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Abstract

For the past few years, oceans have become once again, an important means of
communication and transport. In fact, traffic density throughout the globe has suffered a
substantial growth, which has risen some concerns. With this expansion, the need to
achieve a high Maritime Situational Awareness (MSA) is imperative. At the present time,
this need may be more easily fulfiled thanks to the vast amount of data available
regarding maritime traffic. However, this brings in another issue: data overload.
Currently, there are so many data sources, so many data to obtain information from, that
the operators cannot handle it. There is a pressing need for systems that help to sift
through all the data, analysing and correlating, helping in this way the decision making

process.

In this dissertation, the main goal is to use different sources of data in order to
detect anomalies and contribute to a clear Recognised Maritime Picture (RMP). In order
to do so, it is necessary to know what types of data exist and which ones are available
for further analysis. The data chosen for this dissertation was Automatic Identification
System (AIS) and Monitorizacdo Continua das Atividades da Pesca (MONICAP) data,
also known as Vessel Monitoring System (VMS) data. In order to store 1 year worth of
AIS and MONICAP data, a PostgreSQL database was created. To analyse and draw
conclusions from the data, a data mining tool was used, namely, Orange. Tests were

conducted in order to assess the correlation between data sources and find anomalies.

The importance of data correlation has never been so important and with this
dissertation the aim is to show that there is a simple and effective way to get answers

from great amounts of data.

Keywords: maritime situational awareness, data, maritime traffic, AIS, MONICAP.
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Resumo

Nos ultimos anos, os oceanos tornaram-se, mais uma vez, um importante meio
de comunicacdo e transporte. De facto, a densidade de trafego global sofreu um
crescimento substancial, o que levantou algumas preocupacdes. Com esta expansao,
a necessidade de atingir um elevado Conhecimento Situacional Maritimo (CSM) é
imperativa. Hoje em dia, esta necessidade pode ser satisfeita mais facilmente gracas a
vasta quantidade de dados disponiveis de trafego maritimo. No entanto, isso leva a outra
gquestdo: sobrecarga de dados. Atualmente existem tantas fontes de dados, tantos
dados dos quais extrair informacéo, que os operadores ndo conseguem acompanhar.
Existe uma necessidade premente para sistemas que ajudem a escrutinar todos os
dados, analisando e correlacionando, contribuindo desta maneira ao processo de

tomada de decisao.

Nesta dissertacdo, o principal objetivo é usar diferentes fontes de dados para
detetar anomalias e contribuir para uma clara Recognised Maritime Picture (RMP). Para
tal, € necessario saber que tipos de dados existem e quais € que se encontram
disponiveis para andlise posterior. Os dados escolhidos para esta dissertacao foram
dados Automatic Identification System (AIS) e dados de Monitorizacdo Continua das
Atividades da Pesca (MONICAP), também conhecidos como dados de Vessel
Monitoring System (VMS). De forma a armazenar dados correspondentes a um ano de
AIS e MONICAP, foi criada uma base de dados em PostgreSQL. Para analisar e retirar
conclusdes, foi utilizada uma ferramenta de data mining, nomeadamente, o Orange. De
modo a que pudesse ser avaliada a correlagdo entre fontes de dados e serem detetadas

anomalias foram realizados varios testes.

A correlacdo de dados nunca foi tdo importante e pretende-se com esta
dissertagdo mostrar que existe uma forma simples e eficaz de obter respostas de

grandes quantidades de dados.

Palavras-chave: conhecimento situacional maritimo, dados, trafego maritimo, AlS,
MONICAP.
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1. Introduction

In the last decade, oceans have regained an unparalleled importance to all
nations, mainly due to the financial influence they represent for each country, especially

for those that are considered coastal States, with large sea borders.

Nowadays, oceans are used by almost every country as an effective and cost
efficient way to commerce goods. In fact, maritime traffic has increased significantly,

being considered the main route of global trade.

The United Nations refer that “the world shipping fleet provides not only transport
connectivity to global trade but also livelihoods to the people working in maritime
businesses in developed and developing countries” (United Nations, 2017). In fact, if the
values at the beginning of 2017 are to be considered “the world fleet's commercial value
amounted to $829 billion, with different countries benefiting from the building, owning,
flagging, operation and scrapping of ships” and “with over 80 per cent of global trade by
volume and more than 70 per cent of its value being carried on board ships and handled
by seaports worldwide, the importance of maritime transport for trade and development

cannot be overemphasized” (United Nations, 2017).

Accordingly, the growth in sea transport has consequently resulted in the
intensification of traffic density. This brings new issues regarding the navigation and

maritime transport at safety and security levels (Sulemane, 2015).

More specifically, Portugal, a coastal State with 92.226,0 km? (Pordata, 2016),
located on the South West Europe, has a vast maritime area under its domain. As
observed in Figures 1 and 2, it is easy to conclude the vast commercial routes and

immeasurable amount of ships that cross the Portuguese jurisdictional waters.

According to Autoridade da Mobilidade e dos Transportes (AMT)?!, cargo trade at
the Portuguese mainland ports grew 5.1% by the end of October 2017 to a record of 81.3
million tonnes. Lisbon stands out, with a year-on-year gain of 26% for the best record in
the last nine years. By trading 10.3 million tonnes, the port of the capital alone contributed
with 2.1 million tonnes to the increase in activity on the mainland (Transportes e
Negocios, 2017).

1 Transports and Mobility Authority. It is the regulatory and oversight body for the transport sector in
Portugal.
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Figure 1 - Main international maritime routes (Jornal da Economia do Mar, n.d.).

Figure 2 - Real time maritime traffic (Marine Traffic, n.d.).

In addition to trade, there are also other resources in national waters, likewise
important, which are of considerable value and need to be protected and preserved.
Therefore, it is clear the need to ensure the proper use of the sea, preventing its illegal
exploitation by defending its interests, encouraging the overall stability. It is crucial to
have an adequate monitoring of national waters, to guarantee safety and security.

Portugal is located in a privileged position, not only in terms of international
maritime traffic for being near focal points of maritime traffic, but also because of its
responsibility in the area of Search and Rescue (SAR). With its archipelagos located in
the North Atlantic, this State is responsible for a SAR area almost 63 times bigger than
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the country itself, with 5.754.848 km? (Direcdo-Geral de Recursos Naturais, Seguranca

e Servicos Maritimos, n.d.).

In Portugal, it is the Portuguese Navy that has the responsibility of ensuring that
the country can use the sea for its own interests. Like other navies throughout the world,
it is based on a dual concept structure. Considering this structure, on the one hand, they
use their ships and means to perform in actions of military defence and in support of
foreign policies. On the other hand, they use them to perform in actions concerning the
authority and security of the country as well as to support the development of various
areas such as scientific and cultural, thus allowing the maximization of resources. In

other words, by carrying out missions of military and non-military nature.

That is why the Portuguese Navy, together with Policia Judiciaria (PJ)? and
Servico de Estrangeiros e Fronteiras (SEF)3, plays a big part in the fight against illegal
maritime activities. From these illegal activities, the following stand out: terrorism (in
Europe and possibly, in the near future, against the shipping lines essential for the world
economy), illegal immigration and human trafficking (mostly from the North of Africa to
Europe), piracy (for example near Guinea Gulf), drug trafficking (such as cocaine and
haxixe), illegal fishing and depletion of natural resources, among other more (Melo,
2011).

Due to its geographical position, Portugal is in the centre of the scene of multiple
illicit activities of transnational networks. lllegal activities are inextricably linked to trade

by sea.

Some of these lllicit activities, like drugs and weapons traffic, can be very difficult
to detect. There is no specificity in the type of ship that carries them, so in order to detect

them, in an appropriate amount of time, cross-agency collaboration is paramount.

On the other hand, illicit activities such as illegal fishing and unauthorised
scientific research can be more easily controlled, by being specialised vessels. However,
that is not an absolute truth because, depending on the size of the fishing vessels, they
may or may not have to report their position, in addition to the fact that they are not as

straightforwardly detected by coastal sensors.

2 Judiciary Police.

3 Immigration and Borders Services.
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Both the European Union (EU) and the North Atlantic Treaty Organization
(NATO) are counting on Portugal means to prevent and, if need be, deter any activity
that could jeopardize the safety and security of ships passing through this large area of
maritime responsibility. This is not an easy task as more threats assume a diffuse
feature, not easily recognisable and requiring more of the surveillance systems and their

operators.

Two different perspectives can be adopted concerning threats at sea. The first,
maritime safety, has as a main goal to guarantee the safety of navigation and of those
who are at sea, by preventing maritime accidents and, if not possible, deal with the
outcome and the consequences that may arise from those accidents. It also has the goal
of protecting the maritime environment and its sustainability by preventing the
exploitation of resources and pollution. The second, maritime security, aims to combat
illegal actions at sea (Sousa, 2013). This kind of threats are much more complex,
because they depend on third parties seeking to exploit the vulnerabilities of coastal

states, in covert actions.

Taking into consideration the sea’s economy growth, there is the need to create
a system that has the capacity to integrate all the information coming from different

sources.

The integration of all these sources of information will certainly allow to improve
and increase maritime situational knowledge, contributing to a more conscious action

throughout the decision cycle, making good use of time and financial resources.

By belonging to the National Emergency Service network, Maritime Rescue
Coordination Centre (MRCC) allows the Portuguese Navy to give a quick and specialized

response to emergency and rescue situations in its area of responsibility.

Centro de Operacdes Maritimas (COMAR)“, however, is the focal point for
command and control of all the activity carried out by the Navy, having to be in constant
coordination with all entities with responsibilities in marine areas under sovereignty,

jurisdiction or national responsibility (Marinha, 2018).

COMAR *“has an interagency and interdepartmental approach” (Marinha, 2018),
not only on a national level (the Portuguese Navy, National Maritime Authority,

Portuguese Air Force, SEF and PJ, among others) but also on an international level,

4 Maritime Operations Centre.
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where several information networks coexist in order to improve the coordinated efforts
of the different state departments, on their areas of jurisdiction and national

responsibility. These networks include military and non-military information.

The fact that MRCC and COMAR occupy the same building is a substantial
practical advantage. It allows access to different systems, therefore improving Maritime

Situational Awareness (MSA), thus helping to monitor activities at sea.

When it comes to COMAR’s role in in the military defence functions and support
of the State's foreign policy, it maintains a permanent monitoring on the missions of
Forcas Nacionais Destacadas (FND)®, such as those missions under the guidance of the
European Union and NATO in the fight against piracy in Somalia or NATO counter-

terrorism missions in the Mediterranean (Marinha, 2018).

COMAR also maintains a continuous monitoring on all Navy’s vessels with
assigned mission in national waters as well as on the means of the National Maritime
Authority. It acts as a pillar in the management of Navy’s operational information. In order

to do this, it relies on the Centro de Andlise de Dados Operacionais (CADOP)®.

For this dissertation, it is also important to distinguish two almost interchangeable

concepts such as surveillance and monitoring.

Maritime surveillance can be understood as the systematic observation of
maritime areas by all means available, with the goal of controlling the movement of
vessels or other vehicles, operating on the surface or sub-surface of the seas and
oceans. The ability to continuously cover large areas, with features like accuracy, data

discrimination and confidence describe what surveillance is all about.

Monitoring, on the other hand, can be distinguished from surveillance considering
its main goal. The aim is to maintain and improve standard and safety procedures in
order to have a better understanding of the environment by using actions belonging to
surveillance, with this knowledge being continuously improved over time (Carolas, 2016).

The monitoring therefore consists in controlling one or more parameters in order

to detect anomalies.

5 National Abroad Forces.

6 Operational Data Analysis and Management Centre.
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1.1. Motivation

Each coastal state recognises the importance of the sea resources and the
importance to take all measures so that what is his remains his, defending their rights in
what concerns exploitation and exclusivity. Therefore sea presence is fundamental, and
due to the vastness of maritime areas under Portuguese sovereignty or jurisdiction, that
may not always be an easy task, opening the opportunity for thirds parties to use
resources that do not belong to them. In order to ensure that laws and regulations are

enforced, coastal states should bet on improving the surveillance on their areas.

As a matter of fact, most of the activities taking place in Portugal’s maritime area
are not a direct, but a transitory threat. Nonetheless, it is important to avoid the absence
of authority at sea, taking a special care to not disregard any surveillance measures. It
is by maintaining a high level of maritime situational awareness, that Portugal can

counteract any attempts of illicit activities, always being one step ahead.

1.2. Topic’s relevance

The biggest problem regarding all the available data is the difficulty to transform
data in information and then putting into practice all the acquired knowledge. There is so
much data available that it is difficult to discern what is important and what can be put in
second plan. It is when connections between data sets are analysed or context is

introduced that some insight is usually gained, as it is represented in Figure 3.

CONTEXT

INFORMATION

UNDERSTANDING ——»

Figure 3 - Data, information, knowledge and wisdom (context vs understanding) (Marinha, 2018).

The need to integrate tools that merge data from different sources and compile

them into a single system is increasingly evident. At a time when illicit trafficking in the
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sea surpasses values never seen before and illegal migration is a harsh reality, there is
a pressing need to introduce means to help the decision making of who is on the ground

seeking guidance.

