
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Dissertations Electronic Theses and Dissertations 

Fall 10-31-1993 

Morphological operations in image processing and analysis Morphological operations in image processing and analysis 

Chamim Christopher Pu 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Pu, Chamim Christopher, "Morphological operations in image processing and analysis" (1993). 
Dissertations. 1186. 
https://digitalcommons.njit.edu/dissertations/1186 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital 
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1186?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Order Number 9409124

M orphological operations in im age processing and analysis 

Pu, Chamim Christopher, Ph.D.

New Jersey Institute of Technology, 1993

Copyright ©1994 by Pu, Chamim Christopher. All rights reserved.

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MORPHOLOGICAL OPERATIONS IN 
IMAGE PROCESSING AND ANALYSIS

by
Chamim Christopher Pu

A Dissertation 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy

Department of Computer and Information Science

October 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVAL PAGE 

Morphological Operations in Image Processing and Analysis 

by 

Chamim Christopher Pu 

Dr. Frank Y. Shih, Dissertation Advisor 	 date 

Associate Professor of Computer and Information Science, NJIT 

Dr. James A. M. McHugh, Committee Member, 	 date 

Associate Chairperson and Professor 

of Computer and Information Science, NJIT 

Dr. David Nassimi, Committee Member, 	 date 

Associate Professor of Computer and Information Science, NJIT 

Dr. DaoChaun Hung, Committee Member, 	 date 

Assistant Professor of Computer and Information Science, NJIT 

Dr. Nirwan Ansari, Committee Member, 	 date 

Assistant Professor of Electrical Engineering, NJIT 



ABSTRACT

Morphological Operations in Image Processing and Analysis 

by
Chamim Christopher Pu

Morphological operations applied in image processing and analysis are becoming 

increasingly important in today’s technology. Morphological operations which are based 

on set theory, can extract object features by suitable shape (structuring elements). Mor

phological filters are combinations of morphological operations that transform an image 

into a quantitative description of its geometrical structure which based on structuring ele

ments. Important applications of morphological operations are shape description, shape 

recognition, nonlinear filtering, industrial parts inspection, and medical image process

ing.

In this dissertation, basic morphological operations are reviewed, algorithms and 

theorems are presented for solving problems in distance transformation, skeletonization, 

recognition, and nonlinear filtering. A skeletonization algorithm using the maxima- 

tracking method is introduced to generate a connected skeleton. A modified algorithm is 

proposed to eliminate non-significant short branches. The back propagation morphology 

is introduced to reach the roots of morphological filters in only two-scan. The definitions 

and properties of back propagation morphology are discussed. The two-scan distance 

transformation is proposed to illustrate the advantage of this new definition.

G-spectrum (geometric spectrum) which based upon the cardinality of a set of non

overlapping segments in an image using morphological operations is presented to be a 

useful tool not only for shape description but also for shape recognition. The G-spectrum 

is proven to be translation-, rotation-, and scaling-invariant. The shape likeliness based
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on G-spectrum is defined as a measurement in shape recognition. Experimental results 

are also illustrated.

Soft morphological operations which are found to be less sensitive to additive noise 

and to small variations are the combinations of order statistic and morphological opera

tions. Soft morphological operations commute with thresholding and obey threshold 

superposition. This threshold decomposition property allows gray-scale signals to be 

decomposed into binary signals which can be processed by only logic gates in parallel 

and then binary results can be combined to produce the equivalent output. Thus the 

implementation and analysis of function-processing soft morphological operations can be 

done by focusing only on the case of sets which not only are much easier to deal with 

because their definitions involve only counting the points instead of sorting numbers, but 

also allow logic gates implementation and parallel pipelined architecture leading to real

time implementation. In general, soft opening and closing are not idempotent operations, 

but under some constraints the soft opening and closing can be idempotent and the proof 

is given. The idempotence property gives us the idea of how to choose the structuring 

element sets and the value of index such that the soft morphological filters will reach the 

root signals without iterations. Finally, summary and future research of this dissertation 

are provided.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Image processing and analysis is important in many of today’s technology: aerial surveil

lance photographs, slow-scan television images of the moon or of planets gathered from 

space probes, television images taken from an industrial robot’s eyes, chromosome scans, 

X-ray images, computerized axial tomograph scans, and fingerprint analysis.

Mathematical morphology is becoming increasingly important in image processing 

and computer vision applications for object representation, recognition, and defect 

inspection. Morphological operations applyed in image processing and analysis are 

briefly reviewed. The morphological operations can be employed for many purposes, 

including digitalization, compression, enhancement, restoration, reconstruction, match

ing, segmentation, representation, and description.

Mathematical morphology based on the geometric shape, provides a particular 

approach to the processing and analysis of digital images. This approach of the analysis 

and processing of digital images is generally based upon predetermined geometric shape 

known as structure elements. The underlying strategy is to understand the characteristics 

of an object by probing its microstructure with various forms which are structuring ele

ments. The analysis is geometric in character and it approaches image processing from 

the vantage point of human perception. Appropriately used, morphological operations 

also tend to simplify image data while preserving their essential shape characteristics and 

eliminating irrelevancies. Morphology is a set-theoretical method which was first intro

duced by Matheron and Serra at the Paris School of Mines, France around 1964 who 

wanted to analyze the structure of microscopic images from geologic and metallic

1
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specimens and to relate the results of this analysis to the physical properties of rocks and 

minerals. It becomes one of the active and vigorous fields in image processing and 

analysis in recent years.

One purpose of mathematical morphology is the quantitative description of 

geometric structures and it achieves this goal by probing and transforming an image with 

different patterns of predefined shapes to extract different pieces of information.

Moiphological operations can be employed for edge detection, segmentation, and 

enhancement of images which provides for the systematic alteration of the geometric 

content of an image while maintaining the stability of important geometric characteris

tics. Moreover, there exist a well-developed morphological algebra that can be employed 

for representation and optimization and it is possible to express digital algorithms in 

terms of a very small class of primitive morphological operations. Finally, there exist 

rigorous representation theorems by means of which one can obtain the expression of 

morphological filters in terms of the primitive morphological operations.

The digitization problem (or sampling problem) can be stated as followed: given a 

Euclidean image mapping 'P, can one find a digital mapping which preserves the same 

topological features. More generally, what is the relationship between performing a less 

costly morphological filtering operation on the sampled image, and performing the more 

costly equivalent morphological filtering operations on the original image. Haralick et al 

presented a morphological sampling theorem which stated how a digital image must be 

morphologically filtered before sampling in order to preserve the relevant information 

after sampling, to what precision an appropriately morphologically filtered image can be 

reconstructed after sampling, and the relationship between morphological filters operat

ing before sampling and the more computationally efficient scheme of morphologically 

operating on the sampled image with a sampled structuring element [32,35,36].

The steady of modern communication requirements has resulted in an increase in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

the volume of pictorial data that must be transmitted from one location to another. 

Although image transformation to a remote location is not necessary in some cases, one 

does need to store the images for future retrieval and analysis with as little memory as 

possible. In the past, most of the image transmission has been accomplished through the 

conventional analog technique. Today, the trend in image transmission and storage is to 

use digital technique. Shih [80] proposed an image compression technique which uses the 

mathematical morphology. This approach can be extended into three-dimensional images 

and can be improved with adopting variable length coding. Other technique adopted in 

representation can be used as compression techniques, such as morphological skeleton 

[50,56] and the morphological representation [29].

