224,901 research outputs found

    Application of the morphological alpha shape method to the extraction of topographical features from engineering surfaces

    Get PDF
    In contrast to the mean-line based filters, morphological filters are function oriented and more suitable for the functional prediction of component performance. This paper presents a novel morphological method based on the alpha shape for the extraction of topographical features from engineering surfaces. Compared to the traditional implementation of morphological filters, the alpha shape method is more efficient in performance for large structuring element. The resulting envelope follows the form of the surface all over such that the distortions caused the end effects are avoided. A series of measured surfaces from the automotive cylinder liner and the bioengineering femoral heads are analyzed using the morphological alpha shape method. The topographical features are successfully extracted, enabling further analysis to the components

    A generic formalism for the semantic modeling and representation of architectural elements

    Get PDF
    This article presents a methodological approach to the semantic description of architectural elements based both on theoretical reflections and research experiences. To develop this approach, a first process of extraction and formalization of architectural knowledge on the basis of the analysis of architectural treaties is proposed. Then, the identified features are used to produce a template shape library dedicated to buildings surveying. Finally, the problem of the overall model structuring and organization using semantic information is addressed for user handling purposes

    Fast recursive grayscale morphology operators: from the algorithm to the pipeline architecture

    Get PDF
    International audienceThis paper presents a new algorithm for an efficient computation of morphological operations for gray images and its specific hardware. The method is based on a new recursive morphological decomposition method of 8-convex structuring elements by only causal two-pixel structuring elements (2PSE). Whatever the element size, erosion or/and dilation can then be performed during a unique raster-like image scan involving a fixed reduced analysis neighborhood. The resulting process offers low computation complexity combined with easy description of the element form. The dedicated hardware is generic and fully regular, built from elementary interconnected stages. It has been synthesized into an FPGA and achieves high frequency performances for any shape and size of structuring element

    How analysts think: think-steps as a tool for structuring sensemaking in criminal intelligence analysis

    Get PDF
    Sensemaking has been described as a process involving information structuring. However, there are few detailed accounts of how this manifests in practice, particularly in relation to the creation and use of external representations such as data visualisations, and how such structuring aids sensemaking. To explore these questions in depth, we present an interview study of police crime analysts from which a model of their analysis process is developed. We describe the model focusing on the notion of 'think-steps', which for the analysts acted as a primary structuring concept. We describe how 'think-steps' propagate throughout the analysis process captured in the model. For the analysts, 'think-steps' are extensible templates that decompose a case into elements, provide a way of storing and visually structuring data, support generation of requests for information, focus research, simulate a case, and shape reporting. We reflect on the implications that our findings might have for design, including the possibility of a repertoire of evolving, sharable and reusable templates for sensemaking within a community of practice

    Morphological operations in image processing and analysis

    Get PDF
    Morphological operations applied in image processing and analysis are becoming increasingly important in today\u27s technology. Morphological operations which are based on set theory, can extract object features by suitable shape (structuring elements). Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure which based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations are reviewed, algorithms and theorems are presented for solving problems in distance transformation, skeletonization, recognition, and nonlinear filtering. A skeletonization algorithm using the maxima-tracking method is introduced to generate a connected skeleton. A modified algorithm is proposed to eliminate non-significant short branches. The back propagation morphology is introduced to reach the roots of morphological filters in only two-scan. The definitions and properties of back propagation morphology are discussed. The two-scan distance transformation is proposed to illustrate the advantage of this new definition. G-spectrum (geometric spectrum) which based upon the cardinality of a set of non-overlapping segments in an image using morphological operations is presented to be a useful tool not only for shape description but also for shape recognition. The G-spectrum is proven to be translation-, rotation-, and scaling-invariant. The shape likeliness based on G-spectrum is defined as a measurement in shape recognition. Experimental results are also illustrated. Soft morphological operations which are found to be less sensitive to additive noise and to small variations are the combinations of order statistic and morphological operations. Soft morphological operations commute with thresholding and obey threshold superposition. This threshold decomposition property allows gray-scale signals to be decomposed into binary signals which can be processed by only logic gates in parallel and then binary results can be combined to produce the equivalent output. Thus the implementation and analysis of function-processing soft morphological operations can be done by focusing only on the case of sets which not only are much easier to deal with because their definitions involve only counting the points instead of sorting numbers, but also allow logic gates implementation and parallel pipelined architecture leading to real-time implementation. In general, soft opening and closing are not idempotent operations, but under some constraints the soft opening and closing can be idempotent and the proof is given. The idempotence property gives us the idea of how to choose the structuring element sets and the value of index such that the soft morphological filters will reach the root signals without iterations. Finally, summary and future research of this dissertation are provided

    A generic formalism for the semantic modeling and representation of architectural elements

    Get PDF
    International audienceThis article presents a methodological approach to the semantic description of architectural elements based both on theoretical reflections and research experiences. To develop this approach, a first process of extraction and formalization of architectural knowledge on the basis of the analysis of architectural treaties is proposed. Then, the identified features are used to produce a template shape library dedicated to buildings surveying. Finally, the problem of the overall model structuring and organization using semantic information is addressed for user handling purposes

    Algorithms for morphological profile filters and their comparison

    Get PDF
    Morphological filters, regarded as the complement of mean-line based filters, are useful in the analysis of surface texture and the prediction of functional performance. The paper first recalls two existing algorithms, the naive algorithm and the motif combination algorithm, originally developed for the traditional envelope filter. With minor extension, they could be used to compute morphological filters. A recent novel approach based on the relationship between the alpha shape and morphological closing and opening operations is presented as well. Afterwards two novel algorithms are developed. By correlating the convex hull and morphological operations, the Graham scan algorithm, original developed for the convex hull is modified to compute the morphological envelopes. The alpha shape method depending on the Delaunay triangulation is costly and redundant for the computation for the alpha shape for a given radius. A recursive algorithm is proposed to solve this problem. A series of observations are presented for searching the contact points. Based on the proposed observations, the algorithm partitions the profile data into small segments and searches the contact points in a recursive manner. The paper proceeds to compare the five distinct algorithms in five aspects: algorithm verification, algorithm analysis, performance evaluation, end effects correction, and areal extension. By looking into these aspects, the merits and shortcomings of these algorithms are evaluated and compared

    A semantic-based platform for the digital analysis of architectural heritage

    Get PDF
    This essay focuses on the fields of architectural documentation and digital representation. We present a research paper concerning the development of an information system at the scale of architecture, taking into account the relationships that can be established between the representation of buildings (shape, dimension, state of conservation, hypothetical restitution) and heterogeneous information about various fields (such as the technical, the documentary or still the historical one). The proposed approach aims to organize multiple representations (and associated information) around a semantic description model with the goal of defining a system for the multi-field analysis of buildings
    corecore