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The special Issue “Time Delay Systems: Modelling, 
Identification, Stability, Control and Applications” 
intents to collect high-erudite papers aiming 
theoretical and/or practical matters dealing with 
time delay systems. 
In feedback control systems, delay as a generic part 
of many processes is the phenomenon which 
unambiguously deteriorates the quality of a control 
performance. Modern control theory has been 
dealing with this problem since its nascence – the 
well known Smith predictor has been known for 
longer than five decades. Systems with delays in 
technological and other processes are usually 
assumed to contain delay elements in input-output 
relations only, which results in shifted arguments on 
the right-hand side of differential equations. All the 
system dynamics is hence traditionally modelled by 
point accumulations in the form of a set of ordinary 
differential equations. However, this conception is a 
rather restrictive in effort to fit the real plant 
dynamics since inner feedbacks can be of time-
distributed or delayed nature. Time delay 
(hereditary, anisochronic) models, contrariwise, 
offer a more universal dynamics description 
applying both derivatives and delay elements on the 
left-hand side of a differential equation, either in a 
lumped or distributed form. 
Modelling, identification, stability analysis, 
stabilization, control, etc. of time delay systems are 
challenging and fascinating tasks in modern systems 
and control theory as well as in academic and 
industrial applications. Many related problems are 
unsolved and many questions remain unanswered. 
The aim of this special issue is to highlight greatly 
significant recent developments on the topics of 
time delay systems, their estimation, modelling and 
identification, stability analysis, various (algebraic, 
adaptive and predictive) control strategies, relay-
based autotuning and interesting academic and real-
life applications. The papers included in the special 
issue are ordered from the most theoretical one to 
more directly applicable ones.  

The state estimation or filtering problem is of great 
importance in both theory and application, and in 
the last decades, this problem has gotten extensive 
concern and many solution schemes have been 
proposed and successfully put into action. Among 
them, Kalman filtering, which minimizes the 
variance of the estimation error, is the most famous 
one. Observer design for linear time delay systems 
is the matter of the first paper of Mohammad Ali 
Pakzad, entitled “Kalman Filter Design for Time 
Delay Systems”. An easy way to compute least 
square estimation error of an observer for time delay 
systems is derived, where the time delay terms exist 
in the state and output of the system. Based on the 
least square estimation error an optimization 
algorithm to compute a Kalman filter for time delay 
systems is proposed. By employing the finite 
characterization of a Lyapunov functional equation, 
the existence of sufficient conditions for obtaining 
the right solution and guaranteeing the proper 
convergence rate of the estimation error is 
evaluated. It is shown that this finite 
characterization can be calculated by means of a 
matrix exponential function. The desirable 
performance of the proposed observer is 
demonstrated through the simulation of several 
numerical examples. 
Fractional differential equations have gained 
considerable significance and most fractional 
systems may contain a delay term. The authors 
Mohammad Ali Pakzad and Sara Pakzad propose an 
exact method for the BIBO stability analysis of a 
large class of fractional order delay systems. In their 
paper entitled “Stability Map of Fractional Order 
Time-Delay Systems”, the stability robustness for 
linear time invariant fractional order systems with 
time delay against delay uncertainties is considered. 
The complexity arises due to the exponential type 
transcendental terms and fractional order in their 
characteristic equation. It is shown that this 
procedure numerically reveals all possible stability 
regions exclusively in the space of the delay. Using 
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the approach presented in this study, all the 
locations where roots cross the imaginary axis are 
found. Finally, the concept of stability as a function 
of time delay is described for a general class of 
linear fractional order systems with multiple 
commensurate delays. 
A revision and extension of the ring of retarded 
quasipolynomial meromorphic functions for 
description and control of time-delay systems is the 
aim of the paper “A Ring for Description and 
Control of Time-Delay Systems” by Libor Pekař. 
The new definition extends the usability to neutral 
systems and to those with distributed delays. First, 
basic algebraic notions useful for this paper are 
introduced. A concise overview of algebraic 
methods for time delay systems follows. The 
original and the revised definitions of the ring 
together with some its properties finish the 
contribution. Many illustrative examples that 
explain introduced terms and findings can be found 
throughout the paper. 
Algebraic design of controllers for time delay 
systems having integrative or unstable properties is 
the topic of the paper entitled “Control of Unstable 
and Integrating Time Delay Systems Using Time 
Delay Approximations” by Petr Dostál, Vladimír 
Bobál and Zdeněk Babík. The proposed method is 
based on two methods of time delay 
approximations. The control system with two 
feedback controllers obtained via the polynomial 
approach and the linear quadratic technique is 
considered. Resulting continuous-time controllers 
ensure asymptotic tracking of step references as 
well as step disturbances attenuation. 
The majority of processes in the industrial practice 
have stochastic characteristics and eventually they 
exhibit nonlinear behaviour. Traditional controllers 
with fixed parameters are often unsuitable for such 
processes because parameters of the process change. 
One possible alternative for improving the quality of 
control of such processes is application of adaptive 
control systems. The authors Vladimír Bobál, Petr 
Chalupa, Marek Kubalčík and Petr Dostál designed 
a toolbox in the MATLAB/SIMULINK 
environment for identification and self-tuning 
control of time delay systems in the paper entitled 
“Identification and Self-tuning Control of Time-
delay Systems”. The control algorithms are based on 
modifications of the Smith predictor. The designed 
algorithms that are included in the toolbox are 
suitable not only for simulation purposes but also 
for implementation in real time conditions. 
Verification of the designed toolbox is demonstrated 
on a self-tuning control of a laboratory heat 
exchanger in simulation conditions.  

A rather similar problem is the issue of the next 
paper entitled “Predictive Control of Higher Order 
Systems Approximated by Lower Order Time-
Delay Models”. There often occur higher order 
processes in technical practice, the designed optimal 
controllers for which lead to complicated control 
algorithms. One of possibilities of solving the 
problem is their approximation a by lower-order 
model with dead time. The contribution of Marek 
Kubalčík and Vladimír Bobál is focused on a choice 
of a suitable experimental identification method and 
excitation input signals for an estimation of process 
model parameters with time-delay. One of the 
possible approaches to control of time-delay 
processes is the application of model-based 
predictive control methods. Design of an algorithm 
for predictive control of high-order processes which 
are approximated by second-order model of the 
process with time-delay then follows in the paper. 
The last paper in the special issue: “Autotuning 
Principles for Time-delay Systems” by Roman 
Prokop, Jiří Korbel and Radek Matušů focuses 
single input–output principles for tuning of 
continuous-time controllers used in autotuning 
schemes. Autotuners represent a combination of 
relay feedback identification and some control 
design method. In this contribution, models with up 
to three parameters are estimated by means of a 
single asymmetrical relay experiment. Then a stable 
low order transfer function with a time delay term is 
identified by a relay experiment. Controller 
parameters are analytically derived from general 
solutions of Diophantine equations in the ring of 
proper and stable rational functions. This approach 
covers a generalization of PID controllers and 
enables to define a scalar positive parameter for 
further tuning of the control performance. The 
analytical simple rule is derived for aperiodic 
control response. Simulations are performed in the 
Matlab environment and a toolbox for automatic 
design was developed.  
This special issue is created by mathematicians, 
system- and control-engineers and scientists who 
study various problems in analysis and control of 
dynamical systems including the very rich family of 
those with time delays. We are looking forward to 
hearing reactions and comments from you, the 
reader, as you engage in your design struggles and 
successes as well. We hope this special issue can 
support the designing of new communities and 
facilitating new groups of learners, engineers and 
scientists as well. We dare to claim that this issue 
made a little contribution to a better, feel-good, 
world. 
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Abstract: - In this paper, the stability robustness is considered for linear time invariant (LTI) fractional order 
systems with time delay against delay uncertainties. The complexity arises due to the exponential type 
transcendental terms and fractional order in their characteristic equation. We show that this procedure 
numerically reveals all possible stability regions exclusively in the space of the delay .Using the approach 
presented in this study, we can find all the locations where roots cross the imaginary axis. Finally, the concept 
of stability as a function of time delay is described for a general class of linear fractional order systems with 
multiple commensurate delays. Several numerical examples are provided to demonstrate the effectiveness of 
the proposed methodology. 
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1 Introduction 
It is known that the presence of delay many cause 
poor performance and/or instability in a dynamical 
system. Therefore, time-delayed systems play 
significant roles in theoretical as well as practical 
fields; and this influence can be observed in 
numerous research articles written on various 
problems that involve this class of systems [1-6]. 
Fractional differential equations have gained 
considerable importance due to their application in 
various sciences, such as viscoelasticity, 
electroanalytical chemistry, electric conductance of 
biological systems, modeling of neurons, diffusion 
processes, damping laws, rheology, etc. Fractional 
order differential equation is represented in 
continuous-time domain by differential equations of 
non integer-order. Moreover, time delay is often 
present in real processes due to transportation of 
materials or energy. Therefore, most fractional 
systems may contain a delay term, such as fractional 
order neutral systems or some other fractional order 
delay systems (see [20,22] and the references cited 
in it). The characteristic function of a fractional-
delay system involves exponential type 
transcendental terms, so a fractional delay system 
has in general an infinite number of characteristic 
roots. This makes the stability analysis of fractional-
delay systems a challenging task. However, for 
fractional order dynamic systems, it is difficult to 
evaluate the stability by simply examining its 

characteristic equation either by finding its 
dominant roots or by using other algebraic methods. 
At the moment, direct check of the stability of 
fractional order systems using polynomial criteria 
(e.g., Routh’s or Jury’s type) is not possible, 
because the characteristic equation of the system is, 
in general, not a polynomial but a pseudopolynomial 
function of fractional powers of the complex 
variable s. 

The researchers of [7] and [8] may be the pioneer 
to consider stability of the fractional order time 
delay system with single-delay. They have 
developed the Ruth-Hurwitz criteria for analyzing 
the stability of some special delay systems to those 
involve fractional power s . 

One of the important and basic things about each 
of the dynamical systems is the stability 
investigation. With respect to systems with delay, 
we’d like to study that how this stability property 
could behave, if we increased the time delay. It is 
known that an interesting phenomenon, namely 
stability windows, might happen. There has been a 
large effort to deal with this problem, as can be seen 
by the large quantity of articles dealing with it for 
the standard case; see. [9, 10,21,23], and many 
others. Recently, [11] has used numerical methods 
to investigate this subject in fractional order delay 
systems. 

Bonnet and Partington introduced necessary and 
sufficient conditions for BIBO stability of the 
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retarded fractional order delay systems and 
sufficient conditions for some neutral types [12]. 
Also, they studied necessary and sufficient 
conditions for H∞ -stability (a weaker notation than 
BIBO stability) for a significant case of neutral type 
fractional order delay systems [13]. From the 
numerical analysis point of view, the effective 
numerical algorithms to check BIBO stability of 
fractional order delay systems have been discussed 
in [11] and [14]. In [15], a numerical method with 
complicated calculations based on the Cauchy’s 
integral theory has been proposed for testing the 
stability of such systems. Some numerical 
techniques based on the Lambert W function have 
been presented in [16, 17] for the investigation of 
stability of these systems, where the rightmost 
characteristic root on the first Riemann sheet can be 
expressed explicitly in terms of Lambert W 
function. 

In the present work, an exact method for the 
BIBO stability analysis of a large class of fractional 
order delay systems has been proposed, which is 
able to determine all the possible stability regions in 
the parametric space of these systems as a function 
of time delay. The main idea of this strategy has 
been adopted from [11], whose authors have studied 
the stability of integer order time-delayed systems. 
The rest of the present article has been organized as 
follows. Section 2 includes the necessary 
explanations and assumptions and also the stability 
test of these systems. In section 3, an exact method 
which expresses the stability regions as a function of 
delay has been presented. In section 4, some 
examples that demonstrate the effectiveness of the 
proposed approach have been described; and section 
5 concludes the article. 

 
 
2 Problem Formulation 
Standard notation has been used throughout the 
article. The set of natural numbers is denoted by , 
whereas N  denotes the set of its first N elements 

(i.e., { }1, ,N N= … ). ( ),+ −  is the set of 

complex numbers (with strictly positive, and strictly 
negative real parts), and 1j = −  is the imaginary 
unit . For ,z z∈  denotes its complex conjugate, 
and z∠ , ( )zℜ  and ( )zℑ  define the argument 

(taken here from ( ],π π− ), the real part and the 

imaginary part of z . ( ),+ −  denotes the set of 

real numbers (larger or equal to zero, smaller or 
equal to zero). 

Consider a fractional order system with the 
following characteristic equation: 

( ) ( )
0

,
k

N
ks

k
C s p s eα ττ −

=

= ∑  (1) 

where parameter τ  is non-negative, such that 
τ +∈ ; ( )kp s α for Nk ∈  are polynomials in  

s α  (where ( )0,1α ∈ ). Note that the zeros of 
characteristic equation (1) are in fact the poles of the 
system under investigation. We find out from [14] 
that the transfer function of a system with a 
characteristic equation in the form of (1) will be H∞ 
stable if, and only if, it doesn’t have any pole at 
( ) 0sℜ ≥  (in particular, no poles of fractional order 

at 0s = ). 
For fractional order systems, if a auxiliary 

variable of s ας =  is used, a practical test for the 
evaluation of stability can be obtained. By applying 
this substitution in characteristic equation (1), the 
following relation is obtained: 

( ) ( ) 1

0
,

N
k

k
k

C p e
ατς

ς ς τ ς −

=

= ∑  (2) 

For this new variable, the stability region of the 
original system is not expressed as the right half-
plane, but as the region described below: 

2
πας∠ ≤  (3) 

 
with ς ∈  , which the stable region has been 

displayed by shaded regions in Figure (1). 
 

 
 
Fig. 1. The Stability Regions (Shaded) for linear 
fractional order systems 
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Note that under this transformation, the imaginary 
axis in the s-domain is mapped into the line 

 

2
πας∠ = ±  (4) 

 
in the ς-domain, and therefore a solution 
* * 2ς ς πα= ∠±  implies that the original system 

has a purely imaginary solution of the type 
 

1
* *s j

α
ς

−

= ±  (5) 

 
Let us assume that ; s jω= ± or in other words, 

2js e πω ±=  are the roots of characteristic equation 
(1) for a τ +∈ . Then for the auxiliary variable, the 
roots are defined as follows: 

 
2js eα α πας ω ±= =  (6) 

 

Therefore, with the auxiliary variable s ας =  , 
there is a direct relation between the roots on the 
imaginary axis for the s-domain with the ones 
having argument 2πα±  in the ς-domain. 

 
 

3 Problem Solution 
This is well known that one of the most 

important tools in the stability analysis of the 
systems is to use the location of the roots of system 
or root-locus method. About fractional-order delay 
systems, since there is exponential type 
transcendental terms in the characteristic equation 
and also because of having the fractional feature of 
the system, drawing the root-locus of the fractional 
delay systems makes the problem much more 
challenging compared to integer order systems. 
Some of the researchers have tried to present some 
algorithms to be able to draw the location of the 
roots. As an example, J.A. Tenreiro Machado in 
[19] and Fioravanti et al in [11]. But unfortunately, 
none of these algorithms could not properly display 
the root-locus of the fractional delay systems. 
We’ve tried to develop the existed algorithms, 
which are known in the resources, and also to draw 
the stability map and location of the roots correctly. 
 
 

3.1 Crossing position 
The main objective of this section is to present a 

new method for the evaluation of stability and 
determination of the unstable roots of a fractional 
order time delay system. A necessary and sufficient 
condition for the system to be asymptotically stable 
is that all the roots of the characteristic equation (1) 
lie in the left half of the complex plane.The 
proposed method eliminates the transcendental term 
of the characteristic equation without using any 
approximation or substitution and converts it into a 
equation without the transcendentality such that its 
real roots coincide with the imaginary roots of the 
characteristic equation exactly. 

Based on the D-subdivision method, the number 
of unstable roots of a characteristic equation is 
invariant in some distinct regions of one-
dimensional parameter space of time delay and the 
characteristic equation has at least one pair of purely 
imaginary roots at the boundary of these regions. 
After finding the boundaries and calculating the 
direction of imaginary roots variation, the number of 
unstable roots in each distinct interval is determined. 

 
 

3.2 Single-Delay case 
When there exists only a single delay in the system, 
the characteristic equation (1) becomes. 
 

( ) ( ) ( )0 1, sC s p s p s eα α α ττ −= +  (7) 

 
If for some finite ( ), , 0C s ατ τ =  has root on the 

imaginary axis at cs jω=  (where subscript c refers 
to ”crossing” the imaginary axis), then the equation 

( )( ) , 0C s α τ− =  must have the same root for the 

same value of τ  because of the complex conjugate 
symmetry of roots. Therefore, looking for roots on 
the imaginary axis reduces to finding values of τ  
for which ( ), 0C s α τ =  and ( )( ) , 0C s α τ− =  

have a common root. That is 
 

 
( ) ( ) ( )
( ) ( ) ( )

0 1

0 1

, 0

( ) , ( ) ( ) 0

s

s

C s p s p s e

C s p s p s e

α α α τ

α α α τ

τ

τ

−= + =

− = − + =

 (8)   

Let define variable ς  that is complex conjugate 

of auxiliary variable 2je π αας ω=  as follows: 
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( )2j js e eπ α π αα ας ω ς− −= − = =  (9)   

 
Where 2je π αας ω= . Equation (8) can be 

written as follows 
 

( ) ( )

( ) ( )
0 1

0 1

0

0

p p e

p p e

α

α

α τς

α α τς

ς ς

ς ς

−+ =

+ =
 (10)   

 
By eliminating the exponential term in (10), we 

get the following polynomial: 
 

( ) ( ) ( ) ( )0 0 1 1 0p p p pς ς ς ς− =  (11)   

 
Please note that transcendental characteristic 

equation with single delay given in (10) is now 
converted into a equation without transcendentality 
given by (11) and its positive real roots coincide 
with the imaginary roots of (7) exactly. The roots of 
this equation may easily be determined by standard 
methods. Depending on the roots of (11), the 
following situation may occur: 

 
1. The equation of (10) does not have any 

positive real roots, which implies that the 
characteristic equation (6) does not have 
any roots on the jω -axis. In that case, the 
system is stable for all 0τ ≥ , indicating 
that the system is delay-independent stable. 

2. The equation of (10) has at least one 
positive real root, which implies that the 
characteristic equation (6) has at least a pair 
complex eigenvalues on the 0τ ≥ -axis. In 
that case, the system is delay - dependent 
stable. 

 
The roots of this equation may easily be 

determined by standard methods. For a positive real 
root cω , the corresponding value of delay margin τ  
can be easily obtained using (7) as: 

 

( )
( )

( )( )
( )

2

0

1

0

1

1 2

j

c c

e

p
p k

p
p π

α ας ω

ς
ς πτ

ω ως
ς

=

⎛ ⎞⎡ ⎤⎜ ⎟ℑ⎢ ⎥⎜ ⎟⎣ ⎦= +⎜ ⎟⎡ ⎤−⎜ ⎟ℜ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 (12)   

For the positive roots of (11), we also need to 
check if at cs jω= , the root of characteristic 
equation (7) crosses the imaginary axis with 
increasing τ . This can be determined by the sign of 
[ ]ds dτℜ . With these values in hand, we will be 

able to calculate the direction of crossing from the 
left half plane to the right one, which we will denote 
as a destabilizing crossing, or from the right to the 
left, meaning this is a stabilizing crossing. Notice 
that the use of the expressions destabilizing and 
stabilizing crossings means only that a pair of poles 
is crossing the imaginary axis in the defined 
direction, and not that the system is turning unstable 
or stable, respectively. For that, it is necessary to 
know the number of unstable poles before the 
crossings. 

 
 

3.2 Commensurate-Delay case 
 
The method given for the single-delay case could 

be easily extended to the stability analysis of the 
fractional order system with multiple commensurate 
time delays. The characteristic equation of such a 
system is given by (1). Similar to the single-delay 
case, if the characteristic equation (1) has a solution 
of cs jω= then ( )( ) , 0C s α τ− =  will have the 

same solution. 
 

( )( ) ( )( )
0

,
k

N
ks

k

C s p s eα α ττ
=

− = −∑  (13) 

 
Characteristic equation (13) can be written in 

terms of the auxiliary parameter ς  as: 
 

( ) ( )
0

,
k

N
k

k

C p e
αα α ς τς τ ς

=

= ∑  (14) 

 
Recall that in the single-delay case, the 

transcendental term and the time delay τ  are 
eliminated. In this case, the purpose is the same. A 
recursive procedure should be developed to achieve 
that purpose. Therefore, let us define 

 

( ) ( ) ( ) ( )
( ) ( )

1

0
0

1 , 0

n
k

k n n k
k

p p p p e

C

ας τς ς ς ς

ς τ

−

−
=

−⎡ ⎤⎣ ⎦

= =

∑
 (15) 
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Then, we have 
 

( ) ( ) ( ) ( )
( ) ( )

1

0
0

1 , 0

n
k

k n n k
k

p p p p e

C

ας τς ς ς ς

ς τ

−

−
=

−⎡ ⎤⎣ ⎦

= =

∑
 (16) 

 
It should be observed from equations (15) and 

(16) that if cs jω=  is the solution of equations (1) 
and (12) for some τ , then it must be a solution of 
the following augmented characteristic equations 

 

( ) ( ) ( )

( ) ( ) ( )

1
1 (1)

0

1
1 (1)

0

, 0

, 0

n
k

k
k

n
k

k
k

C p e

C p e

α

α

ς τ

ς τ

ς τ ς

ς τ ς

−

=

−

=

= =

= =

∑

∑
 (17) 

 
Where 
 

( ) ( ) ( ) ( ) ( )(1) (1) (1) (1) (1)
0k k n n kp p p p pς ς ς ς ς−= −

 (18) 

Note that the characteristic equations (17) are of 
commensuracy degree of (n-1). We can easily repeat 
this procedure to eliminate commensuracy terms 
successively by defining a new polynomial 

 

( )
( ) ( ) ( ) ( )

( 1)

( ) ( ) ( ) ( )
0 0

r
k

r r r r
n r n r k

p

p p p p

ς

ς ς ς ς

+

− − −

=

−
(19) 

 
and an augmented characteristic equation 
 

( ) ( ) ( )( )

0

, 0
n r

r r k
k

k

C p e
ας τς τ ς

−
−

=

= =∑  (20) 

 
By repeating this procedure n times, we eliminate 

the highest degree of commensuracy terms and 
obtain the following augmented characteristic 
equation 

 
( ) ( ) ( )( )

0 0n nC pς ς= =  (21) 

 
Where 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1 1
0 0 1 1 0

n

n n n n

p

p p p p

ς

ς ς ς ς− − − −

=

− =
 (22)   

 
It should be emphasized that that if cs jω= is the 
solution of (1) for some τ , then it is also a solution 
of (20) since the imaginary roots of the original 
characteristic equation (1) are preserved during the 
manipulations. If we substitute ( )je π ας ς−=  and 

2je π αας ω=  in (22), we get the following 
equation in ω  
 

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( )) 2

1 1
0 0

1 1
1 1 0

j

n nj

n n j

e

D p e p

p p e
π αα

π α

π α

ς ω

ω ς ς

ς ς

− −−

− − −

=

=

− =

 (23)   

 
One can easily notice that (22) is the generalization 
of (11) and allows us to determine the imaginary 
roots of charactristic equation (1), if there exists 
any. The corresponding value of time delay is then 
computed by 
 

( ) ( )
( ) ( )
( ) ( )( )
( ) ( )

2

1
0

1
1

1
0

1
1

1 2

j

n

n

n
c c

n

e

p
p k

p

p π
α ας ω

ς
ς πτ

ω ως

ς

−

−

−

−

=

⎛ ⎞
⎡ ⎤⎜ ⎟

ℑ⎢ ⎥⎜ ⎟
⎢ ⎥⎣ ⎦⎜ ⎟= +⎜ ⎟⎡ ⎤−⎜ ⎟⎢ ⎥ℜ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 (24)   

 
The whole ω  values, for which s jω=  is a root 

of equation (1) for some non-negative delays, is 
defined as the crossing frequency set. 

 

( ){ }, 0 ,C s for someω τ τ+ +Ω = ∈ = ∈  (25) 

 
This class of systems exhibits only a finite 

number of possible imaginary characteristic roots 
for all τ +∈  at given frequencies. And this 
method detected all of them. Let us call this set 

 

WSEAS TRANSACTIONS on SYSTEMS Mohammad Ali Pakzad, Sara Pakzad

E-ISSN: 2224-2678 545 Issue 10, Volume 11, October 2012



{ } { }1 2, , ,c c c cnω ω ω ω= …  (26) 

 
where subscript c  refers to 'crossing' the 

imaginary axis. Furthermore to each cmω , 
1, ,m n= …  correspond infinitely many, 

periodically spaced τ  values. All this set 
 

{ } { }1 2, , , 1, ,m m m m m nτ τ τ τ ∞= =… …  (27) 

 
Where , 1 , 2m k m k mτ τ π ω+ − =  is the apparent 

period of repetition. 
 
 
3.3 Direction of crossing 

After the crossing points of characteristic 
equation (1) from the imaginary axis are obtained, 
the goal now is to determine whether each of these 
root crossings from the imaginary axis is a 
stabilizing cross or a destabilizing cross. As it was 
shown in [11], this is constant with respect to 
subsequential crossings , and therefore it is denoted 
as root tendency. Assume that ( ),s τ  is a simple 

root of ( ), 0C s τ = . The root sensitivities 
associated with each purely imaginary characteristic 
root jω , with respect to τ  is defined as 

 (28) 
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Here, ( )p s α′  and ( )q s α′  denote the derivative 

of the polynomials ( )p s α  and ( )q s α  in s 

respectively. The root tendency is given by 
It must be noted that the root tendency is 

independent of time delayτ . This implies that even 
though there is an infinite number of values of τ  
associated with each value of cω that make 

( ), 0cC jω τ = . 
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 (29) 

 
If it is positive, then it is a destabilizing crossing, 

whereas if it is negative, this means a stabilizing 
crossing. In case the result is 0, a higher order 
analysis is needed, since this might be the case 
where the root just touches the imaginary axis and 
returns to its original half-plane. Notice that root 
tendency represents the direction of transition of the 
roots at cjω as τ increases from mk ετ −  to mk ετ +  , 
0 1ε< ≤ . 

 

s
s jsign S ωτ
τ
=

⎛ ⎞⎛ ⎞ℜ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (30) 

 
Is independent of k . Notice that for those given 

values, the exponential term 
 

2sk j j k j ke e e eτ θ π θ− − − −= =  (31) 

 
is independent of .  
Now having the cross points, their corresponding 
infinitely time delays, and root tendency of each 
time delay, the number of unstable roots in the 
regions subdivided by mkτ can be calculated based 
on the D-subdivision method. To make a complete 
picture of the stability mapping for any fractional 
delay system, mkτ is sorted from smallest to largest 
value. The number of unstable roots in each region 
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between two successive time delays changes by 
2RT if  0ω ≠ , and by RT if  0ω = . 
Undoubtedly, after a specific value of time delay, 
the number of unstable roots cannot be zero and the 
calculation should be stopped. 
 
 
4 Numerical Example 
We present three example cases, which display all 
the features discussed in the text. 
 
 

Example 1: This example has been taken from 
[7] and [15]. Consider the following linear time-
invariant fractional order system with one delay: 

  

 (32) 

( ) ( ) ( ) ( )
( )

3 2

1

2

, 1.5 4

8 1.5 s

C s s s s

s e τ

τ

−

= − +

+ −
 

 
This system has a pair of poles ( 8s j= ± ) on the 

imaginary axis for 0τ = . A very involved 
calculation scheme based on Cauchy’s integral has 
been used in [15] to show that this system is 
unstable for 0.99τ = , and stable for 1τ = . Our 
objective in this example is to find all the stability 
windows based on the method described in this 
article for this system. 

 Applying the first part of the algorithm, we can 
see that 

 

1

2

8 0.7854
6.6248 0.0499 0.9485

k
k

ω τ
ω τ

= → =
= → = +

 (33) 

 
By applying the criterion expressed in the 

previous section, it is easy to find out that a 
destabilizing crossing of roots has occurred at 

0.7854kτ =  for 8s j= ±  and a stabilizing 
crossing has taken place at 0.0499 0.9485kτ = +  
for 6.6246s j= ± , for all values of 

{ }0,1, 2,...k ∈ . Therefore, we will have 5 stability 
windows as follows: 0.0499 0.7854τ< < , 
0.9983 1.5708τ< < , 1.9486 2.3562τ< < , 
2.8953 3.1416τ< <  and 3.8437 3.9270τ< < , 
which agree with the results presented by [7] and 
[11]. 