Whenever a picture or image is converted from one to another, e.g., copied, 

scanned, transmitted, or displayed, the “ quality”  of the output image may be lower than 

that of the input. These include methods of modifying the gray scale (e.g., increasing 

contrast), deblurring, smoothing, and removing noise. An important problem in image 

processing and analysis applications is to develop an efficient filtering procedure that 

restores a binary image from its noisy version [75, 76, 77, 57, 58]. There are two issues 

we have to consider: 1) the filtering operators should be efficient enough to eliminate the 

noise degradation, and 2) the filtering operators should be able to restore important 

aspects of the shape-size content of the noise-free image as well as to preserve its crucial 

geometric and topological image description. Schonfeld and Goutsias [74] presented a 

theoretical analysis of morphological filters for the optimal restoration of noisy binary 

images. The problem is formulated in a general form and an optimal solution is obtained 

by using fundamental tools from mathematical morphology and decision theory. The 

important result of their analysis is the fact that the class of alternating sequential filters 

is the class of parametric, smoothing morphological filters that optimally restore noisy 

binary images in the least mean difference sense.

The objective of scene segmentation is to separate the components of an image into
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subsets that correspond to the physical objects in the scene. The segmented components 

are then used by higher-level processes for interpretation and recognition. It should be 

emphasized that there is no single standard approach to segmentation. Many different 

types of picture or scene parts can serve as the segments on which descriptions are based, 

and there are many different ways in which one can attempt to extract these parts from 

the image.

Maragos and Ziff showed that many composite morphological systems, such as 

morphological edge detection, peak/valley extraction, skeletonization, and shape-size 

distributions obey a weak linear superposition which is called threshold-linear superposi

tion [60]. Namely, the output is the sum of outputs due to input binary images that result 

from thresholding the input gray-level image at all levels. The threshold decomposition 

architecture and stacking property are introduced by Shih and Mitchell [84] which allows 

the implementation of the architecture that gray-scale operations can be decomposed into 

binary operation with the same dimensionality as the original operations. In [85, 86], 

Shih and Mitchell presented techniques for decomposing big gray-scale morphological 

structuring elements into combined structures of segmented small components. The 

decomposition is suitable for parallel pipelined architecture and the technique will allow 

us to design any kind and size of gray-scale structuring elements.

Edge operators based on gray-scale morphological operations are introduced by 

Lee, Haralick and Shapiro [48]. These operators can be efficiently implemented in near 

real time machine vision system with gray-scale morphological operations hardware sup

port. The simplest morphological edge detectors are the dilation residue and erosion resi

due operators. Different combinations of these two simple operators is also introduced 

and justified. The blur-minimum morphological edge operator is defined whose inherent 

noise sensitivity is less than the dilation or erosion residue operators.

In the case of binary images which are mainly perceived as geometrical patterns.
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There is a need for image representations that emphasize geometric structure. One of 

such representations is the skeleton. In general, skeleton are used to describe a line- 

thinned caricature of binary image that summarizes its shape and conveys information 

about its size, orientation, and connectivity. The most important property of distance 

transformation is the concept of skeleton and reconstruction of the original picture from 

its skeleton. Skeletonization in image processing is a very important issue. The skeleton 

not only save the memory space but also save the computation cost of processing and 

recognition. In [87, 91], the idea of using Euclidean distance was proposed, which pro

vides the global information about object shape and can be used to reconstruct the origi

nal object. Moreover, the skeleton sets can be used as the base of shape decomposition 

which hierarchical skeletons will be discussed.

Shape decomposition is a very important issue in image processing and pattern 

recognition. Shape decomposition is to decompose binary objects into a union of simple 

objects. The decomposition should be unique, translation, scaling, and rotation invariant. 

Some morphological approach [67, 68] is to use the structuring elements as the simplest 

object component and to analyze an image as a union of the structuring elements. This 

approach is based on the structuring elements used, therefore, an object is represented by 

those structuring elements.

Shape description describes the object according to its shape geometric features. 

The shape of an object refers to its profile and physical structure. These characteristics 

can be represented by the boundary, region, moment, and structural representations. 

These representations can be used for matching shapes, recognizing objects, or making 

measurements on the shape characteristics. Therefore, the shape description is a very 

active and important issue in image processing, computer vision, and pattern recognition 

during recent decades.

Maragos [50, 51, 55] proposed a shape-size descriptor which is called pattern
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spectrum. The discrete version of pattern spectrum is a very useful quantity for shape 

analysis. Bronskill and Venetsanopoulos proposed pecstrum [8] of which the discrete 

version is defined as the pattern spectrum divided by the cardinality of original image. 

Another variety called probability distribution function [20] is defined as one minus the 

pecstrum.

Shih and Pu [88] presented a useful morphological shape description tool called 

geometric spectrum or G-spectrum, for quantifying the geometric features on multidi

mensional binary images. The G-spectrum which is not only useful in shape description 

but also shape recognition is a measurement for quantifying the geometric shape of 

discrete multidimensional images.

1.2 Introduction of Mathematical Morphology and Notation

The notations used in this dissertation are introduced as follows. Let X  be a set in a mul

tidimensional Euclidean space which represents a binary image and Card(X) be the car

dinality of X  (i.e., the total number of elements in the set X). The cardinality of a one

dimensional set is the length, of a two-dimensional set is the area, of a three-dimensional 

set is the volume, and so forth. Let X  © Y, X  © Y, X  O Y, and X  •  Y denote the moipho- 

logical erosion, dilation, opening, and closing, respectively. The set difference is denoted 

by X - Y .

A brief introduction of mathematic morphology is going to give as followed. The 

simplest morphological operations are the erosion and dilation. The dilation of a set A 

by a set of structuring elements B is

A © B = {a +b  I ae A, b e B ) = Ab. (1.2.1)
b e B

where Ab is the translation of a set A by a vector b:

Ab = {z I z = a + b, ae A, z e. E }. (1.2.2)
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An example of dilation is given in Fig. 1.1.

B A ®  B

© ♦  •

•  •

•  •

Fig. 1.1 Example of dilation of set A by structuring elements B.

The erosion of a set A by a set of structuring elements B is

A Q B  = {a \ a + b e  A, b e B } = C^Af,.
b e B

(1.2.3)

An example of erosion is given in Fig. 1.2.

B A Q B

•  •

•  •

9

•  •

Fig. 1.2 Example of erosion of set A by structuring elements B.

Dilation and erosion posses several interesting properties. They are given as fol

lowed but without proofs. Interested readers would refer the references [75, 76, 77, 18, 

67 Chapter 6, 34],
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(1) The dilation and erosion are dual operations:

A B B  = (,ACB B ) C 

A B B  = (ACB B ) C

(2) Commutative property:

A B B  = B B A

But erosion won’t posses this property that is A © B * B © A.

