510 research outputs found

    Identification of SAR Detected Targets on Sea in Near Real Time Applications for Maritime Surveillance

    Get PDF
    Remote sensing technologies are widely used in maritime surveillance applications. Nowadays, spaceborne Synthetic Aperture Radar (SAR) systems provide outstanding capabilities for target detection at sea for large areas independently from the weather conditions. The generated value added target detection product is composed by complementary information from the Automatic Identification System (AIS). Resulting information layers provides a more reliable picture on the maritime situation awareness. This paper describes the approach of SAR-AIS data fusion and its visualization means developed for Near Real Time (NRT) Applications for Maritime Situational Awareness by the Maritime Security Lab at the Ground Station in Neustrelitz, part DLR’s German Remote Sensing Data Center (DFD). Presented implementation is based on combination of many open source geospatial libraries and frameworks (e.g., GDAL/OGR, Geoserver, PostgresSQL) and shows their effectiveness in the context of complex automated data processing in the frame of NRT requirements

    Space-based Global Maritime Surveillance. Part I: Satellite Technologies

    Full text link
    Maritime surveillance (MS) is crucial for search and rescue operations, fishery monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since the early days of seafaring, MS has been a critical task for providing security in human coexistence. Several generations of sensors providing detailed maritime information have become available for large offshore areas in real time: maritime radar sensors in the 1950s and the automatic identification system (AIS) in the 1990s among them. However, ground-based maritime radars and AIS data do not always provide a comprehensive and seamless coverage of the entire maritime space. Therefore, the exploitation of space-based sensor technologies installed on satellites orbiting around the Earth, such as satellite AIS data, synthetic aperture radar, optical sensors, and global navigation satellite systems reflectometry, becomes crucial for MS and to complement the existing terrestrial technologies. In the first part of this work, we provide an overview of the main available space-based sensors technologies and present the advantages and limitations of each technology in the scope of MS. The second part, related to artificial intelligence, signal processing and data fusion techniques, is provided in a companion paper, titled: "Space-based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques" [1].Comment: This paper has been submitted to IEEE Aerospace and Electronic Systems Magazin

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmäßige und großflächige überwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale Aktivitäten rechtzeitig zu erkennen. Heutzutage werden dafür überwiegend das automatische Identifikationssystem (AIS) und stationäre Radarstationen an den Küsten eingesetzt. Luft- und weltraumgestützte Radarsensoren, die unabhängig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergänzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationären AIS- und Radarstationen befinden. Luftgestützte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von räumlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestützte Radare eine große räumliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept für die Verarbeitung von Radardaten für die Schiffsverkehr-überwachung mit luftgestützten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen für die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell für zukünftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. Darüber hinaus eignen sich die Algorithmen auch für beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenüber Lagewinkeländerungen, die während der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die für die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-Verhältnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollständig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg für zukünftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohärenten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusätzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das Verhältnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hängt stark von der Qualität der von der Meeresoberfläche rückgestreuten Radardaten ab, die für die Schätzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert für eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten für die Statistikschätzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. Während des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfähiges datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschätzt wurden. Es werden verschiedene Methoden zur Schätzung der DOA-Winkel für ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    PMAR: Piracy, Maritime Awareness & Risks. Trial Implementation under MASE

    Get PDF
    During one year, from September 2014 to September 2015, the PMAR-MASE project has produced the real-time traffic picture of the reporting ships (that use the AIS or LRIT automatic position reporting system) over the entire Western Indian Ocean, and delivered it via a web viewer to two authorities in Africa with a regional maritime security responsibility: the Anti-Piracy Unit of the Indian Ocean Commission in the Seychelles, and the Regional Maritime Rescue Coordination Centre of the Kenya Maritime Authority in Mombasa. In addition, monthly ship density maps have been produced, and a number of satellite images have been analysed to assess the presence of non-reporting ships. The purpose of the project was familiarisation of maritime authorities in the Eastern-Southern Africa / Indian Ocean region with region-wide maritime monitoring, providing hands-on experience, and developing an understanding of what kind of information level is attainable and how to use the information. This report discusses the activities done under the project, the data that were used, the system design, the processing that was done, the visits to the region, the user feedback, and the performance of the system. The PMAR approach is based on the fusion of AIS and LRIT data from several sources, with satellite AIS being the most valuable data type, supplemented by a limited number of satellite SAR images. It is concluded that this approach provides a very powerful tool for region-wide maritime awareness, to which the authorities can avail themselves via commercial services.JRC.G.3-Maritime affair