Note that at 3.927τ = , an unstable pair of poles 
crosses toward the right half-plane, and before this 
unstable pole pair can turn to the left half-plane at 

4.7922τ = , another unstable pair of poles goes 
toward the right half-plane at 4.7124τ = ; and thus, 
the system cannot recover the stability. 

In Table 1, the stability map of system defined via 
(32) is given. The number of unstable roots in each 
interval of unstable region has been determined as 
we 

 
 
Table 1: Stability Regions (Shaded) for Example1 
τ ( )rad sω

 

Root 
Tendenc

y 

Number of 
unstable roots 

0 8 + 2 
    

0.0498 6.6248 -  
   0 

0.7853 8 +  
   2 

0.9938 6.6248 -  
   0 

1.5707 8 +  
   2 

1.9467 6.6248 -  
   0 

2.3561 8 +  
   2 

2.8952 6.6248 -  
   0 

3.1415 8 +  
   2 

3.8437 6.6248 -  
   0 

3.9269 8 +  
   2 

4.7123 8 +  
   4 

4.7922 6.6248 -  
 

 
 
To get a better understanding of the properties of 

this system, its root-loci curve [19] has been plotted 
as a function of delay in Fig. 2. The color spectrum 
in the “color bar” indicates the selected τ ; dark 
blue designates 0τ = , and dark red is for 3.9τ = . 
Since 3.9τ =  is within the last stability window, 
we know in advance that the system will be stable 
for this amount of delay. 
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Fig. 2. Root-loci for C1(s,τ) until τ=3.9 

 
Example 2: This example comes from [18]. 

Consider the following fractional order system: 
 

( ) ( )( )
( )

2 , 2 1 10

5 5 s

C s s s s

s e τ

τ

−

= + +

+ +
 (34) 

 
This system has no unstable pole for 0τ =  (in 

fact, it has no pole in the physical Riemann sheet). 
By applying the previously described method, it is 
realized that the crossing through the imaginary axis 
occurs at 3.2511598  9.9250867kτ = +  and for 

0.633061ω = , which this crossing is a 
destabilizing crossing, and it means that the only 
stability window for this system is 
0 3.2511598τ< < . In Table 2, the stability map of 
system defined via (34) is given. The number of 
unstable roots in each interval of unstable region has 
been determined as we 

 
Table 2: Stability Regions (Shaded) for Example2 
τ  ( )rad sω

 

Root 
Tendenc

y 

Number of 
unstable roots 

0    
   0 

3.25116 0.63306 +  
   2 

13.17624 0.63306 +  
   4 

23.10132 0.63306 +  
   

 
To get a better understanding of the properties of 

this system, its root-loci curve has been plotted as a 
function of delay in Fig. 3.  
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Fig. 3. Root-loci for C2(s,τ) until τ=3.5  

 
The color spectrum indicating the changes of τ  

from 0.322988τ =  (dark blue) to 3.5τ =  (dark 
red) has been illustrated in the “color bar”. 

 
Example 3: Consider the following fractional 

order system with 2 delays [15]: 
 

( ) ( )5 6 1 2 1 3 0.5s sC s s s s e e− −= + + +  (35) 

 
It has been demonstrated in [15] that this system 

is stable. Let’s change system (35) to the following 
form [13]: 

 

( ) ( )5 6 1 2 1 3 2
3 , s sC s s s s e eτ ττ − −= + + +  (36)   

 
 Now we evaluate the stability of this system for all 
the values of τ  and also study the stability for 

0.5τ = . 
    By examining system (36) for 0τ = , we find out 
that for this value, it has no pole in the physical 
Riemann sheet and thus, the system is stable without 
delay. In view of relations (12) and (36)  we obtain 
 

1

2

1 2.3562 6.2832
1 2.6180 6.2832

k
k

ω τ
ω τ

= → = +
= → = +

 (37) 

 
As is observed, the crossing of the imaginary axis 

for 2.3562 6.2832kτ = +  and 
2.6180 6.2832kτ = +  occurs at s j= ± , and both 

of these are destabilizing crossings; and since the 
system is stable for 0τ = , the only stability window 
for this system is 0 2.3562τ≤ < ; and since 

0.5τ =  falls within this window, we can be sure 
that the original system ( )C s  is stable. 
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Fig. 4. Root-loci for C3(s,τ) from τ=0.1 until τ=3  

 
The obtained stability window matches the results 

presented in [15] and [11], which have used the 
numerical method to analyze this system. 

In Fig. 4, the root-loci curve of this system for the 
changes of τ  from 0.1τ =  (dark blue) to 3τ =  
(dark red) has been presented for a better perception 
of the system. 
 
 
5 Conclusion 

In this paper, a new method for calculating 
stability windows and location of the unstable poles 
is proposed for a large class of fractional order time-
delay systems. As the main advantages, we just deal 
with polynomials of the same order as that of the 
original system. and the use of auxiliary variable ς, 
the crossing points through the imaginary axis, and 
their direction of crossing, were determined. Then, 
system stability was expressed as a function of 
delay, based on the information obtained from the 
system. According to the infinitely countable time 
delays corresponding to each crossing point, the 
parametric space of τ is discretized to investigate 
stability in each interval. The number of unstable 
roots can be calculated with root tendency of each 
crossing point on the interval boundaries. Based on 
the proposed method, an upper bound for time delay 
is determined so that the system would not be stable 
any more for larger time delays. Finally, several 
examples were presented to highlight the proposed 
approach. 
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Kalman Filter Design for Time Delay Systems 
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Abstract: - In this paper, an observer design is proposed for linear time delay systems. An easy way to compute 
least square estimation error of an observer for time delay systems is derived, where the time delay terms exist 
in the state and output of the system. Based on the least square estimation error an optimization algorithm 
to compute a Kalman filter for time delay systems is proposed.  By employing the finite characterization 
of a Lyapunov functional equation, the existence of sufficient conditions for obtaining the right solution and 
guaranteeing the proper convergence rate of the estimation error has been evaluated. It will be shown that this 
finite characterization can be calculated by means of a matrix exponential function. The desirable performance 
of the proposed observer has been demonstrated through the simulation of several numerical examples. 
 
Key-Words: - time delay system,state delay system, observer, Kalman filter 
 
1 Introduction 
As a dual of the control problem, the state 
estimation or filtering problem is of great 
importance in both theory and application, and in 
the last decades , this problem has gotten extensive 
concern and many solution schemes have been 
proposed and successfully put into action. Among 
them, Kalman filtering, which minimizes the 
variance of the estimation error, is the most famous 
one [11]. 
    Kalman filtering is one of the most popular 
estimation approaches. This filtering method 
assures that both the state equation and output 
measurement are subjected to stationary 
Gaussian noises. The applications of the 
Kalman filtering theory may be found in a large 
spectrum of different fields ranging from 
various engineering problems to biology, 
geoscience, economics, and management, etc. 
     A dynamic system whose state variables are 
estimations of the state variables of another system 
is called the observer of that system. This 
expression was first introduced in 1963 into the 
theory of linear systems by Luenberger [1]. He 
showed that for every observable linear system, an 
observer can be designed whose estimation error 
(i.e. the difference between the real state of the 
system and the observer state) becomes zero at 
every considered speed. In fact, an observer is a 
dynamic system whose inputs are the process inputs 
and outputs, and whose outputs are the estimated 

state variables. It can be stated that an estimator of 
state is an indispensible member of the control 
systems theory, and it has important applications in 
feedback control, system supervision and in the fault 
diagnosis of dynamic systems. 

In the control process, it is often assumed that the 
internal state vectors exist and are available in the 
measurement of the output; while in practice, this is 
not the case, and it is necessary to devise an 
observer in order to provide an estimation of state 
vectors. If the estimation and reconstruction of all 
the state variables is needed, the full-order 
observers, and if the estimation and reconstruction 
of a number of state variables is needed, the 
reduced-order observers are used. Time-delayed 
systems play significant roles in theoretical as well 
as practical fields; and this influence can be 
observed in numerous research articles written on 
various problems that involve this class of systems 
[2-8].  During the last decade, the theory of observer 
design for time delay systems has been widely 
contemplated [28-34]. The estimation of state 
variables is an important dynamic model, which 
adds to our knowledge of different systems and 
helps us analyze and design various controllers. 
Different approaches have been used for the 
designing of observers, including: the coordinate 
change approach [9], the LMI method [10], 
reducing transformation technique [11], 
factorization approach [12], polynomial approach 
[13], modal observer [14], reduced-order observer 
[15] and the output injection based observer [16]. In 
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[17], through an algebraic approach, an observer 
with delay-independent stability for systems with 
one output delay has been presented. In [18], an 
observer has been proposed that uses the H ∞  norm 
as the performance index. The H ∞  filter has been 
considered in [19], [20] by applying the delay 
independent stability conditions, in which the matrix 
inequality has been used. We also frequently 
encounter the issue of state delay in control 
problems and physical systems. In recent years, the 
systems with delay in state have attracted the 
attention of many researchers, and numerous 
approaches have been proposed for the evaluation of 
stability in these systems (see [21] and [22] and the 
references cited in them). 
The goal of this article is to design an observer for 
time delay systems in which the time delay terms 
exist in the output and in the state variables, and 
also the inputs are mixed with noise and the system 
output accompanies measurement noises. An easy 
way to compute least square estimation error of an 
observer for time delay system is derived. This least 
square estimation error coincides with that of a 
Kalman filter when time delay is zero. Based on the 
least square estimation error, an optimization 
algorithm to compute an observer is proposed. 

 In the designing of this observer we have used 
the H2 norm as the performance index. However, 
despite the usefulness of the 2H  norm, few 
observers have used it as the performance index. In 
[23] and [24] a method has been proposed for the 
calculation of the 2H  norm of time delay systems 
by means of the delay Lyapunov equation. In [25], 
an observer has been offered for time delay systems 
by applying the delay-independent stability 
conditions. It should be mentioned that delay-
independent approaches are generally more 
conservative than delay-dependent ones. In this 
article, for the estimation of system states, a  
Kalman filter has been proposed whose design uses 
the delay-dependent stability conditions. Note that 
when there are no time delay terms, observer is a 
standard Kalman filter. The optimal observer will be 
designed by employing the finite characterization of 
a Lyapunov functional equation as a matrix 
exponential function and applying the unconstrained 
nonlinear optimization algorithm. Finally, the 
proposed observer in this article will be used to 
estimate the current states based on the time delay 
system, where the time delay terms exist in the state 
and in the output of the system. 

This article has been organized in the following 
manner. In section 2, for the definition of the 
observer, the necessary mathematics has been 

presented. In section 3, the calculation of the 
2H norm has been offered for the state delay 

system. In section 4, the method of filter design has 
been described. In section 5, in order to test the 
practical usefulness of the proposed technique, it has 
been applied for solving the estimation problem of 
several linear systems with time delay. And finally, 
the summary and conclusion of the obtained results 
have been presented in the last section.   

        
 
2 Problem Formulation And 
Assumptions 
Consider linear time-invariant systems described by 
 

0 1 1 2

0 1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t A x t A x t h B t B u t
y t C x t C x t h C t

ω
ν

= + − + +
= + − +

          (1) 

 
Where nx R∈  is the state, pRω∈  is the process 

noise, qu R∈  is the input, ry R∈  is the 
measurement, and rRν ∈  is the measurement noise. 
The h  is constant known time delay in the states 
and the outputs. 

It is assumed that ν  and ω  are uncorrelated 
white Gaussian processes, which satisfy 

 
{ ( )} 0, { ( ) ( ) } ( )
{ ( )} 0, { ( ) ( ) } ( )

E t E t s I t s
E t E t s I t s

ω ω ω δ
ν ν ν δ

′= = −
′= = −

                   (2) 

 
The objective of this paper is to derive a Kalman 
filter for time delay system (l), where a filter has the 
following form: 
 

2ˆ ˆ( ) ( ) ( ) ( )x t Gx t Ky t B u t= + +                                (3) 

       Defining the estimation error ( )e t  as 
 

ˆ( ) ( ) ( )e t x t x t−  
 
From (1) and (3) , we have 
 

( )
0 0

1 1 1 2

( ) ( ) ( ) ( )
( ) ( ) ( )

e t A G KC x t Ge t
A KC x t h B t KC tω ν

= − − + +

− − + −
   (4) 

 
And the augmented system with (1) is given by 
 

0 1( ) ( ) ( ) ( )
:

( ) ( )
a

t A t A t h B t
G

e t C t

η η η ζ

η

= + − +

=

              (5) 
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 where 
 

[ ]

0 1
0 1

0 0 1 1

1

1 2

( ) ( )
( ) , ( )

( ) ( )

0 0
,

0

0
, 0

x t t
t t

e t t

A A
A A

A G KC G A KC

B
B C I

B KC

ω
η ζ

υ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥−⎣ ⎦

     

    

    The 2H  norm augmented system aG   is used as 
the performance index of estimation 
 

 2

2
0 1

1( , , ) lim ( ) ( )
T

a T
G J G k h E e t e t dt

T→∞

⎧ ⎫⎪ ⎪′= = ⎨ ⎬
⎪ ⎪⎩ ⎭
∫          (6) 

If there are no time delay terms (i.e., 1 0A =  and 

1 0C = ), then (1) becomes 
 

0 1 2

0 2

( ) ( ) ( ) ( )
( ) ( ) ( )

x t A x t B t B u t
y t C x t C t

ω
ν

= + +
= +

 

 
and the filter, minimizing the 2H  norm (6) for this 
non-delayed system, is the standard Kalman filter. 
Thus we can call the proposed filter minimizing (6) 
a Kalman filter for time delay systems. 
 
 

3 H2 Norm Computatuon 
The 2H  norm of aG  is expressed in terms of matrix 
function ( )P s  in the next theorem. 
 
Theorem 1: If   is stable, then 
 

2

2
( (0) )aG Tr B P B′=                                               (7) 

 
Where ( ), 0P s s h≤ ≤  is continuously 
differentiable and satisfies 
 

0 1

(0) (0)
( ) (0) ( ) , 0

(0) (0) 0

P P
P s A P A P h s s h

P P C C

′=

′ ′= + − ≤ ≤

′ ′+ + =

                   (8) 

Remark 1:   is related to the Lyapunov functional 
of state delay system (4). Let [ ]( ) , ,0V C hφ φ∈ −  
be defined by 
 

  (9) 

1
0

1 1
0 0

( ) (0) (0) (0) 2 (0) ( ) ( )

( ) ( ) ( )

h

h h

V P P r A h r dr

h r A P r s A h r dsdr

φ φ φ φ φ

φ φ

′ ′+ − +

′ ′+ − + − − +

∫

∫ ∫
 

Where ( ) ( )P s P s′ −  if 0s < . Equation (8) is 
derived from 
 

  ( ) ( ) ( )t
d V x x t x t
dt

′= −                                         (10) 

 
Where 
 
 [ ]( ) ( ) , ,0tx r x t r r h+ ∈ −  
 
Remark 2: If there are no time delay terms, the 
result in Theorem 1 becomes a standard 2H  norm 
computation. See, for example, Theorem 3.3.1 in 
[25]: the 2H  norm of a stable non-delay system is 
given by 
 

2

2
( )aG Tr B PB′=                                                  (11) 

 
Where 
 

0 0 0A P PA C C′ ′+ + =  
 
Note that conditions (7) are equivalent to those in 
(11) if 0h = . 
The proof of Theorem 1 will be given using Lemma 
1 and 2. 
 
Lemma 1: If system aG  is stable, then 
 

2

2

1 ( ( ) ( ))
2a a aG Tr G j G j dω ω ω
π

+∞

−∞

′= −∫                   (12) 

 
Proof: The result is standard (see Chap 3.3 in [25]). 
Lemma 2: If aG  is stable and ( ), 0P s s h≤ ≤  
satisfies (8), then 
 

1 11(0) ( ) ( )
2

P j j dω ω ω
π

+∞
− −

−∞

′= ∆ ∆ −∫                        (13) 

 
Where 
 

0 1( ) j hj j I A A e ωω ω −∆ − −                                  (14) 
 
Proof: See [26]. 
(Proof of Theorem 1) From Lemma 1, 
 

{ }

1 1

1 1

( (0) )

1 ( ) ( )
2

1 ( ) ( )
2

Tr B P B

Tr B j j Bd

Tr B j j B d

ω ω ω
π

ω ω ω
π

+∞
− −

−∞

+∞
− −

−∞

′

⎧ ⎫⎪ ⎪′ ′= ∆ ∆ −⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′= ∆ ∆ −

∫

∫
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Since ( ) ( )f j d f j dω ω ω ω
+∞ +∞

−∞ −∞

= −∫ ∫  , we have 

{ }

{ }

1 1

( (0) )

1 ( ) ( )
2

1 ( ) ( )
2 a a

Tr B P B

Tr B j j B d

Tr G j G j d

ω ω ω
π

ω ω ω
π

+∞
− −

−∞

+∞

−∞

′

′ ′= ∆ − ∆

′ ′= −

∫

∫

 

 
Since ( ) ( )Tr AB Tr BA=  whenever AB  and BA  
are square matrices, we have 
 

{ } 2

2

1( (0) ) ( ) ( )
2 a a aTr B P B Tr G j G j d Gω ω ω
π

+∞

−∞

′ ′ ′= − =∫
  
The last equality is from (12). 
If aG  is stable, then 2

2aG  can be computed from 
(0)P   in Theorem 1. How to check the stability of 

aG will be considered later in Theorem 2; first we 
will consider how to compute (0)P  in the next 
lemma. 
 
Notation: For a matrix n nM ×∈  given by 
 

11 12 1

21 22 2

1 2

n

n

n n nn

m m m
m m m

M

m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
M ′  denotes complex conjugate transpose of M  
the column string csM  is defined by 
 

[

] 2

11 12 1 21 22 2

1
1 2

| |

|

n n

n
n n nn

csM m m m m m m

m m m ×′ ∈
 

 
 
How to compute ( ), 0P s s h≤ ≤ , is considered in 
the next lemma. 
 
Lemma 3: If aG  is stable, then (0)P  and ( )P h   
satisfying (8) are given by 
 

0 0 1 1

1 2

( ) ( ) ( ) ( )

(0)
( ) 0

I A A I I A T A I
R R

csP csC C
csP h

⎡ ⎤′ ′ ′ ′⊗ + ⊗ ⊗ + ⊗
⎢ ⎥
⎣ ⎦

′−⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (15) 

 

Where 
 

2

2
1

1 2: | | | , n
kn

T T T T T R ×⎡ ⎤= ∈⎣ ⎦  
 
Row vector 2,1kT k n≤ ≤  is defined by 
 

2,1kT k n≤ ≤ ( ) ( )
2

1 1: ,1 ,i n j j n iT e i j n− + − += ≤ ≤  

 
Where 

2 1 2,1n
ke R k n×∈ ≤ ≤  is a row vector whose 

k-th element is 1 and all other elements are 0. 
And 
 
[ ] [ ] *

1 2 1 0R R V∑  
 
Matrices 1∑  and *V are from the singular value 
decomposition of the following 
 

( ) 1 *0
exp( )

0 0
I J Hh U V

∑⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
                           (16) 

 
Where U and V  are unitary matrices, and 

2 2

1
n nR ×∑ ∈  is a diagonal matrix whose diagonal 

elements are nonzero singular values of 
( )exp( )I J Hh− . Let ijT  denote an n n×  matrix 
with ( , )i j -entry equal to 1 and all other entries 

equal to zero, and let 
2 2n nT R ×∈  be the block matrix 

T , jiT⎡ ⎤⎣ ⎦  (i.e., the ( , )i j -block of  T is jiT ). 

Matrices H  and J are defined by 
 

0 1

1 0

0( ) ( )
,

0( ) ( )
II A I A T

H J
II A T I A

⎡ ⎤′ ′⊗ ⊗ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′ ′− ⊗ − ⊗ ⎣ ⎦⎣ ⎦

 

 
Proof: See [22]. 
Note that  (0)P  can be computed from the matrix 
exponential (16) and a simple linear equation (15). 
Thus if aG  is stable, then we can easily compute 

2H  norm: see (7). 
Now the stability of eG  is considered in Theorem 2, 
where a stability condition for interval delay 

)0,h h⎡∈⎣ is provided. 

 
Theorem 2: Suppose aG  is stable for 0h = . If H  
has imaginary eigenvalues { }1, , kj jω ω and 
their corresponding eigenvectors are given by 
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2 2

1,1 ,1

1,2 ,2
1

1,2 ,2

, ,

k

k
k

n k n

ν ν
ν ν

ν ν

ν ν

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
then aG  is stable for )0,h h⎡∈⎣ where h  is defined 

by 
 

2

,

1
,

1min ln i l

i k
i l n

h
j

ν
ω ν≤ ≤

+

⎛ ⎞
⎜ ⎟∈
⎜ ⎟
⎝ ⎠

                                       (17)  

 
where 2

, ,0 1i l nν ≤ ≤  is any nonzero element of 
 

lν . Theorem 2 is proved using Lemma 4 and 5. 
Lemma 4 is based on the fact that if aG  is stable for 

0h =  and aG  does not have any imaginary poles 

for )0,h h⎡∈⎣ , then aG  is stable for )0,h h⎡∈⎣ . 

 
Lemma 4: aG  is stable for )0,h h⎡∈⎣  if  

• aG  is stable for 0h =    
• The following equation does not have any roots for  

)0,h h⎡∈⎣ : 
 

0 1det( ) 0j hj I A A e ωω −− − =                                  (18) 
 
Proof: See [27]. 
Stability of aG  for 0h =  can be easily checked 
from eigenvalues of 0 1A A+ . On the other hand, 

checking whether (18) has any roots for )0,h h⎡∈⎣  

is not easy: (18) should be checked for all 
0 ω≤ < ∞ and 0 h h≤ <  In the next lemma, it is 
shown that a root jω  of (18) (if any) is an 
eigenvalue of H . 
 
Lemma 5: If (18) has a root ω , then it is an 
eigenvalue of H . 
 
Proof: Suppose (18) has a root jω  for h ; then 
there exists ( ) 0nx C∈ ≠ such that 
 

0 1( ) 0j hx j I A A e ωω −′ − − =                                   (19) 
 
Taking the transpose (not complex conjugate), we 
Obtain 

0 1( ) 0j hj I A A e xωω −− − =  

Let nCα∈ be defined by 
 

1

2 2
j h

n

xe
ω

α
α

α

α

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                (20) 

 
where , ,1i i nα ≤ ≤  is a complex number. Let ν  be 
defined by (u  is the complex conjugate of u ) 
 

u
v

u
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                                                (21) 

 
Where 
 

2

1

2 n

n

x
x

u C

x

α
α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                    (22) 

 
The theorem is proved if we show that this ν  ( 0v ≠  
from the construction) satisfies ( ) 0j I Hω ν− = : that 
is, jω  is an eigenvalue of H . From the definition 
of H , we obtain 
 

( )
( )

0 1

1 0

0 1

0 1

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

j I H

j I I A I A T
I A T j I I A

j I I A u I A Tu

j I I A u I A Tu

ω ν

ω
ν

ω

ω

ω

−

⎡ ⎤′ ′− ⊗ − ⊗
= ⎢ ⎥′ ′⊗ + ⊗⎣ ⎦
⎡ ⎤′ ′− ⊗ − ⊗
⎢ ⎥=
⎢ ⎥′ ′+ ⊗ + ⊗⎣ ⎦

        (23) 

 
Partition ( )j I Hω ν−  into 2n  complex vectors and 
let the i-th block of ( )j I Hω ν−  be denoted by 

n
ir C∈ . Then ,1ir i n≤ ≤  is given by 

 
0 1 1 1 2 2( ) ( )i i i i ni nr j I A x A T T T xω α α α α′ ′= − − + + +   

 
Noting the following relation 
 

1 1 2 2

2
1 1 2 2

2

( )

( )

i i ni n

j h

i i ni n

j h

i

T T T x

T T T e

e

ω

ω

α α α

α α α α

α α

−

−

+ + +

= + + +

=
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We obtain 
 

( )
( )

2 2
0 1

2
0 1

0 1

( )

0 , 1

j h j h

i i i

j h
j h

i

j h
i

r j I A e A e

e j I A A e

j I A A e x i n

ω ω

ω
ω

ω

ω α α α α

α ω α

α ω

−

−

−

′ ′= − −

′ ′= − −

′ ′= − − = ≤ ≤

 

 
The last equality is from (19).  
 
Since , 1i n ir r i n+ = − ≤ ≤  (see (23)), we have 

0, 1 2ir n i n= + ≤ ≤ . Hence , ( ) 0j I Hω ν− = , 
where 0ν ≠  (since 0x ≠ ). 
 
Proof of Theorem 2: From the proof of Lemma 5, 
if  (18)  has a root iω  for  (1 )ih i k≤ ≤ , then iω is 
an eigenvalue of H . Furthermore, the 
corresponding eigenvector of H  is of the form: 
 

2 2 2 2
1 2 1

2 2
2

i i i i i i i i

i i i i

j h j h j h j h

i n

Tj h j h

n

v x xe x xe x xe x xe

x xe x xe

ω ω ω ω

ω ω

−

− −

⎡
= ⎢
⎣

⎤
⎥
⎦

 

 
Thus ih  can be computed as follows: 
 

2

,

,

1 ln i l
i

i l n

v
h

j vω
+

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

 
Where 2

, , 1i lv l n≤ ≤  is any nonzero element of iv . 
If the minimum value of (1 )ih i k≤ ≤  is ih then 

(18) does not have a root for )0,h h⎡∈⎣ . From 

Lemma 4, this proves the theorem. 
 
Remark 3: Once ( ),G K  is determined, we can 
check the stability of the error system (4) (Theorem 
2) and compute its 2H  norm (Theorem1). 
 
 
4 Kalman Filter for Time Delay 
Systems: Synthesis  
In this section, the synthesis algorithm of Kalman 
filter (3) is proposed, where the algorithm is 
formulated as a constrained nonlinear optimization 
problem and the output delay *h h= . 

When minimizing 2H  norm of aG  over ( ),G K  
using Theorem 1, it should be guaranteed that aG  is 
stable. The approach presented here allows one to 
design linear observers for time delay systems 
(see Fig.1). If ( ),G K  is given, the stability of aG  
can be checked using Theorem 2, which provides a 
upper stability bound ( )h k  (i.e., aG is stable as long 
as h h< ). Thus finding ( ),G K , which stabilizes aG  
and minimizes

2
( , , )aG G K h . 

Kalman filter design problem can be formulated as 
follows: 
 

2/* *
, 1 2

min ( , , ) ( , , )

( , )

G k aJ G K h G G K h

subject to h h G K<
                  (24) 

 
(24) is a constrained nonlinear optimization problem 
whose global solution is difficult to find. A 
suboptimal approach is proposed to compute 
( ),G K  using  penalty methods [26].  
 
A penalty function is defined by 
 

* 2

0 ( , )
( , )

( ) ( , )
if h h G K

p G K
h h if h h G Kα

⎧ <⎪
⎨

− ≥⎪⎩
 

 
where α  is a constant and is chosen so that 

* *( , , ) ( , , )p G K h J G K h  when * ( , )h h G K . 
With this penalty function, a constrained 
optimization problem (24) can be replaced by the 
following unconstrained optimization problem: 
 

2* *
, 2 2

min ( , , ) ( , , ) ( , )G K aJ G K h G G K h p G K+  (25) 

 
Note that if * ( , )h h G K< (i.e., aG  is stable), then 

* *
2 1( , , ) ( , , )J G K h J G K h= . Also note that if 
* ( , )h h G K≥ ,then *

2 ( , , )J G K h  is dominated by the 
penalty function *( , , )p G K h . Thus the penalty 
function *( , , )p G K h  prevents unstable region 
searching when the 2H  norm is being minimized. 
initial value of G and K can be chosen by 
minimizing ( , ,0)J G K :  the initial value 
corresponds to the Kalman filter gain for a non-
delayed system. Minimization problem (25) can be 
solved, for example, using an unconstrained 
nonlinear optimization function fminunc in 
MATLAB optimization toolbox. 
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Fig. 1: The block diagram of observer 
 
 
5 Numerical Example 
In this section, the simulations have been performed 
by means of the MATLAB software. 
 
Example 1: Consider the following first-order time 
delay system: 
 

( ) ( ) 2 ( ) 0.5 ( ) ( )
( ) ( ) ( ) 0.5 ( )

x t x t x t h t u t
y t x t x t h t

ω
ν

= − − − + +
= + − +

             (26) 

 
where ( )tω  and ( )v t  are the vectors of the input 
noise and measurement noise, respectively. It is 
assumed that these noises are Gaussian processes 
with an average of zero and that ( )tω  and ( )v t  are 
uncorrelated and they satisfy relation (2). In this 
example, 0.5h = .    
The optimization problem (25) is solved by means 
of the Matlab optimization toolbox, and for this 
purpose, the optimization function “fminunc” in 
Matlab is used. 