(3) Associative property:

A © (B 0  C) = (A © B ) B  C

(4) Translation invariance

Az ® B = (A B  B)z

A B  Bz = (A B  B)z

Az © B = (A 9  B)z

A B B Z = ( A B B ) Z

(5) Increasing property

A c B  => A B  C c l B  B  C 

A <zB => A © C czB © C

(1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)

(1.2 .8) 

(1.2.9)

( 1.2 . 10)

( 1.2 . 11)

( 1.2 . 12)
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(6) Distributive property:

( A u S ) © C  = (A ® C) u  (B © C)

A ® (B u  C) = (A © B)  u  (A © C) 

A © ( f i u C ) = ( / i e 5 ) n ( A © C )

(5 n  C) © A = ( B Q A ) n ( C Q A )

Another two important operations are opening and closing.

A O  B = (A G  B)@ B 

A 9 B = (A ®  B )Q  B 

Examples of opening and closing are given as follows.

B A O  B

•  ♦ • . O

•  •  •  •  •  •  * 

•  •  •  •

Fig. 1.3 Example of opening of set A by structuring elements B.

9

(1.2.13)

(1.2.14)

(1.2.15)

(1.2.16)

(1.2.17)

(1.2.18)
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B A *  B

•  •  

+  • ♦  •

•  •

♦  •

•  •

Fig. 1.4 Example of closing of set A by structuring elements B.

The notions and morphological transformations of a binary image can also be

extended to gray-scale images. Let /  and k be the gray-scale image and structuring ele

ments. The gray-scale morphological dilation, erosion, opening, and closing are defined 

as follows, where z <= /an d  r - z  e  k.

f @ k  = max{/(z) + k ( x - z ) }  (1.2.19)

/ ©  k = min{/(z) -  k { x - z ) }  (1.2.20)

f O  k = ( f Q k ) @ k (1.2.21)

f k  = ( f @ k ) Q k  (1.2.22)

Interested readers would refer [75, 76, 77] for more in detail about gray-scale morphol

ogy and its properties.

1.3 Useful Morphology Applications

In this section, we give examples of useful applications based upon morphological opera

tions. Given a gray-level image f { m>  n)  and a small 2-D symmetric structuring set K

containing the origin.
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A. Morphological Edge Gradient

• Erosion Gradient:

EG i f )  = / - < / ©  k)

•  Dilation Gradient:

DGi f )  = { f ® k ) - f

• Morphological Gradient:

MG{f )  = ( f  ® k) -  ( f  Q k)

• Morphological Edge-strength Operator:

E O ( f ) = min [EG (f),  D G if)]

B. Peak and Valley Extraction

During the peak extraction, the peaks that can not contain K  remains, 

eliminated.

• Peak Extraction

PE( f )  = f  -  i f  O K )

•  Valley Extraction

V E ( f ) = ( f  K) -  f

(1.2.23)

(1.2.24)

(1.2.25)

(1.2.26)

while the rest get

(1.2.27)

(1.2.28)
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C. Skeletonization

A morphological skeleton for a gray-level image /  is denoted by SK( f )  and expressed as 

follows.

SK( f )  = £ SKn( f ) (1.2.29)
/z=0

where N  = max { n 1 / 0  nB *  0 }. The nth skeleton component of / i s

SKn(f )  = i f  0  nB) -  [(/ © nB) O B] 0 < n < N  (1.2.30)

where nB = B 0  B © B • • • © fi (n times).

1.4 Organization of This Dissertation

The organization of this dissertation will be given in this section. The outline of this 

dissertation is as follows.

Chapter 1 Introduction

Chapter 2 A maxima-tracking method for skeletonization

Chapter 3 The roots of morphological filters

Chapter 4 Geometric spectrum and shape description

Chapter 5 Morphological shape recognition using G-spectrum

Chapter 6 Soft mathematical morphology and its properties

Chapter 7 Gray-scale soft mathematical morphology

Chapter 8 Summary and future research

The brief statements of each chapter is also given which will be the abstract of the topic 

discussed in each chapter.

In chapter 2, the skeletonization algorithm based on the Euclidean distance function
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using the sequential maxima-tracking method is described. When applied to a connected 

image, this method generates a connected skeleton composed of simple digital arcs. With 

a slight modification, the algorithm can preserve the more important features in the 

skeleton by eliminating nonsignificant short skeletal branches which touch the object 

boundary at comers. Therefore its application to shape recognition can be achieved 

easier.

In chapter 3, a morphological filter in gray-scale applications is a nonlinear digital 

filter which consists of a bounded mask (called the structuring element) with predefined 

values that slides over a signal of finite length. For each input sample, the output is the 

minimum or maximum of all neighboring input samples in the mask offset by their 

corresponding mask values centered at that input sample. If a finite signal that ends itera

tively with a structuring element, converges to an invariant signal in a finite number of 

passes, such an invariant signal is called a root for the structuring element. A new con

cept to reach the roots called back-propagation morphology is defined. By using this new 

concept, a two-scan algorithm is developed to reach the roots for only two scans.

In chapter 4, a useful morphological shape description too! called geometric spec

trum or G-spectrum is presented, for quantifying the geometric features on multidimen

sional binary images. The basis of this tool relies upon the cardinality of a set of non- 

overlapping segments in an image using morphological operations. The G-spectrum 

preserves the translation invariance property. With a chosen set of isotropic structuring 

elements the G-spectrum also preserves the rotation invariance. After the procedure of 

normalization, the G-spectrum can also preserve the scaling invariance. The properties 

and proofs of the G-spectrum are discussed.

In chapter 5, the shape recognition algorithm using G-spectrum is presented. Exper

imental results are shown to be satisfied. The shape likeliness measurement which is 

based upon G-spectrum is defined to measure the likeliness between shapes in order to
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identify the two shapes that are the most alike. The less of shape likeness measurement 

is, the more these two shape are alike.

In chapter 6  the generation of soft morphological operations was motivated by 

Koskinen, Astola, and Neuvo [44, 45]. The soft morphological operations are less sensi

tive to additive noise and to small variations. New definitions of binary soft morphologi

cal operations are given. The properties and proofs of soft morphological operations are 

studied and discussed. It also shows that soft morphological operations commute with 

thresholding and obey threshold-linear superposition. In general, soft closing and soft 

opening are not idempotent operations, but under some constraint the soft operations can 

be idempotent and the proof is given. The properties of idempotent soft morphological 

filters will be studied and discussed.

In chapter 7 gray-scale soft mathematical morphology is the extension of binary soft 

mathematical morphology which is found to be less sensitive to additive noise and to 

small variations. In this chapter, binary soft morphological operations are reviewed and 

the definitions of gray-scale soft morphological operations are given. The properties of 

gray-scale soft morphological operations are developed. It has been shown that the soft 

morphological operations of functions by sets or functions can commute with threshold

ing and obey threshold superposition. The threshold superposition property allows gray

scale signals to be decomposed into multiple binary signals which can be processed by 

only logic gates in parallel and then the binary results can be combined to produce the 

equivalent output.

In chapter 8  we state the further research using morphological operations applied in 

image processing and analysis and give summary of this dissertation.
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CHAPTER II

A MAXIMA-TRACKING METHOD FOR SKELETONIZATION

In this chapter, the skeletonization algorithm based upon the Euclidean distance function 

is described. This algorithm uses maxima-tracking which will generate a connected 

skeleton. A modified algorithm is proposed to eliminate non-significant short branches.

