completion of the protocol for mobile Rendezvous points.  

References 

1. Roy Choudhury, R., Bandyopadhyay, S. and Paul, K.: A Distributed Mechanism for Topol-
ogy Discovery in Ad Hoc Wireless Networks using Mobile Agents. In Proc. of  MOBIHOC 
2000  in conjunction with  IEEE/ACM Mobicom 2000, Massachusetts,USA (2000). 

2. Bandyopadhyay, S. and Paul, K.: Evaluating the performance of mobile agent based mes-
sage communication among mobile hosts in large Ad Hoc wireless network. In Proc. of 
IEEE/ACM MobiCom'99, Seattle, Washington, USA (1999). 

3. Bandyopadhyay, S. and Paul, K.: Using Mobile Agents For Off-Line Communication 
Among Mobile Hosts In A Large, Highly-Mobile Dynamic Networks. In Proc. of IEEE/ 
ICPWC Jaipur, India, (1999). 

4. Roy Choudhury, R., Bandyopadhyay, S. and Paul, K.: A Mobile Agent Based Mechanism 
to Discover Geographical Positions of Nodes in Ad Hoc Wireless Networks. In Proc. of  
APCC 2000, Seoul,  Korea, (2000). 

5. Roy Choudhury, R., Bandyopadhyay, S. and Paul, K.: Topology Discovery in Ad Hoc 
Wireless Networks Using Mobile Agents. In Proc. of  IWMATA, Paris, France, (2000). 

6. Marwaha S., Khong Tham C. and Srinivashan, D.: Mobile Agent based Routing Protocol 
for Mobile Ad Hoc Networks. GLOBECOM.2002., Taipei, Taiwan, (2002). 



Network Mobility Management Using Predictive
Binding Update�

Hee-Dong Park1, Yong-Ha Kwon2, Kang-Won Lee2, Young-Soo Choi2,
Sung-Hyup Lee2, and You-Ze Cho2

1 Department of Computer Engineering,
Pohang College, Pohang, 791-711, Korea

hdpark@pohang.ac.kr
2 School of Electrical Engineering & Computer Science,
Kyungpook National University, Daegu, 702-701, Korea

{skymiso, kw0314, yschoi, tenetshlee, yzcho}@ee.knu.ac.kr

Abstract. This paper proposes an efficient network mobility manage-
ment scheme for mobile networks such as trains and buses moving on
the predetermined path. In this scheme, each mobile router maintains a
database about the list of access routers, their network prefixes, and cell
radii on the moving path. The mobile router therefore knows in advance
network prefixes and its care-of addresses of all subnets without beacon
signals. Using this database and current location information, the mo-
bile router can prepare network layer hand-over with predictive binding
update before link layer handover occurs, thereby the service disruption
time due to handover will be reduced to the link layer handover latency.

1 Introduction

The IETF working group on network mobility (NEMO) is currently standard-
izing basic support for moving networks [1]. The NEMO basic protocol will be
built on Mobile IPv6 with minimal extensions [2]. Therefore, the handover mech-
anism of a mobile router (MR) is essentially the same as that of a mobile node
(MN) with Mobile IP. The handover is classified into two components, L2 (or
link-layer) handover and L3 (or network-layer) handover. Usually, the L3 han-
dover is not dependent on the L2 handover, although it must precede the L3
handover. The L2 handover involves channel scanning, authentication, and MR-
AR (Access Router) association, which lead to about 100 to 300 msec latency.
And the L3 handover involves movement detection, new care-of address (CoA)
configuration, and binding updates, which lead to about 2 to 3 seconds latency.
This handover latency causes service disruption and packet loss, which lead to
performance degradation. Fig. 1 shows the L3 handover procedure in the NEMO
basic support [3].
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Fig. 2. Predictive handover decision point Fig. 3. Predictive BU message format

Fig. 4. Handover procedures of the proposed scheme

on the side of railroad. When the MR reaches the predictive handover decision
point, prior to entering the new AR’s coverage area, it sends a Predictive BU
message (shown in Fig. 3) to its HA. After receiving the Predictive BU message,
the HA bi-casts data packets to the MR through the new AR and the old AR
simultaneously, until the completion of the handover.
Unlike the proactive handover schemes described in Section 1, this scheme does
not utilize the L2 trigger mechanism. This allows a clean separation between
layer 2 and layer 3 of the protocol stack. Fig. 4 and Fig. 5 show the handover
procedures and message diagram of the proposed scheme, respectively. The han-
dover procedures are described as the following:

① The MR on a train should always recognize its current location with the aid
of the GPS or sensors laid on the side of railroad.

② Based on the mobility database, the MR estimates the predictive handover
decision point and time.

③ When the MR reaches the handover decision point, it sends a Predictive BU
message to its HA through the old AR before the L2 handover. The message
contains the next CoA. In case that the predictive handover decision point
is located in the overlapping area between neighboring ARs, the MR may
confirm the reachability to the next AR at the same time.

④ After receiving the Predictive BU message, the HA bi-casts data packets
to the MR through the new AR and the old AR simultaneously, until the
completion of the handover. The new AR can buffer the packets to minimize
packet loss.
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Fig. 5. Message diagram in the proposed handover scheme

⑤ As soon as the MR detects reachability to the next AR on the new link, it
sends a Forwarding request message to the new AR.

⑥ When the new AR receives the Forwarding request message, it forwards the
buffered data packets to the MR, and sends a Stop bi-casting message to the
HA in order to prevent the HA sending packets through the old AR.

With the Predictive BU, the proposed scheme performs the L3 handover
before the L2 handover. Therefore, the total handover latency is close to that of
the L2 handover. If the MR cannot receive a Predictive binding ACK message
from the HA, it considers that the pre-registration proves to be a failure, then
performs general L3 handover after the L2 handover.

3 Performance Evaluation

This section compares the performance of the proposed handover scheme with
that of the NEMO basic solution. Two critical performance issues are service
disruption time and packet loss during handovers. Table 1 shows the parameters
for performance evaluation.