Fig. 2: Simulation result : true state and estimated value 
 

By using 0h = , the initial value for ( ),G K  is 
obtained. The value of α  in the penalty function has 

been adjusted at 200. The values calculated for 
0.5h =  are as follows: 

2

2
( , ) 0.0717eG K h =  

Using the computed filter gain, state estimation 
simulation was done, where a unit step signal was 
applied to the control input ( )u t at time 1s. The 
simulation result is given in Fig.2 
it can be seen that the proposed Kalman filter 
estimates system states well. 
To see how the time delay affects estimation 
performance, Kalman filters were designed for 
different h values. 
As seen in Table 1, computed 2H  norm increases as 
time delay h  increases. 
 
Table 1. Time delay effects on estimation performance.  
  0.1h = 0.3h =   0.5h = 0.8h =

2

2
( , )eG K h   0.0399 0.0543 0.0717 0.1095 

Variance of actual 

estimation error 

 
0.000015 

 
0.00035 

 
0.00065 

 
0.0009 

 

Example 2: In this problem, the 2H  filter is 
designed for the second-order system given in the 
following relation. 
 

[ ] [ ]

2 1 1 0
( ) ( ) ( )

0 1 1 1

0.2 1
( ) ( )

0.2 1

( ) 0 1 ( ) 1 1 ( ) 0.5 ( )

x t x t x t h

t u t

y t x t x t h t

ω

ν

− −⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= + − +

         (27) 

 
where ( )tω  and ( )v t  are zero-mean, uncorrelated 
white Gaussian processes satisfying (2). The time 
delay is set to be 0.3h = . 
Optimization problem (25) was solved using Matlab 
optimization toolbox. The initial value of ( ),G K  is 
computed using 0h = , and α  in the penalty 
function is set to 100. The computed values are as 
follows: 
 

2

2
1.6309 , ( , ) 0.0240eh G K h= =  

 

Using the computed ( ),G K , state estimation 
simulation was done, where a unit step signal was 
applied to the control input ( )u t at time 1s. The 
simulation results are given in Fig.3 and Fig.4:  it 
can be seen that the proposed Kalman  filter 
estimates system states well. 
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Fig. 3: Simulation result: true state (the first element of 

state x) and estimated value 

Fig. 4: Simulation result: true state (the second element of 

state x) and estimated value 
 
To see how the time delay affects estimation 
performance, Kalman filters were designed for 
different h values. 
As seen in Table 2, computed 2H  norm increases as 
time delay h  increases. Variance of actual 
estimation error, which was computed from a 
simulation, also increases as time delay h  
increases. This verifies a common belief that the 
time delay adversely affects on estimation 
performance. 
 
Table 2. Time delay effects on estimation performance.  
  0.1h =   0.3h =   0.5h =   0.7h =

2

2
( , )eG K h   0.0180 0.0243 0.0321 0.0424 

Variance of actual 

estimation error 

 
0.00088 

 
0.00011 

 
0.00013 

 
0.00015 

 

Example 3: Consider the following third-order 
system with delayed output and state: 
 

(28) 

[ ] [ ]

1 13.5 1 5.9 7.1 70.3
( ) 3 1 2 ( ) 2 1 5 ( )

2 1 4 2 0 6

0.2 1
0.2 ( ) 1 ( )
0.2 1

( ) 0 0 1 ( ) 1 1 1 ( ) 0.5 ( )

x t x t x t h

t u t

y t x t x t h t

ω

ν

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + − +

  
where ( )tω  and ( )v t  are the vectors of the input 
noise and measurement noise, respectively. In this 
example 0.06h = .    
The optimization problem (25) is solved by means 
of the Matlab optimization toolbox, and for this 
purpose, the optimization function “fminsearch” in 
Matlab is used. 
By using 0h = , the initial value for ( ),G K  is 
obtained. The value of α  in the penalty function has 
been adjusted at 50. The values calculated for 

0.06h =  are as follows: 
 

2

2
0.1624 , ( , ) 1.3949eh G K h= =  

 
The simulation results are given in Fig.5, Fig.6 and 
Fig.7:  it can be seen that the proposed 2H  filter 
estimates system states well. 
 

Fig. 5: Simulation result: true state (the first element of 

state x) and estimated value 
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Fig. 6: Simulation result: true state (the second element of 

state x) and estimated value 

 

Fig. 7: Simulation result: true state (the third element of 

state x) and estimated value 
 
As seen in Table 3, computed 2H  norm increases as 
time delay h  increases. 
 
Table 3. Time delay effects on estimation performance.  
  0.01h =   0.03h =   0.06h =   0.1h =

2

2
( , )eG K h   0.9765 1.0962 1.3949 2.0859 

Variance of 

actual 

estimation error 

 
0.000055 

 
0.0001 

 
0.0005 

 
0.0007 

 
As is observed, the increase of time delay has an 
opposite effect on the estimation performance, and 
with the increase of time delay, the estimation error 
variance also increases. 
 

6 Conclusion 
In this article, a method was proposed for the 
designing of Kalman filter for linear systems with 
time delay in the output and in state variables. By 
using the finite characterization of a Lyapunov 
functional equation, the existence of sufficient 
conditions for achieving the right solution and 
guaranteeing the proper convergence rate of the 
estimation error was evaluated. This observer 
provided satisfactory results in practical 
applications. Finally, by designing observers for 
three linear systems with time delays, the 
effectiveness of the proposed approach was 
demonstrated. 
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Abstract: This paper presents a set of single input – output (SISO) principles for tuning of continuous-time 
controllers used in autotuning schemes. The emphasis of designed autotuners is laid to SISO systems with time 
delay. Autotuners represent a combination of relay feedback identification and some control design method. In 
this contribution, models with up to three parameters are estimated by means of a single asymmetrical relay 
experiment. Then a stable low order transfer function with a time delay term is identified by a relay experiment. 
Controller parameters are analytically derived from general solutions of Diophantine equations in the ring of 
proper and stable rational functions RPS. The generalization for a two degree of freedom (2DOF) control 
structure is performed.  This approach covers a generalization of PID controllers and enables to define a scalar 
positive parameter for further tuning of the control performance. The analytical simple rule is derived for 
aperiodic control response and the scalar tuning parameter m>0. Autotuning principles of this contribution are 
applied to SISO systems with delays. Moreover, the Smith predictor scheme is applied for systems with a time 
delay term. The simulations are performed in the Matlab environment and a toolbox for automatic design and 
simulation was developed. 
 
Key-Words: Algebraic control design, Relay experiment, Autotuning, Pole-placement problem, Smith predictor 
 
1 Introduction 
Proportional-Integral-Derivative (PID) controllers 
have survived changes in technology and they have 
been the most common way of using feedback in 
engineering systems [1], [2]. Yu in [3] refers that 
more than 97 % of control loops are of this type and 
most of them are actually under PI control.  The 
practical advantages of PID controllers can be seen 
in a simple structure, in an understandable principle 
and in control capabilities. It is widely known that 
PID controllers are quite resistant to changes in the 
controlled process without meaningful deterioration 
of the loop behavior. The Ziegler – Nichols tuning 
rule has been glorified and vilified as well. 
However, there are many limitations, drawbacks and 
infirmities in the behavior of the Ziegler–Nichols 
setting. A solution for qualified choice of controller 
parameters can be seen in more sophisticated, 
proper and automatic tuning of PID controllers. 
Besides, the PID-based control loops are easy to 
simulate so no complex methods have to be used [4]. 

The development of various autotuning 
principles was started by a simple symmetrical relay 
feedback experiment proposed by Åström and 
Hägglund in [5] in the year 1984.  The ultimate gain 
and ultimate frequency are then used for adjusting 
of parameters by original Ziegler-Nichols rules. 
During the period of more than two decades, many 

studies have been reported to extend and improve 
autotuners principles; see e.g. [6], [7], [11], [12]. The 
extension in relay utilization was performed in [3], 
[8], [10], [17] by an asymmetry and hysteresis of a 
relay. Over time, the direct estimation of transfer 
function parameters instead of critical values began 
to appear. Experiments with asymmetrical and dead-
zone relay feedback are reported in [13]. Nowadays, 
almost all commercial industrial PID controllers 
provide the feature of autotuning.  

In this paper, a new combination for autotunig 
method of PI and PID controllers with an aperiodic 
control rule is proposed and developed. The basic 
autotuning principle combines an asymmetrical 
relay identification experiment and a control design 
performed in the ring of proper and stable rational 
functions RPS. The factorization approach proposed 
in [14] was generalized to a wide spectrum of 
control problems in [15], [18] - [23]. The pole 
placement problem in RPS ring is formulated through 
a Diophantine equation and the pole is analytically 
tuned according to aperiodic response of the closed 
loop. The proposed method is compared by an 
equalization setting proposed in [16]. Naturally, 
there exist also different principles of control design 
syntheses which can be used for autotuning 
methods, e.g. [25], [31], [33]. 
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This contribution deals with two simplest SISO 
linear dynamic systems with a delay term. The first 
model of the first order (stable) plus dead time 
(FOPDT) is supposed in the form: 

( )
1

sKG s e
Ts

−Θ= ⋅
+

 (1) 

Similarly, the second order model plus dead time 
(SOPDT) is assumed in the form: 

2( )
( 1)

sKG s e
Ts

−Θ= ⋅
+

 (2) 

The contribution is organized as follows. 
Section 2 represents a background of algebraic 
control design and the derivation for first and 
second order systems is derived. Section 3 deals 
with aperiodic tuning for a PI controller. Then the 
principle of the Smith predictor is introduced. 
Section 5 presents some facts about relay 
identification for autotuning principles. Then a 
Matlab program environment for design and 
simulations is described. Finally, section 7 presents 
a simulation results for three types of SISO systems. 

 
 

2 Algebraic Control Design 
The control design is based on the fractional 
approach; see e.g. [14], [15], [18]. Any transfer 
function G(s) of a (continuous-time) linear system is 
expressed as a ratio of two elements of RPS. The set 
RPS means the ring of (Hurwitz) stable and proper 
rational functions.  Traditional transfer functions as 
a ratio of two polynomials can be easily transformed 
into the fractional form simply by dividing, both the 
polynomial denominator and numerator by the same 
stable polynomial of the appropriate order. 

Then all transfer functions can be expressed by 
the ratio: 

( )
( ) ( )( )( ) ( )( ) ( )

( )

n

n

b s
b s B ss mG s a sa s A s

s m

+= = =

+

 (3) 

max(deg( ),deg( )), 0n a b m= >  (4) 

Then, all feedback stabilizing controllers for the 
feedback system depicted in Fig. 1 are given by a 
general solution of the Diophantine equation: 

1AP BQ+ =  (5) 

which can be expressed with Z free in RPS: 

0

0

Q AZQ
P P BZ

−
=

+
 (6) 

In contrast of polynomial design, all controllers 
are proper and can be utilized. 

 
Fig. 1: One-degree of freedom (1DOF) control loop 

The Diophantine equation for designing the 
feedforward controller depicted in Fig. 2 is: 

1wF S BR+ =  (7) 

with parametric solution: 

0

0

wR F ZR
P P BZ

−
=

+
 (8) 

 
Fig. 2: Two-degree of freedom (2DOF) control loop 

Asymptotic tracking is then ensured by the 
divisibility of the denominator P in (6) by the 
denominator of the reference w = Gw / Fw. The most 
frequent case is a stepwise reference with the 
denominator in the form: 

; 0w
sF m

s m
= >

+
 (9) 

The similar conclusion is valid also for the load 
disturbance d = Gd / Fd. The load disturbance 
attenuation is then achieved by divisibility of P by 
Fd. More precisely, for tracking and attenuation in 
the closed loop according to Fig. 2 the multiple of 
AP must be divisible by the least common multiple 
of denominators of all input signals. The divisibility 
in RPS is defined through unstable zeros and it can 
be achieved by a suitable choice of rational function 
Z in (6), see [14], [18] for details. 

 
 

2.1 First order systems 
Diophantine equation (5) for the first order systems 
(1) without the time delay term can be easily 
transformed into polynomial equation: 
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0 0
( 1) 1Ts Kp q
s m s m
+

+ =
+ +

 (10) 

with general solution: 

1

1 1

KP Z
T s m
Tm TsQ Z

TK s m

= + ⋅
+

− +
= − ⋅

+

 (11) 

where Z is free in the ring RPS. Asymptotic tracking 
is achieved by the choice: 

mZ
TK

= −  (12) 

and the resulting PI controller is in the form: 

1 0( ) q s qQC s
P s

+
= =  (13) 

where parameters q1 a q0 are given by: 
2

1 0
2 1Tm Tmq q

K K
−

= =  (14) 

The feedforward part of the 2DOF controller 
follows from (7): 

0 0 1s Ks r
s m s m

+ =
+ +

 (15) 

with general solution: 

1 KP Z
T s m
m sR Z
K s m

= + ⋅
+

= − ⋅
+

 (16) 

The final PI like controller is given: 

1 0
1( ) r s rRC s

P s
+

= =  (17) 

with parameters 
2

1 0
Tm m Tmr r

K K
+

= =  (18) 

  
 

2.2 Second order systems 
The control synthesis for the SOPDT is based on 
stabilizing Diophantine equation (8) applied for the 
transfer function (4) without a time delay term. The 
Diophantine equation (5) takes the form: 

( )
( ) ( )

2
1 0 1 0

2 2

1
1

Ts p s p q s qK
s m s ms m s m

+ + +
⋅ + ⋅ =

+ ++ +
 (19) 

and after equating the coefficients at like powers of 
s in (22) it is possible to obtain explicit formulas for 
pi, qi: 

1 02

2
1 2

3
0 2

1 3 2;

1 1 23 (1 3 ) ;

1 1 2(3 )

Tmp p
T T

q m m
K T T

q m m
K T T

−
= =

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (20) 

The rational function P(s) has its parametric 
form (similar as in (14) for FOPDT): 

1 0
2( ) ( )

p s p KP Z
s m s m
+

= + ⋅
+ +

 (21) 

with Z free in RPS. Now, the function Z must be 
chosen so that P is divisible by the denominator of 
the reference which is (12). The required divisibility 

is achieved by 0
0 .p mz

K
= −  Then, the particular 

solution for P, Q  is 

[ ]1 1 0
2

2
2 1 0

2

( )
( )

,
( )

s p s p m p
P

s m
q s q s qQ

s m

+ +
=

+

+ +
=

+

 (22) 

where 

0 0 0 1 0 1 0

2
2 1 0

, 2 ,

.

q q p m q q q m Tp m

q q T p m

= + = + +

= +
 (23) 

The final (asymptotic tracking) controller has the 
transfer function: 

2
2 1 0

1 1 0

( )
( ( ))

q s q s qQC s
P s p s p m p

+ +
= =

+ +
 (24) 

Also the feedforward part for the 2DOF structure 
can be derived for the second order system. For 
asymptotic tracking Diophantine equation takes the 
form: 

1 0
02 1

( ) ( )
s s ss K r

s m s m s m
+

+ =
+ + +

 (25) 

The 2DOF control law is only dependent upon 
the rational function R with general expression 

2m sR Z
K s m

= −
+

 (26) 

also with Z free in RPS. The final feedforward 
controller 
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[ ]

2
2

1
1 1 0

( )
( )

( )

m s mR KC s
P s p s p m p

+
= =

+ +
 (27) 

It is obvious that parameters of both parts of the 
controller (feedback and/or feedforward) depend on 
the tuning parameter 0m >  in a nonlinear way. For 
both systems FOPDT and SOPDT the scalar 
parameter 0m >  seems to be a suitable „tuning 
knob” influencing control performance as well as 
robustness properties of the closed loop system. 
Naturally, both derived controllers correspond to 
classical PI and PID ones. Equation (13) represents 
a PI controller: 

1( ) ( ) ( )P
I

u t K e t e d
T

τ τ
⎛ ⎞

= ⋅ + ⋅⎜ ⎟
⎝ ⎠

∫  (28) 

and the conversion of parameters is trivial. Relation 
(20) represents a PID in the standard four-parameter 
form [6]:  

1( ) ( ) ( ) ( )

( ) ( ) ( )

P D f
I

f f

u t K e t e d T y t
T

y t y t y t

τ τ

τ

⎛ ⎞
= ⋅ + ⋅ +⎜ ⎟

⎝ ⎠
′ + =

∫  (29) 

 
 

3 Aperiodic Tuning  
There are many tuning principles and modifications 
of the Ziegler – Nichols rule developed from 1940s, 
see [6], [16], [25], [32]. Only in [25], more than 240 
tuning rules are referred for PID and more than 100 
rules for PI controllers. 

A simple and attractive choice for the tuning 
parameter 0m >  can be easily obtained analytically. 
In the RPS expression, the closed-loop transfer 
function Kwy is for (1) and PI controller (13) given in 
a very simple form: 

2

2

(2 1)
( )wy

BQ Tm s TmK BQ
AP BQ s m

− +
= = =

+ +
 (30) 

The step response of (30) can be expressed by 
Laplace transform: 

1 1 1 0
2

1
2

( )
( )

,
( ) ( )

wyK k s kh t L L
s s s m

A B CL
s s m s m

− −

−

⎧ ⎫ ⎧ ⎫+
= = =⎨ ⎬ ⎨ ⎬

+⎩ ⎭⎩ ⎭
⎧ ⎫

= + +⎨ ⎬
+ +⎩ ⎭

 (31) 

where A, B, C are calculated by comparing 
appropriate fractions in (31) and k1=2mT-1, k0=Tm2.   

The response h(t) in time domain is then 

( ) mt mth t A Be Cte− −= + +  (32) 

The overshoot or undershoot of this response is 
characterized by the first derivative condition 

( ) ( ) 0mt mt mth t mBe C e tme− − −′ = − + − =  (33) 

From (33) time of the extreme of response h(t) is 
then easily calculated by the relation: 

1
e

C mB Bt
mC m C
−

= = −  (34) 

Since the aperiodic response means that the 
extreme does not exist for positive te, it implies   
te < 0 and after substitutions of A, B, C, k1, k0   
relation  (34) takes the simple form 

11 1 1

Bm
C

Tm

< =
−

 (35) 

The denominator of (35) must be positive and 
less than 1 and 0m > which implies the inequality: 

1 1
2

m
T T
< <  (36) 

Any positive parameter m from (36) ensures 
aperiodic response. It is a question for further 
investigation and simulation what choice from 
interval (36) is the best. The time constant is always 
an estimation in the autotuning philosophy and then 
the middle value of (36) would be a reasonable 
choice in the form 

3
4

m
T

=
⋅

 (37) 

Also other tuning principles for aperiodic tuning 
certainly exist. For the mentioned algebraic 
synthesis, the equalization method developed by 
Gorez and Klán in [16]. The idea goes out from PI 
controller in the form (24). The tuning rule is very 
simple and it leads in relations: 

1 0.4
2P I uK T T

K
= = ⋅  (38) 

where K is a process gain and Tu is the ultimate 
period obtained from the Ziegler-Nichols 
experiment. However, the fulfillment of (38) by 
unique value of m>0 is impossible, see [19]. The 
exact fulfillment of both relations in (38) could be 
obtained in the case of two distinct roots in 
denominator (30), so (s+m1)(s+m2) instead of 
(s+m)2.  
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4 Smith Predictors 
The Smith predictor was designed in the late 1950s 
for systems with time delay, see e.g. [31], [32]. The 
basic classical interpretation of the Smith predictor 
is depicted in Fig. 3. The time delay term e-Ɵs has a 
negative influence to feedback stability which 
follows from frequency analysis. The feedback 
signal for the main controller C(s) in Fig. 3 is a 
predicted value of the output. It means that the 
signal y(t) inputs into the control error instead of the 
delayed y(t-Ɵ),  it explains the name predictor. The 
Smith predictor launched the high development of 
Internal Model Controllers (IMC), where the plant 
model is present in the feedback loop (see [31], 
[33]). When the transfer function G(s) is stable then 
the feedback systems in Fig. 3 is equivalent to the 
IMC version depicted in Fig. 4. 
 

 
Fig. 3: Smith predictor – classical version 

The main advantage of the Smith predictor is that 
the controller C(s) can be designed according to 
delay-free part G(s) of the plant. However, there are 
two main weak points in this sophisticated scheme. 
The first one is that the signal v(t) is zero only in the 
case when the transfer function G(s) is the same in 
the outer and inner loops in Fig. 3.  The second 
weakness is that the transfer function must be stable. 
In the case of autotuning, always the approximated 
transfer function of the plant can be incorporated 
into the feedback.   

Then the signal v(t) in Fig. 3 and Fig. 4 is: 

( ) ( ) ( )s sV s G s e G s e−Θ −Θ= −  (39) 

In the case of discrepancy, this non-zero signal 
indeed negatively influences the control 
performance. Note that the nominal transfer 
function for control design is ( )G s . 

 
Fig. 4: Smith predictor – IMC version 

5 Relay Feedback Estimation 
The estimation of the process or ultimate parameters 
is a crucial point in all autotuning principles. The 
relay feedback test can utilize various types of relay 
for the parameter estimation procedure. The 
classical relay feedback test [5] was proposed for 
stable processes by symmetrical relay without 
hysteresis. Following sustained oscillation are then 
used for determining the critical (ultimate) values. 
The control parameters (PI or PID) are then 
generated in standard manner. 
 

 
Fig. 5: Block diagram of an autotuning principle 

Asymmetrical relays with or without hysteresis 
bring further progress [3], [17]. After the relay 
feedback test, the estimation of process parameters 
can be performed. A typical data response of such 
relay experiment is depicted in Fig. 6. The relay 
asymmetry is required for the process gain 
estimation (40) while a symmetrical relay would 
cause the zero division in the appropriate formula. 

In this paper, an asymmetrical relay with 
hysteresis is used. This relay enables to estimate 
transfer function parameters as well as a time delay 
term.  For the purpose of the aperiodic tuning the 
time delay is not exploited. 

The process gain can be computed by the relation 
(see [13]): 

0

0

( )
; 1,2,3,..

( )

y

y

iT

iT

y t dt
K i

u t dt
= =
∫

∫
 (40) 

The time constant and time delay terms are then 
given by: 

2 2
0

2 2

2 2

16 1
2

2
2

y

y

y

y y

T K uT
a

T Tarctg arctg
T a

π π

π επ
π ε

⋅ ⋅
= ⋅ −

⋅

⎡ ⎤
⎢ ⎥Θ = ⋅ − −
⎢ ⎥−⎣ ⎦

 (41) 

where ay and Ty are depicted in Fig. 6 and ε is the 
hysteresis. 
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Fig. 6: Asymmetrical relay oscillation 

 
The gain is given by (40), the time constant and 

time delay term can be estimated according to [13] 
by the relation: 

0

2 2

4 1
2

22
2

y

y

y

y y

T K uT
a

T Tarctg arctg
T a

π π

π επ
π ε

⋅ ⋅
= ⋅ −

⋅

⎡ ⎤
⎢ ⎥Θ = ⋅ − −
⎢ ⎥−⎣ ⎦

 (42) 

 
6 Simulation and Program System 
A Matlab program system was developed for 
engineering applications of auto-tuning principles. 
This program enables a choice for the identification 
of the controlled system of arbitrary order. The 
estimated model is of a first or second order transfer 
function with time delay. The user can choose three 
cases for the time delay term. In the first case the 
time term is neglected, in the second one the term is 
approximated by the Pade expansion and the third 
case utilizes the Smith predictor control structure. 
The program is developed with the support of the 
Polynomial Toolbox. The Main menu window of 
the program system can be seen in Fig. 7. 

In the first phase of the program routine, the 
controlled transfer function is defined and 
parameters for the relay experiment can be adjusted. 
Then, the experiment is performed and it can be 
repeated with modified parameters if necessary. 
After the experiment, an estimated transfer function 
in the form of (1) or (2) is performed automatically 
and controller parameters are generated after 
pushing of the appropriate button. Parameters for 
experimental adjustment are defined in the upper 
part of the window. 

The second phase begins with the “Design 
controller parameters” button and the actual control 
design is performed. According to above mentioned 

methodology and identified parameters, the 
controller is derived and displayed. The control 
scheme depends on the choice for the 1DOF or 
2DOF structure and on the choice of the treatment 
with the time delay term. 

 
Fig. 7: Main Menu 

 
During the third phase, after pushing the “Start 

simulation” button, the simulation routine is 
performed and required outputs are displayed. The 
simulation horizon can be prescribed as well as 
tuning parameter m, other simulation parameters can 
be specified in the Simulink environment. In all 
simulation a change of the step reference is 
performed in the second third of the simulation 
horizon and a step change in the load is injected in 
the last third. A typical control loop of the case with 
the Smith predictor in Simulink is depicted in Fig. 8. 

 

 
Fig. 8: Control loop in Simulink 

 
Also the step responses can be displayed and the 

comparison of the controlled and estimated systems 
can be depicted. Another versions of the similar 
program systems were developed and they are 
referred in e.g. [19], [20]. 
 
7 Examples and Simulations 
The following examples illustrate the situation 
where the estimated model is in the form (1) or (2) 
with a time delay term. The controllers are designed 
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according to Part 2 with neglecting of the time 
delays. 

 
Example 1: A second order controlled system 

with time delay with the transfer function: 

2
2

1( )
(2 1)

sG s e
s

−= ⋅
+

 (43) 

was identified by the relay experiments as a first and 
second order system. The results give the following 
transfer functions: 

2.77

2.49
2

0.98( ) ,
3.46 1

0.98( )
3.41 3.69 1

s

s

G s e
s

G s e
s s

−

−

= ⋅
+

= ⋅
+ +

 (44) 

The first controller was designed for the 
identified system with neglecting of the time delay 
term and the tuning parameter m = 0.22 was derived 
from the aperiodic condition (36). The PID for the 
second order estimation (44) was designed for the 
tuning parameter m = 0.41. The final controllers are 
governed by the transfer functions: 

1

2

2 2

2

3 2

( ) 0.51 0.17( ) ,
( )

( ) 0.71 0.70 0.18( )
1.85( )

( ) 1.06 0.86 0.18( )
1.85( )

Q s sC s
sP s

Q s s sC s
s sP s

R s s sC s
s sP s

+
= =

+ +
= =

+

+ +
= =

+

 (45) 
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Fig. 9: Control responses 1DOF first order 

 
The original system G(s) from (43) was 

controlled by (44) in two different control ways. 
The simple control response in the sense of 1DOF is 
depicted in Fig. 9 by dashed line while the Smith 
predictor scheme represents an aperiodic response in 

the same figure. Fig. 10 displays the same 
simulation for the second order controller C2 in (45). 
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Fig. 10: Control responses second order 

 
Example 2: A fifth order system with time delay 

G(s) was identified in the form of a first order 
transfer function with time delay: 

5
5

3( )
(2 1)

sG s e
s

−= ⋅
+

 (46) 

The first and second order estimation results in 
the following transfer functions: 

10.35

8.49
2

2.99( )
5.88 1

2.99( )
11.19 6.69 1

s

s

G s e
s

G s e
s s

−

−

= ⋅
+

= ⋅
+ +

 (47) 

Then controllers were designed for the identified 
models (47) with time delay terms neglected. The PI 
controller was derived for the value of m = 0.13 and 
the PID one was derived for m = 0.22. Both 
controllers in the 1DOF structure have the transfer 
functions: 

1

2

2 2

0.17 0.03( )

0.42 0.23 0.03( )
3.35

sC s
s

s sC s
s s

+
=

+ +
=

+

 (48) 

The control responses for the first order 
approximation and design are depicted in Fig. 11. In 
this case the difference of responses between 
neglecting the time delay term and with the use of 
the Smith predictor is remarkably stronger. While 
standard feedback control response is quite poor and 
oscillating then the response with Smith predictor in 
the loop is smooth and aperiodic. 
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Fig. 11: Control responses 1DOF - first order 

 
Almost the same situation is illustrated in Fig. 12 
where the second order approximation and synthesis 
were utilized. However, comparison of Fig. 11 and 
Fig. 12 shows that the first order synthesis is 
sufficient and the second order is redundant. 
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Fig. 12: Control responses 1DOF - second order 

 
Example 3: This example represents a case of 

higher order system without delay approximated by 
a law order system with a time delay term. A higher 
order system (8th order) with transfer function G(s) 
is supposed: 

8

3( )
( 1)

G s
s

=
+

 (49) 

After the relay experiment, a first order and 
second estimation gives the following transfer 
functions: 

4.96

4
2

2.96( )
4.22 1

2.96( )
4.83 4.40 1

s

s

G s e
s

G s e
s s

−

−

= ⋅
+

= ⋅
+ +

 (50) 

 
The step responses of systems (49) and (50) are 

shown in Fig. 13. 
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Fig. 13: Step responses of systems (49) 

 Naturally, both step responses of the estimated 
systems are quite different from the original system 
G(s).  