2.1 Introduction

The study of distance transformation and skeletonization was motivated by the need for 

methods of converting a digital picture into a linear form in a near natural manner. From 

the skeleton, the contour of the figure can be easily regenerated, so the amount of infor

mation involved is the same. However, the skeleton seems to emphasize some properties 

of the picture; for instance, curvature properties of the contour correspond to topological 

properties of the skeleton. The concept of a skeleton was first proposed by Blum [4], 

Skeleton, medial axes, or symmetrical axes have been extensively used for characterizing 

the objects satisfactorily by structures composed of line or arc patterns. Applications 

include the representation and recognition for handwritten or printed characters, finger

print ridge patterns, chromosomes and biological cell structures, circuit diagrams and 

engineering drawings, and the like.

If we regard a connected object as grass and tend a fire starting from its contour, 

assume that this fire burning spreads uniformly in all directions but in such a way that the 

waves generated do not flow through each other. The skeleton (or medial axis, abbrevi

ated MA) is where waves collide with each other in a frontal or circular manner [4], It 

has this name because the centers are located at midpoints, or along local symmetrical 

axes of the region. The points in the MA bear the same distance from at least two

15
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contour points and this distance is the smallest among those computed from all back

ground this distance is the smallest among those computed from all background points 

(equidistance property).

Information on the size of all foreground points is retained by associating each point 

of the transformed image (MA) with a label representing its distance value from the 

background. As a consequence, it is possible to recover the original binary image as the 

union of the circular neighborhoods centered at the skeleton points and having a radius 

equal to the associated labels (i.e. reverse transformation). A skeleton will not immedi

ately appear in the wave-front if it is a smooth curve locally. The appearance of a skele

ton starts at the minimum radius of curvature of the contour. The disappearance of a 

skeleton represents the largest circle that can be drawn in the local region. If the boun

dary has a regional concave contour, the skeleton will be generated only by those points 

of the contour that are not on the convex hull of the boundary. For those stimuli on con

vex hull, the wave-fronts will not collide with each other. Thus, it will not generate a 

skeleton within this area. In fact, the skeleton will be located outside the regional con

cave contour if the skeletonization is dealing with the background of the connected 

object, i.e., the complement of the picture.

Many algorithms have been developed to extract the skeleton. Generally speaking, 

the procedure accomplishing a transformation of this kind involves an iterative process 

which shrinks the input image step-by-step until a one-element thick figure is obtained 

[65]. An algorithm was proposed [63] which practically utilizes the strategy: visiting all 

the pixels in the bitmap to iteratively delete the edge points which are classified as non

safe points (the points being deleted without the effectness of connectivity). Zhang and 

Suen [109] proposed a parallel thinning algorithm which consists of two subiterations: 

one is to delete the south-east boundary points and the north-west comer points and the 

other is to delete the north-west boundary points and the south-east comer points.
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Lu and Wang [49] modified Zhang and Suen’s algorithm to preserve the 2-pixel 

wide diagonal lines. Holt ex al. [41] made some improvement to preserve the 2x2 square 

patterns. Hall [31] evaluated Holt’s improved algorithm and proposed another improve

ment to the preservation of certain diagonal lines. Guo and Hall [30] presented two 

parallel thinning algorithms each using two-subiteration approaches: one algorithm is to 

alternatively delete the top-to-bottom right-to-left boundary points, and then bottom-to- 

top left-to-right ones, and the other algorithm is to apply a thinning operator to one of the 

diagonal and side subfields. Kwok [46] proposed the thinning algorithm by contour 

generation in terms of a chain code. The advantage of this algorithm is that the contour 

tracking is performed only once during iterations and only edge points are visited. 

Arcelli and Sanniti di Baja [2] used the city-block distance transform instead of the origi

nal object to detect the skeleton. Rather than peeled, the skeleton are identified as multi

ple pixels based on defined multiplicity conditions, and recursive procedure calls are 

applied and regarded as a one-pass two-operation process to detect those multiple pixels. 

Maragos and Schafer [56] utilized morphological operators to extract the skeleton and to 

optimize the skeleton for image coding. However, their skeletons are not connected and 

have more than one-pixel in width.

This chapter is organized as followed. In Section 2.2, an example of thick skeleton 

generation is presented. In Section 2.3, related definitions such as base points, apex 

points, directional-uphill generation, and directional-downhill generation are given to 

illustrate our approach. In Section 2.4, the new algorithm is proposed and its connectivity 

properties are proved. In Section 2.5, a modified algorithm is described to eliminate non

significant skeletal branches. At last section, we summarize this chapter.

2.2 An Example of Thick Skeleton Generation

For each pixel P in an image, let us associate a set of disks or circles with various radii 

centered at P. Let C/> be the largest disk which is completely contained in the
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foreground, and let rp be the radius of Cp. There may exist other pixels Q such that Cq 

contains Cp. If no such Q exists, Dp is called a maximal disk. The set of centers and

radii (i.e. Euclidean distance value) of the maximal inscribed disks is called the

Maximal-Disk-Skeleton, abbreviated MD-Skeleton.

A. The Skeleton from Distance Function

We define a function at each point P of the foreground 5 whose value is the smallest dis

tance of P from the background 5:

d(P) = min{d(P,  Q)},  (2.2.1)
QeS

where d{P, Q) is the Euclidean distance between two points P and Q. Let us visualize 

the distance function as the altitude on a surface; the “ ridges” of the surface namely the 

points where we cannot define a tangent plane, together with the corresponding dis

tances, constitute the skeleton. It can be easily derived that a point P belongs to the skele

ton of a binary image S, if and only if, the maximal disk with the radius d{P)  hits the 

boundary of 5 at two or more different places. Let us define the set

A{P)={Q\ d{P,  Q) = d ( P) , Qe S } .  (2.2.2)

If A(P) contains more than one point, P is a skeleton point.

B. Detection of the MD-Skeleton and the Ridge Points

From above discussion, the set of all pixels associated with their distance values, having 

no neighboring points of higher altitude within a local 3x3 window, is the MD-Skeleton 

which is completely disconnected. In order to achieve connectedness, the following 

defined ridge points are added into the MD-Skeleton. The ridge points are all points, 

having the altitude higher than their neighboring two pixels in any one of the horizontal,
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vertical, 45°-diagonal, and 125°-diagonal directions. Note that the MD-Skeleton is the set 

of pixels having the altitude higher than or equal to their 8  neighbors; however the ridge 

points require strictly higher altitude. Fig. 2.1 represents the Euclidean distance function 

with both MD-Skeleton and ridge points underlined. It has to be noted that the result is 

still not connected.

C. Trivial Uphill Generation

The trivial uphill of a point P is the set of all neighbors with higher altitude. Fig. 2.2 

shows what happens if we initially add the uphill of the MD-Skeleton and ridge points, 

and continuously add the uphill of the new skeleton points until no further uphill can be 

generated. We could obtain a connected skeleton but a very thick one. In order to obtain 

a skeleton with the necessary thinness, one has to take into account the cases of the 

directional-neighborhood which will be discussed in the next section.

2.3 An Illustration of Our Approach

According to eq. (2.2.2), the following defined base and apex points which satisfy the 

condition that A (P ) contains more than one point, are the skeleton points.