Service disruption time during a handover can be defined as the time between
the reception of the last packet through the old AR until the first packet is
received through the new AR. In this paper, we regard the service disruption
time as the total handover latency, THO. The total handover latency of the
NEMO basic solution can be expressed as a sum of its components and with the
signaling delay time shown in Fig. 1. This is given by:

THO = TMD + TCoA−conf + TBU

= 2 τ + 2RTTMR−AR + RTTAR−HA (1)

where the delays for encapsulation, decapsulation, and the new CoA creation
are not taken into consideration.

The total handover latency of the proposed scheme, however, will be close to
TL2, the L2 handover latency, because the MR performs the L3 handover before
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Table 1. Parameter definitions

Parameters Definition

THO Total handover latency

TMD Time required for movement detection

TCoA−Conf Time required for CoA configuration

TBU Time required for BU

τ Router advertisement interval

RTTMR−AR Round-trip time between MR and AR

RTTAR−HA Round-trip time between AR and HA

Fig. 6. Service disruption time Fig. 7. Packet loss ratio

the L2 handover in advance, with keeping the reachability to the old AR. This
makes the L3 handover latency to be minimized in the new AR’s coverage area.
Since packet loss does not occur during the time when the CN traffic travels
from the HA to an MR after the completion of the BU, the packet loss period
during a handover can be expressed as THO - 0.5 RTTMR−HA. Therefore, from
(1) the packet loss period is given by:

Tloss = 2 τ + 1.5RTTMR−AR + 0.5RTTAR−HA (2)

On the other hand, the packet loss time of the proposed scheme will be around
TL2. Nevertheless, there is no packet loss during a handover, due to the mecha-
nism of the HA’s bicasting and the new AR’s buffering.

Packet loss ratio (ρloss) is defined as the ratio of the number of lost packets
during a handover to the total numbers of transmission packets in a cell. This
can be also expressed as:

ρloss =
Tloss

Tcell
× 100 (%) (3)

where Tcell is the time it takes an MR to pass through a cell.



Network Mobility Management Using Predictive Binding Update 565

Fig. 6 and 7 compare the service disruption time and packet loss ratio between
the proposed scheme and the NEMO basic support, respectively. We assume that
TL2 is 200 msec, the router advertisement interval is 1 second, the radius of AR
cell coverage is 1 Km, and RTTMR−AR is 10 msec. RTTAR−HA is assumed to
be 100 msec in Fig. 7. As shown, the service disruption time of the NEMO
basic solution is about 2 to 2.5 seconds, while the service disruption time of the
proposed scheme is close to 200 msec. On the other hand, the packet loss ratio
of the NEMO basic solution is proportional to the speed of a moving network,
while the packet loss ratio of the proposed scheme will be constantly zero when
the new AR buffers data sent from HA.

4 Conclusion

This paper proposed a fast handover scheme with movement prediction for public
transportation such as trains and buses. This scheme uses the peculiar mobility
characteristics of them. Their moving pattern has a tendency to be predictable.
Therefore, without the L2 trigger, the MR can forecast its next handover and
perform L3 handover before L2 handover in the old AR’s coverage area. This
makes the total handover latency and packet loss to be reduced significantly.
The analytical results shows that the proposed scheme can provide excellent
performance as compared with the existing IP layer handover scheme.
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Abstract. We identify a type of distributed system where the notion
of space in planning is important. We give a formal modeling of the dis-
tributed system where planning is done. We show that several interesting
planning goals in the model can be specified in a spatio-temporal logic
STL. We develop an efficient planning procedure for these goals in the
distributed setting.

1 Introduction and Motivation

In planning, the task of an agent is to devise a sequence of actions (plan),
from an initial state, that achieves some desired property (goal). Our goals are
similar to the temporally extended goals [1]. However, planning does not involve
reasoning about spatial properties. But if we want to do planning in a distributed
system [2], then the meaning of space is quite intuitive: a node in a network, or
a subnet in a network is a location. A location means space and the location has
to be given explicitly. Now for the locations there are different spatial properties.
Let us consider a scenario where we wish to do planning.

Example: The task of a recruiting agent is to select some students, with good
experience in planning, who pass the qualifying test. The students are attached
to laboratories (AI, Computer graphics(CG), VLSI), that are attached to depart-
ments, which are in turn attached to Institutes. Here the locations are Institutes,
departments, and laboratories. Refer to figure 1.

Similar hierarchical structures exist in networking, the file system in UNIX,
and bibliographical databases to mention a few.

Containment Relation: A containment relation is asymmetric and transi-
tive. In the example, a department is contained in an institute, a laboratory is
contained in a department.

We consider settings where the level of containment is always bounded and it
is small. In general, the level of containment may be unbounded but finite. (The
level of containment is 2 for the above example.)

For the above example, a plan should transfer the agent to a location—where
a student with good experience in planning exists. In this paper we show how to
find such a plan. The activities like conducting a test or executing a code can be
easily planned for as in conventional planning. We now give some motivations.
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IITD ISI
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BIOLOGY
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Fig. 1. A planning scenario with nested locations

A mobile agent is a program that can move between machines in a distributed
environment performing tasks [3]. We look at mobile agents from a planning per-
spective. We show that in some situations it will be helpful to have a plan for the
agent. Mobile ambients [4] are a generalization of the mobile agents. An ambient
is a location that can move. In order to specify the properties of the ambients, a
modal logic of space and time, called ambient calculus, has been developed in [5].

Our aim is to find plans for a mobile ambient. As an initial step we consider
a simplistic situation where the locations are static and the agent is not commu-
nicating. We are interested in reasoning about temporal properties that can be
satisfied at location(s) in the space. This is unlike conventional planning where
we are interested only in temporal properties. For the planning goals, we give a
spatio-temporal logic specification in section 4. The logic has been inspired by
the tree-logics developed in [6, 7] for the purpose of specifying query languages
for semistructured data, like XML.