Again, PI controllers are derived from (10), (11) 
and the tuning parameter m>0 can influence the 
control behaviour. Since the difference of controlled 
and estimated systems is considerable, it can be 
expected that not all values of and some of m>0 
represent acceptable behaviour. 
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Fig. 14: Control responses 1DOF first order 

With respect of (36), three responses are shown in 
Fig. 14. Generally, larger values of m>0 implicate 
larger overshoots and oscillations. As a 
consequence, for inaccurate relay identifications, 
lower values of m>0 in interval (36) can be 
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recommended. The PI controller for m = 0.18 has 
the form 

0.17 0.05( ) sC s
s
+

=  (51) 

The control responses for (49) and (51) with and 
without the Smith predictor are shown in Fig. 14. 

The second order identification and synthesis of 
example 3 for m = 0.34 gives the PID controller: 

2

2

0.28 0.23 0.05( )
2.20

s sC s
s s

+ +
=

+
 (52) 

The higher order system (49) was controlled by (52) 
and two responses are depicted in Fig. 15. The first 
one represents neglecting of a time delay term in 
(50) while the second one utilizes the Smith 
predictor structure. It is obvious that the Smith 
predictor brings a significant improvement of 
overshoots. 
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Fig. 15: Control responses 1DOF second order 

 
 
8 Conclusion 
This contribution gives some rules for autotuning 
principles with a combination of relay feedback 
identification and a control design method.  

The estimation of a low order transfer function 
parameters is performed from asymmetric limit 
cycle data, see [13]. The control synthesis is carried 
out through the solution of a linear Diophantine 
equation according to [14], [15], [18]. This approach 
brings a scalar tuning parameter which can be 
adjusted by various strategies. A first order 
estimated model generates PI-like controllers while 
a second order model generates a class of PID ones. 
The aperiodic tuning through the parameter m>0 is 
proposed by the analytic derivation, more details in 
[20]. In both cases also the Smith predictor 

influence was compared with neglecting of time 
delay terms. The methodology is illustrated by 
several examples of various orders and dynamics. 
The results of all simulations prove that the Smith 
predictor structure brings a significant improvement 
of the aperiodic responses. The price for the 
improvement is a more complex structure of the 
feedback control system.  
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Abstract: - This contribution aims a revision and extension of the ring of retarded quasipolynomial 

meromorphic functions (RMS) for description and control of time-delay systems (TDS). The original definition 

has some significant drawbacks – especially, it does not constitute a ring. Our new definition extends the 

usability to neutral TDS and to those with distributed delays. As first, basic algebraic notions useful for this 

paper are introduced. A concise overview of algebraic methods for TDS follows. The original and the revised 

definitions of the ring together with some its properties finish the contribution. There are many illustrative 

examples that explain introduced terms and findings throughout the paper. 
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1 Introduction 
Algebraic structures in their charming and attractive 

elegance proved to be suitable and effective tools 

for system dynamics description and control system 

design. Modern control theory has been adopting 

algebraic approaches and parlance, which are based 

on TDS description in a suitable field, ring or 

module and the subsequent operation in the 

algebraic structure, for decades. 

The aim of this paper is to introduce a revise the 

definition and some basic properties of the RMS ring 

for description and control of TDS in input-output 

space, unlike some other methods using state-space 

domain which prevail. RMS structure was originally 

introduced in [1]; however, the genesis of the idea 

can be view already in works of Vidyasagar [2] and 

Kucera [3] for delayless systems and/or in [4] for 

TDS. Nevertheless, it has been pointed out in [5] 

that the structure does not constitute ring. In 

addition to that, the structure is applicable to 

retarded systems only and it brings problems when 

comprising models with distributed delays. 

The revised and extended structure can useful 

when analysis and control of neutral TDS and those 

with distributed delays. Some stability notions are 

also discussed and taken into account. Basic 

properties of the revisited RMS are given for the 

record as well. To illuminate the ideas and 

statements, many illustrative examples are 

introduced throughout the paper. 

The paper is organized as follows. Section 2 

provides an overview of algebraic notions useful for 

uninitiated readers to comprehend the rest of the 

contribution. A non-exhaustive introduction to 

algebraic structures and methods used in 

description, analysis and control of TDS can be 

found in Section 3. The original and a revised 

definition of RMS are the contents of Section 4. 

Section 5 includes a list of selected properties of the 

now conception supported by some examples. 

Section 6 concludes the paper and outlines the 

usability of the RMS ring. 

 

 

2 Basic Algebraic Notions 
Prior to a brief overview of particular algebraic 

structures utilized by some authors when analysis 

(and/or synthesis) of TDS, it is convenient to 

introduce some basic algebraic notions being used 

in this paper and their elementary properties if 

useful, see e.g. [6], [7]. 

A group, G, is an algebraic structure with binary 

operation · satisfying: 

a) For each  Gba ∈, , it holds that Gba ∈⋅ . 

b) For all Gcba ∈,, , ( ) ( ) Gcbacba ∈⋅⋅=⋅⋅  

(associativity). 

c) There exists an element Ge∈ , such that for 

every element Ga∈ , it holds that 

Gaeeaa ∈⋅=⋅=  (identity element, neutral 

element). 
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d) For each Ga∈ , there exists an element Gb∈  

such that Geabba ∈=⋅=⋅  (inverse element). 

A set satisfying a) and b) only from the 

definition above, i.e. without a necessity of identity 

and inverse elements, is called a semigroup. If one 

requires the existence of an identity element, so-

called monoid is obtained. A group with the 

commutative property, i.e. 

e)  For each Gba ∈, , Gabba ∈⋅=⋅  

is called a commutative (abelian) group. 

A ring, R, is a set with two binary operations +, · 

(generally interpreted summation and addition) for 

which it holds true the following: 

a) R is a commutative group under addition with 

an identity element denotes as 0. 

b) For any Rcba ∈,, , ( ) Rcbbacba ∈⋅+⋅=⋅+  

and ( ) Rbcacbac ∈⋅+⋅=+⋅  (left and right 

distributivity). 

c) For every Rcba ∈,, , it holds that 

( ) ( ) Rcbacba ∈⋅⋅=⋅⋅  (Associativity of 

multiplication). 

Some authors add another property of a ring as: 

d) There exists R∈1  such that for every 

Ra ∈≠ 0 , Raa ∈⋅=⋅ 11  (multiplicative identity). 

If d) holds, then a ring is a commutative group 

under + and a commutative monoid under ·, together 

with distributivity. In a commutative ring, the 

commutative property holds also for multiplication. 

A unit of the ring (or an invertible element) is 

Ra ∈≠ 0 , for which there exists Ra ∈−1 , such that 

111 =⋅=⋅ −− aaaa . If all elements of a ring are 

units, the ring is called a field. 

It is said that Rb∈  divides Ra ∈  (i.e. ab | ) if 

there exists Rq ∈ , such that bqa ⋅= . Two 

elements Rba ∈,  are associated if ab |  and ba | . 

Let R be a commutative ring and Rba ∈, . A 

common divisor Rc∈  of a, b is an element of the 

ring, for which ac |  and bc | . Rd ∈  is the greatest 

common divisor (GCD) of a, b if for every common 

divisor Rc∈  of Rba ∈,  it holds that dc | . The 

CGD is determined unambiguously except for 

associativity.  

A nonzero noninvertible element a  of a 

commutative ring R  is called irreducible if it is 

divisible solely by a unit or any element associated 

with a . In some rings, so-called prime elements 

generalizing prime numbers are introduced. A prime 

elements is a nonzero noninvertible Ra ∈ , such that 

if ( )cba ⋅|  for some Rcb ∈, , then always ba |  or 

ca | . Every prime element is irreducible, the 

converse is not true in general. 

A ring R in which every nonzero noninvertible 

Ra ∈  can be uniquely decomposed in a (finite) 

product of irreducible or prime elements (except for 

the ordering and associativity) is called a unique 

factorization ring (UFR). 

A commutative ring with identity (under 

multiplication) such that for any two elements 

Ra ∈≠ 0  and Rb ∈≠ 0  it holds that 0≠⋅ba  is 

called an integral domain. An URF which is an 

integral domain is labeled as a unique factorization 

domain (UFD). 

A field of fractions of an integral domain R (at 

least with one element) is the “smallest” field 

containing R, such that necessary elements 

satisfying the divisibility (by a nonzero element) are 

added. An element c  of this field can be expresses 

in the form bac /=  where Rba ∈, , 0≠b . 

An ideal I (of the ring R) is a subset of R with the 

following properties: 

a) For every Iba ∈, , it holds that Iba ∈+ . 

b) For each Ia ∈  and Rr ∈ , Ira ∈⋅ . 

It holds that an intersection of ideals is an ideal as 

well. Let { } RaaaM n ⊆= ,..., 21 , then an intersection 

of all ideals of R containing M is called an ideal 

generated by M. It is also the “smallest” ideal 

including M. Ideals of the form { }RrraaR ∈⋅= | , 

i.e. those generated by (the only one) element a are 

called principal. 

If every ideal of an integral domain is principal, 

so-called principal ideal domain (PID) is obtained. 

It holds true that every PID is UFD; however, the 

converse is not true in general. 

A Noetherian ring R is primarily defined as that 

satisfying the so-called finite ascending chain 

condition. Equivalently, it is possible to 

circumscribe the term as follows: A ring R is 

Noetherian if its every ideal is finitely generated, i.e. 

Mn =  is a finite number. 

A (left) module (or R-module) M over the ring R 

is a commutative group satisfying: 

 a) For every Rr ∈ , Mba ∈, , it holds that 

( ) brarbar ⋅+⋅=+⋅ M∈ . 

b) For every Rsr ∈, , Ma∈ , 

( ) asarasr ⋅+⋅=⋅+ M∈ . 

c) For every Rsr ∈, , Ma∈ , 

( ) ( )asrasr ⋅⋅=⋅⋅ M∈ . 

d) If there exists a multiplicative identity R∈1 , 

and Ma∈ , then Maa ∈=⋅1  

Modules are similar to vector spaces, yet in 

modules, coefficients are taken from rings, not from 

fields. A free module is that with a basis. For 

instance, since nonzero elements in a ring are not 
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necessarily invertible, a relation 

MaRrar ii

n

i
ii ∈∈=⋅∑

=
,,0

1

, where M is a free 

module, does not imply that each ir  is the linear 

combination of the remaining ones (Conte and 

Perdon, 2000). 

A partially ordered set (poset) is defined as an 

ordered pair ( )≺,SP =  where S  is called the 

ground set of P  and ≺  is the partial order of P . A 

relation ≺  is a poset on S  if: 

a) For all Sa∈ , aa≺  (reflexivity) 

b) For Sba ∈, , if ba≺  and ab≺ , then ba ≡  

(antisymmetry) 

c) For Scba ∈,, , ba≺  and cb≺  implies ba≺  

(transitivity) 

From a PID, a Bézout domain is distinguished in 

which every finitely generated ideal is principal. In a 

Bézout domain, PID is UFD and viceversa. Thus, a 

PID admits the existence of an infinitely generated 

ideal which is principal. 

In a Bézout domain R, for every pair Rba ∈,  (or 

generally for a finite set of elements) there exists the 

GCD which meets the Bézout identity (or more 

generally a linear Diophantine equation) 

 

 ( ) Ryxbaybxa ∈=⋅+⋅ ,,,GCD  (1) 

 

A solution Ryx ∈,  is not determined uniquely 

but (an infinitely many) solutions of (1) are given by 

the parameterization 

 

 
( ) ( )ba

a
zyy

ba

b
zxx

,GCD
,

,GCD
00 ⋅=⋅±= ∓ (2) 

 

where {x0, y0} is a particular solution of (1) and 

Rz ∈  
If (1) is solved for any Rc ∈  on the right-hand 

side instead of ( )ba,GCD , it is necessary to verify 

whether there exists 
( )ba,GCD

 (especially in a ring 

which is not Bézout or PID) for which 

( ) cba |,GCD
. 

The Bézout identity can be solved e.g. using a 

generalized (extended) Euclidean algorithm which 

can be described as follows. Let ba,  be given and 

the task is to find ( )bad ,GCD=  and a pair yx,  

according to (1). The iterative procedure can be 

written as follows 

 

 
 
ni

rrrrqrr iiiiiii

...,,4,3

, 1212

=

≥≥⋅−= −−−−
 (3) 

i.e. the current reminder ir  of the division can be 

expressed by preceding reminders 21, −− ii rr  and 

using the whole quotient iq .  

In every step of the algorithm, it is possible to 

write the following identity 

 

 iii ybxar ⋅+⋅=  (4) 

 

where ii yx ,  are from the ring. The first two 

reminders are chosen as 

 

 
10

01

2

1

⋅+⋅==

⋅+⋅==

babr

baar
 (5) 

 

The desired ( )bad ,GCD=  then equals the last 

nonzero reminder, ∞<≠ nrn ,0 . 

The whole procedure can be expressed in a table 

(matrix) form as follows 

 

 
















dyx

tv

b

a 0
~

operations

matrix

elementary

~
10

01
 (6) 

 

The result is determined by two Diophantine 

equations 

  

dybxa

tbva

=⋅+⋅

=⋅+⋅ 0
 (7) 

 

In the case when (1) is solved for any fixed 
Rc∈  on the right-hand side instead of 

( )bad ,GCD=  it is possible (if a solution exists) to 

use the extended Euclidean algorithm again in the 

following two possibilities: 

1) To use scheme (6) for Rc ∈  instead of 

( )bad ,GCD= . Generally, it is not necessary to 

achieve the zero element on the upper right matrix 

corner. 

2) Obviously 

 

( )
( )

( ) ( )
cybax

c
ba

yc
b

ba

xc
a

ba

c
baybxa

=⋅+

=+

=⋅+⋅

11

,GCD,GCD

,GCD
/,GCD

 (8) 

 

Hence, ( )ba,GCD , x,y  are found using (6) first, 

and subsequently, the following substitution is used 
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( ) ( )ba

c
yy

ba

c
xx

,GCD
,

,GCD
11 ==  (9) 

 

to get the desired solution. 

For the necessity and comprehension of the 

further text, some basic notions from the complex 

functions analysis ought to be introduced as well. 

A holomorphic function is a complex-valued 

function of a single (or multiple) complex variable 

defined on a region D⊆ C which is infinitely 

complex differentiable (i.e. there exists all complex 

derivatives) at any point ∈0z D. 

The term holomorphic function is often used 

interchangeably with or compared to an analytic 

function which is generally a complex-valued 

function of a single (or multiple) complex variable 

defined on a region D⊆ C, in which the Taylor series 

expansion exists at every point ∈0z D. That is, a 

series ( ) ( )( )( )∑
∞

=
−=

0
00

!

1

i

ii zzzf
i

zT  converges to ( )zf  

for every point z  from a neighborhood of 0z . For 

complex functions, a holomorphic function implies 

an analytic function. A function holomorphic on all 

C is called entire. 

An isolated singularity of a complex function 

( )zf  is a point 0z , in which the function is not 

differentiable; however, there exists an open disk D 

centered at 0z  such that ( )zf  is holomorphic on the 

disk excluding 0z . There are several types of 

isolated singularities. A pole is an isolated 

singularity 0z  of ( )zf  such that ( )zf  converges 

uniformly to infinity for 0zz → . Thus, if there 

exists the improper limit ( ) ∞=→ zfzz 0
lim , then 

there exists also ∈n N, so that 

( ) ( ) ∞<−→ zfzz
n

zz 00
lim . A removable singularity 

is another type of an isolated one for which 

( ) ∞≠→ zfzz 0
lim . In this case, it is possible to define 

( ) ( )zfzf zz 0
lim0 →= , so that ( )zf  becomes 

holomorphic. An essential singularity represents the 

last type of an isolated singularity which evinces 

“peculiar” behavior within the neighborhood of the 

singularity, and it holds that the limit ( )zfzz 0
lim →  

does not exist here. 

A meromorphic function is a complex-valued 

function of a complex variable which is 

holomorphic on an open subset D⊆ C except a set of 

poles. The function can be expressed as a ratio of 

two holomorphic functions. 

 

3 Fields, Rings and Modules for 

Description and Control of TDS 
The nascence of algebraic methods in description of 

TDS is connected with fields, namely with systems 

over fields [9], which can be written in the 

(retarded) state-space form 

 

 
( ) ( ) ( )
( ) ( )tt

ttt

Cxy

BuAxx

=

+=ɺ
 (10) 

 

where elements of CBA ,, are from a fixed field and 

( ) ( )
t

t
t

d

dx
x =ɺ . 

The next step was to further generalize the 

concept of linear systems, to include the case in 

which coefficients belong to a ring. The first, 

general, in-depth research into the properties of 

systems over rings was constituted in [10], [11]. 

One of the primordial attempts to utilize ring theory 

to infinite-dimensional linear systems was made by 

Kamen [12] where an operator theory was 

presented, the particular case of systems defined via 

rings of distributions. Namely, the ring Θ  generated 

by the entire functions ( )sσθ  defined as 

 

 ( ) ( ) ( ) ( )σσσσσσ θθψθθϕ −=+= j5.0,5.0 ss  (11)

 ( ) ( )( )
∈

−
−−−

= σ
σ

στ
θσ ,

exp1

s

s
s C 

 

and their derivatives and 1 was introduced there. 

Ring models for TDS with lumped delays was 

published in [13]. 

In [14], linear systems over commutative rings, 

especially TDS, were intensively studied. The 

author i.a. presented the simplest TDS over rings, 

those with commensurate delays where the 

introduction of the operator ( ) ( )τδ −= txtx : , 

whereτ represents the smallest delay, yields state 

matrix entries in the ring of polynomials R[δ ]. In 

more details, let the model be 

 

 

( ) ( ) ( )

( ) ( )∑

∑

=

=

−=

−+−=

N

k
k

N

k
kk

ktt

ktktt

0

0

τ

ττ

xCy

uBxAxɺ

 (12) 

 

then state and output matrices in (10) read 

 

 ∑∑∑
===

===
N

k

k

k

N

k

k

k

N

k

k

k
000

,, δδδ CCBBAA  (13) 
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Using a substitution ( )skk τδ −→ exp , one can 

obtain the Laplace transform form of the state model 

for TDS with commensurate delays. If delays are 

not commensurate, we need to define a finite set of 

delay operators Nδδδ ,...,, 21 resulting in a ring 

R [ ]Nδδδ ,...,, 21 . Some authors, e.g. Youla [15], 

introduced the field R ( )Nδδδ ,...,, 21  of rational 

functions in R [ ]Nδδδ ,...,, 21  in order to study 

networks with transmission lines (i.e. delayed 

system). Reachability and observability of a general 

system with coefficients over a ring are analyzed in 

[14] as well. 

Conte and Perdon in [16] further studied the 

realization of such systems. These authors also 

developed the geometrical approach to the study of 

dynamical systems with coefficients over a ring 

concerning TDS. The overview of the methodology 

was presented in [8]. In this framework, the main 

tool lies in the view that ( ) ( ) ( )ttt yux ,,  in (10) are 

free R-modules. 

Concerning input-output maps, which are 

substantive for the aim of this paper, the conception 

of 2-D systems which naturally arises from the 

transfer function of a TDS with commensurate 

delays over a ring (12), (13) was introduced in [13], 

[14]. Translating the state-space description into the 

transfer function results in a rational function in s  

and )exp( sτ− . This expresses that two operators are 

used here, i.e. the integrator and the delay operator, 

which are algebraically independent (due to the fact 

that the exponential term is a transcendental 

function) in the meaning of that there is no 

nontrivial linear combination of s  and )exp( sτ−  

over real numbers equals to zero. Thus, the ring 

R ( )[ ]ss τ−exp, of quasipolynomials, which is 

isomorphic to the ring of real polynomials in two 

variables (a so-called 2-D polynomial) R [ ]zs, , is 

obtained. Quasipolynomials defined here are 

connected with commensurate delays. This concept 

was further studied and developed e.g. in [17], [18]. 

However, some authors pointed out that the use 

quasipolynomials does not permit to effectively 

handle some stabilization and control tasks, thus 

other rings based on quasipolynomials for TDS with 

commensurate delays were introduced. 

For instance, in [4], [19] there were established 

the following rings: A ring 

 = ∪Θ R ( )[ ]sτ−exp  = ( )[ ]sτ−Θ exp  of all linear 

combinations, with real coefficients, of distributed 

delays from Θ  and lumped delays, and a ring 

 = Ρ [ ]s  = ∪Θ R ( )[ ]ss τ−exp,  of so-called 

pseudopolynomials which consists of Laplace 

transforms of operators that are generated using 

derivatives, lumped and distributed delays. Any 

element ( )∈sT  can be written in the (coprime) 

form ( ) ( )( ) ( )sDssNsT /exp, τ−∈ , ( )( )∈− ssN τexp,  

R ( )[ ]ss τ−exp, , ( )∈sD R [ ]s . Two pseudopolynomials 

are coprime if and only if there are neither their 

common zeros nor factors in the form ( )skτ−exp . 

Ring [ ]s  is not isomorphic to [ ]x , which means 

that the variables are not algebraically independent 

(transcendental) over , see an example in [4]. 

Moreover, it is a Bézout domain, yet not a Euclidean 

ring nor a Noetherian ring nor a UFD. Notice that  

and R ( )[ ]ss τ−exp,  share the same field of fractions, 

i.e. R ( )( )ss τ−exp, . The transfer function can then be 

expresses as a fraction of two pseudopolynomials. 

Behavioral approach, as it was introduced for 

dynamical systems in [20], was presented by [21] for 

TDS, again with commensurate delays. In contrast to 

above mentioned works, the author considered 

systems in the behavioral point of view instead of 

systems over rings. A behavior is the kernel of a 

delay-differential operator. More precisely, consider 

equations in the scalar case in the form 

 

 
( )( )∑∑

= =
=−

L

j

N

i

i

ij jtxp
0 0

0  (14) 

 

where ∈tpij , R, ( )( )tx i  denotes the i-th derivative of 

the function ( )tx : R → R. Behaviors  are those 

functions ( )tx  satisfying (14). Alternatively, 

P
~

ker=  where ∑∑
= =

∈=
L

j

N

i

ji zsP
0 0

R [ ]zs,  and P
~

 

denotes the associated delay-differential operator, 

i.e. ( ) ( )( )∑∑
= =

−=
L

j

N

i

i

ij jtxptxP
0 0

~
. It is stated in [21] that 

it is algebraically more adequate to consider the ring 

R [ ]1,, −zzs  instead of R [ ]zs, . There is also defined 

the ring 

 

 :={ ∈p R ( )[ ] ( ) CHzspzzs ∈− ,|, 1  (15) 

 

as the appropriate domain in order to translate 

relations between behaviors, lying between 

R [ ]1,, −zzs  and R ( )[ ]1, −zzs , where the latter means 

the ring of polynomials in 1, −zz  with the 

coefficients in rational functions in s  with real 

parameters, and CH is the set of all entire functions. 
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It was proved that  is not UFD and not a 

Noetherian ring; however, it is a Bézout ring. 

However, delays are naturally real-valued and 

thus the limitation to commensurate delays is rather 

restrictive for real applications [22]. Dealing with 

rings for input-output maps of TDS with even non-

commensurate delays, it is crucial for this paper to 

mention here the family of approaches (originally 

developed for delayless systems) utilizing a field of 

fractions where the transfer function is expressed as a 

ratio of two coprime (or relatively prime) elements of 

a suitable ring [2], [3], [23]. The process of finding 

such coprime pair is called a coprime factorization. 

One of such rings for continuous-time systems is 

a ring of stable and proper rational functions, RPS 

[3], [24]. An element of this ring is defined as a 

ratio of two polynomials in s  over R where the 

denominator polynomial is Hurwitz stable (i.e. free 

of roots located in the closed right-half plane 

including imaginary axis) and, moreover, the ratio is 

proper (i.e. the s-degree of the numerator is less or 

equal to the denominator). Alternatively, the 

element of RPS is analytic and bounded for 0Re ≥s  

including infinity, i.e. it lies in ∞H (C + ). Such a 

definition is, however, not sufficient for TDS since 

e.g. the Laplace form of a stable system including in 

∞H (C + ) can have an unstable denominator. 

The utilization of RPS in description (and control) 

of TDS requires a rational approximation of a general 

meromorphic transfer function as a first step of a 

coprime factorization, for instance, by a substitution 

of the exponential terms, ( ) ( )∈≈− sXsτexp R ( )s , see 

e.g. [25], [26]. A similar idea, yet over R [ ]s  was 

presented e.g. in [27]. 

An example of a coprime factorization in RPS 

follows. 

Example 1. Consider a stable TDS with 

distributed delays governed by the transfer function  

 

( ) ( )
( )

( ) ( )
1

exp1exp1

−
−−

==
s

s

sU

sY
sG  (16) 

 

Use of, e.g., the first order Padé rational 

approximation results in 

 ( ) ( )
( )

( )( ) ( )
( )( )

( )
( )sa

sb

ss

s

sU

sY
sG =

+−
−++

≈=
15.01

1exp11exp15.0

  (17) 

 

where ( )sa , ( )∈sb R [ ]s . Notice that the common 

root 1−=s  (removable singularity) characterizing the 

delay distribution in this example vanished after the 

rationalization. An addition, although the relative 

order of the transfer function is preserved, the 

absolute one has increased. To establish coprime 

factors ( ) ( ) ( )smsasA /= , ( ) ( ) ( )smsbsB /= , ( )sm ∈ 

R [ ]s  (with no zero in C + ), ( ) PSRsA ∈ , ( ) PSRsB ∈ , 

one has to realize the divisibility condition in RPS: 

Any ( ) PSRsA ∈  divides ( ) PSRsB ∈  if and only if all 

unstable zeros (including s → ∞) of ( )sA  are those 

of ( )sB . Inclusion of infinity in the condition gives 

rise to the requirement ( ) ( ) 2degdeg == sasm , and 

moreover, there is no s  with Re 0≥s  satisfying 

( ) 0=sm . ■ 

The main drawback of the ring, i.e. the necessity 

of a rational approximation, induces the idea of 

introduction a similar, yet rather different, ring 

avoiding this operation. 

 

 

4 RMS Ring 
 

4.1 Original definition 
The original definition of the ring of proper and 

stable retarded quasipolynomial (RQ) meromorphic 

functions, RMS, is the subject of this subsection [1]. 

The basic idea for its introduction proceeds from the 

following ideas. First, as mentioned above in the 

previous section, a rational approximation of the 

transfer function in the form of a ratio of two 

quasipolynomials is required for the use of the ring 

RPS. This operation brings a loss of system dynamics 

information, as can be seen from Example 1. 

Second, from the practical point of view, there is no 

reason to be limited to commensurate delays in a 

model, thus, a more universal description ought to 

be introduced. Third, authors took into account the 

fact that two variables, z and s, are not independent 

from the functional point of view, thus, a one-

dimensional (1-D) instead of 2-D approach can be 

used. Last but not least, as stated above, 

quasipolynomials in the transfer function do not 

permit to effectively handle some stabilization and 

control tasks such as impulse-free stability and 

controller properness and parameterization. 

Definition 1 (RMS ring – original). An element 

( ) MSRsT ∈  is represented by a proper fraction of 

two quasipolynomials  

 

 ( ) ( )
( )sx

sy
sT =

 
(18) 

 

where a denominator ( )sx  is a quasipolynomial of 

degree n and a numerator can be factorized as  

WSEAS TRANSACTIONS on SYSTEMS Libor Pekar

E-ISSN: 2224-2678 576 Issue 10, Volume 11, October 2012



 

 ( ) ( ) ( )ssysy τ−= exp~
 (19) 

 

where ( )sy~  is a quasipolynomial of degree l and τ ≥ 

0. ( )sx  is stable, which means that there is no zero 

of ( )sx , s0, such that 0Re 0 ≥s . Moreover, the ratio 

is proper, i.e. l ≤ n. ■ 

Obviously, the condition 0>τ  is too restrictive 

(or more likely a misprint); the inequality 0≥τ  

would be more natural instead. The original 

definition of RMS has some drawbacks; especially, it 

does not constitute a ring, which requires making 

some changes in the definition. Namely, although 

the retarded structure of TDS is considered only, the 

minimal ring conditions require the use of neutral 

quasipolynomials at least in the numerator of ( )sT . 

Moreover, the original definition brings problems 

when comprising models with distributed delays and 

handling a coprime factorization. 

