126,362 research outputs found

    Evolutionary Dynamics and Optimization: Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes

    Full text link
    We view the folding of RNA-sequences as a map that assigns a pattern of base pairings to each sequence, known as secondary structure. These preimages can be constructed as random graphs (i.e. the neutral networks associated to the structure ss). By interpreting the secondary structure as biological information we can formulate the so called Error Threshold of Shapes as an extension of Eigen's et al. concept of an error threshold in the single peak landscape. Analogue to the approach of Derrida & Peliti for a of the population on the neutral network. On the one hand this model of a single shape landscape allows the derivation of analytical results, on the other hand the concept gives rise to study various scenarios by means of simulations, e.g. the interaction of two different networks. It turns out that the intersection of two sets of compatible sequences (with respect to the pair of secondary structures) plays a key role in the search for ''fitter'' secondary structures.Comment: 20 pages, uuencoded compressed postscript-file, Proc. of ECAL '95 conference, to appear., email: chris @ imb-jena.d

    Chance and Necessity in Evolution: Lessons from RNA

    Full text link
    The relationship between sequences and secondary structures or shapes in RNA exhibits robust statistical properties summarized by three notions: (1) the notion of a typical shape (that among all sequences of fixed length certain shapes are realized much more frequently than others), (2) the notion of shape space covering (that all typical shapes are realized in a small neighborhood of any random sequence), and (3) the notion of a neutral network (that sequences folding into the same typical shape form networks that percolate through sequence space). Neutral networks loosen the requirements on the mutation rate for selection to remain effective. The original (genotypic) error threshold has to be reformulated in terms of a phenotypic error threshold. With regard to adaptation, neutrality has two seemingly contradictory effects: It acts as a buffer against mutations ensuring that a phenotype is preserved. Yet it is deeply enabling, because it permits evolutionary change to occur by allowing the sequence context to vary silently until a single point mutation can become phenotypically consequential. Neutrality also influences predictability of adaptive trajectories in seemingly contradictory ways. On the one hand it increases the uncertainty of their genotypic trace. At the same time neutrality structures the access from one shape to another, thereby inducing a topology among RNA shapes which permits a distinction between continuous and discontinuous shape transformations. To the extent that adaptive trajectories must undergo such transformations, their phenotypic trace becomes more predictable.Comment: 37 pages, 14 figures; 1998 CNLS conference; high quality figures at http://www.santafe.edu/~walte

    A mechanistic model of connector hubs, modularity, and cognition

    Full text link
    The human brain network is modular--comprised of communities of tightly interconnected nodes. This network contains local hubs, which have many connections within their own communities, and connector hubs, which have connections diversely distributed across communities. A mechanistic understanding of these hubs and how they support cognition has not been demonstrated. Here, we leveraged individual differences in hub connectivity and cognition. We show that a model of hub connectivity accurately predicts the cognitive performance of 476 individuals in four distinct tasks. Moreover, there is a general optimal network structure for cognitive performance--individuals with diversely connected hubs and consequent modular brain networks exhibit increased cognitive performance, regardless of the task. Critically, we find evidence consistent with a mechanistic model in which connector hubs tune the connectivity of their neighbors to be more modular while allowing for task appropriate information integration across communities, which increases global modularity and cognitive performance

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    Neutral Evolution of Mutational Robustness

    Get PDF
    We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population's limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network's adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. This quantifies the extent to which populations evolve mutational robustness: the insensitivity of the phenotype to mutations. Since the average neutrality is independent of evolutionary parameters---such as, mutation rate, population size, and selective advantage---one can infer global statistics of neutral network topology using simple population data available from {\it in vitro} or {\it in vivo} evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions.Comment: 7 pages, 3 figure
    • …
    corecore