We assume planning is done on a spatial model that is given explicitly. We
discuss the model in section 2. We use generic planning operators(actions) that
are specified as in conventional planning. Our planning domain, given in sec-
tion 3, takes as input the spatial model, an initial location, a set of actions, and
a goal formula. We give the planning procedure in section 5.

2 The Spatial Model

Definition 1 (Location Graph). A location graph (LG) is a graph whose
vertices are locations and edges are links between locations.

Each location may contain other locations. Each location has a name.
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Definition 2 (Location Tree). The location tree of a location named Loc is a
directed tree with root Loc, whose nodes are locations and an edge u → v denotes
that v is contained in u.

We formally denote a location by a 4-tuple 〈Loc, LT, LG, prop〉 where, Loc is
the name of a location, LT is the location tree of Loc, LG is a location graph of
Loc where the nodes in LG are the children of Loc in LT , and prop represents
atomic propositions(AP ) that are true at Loc.

We refer to the children of a location l in a location tree as the immediate
sublocations of l, and to the descendants of l in the tree as the sublocations of l.

If n is a location in a location tree, then the immediate sublocations of n may
be interconnected by links. These immediate sublocations and their interconnec-
tions constitute a location graph.

We illustrate the above meanings with respect to the example in figure 1.
The set consisting of six locations BITS, IITD, IITB, ISI, KGP, JU, and
the set of links e1, . . . , e9 form a location graph. The immediate sublocations of
BITS are BIOLOGY, CIVIL, CS that are the vertices of the location graph
of BITS. The immediate sublocations of CS are VLSI, CG, AI which are also
the sublocations of BITS.

3 Planning Domain

Planning is performed in the spatial model given in the previous section. We
define the planning domain as D = 〈M, l0, A, G〉 where, M is the spatial model
(described in section 2), l0 is the initial location (a location in M), A is a set of
actions that the agent can perform on M , (actions transfer the agent from one
location to another), G is a goal formula expressed in a spatio-temporal logic,
(given in section 4).

A plan P is a finite sequence of actions a1, a2, . . . , am. We say that the plan
path corresponding to the location l0 and the plan P is the sequence of locations
l0, l1, . . . , lm. The planning problem is, given the planning domain D, and a goal
formula Φ, to find a plan for which the plan path satisfies Φ. We present a method
of solving the planning problem in section 5.

We consider STRIPS like formalism for specifying actions. We use three
generic actions, hop, enter, and exit that are defined formally as:

Definition 3 (hop). The precondition of hopi,j: there is a link between two
locations i, j in a location graph, and the agent is at location i. The effect: the
agent is at location j.

Definition 4 (enter). The precondition of enteri,j: the agent is at location i,
location j is an immediate sublocation of i. The effect: the agent is at location j.

Definition 5 (exit). The precondition of exiti,j: the agent is at location i,
location i is an immediate sublocation of j. The effect: the agent is at location j.

In figure 1 we show the actions applicable to different locations.
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4 A Spatio-Temporal Logic (STL)

4.1 Syntax and Semantics of STL

c[p] refers to a particular location c where an atomic proposition p is true. We
use a spatial operator called inside (denoted by I) that allows reasoning about a
sublocation of any location. We use a temporal operator along (denoted by H)
that allows reasoning about locations with time.

Syntax of STL: ψ −→ c[φ] | H φ φ −→ ψ | p | ¬φ | φ1 ∧ φ2 | I φ
Semantics of STL: The satisfaction of a goal formula ψ with respect to a
location l in a location graph LG is defined inductively as:
Case I: ψ = c[φ]
I(a): φ = p (LG, l) |= c[p] iff l = c and p holds in c, where p ∈ AP
I(b): φ = ¬φ1 (LG, l) |= c[¬φ1] iff (LG, l) �|= c[φ1].
I(c): φ = φ1 ∧ φ2

(LG, l) |= c[φ1 ∧ φ2] iff (LG, l) |= c[φ1] and (LG, l) |= c[φ2].
I(d): φ = I φ1 (LG, l) |= c[I φ1] iff l = c and there exists a
sublocation n of c such that (LG′, n) |= n[φ1] where LG′ is the location graph
of m; m is the parent of n in the location tree of c.
I(e): φ = H φ1

(LG, l) |= c[H φ1] iff l = c and (LG, l) |= H φ1
I(f): φ = c1[φ1]

(LG, l) |= c[c1[φ1]] iff l = c, and there exists an immediate sublocation
n of c such that (LG′, n) |= c1[φ1], where LG′ is the location graph of c.
Case II: ψ = H φ

(LG, l) |= H φ iff there exists a path l0, . . . , lk, l = l0 in LG such that
(LG, lk) |= lk[φ]

4.2 Examples of Planning Goals

Notation: phrase that is in bold represents a particular location, and the phrase
in italics represents a proposition.

1. visit an Institute where the CS Department has a supercomputer.
This is expressed as: H CS[p].
2. there is a researcher working on voting theory and there is another re-

searcher working on learning theory in the Statistical Institute (stat).
This is expressed as: stat[(I p) ∧ (I q)].
3. visit a department in an Institute that has been accredited by NAAC.
This is expressed as: H I p.

However, there are situations that cannot be expressed in our logic; for instance,
locations cannot be quantified.

5 A Planning Procedure

The planning procedure FindPlan takes a goal formula as input and returns a
satisfying plan, if any, as output.
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procedure FindPlan(goal formula ψ = H φ) {
case 1. [initial location (l0) is labeled by φ]

(i) LabelPhi(node, φ);
(ii) if φ ∈ label set of node then return PlanForPhi(l0, φ);

case 2. [initial location (l0) is not labeled by φ]
(i) create a queue Q;
(ii) insert l0 into Q, mark l0;
(iii) while (Q is not empty) {

remove a node s from Q;
for all adjacent nodes s′ of s {

if s′ is not marked {
mark s′; insert s′ into Q;
LabelPhi(s′, φ);
if φ ∈ label set of s′ then {

Pφ = PlanForPhi(s′, φ);
plan is obtained by prefixing Pφ by hop actions;
return plan;}}}}

case 3: [no locations are labeled by φ]
return no satisfying plan exists for the goal;}

The labeling algorithm LabelPhi for locations is inductively defined on φ.

procedure PlanForPhi(node, φ)
[Plans for different forms of subformulas are defined inductively as follows.]