 

 

4.2 H∞ and BIBO stability 
To comprehend the revisited definition, notion of 

H∞, BIBO, formal and strong stability have to be 

briefly introduced first. 

A system is H∞ stable if its transfer function 

( )sG  lies in the space ∞H (C + ) of functions analytic 

and bounded in the right-half complex plane, i.e. 

providing the finite norm 

 

 ( ){ } ∞<≥=
∞

0Re:sup: ssGG  (20) 

 

see e.g. [27]. That is, the system has finite ( )∞,02L  

to ( )∞,02L  gain where ( )∞,02L  norm of an input or 

output signal ( )th  is defined as 

 

 ( ) ( )∫
∞

=
0

2

2
d: tthth  (21) 

 

Notice, for instance, that a transfer function 

having no pole in the right-half complex plane but a 

sequence of poles with real part converging to zero 

can be H∞ unstable due to unbounded gain at the 

imaginary axis [28]. 

The notion of BIBO (Bounded Input Bounded 

Output) stability is stronger than the preceding one 

and usually more difficult to analyze. A single-input 

single-output (SISO) TDS is BIBO stable if a 

bounded input ( ) 1Mtu < , 0<t , ∈1M R produces a 

bounded output ( ) 2Mty < , 0<t , ∈2M R; in other 

words, it has a finite L∞ gain. It holds that the 

system is BIBO stable if its transfer function is an 

element of a commutative Banach algebra Λ(L1 + 

Rδ) of Laplace transforms of functions of the form 

 

 ( ) ( ) ( ) 0,
1

≥−+= ∑
∞

=
tththth

i
iia τδ  (22) 

 

where ( ) ( )∞∈ ,01Ltha , i.e. 

 

 
( ) ∞<∫

∞

0

dttha  (23) 

 

∈ih R, ,0,00 >= iττ for i > 0, ( )tδ  stands for the 

Dirac delta function, and 

 

 ∑
∞

=
∞<

1i
ih  (24) 

 

 BIBO stability implies H∞ stability [29], [30]. 

 Formal stability of neutral TDS is defined in the 

state-space domain and this theory is going beyond 

the topic of this paper. However, it can be 

formulated simply as follows: formal stability 

means that the system has only a finite number of 

poles in the right-half complex plane [31]. In other 

words, the rightmost vertical strip of poles does not 

reach or cross the imaginary axis. 

 The feature of a neutral TDS that the position of 

the rightmost vertical strip is not continuous in real 

axis is not continuous [32] gives rise to another (yet 

a germane) stability notion. Strong stability means 

that the strip remains in C −
0  when subjected to small 

variations in delays (i.e. a TDS remains formally 

stable). Although this stability notion is defined in 

state-space domain, the following input-output test 

can be performed 

 

 ∑
=

<
nh

j
njm

1

1  (25) 

 

see e.g. [33], [34] where njm  are coefficients for the 

highest s-power in the characteristic 

quasipolynomial (transfer function denominator) 

 

 ( ) ( )∑∑
= =

≥−+=
n

i
ij

h

j
ij

i

ij

n
i

ssmssm
0 1

0 0,exp ηη  (26) 

 

4.3 Revised definition 
The following simple example shows that the 

original definition does not constitute a ring. 
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Example 2. Consider two elements of RMS 

 

 ( ) ( ) ( ) ( )
2

exp1
,

2
21 +

−+
=

+
=

s

ss
sT

s

s
sT  (27) 

 

Yet, a sum of them  

 

 

( ) ( ) ( )
( )( ) ( )

MSR
s

sss

sTsTsT

∉
+

−+−+
=

+=

2

expexp1

21

 (28) 

 

since the numerator is a neutral (even formally 

unstable) quasipolynomial, which is inconsistent 

with the original ring definition.  ■ 

The above introduced example indicates that it is 

necessary to include neutral terms in the definition. 

The second drawback comes from the 

requirement of stable denominator. The transfer 

function of a stable TDS with distributed delays has 

common numerator and denominator root from the 

right-half plane; however, there is no reason to 

consider it as unstable in any sense, see e.g. stable 

system (16). Rephrased, an element of the ring 

should include a removable singularity in C +  (but 

not poles). Analogously, spectral stabilizability can 

be viewed in the similar manner [35]. 

 Because of this, ∞H (C + ) seems to be a suitable 

candidate for the ring definition (as for RPS ring). 

 However, there are some troubles with neutral 

systems, namely, although a formally unstable 

neutral TDS with a vertical strip of poles tending to 

the imaginary axis from left (for ∞→0Im s ) can be 

BIBO (and hence ∞H (C + )) stable, it does not 

permit the so called Bézout factorization, [28], [30]. 

Any two elements ( ) ( )∈sBsA , ∞H (C + ) form a 

Bézout (coprime) factorization if and only if  

 

 ( ) ( )( ) 0inf
0Re

>+
≥

sBsA
s

 (29) 

i.e. there exist (a stabilizing coprime pair) 

( ) ( )∈sPsQ , ∞H (C + ), such that (2.67) 

 ( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (30) 

 Example 3. A TDS of neutral type has a transfer 

function 

 ( ) ( )
( )

( )
( ) ( )( )( )1exp1

1

+−−
===

sssa

sb

sU

sY
sG  (31) 

Clearly, a pair 

 ( ) ( ) ( )( )( )
2

1exp1
,

2

1

+
+−−

=
+

=
s

ss
sA

s
sB  (32) 

has no nontrivial (non-unit) common factor, i.e. it is 

coprime. However, ( ) ∈=± kkA ,0j2π N, and 

( ) 0j2lim =±
→∞

πkB
k

, hence (29) does not holds true 

and the system is not Bézout coprime nor BIBO 

stabilizable. ■ 

As stated in [35] for neutral-type TDS, a system 

that is not formally stable is not BIBO stable nor 

stabilizable. However, this is not true exactly, as 

shown in [28]. 

Since formal stability is not given in input-output 

relation (transfer function), consider a rather more 

strict notion – strong stability – given by condition 

(25) instead. Formal stability is hence required; 

however, its testing by strong stability condition 

(25) could not be included in the ring definition 

since it may lead to strong instability when algebraic 

operations on ring elements. 

The following short examples demonstrate and 

clarify the above ideas. 

Example 4. Let be given three neutral delayed 

systems (plants) governed by transfer functions 

 

 

( )

( )
( )( )

( )
( )( )43

2

1

11)exp(

1

,
11)exp(

1

,
1)exp(

1

++−+
=

++−+
=

+−+
=

ssss
sG

ssss
sG

sss
sG

 (33) 

 

All the systems have poles located in the “stable” 

half-plane C −
0 , except for ∞→0Im s  where the 

asymptotic pole lies on the imaginary axis, see Fig. 

1, where displayed poles (blue asterisks) are -

0.4011, -0.0379 + 3.4264j, -0.0054 + 9.5293j, -

0.0020 + 15.7713j, -0.0010 + 22.0365j, -0.0006 + 

28.3096j, -0.0004 + 34.5864j, -0.0003 + 40.8652j, -

0.0002 + 47.1451j. 

However, although there is no pole (except the 

asymptotic case) in C + , neutral systems (33) can not 

be considered as asymptotically stable since the is 

no positive α  satisfying α−≤0Re s  for all 0s , 

which is necessary for stability of neutral TDS. 
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Fig. 1. Root loci of the rightmost poles of ( )sG1  

from (33) 

 

Moreover, these systems are neither strongly nor 

formally stable, simply, the chain of poles reaches 

the imaginary axis. Nevertheless, other stability 

notions are more attractive. An easy test on ( )ωj1G , 

( )ωj2G , ( )ωj3G  shows that ∞=
∞1G , 22 =

∞
G , 

13 =
∞

G , hence ∉1G ∞H (C + ), ∈32 ,GG ∞H (C + ). 

As proved in [27], 1G  and 2G are not BIBO stable, 

yet 3G  is BIBO stable. This means that formal 

instability does not automatically implies ∞H  or 

BIBO instability which makes problems when 

decision about the inclusion of the system into an 

algebraic structure (or set). ■ 

Example 5. This example demonstrates the 

necessity of formal stability in the definition of RMS 

ring, not only for elements of RMS but also for their 

inversions.  

Consider a coprime factorization in ∞H (C + ) of 

system ( )sG2  from (33), i.e. 

 

 ( ) ( )
( )( )( )[ ]
( )

( )
( )sA

sB

s

sss

s
sG =

+

++−+
+=

2

2

2

11exp1

2

1

 (34) 

 

 More information about (Bézout) coprime 

factorization can be found in Section 5. Notice that 

the factorization (34) is coprime yet not Bézout. 

As stated above, the system ( )sG  is formally 

unstable but from ∞H (C + ), i.e. 

( ) ( )∈sAsB / ∞H (C + ). However, one can verify that 

( )∉sA/1 ∞H (C + ). This yields a mismatch in the 

ring definition since there is not an unambiguous 

answer whether ( )sA  is invertible (a unit) or not. If 

both terms were not coprime, it would not pose a 

problem since such situations are natural also in RPS 

ring. If ( )sG  was formally stable, it would hold that 

( )∈sA/1 ∞H (C + ). As a conclusion, a set ∞H (C + ) is 

not a sufficient candidate for RMS ring. ■ 

Hence, there seem to be two possibilities for the 

ring definitions regarding formal stability. Either to 

include the requirement of formal stability of the 

quasipolynomial numerator in the ring definition 

and thus to exclude the existence of (Bézout) 

coprime factorization for formally unstable systems, 

or to take it into consideration in ring divisibility 

conditions. Naturally, we decided to choose the 

latter option, since it is not possible to avoid a 

formal unstable numerator in ring elements as 

demonstrated in Example 2. 

Example 6. The aim of this example is to show 

that strong stability could not be included in the ring 

definition; however, the necessity of formal stability 

has been already proved in Example 5. 

Consider a formally and strongly stable element 

from ∞H (C + ) 

 

( )
( ) 1)8.0exp(1

1

+−+
=

ss
sT  (35) 

 

Now make a multiplication 

 

( ) ( ) ( )
( )[ ]

( ) ( ) 1)8.0exp(12)8.0exp(2)6.1exp(1

1

1)8.0exp(1

1

2

22

+−++−+−+
=

+−+
==

sssss

ss
sTsTsT

 (36) 

 

which is obviously strongly unstable, yet formally 

stable, since ( )sT  and ( )sT2  have the same spectrum 

(except for poles multiplicity). Hence, this algebraic 

operation (multiplication) preserves formal yet not 

strong stability. Recall, however, that formal stability 

will be tested by verification of strong stability, so 

there is some kind of conservativeness.  ■ 

The crucial part of this section, the RMS ring 

proposal, as a revisited and extended definition to 

the original one, follows. 

Definition 2 (RMS ring – a revision). An element 

( )sT  of RMS ring is represented by a ratio of two 

(quasi)polynomials ( ) ( )sxsy /  where the 

denominator is a (quasi)polynomial of degree n and 

the numerator can be factorized as  

 

 ( ) ( ) ( )ssysy τ−= exp~  (37) 
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where ( )sy~  is a (quasi)polynomial of degree l and 

0≥τ . Note that the degree of a quasipolynomial 

means its highest s-power. 

The element lies in the space ∞H (C + ), i.e. it is 

analytic and bounded in C + , particularly, there is no 

pole s0 such that 0Re 0 ≥s  for a retarded 

denominator or 0,Re 0 >−≥ εεs  for a neutral one. 

If the term includes distributed delays, all roots of 

( )sx  in C +  are those of ( )sy  (i.e. removable 

singularities). Moreover, ( )sT  is formally stable. 

The strong stability condition (25) for 

(quasi)polynomial ( )sx  is a sufficient but not 

necessary condition guaranteeing that. 

In addition, the ratio is proper, i.e. l ≤ n. More 

precisely, there exists a real number R > 0 for which 

holds that 

 

 ( ) ∞<
≥>

sT
Rss ,0Re

sup  (38) 

 

see [28]. ■ 

 

 

5 Basic Properties of the Ring 
 

5.1 Coprime factorization and Bézout 

identity 
A basic operation on the quasipolynomial transfer 

function of TDS is coprime factorization by which 

the transfer function is decomposed into a coprime 

(or relatively prime) pair of ring elements. Since, in 

controller design, the intention is to use coprime 

factors in the Bézout equation (30), the factorization 

should also be Bézout, i.e. there must exists a 

stabilizing solution of (30) satisfying (29). 

When dealing with coprime factorization, the 

divisibility condition has to be stated. 

Lemma 1. (Divisibility in RMS). Any ( ) MSRsA ∈  

divides ( ) MSRsB ∈  if and only if all unstable zeros 

(including s → ∞) of ( )sA  are those of ( )sB , and 

moreover, the numerator of ( )sA  is formally stable. 

 ■ 

Notice that zeros mean the roots of the whole 

term of the ring, not only those of the numerator.  

 Again, problems appear when dealing with 

neutral TDS or with those including distributed 

delays. An example of coprime, yet not Bézout, 

factorization of formally unstable neutral TDS was 

demonstrated in Example 3 and Example 5. 

The following two examples demonstrate a 

typical coprime factorization over RMS and a specific 

problem with distributed delays, respectively. 

Example 7. The system is governed by the 

transfer function 

 

 ( ) ( )
( )

)2exp(
1))exp(2(

)exp(
2

s
sss

ss

sa

sb
sG −

+−++
−+

==  

  (39) 

 

which is a stable retarded TDS. Coprime 

factorization of (39) over RMS can be performed e.g. 

as follows 

 

 ( )

( )
( )
( )
( )

( )( ) ( )
( )

( )( )
( )

( )
( )sA

sB

sm

sss

sm

sss

sm

sa

sm

sb

sG =
+−++

−−+

==
1exp2

2expexp

2
 

  (40) 

 

where ( )sA , ( )∈sB RMS and ( )sm  stands for a stable 

(quasi)polynomial of degree 2. Its degree must equal 

2; otherwise, elements would not be proper or 

coprime. ■ 

Example 8. Consider a simple system with 

distributed delays with transfer function (16) and 

suggest a factorization 

 

( ) ( ) ( )
( ) ( )
( )

( )

( )
( )sA

sB

sm

s

sm

s

s

s
sG =

−

−−

=
−

−−
=

1

exp1exp1

1

exp1exp1

 (41) 

 

In this case, the common denominator 

(quasi)polynomial ( )sm  could not be stable since it 

would lead to prime elements in RMS. Indeed, let, for 

instance, ( ) 1+= ssm , then there exists a term 

( )  MSRsT ∈  that is a non-zero non-invertible 

common divisor of both ( ) ( )sBsA ,  (which are then 

reducible), e.g. 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1

exp1exp1

2

1

1

2

2

1

0

0

−
−−

+
−

==

+
+

+
−

==

s

s

s

s
sBsTsB

s

s

s

s
sAsTsA

 (42) 

 

The solution of this problem is read as follows: 

The common denominator ( )sm  must include all 

common zeros 0s  of ( ) ( )sbsa ,  with 0Re 0 ≥s  (even 
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asymptotic ones tending to the imaginary axis). 

Thus, the coprime factorization (41) should read 

 

( ) ( ) ( )
( ) ( )

( )
( )sA

sB

s

s
s

s

s

s
sG =

−
−
−

−−

=
−

−−
=

1

1
1

exp1exp1

1

exp1exp1

 (43) 

 ■ 

The notion of coprime factorization is closely 

related to the existence of a solution of the Bézout 

identity. As stated e.g. in Example 3, for formally 

unstable TDS such solution in ∞H (C + ) (an thus not 

in RMS) does not exist – we can obtain coprime yet 

not Bézout coprime factors. 

If a pair ( ) ( )∈sBsA , MSR is Bézout coprime, it is 

possible to solve the Bézout identity (or to find the 

GCD) using the extended Euclidean algorithm. Prior 

to the implementation of the extended Euclidean 

algorithm to MSR ring, an ordering of ring elements 

has to be defined, so that a poset is obtained. Thus, 

define ( )≺,MSRP =  as 

a) ( ) ( )sBsA ≺ iff ( ) ( )sBsA | . 

b) ( ) ( )sBsA ≡ iff ( ) ( )sBsA |  and ( ) ( )sAsB | , or 

equivalently, ( )sA  is associated with ( )sB . 

c) ( )sA  is not related to ( )sB  iff ( ) ( )sBsA |/  and 

( ) ( )sAsB |/ . 

The procedure of finding the GCD ( ) ( )( )sBsA ,  

can be characterized as follows. Assume these three 

situations: 

a) If ( ) ( )sBsA ≡ , the GCD of both is simply 

either ( )sA  or ( )sB . 

b) If ( ) ( )sBsA ≻ , keep the following scheme 

 

( )
( )

( )
( )

( ) 











 −









sB
sB

sA

sB

sA

10

01
~

10

01

 (44) 

 

hence, ( )sB  is the GCD of ( )sA  and ( )sB , 

according to (2.46). If ( ) ( )sAsB ≻ , the procedure is 

analogous with GCD ( ) ( )( )sBsA , = ( )sA . 

c) Let ( )sA  and ( )sB  be not related to each 

other. In this case, follow the scheme (45). 

Here, the GCD of ( )sA  and ( )sB  equals 

( ) ( ) ( ) ( )sYsBsXsA + . In scheme (45), it is supposed 

that there can be found quotients ( ) ( )sYsX ,  such 

that the element ( ) ( ) ( ) ( )sYsBsXsA +  

divides ( )sA , ( )sB . Since ( )sA , ( )sB  are Bézout 

coprime, ( ) ( ) ( ) ( )sYsBsXsA +  must be a unit of the 

ring. 

 
( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )














+
++

−










+








 +


















sYsBsXsAsYsX
sYsBsXsA

sXsA

sYsBsXsA

sXsB

sYsBsXsAsYsX

sB

sB

sYsBsXsAsYsX

sB

sXsAsX

sB

sA

0
~

10
~

10
~

10

0
~

10

01

 (45) 

 

In other words, the objective is to find structures 

of ( )sX , ( )sY  and to set zeros and poles of 

( ) ( ) ( ) ( )sYsBsXsA +  such that divisibility conditions 

as in Lemma 1 are satisfied or the element is 

invertible. This task can be troublesome; however, if 

formally unstable neutral TDS were avoided being 

included, every numerator/denominator 

quasipolynomial would have only a finite number of 

unstable zeros, which would make possible to find 

the GCD ( ) ( )( )sBsA , . 

If the task is to solve the Bézout identity (30) 

itself instead of the GCD ( ) ( )( )sBsA , , one can use 

scheme (9) where 1=c . This yields these results, 

respectively 

 

a)

( )
( )

( )

( ) ( )
( )sB

sQsP

sQ
sA

sP

1
,0

and/or0,
1

==

==

 (46) 

 

b)

( )
( )

( )

( ) ( )
( )sB

sQsP

sQ
sA

sP

1
,0

or0,
1

==

==

 (47) 

 

c)

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )sYsBsXsA

sY
sQ

sYsBsXsA

sX
sP

+
=

+
=

 (48) 

 

The following examples elucidate the whole 

procedure. 

Example 9. Assume coprime factorization (43) 

and find GCD ( ) ( )( )sBsA , first. Since ( )sA  divides 

( )sB , it holds that ( ) ( )sAsB ≻ , hence 
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GCD ( ) ( )( ) ( ) 1
1

1
, =

−
−

==
s

s
sAsBsA  (49) 

 
according to (44). 

The Bézout identity (30) then has the solution 

given by (47) as 

 

 ( )
( )

( ) 0,1
1

=== sQ
sA

sP  (50) 

 

Example 10. Now let the factorization be given 

by (40) with ( ) ( )2
1+= ssm . In this case, the both 

elements ( )sA  and ( )sB  are associated, thus 

( ) ( )sBsA ≡  and scheme (45) can be used when 

solving GCD ( ) ( )( )sBsA , . This scheme yields e.g. 

 

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )
( )

( ) ( ) ( )( )
( )

( ) ( )( )sBsA

s

sssss

s

ssssss

sYsBsXsA

sYsX

,GCD

1

13exp2expexp2

1

2expexp1exp2

1

2

2

2

2

=

+

+−+−+−++
=

+

−−+++−++
=

+⇒

==

  (51) 

 

where ( )sX , ( )sY  are chosen for the simplicity. 

Then the solution of the Bézout identity 

according to (48) reads 

 

( ) ( )
( )

( ) ( ) ( )( ) 13exp2expexp2

1
2

2

+−+−+−++
+

=

=

sssss

s

sQsP

 (52) 

 

In case of asymptotically stable systems, i.e. 

( )sA  is invertible (a unit), it is possible to use also a 

simple procedure when solving the Bézout identity 

 

 ( ) ( ) ( )
( )sA

sB
sPsQ

−
=⇒=

1
1  (53) 

 

By applying this rule to the example, the 

following solution is obtained 

 

 ( ) ( ) ( )( ) ( )
( )( ) 1exp2

2expexp1
2

2

+−++
−−+−+

=
sss

ssss
sP  (54) 

 

This scheme has some advantages in controller 

design (this topic is out of the aim of this paper). ■ 

 

 

5.2 Ring properties 
Follow now terms introduced in Section 2 and try to 

match some of them with RMS ring. 

Lemma 2. A set RMS introduced in Definition 2 

constitutes a commutative ring. ■ 

Proof. A sketch of proof that RMS meets ring 

conditions follows. 

Clearly, RMS is closed under addition with 

associativity and the neutral element 0=E . The 

inverse element ( ) MSRsB ∈  under addition of 

( ) MSRsA ∈  is simply ( ) ( )sAsB −= . Since 

( ) ( ) ( ) ( ) MSRsAsBsBsA ∈+=+ , it is a commutative 

group. 

The closure under multiplication with 

associativity is also evident since the numerator and 

denominator of any ( ) MSRsA ∈  are composed of 

quasipolynomial factors – retarded ones and 

formally stable neutral ones, respectively. Since the 

operation of multiplication is commutative, left and 

right distributivity hold as well. In case of 

distributed delays, it is not possible to obtain more 

unstable denominator zeros then numerator ones of 

any ( ) MSRsA ∈  under multiplication. The 

multiplicative identity element equals 1.  □ 

Lemma 11. An element ( ) MSRsA ∈  is a unit 

(invertible element) iff ( )sA  has zero relative order 

and has the (asymptotically and formally) stable 

numerator. ■ 

The proof of Lemma 11 is evident (e.g. the 

necessity can be proved by the negation of the right 

hand side of the lemma) with the aid of Lemma 1. 

Note that stable numerator means that is has only 

stable zeros in the appropriate meaning. 

Lemma 12. An element ( ) MSRsA ∈  is 

irreducible iff its numerator is formally stable and 

 

 1≤+ UR NO  (55) 

 

where RO  is the relative order and UN  stands for 

the number of real zeros UiU Nis ,...2,1,, =  or 

conjugate pairs UiUiU Niss ,...2,1,, ,, =  with 

0Re , ≥iUs  and 0Re , ≥iUs  of ( )sA , respectively. ■ 

Proof. Necessity. Consider the following three 

cases 

a) 
0=RO

, 
1=UN

 

b) 
1=RO

, 
0=UN
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c) 
2≥RO

 

Use an indirect proof. First, let a) is not valid; 

hence, 0=RO , 1>UN . Consider a 

(quasi)polynomial ( )sc  with only one unstable zero 

(or a pair of unstable zeros), say ( ) 01, =Usc  (or 

( ) ( ) 01,1, == UU scsc ) and an arbitrary stable 

(quasi)polynomial ( )sb  of the same order (i.e. first 

or second one). Then 

 

 ( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )sAsA
sb

sc

scsa

sbsa

sa

sa
sA

den

num

den

num
21=== (56) 

 

where ( )sA1  and  ( )sA2  are neither associated with 

( )sA  nor units. 

 Now, let b) is not valid, i.e. 1=RO , 0>UN , 

and assume a stable (quasi)polynomial ( )sd  of the 

first order. Then follow the scheme 

 

 ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )sAsA
sdsa

sdsa

sa

sa
sA

den

num

den

num
21

1
===  

  (57) 

 

Again, ( )sA1  and  ( )sA2  are neither associated with 

( )sA
 nor units. 

 Finally, let c) holds. Then it is possible to write 

e.g. scheme (57). 

 Sufficiency. Consider the three cases 

introduced above again. 

 If a) holds and the numerator is formally stable 

(even asymptotically), scheme (56) fails, 

since ( )sA1 is a unit and ( )sA2  is associated with 

( )sA
. Moreover, there is not possible to find 

another “reducible” scheme. 

Similarly, if b) holds and is formally stable, ( )sA1 is 

a unit and ( )sA2  is associated with ( )sA  in scheme 

(57); hence, ( )sA  is irreducible. □ 

Lemma 13. RMS ring does not constitute UFR. ■ 

Proof. Consider the following element of the ring 

 

 
( )

s

sτ−− exp1
 (58) 

Nonzero zeros of the numerator of (58) are 

 

 ∈−== k
k

s
k

s kk ,j
2

j,
2

τ
π

τ
π

N (59) 

 

Define polynomials 

 

 ( ) ( )( )kkk sssssP −−=  (60) 

 

Then the factorization 

 

 

( ) ( )[ ]( )
( )

( )
( )

( )[ ]( )
( ) ( )

( ) ( )
( )

...

exp1

exp1exp1

4

0

21

21

4

0

2

0

1

1

2

0

=
+

+−−
=

=
+

+−−
=

−−

ms

sPsP

sPssP

mss

ms

sP

ssP

mss

s

s

τ

ττ

 

  (61) 

 

where m0 > 0 is infinite and thus the RMS ring is not 

a UFR, and none of left-hand factors in (61) is 

irreducible and none of all factors is a unit. □ 

 Lemma 14. RMS is an integral domain.  ■ 

Proof. Consider ( ) ( )∈sBsA , RMS where ( )sA is a 

unit. Let ( ) ( ) 0=sBsA and multiply the whole 

equation by ( )sA/1 . It yields ( ) 0=sB and we have a 

contradiction. □ 

Hence, Lemma 13 and Lemma 14 imply that RMS 

is UFD. 

Lemma 15. RMS does not constitute PID.  ■ 

Proof. Simply, it holds that every PID is UFD. 

Since RMS is not UFD according to Lemma 13, it is 

not PID. □ 

Lemma 16. RMS does not constitute a Bézout 

domain. ■ 

Proof. It is sufficient to show that there exists a 

pair ( ) ( )∈sBsA , RMS which does not give a solution 

pair ( ) ( )∈sPsQ , RMS of (30). Indeed, as mentioned 

above, coprime factorization of formally unstable 

TDS does not have a stabilizing solution of the 

Bézout identity in ∞H (C + ), i.e. condition (29) does 

not hold. Since ∞H (C + ) ⊃ RMS, which is evident 

from Definition 2, such solution does not exist in 

RMS as well. □ 

The decision whether RMS is a Noetherian ring is 

not successfully solved. Typically, a ring is a Bézout 

domain yet not PID, i.e. there exists an infinitely 

generated ideal which is not principal. In such cases, 

the ring is not Noetherian, see e.g. ring  of 

pseudopolynomials or ring , see Section 3. 

 

 

 

6 Conclusions 
The presented paper has introduced the original and 

a revised (alternative) definition of a special 

algebraic structure (ring) of quasipolynomial 

meromorphic functions. After offering an 
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acquaintance with basic algebraic notions, an 

overview of some algebraic analytic and control 

structures and methods has been given. The original 

definition of RMS has followed and some its 

disadvantages have been mentioned. Thus, a 

proposition of a revised definition has been then 

introduced, which is the crucial part of this 

contribution. The most involved part of the paper, 

i.e. (Bézout) coprime factorization, issues about the 

solution of the Bézout identity in the ring and 

selected algebraic properties, has followed. 

As mentioned above several times, the ring can 

be used not only for TDS description but primarily 

for algebraic controller design satisfying asymptotic 

and formal stability of a control feedback system, 

reference tracking, asymptotic load disturbance 

rejection, etc., see e.g. [36], [37]. To comprehend 

this broad topic, some preliminary and supporting 

problems had to be analyzed and solved, for 

instance [38]-[42]. 

The natural limitation of the methodology is that 

formally unstable neutral TDS can not be stabilized 

in the sense of the ring. A detailed description of 

this control approach in the revised ring will be the 

matter of a future paper. 
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Abstract: - The paper deals with design of controllers for time delay systems having integrative or unstable 
properties. The proposed method is based on two methods of time delay approximations. The control system 
with two feedback controllers is considered. For design of controllers, the polynomial approach is used. 
Resulting continuous-time controllers obtained via polynomial equations and the LQ control technique ensure 
asymptotic tracking of step references as well as step disturbances attenuation. Simulation results are presented 
to illustrate the proposed method. 
 