At the level of the Portuguese Navy, as an end-user, this subject gains particular
prominence. Having access to a software that could respond to the diversity of

challenges that the naval units come cross would be an added value.

1.3. Goals

In this dissertation, the main goal is to answer the following question:

e How to maximize the achievement of Maritime Situational Awareness by
detecting anomalies using different sources of data?
However, in order to do so, it is important to gain some insight on the area and answer

some questions derived from the above, such as:

e What is Maritime Situational Awareness and what is the current state of it in
Portugal?

¢ What data sources contribute to a good Recognized Maritime Picture (RMP)?
And which ones are available?

e How can the data be used to detect anomalies in the maritime traffic?

1.4. Structure

The following dissertation is divided into 6 chapters, including introduction and
conclusion. Chapter 2 consists of a literature review, where concepts as Maritime
Situational Awareness, anomaly and anomaly detection will be addressed as well as a
brief explanation will be presented on some data mining tools. Chapter 3 will consist on
a description of the methodology and all the processes the data underwent since its
collection to the moment they were inserted in PostgreSQL database. Chapter 4 will
describe the scope of the study area as well as all the techniques used in the data
analysis. Chapter 5 will present all the tests conducted and the respective results. The
conclusion, will summarize what were the results, the difficulties felt and future projects

that could be taken into consideration.

In order to protect data confidentiality, all information regarding vessel’s identity

was modified. Any resemblance to reality is purely coincidental.

The referencing style present throughout this dissertation is American

Psychological Association (APA).
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2. Literature Review

2.1. Maritime Situational Awareness

Maritime Situational Awareness is a very important concept and must be fully
understood. The first thing that must be comprehended is that MSA’s concept is not a
static one (Pereira, 2010) and more often than not it does not result from the input of one
single system but from the combination of several working together. To some authors,
MSA is “the capability of understanding events, circumstances and activities within and
impacting the maritime environment” (Arguedas, 2015). Other definitions go even further
and say that MSA should facilitate the process of decision making and permit an effective

operational response (Estado Maior da Armada, 2012).

The concept of Maritime Situational Awareness appeared based on an already
existing concept, Maritime Domain Awareness (MDA), following a NATO summit in Riga,
2006. In May 2008, it was presented by NATO a MSA Concept Development Plan with
the main purpose of implementing a MSA with a Doctrine, Organization, Training,
Logistic, Leadership, Personnel, Infrastructures and Interoperability (DOTMLPII)

approach (Veloso, 2015).

MSA seeks to obtain, as a final result, a fully clarified surface picture, receiving
to that end the contributions of several surveillance and monitoring systems as well as
knowledge generated by other sources. If data is able to cover “all aspects of a situation
of interest in a timely manner, one can then say that complete and continuous situational
awareness has been achieved” (Martineau, 2011). However, it is important to understand
that total situational awareness “would be akin to omniscience and achieving it would be

a utopia” (Martineau, 2011).

In order to produce knowledge regarding the maritime domain by identification of
patterns of the maritime community, reliable and continuous data must be collected from

all kinds of data sources.

Therefore, the creation of safety applications that are capable of detecting
behavioural patterns of ships and anomalies that indicate potential situations of infraction
is not only feasible but of utmost importance. These applications might help the security
forces clarifying the maritime picture. Only then will it be possible to take action in a timely
manner, maximizing the use of resources and minimizing risks (Estado Maior da
Armada, 2012). The goal is to have automation in the generation of alerts in order to

trigger the corresponding actions.

10
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In today’s world, the prime challenge of MSA is the “aggregation of large amounts
of heterogeneous data and their transformation into useful and reliable information to
support users in the decision making process” (Arguedas, 2015). From the analysis of a
large volume and variety of data with spatial and geographic representation, using
techniques that can detect connections between events, it is possible to provide

mechanisms to draw certain conclusions (Arguedas, 2015).

In fact, there are so many sources of data nowadays that the issue now is not the
lack of data but the overwhelming amount of it. Therefore, there have been developed
several automation processes in order to deal with that amount of data. It is even
considered that “to manually pore through and to analyse the information in a bid to

identify potential maritime threat is tedious, if at all possible” (Chen, 2013).

The ability to extract knowledge that is useful, but is usually hidden, from data is
becoming more and more important in the 21% century (Ahlemeyer, 2014). On a
computational level, the industry has suffered numerous technological advances, in both
the hardware and software sectors, being able to store, process and analyse a large

amount of data with an increasingly ease.

2.1.1. NATO’s role
NATO developed several systems that contribute to MSA. Baseline for Rapid
Iterative Transformational Experimentation (BRITE) was developed as “part of the
initiative Technology for Information, Decision and Execution (TIDE) superiority”. It is a
“National Geospatial-Intelligence Agency (NGA) program of record that provides a client-
server system for image dissemination” (North American Job Bank International

Networking, n.d.).

Maritime Safety and Security Information System (MSSIS) is another one of these
systems. ltis “a freely-shared, unclassified, near real-time data collection and distribution
network” (Maritime Safety and Security Information System, 2008). It collects Automatic
Identification System (AlS) data from ships from member countries and broadcasts them
almost in real time (Veloso, 2015). Its main goal is to increase maritime security and
safety by promoting a “multilateral collaboration and data-sharing among international
participants” (Maritime Safety and Security Information System, 2008). This allows to

have a RMP at a very low cost.

Maritime Command and Control Information System (MCCIS) also contributes to

MSA, by providing as well “a high quality RMP” (Maritime Safety and Security Information

11
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System, 2008) and giving inputs to NATO’s Common Operational Picture (COP). MCCIS
has appeared “as the C2 (Command and Control) tool of choice for NATO’s maritime

component commanders” (Germain, 1997).

Another one of these systems is Fast Connectivity for Coalition Agents Program
(FastC2AP). FastC2AP is a “human-interactive, rule-based program” which focus on
helping operators in specifying “vessel behaviours and characteristics that drive alerts
and prompt operators to analyse those vessels further” (National Research Council,
2008).

Combined Enterprise Regional Information Exchange System (CENTRIX) is an
“operational level network, supporting regional commanders and their staffs at a variety
of security levels” (Mitchell, 2013) which allows the exchange of a Common Operational
Picture, e-mails with attachments, web-enabled services, chat and Voice over Internet
Protocol (VolIP).

Networked Interoperable Real-Time Information Services (NIRIS) is a system
that “displays real time maritime, ground, air tactical and theatre missile defence data
received from control reporting centres” (Kowalczyk, 2009). It contributes by
transforming data into interoperable information, based on NATO and commercial
standards, by offering a package of services that allow data compilation and

dissemination (Veloso, 2015).

2.1.2. Europe’s role
In 2008, a new project was embraced by European Union, being supported by
the Council and European Parliament. Common Information Sharing Environment
(CISE) was developed in order to establish itself as a system of information sharing, with
the main purpose of expanding each country’s maritime surveillance. It was supported
by the countries’ need to ensure safety and protection of the seas and oceans (Veloso,
2015).

The end result intended for CISE is to turn maritime surveillance the most
accessible and coherent as possible between all individuals, not exactly to collect data.
This would be accomplished by having automatic data sharing mechanisms that would

allow access to relevant information in real time.

Therefore, several projects emerged in order to attain this goal.

12
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Maritime Surveillance in the Northern Sea Basins (MARSUNO), was created with
the purpose of supporting CISE, overcoming legal, technical and administrative
obstacles (Veloso, 2015) in what concerns the sharing of information beyond borders. It
counted with the participation of 9 countries throughout 24 months: Belgium, Finland,

France, Germany, Latvia, Lithuania, Estonia, Poland and Sweden as the central partner.

BlueMassMed (BMM), on its turn, was created with the intent of “increasing the
interoperability between the existing control and location systems” and “evaluate the
project’s partners capability of sharing surveillance information” in the areas where they
intervene. It was supported financially by the European Commission and by Portugal,
Spain, Italy, France, Greece and Malt (Instituto Hidrogréfico, n.d.), and intended to centre
its efforts on monitoring the maritime situation in the Mediterranean and Atlantic
approaches, establishing the prototype on which collaboration should be expanded at

European level (Pereira, 2010).

In order to developed CISE’s security component, other 7 initiatives were
financed by EU, namely, European Border Surveillance System (EUROSUR), Protection
of European seas and borders through the intelligent use of surveillance (PERSEUS),
Integrated System for Interoperable sensors & Information sources for Common
abnormal vessel behaviour detection & Collaborative identification of threat (I12C), Sea
Border Surveillance (SEABILLA), Dolphin, New Services Capabilities for Integrated and
Advanced Maritime Surveillance (NEREIDS) and Simulator for Moving Target Indicator
System (SIMTISYS) (Veloso, 2015).

In the Portuguese Navy, the document that regulates the definition of Maritime
Situational Awareness is IOA 114 — Conceito de Conhecimento Situacional Maritimo’. It
was developed to be used in support of decision making regarding maritime operations
(Estado Maior da Armada, 2012). In an ever changing environment such as the sea,
subject to multiple threats and security issues, being able to have the upper hand is key.
In order for that to happen, it is essential to continuously monitor the maritime
environment so that superiority of information (Estado Maior da Armada, 2012) is
attained and can be used to protect the security and the state’s authority. This superiority
can be achieved by obtaining relevant data, processing it and creating connections
between the different types of data and therefore turn data into information. This

superiority is only possible if there is confidence and integrity regarding the information

7 10A 114 — Concept of Maritime Situational Awareness.

13
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received. So information, on a military level, is shared on a need to know basis. Access
restrictions are justifiable, however it poses as “a major problem in the domain of

anomaly detection” (Martineau, 2011).

The management of the sea is hot an easy feat considering how many national
and international entities are involved, sharing responsibilities, dependencies and lines
of authority. Each one has their own goals and concerns, using different systems to
store, analyse, fuse, validate and share data (Estado Maior da Armada, 2012). Data
sharing, or its lack thereof, is one of the main obstacles in the search of maritime
situational awareness. It is through data that one gains information and now, 21 century,
more than ever, information is a tool that grants power. That is why data sharing has
usually several deterring policies. This causes big discrepancies between the several
systems that help to achieve MSA. The amount and disparity of data (often not
interoperable) and information generated concerning the maritime domain is often a

hindrance, making it hard to coordinate and use on an operational level.

The construction of a robust MSA capability faces different challenges that need
to be overcome. As it is shown on Figure 4, these challenges can be of 4 different kinds
(Estado Maior da Armada, 2012).

MSA

Challenges

| | | |
Geographical Organizational

Figure 4 - Challenges of Maritime Situational Awareness

On a technical level, it is difficult to have a predefined architecture and ensure
interoperability between the several systems. On a geographical point of view, the

amount of sensors and systems required depend on the size and location of the area.

On an organizational standpoint, it is important to have an agile structure that
allows responding to the different levels of performance in the maritime domain (Estado

Maior da Armada, 2012). From a legal perspective, what immediately stands out, as

14
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mentioned before, is the data sharing policies, because each organization or agency has

its own directives, concerning data distribution, that must be followed.

Although there is often certain interferences concerning information sharing and
exchange, it is extremely advantageous. Firstly, it grants access to data that would not
be possible to access by own means. Secondly and lastly, because it allows to save up
resources and avoid unnecessary work and effort. In this way, it is not technical matters

that pose so much of a problem but the policies for data sharing.

Generating MSA involves 5 different steps: acquisition, fusion and analysis,

diffusion and archive (Estado Maior da Armada, 2012).

Having an archive where all the data is stored is of particular relevance
considering new algorithms and methods can be applied to that data and tested, in order
to generate automatic alarms that can help the operator. This is especially important
considering that “human(s) are always in the loop. Systems are made to improve the

performance of operators, not to fully replace them” (Martineau, 2011).

The Portuguese Navy counts with the support of several information systems,
such as Oversee. Oversee is a software developed by the company Critical Software
and is considered to be a “system of systems” (Estado Maior da Armada, 2017) because
it integrates information from several systems and shows it in a user-friendly manner. It
was first intended to assist SAR activities, however, because it has access to classified
databases and systems, such as NATO MCCIS, it can be used on an operational level,

aiding to increase MSA.

It essentially receives and allows the visualization of Global Maritime Distress and
Safety System (GMDSS)? alerts. However, it also allows the integration of others
sources of information. Systems like AIS, Satellite — Automatic Identification System
(SAT-AIS), Vessel Monitoring System (VMS), also known as Monitorizagdo Continua
das Atividades da Pesca (MONICAP)® (European Economic Community, 1993), Long
Range Identification and Tracking (LRIT) system, among others, can be inserted in

Oversee.

8 GMDSS is an international system that through satellite technology and radio communication equipment
aims to provide automated communication for ships in distress.

