10 research outputs found

    Adaptation of Zerotrees Using Signed Binary Digit Representations for 3D Image Coding

    Get PDF
    Zerotrees of wavelet coefficients have shown a good adaptability for the compression of three-dimensional images. EZW, the original algorithm using zerotree, shows good performance and was successfully adapted to 3D image compression. This paper focuses on the adaptation of EZW for the compression of hyperspectral images. The subordinate pass is suppressed to remove the necessity to keep the significant pixels in memory. To compensate the loss due to this removal, signed binary digit representations are used to increase the efficiency of zerotrees. Contextual arithmetic coding with very limited contexts is also used. Finally, we show that this simplified version of 3D-EZW performs almost as well as the original one

    Minimizing hamming weight based on 1's complement of binary numbers over GF(2m)

    Get PDF

    Sensor networks with secure public-key over GF (Z)

    Get PDF

    Elliptic curve and pseudo-inverse matrix based cryptosystem for wireless sensor networks

    Get PDF
    Applying asymmetric key security to wireless sensor network (WSN) has been challenging task for the researcher of this field. One common trade-off is that asymmetric key architecture does provide good enough security than symmetric key but on the other hand, sensor network has some resource limitations to implement asymmetric key approach. Elliptic curve cryptography (ECC) has significant advantages than other asymmetric key system like RSA, D-H etc. The most important feature of ECC is that it has much less bit requirement and at the same time, ensures better security compared to others. Hence, ECC can be a better option for implementing asymmetric key approach for sensor network. We propose a new cryptosystem which is based on Pseudo-inverse matrix and Elliptic Curve Cryptography. We establish a relationship between these two different concepts and evaluate our proposed system on the basis of the results of similar works as well as our own simulation done in TinyOS environment

    Fast and VLSI efficient binary-to-CSD encoder using bypass signal

    Full text link

    Nested Method for Optimizing Elliptic Curve Scalar Multiplication

    Get PDF
    The algebraic curve that attracted considerable interest in recent years is called Elliptic Curve (EC). This is due to the computational complexity of its arithmetic over a finite field. The complexity of its arithmetic operations granted EC highly interest for many applications, especially in Cryptography. The scalar multiplication plays an important role in the performance of the elliptic curve cryptosystem (ECC). This paper focused on optimizing the performance of this important operation, which is called elliptic curve scalar multiplication (ECSM). As known from previous works, this operation can be sped up using one of the most important representations called Mutual Opposite Form (MOF). Based on this representation, we proposed an algorithm to improve the performance of ECSM. The efficiency of the proposed algorithm is enhanced in terms of computation time compared to the existing standard ECSM methods

    Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication

    Get PDF
    Cryptography via public key cryptosystems (PKC) has been widely used for providing services such as confality, authentication, integrity and non-repudiation. Other than security, computational efficiency is another major issue of concern. And for PKC, it is largely controlled by either modular exponentiation or scalar multiplication operations such that found in RSA and elliptic curve cryptosystem (ECC), respectively. One approach to address this operational problem is via concept of addition chain (AC), in which the exhaustive single operation involving large integer is reduced into a sequence of operations consisting of simple multiplications or additions. Existing techniques manipulate the representation of integer into binary and m-ary prior performing the series of operations. This paper proposes an iterative variant of sliding window method (SWM) form of m-ary family, for shorter sequence of multiplications corresponding to the modular exponentiation. Thus, it is called an iterative SWM. Moreover, specific for ECC that imposes no extra resource for point negation, the paper proposes an iterative recoded SWM, operating on integers recoded using a modified non-adjacent form (NAF) for speeding up the scalar multiplication. The relative behaviour is also examined, of number of additions in scalar multiplications, with the integers hamming weight. The proposed iterative SWM methods reduce the number of operations by up to 6% than the standard SWM heuristic. They result to even shorter chains of operations than ones returned by many metaheuristic algorithms for the AC

    Signed binary representations revisited

    Get PDF
    Abstract. The most common method for computing exponentiation of random elements in Abelian groups are sliding window schemes, which enhance the efficiency of the binary method at the expense of some precomputation. In groups where inversion is easy (e.g. elliptic curves), signed representations of the exponent are meaningful because they decrease the amount of required precomputation. The asymptotic best signed method is wNAF, because it minimizes the precomputation effort whilst the non-zero density is nearly optimal. Unfortunately, wNAF can be computed only from the least significant bit, i.e. right-to-left. However, in connection with memory constraint devices left-to-right recoding schemes are by far more valuable. In this paper we define the MOF (Mutual Opposite Form), a new canonical representation of signed binary strings, which can be computed in any order. Therefore we obtain the first left-to-right signed exponentrecoding scheme for general width w by applying the width w sliding window conversion on MOF left-to-right. Moreover, the analogue rightto-left conversion on MOF yields wNAF, which indicates that the new class is the natural left-to-right analogue to the useful wNAF. Indeed, the new class inherits the outstanding properties of wNAF, namely the required precomputation and the achieved non-zero density are exactly the same
    corecore