    Study and design of a Business Model that explore the complementarity of VLEO platforms for Vessel Tracking

    Get PDF
    Throughout this study, the application of satellites in a Very Low Earth Orbit (VLEO) is analyzed to complement the already existing technologies used for vessels tracking. This study is part of the DISCOVERER project, which focuses on the research and development of VLEO technologies to apply them in Earth Observation (EO). Within the team, the UPC focuses on market analysis and the study of business opportunities for VLEO technologies. A value proposition is developed following the Canvas model, this being the strategy used to offer a service to a specific client. For the development of the value proposition, the study focuses on optimizing vessels tracking for maritime transport companies. A market study is carried out previously, to analyse how could the value proposition fit in it. The analysis determines that the optimal methodology and technologies to complement the platforms currently used for vessels tracking with an AIS system (Automatic Identification System) installed, is through Data Integration. This method refers to the combination of the data obtained by different platforms (satellites with different technologies and in different orbits complementing both, aerial and terrestrial platforms) once received in the ground station. For the tracking of those ships exempt from carrying an AIS transponder or those that do not want to be tracked, the optimal tracking method would be the combination of data between different platforms before being received on the ground station (System Integration)

    Data mining for anomaly detection in maritime traffic data

    Get PDF
    For the past few years, oceans have become once again, an important means of communication and transport. In fact, traffic density throughout the globe has suffered a substantial growth, which has risen some concerns. With this expansion, the need to achieve a high Maritime Situational Awareness (MSA) is imperative. At the present time, this need may be more easily fulfilled thanks to the vast amount of data available regarding maritime traffic. However, this brings in another issue: data overload. Currently, there are so many data sources, so many data to obtain information from, that the operators cannot handle it. There is a pressing need for systems that help to sift through all the data, analysing and correlating, helping in this way the decision making process. In this dissertation, the main goal is to use different sources of data in order to detect anomalies and contribute to a clear Recognised Maritime Picture (RMP). In order to do so, it is necessary to know what types of data exist and which ones are available for further analysis. The data chosen for this dissertation was Automatic Identification System (AIS) and Monitorização Contínua das Atividades da Pesca (MONICAP) data, also known as Vessel Monitoring System (VMS) data. In order to store 1 year worth of AIS and MONICAP data, a PostgreSQL database was created. To analyse and draw conclusions from the data, a data mining tool was used, namely, Orange. Tests were conducted in order to assess the correlation between data sources and find anomalies. The importance of data correlation has never been so important and with this dissertation the aim is to show that there is a simple and effective way to get answers from great amounts of data.Nos últimos anos, os oceanos tornaram-se, mais uma vez, um importante meio de comunicação e transporte. De facto, a densidade de tráfego global sofreu um crescimento substancial, o que levantou algumas preocupações. Com esta expansão, a necessidade de atingir um elevado Conhecimento Situacional Marítimo (CSM) é imperativa. Hoje em dia, esta necessidade pode ser satisfeita mais facilmente graças à vasta quantidade de dados disponíveis de tráfego marítimo. No entanto, isso leva a outra questão: sobrecarga de dados. Atualmente existem tantas fontes de dados, tantos dados dos quais extrair informação, que os operadores não conseguem acompanhar. Existe uma necessidade premente para sistemas que ajudem a escrutinar todos os dados, analisando e correlacionando, contribuindo desta maneira ao processo de tomada de decisão. Nesta dissertação, o principal objetivo é usar diferentes fontes de dados para detetar anomalias e contribuir para uma clara Recognised Maritime Picture (RMP). Para tal, é necessário saber que tipos de dados existem e quais é que se encontram disponíveis para análise posterior. Os dados escolhidos para esta dissertação foram dados Automatic Identification System (AIS) e dados de Monitorização Contínua das Atividades da Pesca (MONICAP), também conhecidos como dados de Vessel Monitoring System (VMS). De forma a armazenar dados correspondentes a um ano de AIS e MONICAP, foi criada uma base de dados em PostgreSQL. Para analisar e retirar conclusões, foi utilizada uma ferramenta de data mining, nomeadamente, o Orange. De modo a que pudesse ser avaliada a correlação entre fontes de dados e serem detetadas anomalias foram realizados vários testes. A correlação de dados nunca foi tão importante e pretende-se com esta dissertação mostrar que existe uma forma simples e eficaz de obter respostas de grandes quantidades de dado