A. Base Points

The base points are those comer points which have the distance value 1 and are sur

rounded by the majority 0’s. They belong to one of the following three configurations . 

which can vary up to eight 45°-rotations, respectively:

1 0  0 1 1 0  1 1 1

l 1_ o l _1 o 1 I  0

o o o  o o o  o o o

where the central underlined pixels represent the 45°-, 90°-, and 125°-comer points,
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respectively, and the labeled “ 1 ” indicates a foreground pixel and “ 0 ” a background 

pixel. In Euclidean Geometry, the comer point can have a great deal of degree. However 

in digital image data, only the above three degrees may exist within a local 3x3 window.

It is easy to see that if all three configurations are considered as base points, more 

base points will induce more nonsignificant short branches of the skeleton. That is to say 

that an approach, according to which branches are originated from each comer point in 

correspondence with every convexity indiscriminately, would lead to unmanageable 

complexity in the skeleton structure. Therefore, the number of major or minor branches 

of a skeleton should reach a compromise among the representativity of the connected 

object structure, the required reversibility and the cost of detecting the significant 

branches and deleting the noisy branches.

In this chapter, detecting strong curvature has led us to consider sharp convexities as 

more significant. In more detail, if the amplitude of the angle formed by two intersecting 

wave-fronts of the fireline is viewed as the parameter characterizing the sharpness, the 

values smaller than or equal to 90° are identified as detectable convexities. More strictly 

in getting rid of minor branches, even only 45°-convexities are detected. Using these 

base points as the source to grow up the skeleton, the remaining elements are acquired to 

preserve the skeletal connectedness.

B. Apex Points

The apex points are those points being the local maxima in their 3x3 neighborhood. It 

has to be noted that the apex points are in fact the MD-Skeleton mentioned in Section 2; 

the reason for renaming is because the local maximum pixels only construct a small por

tion of and a very disconnected skeleton. From a geometrical point of view, that the local 

maxima could be either 45°-corner points or interior elements having the highest altitude 

in the local neighborhood. The 45°-corner points, since their distance values are l ’s, have 

been detected as the base points. Some of the apex points may have the highest altitude
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not only in a local 3x3 neighborhood, but also in a larger neighborhood. The base and the 

apex points are considered as sources or elementary cells of the skeleton and grow up out 

of them to be 8 -connected. Fig. 2.3 represents again the Euclidean distance function with 

the base points labeled “ B” and the apex points underlined.

C. Directional-Uphill Generation

The set of points {P,} is called the directional-neighborhood of P, i.e., Dp = {Pi }, if 

they are in the 8 -neighborhood of P and are also located within the ±45° slope change of 

the local medial axis direction of P. For example, using the neighborhood labeled 

P\-> Pi-> "  ' ■> andPg counterclockwise from the positive x-axis of P, if P 7 andP are the 

skeleton points, the points P 2 , P 3 , and P 4 are the directional-neighbors of P, i.e., Dp = 

{P2 , P 3 , Pa)- The case and some other cases are illustrated below.

Pa P 3 P i  P i

P P 5 P Pi

P-] . . P%

Pa P 3 P 3 Pi

P 5 P P Pi

P 8 Pe

It has to be noted that the directional-neighborhood always contains three points. 

The directional-uphill generation is to add these points which are the maxima of the cen

tral point P plus its directional-neighborhood. That is to say

P VnexL- max {P;}. (2.3.1)
PteDPvlP)

Fig. 2.4 shows the result of directional-uphill generation of Fig. 2.3.
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D. Directional-Downhill Generation

From Fig. 2.4, it can be easily seen that there must exist a vertical path of the skeleton 

between two apex points underlined on the left side, in which the altitude changes are not 

always increasing; instead they are mixture of decreasing and increasing. The 

directional-downhill generation which is similar to the directional-uphill generation 

except the maxima tracking of the set excluding the central point P, is used to produce 

this type of skeletal branch. That is to say

PDnexl = max {Pi). (2.3.2)
DP

The directional-downhill generation is initialized from the apex points which are the 

local maxima. Hence the altitude of the next directional-downhill should be lower. How

ever, the tracking procedure is continued without taking into account a comparison of 

neighbors with the central point; the next directional-downhill altitude could be lower or 

even higher. Fig. 2.5 shows the result of directional-downhill generation of Fig. 2.4. The 

skeleton is now connected and single-pixel wide except a few two pixels with the same 

Euclidean distance.

2.4 The Algorithm and the Connectivity Properties Proof

The maxima tracking algorithm traces the skeleton points by choosing the local maxima 

on the Euclidean distance transform in terms of the least slope change in medial axes. 

The algorithm is described as follows:

1) The base points and the apex points are detected as the initial skeleton points.

2) Starting from these initial skeleton points, the directional-uphill generation in eq. 

(2.3.1) is used to add continuously more skeleton points, and the points which can 

not be further tracked, are marked (The marked points are always apex points).
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3) Starting from the marked points, the directional-downhill generation in eq. (2.3.2) is 

used to complete the skeleton tracking.

Fig. 2.6. illustrates the resulting skeletons by using the above algorithm. In this 

chapter, the 8 -connectedness is applied on the foreground, therefore the 4-connectedness 

for the background must be used to be consistent [72]. There are three fundamental con

nectivity properties which must be considered:

C l) After skeletonization, an originally connected object should not be disconnected 

into two or more sub-objects.

C2) After skeletonization, a connected object should not disappear at all.

C3) After skeletonization, these originally disconnected background components should 

not be 4-connected.

The proof for the above three properties is given as follows:

Proposition 2.1: The maxima-tracking skeletonization will not disconnect an originally 

connected object into two or more sub-objects.

[(Proof)]:

Induction hypothesis: For any m (m < n) marked apex points of an object, the 

skeleton obtained will preserve the property C l, where n could be any number.

The base case is m = 1. The algorithm starts tracking from each of the base and the 

apex points, and it will stop when the current point is connected with another skeleton 

point or touches with the point marked. That means every subskeleton branch starting 

from the base point will connect with some skeleton point or meet with other branch at 

the marked apex point.

When m = 2, it is regarded as two sub-objects, each sub-object contains a marked 

apex point. As discussed above, each sub-object is 8 -connected. The algorithm will trace 

from each marked-apex and stop when it is connected with some skeleton point
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contained in the other skeleton subset. The reason that it would not connect with a skele

ton point which belongs to the same skeleton subset is the directional-neighbors we use. 

Using directional-neighbors will enforce the tracking direction to go towards the region 

which has not been tracked up to now. Finally, it will lead tracking toward another skele

ton subset.

As the induction hypothesis claim, when m = n, the skeleton obtained is 8 - 

connected. Now consider the case when m = n+1. Those n+1 marked-apex points can be 

regarded as two sub-objects: one contains n marked-apex points and the other contains 

only a marked-apex (i.e. the (n+l)th point). As discussed above, the one with n marked- 

apex points is 8 -connected, and the other with a marked-apex is also 8 -connected. Track

ing from the (n+l)th marked-apex, it will lead the tracking to go towards the skeleton 

subset with n marked-apex points. That means the whole object is 8 -connected. □  

Proposition 2.2: The maxima-tracking skeletonization will not make an originally con

nected object disappeared at all.

[(Proof)]:

Tracking starts from each base and each apex point, the algorithm marks base points 

as the skeleton points. For any size of an object, there must be at least one base point or 

at least one apex point, and the skeleton obtained must have at least one point. For the 

ideal case of a circle, it there is no base point but one apex point is present which is the 

local maximum representing the center of the circle. That is after skeletonization, an 8 - 

connected object will not disappear at all, and the skeleton at least contains a pixel. □  

Proposition 23: The maxima-tracking skeletonization will not let the originally discon

nected background components 4-connected.