9 Fishing Activities Continuous Monitoring.
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Currently, there are several projects that aim to improve MSA. The most recent
one, is Maritime Integrated Surveillance Awareness (MARISA). It has, as one of the main
goals, the fusion of heterogeneous data and information, creating a toolkit that allows an
effective information sharing, the identification of possible risk situations and assist the
process of decision making. It counts with the participation of 22 partners located in 9
European countries. Portugal assures its participation with Inovaworks (a national
technological company), INESC-INOV (a development entity) and through the
Portuguese Navy with Centro de Investigacdo Naval (CINAV)!. It was through CINAV
that this dissertation topic was suggested in order to contribute, if possible, to MARISA
project.

2.2. Maritime Domain Data

In general, data can have two origins: NATO systems or external commercial
sources. Before going through several tools of fusion and analysis in order to produce
information, it is necessary to compile and share data with other systems with the same
degree of classification.

The data acquired on the geographic distribution of vessels can be divided into
two groups, “self-reporting or observation-based” (Arguedas, 2015) according to the way
the data is obtained.

There are several examples of self-reporting data, such as AIS, LRIT and
VMS/MONICAP, each one of them with different purposes, such as collision avoidance,

security and safety and fisheries monitoring (Arguedas, 2015).

Long-Range Identification and Tracking of ships is one of these sources and it
was established in 2006 as an international system by the International Maritime
Organization (IMO). LRIT system uses vessels’ satellite communications in order to
transmit its information, such as position, which is transmitted at least four times a day.
The European Union Cooperative Data Centre (EU CDC) tracks over 8000 ships per day
and it aims to disseminate LRIT information on European ships around the world, being
one of the largest LRIT distribution centres (European Maritime Safety Agency, n.d.). As
a result, LRIT is one of the data sets used by the European Maritime Safety Agency
(EMSA) and other organizations interfaces, being of great importance for maritime safety

and awareness. AIS and MONICAP will be discussed later on, considering that, in spite

10 portuguese Naval Research Centre.
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of all these data sources, they are the ones that will be further analysed throughout this

dissertation.

EMSA was developed in 2002 and it aims to decrease the risk of “maritime
accidents, maritime pollution from ships and to prevent the loss of human life during the
navigation” (Dorel, 2013). This is achieved with the creation of legislation, introducing
measures regarding maritime safety and defence, which are generated in accordance
with the already existing rules of the member states. EMSA is also responsible for
providing information, upon request, to competent national authorities and European
Union institutions. One example of this, is the on-going cooperation with COMAR, as
EMSA provides permanent access to information regarding maritime awareness.
Therefore, the collection of big sets of data is a must in order to maintain a constant

monitoring of the seas.

Observation-based data, on its turn, is collected by passive or active sensors.
Examples of this type of data are Synthetic Aperture Radar (SAR), space-based Earth
Observation (EO) (Arguedas, 2015). These sensors’ detection capabilities depend on a
variety of factors, whether they are of a more technical sort (e.g. resolution) or of an

environmental nature (e.g. Sea state).

SAR main advantage is the fact that it benefits from “the long-range propagation
characteristics of radar signals” (Sandia National Laboratories, n.d.) and the “information
processing capability of modern digital electronics to provide high resolution imagery”
(Sandia National Laboratories, n.d.). It is independent of flight altitude (providing a high
resolution capability), independent of the weather (provided that the proper frequency
range is selected) and it also has day/night capability due to its own illumination (Moreira,
2013).

2.2.1. AIS

AIS was developed with the main goal of providing itself “as a tool for maritime
safety — vessel collision avoidance” (Tetreault, 2005), intended to be used by Vessel
Traffic Services (VTS) in order to track and monitor vessel movements operating near
their coasts and to assist ships’ watch-keepers. It is expected that AIS, as a VTS tool,
would “be used in conjunction with traditional VTS sensors and tools” (Tetreault, 2005)
to assist the VTS watch-stander to have a thorough and broad comprehension of the
maritime traffic, allowing him to monitor the current situation and offer recommendations

to mariners.
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By providing coastal stations with the information required under “mandatory or
voluntary reporting schemes as well as for VTS purposes”, AlS can help reducing “the
work of the watch-keeper” (MCANET, n.d.).

Therefore, AIS is “an international standard for ship-to-ship, ship-to-shore and
shore-to-ship communication of information” (Tetreault, 2005). It was regulated and
normalized by the International Telecommunication Union (ITU) and implemented by
IMO afterwards.

All International Requirements for carriage of AIS can be found on Chapter V,
Regulation 19.2.4 of the Safety of Life at Sea (SOLAS) Convention. This regulation can
be found in Annex A.

No matter the area where the ships are operating, across the ocean or near the
coast, AIS works in an “autonomous and continuous mode” (Navigation Center, n.d.).
For transmission, only one radio channel is necessary. The radios associated with the
AIS consist of “1 full-range Very High Frequency (VHF) transmitter, 1 Digital Selective
Calling (DSC) Ch. 70 receiver (used for frequency management and DSC polling), and
2 VHF Gaussian Minimum Shift Keying (GMSK) receivers” (Tetreault, 2005). However,
in order to prevent problems regarding interferences in communication, each station
transmits, as well as receives, more than 2 radio channels, with the following
frequencies: “161.975MHz (AIS1) and 162.02MHz (AIS2)” (Melo, 2011) with the added

possibility of shifting channels without any loss of communication.

There are two types of AlS, class A and class B. Class B AlS was designed as
“a more economical, of smaller reach and of limited information transmitted alternative”

(Melo, 2011). When compared to Class A AlS, it has an inferior reporting frequency.

AIS diverges from other kind of maritime equipment because it uses a protocol
called Self-Organizing Time Division Multiple Access (SOTDMA). By not having to rely
upon receiving any kind of stimulus for broadcasting, it can be set apart from other kind

of equipment.

“AlS equipment self-organizes its broadcasts” (Tetreault, 2015) so that there is
no interference regarding messages between AIS equipment operating in close

proximity.

18



ESCOLYENAAL
g & Data mining for anomaly detection in maritime traffic data
:nmnwraczrfum!

Each AIS station establishes “its own transmission schedule (slot)” taking into
consideration “data link traffic history and knowledge of future actions by other stations”

(Navigation Center, n.d.).

Every 60 seconds, 2250 time slots are established. As there is two frequencies,
overall there are “4500 slots per minute available” (Melo, 2011). A simple position report
regarding one AIS station is included into one of those 2250 slots. Each AIS unit
automatically “determines what slots are available for its use, broadcasts its intentions
for slot use to other units to allocate the slots, and transmits its messages” (Tetreault,
2015). Figure 5 represents this process.

/
Tho AIS of ship A
S0ris tho position
mess0ge in ong time
siot. Al'the samo
#Ma it r0500V0S
another time siot for
1ho naxt positon

Figure 5 —AIS Functioning — Slots (Navigation Center, n.d.).

Overlapping of slot transmissions is easily avoided by constant synchronization.
The selection of each slot is “randomized within a defined interval, and tagged with a
random timeout of between 0 and 8 frames” (Tetreault, 2015). Before changing its slot

assignment, each station announces the new location and the respective timeout.

Regarding coverage, it depends on the height of the antenna, being AlS coverage
similar to other VHF applications. Compared to radar, AIS has a slightly better
performance when it comes to propagation. It is not usually affected by the weather, only
by the “shielding of the transmitted signal by land masses and buildings” (International
Maritime Organization, n.d.). In spite of this, its wavelength is significantly longer than
radar, being able to reach around the contour of the land and even in certain

circumstances behind small islands, if they are not too high.
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In general, at sea, AlS has a range of 15 to 20 nautical miles. Base stations, on
its turn, can expand the range up to 40 to 60 miles (Marine Traffic, n.d.), provided that
aspects as the weather conditions, elevation, antenna type and obstacles surrounding
the antenna are favourable.

AIS can broadcast three types of information (Figure 6):

e Static, which includes the ship’s name, Maritime Mobile Service Identity
(MMSI), ship type, ship size, among others;

e Dynamic, such as the ship’s location (latitude and longitude), its Rate of Turn
(ROT), Speed Over Ground (SOG), Course Over Ground (COG);

e Voyage related data such as vessel destination, cargo nature and Estimated
Time of Arrival (ETA).

11 MMSI is a series of nine digits and its purpose is to uniquely identify stations, whether they are ship
stations or coast stations. To each ship corresponds a different MMSI.
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Figure 6 — Example of information given by AlS.

These types of information are compiled into messages that are autonomously
broadcast “at a regular time interval” and “can be received by on board transceiver and
terrestrial and/or satellite base station” (Mao, 2016). Static information, as well as voyage
related information is broadcast “every 6 minutes” (Tetreault, 2015) or as requested. On
its turn, dynamic information is transmitted almost instantaneously, “every 2 to 10
seconds” increasing to “every 3 minutes” if the vessel is anchored, depending on each

AIS class.

There is, however, some technical issues that arise when it comes to deal with
AIS data.

Firstly, it is of utmost importance that all the information contained therein must
be correctly inserted (concerning static and voyage related information) and functioning
properly (when it comes to dynamic inputs).
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Secondly, taking into consideration that there is a vast amount of data available,
handling it is no easy feat. Making it useful for obtaining Maritime Situational Awareness
is one of the main goals, but for that to happen several steps must be taken. Data
validation, data correlation and data fusion are some of those steps. The integration with
different systems is favourable but is not as straightforward as it may seem. Moreover,
the storage of such a big volume of data and making it available for being analysed by

expertise is another challenge that must be faced.

There are many AIS providers. One of them is Marine cadastre, which has data
collected by the United States of America (USA) Coast Guard. It contains data from 2009
to 2014 on United States’ waters. Another one is Sailwx, which contains data related to
a small portion of the ships worldwide. Only “those that participate in the World
Meteorological Organization's program of voluntary at-sea weather reporting, and those
vessels operating AIS transponders within range of a participating shore station” (Sailwx,
n.d.) are contained in Sailwx database. Another one is Marine Traffic. This last one differs
from the others by providing historical data at a certain cost, in relation to the volume of

data requested and the processing desired (Marine Traffic, n.d.).

The data is delivered in Comma Separated Values (CSV) format and can be from
terrestrial AlS receivers or Satellite AIS Receivers. As the name indicates, CSV files use
the comma as a separator for each value in a text file. It can also use tab or semicolon
to separate values. CSV files have several advantages, such as being a simple file,
opened by text editors and easily manipulated in a programing level. It also consumes

less memory than Excel files.

Although there are many AIS data providers, there is no “standard AIS
benchmark database in maritime research area” (Mao, 2016). This is a great
inconvenience considering all the time, effort and money involved to have a usable
dataset which can be used later on by different researchers. It also gains importance
considering that there is no way of comparing different methods or algorithms for
anomaly detection or motion prediction because there is not a unique database to test

them.

“The Portuguese Navy has a network of AIS stations” (Soares, 2012). The data
obtained from those stations is then directed “to a server in the Navy’s private network

designated AIS server” (Soares, 2012).
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The AIS server is located in Lisbon, more precisely in Direcdo de Tecnologias de
Informacédo e Comunicagdes (DITIC)!?, that is an organ of Superintendéncia das
Tecnologias de Informacéo (STI)*® that assures the exercise of the technical authority in
the field of Navy’s communication and information systems (Chefe do Estado Maior da
Armada, 2016). It receives, through Portuguese Navy communications’ infrastructures,

AIS messages that compiled enable the assessment of the world panorama.

This raw data, which comes in National Marine Electronics Association (NMEA)
format, is collected in MATLAB (MATrix LABoratory) files, of the type *.mat, containing
what corresponds to 10 minutes of raw AIS data and is, later on, compiled in a daily file,
acknowledged as “F” type file (Melo, 2011), F of footprint. Through Sistema de Apoio a
Decisdo para a Atividade de Patrulha (SADAP)* it is possible to have access to the files
compiled in a daily basis. This system will be further analysed in the next section of this

document.

As it is represented in Figure 7, each daily file is divided in two sub-matrixes, one
that contains reports inside the Maritime Operational Area®® (footprint_aom.mat) and

other that includes reports outside of it (footprint_n_aom.mat) (Melo, 2011).

12 DITIC - Directorate of Information and Communication Technologies.
13 Superintendence of Information Technologies.

14 SADAP — Activity Patrol Decision Support System.

15Area Operacional Maritima (AOM).
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Figure 7 - AIS data, reports inside the Maritime Operational Area.

2.2.2. MONICAP
Another data type used in this dissertation is MONICAP. MONICAP or VMS,
made its first appearance in 1987 (Bhargava, 2012) and is a system which aims to

monitor the inspection of fishing activities (INOV, n.d.).

As it is shown in Figure 8, it uses “Global Positioning System (GPS) for the
location and Inmarsat C for satellite communications between vessels and a ground
control station” (INOV, n.d.).
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Figure 8 - MONICAP system's functioning (Direcdo-Geral de Recursos Naturais, Seguranca e Servigos
Maritimos, n.d.).

MONICAP is currently “in operation in six countries, monitoring daily thousands
of vessels” (XSealence, n.d.). According to Portuguese Law Decree 310/98, article 3,
line b), all ships with an over-all length of 15 meters are required to have this system on
board, regardless of the place where the vessels are carrying out their activities and the
fishing gear they possess.

