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Abstract. As the global data traffic has significantly increased in the recent year, the ultra-dense 

deployment of cellular networks (UDN) is being proposed as one of the key technologies in the fifth-

generation mobile communications system (5G) to provide a much higher density of radio resource. The 

densification of small base stations (BSs) could introduce much higher inter-cell interference and lead user 

to meet the edge of coverage more frequently. As the current handover scheme was originally proposed 

for macro BS, it could cause serious handover issues in UDN i.e. ping-pong handover, handover failures 

and frequent handover. In order to address these handover challenges and provide a high quality of service 

(QoS) to the user in UDN. This paper proposed a novel handover scheme, which integrates both 

advantages of fuzzy logic and multiple attributes decision algorithms (MADM) to ensure handover process 

be triggered at the right time and connection be switched to the optimal neighbouring BS. To further 

enhance the performance of the proposed scheme, this paper also adopts the subtractive clustering 

technique by using historical data to define the optimal membership functions within the fuzzy system. 

Performance results show that the proposed handover scheme outperforms traditional approaches and can 

significantly minimise the number of handovers and the ping-pong handover while maintaining QoS at a 

relatively high level.  

Keywords: mobility management, handover,  fuzzy logic, MADM, fuzzy-TOPSIS, ultra-

dense networks (UDNs), subtractive clustering, 5G 

 

1 Introduction 

The global mobile data traffic has significantly increased in recent year. As estimated by Cisco [1], the 

monthly global mobile data traffic will be 77 exabytes by 2022, and annual traffic will reach almost one 

zettabyte. The fifth generation of mobile communications (5G) will implement ultra-dense network 

(UDN) to cope with this demand. The UDN is achieved by deploying a massive number of small base 
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stations (BS) within traditional macro BSs’s coverage. Under this architecture, a more substantial amount 

of simultaneous mobile data can be delivered by the small BSs, which could offload part of the data traffic 

from macro BSs. Therefore, the radio resources management (RRM) can be more efficient, and the system 

capacity is significantly improved as compared to the macro stations in 4G. When user equipment (UE) 

moving within cellular networks, the UE will change its serving BS to maintain its connection through 

handover. At present, the handover scheme in 4G [2] and 5G [3] is mainly proposed for macro BS systems 

and triggered by the A3 event. In the A3 event, the user equipment (UE) will request a handover when one 

of the RRM decision attributes at the neighbouring BS, such as reference signal receiving power (RSRP) 

or signal to interference and noise ratio (SINR) is superior to the serving BS.  This triggering mechanism 

has the advantage of lower operational costs and complexity. 

However, the small BSs in UDN are deployed denser and closer to each other. Consequently, it introduces 

higher inter-cell interference, which leads to mobile user to meet the edge of coverages more frequently. 

As the A3 event is a single attribute algorithm and proposed for macro BS system, which can be easily 

affected by fluctuation of the RSRP due to interference. The existing handover scheme in UDN can 

frequently trigger the handover process even with a slightest physical movement of UE. The data flow 

will also be often interrupted as the handover process will first break the serving link before re-establishing 

the link to the target BSs. Subsequently, the system capacity gain that obtained by network densification 

is diminished by frequent handovers. The frequent handovers can also cause higher core networks 

signalling load and overall latencies that are contributing to the degradation in Quality of Service (QoS). 

Furthermore, single attribute operations of A3 event does not sufficiently consider other attributes that 

will affect the QoS in UDN such as jitter, packet loss, latencies, etc. By implementing an existing handover 

scheme of macro BS at UDN could result in poor system performance and QoS.  

To address these challenges, the triggering of handovers needs to be at the exact right time, and UE’s 

connection needs to be transferred to the most suitable target BS. There are many previous studies on 

fuzzy logic based handover triggering mechanism to allow both timely and flexibility to start a handover 

process [4]–[7]. Fuzzy logic is a reliable and mathematically robust tool to process uncertainty data within 

the mobile environment and conduct multivariate analysis. In [4], the authors proposed a fuzzy logic-

based triggering scheme in UDN that considers user velocity and radio channel quality to adapts hysteresis 

margins of A3 event. In [5], a context-aware fuzzy handover scheme is proposed to minimise frequent 

handover problem by adopting multiple user context parameters such as velocity, SINR, throughput and 



3 

 

BSs load. In [6], three fuzzy logic controller that can define handover hysteresis was developed to different 

cell outage failures. Reference [7] develops a hybrid fuzzy logic-based decision algorithm. First, the 

algorithm predicts the received signal strength by using an artificial neural networks-based model. Then 

other measured network parameters is used together with the predicted received signal strength as the 

input of fuzzy logic to trigger the handover process.  

The simulation results in [4]–[7] demonstrates the fuzzy logic based triggering mechanism can effectively 

minimise ping-pong handover effect, call drops ratio, and at the same time maximises the throughput. 

However, conventional fuzzy logic has its flaws. For instance, it cannot produce a reliable decision when 

there are too many decision criteria as the input of the fuzzy inference engine. Also, the design of the 

membership function needs to rely heavily on the human experience, and considerable effort in tuning for 

optimisation. These works did not elaborate further on how the membership functions are optimised for 

each criterion. Therefore, the reliability of these approaches cannot be guaranteed in different application 

scenarios. In this situation, artificial intelligence is seen to be a useful tool to define fuzzy membership 

functions for its strong capability in statistical analysis, decision making, pattern recognition, etc. [8]–[12]. 

Reference [13] shows the adaptive handover triggering mechanisms by combining fuzzy logic with neuro 

networks. In this approach, the subtractive clustering is used to initialise membership functions, which is 

tuned by using artificial neuro network corresponds to the changes in the mobile environment. The result 

shows that the proposed adaptive fuzzy controller can effectivity generate and adjust fuzzy membership 

function, which can reduce the number of handovers, ping-pong ratio, and call drop ratio effectively in 

the different application scenarios. However, this approach cannot deal with too many inputs as it will 

compromise the reliability of the algorithm. 