[(Proof)]:

According to the definition of the apex points, there exists at least one apex in the 

object between any two background components. As the algorithm is performed, it will
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trace from each apex point which is not 8 -connected to any skeleton point. After track

ing, there will be one skeleton branch that will make these two background components 

disconnected. Therefore the skeleton obtained will not allow the originally disconnected 

background components to be 4-connected. □

The algorithm including three procedures and two functions are described in 

pseudo-codes as follows:

procedure SKEPIK
/* trace starting from each base and each apex point */ 
for i, j  in 1 • • • N, 1 • • • N  loop 

if BASE_APEX ( p ( i , j ) ) then
UpHill-Generation ( p (i, j), p (i, j ) );

end if 
end loop

/* trace from each marked apex point in the procedure UpHill-Generation */ 
while ( marked pixel)

DownHill-Generation ( marked_apex, marked_apex); 
end while 

end SKEPIK

function APEX ( p ) :  Boolean 
/* apex point is the local maximum point */ 

if (p  is local maxima) then 
return TRUE;

else
return FALSE; 

end APEX

function BASE_APEX ( p ): Boolean
/* base point is the point with distance 1 and has 4 or more zeros in its 8 -neighborhood */ 

if ( distance of p  = 1 ) then 
find 8 -neighbors of p;
if ( number of 8 -neighbors with distance 0 ) > 4 then 

return TRUE;
else

if APEX ( p ) then 
return TRUE;

else
return FALSE;

end if
end if

end if 
end BASE_APEX
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procedure UpHill-Generation ( current-skeleton-pixel, previous-skeleton-pixel) 
if ( number of maximum in 8 -neighbors > 1 and

distance of maximum > distance of current-skeleton-pixel) then 
maximum-pixel = the maximum of the directional-neighbors; 
UpHill-Generation ( maximum-pixel, current-skeleton-pixel);

else
if ( number of maximum in 8 -neighbors = 1 and

distance of maximum > distance of current-skeleton-pixel) then 
maximum-pixel = the maximum;
UpHill-Generation ( maximum-pixel, current-skeleton-pixel);

else
mark-apex; /* mark current-skeleton-pixel for later processing */

end if
end if 

end UpHill-Generation

procedure DownHill-Generation ( current-skeleton-pixel, previous-skeleton-pixel) 
maximum-pixel = the maximum of the directional-neighbors; 
if ( maximum-pixel is not a skeleton point) then

DownHill-Generation ( maximum-pixel, current-skeleton-pixel);
end if

end DownHill-Generation

2.5 A Modified Algorithm

Skeleton points can have a velocity associated with them. This velocity is determined by 

the angle formed —  the sharper the angle, the faster the velocity. In such circumstance, 

an accelerating point will generate from the high curvature point toward this skeletal 

locus. On the other hand, a decelerating point would result in the reverse direction. 

Whenever the skeleton is a straight line, the velocity is a constant.

The modified maxima tracking algorithm will obtain the skeleton by eliminating 

nonsignificant short skeletal branches which touch the object boundary at comers. It is 

different from the previous algorithm that detects the base and the apex points as initial 

skeleton points. Instead the maxima tracking starts from the apex points only. The algo

rithm will recursively repeat the same procedure which selects the maxima in the 

directional-neighborhood as the next skeleton point until another apex points are reached, 

further skeleton point.
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The modified maxima-tracking algorithm is given as follows:

1) The apex points are detected as the initial skeleton points.

2) Starting from each apex point, we use the directional-uphill generation to generate 

the skeleton points. Recursively repeat this procedure until an apex point is 

reached, and then the apex point is marked.

3) Starting from those marked-apex points, the directional-downhill generation is used 

to track the skeleton points.

Fig. 2.7 illustrates the resulting skeletons by using the modified algorithm. The 

result could lead us to achieve the rule-based pattern recognition and shape decomposi

tion. As shown in Fig. 2.7a, a skeleton of a straight line can be interpreted as a rectangu

lar shape. In Fig. 2.7b, a triangle can be represented as a staircase. The distance value of 

the toppest stair is the radius of the largest enclosed circle in this triangle. Fig. 2.7c is a 

airplane-like shape which is composed of three rectangles. In Fig. 2.7d, there is a closed 

curve which indicates a hole inside. The skeleton in Fig. 2.7e can be represented by a 

bent curve, which gives us the information that there is a notch. Fig. 2.8 shows the skele

ton of a wrench. The character “ e”  and its rotations by 30°, 45°, and 90° shown in Fig. 

2.9, demonstrates that the modified algorithm will produce the output independent of the 

orientations of the input patterns, provided the digitization error is disregarded.

2.6 Summary

Obtaining the skeleton of a binary set in three steps or two steps is of course of great 

practical value. It is perhaps even of higher theoretical value. The clear identification of 

the various articulations in the skeleton generation facilitates the adaptation of the skele

ton algorithm to other situations, i.e. conditional of geodesic skeletons, skeletons on 

square raster, skeletons of functions. The Euclidean distance transform whose attributes 

to the skeleton have the most equidistance property analogy with the definition for
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continuous images and possesses the rotation invariance property. This will help a lot in 

object recognition not only for simple skeletons but also for the skeletons having distance 

information with them.

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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Fig. 2.1 The Euclidean distance with both MD-Skeleton and ridge points underlined.
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Fig. 2.2 The uphill generation of the MD-Skeleton and ridge points.
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Fig. 2.3 The Euclidean distance with base points labeled B and apex points underlined.
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Fig. 2.4 The directional-uphill generation.
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Fig. 2.5 The directional-downhill generation of Fig. 2.4.
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Fig. 2.6 The resulting skeleton by using the algorithm described in section 2.4.
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(c)

SMS-saasa

Fig. 2.7 The resulting skeleton by using the modified algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 2.8 An example of the skeleton for a wrench.
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(b)
Fig. 2.9 The skeleton of “ e” in (a) 0° (b) 30° (c) 45° (d) 90° rotations.
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Fig. 2.9 (Continued)
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CHAPTER III

THE ROOTS OF MORPHOLOGICAL FILTERS

The back-propagation morphology is defined to reach the roots of morphological filters. 

Its definition is given and properties are discussed in this chapter. The two-scan distrance 

transformation is proposed to show the advantage of this new definition.

3.1 Introduction

A morphological filter in gray-scale applications is a nonlinear digital filter which con

sists of a bounded mask (called the structuring element) with predefined values that 

slides over a signal of finite length. For each input sample, the output is the minimum or 

maximum of all neighboring input samples in the mask offset by their corresponding 

mask values centered at that input sample. If a finite signal that ends iteratively with a 

structuring element, converges to an invariant signal in a finite number of passes, such an 

invariant signal is called a root of the structuring element.

We define a new concept to reach the root called back-propagation morphology dif

ferent from the traditionally defined morphology which we call forward morphology. 