 
Key-Words: - Time delay system, Time delay approximation, Polynomial method, LQ control. 
 
1 Introduction 
Different classes of technological processes include 
a time delay in their input-output relations. Plants 
with a time delay cannot often be controlled by 
conventional controllers designed without 
consideration of the dead-time. The control 
responses using such controllers are often of a poor 
quality or even can tend to destabilize the closed-
loop system. 
A part of time delay processes can  be unstable or 
having integrating properties. Typical examples of 
such processes are e.g. pumps, liquid storing tanks, 
distillation columns and some types of chemical or 
biochemical reactors. A control of such processes 
represents a difficult problem especially for 
processes containing also other stable or unstable 
parts with the integrative term. 
For control design of unstable and also integrating 
processes several ways exist. Some methods are 
based on several modifications of the Smith 
predictor which was originally developed for stable 
time delay systems. Such modified Smith predictors 
were published e.g. in [1] – [4]. Other group of 
methods employ PID control strategies [5] – [8], the 
robust control methods [9] and [10] or methods 
based on the ring of quasipolynomials, e.g. [11]. A 
solution of differential equations describing the time 
delay systems can be found e.g. in [12]. Other 
simulation possibilities are described e.g. in [13]. 
This paper presents one method of the controller 

design for unstable and integrating time delay 
systems and also for its combination with a stable or 
an unstable first order system. The presented 
procedure is based on approximations of the time 
delay term by the first order Taylor numerator 
expansion (TNE) and by the first order Padé 
approximation (PA). The control system with two 
feedback controllers is considered, see, e.g. [14], 
[15]. The controllers are derived using the 
polynomial approach published e.g. in [16]. For 
tuning of controller parameters, the pole assignment 
method exploiting the LQ control technique is used, 
see, e.g. [17]. The resulting proper and stable 
controllers obtained via polynomial Diophantine 
equations and spectral factorization techniques 
ensure the asymptotic tracking of step references as 
well as step disturbances attenuation. 
The structures of developed controllers together 
with analytically derived formulas for computation 
of their parameters are presented for five typical 
plants of time delay systems: the unstable first order 
time delay system (UFOTDS), the unstable second 
order time delay system (USOTDS), integrating 
time delay system (ITDS), and, the stable and 
unstable first order plus integrating time delay 
system (SFOPITDS, UFOPITDS). 
Presented simulation results obtained by both 
approximations document usefulness of the 
proposed method providing stable control responses 
of a good quality.  
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2 Approximate Transfer Functions 
The transfer functions in the sequence UFOTDS, 
USOTDS, ITDS, SFOPITDS and UFOPITDS have 
forms 

 1( )
1

d sKG s e
s

−τ=
τ −

 (1) 

 2
1 2

( )
( 1)( 1)

d sKG s e
s s

−τ=
τ − τ +

 (2) 

 3( ) d sKG s e
s

−τ=  (3) 

 4 ( )
( 1)

d sKG s e
s s

−τ=
τ ±

 (4) 

 
2.1 TN expansion 
In the first case, the time delay terms in (1) – (4) are 
approximated by the TN expansion 

 1d s
de s−τ ≈ − τ . (5) 

Then, approximate transfer functions relating to (1) 
– (4) have forms 

 0 1
1

0

(1 )( )
1
d

N
K s b b sG s

s s a
− τ −

= =
τ − −

 (6) 

where  

 0
Kb =
τ

, 1
dKb τ

=
τ

, 0
1a =
τ

 (7) 

for the UFOTDS, 

 0 1
2 2

1 2 1 0

(1 )( )
( 1)( 1)

d
N

K s b b sG s
s s s a s a

− τ −
= =

τ − τ + + +
 (8) 

where 

0
1 2

Kb =
τ τ

, 1
1 2

dKb τ
=

τ τ
, 0

1 2

1a =
τ τ

, 1 2
1

1 2
a τ − τ=

τ τ
 (9) 

for the USOTDS, 

 0 1
3

(1 )( ) d
N

K s b b sG s
s s
− τ −

= =  (10) 

where 

 0b K= ,  1 db K= τ  (11) 

for the ITDS, and, 

 0 1
4,5 2

1

(1 )( )
( 1)

d
N

K s b b sG s
s s s a s

− τ −
= =

τ ± +
 (12) 

where 

 0
Kb =
τ

,  1
dKb τ

=
τ

,  1
1a = ±
τ

   (13) 

for the SFOPITDS and UFOPITDS. 
 
2.2 Padé approximation 
In the second case, the time delay terms in (1) – (4) 
are approximated by the by the first order Padé 
approximation 

 2
2

d s d

d

s
e

s
− τ −τ

≈
+ τ

 (14) 

Now, approximate transfer functions in the same 
sequence take forms  

 0 1
1 2

1 0

(2 )( )
( 1)(2 )

d
P

d

K s b b sG s
s s s a s a

−τ −
= =

τ − + τ + −
 (15) 

where 

0
2

d

Kb =
ττ

, 1
Kb =
τ

, 0
2

d
a =

ττ
 , 1

2 d

d
a τ − τ

=
ττ

  (16) 

for the UFOTDS, 
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2 1 0
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( 1)( 1)(2 )

d
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K sG s
s s s

b b s
s a s a s a
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τ − τ + + τ
−
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+ + −

 (17) 

where 

0
1 2

2

d
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τ τ τ

, 1
1 2

Kb =
τ τ

, 0
1 2

2

d
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τ τ τ
 

1 2
1

1 2

2( ) d

d
a τ − τ − τ

=
τ τ τ

, 1 2 1 2
2

1 2

2 d d

d
a τ τ + τ τ − τ τ
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τ τ τ

 (18) 

for the USOTDS, 

 0 1
3 2

1

(2 )( )
(2 )

d
P

d

K s b b sG s
s s s a s

−τ −
= =

+ τ +
 (19) 

where  

 0
2

d

Kb =
τ

 , 1b K= , 1
2

d
a =

τ
 (20) 

for the ITDS, and,  

 
4,5

0 1
3 2

2 1

(2 )( )
( 1)(2 )

d
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d

K sG s
s s s

b b s
s a s a s
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τ ± + τ
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 (21) 
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where  

0
2

d

Kb =
ττ

, 1
Kb =
τ

, 1
2

d
a = ±

ττ
, 2

2 d

d
a τ ± τ

=
ττ

  (22) 

for the SFOPITDS and UFOPTDS. 
 
 Remark: For the UFOTDS and the UFOPITDS the 
conditions dτ ≠ τ  in (6) and (12), 1dτ ≠ τ  in (8), 
and, 2dτ ≠ τ  in (15) and (21) must be fulfilled. 
 
All approximate transfer functions have the form 

 ( )( )
( )A

b sG s
a s

=  (23) 

where b and a are coprime polynomials in s that 
fulfill the inequality deg degb a≤ . 
 
3  Control Design 
The control system with two feedback controllers is 
depicted in Fig.1.   
 

 - -

 u0 

 v2  v1 

  u  e  w  y 
 R 

 Q 

GA 

 
Fig.1. Control system. 
 
In the  scheme,  w is the reference signal,  v1, v2  are 
input and output disturbances, e is the tracking error, 
u0 is the controller output, y is the controlled output 
and  u is the control input.  The reference w and 
both disturbances v1 and v2  are considered  to be 
step functions with transforms 

 0( ) wW s
s

= ,  10
1( ) vV s

s
= ,  20

2 ( ) vV s
s

=  (24) 

The transfer function GA  represents a proper 
approximate transfer function in the general form 
(23). 
The transfer functions of controllers are 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
p s

=  (25) 

where , andq r p are coprime polynomials in s. 
 
3.1  Application  of  Polynomial Method 
The  controller  design   described  in   this  section  

follows from the polynomial approach. The general 
conditions required to govern the control system 
properties are formulated as follows: 

♦ Strong stability of the control system (in 
addition to the control system stability, also the 
stability of a controller is required). 

♦ Internal properness of the control system. 
♦ Asymptotic tracking of the reference. 
♦ Attenuation of disturbances. 

The procedure to derive admissible controllers can 
be carried out as follows: 

Transforms of the controlled output and the tracking 
error take the form (for simplification, the argument 
s is in some equations omitted) 

 [ ]1 2
1( ) ( ) ( ) ( )Y s brW s b pV s a pV s
d

= + +  (26) 

[ ]1 2
1( ) ( ) ( ) ( ) ( )E s a p bq W s b pV s a pV s
d

= + − − (27) 

where 

 ( )( ) ( ) ( ) ( ) ( ) ( )d s a s p s b s r s q s= + +  (28) 

is the characteristic polynomial with roots as poles 
of the closed-loop. 
Establishing the polynomial t as 

 ( ) ( ) ( )t s r s q s= +  (29) 

and substituting (29) into (28), the condition of the 
control system stability is ensured when 
polynomials p  and t are given by a solution of the 
polynomial Diophantine equation 

 ( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (30) 

with a stable polynomial d on the right side. 
With regard to (24), asymptotic tracking and both 
disturbances attenuation are provided by divisibility 
of both terms a p bq+  and p  in (27) by s. This 
condition is fulfilled for polynomials p and q in the 
form 

 ( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (31) 

Subsequently, the transfer functions of controllers 
take forms 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
s p s

= . (32) 

A stable polynomial p(s) in denominators of (32) 
ensures the stability of ontrollers.  
The control system satisfies the condition of internal 
properness when the transfer functions of all its 
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components are proper. Consequently, the degrees 
of polynomials q and r must fulfill inequalities 

 deg degq p≤ ,  deg deg 1r p≤ + . (33) 

Now, the polynomial t can be rewritten to the form 

 ( ) ( ) ( )t s r s s q s= + . (34) 

Taking into account solvability of (30) and 
conditions (33), the degrees of polynomials in (30) 
and (32) can be easily derived as 

 deg deg degt r a= = , deg deg 1q a= −  
 (35) 

deg deg 1p a= − ,  deg 2degd a= . 

Denoting deg a = n, polynomials t, r and q have the 
form 

0
( )

n
i

i
i

t s t s
=

=∑ , 
0

( )
n

i
i

i
r s r s

=
=∑ , 1

1
( )

n
i

i
i

q s q s −

=
=∑  (36) 

and among of their coefficients equalities  

 0 0r t= ,  i i ir q t+ =  for 1, ... ,i n=  (37) 

hold. Since by a solution of the polynomial equation 
(30) only coefficients ti can be calculated, unknown 
coefficients ri and qi can be obtained by a choice of 
selectable coefficients 0,1iβ ∈  such that 

 i i ir t= β ,  (1 )i i iq t= − β  for 1, ... ,i n= . (38) 

The coefficients βi distribute a weight between 
numerators of transfer functions Q and R. With 
respect to the transform (26), it may be expected 
that higher values of βi speed up control responses 
to step references. 

Remark: If 1iβ = for all i, the control system in  
Fig. 1 demotes to the 1DOF control configuration. If 

0iβ = for all i and the reference and both 
disturbances are step functions, the control system 
corresponds to the 2DOF control configuration. 

The controller parameters then follow from 
solutions of the polynomial equation (30) and 
depend upon coefficients of polynomial d. The next 
problem here means to find a stable polynomial d 
that enables to obtain the acceptable stabilizing and 
stable controllers.  
 
3.2 Pole Assignment 
In this paper, the polynomial d is considered as a 
product of two stable polynomials g and m in the 
form 

 ( ) ( ) ( )d s g s m s=  (39) 

where the polynomial g is a monic form of the 
polynomial h obtained by spectral factorization 

 [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )s a s s a s b s b s h s h s∗ ∗ ∗ϕ + =  (40) 

where ϕ > 0 is the weighting coefficient. 
 
Remark: In the LQ control theory, the spectral 
factorization (40) is used in a procedure of 
minimization of the quadratic cost function 

 { }2 2

0

( ) ( )J e t u t dt
∞

= + ϕ∫  (41) 

where ( )e t  is the tracking error and ( )u t is the 
control input derivative. 
 
The polynomials h and derived formulas for their 
parameters calculation have forms 

 2
2 1 0( )h s h s h s h= + +  (42) 

for the UFOTDS and ITDS with the TN expansion 
where 

0 0h b= ,  2h = ϕ ,  2 2
1 0 1 0 22h a b h h= ϕ + +  (43) 

and 0 0a =  for the ITDS, 

 3 2
3 2 1 0( )h s h s h s h s h= + + +  (44) 

for the UFOTDS and ITDS with the Padé 
approximation, and, for the USOTDS, SFOPITDS 
and UFOPITDS with the TN expansion where 

 
2 2

0 0 3 1 0 1 0 2

2
2 1 0 1 3

, , 2

( 2 ) 2

h b h h a b h h

h a a h h

= = ϕ = ϕ + +

= ϕ − +
 (45) 

and 0 0a =  for the ITDS, SFOPITDS and 
UFOPITDS, and, 

 4 3 2
4 3 2 1 0( )h s h s h s h s h s h= + + + +  (46) 

for the USOTDS, SFOPITDS and UFOPITDS with 
the Padé approximation where 

2 2
0 0 4 1 0 1 0 2, , 2h b h h a b h h= = ϕ = ϕ + +  

 2
2 1 0 2 1 3 0 4( 2 ) 2 2h a a a h h h h= ϕ − + −  (47) 

2
3 2 1 2 4( 2 ) 2h a a h h= ϕ − +  

 
and 0 0a =  for both SFOPITDS and UFOPITDS. 
For calculation of d, polynomials (42), (44) and (46) 
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are arranged to monic forms g(s) (with unit 
coefficients by the highest power of s) such that  

 0,1,... ,j j ng h h j n= =  (48) 

where degn h= . 
The second polynomial m ensuring properness of 
the controller is chosen as 

 ( ) 1m s =  (49) 

for both UFOTDS and ITDS with the TN  
expansion, 

 2( )
d

m s s= +
τ

 (50) 

for both UFOTDS and ITDS with the Padé 
approximation, 

 
2

1( )m s s= +
τ

 (51) 

for the USOTDS with the TN expansion, 

 
2

1 2( )
d

m s s s
⎛ ⎞⎛ ⎞

= + +⎜ ⎟⎜ ⎟τ τ⎝ ⎠⎝ ⎠
 (52) 

for the USOTDS with the Padé approximation, 

 1( )m s s= +
τ

 (53) 

for both SFOPITDS and UFOPITDS with the TN 
expansion, and,  

 2 1( )
d

m s s s
⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟τ τ⎝ ⎠⎝ ⎠

 (54) 

for both UFOPITDS and SFOPITDS with the Padé 
approximation. 
The above forms of m lead to the polynomial d with 
coefficients containing only the selectable parameter 
ϕ with all other coefficients depending on 
parameters of polynomials b and a. Consequently, a 
location of the closed loop poles can be affected by 
the selectable parameter ϕ. 
The transfer functions of controllers with degrees of 
polynomials in their numerators and denominators 
given by (35) are 

 1

0
( ) qQ s

p
= , 1 0

0
( ) r s rR s

p s
+

=  (55) 

for both UFOTDS and ITDS with the TN 
expansion, 

 2 1

0
( ) q s qQ s

s p
+=

+
,  

2
2 1 0

0
( )

( )
r s r s rR s

s s p
+ +

=
+

 (56) 

for both UFOTDS and ITDS with the Padé 
approximation, and, for the USOTDS, SFOPITDS 
and UFOPITDS with the TN expansion. Further, 

 

2
3 2 1
2

1 0
3 2

3 2 1 0
2

1 0

( )

( )
( )

q s q s qQ s
s p s p

r s r s r s r
R s

s s p s p

+ +
=

+ +

+ + +
=

+ +

 (57) 

for the USOTDS, SFOPITDS and UFOPITDS with 
the Padé approximation. 
In all cases, the parameters q in numerators of 
controllers are computed from parameters t 
according to (37). 
For clarity, derived formulas for computation of 
parameters p0 and t the controller derived for all 
considered cases together with conditions of the 
controllers’ stability are introduced in the form of 
tables. 
 
Table 1. Controller parameters for UFOTDS 

TN expansion 
1 0

0
( )d d

d

g gp ττ + τ + τ
=

τ − τ
 

0 0t g
K
τ= ,  1 0

1 ( 1)
d

t p
K

τ= −
τ

 

p0 > 0 for τd < τ 
Padé approximation 

2 1 0

0

2 ( ) 2
2

2

d
d

d

g g g
p

τ⎡ ⎤τ + τ + +⎢ ⎥⎣ ⎦=
τ − τ

,  0 0t g
K
τ=  

[ ]1 0 1 0
1 ( )dt p g g
K

= + τ + τ , 

[ ]2 0 2
1 ( ) 1t p g
K

= τ − −  

p0 > 0 for τd < 2τ 
 
Table 2. Controller parameters for ITDS 

TN expansion 

0 11 ( )d dp g K= + τ + τ  

0 0 0
1t r g
K

= = ,  1 1 0
1 ( )dt g g
K

= + τ  

p0 > 0 for all τd 
Padé approximation 
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0 2 1 0(2 )
4
d

dp g g gτ
= + + τ ,  0 0 0

1t r g
K

= =  

1 1 0
1 ( )dt g g
K

= + τ ,  2 1 0(2 )
4

d
dt g g

K
τ

= + τ  

p0 > 0 for all τd 

 
Table 3. Controller parameters for USOTDS 

TN expansion 
2

1 2 1 0
0

1

( ) 1d d

d

g g gp τ + τ + τ +
=

τ − τ
 

1
0 0t g

K
τ= ,  [ ]1 0 1 1 1 2 0

1 ( )dt p g g
K

= + τ + τ τ + τ  

1 2
2 0 2

1

1 1

d
t p g

K
⎡ ⎤τ τ= − −⎢ ⎥τ τ⎣ ⎦

 

p0 > 0 for τd < τ1 

Padé approximation 

3 1 2 1 0
1

0
1

22 2
2

2

d
d

d

g g g g
p

⎡ ⎤τ⎛ ⎞+ τ + τ + +⎜ ⎟⎢ ⎥ τ⎝ ⎠⎣ ⎦=
τ − τ

 

1 3
1

1p g= +
τ

 

 1
0 0t g

K
τ= , ( )1 0 1 1 2 0

1 ( )dt p g g
K
⎡ ⎤= + τ + τ + τ⎣ ⎦  

1 2
2 1 2 0

1 4

d
t p

K
⎡⎛ ⎞τ τ= + τ − τ −⎢⎜ ⎟τ⎢⎝ ⎠⎣

 

2
3 1 2 1 2 1

1

4 11
d

g g g
⎤⎛ ⎞⎛ ⎞τ− + + τ + − τ τ ⎥⎜ ⎟⎜ ⎟τ τ ⎥⎝ ⎠⎝ ⎠ ⎦

 

2
3 1 0 2 3

1

1( )t p g g
K
⎡ ⎤τ= τ − − −⎢ ⎥τ⎣ ⎦

 

p0 > 0 for τd < 2τ1 

 

Table 4. Controller parameters for SFOPITDS 
TN expansion 

0 2 1 0( )d dp g g g= + τ + τ ,  0 0
1t g
K

=  

1 1 0
1 [ ( ) ]dt g g
K

= + τ + τ ,  2 1 0( )dt g g
K
τ= + τ  

p0 > 0 for all τd 

Padé approximation 

0 2 1 0(2 )
4
d

dp g g gτ
= + + τ ,  1 3p g=  

0 0
1t g
K

= , [ ]1 1 0
1 ( )dt g g
K

= + τ+ τ  

[ ]2 1 0 0
1 (2 ) (2 ) 2

4 d d dt g g g
K

= τ + τ + τ + ττ  

3 1 0(2 )
4

d
dt g g

K
ττ

= + τ  

p1 > 0 for all τd,  p0 > 0 for all τd 

 

Table 5. Controller parameters for UFOPITDS 
TN expansion 

[ ]2 1 0
0

( ) ( ) 2d d d

d

g g g
p

τ + τ + τ + τ + τ
=

τ − τ
 

0 0
1t g
K

= ,  [ ]1 1 0
1 ( )dt g g
K

= + τ + τ  

2 1 0
2

2 ( ) ( ) 21 d d

d

g g gt
K

τ + τ τ + τ + τ +
=

τ − τ
 

p0 > 0 for τd < τ 

Padé approximation 

2

3 2 1 0

0

44 (2 )
2 4

2

d d
d

d

g g g g
p

⎛ ⎞τ τ+ τ + τ + + +⎜ ⎟⎜ ⎟ τ⎝ ⎠=
τ − τ

 

1 3
2p g= +
τ

 

0 0
1t g
K

= , [ ]1 1 0
1 ( )dt g g
K

= + τ + τ  

2 0 3 2

1

1 4 8 41 1

8

d d d

d

t p g g
K

g

⎡⎛ ⎞ ⎛ ⎞τ τ= − − − + −⎢⎜ ⎟ ⎜ ⎟τ τ τ⎢⎝ ⎠ ⎝ ⎠⎣
⎤

−τ − ⎥ττ ⎦

 

3 0 2 3
1 2( ) 2t p g g
K
⎡ ⎤= τ − − −⎢ ⎥τ⎣ ⎦

 

p1 > 0 for all τd , p0 > 0 for τd < 2τ 

 

 4  Simulation Results 
All simulations were performed by MATLAB-
Simulink tools. In all cases, the unit step reference w 
was introduced at the time t = 0 and the step 
disturbances v1 and v2 were subsequently injected 
after settling of the control responses.  
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4.1  UFOTDS 
The parameters in the transfer function (1) has been 
chosen as K = 1 and τ = 4. 
The responses in Fig.2 document applicability of the 
TNE for the UFOTDS with a small value of τd. 
Further, the responses illustrate necessity of a higher 
value of ϕ to achieving of an aperiodic character of 
responses. Smaller values of ϕ lead to their 
oscillatory character. An effect of the parameter β1 
can be seen in Fig.3. Its increasing value speeds the 
control but causes expressive overhoots. 
A preference of the PA in comparison with the TN 
is evident from the controlled output responses in 
Fig.4 computed under the same conditions. 
Moreover, the PA enables a use also for higher 
values of τd as shown in Fig.5. 
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0.0
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Time

  ϕ = 4
  ϕ = 25
  ϕ = 100

y

w

 
Fig.2. UFOTDS - TNE: Controlled output for  various ϕ  

(τd = 2, β1 = 0, v1 = - 0.2, v2 = 0.1). 
 

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

Time

  β1 = 0
  β1 = 0.2
  β1 = 0.5

y

w

 
Fig.3. UFOTDS - TNE: Controlled output for various β1 

(τd = 2, ϕ = 100, v1 = - 0.2, v2 = 0.1). 
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Fig.4.  UFOTDS - PA: Controlled output for various ϕ 

(τd = 2, β1, 2 = 0, v1 = - 0.2, v2 = 0.1). 
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Fig.5.  UFOTDS - PA: Controlled output for various ϕ 

(τd = 4, β1, 2 = 0, v1 = - 0.2, v2 = 0.1). 
 
4.2 USOTDS 
The parameters in the transfer function (2) were 
chosen as K = 1, τ1 = 4, τ2 = 2. 
Also in this case, an application of the TNE is 
possible for smaller values of the time delay and for 
higher values of ϕ. A higher value of τd needs a use 
of the PA. The simulation results can be seen in 
Figs.6 and 7. 
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Fig.6. USOTDS - TNE: Controlled output for various ϕ 

(τd = 2, β1, 2 = 0, v1 = - 0.2, v2 = 0.1). 
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Fig.7. USOTDS - PA: Controlled output for various α  

(τd = 3 , β1, 2, 3 = 0, v1 = - 0.2, v2 = 0.1). 
 
The responses in Fig.8 demonstrate their high 
sensitivity to parameters β. Evidently, on behalf of 
acceleration of the control, only small values β 
should be chosen. Their higher values lead to 
expresive overshoots at the start of the tracking 
interval. 
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Fig.8. USOTDS - PA: Controlled output for various β1, 

β2 (τd = 3, ϕ = 100, β3 = 0, v1 = - 0.2, v2 = 0.1). 
 
4.3 ITDS 
In this case, the parameter in (3) has been chosen as 
K = 0.2. 
The responses in Fig.9 document applicability of the 
TNE for the ITDS with smaller values of τd.  There 
is not a significant difference in comparison with 
utilization of the PA as shown in Fig.10. Here, also 
a selection of the parameter ϕ is not very important.  
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Fig.9.  ITDS - TNE: Controlled output for various ϕ 

(τd = 2, β1 = 0, v1 = - 0.2, v2 = 0.2). 
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Fig.10.  ITDS - PA: Controlled output for various ϕ 

(τd = 2, β1 = 0, v1 = - 0.2, v2 = 0.2). 
 
An effect of the parameter β1 on the controlled 
output responses can be seen in Fig.11. A 
reasonable choice of this parameter can accelerate 
the control responses keeping their apperiodic 
character.  
A difference between both approximations appears 

for higher values of  τd as it can be seen in Figs.12, 
13 and 14. There, a priority of the PA is evident.  It 
is also clear that a higher value of τd requires a use 
of a higher value of ϕ. 
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Fig.11. ITDS - TNE: Controlled output for various β1   

(τd = 5, ϕ = 25, v1 = - 0.4, v2 = 0.2). 
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Fig.12. ITDS - TNE: Controlled output for various ϕ  

(τd = 8, β1 = 0, v1 = - 0.2, v2 = 0.2). 
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Fig.13. ITDS - PA: Controlled output for various ϕ  

(τd = 8, β1 = β2 = 0, v1 = - 0.2, v2 = 0.2). 
 

 
4.4 SFOPITDS 
For this model (and, also for the UFOPITDS), the 
parameters in (2) have been chosen as K = 0.2 and τ 
= 4. The controlled output responses for various ϕ  
are shown in Figs.15 and 16, a comparison between 
application of the TNE and PA can be seen in 
Fig.17. The presented results clearly prove a better 
control quality obtained by the PA. It should be 
noted that for both SFOPITDS and UFOPITDS zero 
parameters β were chosen equivalent to the 2DOF 
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control structure. This choice gave best control 
results. 
 

0 100 200 300 400 500 600
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Time

  TNE.
  PA

y

w

 
Fig.14. ITDS – Comparison of controlled outputs for 

TNE and PA (τd = 8, ϕ = 100, β1 = β2 = 0,  
v1 = - 0.2, v2 = 0.2). 
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Fig.15. SFOPITDS - TNE: Controlled output for various 

ϕ (τd = 5, v1 = - 0.2, v2 = 0.1). 
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Fig.16. SFOPITDS - PA: Controlled output for various ϕ     

(τd = 5, v1 = - 0.1, v2 = 0.1). 
 
4.5 UFOPITDS 
With regard to a presence of both integrating and 
unstable parts, the UFOPITDSs belong to hardly 
controllable systems. However, the control 
responses in Fig.18 document usability of both TNE 
and PA for smaller value of τd. Higher values of τd 
require a selection of higher values of ϕ as shown 
for the PA in Fig.19 However, for higher values of 
ϕ, the TNE is unsuitable, as documented  in Fig.20. 
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Fig.17. SFOPITDS - Comparison of controlled outputs 

for TNE and PA (τd = 8, ϕ = 100, v1 = - 0.1, 
 v2 = 0.2) 
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Fig.18. UFOPITDS - Comparison of controlled outputs 

for TNE and PA (τd = 2, ϕ = 400, v1 = - 0.05,  
v2 = 0.1). 
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Fig.19. UFOPITDS - PA: Controlled output for various ϕ 

(τd = 3, v1 = - 0.05, v2 = 0.1). 
 
 
5 Conclusions 
The problem of control design for unstable and 
integrating time delay systems has been solved and 
analysed. The proposed method is based in two 
ways of the time delay approximation. The 
controller   design  uses   the    polynomial synthesis   
and   the controller setting employs the results of the 
LQ control theory. The presented procedure 
provides satisfactory control responses in the 
tracking of a step reference as well as in step 
disturbances attenuation. The presented results have 
demonstrate the usability of the method and the 
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control of a good quality also for relatively high 
ratio of the time delay to the time constant. The 
procedure makes possible a tuning of the controller 
parameters by two types of selectable parameters. 
Using derived formulas, the controller parameters 
can be automatically computed. From this reason, 
the method could also be used for an adaptive 
control. 
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Fig.20. UFOPITDS – Comparison of controlled outputs 

for TNE and PA (τd = 3, ϕ = 2500, v1 = - 0.05, 
 v2 = 0.1). 
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Abstract: - Time-delays (dead times) occur in many processes in industry. A Toolbox in the 
MATLAB/SIMULINK environment was designed for identification and self-tuning control of such processes. 
The control algorithms are based on modifications of the Smith Predictor (SP). The designed algorithms that 
are included in the toolbox are suitable not only for simulation purposes but also for implementation in real 
time conditions. Verification of the designed Toolbox is demonstrated on a self-tuning control of a laboratory 
heat exchanger in simulation conditions.     
 