Apart from triggering handover process at the right time, the targeted BS needs to be carefully selected to 

ensure guaranteed QoS. At present, this is usually done by using the multiple attributes decision making 

(MADM) approach. The MADM is a mathematical tool to deal with decision-making problems with 

multiple conflicting attributes. There are many types of MADM methods, and among the most popular 

variant is the techniques for order preference by similarity for an ideal solution (TOPSIS). TOPSIS is 

favoured due to its robustness and reliability, as discussed in surveys [14]–[16]. The TOPSIS approach 

was first developed by Hwang and Yoon [17] and is widely used for target BS selection, as reported in 

[18]–[22]. References [18] and [19] proposed a MADM based handover scheme to eliminate unnecessary 

handover in LTE-Advance and UDN. The proposed scheme first applies a subjective weighting approach 



4 

 

- analytical hierarchy process mechanism to prioritise the criteria for obtaining the weight. Then TOPSIS 

engine is implemented to select the best access networks amongst all candidates.  Reference [20] proposed 

two novel TOPSIS-based handover algorithms in ultra-dense heterogeneous networks by using two 

different objective weighting approach entropy and standard deviation weighting techniques. These two 

weighting approaches can effectively avoid errors caused by human subjective decisions.  Research works 

in [21] and [22] demonstrated an enhanced TOPSIS based handover scheme by combining TOPSIS with 

other MADM schemes, i.e. utility function and analytical hierarchy process. The performance of each 

access point technologies based on the traffic class is first evaluated by analytical hierarchy process and 

TOPSIS decision engine. Subsequently, the utility function is then implemented to represent the desires 

of the users on the traffic class for optimal network selection.  

Simulation results in [18]–[22] shows that TOPSIS approach can effectivity deal with multiple handover 

related criteria and select an optimal handover target, which can significantly reduce ping-pong effect, 

number of handover failures, and enhancing user throughput. However, conventional MADM approach 

cannot deal directly with any form of imprecise data [23]. When random radio signal fluctuation occurs 

in the input sequence of MADM, the selected target BS is usually not an optimal option. In this situation, 

fuzzy logic is useful tools to process uncertain information by combing with MADM approach. Research 

work [24] shows a general view of fuzzy-TOPSIS and [25] conducts a comparison between conventional 

TOPSIS and fuzzy-TOPSIS. The result shows that for the input parameter with fluctuations and 

unpredictable errors, the fuzzy-TOPSIS will make a better decision than the conventional TOPSIS. Given 

the situation where the parameters such as RSRP, SINR and Jitter are frequently experiencing rapid 

fluctuations, the fuzzy-TOPSIS is seen to be an excellent choice to support handover decision-making. 

Reference [26] shows a cell-selection scheme based on fuzzy-TOPSIS in LTE. The simulation result 

shows that the fuzzy-TOPSIS approach can outperform the conventional MADM approach in terms of 

ping-pong handover, number of handover and handover failure ratio. However, the method described in 

[26] is using generalised membership functions in the fuzzification process. Thus the algorithm is 

potentially unreliable. Also, it proposed only cell selection schemes while ignoring the triggering process 

of handover.  

Due to the aforementioned challenges in UDN that cannot be effortlessly addressed by existing 

approaches. In this paper, we solve the handover problem in UDN with objectives of minimising the 

number of handovers, ping-pong effect, and providing high QoS to the user, by using a fuzzy-TOPSIS 
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decision model with clustering technique. Specifically, the proposed handover scheme in this paper can 

both decide a suitable triggering timing and select the optimal target selection scheme by considering 

multiple measured network parameters.  

The main contributions of this paper are summarised follows: 

 Firstly, we integrate both advantages of fuzzy logic and TOPSIS into handover scheme to select 

the most suitable target BS. Specifically, the fuzzy set is implemented to process multiple 

fluctuated network parameters as input if TOPSIS, due to its capability to deal with uncertain data. 

The TOPSIS decision engine will select an optimal neighbouring BS as the handover target as it 

can efficiently deal with multiple conflict attribute.  

 Secondly, we adopt the outcome of TOPSIS decision engine – closeness coefficient (CC) to 

determine triggering timing. This triggering mechanism allows BS to decide a triggering timing 

based on the overall performance of the application scenario rather than the RRM condition of 

UE’s serving BS. 

 Thirdly, we utilise an objective weighting to calculate weight value for each attribute based on 

information entropy. By this approach, the subjective error caused by human experience can hence 

be eliminated.  

 Finally, in order to further enhance the performance of the proposed scheme. We adopt the 

subtractive clustering techniques to generate fuzzy membership functions by using historical data. 

With the strong statistical analysis ability of subtractive clustering, the proposed scheme can 

intelligently decide the most suitable fuzzy membership function for different handover criteria. 

To the best of authors’ knowledge, this is the first works that applied clustering techniques into 

fuzzy TOPSIS decision engine. 

The rest of this paper is organised as follows: The preliminaries about fuzzy sets and TOPSIS are 

introduced in Section 2. The comprehensive methodology of fuzzy clustering based MADM handover 

scheme is presented at section 3, with the subtractive clustering method to generate fuzzy membership 

function in section 3.1, the generation of decision matrix in section 3.2, the decision-making process by 

TOPSIS in section 3.3, and the triggering mechanism and target BS selection scheme in section 3.4. The 

performance of the proposed algorithm will be evaluated in a simulation environment and compared with 

the conventional handover algorithm in Section 4. Finally, the paper will be concluded in Section 5.  
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2 Preliminary 

Before proceeding to introduce the proposed scheme, we first describe some essential fundamentals in 

this section, i.e., the fuzzy set and decision matrix of MADM, where the max-min normalisation and 

entropy approaches are introduced, which will be utilised to support decision making. Finally, the 

framework of TOPSIS decision engine is presented, which will be integrated with fuzzy logic and 

implemented to making decisions in triggering and handover target selection. 

 

2.1 Fuzzy sets 

Fuzzy sets are a class of elements with continuous values of membership (Fig.1). For each fuzzy set, a 

membership function is used to assign a grade of membership to each of the objects [4]. The work 

described in this paper, triangular fuzzy membership functions are used for its simplicity and 

computation efficiency.  