Itis based on “telecommunications technologies and geographic information” and

it consists of a “continuous monitoring equipment?® installed on fishing vessels, also

labelled (...) as blue box” (European Economic Community, 1993). Figure 9 represents

the designated “blue box”.

16 Equipamento de Monitorizacdo Continua (EMC).
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Figure 9 - Continuous monitoring equipment (XSEALENCE, n.d.).

It allows monitoring from shore, position and speed of ships on which the
MONICAP box is installed. As it is shown in Table 1 and Figure 10, the MONICAP system

sends data in the following format:

Table 1 — Example of MONICAP data format.

Community
Vessel name Fleet Register dd-mm-yy Hh:mm:ss Longitude Latitude COG
(CFR) number
Altair ol 24-01-2017 02:51:00 -27.32461232 62.14296321 089  7.40
000022323

| 20170101000742_message.txt - Bloco de notas - a X
Ficheiro Editar Formatar Ver Ajuda

Ulysses PRT000001765 31/12/2016 18:17 37.1336667 -8.5293333 (4] 0.00 i)
Ulysses PRT000001765 31/12/2017 20:18 37.1336667 -8.5293333 0 0.00

Ulysses PRT000001765 31/12/2017 22:18 37.1336667 -8.5293333 344 0.00

Demeter PRT000000901 31/12/2017 18:55 40.6376667 -8.6906667 162 0.00

Demeter PRT000000901 31/12/2017 19:55 40.6376667 -8.691 124 0.00

Demeter PRT000000901 31/12/2017 20:55 40.6376667 -8.6906667 37 0.00

Demeter PRT000000901 31/12/2017 21:55 40.638 -8.691 0 0.00

Demeter PRT0000009501 31/12/2017 22:55 40.638 -8.6906667 Q 0.00

Demeter PRT000000901 31/12/2017 23:55 40.638 -8.691 0 0.00
Scotia PRT000018651 31/12/2017 23:08 42.4043333 -8.686 0 5.30
Poseidon PRT000001952 31/12/2017 18:58 11.1066667 -21.5533333 195 0.40
Poseidon PRT000001952 31/12/2017 20:58 11.091 -21.5486667 188 1.60
Poseidon PRT000001952 31/12/2017 22:58 11.08 -21.5476667 8 0.40
Minnow PRT000020234 31/12/2017 19:01 42.7756667 -9.0526667 74 0.00
‘MINNOW — PRTYYU0Zuvbad 31712772017 3707 qZ.7756667 =Y 0526667 1 v.o0

Nautilus PRT0O00001276 31/12/2017 18:21 37.1336667 -8.526 280 0.00

Nautilus PRT000001276 31/12/2017 20:21 37.1336667 -8.526 ] 0.00

Nautilus PRT000001276 31/12/2017 22:20 37.1336667 -8.526 0 0.00

Oakland PRT000001533 31/12/2017 19:52 43.3223333 -1.9283333 167 7.20

Charlotte PRT000029812 31/12/2017 20:23 38.4376667 -9.114 317 0.00

Endeavour  PRT000002698 31/12/2017 23:29 41.182 -8.6993333 355 6.80

Chester PRT000003489 31/12/2017 18:26 43.186 -51.2056667 92 5.10

Chester PRT000003489 31/12/2017 19:26 43.15 -51.1466667 75 3.10

Figure 10 - Example of MONICAP messages.

The “blue box” sends this data “through satellite to a coordinator centre in
Norway” (Soares, 2012). The data is then distributed to the correspondent country, taking
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into consideration the country’s maritime jurisdiction when it comes to fishing activities
(Soares, 2012). In Portugal, the organ responsible for receiving the data is the Ministry
of the Sea, through Direcdo-Geral de Recursos Naturais, Seguranca e Servicos
Maritimos (DGRM)!” which in turn sends it to the Portuguese Navy, more specifically
DITIC. MONICAP data is stored in SADAP information system, which was developed by
the Portuguese Navy in 2006 (Melo, 2011). SADAP also allows access to “statistics
regarding fishery inspection activities and access to the latest position of fishing vessels
operating in the Portuguese Exclusive Economic Zone (EEZ)” (Soares, 2012). Every 2
hours, the position of all vessels equipped with MONICAP is sent to DITIC through e-

mail.

Besides allowing the monitoring of the fishing activities, it allows the reception

and transmission of meteorological data and assists in the control of maritime traffic.

MONICAP’s biggest advantage is its high reliability. It has several mechanisms
that guarantee that the box equipment is not violated by presumable transgressors who
would want to cover up illicit activities. That is what separates MONICAP from AIS data,
the permeability to external interference. One disadvantage is the way the data is
received, via e-mail, streaming near real-time would be best. In addition, the field with
the vessel name can be vague considering that the names can repeat themselves.
However, with the appearance of the Community Fleet Register number (CFR) that no

longer poses a problem.

AIS and VMS are disparate and independent “tracking systems”. Although each
one of them has its own advantages, by correlating both data sources it is possible to
accurately build a specific track of a ship and identify its activity. AlIS can be used to deal
with the VMS outages, which is not a rare event, and VMS can help corroborating some

of the AIS data. The main differences between AIS and VMS are presented in Table 2.

17 General Directorate for Natural Resources, Safety and Maritime Services. It results from the fusion of
Instituto Portuario e dos Transportes Maritimos (IPTM) with Direcdo-Geral das Pescas e Aquicultura
(DGPA).
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Table 2 — AIS and VMS comparison (Navigation Center, n.d.).

Automatic Identification System (AIS) Vesszel Monitoring System (WVMS)
System Type: Digital WVHF-based radio system Satellite-based
Sernvice Provider: Open, nen-proprietary protocel Closed, propriefary protocols
Range: Z-way exchange of info between ships and Primarily 1-way (ship-shore)
ship-shore either scheduled or manual
Use: Line of Sight (20-40 nm) Lime of Sight {with satellite, not
ground stafion)
Applicability: REQUIRED per SOLAS Wi19.2.4 or 33 CFR REQUIRED on some fishing
164.45 (MLT 2005 on certain vessels) vessels (~2000)

2.3. Concept of Anomaly

Firstly, one must clarify that there is no consensus on the meaning of anomaly.
From the dictionary, anomaly can be considered a “deviation from the common rule,
type, arrangement, or form” or even as “an incongruity or inconsistency” being often a
synonym of “peculiarity” (Dictionary, 2018). The meaning of pattern is also relevant here.
By definition, “a pattern is composed of recurring events that repeat in a predictable
manner” (Martineau, 2011). What can be predicted is often considered as “normal” and

what cannot, is considered as anomalous.

However, the boundary between what is regarded as normal and abnormal is
very thin, considering that the prediction of normal behaviours is not an easy task. This
is especially true when the “anomalies are the result of malicious actions” (Chandola,
2009), with the goal of masking anomalous observations as normal. It should be kept in

mind that what is normal is often changing and evolving.

Two concepts that often are used undistinguishably is abnormality and threat.
Although usually threats are anomalies, not all anomalies are considered threats. In fact,
for some, “an anomaly is only a threat in context” (Seibert, 2009). To be able to classify
an anomaly, whether or not it poses a threat, is an advantage because it allows to handle

them in order of priority.

Several types of anomalies can be considered, falling into the following

categories:

¢ Point anomalies: if a certain data instance stands out from the rest of the data as
being anomalous then it is considered a point anomaly.
¢ Contextual Anomalies (or conditional anomalies): data instances that under a

certain context gain another dimension and fall out of the ordinary. It is only when
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the context is introduced that the data may be classified as anomalous, otherwise
it does not stand out.

e Collective anomalies: in this type of anomaly an individual data instance on its
own does not attract attention as an anomaly. However, the occurrence of a
group of data instances together may be considered as anomalous. Figure 11
helps to better understand this type of anomaly. It shows the output of a human
electrocardiogram and the highlighted region represents the anomaly: a low

value for an abnormally long time (Chandola, 2009).

-4 Bl

o =

a =00 1000 1500 2000 2800 3000

Figure 11 - Collective Anomaly example (Chandola, 2009).

2.4. Anomaly Detection

Although the majority of the systems were developed with the purpose of raising
situational awareness, they can be used in anomaly detection. Due to the amount of data
being generated every day, it is necessary to “sift through large quantities of data and
highlight elements worthy of interest” (Martineau, 2011).

The problem of anomaly detection can be quantified as a “two class classification

problem” (Gonzalez, 2002), as hormal or abnormal.

One of the things to be done first is to identify extreme values in the dataset or
data inconsistencies. An example of this can be an AIS transmitter that stops its
transmission in an area that supposedly has coverage or AIS records that register

abnormally high speeds.
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Data fusion is considered to be the second step in the anomaly detection process
(Martineau, 2011). This can be of especial importance given the fact that data is not
always reliable and can be incomplete. Ships’ position is “a classic example of fusion in
the maritime domain” (Martineau, 2011). There is a multitude of ways of tracking a ship,
through several sensors. Some imprecise, others that can be forged. The goal is to
achieve a position as close as possible to reality. When trying to correlate two or more
data sources, an anomaly can be found if there are big discrepancies between them.
However, like mentioned before, it is always important to put anomalies into context,
because sometimes what appears to fall out of the pattern of normality can be easily
justified, for example by the environmental conditions. A practical example of correlation
with different sources of data can be observed when NATO ships are conducting military
operations, such as Operation Sea Guardian. This operation aims to support the
maritime situational awareness and contribute to maritime security capacity-building,

among other tasks.

2.5. Data mining tools

With the advent of technology, the amount of data stored has continuously
increased and this tremendous rate of increment tends only to keep growing every day.
It is said that human knowledge has an exponential curve, doubling roughly every
century until 1900’s and having a massive growth so far, with expectations that it will
double every 12 hours in the future (Schilling, 2013). In this manner, there is an urgent
need to have mechanisms and tools to assist the human operator extracting the useful
information from such volumes of data (Fayyad, 1996). It is important to have a suitable

answer. And that answer lies with data mining.

First of all it is necessary to define what is data mining and its main goals and its

applicability.

Data mining is considered to be “the search for new, valuable, and nontrivial
information in large volumes of data” (Kantardzic, 2011) or, in other words, data mining
is “the process of discovering interesting patterns and knowledge from large amounts of
data” (Han, 2012). While some people consider data mining to be the same as
“Knowledge Discovery in Databases (KDD)” (Oracle, n.d.), others think that Data Mining
is just a “step in the process of knowledge discovery” (Han, 2012).
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This process can be divided into 7 steps (Han, 2012) which are identified in Figure
12.

’ 1 - Data cleaning (removal of inconsistent data);
’ 2 - Data integration (combination of data from multiple sources);

3 - Data selection (selection of relevant data from database);

ining);

5 - Data mining (process to extract data patterns);

‘ 4 - Data transformation (transformation and consolidation of data to be suitable for
m

‘ 6 - Pattern evaluation (identification of interesting patterns that represent knowledge);

‘ 7 - Knowledge presentation (representation and visualization of mined knowledge to users).

Figure 12 - Knowledge discovery process.

The tasks of data mining can be considered twofold (Shah, 2017). One of them
is to create “a predictive power using features to predict unknown future values of the
same or other feature” and the other one is to “create a descriptive power” (Shah, 2017)

able to find a pattern that describes the data and can be easily perceived by users.

Data mining uses several different techniques to handle the data. Some of the
most useful are classification and regression (both predictive tasks) and clustering and

association rule discovery (of the descriptive kind).

Nowadays, there are numerous data mining tools which have as a main goal to
ease the work of any person wanting to analyse big sets of data. Through tools that allow
to easily gain useful insight of the data and making projections, it is possible to enhance
the efficiency of the work at hands. These tools have another advantage, it is not
necessary to implement standard algorithms from scratch, which allows the opportunity
to test different techniques in a short amount of time. Moreover, if need be, it is also
possible to change the code of the tool to fit the user’s requirements.

Presently, RapidMiner, Waikato Environment for Knowledge Analysis (Weka), R,
Scikit-learn, Konstanz Information Miner (KNIME), Orange, Knowledge Extraction based
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on Evolutionary Learning (KEEL) and Tanagra are some of the existing data mining tools
used all over the world.

Three of them were explored and will be discussed further on.

2.5.1. RapidMiner

Formerly known as YALE (Yet Another Learning Environment), RapidMiner was
first developed in 2001 in Java. This tool incorporates several data mining functions,
such as data pre-processing, visualization, predictive analysis, clustering, among others.
RapidMiner environment can be observed in Figure 13. All those functionalities
combined with the advantage of being easily integrated with other data mining tools, like
WEKA, made it a candidate for further exploring. However, the free version, the
RapidMiner Studio Free Edition, has the downside of being limited to 1 logical processor
and 10,000 data rows, which presents itself as a constraint when working with a great
amount of data.

@))) rapidTiner v \

s3> ~ RapidMiner Studio Free 7.4.000 @

- o > - 'R Design

Load Data Specify Churn Label  Create Binary Label

) e ) —(E P

g | 2 0 b

1 o o)
v v

Figure 13 - Rapid Miner environment.