During image scanning, the back-propagation morphological operations intend to feed 

back the output at each pixel to overwrite its input and continue in the same way until all 

pixels are scanned. We have developed several theorems of a two-scan algorithm using 

the back-propagation morphology to derive the root generation without recursively 

applying such forward morphology. Its operation is independent of the object size and 

saves significantly much computational time compared with the proportion to the number 

of iterations in forward morphology. A systolic array for efficiently processing the two- 

scan operation has been implemented by Shih et al [81]. In this chapter, we are not

36
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going to discuss the properties of morphological roots. But we propose a new approach to 

reach the roots of morphological filters. The properties of morphological roots and their 

applications are the further research topics.

The best known and widely used filter based on order statistics is the median filter. 

A great effort has been made by many researchers to find signals (i.e. roots) that are 

invariant under median filtering. Roots of the median filters have been successfully used 

in edge enhancement [72] and image coding [67] The properties and convergence rates 

of median root can be found in [67]. Maragos and Schafer proved that median roots can 

be obtained by open-closing (opening followed by closing by the same structuring ele

ments) and close-opening (closing followed by opening) filtering [58] which is the link

age between median filters and morphological filters.

Morphological filters posses certain nice syntactic and statistical properties, which 

are related to the corresponding properties of the median filters. Since morphological 

filters become more and more important in image processing and analysis. The root of 

morphological filters is interesting to investigate. One of its application is the distance 

transformation which will be discussed later.

This chapter will be organized as followed. We will give definitions and proposi

tions of back-propagation morphology in Section 3.2. One example of morphological 

root application: distance transformation is given and discussed in Section 3.3. We give 

the summary and propose potential further research in Section 3.4.

3.2 Roots of Morphological Filters

Repeated application of the morphological filter on a quantized signal of finite length 

ultimately results in a sequence (root signal or fixed point) which is invariant to addi

tional passes of the filters. A root of a filter 'F, viewed as a mapping of transformation, is 

any signal /  such that 'f/( / )  = /.
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A morphological filter in gray-scale applications is a nonlinear digital filter which 

consists of a bounded mask (called the structuring element) with predefined values that 

slides over a signal of finite length. For each input sample, the output is the minimum or 

maximum of all neighboring input samples in the mask offset by their corresponding 

mask values centered at that input sample. If a finite signal that ends iteratively with a 

structuring element k, converges to an invariant signal in a finite number of passes, such 

an invariant signal is called a root of the structuring element k. Let 'F (/, k) denote the 

morphological filter *F working on the image /  and the structuring element k. We have 

the following definition for a morphological root:

Definition: Let us define k) is the output of morphological filter *F with respect to 

structuring elements k iterated n times and vF” (/\ k) is the morphological root o f 'F  with 

respect to k. That means 'F (/, k) will remain as an invariant output through a finite 

number of iterative operations. That is

¥ “ (/, k) = 4"'(/, k) = VF(' +1)(/, k ), (3.2.1)

where i is a finite integer and xF^+1)(/‘, k) = 'F( 'F '(/, k ) ).

We call the traditionally defined morphology in chapter 1 as forward morphology 

since their outputs do not feed back to their inputs to affect their succeeding pixels’ com

putation. The forward morphological operations are time-consuming when applied to 

find a root such that the computational complexity depends on the number of iterations. 

To speed up and avoid the iterations, a new definition called back-propagation morphol

ogy has been proposed. The new back-propagation morphological operations will com

pute the current scanning pixel result, output, and simultaneously feed back the result to 

overwrite its input in order to affect the succeeding pixels’ computation.

Let Nip)  be the set of the neighbors that precede P in a scanning sequence of the 

picture within the window of a structuring element. We denote the back-propagation
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filter as C>. The back-propagation dilation of / b y  £ is denoted by <X>+(/, £) and defined 

as:

<!>+(/, £)(;t,y) = max { [ <£+(/, k )(x -m ,y -n ) ] + k(m , n) }, (3.2.2)

for all (m, n ) e  K  and (x-m , y - n ) e (NnF) .  The back-propagation erosion o f /b y  k is 

denoted by <!>_(/, k) and defined as:

0 _ (/, k)(x, y)  = min { [ <]>_(/, £)(x+m, y+n) ] - k ( m ,  n) }, (3.2.3)

for all (m, n ) e  K and (x+m, y+n) e (NnF).

Since back-propagation dilation (erosion) adopts the dilated (eroded) results of the 

preceding scanned neighbors to be involved in its computation, its output inherently 

depends on the image scanning sequence. In general, an image scanning can be classi

fied into 1-D scan and 2-D scan. In moving from point to point, we always go from a 

point to one of its eight neighbors. Let us measure the moving direction counterclockwise 

from the positive x-axis. Thus, the 1-D scan can be separated into eight directions: 1) 

“ L”  denotes left-to-right or 0°; 2) “7?” denotes right-to-left or 180°; 3) “T” denotes 

top-to-bottom or 270°; 4) “ fi”  denotes bottom-to-top or 90°; 5) “ 45°” ; 6 )“  135°” ; 

7)“ 225°” ; 8)“ 315°” . The 2-D scan can have four scanning sequences starting at a 

comer pixel: 1) “LT” denotes left-to-right and top-to-bottom (Note: This is a usual 

television raster scan.); 2) “RB” denotes right-to-left and bottom-to-top; 3) “LS” 

denotes left-to-right and bottom-to-top; 4) “7?T” denotes right-to-left and top-to-bottom.

Assume a 3x3 structuring element k is denoted by

k =
A i A 2 A t, 
A 4 A 5 A(, 
A 7 i4g A 9

(3.2.4)

Because of the back-propagation effect with respect to the scanning direction, all the nine
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elements A i , • • •, A 9 in k actually are not used. The redefined structuring element for 

the back-propagation morphology must satisfy the following criterion: wherever a pixel 

is being dealt with, all its neighbors defined within the structuring element k must have 

already been visited before by following the scanning sequence used. Thus, the k in one 

dimension is redefined as:

a 2 X

kL = [ A 4 A 5 x] ,  kR = [x  A s A 6 ], kT = As

n

As
X A 8

X X

LA o It As k  1 3 5 °= As
A i A 9

As Al
^ 2 2 5 ° — As ^ 3 1 5 ° = A5

X X

the k in two dimensions is redefined as:

A\  A2  A3 X X X
k-LT- A4  A5 x IIos x  A5 A 6

X X X A 7 Ag A9

X X X

l

ki£= A4  A5 x k-RT- X A5 A 6

A 7 A g A 9 X X X

where “ x”  means don’t care or it can be defined as “ -oo” according to mathematical 

morphological properties [85].

A complete omnidirectional scanning in the image space can be achieved by using 

eight-scan in one dimension and two-scan in two dimensions. The eight-scan method 

adopts eight back-propagation morphological filters sequentially in a non-specific order 

of eight scanning directions, L, R, T, B, 45°, 135°, 225°, 315° working on corresponding
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structuring elements kg, kR, kT, kg, k 4 5°, 135°, k 225°, ^ 315°, respectively. The two-scan 

method adopts two back-propagation morphological filters, the first being any one of 

four 2-D scans LT, RB, LB, RT working on corresponding structuring element, and the 

second being the opposite scanning sequence of the first scan and its scan-related struc

turing element. For example, the opposite scanning of LT  is RB. From the followings, we 

will focus our attention on the theorem development of the two-scan method. These 

theorems can also apply to the eight-scan method.