As expressed in Eq. (1), a triangular fuzzy number, �̃�, in a universal set X is described by a membership 

function 𝜇�̃�(𝑥) that associates each element x in X with a grade of membership range [0, 1]. The value 

of 𝜇�̃�(𝑥) is the membership grade of x in �̃�. From (1), 𝑎1 and 𝑎3 are the lower and upper bounds of the 

fuzzy number �̃�, and 𝑎2 is the modal value for �̃�. 

 𝜇�̃�(𝑥) =

{
 
 
 

 
 
 

0, 𝑥 ≤ 𝑎1

𝑥−𝑎1

𝑎2−𝑎1
, 𝑎1 < 𝑥 ≤ 𝑎2

𝑎3−𝑥

𝑎3−𝑎2
, 𝑎2 < 𝑥 ≤ 𝑎3

0, 𝑥 > 3

 (1) 

 

Fig. 1 The membership functions of a triangular fuzzy number 
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Fig 2. Fuzzy triangular membership functions 

 

Different fuzzy sets are often labelled by linguistic variables to associate them with the imprecise terms 

appear in human’s language. For instance, in Fig.2, five triangular membership functions are associated 

with different linguistic variables which are very low, low, medium, high and very high. Let �̃� =

(𝑎1,  𝑎2,  𝑎3)  and �̃� = (𝑏1,  𝑏2,  𝑏3)  be two non-negative triangular fuzzy numbers. According to the 

extension principle, the arithmetic operations are defined as follows [24]: 

 �̃� + �̃� = (𝑎1, 𝑎2, 𝑎3) + (𝑏1, 𝑏2, 𝑏3) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) (2) 

 �̃� − �̃� = (𝑎1, 𝑎2, 𝑎3) − (𝑏1, 𝑏2, 𝑏3) = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, 𝑎3 − 𝑏3) (3) 

 𝑘�̃� = (𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3) (4) 

 �̃� × �̃� = (𝑎1, 𝑎2, 𝑎3) × (𝑏1, 𝑏2, 𝑏3) = (𝑎1 × 𝑏1, 𝑎2 × 𝑏2, 𝑎3 × 𝑏3)  (5) 

The distance between �̃� and  �̃� cam be calculated in Eq. (6): 

 𝑑 (�̃�, �̃�) = √
1

3
[(𝑎1 − 𝑏1)

2 + (𝑎2 − 𝑏2)
2 + (𝑎3 − 𝑏3)

2] (6) 

 

2.2 Decision Matrix for MADM 

The first step of most of MADM techniques is to construct a decision matrix. Given m alternatives, 𝐴 =

{𝐴𝑖|𝑘 = 1,… ,𝑚}, and each alternatives have n attribute, 𝐶 = {𝐶𝑗|𝑗 = 1,… , 𝑛}, a decision matrix 𝐷𝑀 =

{𝑥𝑖𝑗|𝑘 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛} can be formed as (7), 

  (7)

 

𝐴1  
𝐴2
⋮
⋮
𝐴𝑚

  ተ

𝑥11 𝑥12
𝑥21 𝑥22

𝑥13 …
𝑥23 …    

… 𝑥1𝑛
… 𝑥2𝑛

⋮ ⋮
⋮
𝑥𝑚1

⋮
𝑥𝑚2

⋮ ⋱
⋮
𝑥𝑚3

⋱
…

    

⋱ ⋮
⋱ ⋮
… 𝑥𝑚𝑛

ተ 

𝐶1    𝐶2         𝐶3 …    … 𝐶𝑛 

𝐷𝑀 = 
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Where, 𝑥𝑖𝑗  in DM represents the attribute Cj (j from 1 to n) of the alternatives Ai (i from 1 to m). For 

instance, in this work, the alternatives A1 represents candidate BS - A1 have n decision attribute from x11 

to x1n.  

As each criterion in the matrix are often measured in different units, and hence the normalisation process 

is necessary to avoid ambiguity. In this work, the Min-Max scaling approach will be adopted to normalise 

all benefit (Eq. 8) and cost (Eq.9) criteria of DM. 

 𝑍𝑖𝑗 =
[𝑥𝑖𝑗−𝑚𝑖𝑛{𝑥𝑖𝑗}]

[𝑚𝑎𝑥{𝑥𝑖𝑗}−𝑚𝑖𝑛{𝑥𝑖𝑗}]
 (8) 

 𝑍𝑖𝑗 =
[𝑚𝑎𝑥{𝑥𝑖𝑗}−𝑥𝑖𝑗]

[𝑚𝑎𝑥{𝑥𝑖𝑗}−𝑚𝑖𝑛{𝑥𝑖𝑗}]
 (9) 

 

2.3 TOPSIS decision engine 

The core idea of TOPSIS is to select the optimal alternative which closest to the positive-ideal solution 

(PIS) as well as farthest to the negative-ideal solution (NIS), which calculated as: 

 𝑃𝐼𝑆 = {𝑣𝑗
+|𝑗 = 1,2, … , 𝑛} = {(max

𝑖
𝑣𝑖𝑗 |𝑖 = 1,2, … ,𝑚) |𝑗 = 1,2, … , 𝑛} (10) 

 𝑁𝐼𝑆 = {𝑣𝑗
−|𝑗 = 1,2, … , 𝑛} = {(min

𝑖
𝑣𝑖𝑗 |𝑖 = 1,2, … ,𝑚) |𝑗 = 1,2, … , 𝑛} (11) 

Where 𝑣𝑖𝑗  is weighted normalised decision matrix derived by multiplying normalised decision matrix with 

the weight value. 

The next step is to measure the distance from the PIS and the NIS to each candidate. This can be achieved 

by using Euclidean distance: 

 𝐷𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)2𝑚
𝑗=1 , 𝑖 = 1, … ,𝑚 (12) 

 𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)2𝑚
𝑗=1 , 𝑖 = 1, … ,𝑚 (13) 

The closeness coefficient of similarities to the PIS can then be computed as: 

 𝐶𝐶𝑖 =
𝐷𝑖
−

𝐷𝑖
++𝐷𝑖

− (14) 

where  𝐶𝐶𝑖 ∈ [0,1]    ∀𝑖 = 1,… ,𝑚 . The order of preference can be obtained with respect to 𝐶𝐶𝑖  in 

descending order and the best alternative can hence be selected. 
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3. Methodology  

Algorithm 1 shows the detailed procedure of the proposed fuzzy clustering-based approach for MADM 

handover. Generally, the scheme has three main parts. Firstly, in the initialisation stage, the historical data 

of handover criteria will be processed by the subtractive clustering technique to generate fuzzy 

membership function for each criterion. This will be explained in detail in Section 3.1. And the handover 

criteria measured by UE will be fed into the decision matrix, which will be explained in Section 3.2. In 

the next stage, the fuzzy membership function and decision matrix will be processed by fuzzy TOPSIS 

decision engine (see Section 3.3). The output of the decision engine will be used to determine the handover 

triggering timing and target BS in the last stage (see Section 3.4).  