2.5.2. WEKA
Waikato Environment for Knowledge Analysis was first released in 1997 and was
written in Java. As main features, it has a comprehensive set of pre-processing tools,
learning algorithms and evaluation methods, different graphical user interfaces and an
environment for the comparison of learning algorithms (Rehman, 2009). WEKA

environment can be observed in Figure 14.
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Figure 14 - WEKA environment.

One particularity of Weka is that it only deals with “flat” files®.

It also allows to choose and launch a specific Weka environment, through the

Weka GUI (Graphical User Interface) Chooser as it can be seen in Figure 15.

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize

Open fil... Open U... Open D... Generat... Undo Edit Save
Filter

Choose |None Apply
Current relation Selected attribute

Relation: None Name: None Type: None
Instances: None Attributes: None Missing: None Distinct: None Unique: None
Attributes

All None Invert Pattern
il At | Sl |

Program Yisualization Jools Help

Applications
i WEKA Explorer [+ visualize All
The University [T —— .
U~ of Waikato

\ Experimenter
\

ik for Analysis
Version 3.6.5
(<) 1999 - 2011
The University of Waikato
Hamilton, New Zealand Simple CLI

geFlow

Remove Al

Status
Welcome to the Weka Explorer | _Log ‘ x0

Figure 15 - Weka GUI Chooser.

18 Flat files are characterised for being simple data files in text or binary format, from which all word
processing or other structure characters have been removed. CSV is an example of a flat file.
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For being a tool used in classes in the Portuguese Naval Academy, it was
important to further explore its capabilities.

2.5.3. Orange

Orange data mining tool has been under development since 1996 at the
Bioinformatics Laboratory at the Faculty of Computer and Information Science,
University of Ljubljana, Slovenia. It has a canvas interface onto which it is possible to

“place widgets and create a data analysis workflow” (Bennett, 2018). Figure 16
represents Orange environment.
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Figure 16 - Orange environment.

Widgets are considered as building blocks to create workflows and allow the user
to do several functions like “reading the data, showing a data table, selecting features,
training predictors, comparing learning algorithms, visualizing data elements” (Bennett,
2018), among others. Data mining can be done in two different ways, through visual
programming (using the drag and drop widgets) and through Python scripting. Widgets
are divided into 5 main groups: Data, Visualize, Model, Evaluate and Unsupervised,
being possible to add more groups through add-ons installation (Figure 17). The
continuous development of this tool, combined with its user-friendly interface, highlights
the need for further exploration.
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Figure 17 - Orange main widget groups

There are several studies that use one and sometimes more than one data mining
tool to help to achieve a simple solution to the problem at hands.

In fact, there can be found work of researchers that use these tools to try to
achieve the same results as those resulting from field experts’ observations. With
Orange, it was possible to build a predictive model that tries to estimate the probability
that one tumor is organ confined (Zupan, 2001). This was applied to a problem of Urology
and it mainly helped on the decision making by indicating the level of curability of the
prostate cancer and which surgical techniques were the most appropriate.

Also through Orange, it was possible to develop an automated system which aims
to identify potentially illicit elephant ivory items being sold through the multinational e-
commerce corporation eBay (Hernandez-Castro, 2015).

Table 3 summarises and presents additional information about the three data
mining tools explored.
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Table 3 - Summary table of the 3 data mining tools explored (Predictive Analytics Today, n.d.).

Tools Characteristics Programming Operating Price/license

language system
Provides
functionalities to
optimize data

- exploration. Has an Java WINE 5 Proprietary
RapidMiner . macOS
environment for Python . software
: Linux
data preparation,
machine learning,
among others.
Collection of
machine learning
algorithms for data
mining tasks. Windows
WEKA Includes pre- Java macOS Open Source
. : software
processing, Linux
classification,
regression, among
others.
Allows visualization
and analysis of
data. Data mining is .
. Software core:
done through visual .
rogramming or S plces Open Source
Orange prog 'ng Extensions and macOS P
python scripting. ) ; software
query language: Linux

Has components for
machine learning,
text mining, among
others.

Python
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CHAPTER 3

WORKFLOW AND DATA PROCESSING

3.1. Workflow

3.2. Data collection

3.3. Data Processing

3.4. PostgreSQL Database
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3. Workflow and data processing

3.1. Workflow
Before starting the practical sections of this dissertation, it is important to
delineate the steps that will be taken. Therefore, Figure 18 represents the steps of this

research workflow.

* Literature Review

» Data Collection

 Data Processing

» Conduction of tests

* Analysis of results

» Conclusions

oL <-4

Figure 18 - Steps of the research.

Literature review was the first stage of this investigation, and it was necessary to

introduce concepts that were fundamental in order to fully understand the following work.

Data Collection consists in the process of gathering AIS and MONICAP data in

their source format, going through all the bureaucratic issues related to data sharing.

Data Processing will involve all the steps needed to convert data from its source

format to the desired table format of PostgreSQL.

The fourth stage of the process consists in the conduction of tests. This is a
fundamental part of the workflow, where correlation between AIS and MONICAP will be
tested as well as the detection of specific anomalies through the chosen data mining tool.

The analysis of results is the fifth stage. The main goal of this step is to display
the results obtained in the previous tests and analyze them in order to verify their
integrity.
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On the last step, conclusions will be drawn from the analysis of results as well as

from all previous work.

3.2. Data collection

“Data is the raw material of anomaly detection” (Martineau, 2011). Without data
or of poor quality, all the work done afterwards can be compromised. This makes data

collection the first step and one of the most important.

As mentioned before, vessel traffic data, such as AIS and MONICAP, can be

attained through Portuguese assets.

Therefore, it is possible to have access to the AIS data in .mat format through

Navy’s intranet link: ftp://ais-compiler/data.

The MONICAP data, in .txt format, was also accessed through a Navy’s intranet
link: \PRD-MAP-APP1\CsmDataShare.

The data collected concerns the period from January 2017 to December 2017,

which corresponds to the most recent available data.

Of special relevance is the fact that these sources of data have different
transmission rates, with AlS data being clearly in advantage when compared with the 2
hours’ rate of MONICAP data.

3.3. Data Processing: AIS and MONICAP

It is necessary to have a swift access to historical data and have it in a format
that is easy to use in order to take full advantage of it. The main goal is to have all the
data stored in the same format. PostgreSQL database was chosen to store all the AIS
and MONICAP data. PostgreSQL is an open source object-relation database which is

able to run on all major operating systems (PostgreSQL, n.d.).

Through a spatial database extension for PostgreSQL, PostGIS, it is possible to
run spatial queries in SQL, allowing additional data types: geography and geometry
(PostGIS, n.d.).

In order to store the data in PostgreSQL, it is necessary to complete a few steps
before. Like it was mentioned above, AIS data comes in .mat format divided in daily files.

The first step consisted in creating a simple MATLAB code (Appendix A) to have the data
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files in .xIsx format?®. It was necessary to tackle the fact that the date and time column

was in MATLAB'’s datenum?® format, as well as the fact that when data was converted to

Excel it appeared in exponential form, thus losing precision. The end result is daily Excel

files in the format shown in Figure 19:

HOME | INSERT  PAGELAYOUT  FORMULAS  DATA  REVEW  VIEW  POWER QUERY Sign i
-‘hkj(cm Calibri n cla s =E=8 - Eweptet General i?} B »,) e ‘r—,x i EAuloSum . /wa ﬁ
~ £ Copy ~ 4 - O S Y ] Fill =
Clipboard Font [ Alignment Number Styles Cells Editing ~
A128 Jr || 224000240 v
A B c D E F G H 1 J K L [ N 0 P Q R s T =
1 263410880 1 3 2017 558 37,13287 -8,526638333 2 0 2217 399
2 | 224769000 1 3 2017 558 42,942655 -9,1804 [} 01 1634 4296
3 224237920 1 3 2017 558 36595925  -4,513265 0 o 162 389
4 224022920 1 3 2017 558 37,02339667 -6,926858333 0 31 182 39,9
5 | 224053280 1 3 2017 558 36,87747833  -7,085405 7 37 1524 3989
& | 249119000 1 3 2017 558 27,84357333 -15,39852333 0 01 2316 4282
7 225984905 1 3 2017 558 43,44045667 -3,810223333 7 2,4 306,5 418,3
8 | 224550000 1 3 2017 558 28,140865 -15,42310833 7 0o 82 4175
3 | 224013090 1 3 2017 558 43,53014667  -9,111405 3 21 423 ams
10 565249000 1 3 2017 558 3573445333 -4,765566667 0 16 3008 4311
11263420850 1 3 2017 558 40,446625 -8,342121667 7 23 2801 3989
12| 263279000 1 3 2017 558 41,76339  -9,173365 3 29 1123 3989
13 | 224549000 1 3 2017 558 35,885 -5,519666667 0 87 2521 4305
14| 224731000 1 3 2017 558 2813523  -15,424845 2 0 236 4146
15 | 224320560 1 3 2017 558 36,93260333 -6,677588333 7 27 1556 3989
16 | 263450000 1 3 2017 558 40,70974333 -8,996161667 7 17 1255 3989
17 370824000 1 3 2017 558 43,067255 -9,766396667 0 73 942 413
18| 236112082 1 3 2017 558 36,15057167  -5,32151 7 73 133 423
19| 236518000 1 3 2017 558 28,14382667  -15,4174 2 [} 04 432
20 224216220 1
21224084990 1 A B C D E F G H I J
2
b : 1 | 263410880 1 3 2017 558  37,13287 -8,526638333 2 0 2217
R e it 4 2 |224769000 1 3 2017 558  42,942655 -9,1804 0 0,1 169,4
3 1224237920 : | 3 2017 558  36,595925 -4,513265 0 0 116,2
4 1224022920 1 3 2017 558 37,02339667 -6,926858333 0 31 182
5 | 224053280 1 3 2017 558 36,87747833 -7,085405 7 3,7 152,4

Figure 19 - Excel daily file.

Due to Excel specifications and limits, namely in what concerns the total number

of rows and columns in a worksheet (1,048,576 rows by 16,384 columns (Microsoft,

n.d.)), it was necessary to convert the .xlsx files into another format, CSV. In order to do

so, it was used a Java Script file converter, as it can be observed in Figure 20.

19 Excel format is .xIsx.

20 MATLAB's datenum function creates a numeric array to represent date and time.

40




ESCOLAY A NAVAL
! @

Data mining for anomaly detection

in maritime traffic data

fafanir@bifaire

] D < |aN - X
Base Partilhar ver [:]
o Cortar x I T Novo item + ® Abrir - H selecionar tudo
=) v
= % Copiar caminho + £ Acesso facil ¥ o 1 Editar Desmarcar tuda
Copiar Mover Copiar Eliminar Mudar  Nova Propriedades .
para > para~ ~  onome pasta S G Historico T Inverter selecio
Area de Transferéncia Organizar HNove Abrir
« v > EstePC > Ambiente detrabalho > TESE > DADOS > DADOSAIS » Excel > JAN v O o A »
Nome . Tipo Tamanho -

s Acesso Rapido
(@ OneDrive

v O Este PC
I Ambiente de traball
2 Documentos.
=] Imagens
D Musica
B Objetos 30
& Transferéncias
[ Videos
= 0s(C)
- DATA (D)

v i Rede
o INES

*& Grupo Doméstico

5litens 1 item selecionado

5] AIS_141AN-Sheetl.csv
5 AIS_15JAN.xlsx

5] AIS_15JAN-Sheetl.csv
B AIS_T6JAN.xlsx

5] AIS_16JAN-Sheetl.csv
5 AIS_1TJAN.xlsx

5] AIS_17JAN-Sheetl.csv
Q5 AIS_18IAN.xlsx

B AIS_12JAN-Sheetl.csv
5 AIS_19JAN.xlsx

] AIS_19JAN-Sheet!.csv
5 AIS_20JANXlsx

) AIS_21JAN s

5] AIS_22JAN ks

7 AIS_23JANXIs

1] AIS_241AN xlsx

) AIS_25)AN ks

5 AIS_26JAN.xlsx

5 AIS_27IANxIsx

7 AlS_28)AN.xlsx

) AIS_20)AN s

5 AIS_30JAN.xlsx

5 AIS_3TJANKIsx

Excel -_XLS_To_CSV_Converter,js

3,50 KB

Microsoft
Microsoft Exc

Microsoft

Microsoft
Microsoft
Microsoft Exc
Microsoft

Microsoft

Microsoft

Microsoft Exc
Microsoft
Microsoft
Microsoft
Microsoft Exc
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft

Ficheiro JavaScript

Figure 20 - Conversion from .xIsx files to .csv.

In this new format, it was possible to aggregate the files into monthly .csv files

using the command line presented in Figure 21.

Figure 21 - Aggregation of the daily .csv files into monthly .csv files.

Each AIS monthly file has an average of 11 million rows.

Georeferencing data can be done directly in the database. However, there are

other, simpler, ways to do it. For instance, by using ArcMap from ArcGIS, a Geographic

Information System (GIS) developed by a company called Esri. ArcMap is “the primary
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application used in ArcGIS for Desktop for mapping, editing, analysis, and data

management” (ArcGIS, n.d.).