1. let φ be of the form φ = node[c1[c2[. . . [ck[φ′]]]]]
plan = enternode,c1, enterc1,c2 , . . . , enterck−1,ck

;
if φ′ = p then return plan;
else if φ′ is not in the form of φ then

return plan + Pφ′ ; where Pφ′ is the plan for φ′.
2.let φ be of the form φ = I φ′

let Pφ′ be the plan for φ′; i = node; initialize plan (a list) to empty;
traverse the tree from i and stop at k whose label set contains I φ′ or φ′;
while the child j of i is not k {

plan = plan + enteri,j ; i = j; }
plan = plan + enteri,k;
return plan + Pφ′ ;

3. let φ be of the form φ = (I φ1) ∧ (I φ2) . . . ∧ (I φk)
let plan1, . . . , plank denote plans (that are found separately) I φ1, . . . , I φk

respectively; store the plans in a list α in the increasing order of length;
initialize plan to empty;
for i = 1 to length(α)− 1 {

let Ti contain the corresponding exit actions for plani;
plan = plan + plani + Ti; }

return plan + plani;
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5.1 Properties of the Planning Procedure

Theorem 1 (Decidability). The logic STL is decidable.

Proof: By induction on the procedure that update the label set. �

Theorem 2 (Model checking). Given a location l, and a formula ψ, the prob-
lem of finding whether l |= ψ can be done in time O(|ψ| · (|LG|+ |LT |)), where
|ψ| is the length of the formula ψ, |LG| is the maximum size of a location graph,
and |LT | is the maximum size of a location tree in the spatial model.

Proof: By induction on the length of ψ. �

Theorem 3 (Complexity of Planning). Given a location l, and a formula ψ,
the problem of finding a plan for ψ at l can be done in time O(|ψ| ·(|LG|+ |LT |)).

Proof: The complexity of procedure FindPlan is the sum of the time taken by
the labeling procedure and the plan finding procedure. In PlanForPhi for the
first two cases the time taken is at most |LTl|×|ψ|. In case 3 we need in addition,
time to sort k plans that takes O(k lg k). Now k < |ψ|. Thus for case 3, time
needed is at most |LTl| × |ψ|. Hence, the overall complexity is that needed for
labeling. �

6 Conclusions

In this paper we give a formal modeling of a simplified distributed system (with-
out communication). We show that several interesting planning goals in the
setting can be specified using STL and an efficient planning procedure can be
found for such goals. To the best of our knowledge the introduction of the notion
of space in planning has not been done before. As part of our future research
we would like to see whether an efficient planning procedure can be obtained for
mobile ambients as well.
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Abstract. We study the problem of distributed, self-interested agents
searching for high-quality service providers where the performance of
a service provider depends on its work load. Agents use referrals from
peers to locate satisfactory providers. While stable environments may
facilitate fast convergence to satisfying states, greedy and myopic behav-
iors by distributed agents can lead to poor and variable performances
for the entire community. We present mechanisms for resource discovery
that involve learning, over interactions, both the performance levels of
different service providers as well as the quality of referrals provided by
other agents. We study parameters controlling system performance to
better comprehend the reasons behind the observed performances of the
proposed coordination schemes.

1 Introduction

We study the problem of autonomous agents choosing between several service
providers to obtain desired services. We assume a completely distributed envi-
ronment without central authority or knowledge. Our research goal is to develop
mechanisms by which such agent communities can stabilize on states where all
agents are satisfied with the service provider they are currently using.

Locating high-quality services is a challenging problem when sharing resources
with a large population. Number of service providers are typically limited and
their performances depend both on their intrinsic capabilities and workload.
Myopic, self-interested behavior can lead to poor performances for the individ-
ual and can result in system-wide instability. There is thus a need for non-
myopic mechanisms to promote performance and stability of such decentralized
systems.

While ideal rational agents may aspire for optimal satisfaction levels, dy-
namic, partially known, and open environments can render the realization of
this ideal improbable. Such an agent is unable to accurately assess the impact
of its own decisions, including choice of service providers and making referrals,
on the system. As such, it is unrealistic to expect strategies that will always op-
timize performance. Rather, we posit that agents should concentrate on finding
service providers that provide a quality of service which exceeds an acceptable
� This work has been supported in part by an NSF award IIS-0209208.
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performance threshold. This formulation is consistent with Simon and others
view of bounded rationality of decision makers within the context of complex
organizations [1, 2, 3, 4].

Referrals from other agents can help agents find more satisfying service pro-
viders. But such referrals may cost the referring agent since the load on the
referred provider may increase, with corresponding performance deterioration.
This is particularly true with referral chains, i.e., if an agent can refer providers
it located through referrals from other agents. While referral systems have been
widely studied both in theory and in practical applications, the negative side-
effects of referrals have not received adequate treatment. We seek to analyze the
benefits and disadvantages of referrals in domains where the cost of referrals is
uncertain. The goal is to identify situations where an agent should or should not
use referrals. Our goal is to develop strategies by which a system of autonomous
agents can quickly reach stable configurations where all agents are satisfied with
the choice of their current service providers.