 

Algorithm 1: Main- Clustering based Fuzzy-TOPSIS handover scheme 

1 

2 

3 

4 

 

5 

Initialisation: 

Input: Handover criteria i.e. RSRP, SINR, Jitter and etc. 

Output: 

Generate fuzzy membership function by subtractive clustering            

                                                                   （Ref：Algorithm 2） 

Generate decision matrix and weight array 

6 

7 

8 

Fuzzy TOPSIS decision engine                                

Input: Fuzzy membership function, Decision Matrix 

Output: Closeness coefficient CCi                      （Ref： Algorithm 3） 

9 

10 

11 

 

12 

Handover trigger and target selection                     

Input: Closeness coefficient CCi 

Output: Handover triggering event and Target BS 

                                                                            （Ref：Algorithm 4）

End 

 

 

3.1 Initialisation - Subtractive clustering method to generate fuzzy membership function 

The fuzzy membership functions play an essential role at fuzzy-TOPSIS decision engine, which can easily 

affect the performance of the proposed scheme. An effective membership functions need to fit the pattern 

of the probability distribution of its input data, which in turn can reflect the actual level of data (i.e. low, 

medium, high, etc.). Most of the fuzzy-TOPSIS based algorithms in the previous work are using fuzzy 

membership functions that are distributed evenly. This arrangement will only be reasonable if the 
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probability distribution of the input data is uniformly distributed, where a randomly selected data point is 

expected to have the same chance of being allocated to each fuzzy set.  

In practice, the input data of fuzzy-TOPSIS can follow various patterns of the probability distribution, 

and thus the membership functions for different input parameter should be adjusted to fit in 

correspondingly. Therefore, the design of the membership function requires statistics analysis to the 

collected data. As mentioned earlier, we adopt the subtractive clustering method to define membership 

function from historical data without going through the conventional process of trial and error. The 

clustering algorithm can locate the concentration inside the historical data to identify the centres and 

spans of the fuzzy membership functions. Among all types of clustering algorithms, the subtractive 

clustering is selected in the proposed scheme due to its “one-pass” method, which ultimately contributes 

to high computational efficiency. This approach will also allow the algorithm to obtain an optimal 

decision from MADM. 

Given that n data sets measured in m-dimensional input space 

{𝒙𝒊⃗⃗  ⃗ = (𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑚)|𝑖 ∈ [1, 𝑛]} 

Each data set is a vector consisting of m values corresponding to the m dimensions, which represents m 

attributes used in MADM methods.  

The subtractive clustering initiates by evaluating the potential of each data set to be the cluster centres. 

The potential value of 𝒙𝒊⃗⃗  is calculated as 

 𝑃𝑖 = ∑ 𝑒  −𝛼‖𝒙𝒊⃗⃗  ⃗−𝒙𝒋⃗⃗  ⃗‖
2

𝑛
𝑗=1  (15) 

 𝛼 =
4

𝑟𝑎
2 (16) 

𝑟𝑎 is the range of influence and defines a local neighbourhood where the concentration to be considered.  

The data point assigned with the highest potential value is treated as the first data clustering centre. Let 

𝒙𝟏⃗⃗⃗⃗ 
∗
 be the location of the first cluster centre and 𝑃1

∗ be the potential of it. The potential values for the 

data points are then updated as  

 𝑃𝑖 ← 𝑃𝑖 − 𝑃1
∗𝑒  −𝛽‖𝒙𝒊⃗⃗  ⃗−𝒙𝟏⃗⃗ ⃗⃗  

∗
‖
2

 (17) 

 𝛽 =
4

𝑟𝑏
2   (18) 
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Fig. 3. Parameters to plot triangular membership function 

 

The potential values 𝑃𝑖  of all data points are decreased by a factor, 𝑒  −𝛽‖𝒙𝒊⃗⃗  ⃗−𝒙𝟏⃗⃗ ⃗⃗  
∗
‖
2

, which is a function of 

the distance from each data point to 𝒙𝟏⃗⃗⃗⃗ 
∗
. If one point is close to 𝒙𝟏⃗⃗⃗⃗ 

∗
, its potential will be greatly reduced 

and hence it is unlikely to be selected as the next clustering centre.  The radius of the range is defined by 

𝑟𝑏 where the potential will be largely reduced. The setting of 𝑟𝑏 and 𝛽 controls the space between cluster 

centres. 

The data that has the highest updated potential, 𝑃𝑖 will be chosen as the next cluster centre. The potential 

values of all the data points will then be further reduced. In general, after the location of 𝑘th clustering 

centre is found, the potential value of all the points are revised as, 

 𝑃𝑖 ← 𝑃𝑖 − 𝑃𝑘
∗𝑒  −𝛽‖𝒙𝒊⃗⃗  ⃗−𝒙𝒌⃗⃗ ⃗⃗  

∗
‖
2

 (19) 

where 𝒙𝒌⃗⃗⃗⃗ 
∗
 is the kth data centre and 𝑃𝑘

∗ is the potential value of it. 

The process of obtaining a new clustering centre and updating the potential values repeats until 𝑃𝑘
∗ <

𝜀𝑃1
∗，where 𝜀 is the rejection ratio. Hence subtractive clustering stops when the potential of the last 

acquired centre is too weak to be the next clustering centre. 

The triangular membership functions generated by subtractive clustering are defined by the centre, c, and 

width, w, as depicted in Fig.3. To convert the obtained clusters into fuzzy membership functions, the 

location the cluster centres {𝒙𝒊⃗⃗  ⃗
∗
= (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚)} are equivalent to the centre membership functions. 