Key-Words: - Time-delay; Smith predictor; Process identification; ARX model; Self-tuning control; PID 

control; Pole assignment; Time-delay Toolbox; Heat exchanger 
  
1   Introduction 
The majority of processes in the industrial practice 
have stochastic characteristics and eventually they 
exhibit nonlinear behaviour. Traditional controllers 
with fixed parameters are often unsuitable for such 
processes because parameters of the process change. 
One possible alternative for improving the quality of 
control of such processes is application of adaptive 
control systems. Different approaches were 
proposed and utilized. One of the successful 

Fig. 1. Self-tuning control system 

approaches is self-tuning control (STC) [1] – [5].  

 
   The block diagram of an STC is shown in Fig. 1, 

esses in 

following phenomena [6]: 

low order systems connected in 

• 
zers; controllers that need some time to 

     C
SISO (single input 

  
where y, u and w are the process output, the control 
signal and the reference signal. The main idea of the 
STC is based on combination of a recursive 
identification procedure and a particular controller 
synthesis. The self-tuning strategy was applied for 
design of control of time-delay systems.    
 Time-delays appear in many proc
industry and other fields, including economical and 
biological areas. They are caused by some of the 

• the time needed to transport mass, energy or 
information, 

• the accumulation of time lags in a great 
numbers of 
series, 
the required processing time for sensors, such 
as analy
implement a complicated control algorithms or 
processes. 
onsider a continuous time dynamical linear 

( )u t  – single output ( )y t ) 
system with time-delayT . The transfer function of 
a pure transportation lag s dT se−  where s is complex 
variable. Overall transfer function with time-delay is 
in the form 

 

d

Controller Process 
w 

Recursive 
Identification 

Controller 
Design 

Parameter Estimates 

y u 

 i

( ) ( ) dT sG s G s e−=  (1) d

w ( )G s ihere s the transfer func
 Proc  
t to

50s, their implementation with analog 

tion without time-
delay. esses with significant time-delay are
difficul  control using standard feedback 
controllers. When a high performance of the control 
process is desired or the relative time-delay is very 
large, a predictive control strategy must be used. 
The predictive control strategy includes a model of 
the process in the structure of the controller. The 
first time-delay compensation algorithm was 
proposed by Smith 1957 [7]. This control algorithm 
known as the Smith Predictor (SP) contained a 
dynamic model of the time-delay process and it can 
be considered as the first model predictive 
algorithm.  
     Although time-delay compensators appeared in 
the mid 19
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technique was very difficult and these were not used 
in industry. Since 1980s digital time-delay 
compensators can be implemented. In spite of the 
fact that all these algorithms are implemented on 
digital platforms, most works analyze only the 
continuous case. The digital time-delay 
compensators are presented e.g. in [8], [9], [10]. 
Two STC modifications of the digital Smith 
Predictors (STCSP) are designed in [11] and 
implemented into MATLAB/SIMULINK Toolbox 
[12].  
     The paper is organized in the following way. The 
principle of the digital Smith Predictor is described 

  Digital Smith Predictors 
 modifications 
pensation in 

  
hown in Fig. 2. The function of the digital version 

predictio

in Section 2. Section 3 contains description of the 
off-line and on-line (recursive) identification 
procedure.  Two modifications of digital controllers 
that are used for self-tuning versions SPs are 
proposed in Section 4. The designed Toolbox is 
briefly described in Section 5.  An example of the 
real-time identification and simulation control of the 
laboratory heat exchanger contains Section 6. 
Section 7 concludes the paper. 
 
 
2
The discrete versions of the SP and its
are suitable for time-delay com
industrial practice. Most of authors designed the 
digital SP using discrete PID controllers with fixed 
parameters. However, the SP is more sensitive to 
process parameter variations and therefore requires 
an auto-tuning or adaptive approach in many 
practical applications.  

 
Fig. 2. Block Diagram of a Digital Smith Predictor 

 
    The block diagram of a digital SP [13], [14]  is

s
is similar to the classical analog version. The block 

( )1
mG z−  represents process dynamics without the 

time-delay and is used to compute an open-loop 
n. The difference between the output of the 

process y and the model including time delay ŷ is 
the predicted error êp as shown in Fig. 2, whereas e 
and es are the error and the noise, respectively and  

w is the reference signal. If there are no modelling 
errors or disturbances, the error between the current 
process output y and the model output ŷ will be null. 
Then the predictor output signal ŷp will be the time-
delay-free output of the process. Under these 
conditions, the controller ( )1

cG z−  can be tuned, at 
least in the nominal case, as if the process had no 
time-delay. The primary (main) controller ( )1

cG z−  
can be designed by different approaches (for 
example digital PID control or methods ba  
algebraic approach). The outward feedback-loop 
through the block 

sed on

( )1
dG z−  in Fig. 2 is used to 

compensate for load disturbances and modelling 
errors. The dash arro cate the self-tuned parts 
of the Smith Predictor.  
     Most industrial processes can be approximated 
by a reduced order mod

ws indi

el with a pure time-delay. 
Consider the following second order linear model 
with a time-delay 

 ( ) ( )
( )

1 1 2
1

− − −
1 2

1 21
1 21

− − −
− −−

+
=

+ +
d db z b zz z

a z a zA z
 (2) 

onstration of some approaches to the design 
of the adaptive Smith Predictor. The term z-d 

 
 Identification Procedure 

 this paper, the time-delay models are obtained 
tion using the 

=
B z

G z

for dem

represents the pure discrete time-delay. The time-
delay is equal to 0dT  where 0T is the sampling 
period. Model (2) is used in control algorithms of 
the designed Toolbox. 
  

3.
 
3.1 Identification of Time-delay 
In
separately from an off-line identifica
least squares method (LSM) [15]. The measured 
process output ( )y k is generally influenced by 
noise. These nonmeasurable disturbances cause 
errors e in the de ination of model parameters 
and therefore real output vector is in the form  

 

term

= +y FΘ e  (3) 

It L for 
calculation of the vector of 

 is possible to obtain the SM expression 
the parameter estimates  

 ( ) 1−
= T TΘ F F F yˆ  (4) 

he matrix F has dimension (N-n-d, 2n), the vec
y (N-n-d) and the vector of parameter model 
T tor 

estimates Θ̂ (2n). N is the number of samples of 

_ 

_ 

+

+ 
Gm (z-1) 

w e -1 u y 

 

+ 
Gc(z ) Gp (z-1) 

Gd (z-1) 

pê  

ŷ
Tdŷ  

pŷ

PROCESS 
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measured input and output data, n is the model order 
[16]. 
     Equation (4) serves for calculation of the vector 
of the parameter estimates Θ̂  using N samples of 
measured input-output data. The individual vectors 
and matrices in equations (3) and (4) have the form  

 ( ) ( ) ( )1 2= ⎡ + + + + ⎤⎣ ⎦yT y n d y n d y N  (5) 

 )⎦ (6) 

⎤⎦ (7) 

)

1
2

( ) ( ) (1 2= ⎡ + + + + ⎤⎣eT ˆ ˆ ˆe n d e n d e N  

1 2 1 2⎡= ⎣ΘT
n n

ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) (

1
1

1 2

1 1
1 2

1 2

⎡ − + − + − − +
⎢− + + − + − +⎢= ⎢
⎢
− − − − − −⎢⎣

− ⎤
⎥+ ⎥
⎥
⎥

− − − − − − ⎥⎦

F

y n d y n d y d
y n d y n d y d

y N y N y N n

u n u n u
u n u n u

u N d u N d u N d n

   

  (8) 

     It is obvious that the quality of time-delay 
systems identification is very dependent on the 
choice of a suitable input exciting signal ( )u k . 
Therefore the MATLAB function from the Sy  
Identification Toolbox   

  = idinput( ,u N typ

stem

e band levels       
as used. This MATLAB code gene  input 

pe = 'rgs': Gives a random, Gaussian signal. 
his is 

Gives a pseudorandom, binary signal. 
 

   The frequency contents of the signal is 

, where B 

t levels defines the input level. It is 

, , ) 

w rates
signals u of different kinds, which are typically used 
for identification purposes. N determines the 
number of generated input data. Type defines the 
type of input signal to be generated. This argument 
takes one of the following values [17]: 
 
ty
type = 'rbs': Gives a random, binary signal. T
the default. 
type = 'prbs': 
type = 'sine': Gives a signal that is a sum of
sinusoids. 
 
  
determined by the argument band. For the choices 
type = 'rs', 'rbs', and 'sine', this argument is a row 
vector with two entries band = [wlow, whigh] that 
determine the lower and upper bound of the 
passband. The frequencies wlow and whigh are 
expressed in fractions of the Nyquist frequency. A 

white noise character input is thus obtained for band 
= [0 1], which is also the default value.  
For the choice type = 'prbs', band = [0, B]
is such that the signal is constant over intervals of 
length 1/B (the clock period). In this case the default 
is band = [0 1]. 
     The argumen
a row vector levels = [minu, maxu] such that the 
signal u will always be between the values minu and 
maxu for the choices type = 'rbs', 'prbs', and 'sine'. 
For type = 'rgs', the signal level is such that minu is 
the mean value of the signal, minus one standard 
deviation, while maxu is the mean value plus one 
standard deviation. Gaussian white noise with zero 
mean and variance one is thus obtained for levels = 
[-1, 1], which is also the default value. The example 
of exciting input signals of the “idinput” function 
are depicted in the Fig. 3.  

 
Fig. 3. Example of exciting input signals of 

 
   Consider that model (2) is the deterministic part 

“idinput” function 

  
of the stochastic process described by the ARX 
(regression) model 

 
( ) ( )1= − −y k a y k ( )

( ) ( ) ( )
1 2

1 2

2

1 2

− − +

+ − − + − − + s

a y k

b y k d b y k d e k
 (9) 

where ( )se k is the random nonmeasurable 
ent. T

 

compon he vector of parameter model 
estimates is computed by solving equation (4)  

( ) 1 2 1 2
ˆ ˆˆ ˆ ˆ⎡ ⎤= ⎣ ⎦ΘT k a a b b  (10) 

and is used for computation of the prediction output  

 
( ) ( ) ( )= − − − − +

( ) (
1 2

1 2

1 2

1 )2− − + − −ˆ ˆb u k d b u k d
 (11) 

    The quality of identification can be considered 
according to error, i.e. the deviation 

ˆ ˆ ˆy k a y k a y k
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 ( ) ( ) ( )= −

    In this paper, the error was used for suitable
hoice of the time-delay  Th

is 
dic

('

ˆ ˆe k y k y k  (12) 

  
c e LSM algorithm 0dT .
(4) – (8) is computed for several time-delays 0dT and 
the suitable time-delay chosen according to 
quality of identification based on the pre tion 
error (12). 
     For the off-line process identification the 
MATLAB function from the Optimization Toolbox   

 0= f insearch ', ) mx name _ f e x    

was also used. This function find minimum of 

c

nconstrained multivariable function using 

model of the following form 

u
derivative-free method. Algorithm “fminsearch” 
uses the simplex search method of [18]. This is a 
direct search method that does not use numerical or 
analytic gradients.  
 
3.2 Recursive Identification Algorithm 

he regression (ARX) T

 ( ) ( ) ( ) ( )= +Θ ΦTy k k k e k  s (13) 

he identification part of t
ontroller algorithms, where 

odel parameters and 

is used in t he designed 
c

 ( ) [ ]1 2 1 2=ΘT k a a b b  (14) 

is the vector of m

( ) ( ) ( ) ( ) ( )1 1 2 1− = ⎡− − − − − − − − ⎤2⎣ΦT k y k y k u k d u k d
(15) 

is the regression vector. The non-measurable 

entification based on the Recursive 

 

r 
ang et al. [13], [14] used the Dahlin PID algorithm 

⎦
  

random component es(k) is assumed to have zero 
mean value   E[es(k)] = 0 and constant covariance 
(dispersion) 
R = E[es

 2(k)]. 
     Both digital adaptive SP controllers use the 
algorithm of id
Least Squares Method (RLSM) extended to include 
the technique of directional (adaptive) forgetting. 
Numerical stability is improved by means of the LD 
decomposition [5], [19]. This method is based on 
the idea of changing the influence of input-output 
data pairs to the current estimates. The weights are 
assigned according to amount of information carried 
by the data. 
     When using the self-tuning principle, the model 
parameter estimates must approach the true values 
right from the start of the control. This means that as 
the self-tuning algorithm begins to operate, 
identification must be run from suitable conditions – 
the result of the possible a priori information. The 

role of suitable initial conditions in recursive 
identification is often underestimated.   
 
4  Controller Algorithms 
 
4.1 Digital PID Smith Predicto
H
[20] for the design of the main controller ( )1−

cG z . 

This algorithm is based on the desired close-loop 
transfer function in the form 

 ( )1
1

1
1

α−
−

−

−
=

−e
eG z ;  0α =

m

T
z T

   (16) 

here  is a desired time cw onstant of the first order  mT
closed-loop response. It is not practical to set mT  to 
be small since it will demand a large control signal 
( )u k  which may easily exceed the saturation limit 

of the actuator. Then the individual parts of the 
oller are described by the transfer functions 

 ( )

contr

( )
( )

( )
( )

1
1

1 α− −
−

−
=

ˆe A z
G z ; ( )1 11 −−

c B̂z
( )

( )
1

1 1−
− =

ˆz B
G z

1−m Â z
 

 

 

( ) ( )
( )

1
1

1 1

− −
−

−
=

d

d

ˆz B z
G z ˆz B

 (17) 

 ( ) ( )where 1
1 21

1 −

=
= +

z
ˆ ˆˆB = B z b b .  

ce (Sin )1−
mG z is the second order transfer 

func e main tion, th controller ( )1−
cG z becomes a 

digital PID controller having the g form: 

 ( )

followin

( )
( )

1 2
1 0 1 2

11c

U z q q z q z
G z

E z z

− −
−

−

+ +
= = 8) 

here 

−
 (1

w 0 1 1 2 2γ γ γ= = =ˆ ˆq , q a , q a  using by 
tion

the 
substitu  ( ) ( )1 αγ −= − ˆe / B .1  

n by 

The PID controller 

output is give

( ) ( ) ( ) ( ) ( )0 1 21 2 1= +u k q e k q e − + − + −k q e k u k (19) 

    Some simulation experiments using this dig
PID SP are presented in [11].  

ent (PA) Smith 
redictor 

l approach in [11]. Polynomial control 

ital 

 
4.2 Digital Pole Assignm
P
The digital pole assignment SP was designed using 
a polynomia
theory is based on the apparatus and methods of 
linear algebra (see e.g. [21] - [24]).  The design of 
the controller algorithm is based on the general 
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block scheme of a closed-loop with two degrees of 
freedom (2DOF) according to   Fig. 4 [25]. 

 

   

ock Diagram of a Closed Loop 2DOF 
Control System 

     The controlled process is given by the transfer 
function in the form  

 
 

Fig. 4. Bl

 

 
1

1 ( ) ( )( )
−

− =p
Y z B zG z 1( ) ( )−=
U z A z

 (20) 

here A and B are the second order polynom
The controller contains the feedback part Gq and the 

( )

w ials. 

feedforward part Gr. Then the digital controllers can 
be expressed in the form of discrete transfer 
functions 

 
( )( )

1−R z
G z 1 0

11
11

−
−−

= =
+r

r
p zP z

 (21) 

 ( ) ( )
( ) ( )( )

1 1 2
1 0 1 2

1 1
11 1

− − −
−

− −

+ +
= =

+ −
q

Q z q q z q zG z
P z p z z

 
1−

(22) 

   According to the scheme presented in Fig. 3
Equations (20) – (22) it is possible to derive the 
   and 

characteristic polynomial 

 1 1 1 1 1( ) ( ) ( ) ( ) ( )− − − − −+ =A z P z B z Q z D z    (23) 

where 
4− ( )1 1 2 3

1 2 3 41− − − −= + + + +D z d z d z d z d z  (24) 

   The feedback part of the controller is g en
solution of the polynomial Diophantine equation 
  iv  by 

(23). The procedure leading to determination of 
controller parameters in polynomials Q, R and P 
(21) and (22) is in [5]. The asymptotic tracking is 
provided by the feedforward part of the controller 
given by solution of the polynomial Diophantine 
equation 

 ( )1 1 1 1 1( ) ( ) ( ) ( )− − − − −+ =S z D z B z R z D z  (25) w

  alue    For a step-changing reference signal v
( )1 11− −= −wD z z  holds and S is an auxiliary 

n
design and it is 
polynomial which does not enter i to controller 

possible to solve Equation (25) by 
substituting z = 1 

 ( )1 1 2 3 4
0

1(1)− + + + +
= = =

d d d dDR z r
B b

 (26) 
1 2(1) + b

   The 2DOF controller output is given by   

 
( ) ( ) ( ) ( )

( ) ( ) ( ) (
0 0 1

2 1 12 1 1q y k p u k p u k )
1

2

u k r w k q y k q y k= − − − −

− − + + − + −
 (27) 

   The control quality is very dependent on the 
assignment of the characteristic polynomial 
  pole 

 ( ) 4 3 2
1 2 3 4= + + + +D z z d z d z d z d  (28) 

inside the unit circle. The simple method for choice 
o  ing f individual poles is based on the follow
approach. Consider 1DOF control loop where 
controlled process (20) with second-order 
polynomials A and B is controlled using PID 
controller which is given by transfer function  

 ( ) ( )
( )

( )
( )

1 1 2
0 1 21

1 1

1

1q

Q z q a z a z
G z

P z z

− − −
−

− −

+ +
= = (29)       

   Substitution of polynomials A, B, Q,  
Equation (23) yields the following relation 

−
 

  P into 

  
( )

( )

1 1 1 1
0

1 1 1 1

ˆ ˆˆ( ) 1 ( ) ( )

ˆ ˆ

− − − −

0( ) 1 ( ) ( )− − − −

− + =

⎡ ⎤

A z z B z q A z

= − + =⎣ ⎦A z z B z q D z
        (30) 

here w

( ) ( )1 1 2 1 1
1 2 1 21 ; ˆ ˆˆ ˆˆ ˆA z a z a z B z b z b z 2− − − − −= + + = + − (31) 

are polynomials with model parameter estimates. 
     From Equation (30) it is obvious that polynomial  

 ( ) 2
1 2= + +A z z a z a  (32) 

 polynomial D(z) (28). Its param ter estimates
which have two different real poles α, β,  is included 
in e  are 
known from process identification. Two possibilities 
are likely to solve using the Time-delay Toolbox. 
 
Pole assignment with user-defined multiple pole 
(PAMP) method: 
Polynomial (24) has two different real poles α, β   
and user-defined multiple pole γ. Then polynomial 
(24) has the form 

 ( ) ( )( )( )2α β γ= − − −D z z z z  

and it is possible to express its individual parameters 
s:  a

w 

u 

Gr

y
Gp G

 

uq 

ur 

_ 

+ 

q 
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2

2
2

3

2
4

2 ( )

(2 )( )

1 (2 )γ α β

γ α β αβ γ

αβγ γ α β

αβγ

= + + +

= − + +

=

d

d

d

 (33) 

Pole assignment with user-defined different real 
poles (PADP) method: 

= − + +d

Polynomial (24) has two different real poles α, β   
and user-defined real poles γ, δ. Then polynomial 
(24) has the form  

( ) ( )( )( )( )α β γ δ= − − − −D z z z z z  

and it is possible to express its individual parameters 
as:  

   
2

3

4

( )αβ γδ α β γ δ( )
( ) ( )

1 ( )α β γ δ

α β γδ γ δ αβ

αβγδ

= + + + +

= −⎡ + + + ⎤⎣ ⎦
=

d

d

d

 (34) 

 
5  Toolbox Functions 

he Toolbox [11] contains three main scripts 
t_PADP.m and 

• 

 T

= − + + +d

T
(start_PAMP.m, star
start_PID.m) and other programs functions, models 
and scripts) that are called by these main scripts. 
These scripts perform similar sequence of 
operations: 
• definition of the controlled system (transfer 

function, time delay), sample time and 
controller parameters, 

• off-line identification of the controlled system, 
pole assignment control or PID control of the 
system.  

    oolbox files are summarized in Table 1. The 
detailed instructions for use of the Toolbox are 
introduced in the User’s Guide [12].    
A typical control scheme used is depicted in Fig. 5. 
This scheme is used for systems with time-delay of 
two sample steps. Individual blocks of the 
SIMULINK scheme correspond to blocks of the 
general control scheme presented in Fig. 1.  The 
green blocks represent the controlled system. 
Constants bc0, ac2, ac1, and ac0 are parameters of a 
continuous-time system. Blocks Compensator 1 and 
Compensator 2 are parts of the Smith Predictor and 
they correspond to ( )1

mG z−  and ( )1
dG z−  blocks of 

Fig. 2 respectively. The control algorithm is 
encapsulated in Ma Assig Controller 
which corresponds to (

in Pole nment 
)1

cG z−  Fig. 2 block. The 

Identification block performs the on-line 

identification of a contro tem and outputs the 
estimates of the 2nd order ARX model (a1, b1, a2, 
b2) parameters. 
 

Table 1. Toolbox Files 

lled sys

6  Experimental results 
The experimental identification methods and use of 

emonstrated on a 

 
 

the Time-delay Toolbox is d
control of laboratory heat exchanger in simulation 
conditions. The laboratory heat exchanger [26], 
[27], {28] is based on the principle of transferring 
heat from a source through a piping system using a 
heat transferring media to a heat-consuming 
appliance. A scheme of the laboratory heat 
exchanger is depicted in Fig. 6. 
 The heat transferring fluid (e. g. water) is 
transported using a continuously controllable DC 
pump (6) into a flow heater (1) with max. power of 
750 W. The temperature of a fluid at the heater 
output T1 is measured by a platinum thermometer. 
Warmed liquid then goes through a 15 meters long 
insulated coiled pipeline (2) which causes the 
significant delay in the system. The air-water heat 
exchanger (3) with two cooling fans (4, 5) 
represents a heat-consuming appliance. The speed 
of the first fan can be continuously adjusted, 
whereas the second one is of on/off type. Input and 

File Description 

start_PAMP.m 
 for pole 

ontrol (multiple 
top-level script
assignment c
pole γ )  

start_PADP.m 
top-level script for pole 
assignment control (poles 

,γ δ )  

start_PID.m top-level script for PID 
control 

LSM_2or2td.m off-line identification 

Sm_adapt_pp2i.m control 
computation of control value 
in pole assignment 
scheme SmP_ad_PA.mdl. 
on-line identification s-
function used by both control 
schemes (SmP_ad_PA.mdl 
and SmP_ad_PID.mdl) 

sid.m 

Ident_c_LSM.mdl  
Simulink scheme used to 
collect data for off-line 
identification 

SmP_ad_PA.mdl Simulink control scheme of 
pole assignment control 

SmP_ad_PID.mdl Simulink control scheme of 
PID control 
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output temperatures of the cooler are measured 
again by platinum thermometers as T2, respective T3. 
The laboratory heat exchanger is connected to a 
standard PC via technological multifunction I/O 
card. For all monitoring and control functions the  
MATLAB/SIMULINK environment with Real 
Tim
    

e Toolbox.  

 
Fig. 6. Scheme of laboratory heat exchanger 

 
6.1 Real-time Identification Experiments  
The dynamic model of the laboratory heat 
exchanger was obtained from processed input (the 
power of a flow heater P [W]) and output (the 
temperature of a T2 [oC]) of the cooler) data. The 
input signal u(k) was generated using  the  
MATLAB  function  “idinput”  and  discrete 
parameter estimates of model (2) for  sampling 
period T0 = 100 s and time delay Td = 200 s were 
computed using off-line LSM and MATLAB 
function “fminsearch” (see Paragraph 3.1). 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5. Simulink contr l scheme 

 
Fig. 7. Identification results: input PNBS 

 
Fig. 8. Identification results: input signal SINE 

 

o

Fig. 9. Identification results: input signal RGS 
 

The graphical variable courses of individual 
identification experiments are shown in Figs. 7 – 9. 
The discrete models which were obtained from 
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individual experiments and criterions of 
identification quality are presented in Tab. 2.  From 

mparison of the real output variable T2 and the 
odelled output variables it is obvious that the 

criterion of identification quality 

co
m

 ( ) ( )
2

1

1 ˆ
N

y
k

S y k y
N =

= ⎡ −⎣ ⎦∑ k ⎤  (35) 

and the estimate of the static gain 

 1 2

1 2

ˆ ˆ
ˆ

ˆ ˆ1g
b bK

a a
+

=
+ +

 (36) 

are relatively very good.  This fact is confirmed also 
from courses of unit step responses in Figs. 10 and 
11. 

6.2 Simulation of Closed Control Loops  
Simulation is a useful tool for the synthesis of 

control systems, allowing us not only to create 
mathematical models of a process but also to des
virtual controllers in a computer [29]. The prov
mathematical models are close enough to a real 
object and simulation can be used to verify th
dynamic characteristics of control loops when
structure or parameters of the controller h
changed. The models of the processes may also 
excited by various random noise generators w
can simulate the stochastic characteristics of the 
processes noise signals with similar properties as 
disturbance signals measured in the machinery
be directly used. The simulation results are valuable 
for an implementation of a chosen control
(control algorithm) under laboratory and industrial 
conditions. It must be borne in mind, however, 
the practical application of a controller verified 

n      

be quite different from those in real plants, and 
therefore we must verify its practicability with 
regard to the process dynamics and the required 
standard of control quality (for example maximum 
sufferable overshoot, accuracy, settling time, etc.). 
     For the simulation verification of the proposed 
control algorithms was chosen the model (43) - see 
T

 

 
Fig. 10. Comparison of unit step responses, LSM 

identification 

 
Fig. 11. Comparison of unit step responses, 

“fminsearch” identification 
 

ign 
ided 

e 
 the 
ave 
be 

hich 

 can 

ler 

that 
by 

simulation can not be taken as a routine eve t. 
Obviously simulation and laboratory conditions can 

ab. 2. 

( )
11494 0.028z− 2

1 2
1 2

0.
1 0.6376 0.1407

zG z z
z z

−
− −

− −=
− −

  (37) 

Its qualitative identification parameters are the best 
(see Tab. 2). The followed simulation conditions 
were chosen for all control experiments: sampling 
period T0 = 100 s, time-delay Td = 200 s, as a 
random disturbance signal was used the white noise 
with the mean value μ=0 and the variance σ2=0.01. 

Table 2. Comp
 

) Mod

+

arison of identification methods and input signals 

Identification 
method Input signal u(k el G(z-1) 

Static gain 
K̂  [oC/%] 

Criterio
quality 

n 
Sy

( )
1 2

1 2
1 2

0.0862 0.1811
1 0.4934 0.1636

z zG z z
z z

− −
− −

− −

+
=

− −
        (38) 0.7794 10.2726 PNBS 

( )
1 2

1 2
1 2

0.0424 0.1917
1 0.6445 0.0484

z zG z z
z z

− −
− −

− −

+
=

− −
       (39) 0.7626 1.8761 RGS LSM 

SINE ( )
1 2

1 2
1 2

0.0493 0.1691
1 0.7063 0.0191

z zG z z
z z

− −
− −

− −

+
=

− −
      (40) 0.7849 1.6583 

( )
1 2

1 2
1 2

0.1885 0.1647
1 1.586 0.6151

z zG z z
z z

− −
− −

− −

−
=

− −
      (41) 0.8197 6.0292 PNBS 

( )
1 2

1 2
1 2

0.0907 0.1708
1 0.19 0.4689

z zG z z
z z

− −
− −

− −

+
=

− −
       (42) 0.7676 1.3249 RGS fminsearch 

SINE ( )
1 2

1 2
1 2

0.1494 0.028z zG z z
− −

1 0.6376 0.1407z z
− −

− −

+
=   

− −
 (43) 0.7901 1.0963 
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The initial model parameter estimates were chosen 
using a priori information from previous off-line 
identification experiment 

( ) [ ]ˆ 0 0.65 0.15 0.15 0.03T = − −Θ . 
 
6.2.1 PID Smith Predictor 

 

 

Fig. 13. PAMP Control of the model (43),                
γ = δ = 0.3  

 

Fig. 11. PID Control of the model (43), Tm = 400 s 

 

Fig. 14. PAMP Control of the model (43),                
γ = δ = 0.01 

 
      Simulated control responses when parameters of 
c  haracteristic polynomial (28) were computed using

Fig. 12. PID Control of the model (43), Tm = 100 s 
 

The sim

equations (34) are shown in Fig. 15. Characteristic 
polynomial has the form     
( ) 4 3 20.8876 0.0337 0.0256 0.0021D z z z z z= − + + −

with poles α=0.8111;  β=-0.1735; γ=0.1; δ=0.15. 
The control quality using main PA controller is very 
dependent on the pole assignment in the 
haracteristi

ulation verification of the control model 
(43) using the main PID controller (19) is shown in 

igs. 11 and 12. From these Figs. it is obvious
user-defined time constant Tm influences a speed of 

Simulated control responses when parameters 
of characteristic poly
using equations (33) a
Characteristic polynomials and individual poles are:  

Fig. 