2 Framework

Environment: We present an environment where agents share a set of service
providers to perform daily tasks. Let E =< A, R, perf , L, S, Γ > where: A =
{ak}k=1..K is the set of agents, R = {rn}n=1..N is the set of providers, f :
R× R+ → [0, 1] provides the intrinsic performance of a provider given a load,
L : A → R+ is the load function for the agents, S : A × [0, 1] → [0, 1] is
the satisfaction function of agents, Γ = {γ1, . . . , γK} is the set of satisfaction
thresholds, representing aspiration levels of agents. Each day d, agent ak has a
load L(ak) to perform. ak assigns its load to a selected provider to handle it
in its behalf. At the outset, ak knows the set of providers that can process its
task without the knowledge of their intrinsic capabilities represented by their
performance function, f(rn, ·), for provider rn. ak is also unaware of the current
load on the providers. If Ad

n is the set of agents using the provider rn at day
d then the provider’s performance after processing all these orders is perf =
f(rn,

∑
a∈Ad

n
L(a)). perf is the service quality received at the end of the day d

by every agent in Ad
n. ak ∈ Ad

n will evaluate the performance of rn by the value
s = S(ak, perf ). ak will be satisfied if s ≥ γk.

Our aim is to design interaction protocols and behaviors that allow all agents
to find satisfying providers. The concept of distribution represents how agents
distribute themselves over the providers. We call D = {An}n=1..N a distribution
where An is the set of agents which use provider rn. A Γ -acceptable distribu-
tion is a distribution where every agent is satisfied, i.e, each agent receives a
satisfaction above its own satisfaction threshold. A Γ -acceptable distribution is
expected to be a stable distribution since no agent will have the incentive to
change their choice of provider. Consequently, it is an equilibrium concept and
our goal is to enable agents to reach such distributions.
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Inertia: Oscillations in our environment will happen if at a distribution close
to a Γ -acceptable distribution the system has the tendency to evolve to a worse
distribution and vice versa. We assume that the total load applied by all agents in
the system is approximately equal to the total capacity of all service providers to
produce satisfactory performance for all agents if they are properly distributed.
Intuitively, a distribution where almost everyone is satisfied contains very few
under-used or over-used providers and the rest are occupied by the right number
of agents. Those under-used providers Ru are very attractive. Consequently,
agents will be inclined to move to them, which leads the system to a distribution
where providers in Ru will be overcrowded. This key, problematic effect can be
mitigated by increasing the inertia in the system, where inertia is an inverse
function of the number of agents moving at any given time.

An agent may decide to switch resources relying on its own information or
on a referrer or to explore to discover either unknown resources or to be able to
adapt to changes in the environment. Inertia can be controlled by the following
methods:

Exploration: Fast convergence requires learning about provider and referral
qualities: more informed decisions will expedite system convergence to satis-
factory distributions. Consequently, some systematic exploration of providers is
necessary. However, such exploration decreases inertia and can impact conver-
gence rate. An environment where agents explore too much will produce system
instability where agents will not have accurate estimations of provider perfor-
mances since loads vary significantly. In this context, referral systems can be
useful since agents may substitute their exploration with others’ experiences.

Decision Process: When designing our agents, we chose a “move when you
think you can do better”-principle. Consequently, agents never move when they
are satisfied. If unsatisfied, agents pick with probability α a resource randomly
to ensure exploration. With probability 1 − α they try to locate a resource.
Henceforth, we refer to the processing in this step as the decision process. We
present five different decision processes: with and without use of referrals and
with more or less inclination to move. We first present decision processes without
the use of referral.

NRLI (No Referral Low Inertia): This decision process consists in picking a
resource for which the agent expects to get at least a minimum level of satis-
faction, γ−

k . Let esk,n be the expected satisfaction agent ak believes it will get
by using resource rn. Let Rk,γ−

k
= {rn | γ−

k ≤ esk,n} be the set of resources ex-
pected to provide satisfaction more than γ−

k . A resource rnk
is chosen in Rk,γ−

k

with likelihood esk,n. In the case Rk,γ−
k

= ∅, ak does not move.
NRHI (No Referral High Inertia): NRHI is a variant of NRLI. Agent ak using

NRHI will not move to a provider expected to provide lesser satisfaction than
the provider, rnc

k
, it is currently using. ak does not move if esk,nk

< esk,nc
k
.

RTLI (Referral Truthful Low Inertia): RTLI is also a variant of NRLI. If
Rk,γ−

k
= ∅, ak asks another agent akh

for referral. akh
provides both the name

of a resource rnkh
and an estimation of the satisfaction it will get (eskh,nkh

).
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ak is trustful in the sense it does not try to correct the value eskh,nkh
. ak will

use the referral if γ−
k < eskh,nkh

. Besides, when approached for help, an agent
using RTLI is truthful in the sense that it reports its actual estimate1. It refers
a resource it would have chosen itself. In other words, it provides the outcome
of NRLI.

RTHI (Referral Truthful High Inertia): RTHI is a mixture of NRHI and RTLI.
When looking for a resource using its own information, an agent uses NRHI and
when looking for a referral the agent uses RTLI. When answering a request, it
provides the outcome of NRHI.

BRLI (Balance Referrer Low Inertia): BRLI is a variant of BRLI. An agent
using RFLI will answer a request only from agents with which it has a negative
or null balance of exchange. A balance of exchange is the difference between the
sum of what it has given and what it has received. More formally, let balk,k′ be
the balance maintained by ak with agent ak′ . ak increases balk,k′ by esk,nk

when
it provides rnk

as a referral to ak′ . ak decreases balk,k′ by sk,nk′ where sk,nk′ is
the satisfaction obtained by ak if it uses rnk′ , 0 otherwise.

3 Experimental Results

In the previous section, we propose two methods to control the inertia: the
coefficient of exploration and the use of decision processes. We will evaluate
the two controlling methods while also providing comparisons between referral
methods and those without referral.

Experiments comprise a large number, K = 200, of identical agents. We use
sufficient resources to exactly satisfy the agents present in the environment. In
other words, if Cn is the capacity of resource rn then

∑N
n=1 Cn = K · L where

L is the load imposed by each agent. Hence, we are always sure of the existence
of a Γ -acceptable distribution.