For example, the centres of membership functions for the j dimension are {𝑥1𝑗 , 𝑥2𝑗 , 𝑥3𝑗 , …… }. The width 

𝑤𝑗  is calculated as, 

 𝑤𝑗 = 𝑑(𝑈𝑗,𝑚𝑎𝑥 − 𝑈𝑗,𝑚𝑖𝑛) (20) 
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where 𝑈𝑗,𝑚𝑎𝑥 and 𝑈𝑗,𝑚𝑖𝑛 are the maximum and minimum of values of the data set in the 𝑗th dimension. 

The value of constant 𝑑 can be adjusted manually and will not have any significant effects to the result 

due to the nature of fuzzy-TOPSIS that the distances of each membership are mainly determined by c. 

However, it is essential to assure that the whole input space is under the coverage of the generated 

triangular membership functions.  

The parameters involved in subtractive clustering were set to be {𝛼 = 16, 𝛽 = 12, 𝜀 = 0.005, 𝑑 = 1.1} 

in this paper. A high number of data sets assures accurate results at the expanse of computational 

efficiency. 

The pseudo-code about the procedure of subtractive clustering is described in Algorithm 2. 

 

Algorithm 2: Subtractive clustering to define membership functions 

1 Input: Historical data of handover criteria, i.e. RSRP, SINR, Jitter etc 

2 Import input data to be clusters: xij, i = 1, 2, …, n; j = 1, 2, … ,m; 

 n = number of data sets; m = number of dimensions of data sets 

3 Set values for 𝛼, 𝛽, ε, d. 

4 Set normalised values for xj-min and xj-max. 

6 Set potential data 

 

7 

𝑃𝑖 = ∑ 𝑒  −𝛼‖𝒙𝒊−𝒙𝒌‖
2𝑛

𝑘=1   i = 1, 2, …, n; 𝑖 ≠ k 

Determine the first centre 𝑥1
∗ with the highest potential 𝑃1

∗ 

8 While (𝑃𝑘
∗ > 𝜀𝑃1

∗) 

9 Update potential data 

 𝑃𝑖 ← 𝑃𝑖 − 𝑃𝑘
∗𝑒  −𝛽‖𝒙𝒊−𝒙𝒌

∗‖
2

 

10 Determine the kth centre 𝑥𝑘
∗  with the highest potential 𝑃𝑘

∗ 

11 End while 

12 Set centres of membership functions: 𝒙𝟏
∗ ,…, 𝒙𝒌

∗  

13 Set width of membership function: 𝑤𝑗 = 𝑑(𝑈𝑗,𝑚𝑎𝑥 − 𝑈𝑗,𝑚𝑖𝑛) 

14 

15 

End 

Output: Fuzzy membership function for each handover criteria 

 

3.2 Initialisation-Generate decision matrix and weight array 

As defined in 3GPP [3], the radio resource control (RRC) in UE will initiate the measurement for 

neighbouring BS when its RSRP is lower than a threshold “s-Measure”. In Fuzzy-TOPSIS handover 

scheme, at the time step t, the measured network parameters (criteria Cj) such as RSRP, SINR, Jitter etc. 

from each BS (alternatives Ai) will be fed into a decision matrix DM t, as shown in Eq. (21).   
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(21)

 

where each row in this matrix represent on candidate BS, and each column perform one criterion; t ∈

{1, … , 𝑇}, and T is the fixed time period for mobility observations; 𝑥𝑖𝑗
𝑡  in DM represents the value of jth 

criteria Cj ( j ∈ {1, … , 𝑛} ) of the ith alternatives Ai (i ∈ {1, … ,𝑚}) at the time period t. For instance, the 

first raw alternatives A1 represents candidate BS1 have n network parameters as criteria, the value of each 

criteria at the time step t described by 𝑥11
𝑡  to 𝑥1𝑛

𝑡 . And the content in 𝐷𝑀𝑡 will be normalised by Eq. (8) 

and (9) in order to calculate weight value for each criterion. 

The weighted value of each criterion can be determined by either by subjective or objective weighing 

approach. To avoid human interference, an objective weighting method – entropy is utilised to calculate 

weight value 𝑤𝑗  of each criterion as shown in Eqs. (22) and (23). The entropy is originally derived from 

the concepts of thermodynamics and it measures the amount of instability in a system. For the content in 

decision matrix, higher entropy indicates more information is contained in a criterion, and thus greater 

weight. 

 𝑤𝑗 =
1−𝐸𝑗

∑ (1−𝐸𝑗)
𝑚
𝑗=1

 (22) 

 𝐸𝑗 = −
∑ (𝑥𝑖𝑗∗𝑙𝑛 (𝑥𝑖𝑗))
𝑛
𝑖=1

𝑙𝑛(𝑛)
 (23) 

After normalisation and weight calculation for each alternative, the weight array for each criterion can 

hence obtain as, 

 𝑊𝑡 = [𝑤1
𝑡 , 𝑤2

𝑡 , ……𝑤𝑛
𝑡] (24) 

 

3.3 Decision-Making by fuzzy-TOPSIS engine 

The conventional MADM approach cannot process RRM parameters that are under the influence of 

uncertain and imprecise data, especially in the presence of interference and noise. Inherently, conventional 

MADM is not able to optimise the performance of the handover algorithm. Hence, the fuzzy-TOPSIS are 

more suitable in handover decision making to obtain a more accurate decision, as discussed in Section 2.  

𝐵𝑆1  
𝐵𝑆2
⋮
⋮

𝐵𝑆𝑚

  ተ
ተ

𝑥11
𝑡 𝑥12

𝑡

𝑥21
𝑡 𝑥22

𝑡

𝑥13
𝑡 …

𝑥23
𝑡 …

    
… 𝑥1𝑛

𝑡

… 𝑥2𝑛
𝑡

⋮ ⋮
⋮
𝑥𝑚1
𝑡

⋮
𝑥𝑚2
𝑡

⋮ ⋱
⋮
𝑥𝑚3
𝑡

⋱
…

    
⋱ ⋮
⋱ ⋮
… 𝑥𝑚𝑛

𝑡

ተ
ተ
 

𝑅𝑆𝑅𝑃𝑡  𝑆𝐼𝑁𝑅𝑡 𝐽𝑖𝑡𝑡𝑒𝑟𝑡 …    …      𝐶𝑛
𝑡  

𝐷𝑀𝑡 = 
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In the fuzzy-TOPSIS approach, all of the content in the normalised decision matrix and weight array will 

be transformed into a fuzzy matrix 𝐷�̃� (25) and array �̃� (26) by mapping into the fuzzy membership 

functions that defined at the initialisation stage.  