By adding the .csv files as XY data and choosing the World Geodetic System 84
(WGS84), which is the “reference coordinate system used by the Global Positioning
System” (GISGeography, 2018), it is possible to save the data in shapefile 2 (.shp)
format, as represented in Figure 22. According to Esri Shapefile Technical description,
a shapefile “stores nontopological geometry and attribute information for the spatial
features in a dataset” and the “geometry for a feature is stored as a shape comprising a

set of vector coordinates” (Esri, 1997).

@ AISIAN.mxd - ArcMap - X
File Edit View Bookmarks Inset Selection Geoprocessing Customize Windows Help

DEda = & - |[120000000 Vo EEE B e

QAE@ i« [ E- D@ B ENHR DR, I |

Table Of Cor its I x ~
EEELIE

H = Layers
5 @ AISJAN
.

Gojeie0 &

° -
@alan < >

-53,467 36,103 Decirmal | Degrees

Figure 22 - Shapefile created through ArcGIS.

However, even though ArcGIS stands out by its documentation on how to use its
tools, it is, nonetheless, a proprietary software and its licence comes at a cost. For this
reason, another software was used throughout this dissertation, QGIS. Through QGIS
(which is an open-source cross-platform GIS), it is possible to create and add the

shapefiles created as a vector layer, as it is presented in Figure 23.

21 A shapefile is an Esri vector data storage format for storing the location, shape, and attributes of
geographic features. It is stored as a set of related files and contains one feature class (ArcGIS, n.d.).
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Figure 23 - QGIS vector layer added.

Granted that this step was done successfully, it is then possible to connect
PostgreSQL database to QGIS and export that layer (Figure 24).
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Figure 24 — QGIS to PostgreSQL connection.

Regarding the MONICAP data, the process is equal once the data is in .csv
format. One can achieve that by using Power Query, an Excel add-in, to join the different
.txt files into one month based .xlIsx file. On average, a MONICAP monthly file has about
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450 000 rows. Afterwards, the files are converted to .csv and the steps explained above

are repeated.

The database management interface pgAdmin was used to manage the

database.

Figure 25 shows the database in the pgAdmin interface.
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[ a1s_aan [PK] integ...| geometry integer integer | integer integer integer integer double pr._.| double pr_.| integer double|
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Figure 25 — Database in the pgAdmin interface.

3.4. PostgreSQL Database

There are several reasons that support the choice of PostgreSQL, besides being
open source and available for all the most common operating systems as mentioned
above. Behind a good documentation, in what concerns manuals, tutorials, books,

among others, there is also a very active and collaborative community.

Table 4 represents PostgreSQL processing capability.

Table 4 - PostgreSQL processing capability (Database guide, n.d.).

Limit Value

Maximum Database Size Unlimited
Maximum Table Size 32TB

Maximum Row Size 1.6TB
Maximum Field Size 1GB

Maximum Rows per Table Unlimited
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Maximum Columns per Table

250-1600 depending on column types

Maximum Indexes per Table

Unlimited

Another advantage of the usage of PostgreSQL is its advanced database
management system, as it allows the access of several users at the same time. In
addition, it is also possible to grant different roles for each user. This allows the database
to follow the Atomicity, Consistency, Isolation, Durability (ACID) principles that every
SQL database guarantee. (Essential SQL, n.d.). Atomicity is the principle where every
operation is done as a single unit, which means that, for example, in a transaction moving
two data sets, either all the information is saved or none. Consistency, on its turn, means
that interrupted changes do not take place. Instead, the process is rolled back in order
to keep data integrity. Isolation principle ensures that a certain transaction is not affected
by any other transactions taking place. Finally, durability means that once a certain

transaction is finished, it will remain so, even in the case of a system failure.

The database is under the name “AlS_MONICAP_2017” and is composed by

several tables, each one of them concerning a type of data and a month, as it can be

seen in Figure 26.
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Figure 26 - pgAdmin tables of AIS_MONICAP_2017 database.

Inside each table, the data is organized as shown in Figure 27.

Data Output Explain Messages History

minutos | latitude longitude | nav_status| sog

objectid mmsi dia mes ano

m | d geom cog

[PK] int...| geometry integer | integer integer| integer | integer | integer | double pr...| double pr...| integer double pr | double pr
(] 1 0104000020E61000000100. 1 263420620 1 3 2017 558 37.13287 .526638333 2 0 221.7
O 2 0104000020E61000000100. 2 224890212 1 3 2017 558 42.942655 -9.1804 0 0.1 169.4
(] 3 0104000020E61000000100. 3 224237220 1 3 2017 558 36.595925 -4.513265 0 0 116.2
O 4 0104000020E61000000100. 4 224312290 1 3 2017 558 7.02339667 .926858333 0 3.1 182
(] 5 0104000020E61000000100. 5 224350802 1 3 2017 558 5.87747833 -7.085405 7 3.7 1524
O 6 0104000020E61000000100. 6 249910010 1 3 2017 558 7.84357333 5.39852333 0 0.1 231.6
Iml Z_0104000020E61000000100 7225849590 1 32017 558 3,44045667 810223333 Z 2.4 206.5

Data Output Explain Messages History

id | geom objectid mmsi dia mes ano | minutos | latitude longitude | nav_status| sog cog

[PK] int...| geometry integer | integer integer| integer | integer | integer | double pr...| double pr...| integer double pr...| double pr.
O 1 0104000020E61000000100... 1 263420620 1 3 2017 558 37.13287 .526638333 2 0 221.7
O 2 0104000020E61000000100... 2 224890212 1 3 2017 558 42.942655 -9.1804 0 0.1 169.4
O 3 0104000020E61000000100... 3 224237220 1 3 2017 558 36.595925 -4.513265 0 0 116.2

Figure 27 - Example of one of the AIS tables created.

One of the first steps was to normalize data in what concerns decimal places.
The end result is 5 decimal places for latitude and longitude fields in both AIS and
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MONICAP data. The field of SOG will have one decimal place, by reducing one decimal
place of MONICAP data to match AlS’s field, and COG with 0, to match AIS data to
MONICAP’s COG field.

The normalizations of SOG and COG are quite easily explained by the
irrelevance of 0,01 in terms of speed over ground or 0,1 in terms of course over ground.

However, the latitude and longitude decimal places need a little further explaining.

“Degrees of latitude are parallel so, for the most part, the distance between each
degree remains constant” (Rosenberg, 2018). The same cannot be applied to longitude
degrees, because their distance changes significantly, being farthest apart on top of the

line of Equator and converging at the poles.

In the Equator, 1° of latitude corresponds to 60 nautical miles??, and as mentioned
above it almost does not vary from the Equator to the poles. As it is, 0,00001° of latitude
means approximately 1,11 meters, which is a more than acceptable error in terms of

positioning at sea.

Regarding longitude, there is the need to perform a calculation based on the

respective latitude. A simple and rough way to do this is by using the formula [1].

1° of Longitude = cosine (latitude in decimal degrees) * length of degree (miles) at

equator [1]
A degree of longitude is widest at the equator with a distance of 69.172 miles.

Using [1], to the selected area (latitude 37,5°N to 39,5°N; longitude 010,5°W to
008,5°W), 0,00001° of longitude means approximately between 1,016 meters and 0,989

meters, which is also a satisfactory value.

The main goal of the database is to gather and manage all the data required in
order to identify anomalies, not only in the correlation between the different data types,

but also anomalous values that the data may present.

Once the database was concluded, a list of possible erroneous records was
compiled so as to be looked upon and tagged. Therefore, the following possible

erroneous records were listed:

22 One nautical mile is equivalent to 1852 meters.
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e Missing records, this means that no information has been received from
the sensors;

e Records with positions situated in anomalous places, for example
onshore;

¢ Records with SOGs extremely high, for example over than 100 knots;

e Records with erroneous names, sometimes missing or partially cut.

Once these records were identified, they were marked according to each type of
error mentioned above. The decision to tag these records instead of simply removing
them can be justified by the fact that what looks useless in most cases might be useful
in the detection of anomalies in future studies (Urbano, 2014). In addition to that,
sometimes repeated erroneous data can suggest a failure in the source, specifically in
the sensors providing the data. Also, a record might have some erroneous values, but

the remaining might still be useful and valid to be interpreted.
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CHAPTER 4

DATA ANALYSIS TOOLS

4.1. Selected area
4.2. Data mining for anomaly detection using Orange
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4. Data analysis tools

4.1. Selected area
In order to conduct some tests with the data, an area of interest was selected.
This area comprises the data located between, in latitude 37,5° and 39,5°N and in

longitude, 10,5°W and 8,5W, being represented in Figure 28.
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X Marselha
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Gibraltar 4
15W0.00 Tanger.. 5W0.00

40N0.00

39N0.00

14W0.00 2800820 10w0.00

37N0.00

Figure 28 - Selected area (Daftlogic, n.d.).

This area consists of about 8350 Nautical Square Miles (NM?) and it was chosen
through the observation of vessel traffic density near the Portuguese Coast (Figure 29).
The main ports comprised in the selected area are Lisbon and Sines. As it was
mentioned before, during the introduction, the port of Lisbon stood out in 2017 for its
development in terms of cargo movements. The port of Sines, on the other hand, is the
port that detains the hegemony of cargo movements in Portugal. The choice of the size
of the area was based on having an area large enough to have a comprehensive
database without compromising the ability to store and process it.
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Figure 29 - Traffic density in the chosen area (Marine Traffic, n.d.).

4.2. Data Mining for anomaly detection using Orange

The data mining tool used in the present dissertation was Orange. The criteria
was the fact that it is open source, its intuitive workflow and the active developing
community, constantly updating and delivering new functionalities.

One of the main advantages of Orange is the ability to connect to a PostgreSQL
database, as it is represented in Figure 30. In order to do so, it is necessary to install
some extensions, more specifically psycopg2 and quantile.
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Figure 30 - Orange connection to PostgreSQL database.

With the SQL Table widget it is possible to introduce data from tables of the
created database. However, one downside of the usage of this widget is the impossibility
to use it with a very large table, which happens in “AIS_MONICAP_2017” database. In
order to solve this issue two options were considered. One of them was to use the widget
Data Sampler, which would randomly select a subset of data from the input dataset. The
second option was to create smaller tables, with less data. Taking into consideration that
the main goal was to analyze a certain area and data concerning specific ships, it was
not viable to randomly select data. Therefore, smaller tables were created, with a week

worth of data, within the selected area.

For the initial trials, it was important to see if there was a simple way to correlate
data from the two sources, AIS and MONICAP. The first tool used was the Distance
Matrix. A distance matrix shows the distance between types of corresponding data in
form of a table. The distances can be calculated through different methods such as

Euclidean, Manhattan and Mahalanobis distance, among others, as shown in Figure 31.
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Figure 31 - Distance calculation methods available in Orange.

The second tool used for data correlation was the Impute widget. This widget has
the goal of replacing missing values, by computing data according to several techniques
or by data set by the user, as it is represented in Figure 32.
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Figure 32 - Orange's impute widget.
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It is possible to specify general imputation techniques for every attribute or to
specify individual treatment for each attribute. Of all these techniques, the only one that
cannot be understood by its term is the Model-based imputer. This technique, by using
the values of other attributes, creates a model for predicting the unknown values
(Orange, n.d.). The default model is a 1-NN learner that replaces missing values with
values from the most similar record. This model derives from a k-Nearest Neighbour (k-
NN) algorithm which is used for classification as well as regression-type prediction
problems (Sharda, 2014). The k-NN method is one of the simplest of all machine-learning
algorithms. For classification prediction, for example, a record is classified according to
the class of its k nearest neighbours. According to the values of k, there can be different
classifications. In Figure 33, the star in the centre is the target of this classification, being
the squares and circles the possible classes. If k=1, the star would be considered a
square. However, if k=3, the classification would be a circle and if k=5 it would be a

square again. Figure 33 shows the importance of the k value.

-
X, X

Figure 33 - Different classification based on k value (Sharda, 2014).

In Orange’s impute case in particular, 1-NN, the record is classified with the class

of its nearest neighbour.

Ouitlier detection was another tool used during the experimental phase. Orange

offers this widget with two different outlier detection methods: One class Support Vector
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Machine (SVM) with non-linear kernel and Covariance estimator. While one class SVM
with non-linear kernels works on non-Gaussian distributions, Covariance estimator is
only used with Gaussian distributions. A Gaussian or normal distribution is a continuous
probability distribution, represented by the mean (p), the standard deviation (o) and the
variance (0?). This distribution can be observed in Figure 34. As the data used in this
dissertation does not follow a Gaussian distribution, one class SVM with non-linear

kernel was used instead (Orange, n.d.).
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=
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En.a M a
a
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0.2 4

0.1 4 y \

U‘__ _'l_ L L] -I_ —

Random Variable

Figure 34 - Example of Gaussian distribution (Boost, n.d.).

Learning algorithms of data mining methods can be classified as supervised or
unsupervised. Unsupervised learning is used when a model is trained without labelled
data. On the other hand, supervised machine learning happens when labelled training
data is available. One class SVM with non-linear kernel is an unsupervised learning

algorithm that classifies data as similar or different from the training set (Sharda, 2014).