We ran experiments to see the influence of the coefficient of exploration α on
the speed of convergence. In other words, we measured the number of iterations
needed to reach a Γ -acceptable distributionwhen agents use protocols defined in
Section 2 given the value of α. Figure 1 presents the result. One environment
comprises a high number of resources (N = 100) and one comprises a lower
number of resources (N = 40). We highlight the following observations:

HI performances are much better than those of LI for most values of α. This
shows that the speed of convergence is improved greatly if agents decide to move
less often. By not moving when it thinks no other resource can satisfy it better
than its current resource, an agent avoids conflict of interest since many agents
are likely to choose the same resource. Besides, an agent can benefit from the
departure of others by staying in its current resource. However, when N = 100
and α ≤ 0.02 both HI and LI have poor results but for different reasons. Detailed
analysis of the system given the inertia show us HI have poor performance due
to too high inertia; the performance of the system improves very slowly, while

1 In other work, we consider the motivations and the effect for untruthful referrals.
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Fig. 1. Number of iterations to reach convergence given α for N = 100 (left) and
N = 40 (right) (200 agents)

LI have poor performances due too low inertia; the system oscillates. In spite
of the fact that HI≤LI2 when N = 100 and α ≤ 0.02, HI is preferable to LI
because they work better in more environments. Improving HI performance can
be achieved more easily by tuning the parameter α.

For high inertia referral decision processes works better, i.e., NRHI ≤ RTHI
for α ≤ 0.1. For α < 0.1, the inertia is higher with much less exploration, thus
preventing substantial improvement of the entropy. The situation is improved
by using a referral system. The use of others’ information accelerates the re-
source discovery process. We observe the opposite phenomenon when α ≥ 0.1,
RTHI≤NRHI. With higher values of α, agents are more inclined to explore the
environment and hence move more often. This is amplified by the referral sys-
tem. The use of other’s information makes RTHI agents switch resources when
NRHI will not.

Performances of LI schemes are equivalent for N = 100 and 40. There exists
a range of α values in which HI schemes has desirable performances. Detailed
studies showed us that for very small values of α the system evolves very slowly
with HI since very few agents moves leading to slow convergence. When the
values of α are too high, too many agents move simultaneously leading to instable
system, i.e., the system oscillate between good states and undesirable states. HI
has better scale-up performances when N = 100 compare to when N = 40.In
fact, when the number of resources decreases, assuming the number of agents
fixed, more agents have the inclination to move leading to a diminution in the
inertia. The range of α values for which HI have desired performances is smaller
with lower number of resources.

4 Related Work

Sen & Sajja have studied the use of referrals to locate service providers when
an agent first enters a new community with no prior knowledge of the quality of
service providers or the reliability of the referrers [5]. In their work, peers have
a short term cost of processing the referral request, which can be negligible in
most domains. In our setting, referrals have a long term cost as the asking agents
2 HI≤LI denotes that LI converges faster than HI.
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may use the referred provider in the future and also refer it to others and hence
possibly reduce the performance of that provider.

Coordination is a key issue in multiagent systems. Sen et al. [6] show that
information can negatively impact agent coordination over resources. They al-
low agents to move to providers only in the neighborhood of the one they are
currently using, thereby achieving perfect coordination faster. They conclude
that too much information available to agents lead to oscillating provider loads.
This leads to variable provider performances and low convergence speed. Rustogi
& Singh [7] study the influence of inertia for system convergence in the same
domain. They proved that high inertia speeds up convergence when knowledge
increases but low inertia perform better with little knowledge.

5 Conclusion and Future Work

We have investigated different decision processes to locate satisfactory service
providers. These decision processes give agents differing inertia of switching re-
sources given their current and expected satisfactions from different resources
and can include referrals from other agents. The main conclusion of our experi-
ments is that decision processes with higher inertia of movement (HI procedures)
produce faster convergence and better scale-up than those with lower inertia.
Even faster convergence with the HI schemes can be produced by using referrals
or by tuning the exploration coefficient α. Desirable performances are more dif-
ficult to obtain when using LI decision processes regardless of the use of referral
systems.

We are currently exploring the effect of non-identical agents and resources.
Planned future work includes use of deceptive referral agents and minimizing
such disruptive behavior.
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Privacy Preserving Decentralized Method for
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Abstract. Distributed methodologies to find pareto-optimal frontier with con-
cern to privacy, of objectives and constraints, of parties is of interest in scenarios
like negotiations. Adaptation of lagrangian method to solve distributed weight-
ing method for both strictly concave and not strictly concave (e.g. linear) value
functions is proposed for a maximization problem.

1 Background and Motivation

The methods currently available for the multi-objective optimization even in the dis-
tributed scenario do not consider the disclosure aspect and thus cannot be directly
adopted to the scenario of negotiation where participating parties decide to find and
then negotiate on Pareto-optimal frontier. Secure Multi-party Computations (SMC) at-
tempts to preserve the privacy of information as the central aspect of the computation
in a distributed situation. However, SMC algorithms are often very computation and
communication intensive.

One of the traditional methodology to find a pareto-optimal point is weighting
method [1]. In the distributed version of this method the scalarized objective is de-
composed by introducing a decision variable for each participant or decision making
agent (DMA) and then applying the dual decomposition method [2]. The decomposi-
tion results in a separable problem which is solved iteratively with each DMA solv-
ing its own optimization problem whereas the mediator agent (MA), if used, updates
the parameters of the optimization problems. When DMA’s optimal solutions con-
verge, the common optimum is guaranteed to be Pareto-optimal (po). Disclosure to be
avoided are:

1. In any iteration: the derivative at a point.
2. Across iterations: disclosure due to repeated information exchange, e.g. while tran-

sitioning to better points for all parties in each iteration a disclosure of only the
points (and not even the slopes) enables the DMAs (and MA) to construct strategi-
cally equivalent functions of other DMAs (due to concavity of the problem).
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2 Problem and Assumptions

An option1 in n dimensional decision space U is represented as x = (x1, x2, . . . , xn)T,
e.g. U = .n. There are m parties involved. Each DMAi has a convex decision space
Xi ⊂ U; i = 1, 2, . . . , m. The feasible space X =

⋂
i Xi is common to all DMAs. Each

DMAi has a concave objective function, vi : Xi → Y i ⊂ . representing its preference
structure. A decision vector x∗ ∈ X is Pareto-optimal (po) for a maximization problem
if and only if there is no other x ∈ X s.t. vi(x) ≥ vi(x∗); ∀i = 1, . . . , m, where the
inequality is strict for at least one i.