  

(25) 

 �̃�𝑡 = [�̃�1
𝑡 , �̃�2

𝑡 , …… �̃�𝑛
𝑡] (26) 

In the fuzzy decision matrix  𝐷�̃�  , �̃�𝑖𝑗
𝑡 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗) represents the triangular fuzzy number of jth 

handover criteria of ith neighbouring BS at the time step t; the degree of importance for each decision 

criteria at the time step t is represented by �̃�𝑗
𝑡 = (𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) in weight array �̃�𝑡. Afterwards, the 𝐷�̃� will 

multiply with W̃ to calculate weighted fuzzy decision matrix �̃� as, 

  

(27) 

Afterwards, the normalised weighted fuzzy decision matrix �̃� will be feed into fuzzy-TOPSIS decision 

engine to obtain the fuzzy PIS (𝐴+) and fuzzy NIS (𝐴−) by Eqs. (28) and (29), 

 𝐴+ = 𝑉�̃�
+
(𝑗 = 1, 2, … ,𝑚)      𝑤ℎ𝑒𝑟𝑒 𝑉�̃�

+
= max

𝑖
𝑉𝑖�̃� (28) 

 𝐴− = 𝑉�̃�
−
(𝑗 = 1, 2, … ,𝑚)       𝑤ℎ𝑒𝑟𝑒 𝑉�̃�

−
= min

𝑖
𝑉𝑖�̃� (29) 

From 𝐴+  and 𝐴−, the closeness between each candidate BSs to both fuzzy PIS and fuzzy NIS can be 

calculated by Eqs. (6) and (30) -(31), 

 𝑑𝑖
+ = ∑ 𝑑(𝑛

𝑗=1 𝑉𝑖�̃�, 𝑉�̃�
+
) (30) 

 𝑑𝑖
− = ∑ 𝑑(𝑛

𝑗=1 𝑉𝑖�̃�, 𝑉�̃�
−
) (31) 
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Finally, the closeness coefficient CCi of each candidate BSs can be calculated by Eq. (14). Where, the 

closeness coefficient CCi will be used to trigger handover process and select target BS at the next stage. 

The pseudo code for fuzzy-TOPSIS decision engine is summarised as given in Algorithm 3. 

 

Algorithm 3: Fuzzy-TOPSIS Decision Engine 

1 Input: Handover criterion i.e. RSRP,SINR,Jitter etc. 

2 Output: CCi 

3 While RSRP < s-Measure do 

4 UE start measure input parameter  

5 Formulate decision matrix 𝑫𝑴 = (𝒙𝒊𝒋)𝒏×𝒎
 

6 Normalised DM  

7 Compute weight 𝒘𝒋 for each handover criterion  

8 Find fuzzy decision matrix 𝑫�̃� and weights �̃� 

9 Compute weighted fuzzy decision matrix �̃�=𝑫�̃� ∗ �̃� 

10 Determine FPIS A+ and FNIS A- 

11 Calculate closeness between each candidate BSs to A+ and A- 

12 Compute the closeness coefficient CCi for each candidate 

13 End while 

 

3.4 Handover triggering and target selection 

The conventional handover mechanism is usually based on a single attribute to make decisions. The 

single attribute based triggering mechanisms are easily affected by interference and thus causing effects 

like ping-pong handover, frequent handover and unnecessary handover. Besides, most of the existing 

triggering approach only considers RRM conditions of the serving BS while ignoring the neighbouring 

BSs.  

To overcome the limitation of the existing approach, this paper adopts CC from TOPSIS as the key factor 

to determine the triggering time and handover target. As mentioned earlier, the outcome of TOPSIS 

decision engine, CC, represents the similarities between each candidate BS to the ideal solution. In other 

words, the candidate with the highest CC would be the best option to handover amongst all available 

candidates. When deciding on the BSbest with the highest CC (CChighest), the proposed scheme will 

compare CC of the UE’s serving BS (CCserving) with CChighest. The UE will trigger and send handover 

request to serving BS only when the ratio CCserving / CChighest lower than 0.75. Otherwise, the UE will 

maintain the connection with the current serving BS until the triggering condition is fulfilled. Here, the 
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0.75 is seen the best CCserving / CChighest  value that could balance a number of handovers, handover ping-

pong ratio and QoS at an optimal level.  This value is obtained as a result of many rounds of simulations 

with different random seed values. The pseudo code of this triggering and selection mechanism is as 

shown in Algorithm 4. 

 

Algorithm 4: Handover trigger and target selection 

1 

2 

While (true) 

Send Measurement_Reports 

3 Input: Handover criteria i.e. RSRP, SINR, Jitter etc. into 

Fuzzy-TOPSIS decision Engine (Ref: Algorithm 1) 

4 Output: CCi 

5 if CCserving/ CChighest < 0.75 

6 UE send handover trigger event to serving BS 

7 Select BS with CChighest as target BS 

8 Send HANDOVER_REQUEST 

9 Send Path_Switch_Request 

10 else if  

11 UE maintain the connection with serving BS 

12 End if 

13 End 

 

 

4. Performance evaluation 

In this section, the evaluation of the proposed fuzzy clustering based TOPSIS algorithm is presented in 

both numerical and simulation results. The traditional received signal strength (RSS)-based handover 

scheme and MADM scheme are also simulated for comparison. 