Using the Outliers widget in Orange (Figure 35), it is possible to define two
parameters for the One class SVM with non-linear kernel method: Nu and Kernel
coefficient. Nu parameter is an upper bound on the fraction of margin errors and a lower
bound of the fraction of support vectors. Kernel coefficient is a gamma parameter, which
determines the influence of a single data record. As this algorithm does not have an
optimal set of parameters by default, it is necessary to experiment with these parameters

in order to optimise the results obtained (Orange, n.d.).
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Figure 35 - Orange's outlier widget.
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CHAPTER

TESTS AND RESULTS

5.1 Data correlation tests and results
5.2 Anomaly detection tests and results
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5. Tests and Results

5.1. Data correlation tests and results

5.1.1. Test 1

In the first test, AIS and MONICAP data that corresponded to a single ship’s route,
Aurora, was used. This route concerns data from one day, 1% of March 2017. This first
test uses a .csv file, rotas_correspondentes, with one vessel, having the complete AIS
and MONICAP records from that day.

As it was said before, Orange is quite simple to use. The first step is to insert the

file with the data required through the file widget (Figure 36).

L
Data -
= S e ~ o x|
D g @ Fie: |rota corespondente_aurora.xisx b £ Reload
O wre: v
Fle  Datasets SQUTable DataTable
Info
=y ] 150 instance(s), 11 feature(s), 0 meta attrbute(s)
. _| * Data has no target variable.
Data Select
PantData Datalnfo . ;
s c
e o Columns (Double cick to edit)
[ Name Type Role Values
B e ol & e
1 4 i
Select Merge tipo categorical  feature AIS, MONICAP
Rows e Dats RS
2 nome @ categorical  feature Aurora
S
% [ | — @ rumeric p—
4 | 1
Transpose Randomize Preproc..  Impute ] W cusgorial: foature i
5 5 mes @ numeric feature
.e ; ﬁ /
o2 T4 e @ 6 ano @ numeric feature
Outlrs S PPN o 7 minutos M numeric feature
2 natitude @ numeric feature
. . . —
Browse documentation datasets
Read data from an input fie or network and send a
data table to the output. 8

Figure 36 - Data file insertion.

Afterwards, it is necessary to select the features considered relevant to enter the
distance matrix through the select columns widget. In this test, the features selected
were minutes, latitude and longitude. These features can be selected in the select
column widget, represented in Figure 37. With it, it is possible to select the features that
will be used for the intended algorithm, so as the features that will be selected as targets
and as meta attributes, which are features that, for the most cases, are not considered

in the analysis (Orange, n.d.).
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Figure 37 - Selection of features.

Then, it is necessary to apply the distances widget and choose the type of
distance wanted in the distance matrix. In this situation, Euclidean distance was the
chosen method because, considering that the data is from a relatively small area, it could

be compared to calculating distances in a two-dimensional plan (Figure 38).
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Figure 38 - Distance selected, Euclidean.
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Only later it is possible to apply the distance matrix widget to the data, as it is
represented in Figure 39.
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Figure 39 - Distance matrix application.

Distance matrix results appear in a continuous color gradient ranging from a
darker green, high values, to white, values equal or close to 0, as it can be observed in
Figure 40.
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A Distance Matrix - X
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Figure 40 — Example of colour gradient based on distances.

AIS data goes from row 1 to 99, MONICAP data goes from row 100 to 141, in file

rotas_correspondentes, all ordered in function of the time.

From Figure 41, it is possible to see that there are big distances between the first
points in AlS and the final ones, which makes sense because the ship is moving, from a
point A to a Point B that are not the same, and consequently is altering its position. The

time feature also contributes to the disparity of the values.
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Figure 41 - Distance matrix results between AIS data.

The biggest differences observed in this matrix (Figure 42) is when comparing

the final AIS data with the first reports of MONICAP, which also makes sense considering

that it is not a circular route.
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Figure 42 - Distance matrix results.
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Because the file used is one that we can be assured that belongs to the same

vessel, it is possible to select data (AIS and MONICAP) from a certain instance in time

and see if the correspondent distance shows a small value (indexes are different

because of the heading of the Excel file). It was selected data from almost the same time

period, with only a minute of difference (Figure 43).
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Figure 43 - Values used to analyse results of distance matrix.

The value obtained was 0.003, close to 0, as it is represented in Figure 44.
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A Distance Matrix - =] X
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Labels: | Enumerate - “ Send Automatealy
2E

Figure 44 - Distance obtained from correlating AIS and MONICAP data.
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Afterwards, the goal was to assess the impact that the time feature had on the

results of the distance matrix. Therefore, it was selected two points with an 8 minute time

difference (Figure 45).
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Figure 45 — Values used to analyze distance matrix with 8 minutes difference.

The result was a 0.403, quite different from the previous result (Figure 46).
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Figure 46 - Results obtained from correlating AIS and MONICAP data.

5.1.2. Test 2
In test 2, the data used is the same from the previous test. The difference is that
time is not chosen as a feature, and therefore, it will not be considered in the

computations (Figure 47). The results are then compared with the ones from test 1.
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Figure 47 - Orange scheme without time data.

At first sight there are already differences (Figure 48).

66



Data mining for anomaly detection in maritime traffic data
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Figure 48 - Distance matrix results without time data.

With the 3 features, the overall distance is bigger than with only latitude and
longitude but there is not a big discrepancy. The first MONICAP points start at 100 and
in the matrix on the left the distances are very big because time didn’t correspond in the

two different data (Figure 49).
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Figure 49 - Distance matrix results for test 2.

5.1.3. Test 3

a) Latitude, Longitude and Time features

The main goal was to identify a correspondence between single ship’s route with
AIS and MONICAP data with 3 other ship’s route with only MONICAP data, all
concerning one day of data (1% of March 2017) with latitude, longitude and time as
features. Also, during test 3, the applicability of the Impute widget in this dataset was
verified by confirming if it is possible to use it to replace missing values, and therefore to
associate MMSiIs from AIS data with names from MONICAP data.

The file used throughout this test has four different MONICAP vessels and one

AIS, existing one correspondence between one MMSI and one name.

In this test, despite the distances regarding the corresponding MONICAP not
being constant, it is only with the correspondent MONICAP data that the values get so
close to 0. It is also possible to see that, in spite of a 5 minute difference between the
points presented below, the distance is of 0.000 which makes sense by looking at the

data (Figure 50) and seeing that the ship at that point has a SOG equal to 0.
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Figure 50 - Distance matrix results in test 3.

Figure 51 represents a sample of the data used for this test.
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Figure 51 - AIS and MONICAP data used on test 3.

For the Impute widget, latitude, longitude and time were selected as features,
while name was selected as target, as it is the object of the imputation. Finally, the results
obtained from the Impute widget proved to be successful, as the AIS vessel obtained the
corresponding hame after this process. This can be verified in Figure 52.
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Figure 52 - Results after Impute widget.

b) Latitude, longitude and COG features

In this test, the file used was the same as on the previous one, but the features

selected were latitude, longitude and COG.

It turns out to be inconclusive, as data that should be corresponding (AIS: 46 to
143; MONICAP: 144 to 186) appear with high values (Figure 53). In spite of this, the

impute widget still presented correct results as it classified the AIS record with the right

name.
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Figure 53 - Distance matrix results in test 3 b).

5.2. Anomaly Detection tests and results

anomalies, for example in terms of speed, and comparing those results with the ones

The second orange scenario consists in applying simple filters in order to detect

obtained from the orange outlier widget. This scenario uses data from the created

database, using the SQL widget in Orange. More specifically, it is connected to a table

specially created for Orange tests, ais_monicap_mar. This table contains AIS and
MONICAP data from the first week of March, as it reduced Orange’s processing time. In

addition to that, a filter was applied in order to select a specific time for the analysis, in
this case, from 0600 to 1200.

This Orange workflow is represented in Figure 54, and it is essentially divided in

three parts: detecting vessels with a SOG equal to zero, detecting vessels with

anomalous SOGs and detecting vessels with anomalous SOGs or COGs in Cape Roca
Traffic Separation Scheme (TSS)Z. It also allows the analysis of a specific vessel that

may have been detected as anomalous.

23 A Traffic Separation Scheme has the main goal of regulating vessels traffic and ensuring navigational
safety in congested waters.
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Figure 54 - Anomaly detection test Orange Workflow.

The great advantage of this workflow is that it allows a common user, for example
an operator, to change the parameters of what he wants to see without being required
any special learning process. The results obtained in each part of the workflow can be

represented in a data table, but also in a Geo Map widget.

However, by using the SQL widget, it was not possible to select MMSI and name
data as categorical type, as the type of data was automaticaly chosen from the
PostgreSQL table. As a consequence, the impute widget did not present valid results,
as it is possible to observe in Figure 55. This happens because MMSI can take any value
by being numeric, which would not happen if this feature was set as categorical.
Therefore, instead of doing a classification prediction type, it is doing a regression

prediction, resulting in MMSI with continuous values and non-existing ones. As a

consequence, this widget will not be used in the test.
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40562 Pacific MONICAP 38,520 -8.898 1282.000
40563 || 263415243.034 Usurper MONICAP 39.356 -9.368 1121.000
40564 | 263415243034 Thelntrepid  MONICAP 39355 -9.368 1120.000
40565 | 247256400000 Bermuda MONICAP 37.574 -8.991 1042.000
40566 | 263441655.742 Bermuda MONICAP 37.568 -8.949 1068.000
40567 | 636014656000 Bermuda MONICAP 37.536 -8.924 1311.000
40563 | 204284992.000) The Duchess  MONICAP 39355 -9.374 1229.000
40569 || 258146321.067 Raven MONICAP 39.208 -9.518 1013.000
40570 | 258146321.067 Raven MONICAP 39.204 -9.527 1017.000
40571 || 263364566204 Raven MONICAP 39.273 -9.603 1137.000
40572 || 263364566204 Raven MONICAP 39.207 -9.618 1257.000
40573 || 263406384.000 Neptune MONICAP 39.232 -9.468 1012.000
40574 |11 263406384000 Neptune MONICAP 39.272 -9.465 1072.000
40575 | 263379008.0000 Neptune MONICAP 39.336 -9.387 1117.000
40576 | 263415243.034 Neptune MONICAP 39.355 -9372 1132.000
40577 | 263416448000 Hydra MONICAP 38.438 -9.113 1052.000

Figure 55 - Impute widget erroneous results.

For the first segment of the workflow, an analysis is done based on the vessels’
SOG bheing equal to zero, as it is represented in Figure 56. It is also possible to analyze

just one type of data (AIS or MONICAP), selecting it in the select data widget.

Records S0G =10

g)&(v

ﬁﬁ Show data in table Outliers
i

{5

Select columns  Select SOG =10

Show data in table Inliers

Figure 56 - Branch of the workflow - Analysing records SOG = 0.

As one could expect, most of the records with SOG equal to zero represent
moored vessels. However, using the Geo Map widget, it is possible to detect vessels
with this speed at sea, which can be observed in Figure 57. This Figure represents every
record that has SOG equal to zero, corresponding to a total of 3024 records on the 1% of
March.
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Figure 57 - Records with SOG = 0 on 1%t of March, corresponding to a total of 3024 records.

This factor would not be seen as an anomaly if it were not for the distance to the
sea bed in those areas, which is far greater than what would be needed for anchoring.
There is also the possibility of these being vessels engaged in fishing, which is not
unlikely but requires further analysis. Therefore, the next step was to separate records
that represented moored vessels from the ones that were at sea. In order to do so, the
outlier widget was used, configured as it is represented in Figure 58, after parameters

experimentation.

" Outliers — O x

Information

3024 instances
1810 inliers, 1214 outliers

Outlier Detection Method
(® One dass 5VM with nondinear kernel (REF)

Mu:
' 40 %

O Covariance estimator

Contamination:
' 10 %
[1 suppart fraction: |1,0 :
| Detect Outliers |
2 E

Figure 58 - Outlier widget configuration
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With this widget, it was possible to separate the data, resulting in a total of 1810

inliers and 1214 outliers. This is represented in Figure 59, where it is possible to observe

the outliers on the left image and the inliers on the right image.
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Figure 59 - a) Outlier Records; b) Inlier Records.

From the analysis of Figure 59, it is possible to say that most of the cases where

the vessels were at sea were detected in the outliers segment.

Once the records were detected, a second analysis may be done in order to verify

if the pattern of movement corresponds to the type of vessel. This analysis is done using

the individual segment mentioned above.

In Figure 60, it is represented one of the vessels chosen from the records shown
on Figure 59, with a MMSI equal to 255125111. The colours represent different SOGs,
being blue SOGs equal to zero and yellow a SOG being equal to nine. Consequently, it

is possible to observe one moment where the SOG is equal to zero and another one

where the SOG is above 8 knots, showing a pattern that is common with vessels

engaged in fishing.
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Figure 60 - Vessel with MMSI 255125111 route on 15t of March.

The second branch of the workflow was the SOG oultlier detection. In this branch,
a simple outlier detection was created, in order to detect records with an anomalous

SOG. This branch is represented in Figure 61.

