1,733 research outputs found

    Genetic Algorithm Based Improved Sub-Optimal Model Reduction in Nyquist Plane for Optimal Tuning Rule Extraction of PID and PI{\lambda}D{\mu} Controllers via Genetic Programming

    Get PDF
    Genetic Algorithm (GA) has been used in this paper for a new Nyquist based sub-optimal model reduction and optimal time domain tuning of PID and fractional order (FO) PI{\lambda}D{\mu} controllers. Comparative studies show that the new model reduction technique outperforms the conventional H2-norm based reduced order modeling techniques. Optimum tuning rule has been developed next with a test-bench of higher order processes via Genetic Programming (GP) with minimum value of weighted integral error index and control signal. From the Pareto optimal front which is a trade-off between the complexity of the formulae and control performance, an efficient set of tuning rules has been generated for time domain optimal PID and PI{\lambda}D{\mu} controllers.Comment: 6 pages, 9 figure

    Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples.This work has been supported by the Department of Science and Technology (DST), Government of India, under the PURSE programme

    A survey of recent advances in fractional order control for time delay systems

    Get PDF
    Several papers reviewing fractional order calculus in control applications have been published recently. These papers focus on general tuning procedures, especially for the fractional order proportional integral derivative controller. However, not all these tuning procedures are applicable to all kinds of processes, such as the delicate time delay systems. This motivates the need for synthesizing fractional order control applications, problems, and advances completely dedicated to time delay processes. The purpose of this paper is to provide a state of the art that can be easily used as a basis to familiarize oneself with fractional order tuning strategies targeted for time delayed processes. Solely, the most recent advances, dating from the last decade, are included in this review

    PID Controller Tuning Using Bode's Integrals

    Get PDF
    A new method for PID controller tuning based on Bode's integrals is proposed. It is shown that the derivatives of amplitude and phase of a plant model with respect to frequency can be approximated by Bode's integrals without any model of the plant. This information can be used to design a PID controller for slope adjustment of the Nyquist diagram and improve the closed-loop performance. Besides, the derivatives can be also employed to estimate the gradient and the Hessian of a frequency criterion in an iterative PID controller tuning method. The frequency criterion is defined as the sum of squared errors between the desired and measured gain margin, phase margin and crossover frequency. The method benefits from specific feedback relay tests to determine the gain margin, the phase margin and the crossover frequency of the closed-loop system. Simulation examples and experimental results illustrate the effectiveness and the simplicity of the proposed method to design and tune the PID controllers

    Fuzzy gain scheduling control apply to an RC Hovercraft

    Get PDF
    The Fuzzy Gain Scheduling (FGS) methodology for tuning the Proportional – Integral – Derivative (PID) traditional controller parameters by scheduling controlled gains in different phases, is a simple and effective application both in industries and real-time complex models while assuring the high achievements over pass decades, is proposed in this article. The Fuzzy logic rules of the triangular membership functions are exploited on-line to verify the Gain Scheduling of the Proportional – Integral – Derivative controller gains in different stages because it can minimize the tracking control error and utilize the Integral of Time Absolute Error (ITAE) minima criterion of the controller design process. For that reason, the controller design could tune the system model in the whole operation time to display the efficiency in tracking error. It is then implemented in a novel Remote Controlled (RC) Hovercraft motion models to demonstrate better control performance in comparison with the PID conventional controller

    A tuning rule based on internal model control and the Nyquist criterion

    Get PDF
    If the process contains a delay (dead time), the Nyquist criterion is well suited to derive a PI or PID tuning rule because the delay is taken into account without approximation. The tuning of the speed of the closed loop enters naturally by the crossover frequency. The goal of robustness and performance is translated into the phase margin

    A simple approach for on-line PI controller tuning using closed-loop setpoint responses

    Get PDF
    The proposed method is similar to the Ziegler-Nichols (1942) tuning method, but it is faster to use and does not require the system to approach instability with sustained oscillations. The method requires one closed-loop step setpoint response experiment using a proportional only controller with gain Kc0. Based on simulations for a range of first-order with delay processes, simple correlations have been derived to give PI controller settings similar to those of the SIMC tuning rules (Skogestad, 2003). The controller gain (Kc/Kc0) is only a function of the overshoot observed in the setpoint experiment whereas the controller integral time (Ď„I) is mainly a function of the time to reach the peak (tp). Importantly, the method includes a detuning factor F that allows the user to adjust the final closed-loop response time and robustness. The proposed tuning method, originally derived for first-order with delay processes, has been tested on a wide range of other processes typical for process control applications and the results are comparable with the SIMC tunings using the open-loop model

    On Fractional-Order PID Design

    Get PDF
    • …
    corecore