 

4.1 Numerical analysis 

Consider there are three BSs in the environment, and each BS have three RRM parameter, i.e. RSRP, 

SINR and jitter, while the BS1 is the serving BS of UE.  At the time T, the collected data from UE can 

construct a decision matrix DM as,  

 

     

𝐷𝑀 =

𝐵𝑆1
𝐵𝑆2
𝐵𝑆3

อ
−86 −8 7
−93 5 11
−108 12 5

อ 

𝑅𝑆𝑅𝑃 𝑆𝐼𝑁𝑅 𝐽𝑖𝑡𝑡𝑒𝑟 
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All content in this matrix will be normalised by using Eqs. (8) and (9), where RSRP and SINR are 

considered as benefit criteria, and jitter is cost criteria. Then, the weight value of each criterion can be 

calculated by Eqs. (22) and (23), as in Table 1, 

The normalised decision matrix and weight array will be mapped into membership functions and then 

transformed into fuzzy triangular membership number as in Table 2. To simplify, the generalised fuzzy 

membership functions (see Fig.2) are used in the numerical example.  

 

Table 1 Normalised decision matrix and weight array 

 RSRP SINR Jitter 

BS1 1 0 0.67 

BS2 0.68 0.65 0 

BS3 0 1 1 

W 0.33 0.33 0.33 

 

Table 2 Fuzzy triangular number for each criterion and weight value 

 RSRP SINR Jitter 

BS1 (0.75,0.90,1.00) (0.00,0.10,0.25) (0.55,0.70,0.85) 

BS2 (0.55,0.70,0.85) (0.55,0.70,0.85) (0.00,0.10,0.25) 

BS3 (0.00,0.10,0.25) (0.75,0.90,1.00) (0.75,0.90,1.00) 

W (0.15,0.30,0.45) (0.15,0.30,0.45) (0.15,0.30,0.45) 

 

Table 3 Fuzzy weighted decision matrix �̃� 

 RSRP SINR Jitter 

BS1 (0.113,0.27,0.45) (0.00,0.03,0.113) (0.083,0.21,0.383) 

BS2 (0.083,0.21,0.383) (0.083,0.21,0.383) (0.00,0.03,0.113) 

BS3 (0.00,0.03,0.113) (0.113,0.27,0.45) (0.113,0.27,0.45) 

 

Table 4 Analysis of fuzzy TOPSIS 

 RSRP SINR Jitter 𝑑𝑖
+ 𝑑𝑖

− 𝐶𝐶𝑖 

BS1 (0.113,0.27,0.45) (0.00,0.03,0.113) (0.083,0.21,0.383) 0.30 0.44 0.59 

BS2 (0.083,0.21,0.383) (0.083,0.21,0.383) (0.113,0.27,0.45) 0.36 0.39 0.52 

BS3 (0.00,0.03,0.113) (0.113,0.27,0.45) (0.00,0.03,0.113) 0.25 0.50 0.67 

𝐴+ (0.113,0.27,0.45) (0.113,0.27,0.45) (0.113,0.27,0.45)    

𝐴− (0.00,0.03,0.113) (0.00,0.03,0.113) (0.00,0.03,0.113)    
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From Table 2, the fuzzy decision matrix �̃� can hence obtain by multiplying criteria with each weight 

value by Eq. (5),  

Afterwards, the fuzzy PIS (𝐴+) and fuzzy NIS (𝐴−) can be calculated by Eqs. (28) and (29) from Table 

3. And the distance from each alternative to fuzzy PIS (𝑑𝑖
+) and fuzzy NIS (𝑑𝑖

−), as well as the closeness 

coefficient (CC) to the ideal solution are then be calculated by Eqs. (30), (31) and (14) as shown in Table 

4.  

According to the numerical results in Table 4, the BS3 with the highest CC is 0.67 and hence be selected 

as the optimal handover target. Meanwhile, the CC of serving BS of UE, CC1 is 0.59. Due to the 

CC1/CCmax ratio of 0.88, which higher than the triggering ratio (i.e. 0.75), and the system will choose to 

maintain the connection of UE with BS1. 

In the next time step t + 1, the proposed scheme will repeat these procedures until CCserving/CCmax  less 

than 0.75, and then handover process will be triggered and switch UE’s connection to the BS with the 

highest CC. This scheme will turn off when RSRP higher than the system measuring threshold.  

 

4.2 Scenario configuration 

A simulation model has been developed in MATLAB to evaluate the effectiveness of the proposed 

handover scheme. The simulation setup is presented in Table 5.  There are 16 BSs are deployed in a 

1000m × 1000m  scenario, and the distance between each of them is 400 m. The COST-Hata model is 

used to model the radio propagation of each BSs. The additive white Gaussian noise (AWGN) and 

Rayleigh noise are added to the transmitted signal. There are 40 UEs will randomly move at this scenario 

with a constant speed of 30 km/h. 

The RSRP, SINR, packet loss ratio and network jitter are used as handover criterion in this paper. The 

number of handovers, ping-ping handover ratio and mean option score (MOS) is used as performance 

indicators to evaluate the performance of the proposed algorithm. The conventional RSS-based handover 

algorithm, tional SAW and TOPSIS based handover algorithm, and fuzzy-TOPSIS algorithm with 

generalised fuzzy membership function are used to compare with the proposed scheme. The ping-pong 

handover in this paper is defined as when UE handed back to the same serving BS within 5s. The ping-

pong handover ratio is calculated as (32),  
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 𝑃𝑖𝑛𝑔𝑝𝑜𝑛𝑔 ℎ𝑎𝑑𝑛𝑜𝑣𝑒𝑟 ratio (%)=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑛𝑔𝑝𝑜𝑛𝑔 ℎ𝑎𝑑𝑛𝑜𝑣𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
 (32) 

 

The MOS is used to represent QoS with a scale from ‘5’ (best) to ‘1’ (worst). Traditionally, the values 

of MOS is determined using subjective approach. However, ITU-T recommendation G.107 [27], also 

known as the E-Model, specifies a more objective based evaluation based on measurement of network 

parameters such as jitter and packet loss ratio. To ensure a promising evaluation result, each KPI will be 

evaluated at least 100 times to obtain statistically significant results.  

 

4.3 Results and Discussion 

Fig.4 depicts the membership functions generated by the subtractive clustering method for different 

criteria, and Fig.5 indicates the probability density function of 16000 input data points for each criterion. 