In the paper we present algorithms to find a single po point. The frontier can be
obtained by varying the weights in the weighting method. The algorithms consider the
privacy of DMAs as a prime concern. The assumptions are:

1. There is one DMA per side and coalition formation is prohibited.
2. The DMAs do not like to disclose either their decision space or the value function

over that space.
3. The parties (including mediator) are semi-honest. A semi-honest agent follows the

protocol properly but it keeps record of all its computations [3].
4. The communication channel is secure.

3 Distributed Weighting Method (Heiskanen, 1999)

Weighting method combines multiple objectives into a single objective:

max
x∈Xj

j=1,...,m

m∑
i=1

wi vi(x) (1)

where wi ≥ 0 for all DMAi; i = 1, . . . , m, and
∑m

i=1 wi = 1. The value functions
in the scenario considered here are distributed among (and are private to) the DMAs
and each DMA has its own set of constraints. The union of these constraints form the
feasible region. As DMAs would solve the problems individually (i.e. locally), it is
required to make the problem distributed. For distribution, an n-dimensional variable
xi = (xi

1, x
i
2, . . . , x

i
n)T for each DMAi is introduced, leading to an alternative formu-

lation

max
xj∈Xj

j=1,...,m

m∑
i=1

wi vi(xi) (2)

subject to xi − xi+1 = 0, i = 1, . . . , m− 1

where, vi is strictly concave.
Using Lagrange’s multiplier vector λi, we get the dual

min
λ1,...,λm−1

[
max
xj∈Xj

j=1,...,m

{ m∑
i=1

wivi(xi) +
m−1∑
i=1

(λi)T(xi − xi+1)
}]

(3)

1 We use option, alternative, point, solution and decision interchangeably.

a
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Decomposing the problem we get every DMAi’s concave optimization problem
which it can solve independently. Let, Vi(z) = wi vi(z) + (λ̂i)Tz where

λ̂i =

⎧⎨⎩
λi if i = 1
λi − λi−1 if i = 2, . . . , m− 1
−λi−1 if i = m

(4)

Thus, for i = 1, . . . , m,

DMAi’s problem : xi∗ = arg max
z∈Xi

(V i(z)) (5)

Common problem : min
λ̂1,...,λ̂m−1

m∑
i=1

Vi(xi∗) (6)

Since the value function vi is private to DMAi, the above problem (2)-(3) cannot
be solved in traditional centralized ways. In the iterative methodology [2] a mediator
agent (MA) was utilized. MA sends the DMAs initialized values of λ’s, DMAs solve
their problems and find the optimal xi∗ and send those back to MA, who then modifies
the λ’s based on these values. The iterations continue till convergence. However, this
exchange of xi’s causes disclosure to MA (see below). We have proposed modifications
to this method for reducing disclosure. MA can compute the min of Equation (6) for
a given w = (w1, . . . , wm). MA will announce when the convergence is achieved.
Then all the DMA’s x’s are supposed to have converged. To check convergence, the

DMAs can compute x∗ = 1
m

m∑
i=1

xi∗ using secure summation protocol [4] and calculate

δi = x∗ − xi∗. They accept x∗ as solution if δi < δ (δ > 0 is a predefined threshold)
for all i. The last condition can be checked through a secure computation of ‘and’ of m
logical truths.

3.1 Information Disclosure

Each DMAi solves Eqn (5) at iteration k and sends the solution xi∗(k) to MA. The

solution to the problem is such that for2 j = 1, . . . , n:
(

∂Vi

∂xi
j

)
xi∗(k)

= 0. Knowing the

slopes at various points (one for each iteration) a strategically equivalent function in the
vicinity of the xi’s can be constructed, because the derivatives of concave functions are
monotonically decreasing functions. From the point of view of the in-progress negoti-
ation this disclosure about the solution points may not be of much use though, where
only the last, i.e. the po point is required for negotiation. However, this disclosure can
affect future negotiations.

4 Secure Distributed Weighting Algorithm (with Mediator)

The basic procedure remains same as [2], however modifications have been proposed in
the next level of details. The λi’s are updated by the DMAs themselves (initially λi’s are

2 The partial derivative ∂Vi

∂xi
j

is being computed at xi∗(k).
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set at random). The process continues till a solution is found with all xi’s converging. In
the following algorithm in Step 4, the condition checking for all DMAs are to be held
through secure and distributed ‘and’ing of logical truths. Similarly, for summations in
Step 4.

The inputs are vi(x) where x ∈ Xi, Xi is a convex set (This includes the constraints

of DMAi.), i = 1, . . . , m, wi > 0 for DMAi such that
m∑

i=1

wi = 1. The output is the

po point corresponding to weights w = (w1, . . . , wm) for the DMAs. In the algorithm
one semi-honest mediator is used.

1. DMAs together perform (This can be done by any DMA who informs the rest of
the DMAs.)
(a) Initialize α (< 1), β (> 1), ε (> 0), μi(0), xi(0), i = 1, . . . , m, λi(0), i =

1, . . . , m− 1 and r an n dimensional random vector.
(b) Compute λ̂i(0), i = 1, . . . , m.

2. MA sets k = 1 (k represents iteration number), flag ← 0 and toss ← 0.
3. Each DMAi performs

(a) Solves its problem (Equation (5)) for the current values of λ̂i(k).
(b) Sends MA yi∗(k) = xi∗(k) + r and λ

i
(k) = λi(k) + ri(k), where ri(k) is a

random vector chosen by DMAi.
4. MA performs

(a) If toss = 1 goto Step 4 (d) iv.