F  that 

the step response and an overshoot of the controller 
output u(k). 
 
6.2.1 Pole Assignment (PA) Smith Predictor 
The simulation verification of the control model 
(43) using the main PA controller (27) is shown in 
Figs. 13 and 14.  

c c polynomial (28). The simulation 
mial experiments proved that except poles of polyno

A(z) it is suitable to choose next two real positive 
poles near the centre coordinates. But very small 
real poles can cause an oscillatory behaviour of the 
controller output u(k) – see Fig. 14.          
 

 

nomial (28) were computed 
re shown in Fig. 13 and 14. 

13: 

( ) 4 3 2 0.03z +1.25 0.33 15 0.0135D z z z z= − + −  

 α = 0.8111;  β= -0.1735;  0.3.  
 
Fig. 14:

γ = δ =

Fig. 15. PADP Control of the model (44),                
0.1,  

 
7  Conclu
Two methods for off- entification with 
combination veral excitin als 
suitable for time-delay sy were analy

 
γ =  δ = 0.15

( ) 4 3 20.6576 0.1278 0.0028D z z z z= − − +  z

α=0.8111;  β=-0.1735; γ= δ=0.01. It is obvious that 
a s e pole lead  = 0.   

sion 
line id
 input 

s to d4mall multipl
 of se g sign

stems zed. 
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These methods were experimentally verified by an 
identification of the laboratory heat exchanger in 
real-time
model fro

 conditions. The best discrete experimental 
m view point of the identification quality 

was used for design of adaptive controllers, which 
are included in the MATLAB Toolbox for CAD and 

l Time-Delay 
ystems [12]. This Toolbox is available free of 

om the Tomas Bata University Zlín Internet 
site. Both controllers were derived purposely by 
analytical way (without utilization of numerical 

identification part of the adaptive controllers uses 
the regression ARX model, recursive identification 
is solved by the Least Squares Method with 
directional (adaptive) forgetting. Both controllers 
were successfully verified not only by simulation but 
also in real-time laboratory conditions for control of 
the heat exchanger. Very good results were achieved 
by implementation of the Adaptive Model Predictive 
Controller in simulation and real-time conditions 
[30].
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Abstract: - In technical practice often occur higher order processes when a design of an optimal controller leads 
to complicated control algorithms. One of possibilities of control of such processes is their approximation by 
lower-order model with time-delay (dead time). The contribution is focused on a choice of a suitable 
experimental identification method and a suitable excitation input signals for an estimation of process model 
parameters with time-delay.  One of the possible approaches to control of time-delay processes is application of 
model-based predictive control (MPC) methods. The further contribution is design of an algorithm for 
predictive control of high-order processes which are approximated by second-order model of the process with 
time-delay. The controller was tested and verified by control of several simulation models and a model of a 
laboratory heat exchanger.  
 
 
Key-Words: - predictive control, time-delay systems, digital control, higher order systems, simulation  
 
1 Introduction 
Some technological processes in industry are 
characterized by high-order dynamic behaviour or 
large time constants and time-delays. Time-delay in 
a process increases the difficulty of controlling it. 
However using the approximation of higher-order 
process by lower-order model with time-delay 
provides  simplification of the control algorithms. 
Let us consider a continuous-time dynamical linear 
SISO (single input ( )tu   – single output ( )ty ) system 
with time-delay dT . The transfer function of a pure 

transportation lag is sTde −   where s is a complex 
variable. Overall transfer function with time-delay is 
in the form   

( ) ( ) dT s
dG s G s e−=                                                (1) 

where ( )sG  is the transfer function without time-
delay. Methods and applications of control of time-
delay systems are for example in [1], [2], [3].    

Processes with time-delay are difficult to control 
using standard feedback controllers. One of the 
possible approaches to control processes with time 
delay is predictive control [4], [5], [6]. The 
predictive control strategy includes a model of the 
process in the structure of the controller. The first 
time-delay compensation algorithm was proposed 
by [8]. This control algorithm known as the Smith 
Predictor (SP) contains a dynamic model of the 

time-delay process and it can be considered as the 
first model predictive algorithm. An alternative 
method implemented to analyze heat diffusion 
system with time–delay, are the integer and 
fractional order controllers with a Smith Predictor 
controller [9].  

Model Predictive Control (MPC) or only 
Predictive Control is one of the control methods 
which have developed considerably over a few past 
years. Predictive control is essentially based on 
discrete or sampled models of processes. 
Computation of appropriate control algorithms is 
then realized namely in the discrete domain. 

The term Model Predictive Control designates a 
class of control methods which have common 
particular attributes [10], [11].  
• Mathematical model of a system is used for 

prediction of future systems output.  
• The input reference trajectory in future is 

known. 
• A computation of the future control sequence 

includes minimization of an appropriate 
objective function (usually quadratic one) with 
the future trajectories of control increments and 
control errors. 

• Only the first element of the control sequence is 
applied and the whole procedure of the objective 
function minimization is repeated in the next 
sampling period.  
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The principle of MPC is shown in Fig. 1, where 
( )tu  is the manipulated variable, ( )ty is the process 

output and ( )tw  is the reference signal, N1, N2 and 
Nu are called minimum, maximum and control 
horizon. This principle is possible to define as 
follows: 
 
 
 

k+1 k-1 k 

y(t) 
ˆ ( )y t  

w  (t) 

past future 

u(t) 

time 

N1 

k+Nu 

Nu 
N2 

k+N2 

 
Fig. 1. Principle of MPC 
 
1. The process model is used to predict the future 

outputs ( )tŷ  over some horizon N. The 
predictions are calculated based on information 
up to time k and on the future control actions 
that are to be determined. 

2. The future control trajectory is calculated as a 
solution of an optimisation problem consisting 
of an objective function and constraints. The 
cost function comprises future output 
predictions, future reference trajectory, and 
future control actions. 

3. Although the whole future control trajectory was 
calculated in the previous step, only first 
element ( )ku  is actually applied to the process. 
At the next sampling time the procedure is 
repeated. This is known as the Receding 
Horizon concept.   

Theoretical research in the area of predictive 
control has a great impact on the industrial world 
and there are many applications of predictive 
control in industry. Its development has been 
significantly influenced by industrial practice. At 
present, predictive control with a number of real 
industrial applications belongs among the most 
often implemented modern industrial process 
control approaches. First predictive control 
algorithms were implemented in industry as an 
effective tool for control of multivariable industrial 
processes with constraints more than twenty five 
years ago. The use of predictive control was limited 

on control of namely rather slow processes due to 
the amount of computation required. At present, 
with the computing power available today, this is 
not an essential problem. A fairly actual and 
extensive surveys of industrial applications of 
predictive control are presented in [12], [13], [14].  

High-order processes are largely approximated 
by the FOTD (first-order-time-delay) model. The 
aim of the paper is implementation of a predictive 
controller for control of high-order processes which 
are approximated by second-order model with time 
delay of two steps. This model approximates the 
higher order dynamics more accurately than the first 
order time delay model whilst design of control 
algorithms is still quite simple. The designed 
controller was tested and verified by control of 
several simulation models and a model of a 
laboratory heat exchanger. 

The paper is organized as follows: section 2 
describes identification of time-delay processes; 
section 3 presents design and implementation of 
predictive control; section 4 introduces computation 
of predictor for time-delay systems; section 5 gives 
the simulation results; section 6 contains 
experimental results and finally section 7 concludes 
the paper.  

 
2 Identification of Time-Delay 
Processes 
In this paper, the time-delay model is obtained 
separately from an off-line identification using the 
least squares method (LSM). The measured process 
output ( )ky  is generally influenced by noise. These 
nonmeasurable disturbances cause errors e in the 
determination of model parameters and therefore 
real output vector is in the form  

 = +y FΘ e                                                        (2)                    

It is possible to obtain the LSM expression for 
calculation of the vector of the parameter estimates  

( ) 1ˆ −
= T TΘ F F F y                                                (3) 

The matrix F has dimension (N-n-d, 2n) and rank 
2, the vector y (N-n-d) and the vector of parameter 
model estimates Θ̂ (2n). N is the number of samples 
of measured input and output data, n is the model 
order, d is a number of time-delay steps. 

Equation (3) serves for calculation of the vector 
of the parameter estimates Θ̂  using N samples of 
measured input-output data. The individual vectors 
and matrices in Equations (2) and (3) have the form  

WSEAS TRANSACTIONS on SYSTEMS Marek Kubalčík, Vladimír Bobál

E-ISSN: 2224-2678 608 Issue 10, Volume 11, October 2012



1 2 1 2
T

n n
ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b⎡ ⎤= ⎣ ⎦Θ L L                 (4)  

( ) ( ) ( )1 2T y n d y n d y N= + + + +⎡ ⎤⎣ ⎦y L          (5) 

( ) ( ) ( )1 2T ˆ ˆ ˆe n d e n d e N= + + + +⎡ ⎤⎣ ⎦e L            (6) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1
1 2

1 2

1 1
1 2

1 2

y n d y n d y d
y n d y n d y d

y N y N y N n

u n u n u
u n u n u

u N d u N d u N d n

⎡ − + − + − − +
⎢− + + − + − +⎢= ⎢
⎢
− − − − − −⎢⎣

− ⎤
⎥+ ⎥
⎥
⎥

− − − − − − ⎥⎦

F

L

L

M M L M

L

L

L

M M L M

L

 

                                                                               (7) 

Most of higher-order industrial processes can be 
approximated by a model of reduced order with pure 
time-delay. Let us consider the following second 
order linear model with a time-delay  

( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
d

B z b z b z
G z z z

a z a zA z

− − −
− − −

− −−

+
= =

+ +
              (8)         

The term z-d represents the pure discrete time-
delay. The time-delay is equal to 0dT   where 0T  is 
the sampling period.  

Our experience proved that quality of system 
identification when the higher-order process is 
identified by the lower-order model is very 
dependent on the choice of an input excitation signal 
( )ku . The best results were achieved using a 

Random Gaussian Signal (RGS).  
Let us consider that model (8) is the 

deterministic part of the stochastic process described 
by the ARX (regression) model 

 
( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 2

1 2 s

y k a y k a y k

b y k d b y k d e k

= − − − − +

+ − − + − − +
         (9) 

where ( )kes  is the non-measurable random 
component. The vector of parameter model 
estimates is computed by solving equation (3) 

( ) 1 2 1 2
ˆ ˆˆ ˆ ˆT k a a b b⎡ ⎤= ⎣ ⎦Θ                                     (10) 

and is used for computation of the prediction output. 

( ) ( ) ( )
( ) ( )

1 2

1 2

1 2

1 2

ˆ ˆ ˆy k a y k a y k
ˆ ˆb u k d b u k d

= − − − − +

− − + − −
                     (11) 

The quality of identification can be considered 
according to error, i.e. the difference between the 
measured and modeled value of the systems output 

( ) ( ) ( )ˆ ˆe k y k y k= −                                             (12) 

In this paper, a suitable choice of the number of 
time-delay steps was performed according to the 
error. The LSM algorithm (3) – (7) is computed for 
several numbers of time-delays steps and a suitable 
time-delay is chosen according to quality of 
identification based on the prediction error (12). 
  
 
2.1 Stable Process  
Let us consider the following stable fifth order 
linear system 

( )5 5 4 3 2

2 2( )
5 10 10 5 11

AG s
s s s s ss

= =
+ + + + ++

      (13) 

The system (13) was identified by the discrete 
model (11) using off-line LSM (3) – (6) for different 
numbers of time-delay steps. As the input signal 
was used the Random Gaussian Signal (RGS). A 
criterion of the identification quality is based on 
sum of squares of error  

( ) ( )2
2

ˆ
1

ˆ
N

e
k

J d e k
=

= ∑                                              (14) 

This criterion evaluates accuracy of the 
identification process. From Fig 2. , it is obvious 
that value of the criterion (14) decreases with 
increasing number of time-delay steps d. This is 
caused by the fact that the increasing of the number 
of time-delay steps improves estimation of the static 
gain 

1 2

1 2

ˆ ˆ
ˆ

ˆ ˆ1g
b b

K
a a
+

=
+ +

                                                 (15) 

The difference between estimates of the static 
gain gK̂  of the discrete model (8) and the 
continuous-time model (13) plays an important role 
for the quality of identification because the 
identification time was relatively long    (300 s) with 
regard to the response time (about 15 s).  

The system was identified by the following 
model 
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( )
1 2

1
1 2

0 0424 0 0296
1 1 6836 0 7199

d
A

. z . zG z z
. z . z

− −
− −

− −

− +
=

− +
                 (16) 

Comparisons of step responses of continuous-
time (13) and discrete models (16) with sampling 
period 0 0.5 sT =   for different numbers of time-
delay steps d are shown in Figs. 3-5, where yc is the 
step response of the model (13) and yd are step 
responses of  the discrete model (16) for individual 
numbers of time-delay steps d. 

From Figs. 2-5 it results that a suitable model for 
the design of the predictive controller is the model 
(13) with   d = 2. Its structure is simple and it 
relatively well approximates the dynamic behaviour 
of the continuous-time model (16). 
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Fig. 2. Criterion of quality identification for 
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Fig. 3. Comparison of step responses yc, yd for d =0 
(process (13)) 
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Fig. 4. Comparison of step responses yc, yd for d =2 
(process (13)) 
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Fig. 5. Comparison of step responses yc, yd for d =3 
(process (13)) 

 

 2.2 Stable Non-Minimum Phase Process 
Let us consider the following fifth-order linear 
system with non-minimum phase  

( )
5 4 3 2

2 1 5
( )

5 10 10 5 1B

s
G s

s s s s s
−

=
+ + + + +

                     (17) 

The process (17) was identified by the model (8) 
with a time-delay d=2 and sampling period sT 5,00 = . 
The discrete model which was obtained from the 
model (17) by Z-transform is in the following form  

( )
1 2

1 2
1 2

0.7723 0.8514
1 1 6521 0 8514B

z zG z z
. z . z

− −
− −

− −

− +
=

− +

 
                  (18) 
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The comparison of the step responses of the 
continuous-time model (17) and the discrete model 
(18) is shown in Fig. 6. 

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time [s]

yc
, 

yd

 

 

yc
yd

 
Fig. 6. Comparison of step responses yc, yd for d =2 
(process (17)) 
 
3 Implementation of Predictive 
Control 
In this Section, GPC (General predictive control) 
will be briefly described. The GPC method is in 
principle applicable to both SISO and MIMO 
processes and is based on input-output models. The 
standard cost function used in GPC contains 
quadratic terms of (possible filtered) control error 
and control increments on a finite horizon into the 
future 

( ) ( ) ( ) ( ) ( )
uNN

i N i

ˆJ i y k i w k i i u k iδ λ Δ
= =

= ⎡ + − + ⎤ + ⎡ + − ⎤⎣ ⎦ ⎣ ⎦∑ ∑
2

1

2 2

1
1

 
(19) 

where  ( )iky +ˆ   is the process output of i steps in the 
future predicted on the base of information available 
upon the time k, ( )1+kw   is the sequence of the 
reference signal and ( )1−+Δ iku   is the sequence of 
the future control increments that have to be 
calculated. 

Implicit constraints on uΔ  are placed between Nu 
and N2 as  

( ) 21 0 uu k i , N i NΔ + − = < ≤                            (20)             

The parameters ( )iδ  and ( )iλ  are sequences 
which affect future behaviour of the controlled 
process. Generally, they are chosen in the form of 
constants or exponential weights, according to our 
requirements on control.  

3.1 Calculation of the Optimal Control 
The objective of predictive control is a computation 
of a sequence of future increments of the 
manipulated variable [ ]( ), ( 1),u k u kΔ Δ + K  so that the 
criterion (19) was minimized. For further 
computation, it is necessary to transform the 
criterion (19) to a matrix form.  

The output of the model (predictor) is computed 
as the sum of the free response 0y  and the forced 
response of the model ny  

0ˆ n= +y y y                                                     (21)                    

It is possible to compute the forced response as 
the multiplication of the matrix G (Jacobian of the 
model) and the vector of future control 
increments Δu , which is generally a priori unknown  

n Δ=y G u                                                              (22) 

where  

2 2 2 2

1

2 1

3 2 1

1 2 1

0 0 0
0 0

0

uN N N N N

g
g g
g g g

g g g g− − − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

L

L

L

M M M O M

L
                 

(23)

 
is a matrix containing values of the step sequence. 

It follows from equations (21) and (22) that the 
predictor in a vector form is given by  

0ˆ Δ= +y G u y                                                          (24) 

and the cost function (19) can be modified to the 
form below 

( ) ( )
( ) ( )0 0

T T

T T

ˆ ˆJ λΔ Δ

Δ Δ λΔ Δ

= − − + =

= + − + − +

y w y w u u

G u y w G u y w u u       
(25)

 
where w  is the vector of future reference trajectory.                    

Minimisation of the cost function (25) now 
becomes a direct problem of linear algebra. The 
solution in an unconstrained case can be found by 
setting partial derivative of J with respect to Δu  to 
zero and yields   

( ) ( )
1

0
T TΔ λ

−
= − + −u G G I G y w                           (26) 

where the gradient g  and Hessian H  are defined as 

( )0
T T= −g G y w                                        (27) 

T λ= +H G G I                                                     (28) 
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Equation (26) gives the whole trajectory of the 
future control increments and such is an open-loop 
strategy. To close the loop, only the first element u , 
e. g. ( )Δu k  is applied to the system and the whole 
algorithm is recomputed at time k+1. This strategy 
is called the Receding Horizon Principle and is one 
of the key issues in the MBPC concept.  

If the first row of the matrix ( ) 1T Tλ
−

+G G I G  is 
denoted as  K  then the actual control increment can 
be calculated as 

 ( ) ( )0u kΔ = −K w y                           (29) 
 

 
4 Computation of Predictor 
An important task is computation of predictions for 
arbitrary prediction and control horizons. Dynamics 
of most of processes requires horizons of length 
where it is not possible to compute predictions in a 
simple straightforward way. Recursive expressions 
for computation of the free response and the matrix 
G in each sampling period had to be derived. There 
are several different ways of deriving the prediction 
equations for transfer function models. Some papers 
make use of Diophantine equations to form the 
prediction equations (e.g. [14]). In [10] matrix 
methods are used to compute predictions. We 
derived a method for recursive computation of both 
the free response and the matrix of the dynamics 
[15]. 
Computation of the predictor for the time-delay 
system can be obtained by modification of the 
predictor for the corresponding system without a 
time-delay. At first we will consider the second 
order system without time-delay and then we will 
modify the computation of predictions for the time-
delay system.  

 
4.1 Second Order System without Time-
Delay 
The model is described by the transfer function 

 ( ) ( )
( )1

1

2
2

1
1

2
2

1
11

1 −

−

−−

−−
− =

++

+
=

zA
zB

zaza
zbzb

zG                       (30)                 

( ) ( )1 1 2 1 1 2
1 2 1 21 ;A z a z a z B z b z b z− − − − − −= + + = +      (31) 

The model can be also written in the form  

( ) ( ) ( ) ( )kuzBkyzA 11 −− =                                       (32) 

A widely used model in general model predictive 
control is the CARIMA model which we can obtain 
from the nominal model (32) by adding a 
disturbance model 

( ) ( ) ( ) ( ) ( ) ( )knzCkuzBkyzA cΔ
+=

−
−−

1
11                     (33) 

where ( )knc   is a non-measurable random 
disturbance that is assumed to have zero mean value 
and constant covariance and the operator delta is 

11 −− z . Inverted delta is then an integrator. 
The polynomial ( )1−zC  will be further considered 

as ( ) 11 =−zC . The CARIMA description of the 
system is then in the form 

( ) ( ) ( ) ( ) ( )1 1 1 cA z y k B z u k n kΔ Δ− −= − +            (34) 
The difference equation of the CARIMA model 

without the unknown term ( )knc  can be expressed 
as:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1` 2 2

1 2

1 1 2 3

1 2

y k a y k a a y k a y k

b u k b u kΔ Δ

= − − + − − + − +

+ − + −

                                                      (35) 
It was necessary to compute three step ahead 

predictions in straightforward way by establishing 
of lower predictions to higher predictions. The 
model order defines that computation of one step 
ahead prediction is based on three past values of the 
system output. The three step ahead predictions are 
as follows  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1` 2 2

1 2

1 1` 2 2

1 2

1 1` 2 2

1 2

ˆ 1 1 1 2

1
ˆ 2 1 1 1

1
ˆ 3 1 2 1

2 1

y k a y k a a y k a y k

b u k b u k

y k a y k a a y k a y k

b u k b u k

y k a y k a a y k a y k

b u k b u k

Δ Δ

Δ Δ

Δ Δ

+ = − + − − + − +

+ + −

+ = − + + − + − +

+ + +

+ = − + + − + + +

+ + + +

                                                      (36) 
The predictions after modification can be written 

in a matrix form 

( )
( )
( )

( )
( )

( )
( )
( )
( )

( )
( ) ( ) ( ) ( )

1 11 12 13 14

2 1 21 22 23 24

3 2 31 32 33 34

1

1 1 2 1
2

1 2 1 1 1 1 2 1 1 2

ˆ 1 0
1

ˆ 2
1 2

ˆ 3
1

0
1

1 1 1

y k
y k g p p p p

u k y k
y k g g p p p p

u k y kg g p p p py k
u k

b
u

b a b b

a a b a b a b b a b

Δ

Δ

Δ

Δ

⎡ ⎤
⎡ + ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥−⎣ ⎦
⎡ ⎤
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥

− + − + − − +⎢ ⎥⎣ ⎦

( )
( )

( ) ( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )
( )
( )
( )

1 1 2
2

1 1 2 1 1 2 2
3 2 2

1 1 1 2 2 1 1 2 2 1 1 2

2 2

2 1 2 1
2 2

2 1 1 2 2 2 1 1 2 2

1

1

1 1

1 2 1 1 1

1
1 1

2
1 1

1

k

u k

a a a

a a a a a a a

a a a a a a a a a a a a

y k
a b

y k
a a b a

y k
a a a a a b a a a b

u k

Δ

Δ

⎡ ⎤
+⎢ ⎥

+⎢ ⎥⎣ ⎦

⎡ − −
⎢

+ − + − − − +⎢
⎢

− + − − + − − + − + −⎢⎣
⎡ ⎤

⎤ ⎢ ⎥
−⎥ ⎢ ⎥

− − ⎥ ⎢ ⎥−⎥ ⎢ ⎥− + − − + − ⎥⎦ ⎢ ⎥−⎣ ⎦

                                                                   (37) 
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It is possible to divide computation of the 
predictions to recursion of the free response and 
recursion of the matrix of the dynamics. Based on 
the three previous predictions it is repeatedly 
computed the next row of the free response matrix 
in the following way: 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) 142242134144

132232133143

122222132142

112212131141

1
1
1
1

papaapap
papaapap
papaapap
papaapap

+−+−=
+−+−=
+−+−=
+−+−=

                 

(38)

 
The first row of the matrix is omitted in the next 

step and further prediction is computed based on the 
three last rows including the one computed in the 
previous step. This procedure is cyclically repeated. 
It is possible to compute an arbitrary number of 
rows of the matrix. 

The recursion of the dynamics matrix is similar. 
The next element of the first column is repeatedly 
computed in the same way as in the previous case 
and the remaining columns are shifted to form a 
lower triangular matrix in the way which is obvious 
from the equation (37). This procedure is performed 
repeatedly until the prediction horizon is achieved. 
If the control horizon is lower than the prediction 
horizon a number of columns in the matrix is 
reduced. Computation of the new element is 
performed as follows: 

( ) ( )4 1 3 1 2 2 2 11g a g a a g a g= − + − +                           (39)  
 
4.2 Second Order System with Time-Delay 
The nominal model with two steps time-delay is 
considered as 

( ) ( )
( )

2
2

2
1

1

2
2

1
12

1

1
1

1
−

−−

−−
−

−

−
−

++

+
== z

zaza
zbzb

z
zA
zBzG

             
(40)

 

The CARIMA model for time-delay system takes 
the form 

( ) ( ) ( ) ( ) ( )knkuzBzkyzA c
d +−Δ=Δ −−− 111

                (41) 

where d is the dead time. In our case d is equal to 2. 
In order to compute the control action it is necessary 
to determine the predictions from d+1 (2+1 in our 
case) to d+N2 (2+N2). 

The predictor (37) is then modified to 
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(42)

 

Recursive computation of the matrices is 
analogical to the recursive computation described in 
the previous section.  

The predictor can be also modified for arbitrary 
number of steps of time delay 
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(43) 

 
5 Simulation Examples 
For simulation examples were chosen the systems 
introduced in the sections 2.1 and 2.2. Control 
responses are in the Figs. 7-10. 

 The tuning parameters that are lengths of the 
prediction and control horizons and the weighting 
coefficient λ were tuned experimentally. There is a 
lack of clear theory relating to the closed loop 
behavior to design parameters. The length of the 
prediction horizon, which should cover the 
important part of the step response, was in both 
cases set to N = 40. The length of the control 
horizon was also set to Nu = 40. The coefficient λ 
was taken as equal to 0,5. 
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Fig. 7. Control of the model (16) 

 
Fig. 8. Control of the model (16) – manipulated 
variable 

 
Fig. 9. Control of the model (18) 

 
Fig. 10. Control of the model (18) – manipulated 
variable  
 
Asymptotic tracking of the reference signal was 
achieved in all cases. The control of non-minimum 
phase system was rather sensitive to tuning 
parameters. Experimental tuning of the controller 
was more complicated in this case. 
 
6 Experimental Example 
The use of the predictive control algorithm is also 
demonstrated on a control of laboratory heat 
exchanger in simulation conditions. The laboratory 
heat exchanger [16] is based on the principle of 
transferring heat from a source through a piping 
system using a heat transferring media to a heat-
consuming appliance.  

 
6.1 Laboratory Heat Exchanger Description 
A scheme of the laboratory heat exchanger is 
depicted in Fig. 11 The heat transferring fluid (e. g. 
water) is transported using a continuously 
controllable DC pump (6) into a flow heater (1) with 
max. power of 750 W. The temperature of a fluid at 
the heater output T1 is measured by a platinum 
thermometer. Warmed liquid then goes through a 15 
meters long insulated coiled pipeline (2) which 
causes the significant delay in the system. The air-
water heat exchanger (3) with two cooling fans (4, 
5) represents a heat-consuming appliance. The 
speed of the first fan can be continuously adjusted, 
whereas the second one is of on/off type. Input and 
output temperatures of the cooler are measured 
again by platinum thermometers as T2, resp. T3. The 
laboratory heat exchanger is connected to a standard 
PC via technological multifunction I/O card. For all 
monitoring and control functions the 
MATLAB/SIMULINK environment with Real 
Time Toolbox was used. 
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Fig. 11. Scheme of laboratory heat exchanger  
 
6.2 Identification of Laboratory Heat 
Exchanger  
The dynamic model of the laboratory heat 
exchanger was obtained from processed input (the 
power of a flow heater P [W]) and output (the 
temperature of a T2 [deg] of the cooler) data. As the 
input signal was again used the Random Gaussian 
Signal. Following discrete transfer function for 
sampling period T0 = 100 s was identified 

1 2
1 2

1 2

0.1494 0.028( )
1 0.6376 0.1407

z zG z z
z z

− −
− −

− −

+
=

− −                    
(44) 

Control responses are in Figs. 12-13. 

 
Fig. 12. Control of the model of the laboratory heat 
exchanger 
 

 
Fig. 13. Control of the model of the laboratory heat 
exchanger-manipulated variable 

 
7 Conclusion 
The algorithm for control of the higher-order 
processes based on model predictive control was 
designed. The higher-order process was 
approximated  by the second-order model with time 
delay. The predictive controller is based on the 
recursive computation of predictions by direct use 
of the CARIMA model. The computation of 
predictions was extended for the time-delay system. 
The control of two modifications of the higher-order 
processes (stable and non-minimum phase) were 
verified by simulation. The laboratory heat 
exchanger system was identified by an experimental 
on-line method and its discrete model was also used 
for verification of the proposed predictive 
controller. The simulation verification provided 
good control results. The simulation experiments 
confirmed that predictive approach is able to cope 
with the given control problem.  
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