An apparent relationship can be found between the membership functions and the corresponding 

probability density functions. The probability density functions of RSRP and SINR are similar to 

Gaussian distribution with mean value at around 0.4 and 0.6. The membership functions for these two 

criteria are hence more concentrated on the corresponding mean values rather than spread evenly over 

the input space. 

 

Table.5. Simulation parameter 

Parameters Specification 

BS transmitted power:       40~ 45 dBm 

Carrier frequency:  1.5 ~ 2 GHz 

Duration of simulation 10000 s 

Mobility model  Random direction 

Number of BSs 16 

The distance between each BS 400 m 

Number of UE 40 

UE speed 30 km/h 

Propagation model: COST-Hata model 

Type of Noise AWGN, Rayleigh 
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Fig. 4. Membership generated by subtractive clustering for RSRP (top left), SINR (top right), Packet loss rate 

(bottom left) and network jitter (bottom right)  

 

 
Fig. 5. PDFs by subtractive clustering for RSRP (top left), SINR (top right), Packet loss rate (bottom left) and  

Network jitter (bottom right) 

 
The probability density function of packet loss ratio also follows a distribution with a mean at around 

0.3 but with a lower peak value compared with RSRP and SINR, which results in a more scattered 
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allocation of the membership functions. The network jitter is modelled by a Pareto distribution. Since 

jitter is a cost criterion in this work, the normalisation step ends up with an input data following an inverse 

Pareto distribution as in Fig.5, where an extremely high concentration can be found around 0.97. The 

membership functions for jitter hence focus on the end of the input space.  According to the results in 

Fig.4 and 5, the proposed subtractive clustering approach can effectively extract the feature of input data 

and then generate the optimal fuzzy membership functions according to the feature of each criterion. By 

applying this method into fuzzy-TOPSIS decision engine, the subjective error in defining membership 

functions can, therefore, be eliminated. This will further enhance the performance of fuzzy-TOPSIS. In 

practice, the maintenance and optimisation costs of the proposed handover scheme can also be saved due 

to the characteristics of subtractive clustering. 

As indicated in Fig.6-8, the convention RSS-based handover algorithm has the highest number of 

handovers, ping-pong ratio and the lowest MOS. Due to RSS-based is a single attribute based algorithm, 

the triggering decision and handover target are only determined by RSRP. The RSRP is fluctuated 

heavily due to the existing of noise, which will be easily affected by interference. This will render the 

handover to become abnormal and result in the worst performance. On the other hand, the conventional 

MADM approach, i.e. SAW and TOPSIS, can consider more than one attribute as decision criteria. From 

the results, these two approaches have close to similar performance in terms of the number of handovers, 

Ping-Pong handover ratio and MOS. Although the performance of these two methods is better than the 

RSS-based handover scheme, it is still lower than fuzzy-TOPSIS with generalised membership functions 

and fuzzy-TOPSIS with clustering approach.  

The fuzzy-TOPSIS with generalised membership function used membership functions as depicted in 

Fig.2 during the fuzzification stage. The simulation results show the overall performance of this method 

is better than the previous approach. It can reduce the number of handovers significantly by almost 90% 

and ping-pong handover ratio by 10% as compared to the RSS-based approach. Furthermore, this 

approach can obtain a relatively high MOS while maintaining a minimum of number of handovers. 

Finally, the proposed fuzzy-TOPSIS with modified membership function in this paper has the best 

performance amongst all approaches. This approach can reduce another 10% number of handovers and 

3% of ping-pong handover ratio by comparing with fuzzy-TOPSIS with generalised membership 

function. Moreover, the proposed scheme can also maintain QoS in a relative high MOS.  
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According to the evaluation above, the proposed scheme outperforms the traditional approach in terms 

of number of handovers, ping-pong handover ratio and MOS. By comparing with the other traditional 

approach, the proposed handover scheme has the following advantages. Firstly, the proposed scheme 

integrated both the advantages of fuzzy logic and MADM techniques. With the feature of MADM, the 

proposed scheme can effectivity deal with multiple criteria and make an optimal decision. And the feature 

of fuzzy membership functions can enable the proposed scheme to process uncertain and imprecise data, 

and thus minimise the effect of environmental noise and interference. Secondly, the membership 

functions generated by subtractive clustering for each input criteria are further enhancing the 

performance of the proposed scheme. The membership functions generated by subtractive clustering can 

effectivity represent the actual feature of input data, and hence can transform each data into the right 

membership function. Thirdly, the implementation of entropy to calculate weight value for each criterion 

can eliminate the human error, and present more objective results. With the above characteristics, the 

proposed handover scheme can select an optimal BS among all candidates and criteria. On top of that, 

this paper utilises closeness coefficient CC from the proposed algorithm to trigger handover. This novel 

triggering mechanism allows BS to decide a triggering timing based on the overall performance of the 

application scenario rather than only consider the RRM condition of UE’s serving BS. Therefore, it can 

further minimise the number of handovers and ping-pong handover ratio.  

 

 

Fig. 6.  Number of handovers by different approaches 
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Fig. 7. Handover ping-pong ratio by different approaches 

 

 

Fig. 8. MOS from different approaches 

 

5. Conclusion  

To minimise the challenges of handover in 5G-UDN and also overcome the limitation of the existing 

handover approach, the work presented in this paper developed a fuzzy-TOPSIS based handover 

algorithm by considering more than one attribute as criteria to trigger handover process and select optimal 

neighbouring BSs as handover target. The proposed method combines the strengths of both TOPSIS and 

fuzzy logic. To further enhance the performance of the proposed scheme. We proposed the use of 
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subtracting clustering scheme to intelligent generate fuzzy membership function by using historical data. 

The simulation results indicated that the proposed handover scheme could significantly reduce the 

number of handovers and ping-pong handover ratio while retaining QoS at a relatively high level by 

comparing with the RSS-based algorithm and conventional MADM approach. And the proposed 

subtracting clustering technique can intelligently define the optimal fuzzy membership function from 

historical data for different criterion. Base on this optimisation, the proposed scheme with customised 

membership function outperforms fuzzy-TOPSIS approach with generalised fuzzy membership function 

in terms of all evaluated aspects.  
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