(b) Finds y(k) =
1
m

m∑
i=1

yi∗(k).

(c) If εi =
1
m

m∑
i=1

1√
n
‖yi∗(k) − y(k)‖ < ε, ∀i = 1, . . . , m then sends to all

DMA’s: flag ← 0, y(k).
(d) else for each DMAi do

i. Finds si(k) = yi∗(k)− y(i+1)∗(k).
ii. If k = 1 then sets μi(k + 1) = μi(k)

Else If k > 1 and for all DMAjs Dj = − (sj(k))Tsj(k − 1)
‖sj(k − 1)‖ ≤ 0, ∀j

then sets μi(k + 1) = βμi(k) else sets μi(k + 1) = αμi(k)
iii. Updates multipliers λ

i
(k +1) = λ

i
(k)+μi(k)⊗ si(k) (Here⊗ is defined

as (a1, a2, . . . , an)T ⊗ (b1, b2, . . . , bn)T = (a1b1, a2b2, . . . , anbn)T.)

iv. Tosses a coin. If Head then sets k = k + 1, toss ← 0 and sends λ
i
(k) to

DMAi (nothing is sent to DMAm) else sets toss ← 1 and sends a random
vector from the domain of λ’s. (Note, a random vector will affect one entire
round. Hence it has to be chosen with a probability bounded on both side.
An upper bound would ensure convergence. Dummy λ’s should ideally be
in the vicinity of the actual λ of that iteration.)

5. Each DMAi performs: If flag = 1 then finds x = y− r
else (i) computes λi from λ

i
and sends to DMAi+1 (except DMAm does not send

this). (ii) computes λ̂i using Equation (4) and go to Step 3.

Privacy Preserving Decentralized Method for Computing Pareto-Optimal Solutiona
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As evident from the algorithm above, here we have adopted Jacobi type (parallel)
iterations rather than the Gauss-Seidel type (sequential) [5], where we would have up-
dated λi only after first (i − 1) DMA’s λ’s are received. Although the Gauss-Seidel
method sometimes converges faster, it is not completely parallelizable. This would in-
crease the time taken to reach the solution. However, Gauss-Seidel method might allow
us to incorporate preferential treatment in the system where there are more iterations
with a subset of DMAs. We can also have a system where updating is first carried out
with one half of the DMAs, and later with the rest. This scheme has the benefits of
both algorithms, is faster and incorporates the new information in the same iteration.
However this needs to be explored further.

Information disclosure: The disclosure, if any, is from the communication steps of the
algorithm. Each DMAi other than DMA1 learns about λi−1(k), for all k ≥ 1. Since
it does not learn λ̂i−1(k) and the corresponding x(i−1)∗ there is no disclosure of the
sort discussed in Section 3.1. MA learns nothing as the only information it receives

is yi and λ
i

for each DMAi which appears random due to r and ri. At the cost of
some additional communication, DMAs can select a new r for each iteration to avoid
any interpretation due to large number of iterations of the algorithm. By deduction

from the λ
i

DMAi can ascertain about xi+1 of DMAi+1. But since in some iterations
MA sends random vectors DMAs may not be able to deduce any relationship between
the vectors. However, construction of these vectors could be a challenging task for
the MA.

5 Secure Distributed Weighting Algorithm - Augmented
Lagrangian (Without Mediator)

In the previous section the value functions were assumed to be strictly concave. If the
value functions are not strictly concave e.g. linear [6], we cannot use the dual formu-
lation of the problem using the Lagrangian multipliers. In such circumstances we can
adopt Augmented Lagrangian Method where the value function is made quadratic. The
discussion below is from [5] and [2]. We modify the algorithm to make it secure. How-
ever the basic features are not altered and thus convergence of the algorithm is not
jeopardized.

In this algorithm we do not use a mediator. As DMAs would solve the problems
individually, the maximization problem remains same as that in Section 3, except we
replace xi = x in place of xi = xi+1 in (2). A quadratic term is appended to make the
function strictly concave. The optimization problem becomes:

min
λ1,...,λm−1

{
max
z∈Xi

m∑
i=1

{
wivi(z) + (λi)T(x − z)− u

2
‖(x− z)‖2

}}
(7)

where u is a positive scalar constant and ‖.‖ is second order norm.
Large values of u make the quadratic term pointed and the method makes slow

progress; while for small values of u, the quadratic term is blunt and the method makes



583

fast progress toward the optimal solution [5]. Decomposing the above problem as before
the Augmented Lagrangian is solved with iteration [5]:

xi = arg max
z∈Xi

{
wivi(z)− (λi(k))T(x(k − 1)− z)− u

2
‖(x(k − 1)− z)‖2

}
(8)

where x(k) =
1
m

m∑
i=1

xi∗(k) +
1

mu

m∑
i=1

λi(k) (9)

The coding of the algorithm will be similar to that in algorithm in the previous sec-
tion. Only, the common computation has to be performed by all DMAs together us-
ing appropriate SMC techniques such as secure summation, secure ‘and’ing of logical
truths, secure consensus mechanism3 etc. This computation is possible without a me-
diator because the condition xi = xi+1 (in the algorithm of the previous section) has
been replaced by xi = x. For the same reason there needs to be appropriate changes

in the definitions of εi =
1
m

m∑
i=1

1√
n
‖xi∗(k) − x(k)‖, si(k) = xi∗(k) − x(k) and

λi(k + 1) = λi(k) + u μi(k)⊗ si(k). There is no need for random vectors r and ri’s.

6 Conclusions

In this paper we secured the distributed weighting method to find a po point maintaining
the privacy of the participating parties. The algorithm is modification of the existing
algorithm to find a po point based on the concept of secure multi-party computation.
The convergence, thus, is already established. The issue of computational efficiency is
yet to be studied.
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