    Maritime information sharing environment deployment using the advanced multilayered Data Lake capabilities: EFFECTOR project case study

    Get PDF
    Establishing an efficient information sharing network among national agencies in maritime domain is of essential importance in enhancing the operational performance, increasing the situational awareness and enabling interoperability among all involved maritime surveillance assets. Based on various data-driven technologies and sources, the EU initiative of Common Information Sharing Environment (CISE), enables the networked participants to timely exchange information concerning vessel traffic, joint SAR & operational missions, emergency situations and other events at sea. In order to host and process vast amounts of vessels and related maritime data consumed from heterogeneous sources (e.g. SAT-AIS, UAV, radar, METOC), the deployment of big data repositories in the form of Data Lakes is of great added value. The different layers in the Data Lakes with capabilities for aggregating, fusing, routing and harmonizing data are assisted by decision support tools with combined reasoning modules with semantics aiming at providing a more accurate Common Operational Picture (COP) among maritime agencies. Based on these technologies, the aim of this paper is to present an end-to-end interoperability framework for maritime situational awareness in strategic and tactical operations at sea, developed in EFFECTOR EU-funded project, focusing on the multilayered Data Lake capabilities. Specifically, a case study presents the important sources and processing blocks, such as the SAT-AIS, CMEMS, UAV components, enabling maritime information exchange in CISE format and communication patterns. Finally, the technical solution is validated in the project’s recently implemented maritime operational trials and the respective results are documented

    Anomaly detection in vessel tracking using Support Vector Machines (SVMs)

    Get PDF
    The paper is devoted to supervise method approach to identify the vessel anomaly behavior in waterways using the Automated Identification System (AIS) vessel reporting data. In this work, we describe the use of SVMs to detect the vessel anomaly behavior. The SVMs is a supervised method that needs some pre knowledge to extract the maritime movement patterns of AIS raw data into information. This is the basis to remodel information into a meaningful and valuable form. The result of this work shows that the SVMs technique is applicable to be used for the identification of vessel anomaly behavior. It is proved that the best accuracy result is obtained from dividing raw data into 70% for training and 30% for testing stages

    Deep learning-based vessel detection from very high and medium resolution optical satellite images as component of maritime surveillance systems

    Get PDF
    This thesis presents an end-to-end multiclass vessel detection method from optical satellite images. The proposed workflow covers the complete processing chain and involves rapid image enhancement techniques, the fusion with automatic identification system (AIS) data, and the detection algorithm based on convolutional neural networks (CNN). The algorithms presented are implemented in the form of independent software processors and integrated in an automated processing chain as part of the Earth Observation Maritime Surveillance System (EO-MARISS).In der vorliegenden Arbeit wird eine Methode zur Detektion von Schiffen unterschiedlicher Klassen in optischen Satellitenbildern vorgestellt. Diese gliedert sich in drei aufeinanderfolgende Funktionen: i) die Bildbearbeitung zur Verbesserung der Bildeigenschaften, ii) die Datenfusion mit den Daten des Automatischen Identifikation Systems (AIS) und iii) dem auf „Convolutional Neural Network“ (CNN) basierenden Detektionsalgorithmus. Die vorgestellten Algorithmen wurden in Form eigenständiger Softwareprozessoren implementiert und als Teil des maritimen Erdbeobachtungssystems integriert

    MRCC Oostende: new technologies for a safer North Sea

    Get PDF
    On 1 June 2006, a new Maritime Rescue Coordination Centre (MRCC) will be commissioned by the Shipping Assistance Division of the Ministry of the Flemish Community, offering a state-of-the-art and integrated platform for Vessel Traffic Monitoring, Incident Management and Search & Rescue functionalities to ensure safety and to coordinate rescue actions at sea. This paper gives a preview of the advanced Traffic Monitoring functionalities as they will be available in the MRCC
    corecore