™ 0 .
|i | Data ‘re N Selected Daa

@H%ﬂ D — DA a )

Show data in table Geo Map

Select Columns Outliers 50G

Figure 61 - SOG Ouitlier detection.

The results are represented in Figure 62. However, due to the long range of
SOGs, ranging from 0 to 102 (as it can be observed in the Figure’s legend), it is difficult
to clarify other records with out of the ordinary SOGs. From these results, it was possible

to detect several records with SOGs of 102 knots.
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Figure 62 - Results of SOG outlier detection.

Considering that these records are related to vessels, it is highly unlikely that this
speed is correct. Upon further research, 102 knots revealed to be the maximum value
AIS transponder transmits (Marine Traffic, n.d.). Therefore, it may be concluded that this

information results from a system or transmission error.

In order to detect anomalous speeds without system errors, a filter was done, so

as to remove speeds over 100 knots. The results are represented in Figure 63.
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Figure 63 - SOG outlier detection after filtering.
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The blue dots represent records with a SOG equal or very close to 0 knots. Upon

further analysis, all the records were identified as fishing vessels, as this filter may be
indicated to identify this type of ships.

The next branch of this workflow was the Traffic Separation Scheme (TSS)
anomaly detection. This branch is represented in Figure 64.
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Figure 64 - Traffic separation scheme branch.

For this branch, four features were selected in order to be used in the outliers
widget, as it is represented in Figures 65 and 66. The reason these features were
selected was to find anomalous records in the TSS, based on an abnormal SOG or COG

values in accordance with the vessels’ position. A total of 200 outliers were detected in
this branch.
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Figure 65 - Features selection for traffic separation scheme.
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Figure 66 - Outlier widget for traffic separation scheme.

In this branch, only data from the TSS of Cape Roca is selected. This TSS is

represented in Figure 67.

?’i‘i‘l’;‘
AN B

Figure 67 - TSS of Cape Roca.

According to the International Regulations for Preventing Collisions at Sea, there
are several rules concerning TSSs (International Rules for Preventing Colisions at Sea,
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1972). Therefore, from rule 10 “Traffic separation schemes”, which is presented in Annex
B, vessels should “avoid crossing traffic lanes, but if obliged to do so shall cross on a
heading as nearly as practicable at right angles to the general direction of traffic flow”
(Figure 68).

E I:> /I

Figure 68 - Crossing a traffic lanes according to International Regulations for Preventing Collisions at
Sea.

The results for this branch are presented in Figure 69 a) and b).
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Figure 69 - Traffic separation scheme, a) Every record; b) Outlier records.

The results present two possible anomalous cases, as it is observed in Figure 70.
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Figure 70 - TSS anomalous records.

In case 1, itis possible to observe a set of records that belong to the same vessel.
As it is represented in Figure 70, this vessel is crossing the traffic lanes without doing it
at as close as to the normal direction (perpendicular) to the general direction of traffic
flow, as it was mentioned above. This practice is not in accordance with the International

Regulations for Preventing Collisions at Sea.
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On the other hand, in case 2, it is possible to observe two vessels, one in each
traffic lane, which according to their positions seem normal. However, their COGs
represent abnormal values considering their future positions, as the record from the left
corridor has a COG of approximately 265 and the record from the right, a COG of 090.
This may mean a system anomaly, as these COG values do not correspond to the ones
that are indicated for the vessels to go from one position to the other in that amount of
time. The COG values for the left traffic lane should be approximately 180 and for the
right traffic lane around 000.

On table 5, it is possible to observe a summary of the Anomaly Detection

conducted tests using PostgreSQL database and Orange Data Mining tool.

Table 5 - Summary of the conducted tests.

Anomaly Features Techniques used Results

used
The majority of moored

One class SVM
vessels were

Ships with

1 SOGs=0 Latltuc_le e (i) e separated. The outliers
longitude kernel through
not moored ) . may be vessels
Outlier widget PO
engaged in fishing.
Detected anomalous
Latitude, One CIaSS.SVM SOGs of 102 knots,
Anomalous . with non-linear . N
2 longitude and which may indicate a
SOG kernel through e
SOG Outlier widget system or transmission
g anomaly.
Anomalous Latitude, One class SVM Detected anomalous
3 SOGs or longitude, with non-linear COGs in the TSS and
COGsin SOG and kernel through system or transmission
TSS COG Outlier widget anomalies
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6. Conclusion

6.1. Summary

This dissertation aims to maximize maritime situational awareness by detecting
anomalies in maritime traffic data. The need to have a good maritime situational
awareness has been recognized as highly important by every coastal country, more so

in a country like Portugal, which has an immense EEZ.

In the first chapter of this dissertation, the topic of this dissertation was introduced.
On this chapter it is possible to understand the underlining motivation and relevance of

this topic, as well as its main goals.

On Chapter two, a literature review has been done, focusing on maritime
situational awareness on the first sub-chapter, moving on to the concept of anomaly and

anomaly detection. This chapter ends with a brief review of several data mining tools.

On the third Chapter, the investigation workflow was introduced, as well as an
explanation about the origin of the data used in this dissertation and all the steps done

in order to include the data in a PostgreSQL database.

On Chapter four, an area of interest was defined and the data mining tool that
would be used to analyze the data, as well as the specific functions used in this

dissertation.

On the last chapter before conclusions, “Tests and results” the results obtained
by using Orange Data Mining Tool are represented. It was on this chapter that it was
possible to observe that correlation between data sources can be done through Orange,
as well as Outlier Detection in a traffic separation scheme, and other cases with
anomalous SOGs and COGs.

A good recognized maritime picture is maintained by using data from different
sources. If it is possible to correlate data from different sources, not only is the problem
of the overwhelming amount of data somewhat solved, but it allows the detection of

different type of anomalies.

Therefore, the goals of this dissertation were for the most part achieved. The
results provided by Orange Data Mining turned out to be satisfactory, as it was possible
to obtain relevant results, through the detection of anomalies in a simple and easy way,

as this tool is very user-friendly. These results proved to be even more satisfactory, as
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Orange is in constant development by the community, having a tremendous potential

that can be explored even further.

The MARISA project proved to be pertinent, as it contributed for the initial
identification of requisites and definition of anomalies, demonstrating to be an influence

for this dissertation.

6.2. Constraints

During this dissertation there were some constraints that made it difficult to carry

out this research.

The first was the difficulty on obtaining data. The data presented in this
dissertation was obtained belatedly, mostly due to bureaucracies, that considering the
type of data, and the entities that possess them, are totally understandable. However,
taking into consideration the time available for this master thesis, it was a serious
limitation. Therefore, a great amount of the available time for the dissertation was used

to obtain data and creating the database.

The second one, was the resources available for executing this dissertation. The
main factor for this was the lack of a computer that could process the immense amount
of data for PostgreSQL database and for Orange analysis. This constraint resulted on
the usage of a personal computer, without the ideal processing capabilities that would
be desired. As a consequence, the data sets analyzed on Orange had to be, for the most

part, reduced.

6.3. Future work

There are several projects that can be done as future work:

e Since the database is already created, it is suggested the addition of
meteorological and oceanographic data, and its integration on the
analysis;

e The combination of SADAP with Orange is also proposed considering that
through SADAP it is possible to evaluate the probability of finding vessels
performing infractions. This first assessment would allow to focus
Orange’s analysis to those specific geographical areas and time periods
and judge if the results obtained can identify the reported transgressions.
It would also allow a more detailed individual analysis of vessels by

showing any existing past infractions;
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e Orange data mining tool’s constant development makes it very important
to continue to explore it and its add-ons, such as tools for text analysis
from social networks or journals;

o As all the data in the PostgreSQL database is georeferenced, another
suggestion would be to explore the variety of spatial operations that
PostGIS has to offer.
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Appendix A

Matlab code to convert data to .xIsx format:

$PASSAR DADOS AIS DE *MAT PARA EXCEL

% Dia 1
load ('"E:\DADOS AIS\2017\10\F\F010ct2017.mat"):;
c=length (footprint aom);
d=cell(c,11l); % cria um conjunto de células (tem que ser células e néo
matrizes, por serem dados do tipo string)
for ir=1l:c
a=footprint aom(ir,1);
e=footprint aom(ir,2);
b=sprintf ('$.0f',a); % passar MMSI p string / '%.0f' significa que
ndo vai ter nenhuma casa decimal
f=datestr (e, 'dd/mm/yyyy HH:MM'); % converter o datenum no formato
indicado
d{ir,1}=b;
d{ir,2}=£f(1:2);%dia
d{ir,3}=£(4:5);%mes
d{ir,4}=£(7:10); %ano
h=str2num(f£(12:13)); %horas
m=str2num (£ (15:16));%minutos
min = (h*60) + m ;
d{ir, 5}=min;
d{ir, 6}=footprint aom(ir, 3)
d{ir,7}=footprint aom(ir, 4)
d{ir,8}=footprint aom(ir,5)
d{ir,9}=footprint aom(ir, 6)
d{ir,10}=footprint aom(ir,7
d{ir,1ll}=footprint aom(ir,8
end

’

’

’

)7
).

’

% passar dados para formato xlsx (excel)

°

xlswrite ('AIS 0lOct.xlsx',d);
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Annex A — International Requirements for AIS Carriage

According to Chapter V, Regulation 19.2.4 of SOLAS Convention:

“2.4. All ships of 300 gross tonnage and upwards engaged on international voyages and
cargo ships of 500 gross tonnage and upwards not engaged on international voyages
and passenger ships irrespective of size shall be fitted with an automatic identification

system (AlS), as follows:

2.4.1. Ships constructed on or after 1 July 2002;

2.4.2. Ships engaged on international voyages constructed before 1 July 2002:
2.4.2.1. in the case of passenger ships, not later than 1 July 2003;

2.4.2.2.in the case of tankers, not later than the first survey for safety equipment*
on or after 1 July 2003;

* Refer to regulation 1/8

2.4.2.3. in the case of ships, other than passenger ships and tankers, of 50,000

gross tonnage and upwards, not later than 1 July 2004;

2.4.2.4. in the case of ships, other than passenger ships and tankers, of 300 gross
tonnage and upwards but less than 50,000 gross tonnage, not later than the first safety

survey after 1 July 2004 or by 31 December 2004, whichever occurs earlier; and

2.4.3. ships not engaged on international voyages constructed before 1 July 2002, not
later than 1 July 2008;

2.4.4. the Administration may exempt ships from the application of the requirements of
this paragraph when such ships will be taken permanently out of service within two years

after the implementation date specified in subparagraphs .2 and .3”.
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Annex B - Rule 10: Traffic Separation Schemes

According to the International Regulations for Preventing Collisions at Sea —
Rule 10:

(a) This Rule applies to traffic separation schemes adopted by the Organization and does

not relieve any vessel of her obligation under any other rule.
(b) A vessel using a traffic separation scheme shall:

(i) proceed in the appropriate traffic lane in the general direction of traffic flow for

that lane;
(i) so far as practicable keep clear of a traffic separation line or separation zone;

(iif) normally join or leave a traffic lane at the termination of the lane, but when
joining or leaving from either side shall do so at as small an angle to the general direction

of traffic flow as practicable.

(c) A vessel shall, so far as practicable, avoid crossing traffic lanes but if obliged to do
so shall cross on a heading as nearly as practicable at right angles to the general

direction of traffic flow.

(d)

(i) A vessel shall not use an inshore traffic zone when she can safely use the
appropriate traffic lane within the adjacent traffic separation scheme. However, vessels
of less than 20 metres in length, sailing vessels and vessels engaged in fishing may use

the inshore traffic zone.

(ii) Notwithstanding subparagraph (d)(i), a vessel may use an inshore traffic zone
when en route to or from a port, offshore installation or structure, pilot station or any other

place situated within the inshore traffic zone, or to avoid immediate danger.

(e) A vessel other than a crossing vessel or a vessel joining or leaving a lane shall not

normally enter a separation zone or cross a separation line except:
(i) in cases of emergency to avoid immediate danger;
(ii) to engage in fishing within a separation zone.

(f) A vessel navigating in areas near the terminations of traffic separation schemes shall

do so with particular caution.
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(9) A vessel shall so far as practicable avoid anchoring in a traffic separation scheme or
in areas near its terminations.

(h) A vessel not using a traffic separation scheme shall avoid it by as wide a margin as

is practicable.

(i) A vessel engaged in fishing shall not impede the passage of any vessel following a
traffic lane.

() A vessel of less than 20 metres in length or a sailing vessel shall not impede the safe
passage of a power-driven vessel following a traffic lane.

(k) A vessel restricted in her ability to manoeuvre when engaged in an operation for the
maintenance of safety of navigation in a traffic separation scheme is exempted from

complying with this Rule to the extent necessary to carry out the operation.

() A vessel restricted in her ability to manoeuvre when engaged in an operation for the
laying, servicing or picking up of a submarine cable, within a traffic separation scheme,
is exempted from complying with this Rule to the extent.

100



BOLVENAAL

®

i@

Data mining for anomaly detection in maritime traffic data

101