We denote Oj and O2 as a pair of two-scan morphological filters such that C>j and 

<I>2 operate in opposite scanning sequences. Let k \ and k i  be the morphological struc

turing elements corresponding to the scanning sequences of operators Oj and O 2 , respec

tively. Let k \ be the k u  and k 2 be the kRg as defined of eq. 3.2.6. We have the follow

ing proposition:

Proposition 3.1: If 0°°(/, k 1 ) is the root of filter <t> with respect to k 1 then

<&“ (/, k l ) = <S>x{f, k x). (3.2.7)

[Proof]: It is obvious that the first pixel in an image in any scanning sequence satisfies

(0 ~ ( /, k\)){P\)  = (d>i(y, ki))(P 1). (3.2.8)

We assume that the Nth pixel Pn satisfies this proposition. Now consider the (N+l)th

pixel Pn+1 - Pn + 1 is determined by its neighbors defined by the domain of structuring

element k \ ,  and k \  satisfies the condition that when we scan Pn+\, all its neighbors have 

been previously scanned. Thus neighbors of Pn + 1 are:

{Pi\i <n,  Pi =f(p+b),  p<=Pn+i, b e k i ) .  (3.2.9)

When the ki)(Pn+x) is computed, all its neighbors {Pi} will not be changed. That
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means {Pi} have been computed and updated. Hence Pn+\ will satisfy

k 1)){PH+1) = (<t>l (f, *!))(/>„+1). □

If the structuring elements k \ is used, only one scan of back-propagation is enough 

to reach the morphological root. But usually the structuring elements used in morpholog

ical filters will not be as one of eq. 3.2.5 or eq. 3.2.6. Therefore, we need another opera

tion in opposite scanning direction of Oj which will complete the morphological filtering 

operation.

Proposition 3.2: If 0°°(/, k) is the root of filter O with respect to k then

V ( f ,  k) = &2(<&i(/\ ), k 2). (3.2.10)

[Proof]: Apparently, the neighborhood Pj of a pixel P within the window of the structur

ing element k may exist in two cases:

case (1): Pj  belongs to k\ .  In the first scan for computing <t>], according to Proposition 

3.1, we can get the result k\).  In the second scan for computing O2 , the final result 

will not be affected because k))(P) is determined by its neighbor Pj which is

defined with structuring element k 1 . Hence, we can obtain the correct result after com

puting d>2 -

case (2): Pj  belongs to &2 - According to Proposition 3.1, the result is easily obtained. 

Computing the <J>2 in the scanning direction defined with structuring element k 2 , we can 

get the result on the pixel P as Proposition 3.1 stated.□

From proposition 3.1 and 3.2, we Since k 1 and k 2 are both independent (dealing 

with different neighbors), the order of applying k\ and k i  t 0  a pixel is indifferent as long 

as the most up-to-date pixel value is used. The computation of two filters O j(f, k \)  and 

<&2 (/> ^ 2 ) can t>e initiated in parallel. That means the result will be generated only within 

a frame scanning time.
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3.3 An Application: Distance Transformation

An application of the forward- and back-propagation morphology can be illustrated on 

the distance transformation. A distance transformation converts a binary image which 

consists of object (foreground) and non-object (background) pixels into an image where 

every object pixel has a value corresponding to the minimum distance to the background. 

The distance computation is in fact a global operation. Morphological erosion is an 

operation which selects the minimum value from the combination of an image and the 

predefined weighted structuring element within a window. Hence, mathematical mor

phology is a most appropriate approach to distance transformation. Applying the well- 

developed decomposition properties of mathematical morphology, we can significantly 

reduce the tremendous cost of global operations to that of small neighborhood opera

tions, suitable for parallel pipelined computers [85, 8 6 ].

By setting the origin point as P, we can represent all the points by their distances 

from P (so that P is represented by 0). We select the weights of the structuring element to 

be entirely negative of the related distance measures, because gray-scale erosion is the 

minimum selection after applying the subtraction operation [8 6 ]. This will ensure that the 

output distance values stay within the same gray level range as the original gray-scale 

image. Three types of distance measures in digital image processing are usually used: 

Euclidean, city-block and chessboard [72]. We are only concerned with city-block and 

chessboard since their structuring elements can be decomposed into iterative dilations of 

small ones [85].

A binary im age/(w e use a small letter instead of a capital because of the gray level 

operation) consists of two classes, object pixels (foreground) and non-object pixels 

(background). Let the object pixels have the value “ + <»” (or any number larger than the 

object’s highest distance) and the non-object pixels have the value “ 0.” Let k be a 3x3 

distance structuring element as follows:
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1 to 1
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k-city  - b l o c k  ~ - 1  0  - 1 > k c h e s s b o a r d  ~ - 1  0  - 1

1

1 to 1 t—
» 1 to 1 - 1  - 1  - 1

The distance transformation algorithm by the forward morphology is as follows. 

Interested reader may refer to [8 6 ] for more detail.

Distance Transformation Algorithm:

(1) Do d  = /  © k.

(2) Repeat (1) until the result does not change any more or until all “ + are 

removed.

The distance transformation has wide applications in image analysis. One of the 

applications is to compute a shape factor which is a measure of the compactness of the 

shape based on the ratio of the total number of object pixels to the summation of all dis

tance measures [14]. Another is to obtain the medial axis (or skeleton) which is used for 

features extraction [4, 7,40,47, 50, 56].

We may apply the two-scan algorithm employing the back-propagation erosion to 

implement the distance transformation algorithm. The algorithm does not require itera

tion and only two scans are performed: one (k j ) is in the left-to-right, top-to-bottom scan 

and the other (£2) is in the opposite (right-to-left, bottom-to-top) scan. Hence this algo

rithm can be implemented very fast, no matter what size the object is.

Two-Scan Distance Transformation Algorithm:

(1)Do d x = ^ { f , k x).

(2)Dod2  = ^ 2 (^ 1. ^ 2 )•

An example of chessboard distance transformation is given as follows.

Example: Let structuring elements k and original image /  of which the object pixel value 

is set to be “ 255” be shown on fig. 3.1.
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-1 -1 -1

-1 0 -1

-1 -1 -1

(a)

0 0 0 0 0 0 0

0 255 255 255 255 255 0

0 255 255 255 255 255 0

0 255 255 255 255 255 0

0 255 255 255 255 255 0

0 255 255 255 255 255 0

0 0 0 0 0 0 0

(b)

Fig. 3.1 (a) the structuring elements k and (b) the original image /.

The k applied here is chessboard distance measure. After the distance transformation, the 

result is shown in Fig. 3.2. Instead of applying iterative forward erosions, we use the 

back-propagation erosion with two decomposed structuring elements k \ and k 2  in 2-D 

LT  and RB, respectively.

’ - 1  - 1  - l ‘ X X X

II

-7 - 1  0  x

II

-V

X 0

X X X 1

T7T—H 1
1

By applying the two-scan algorithm to the original image / ,  we obtain the results of
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 2 2 2 1 0

0 1 2 3 2 1 0

0 1 2 2 2 1 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

Fig. 3.2 The result of chessboard distance transformation.

and <I>2 as shown in Fig. 3.3 and 3.4. Certainly, the result of two-scan distance transfor

mation algorithm is exactly the same as original distance transformation algorithm.

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 2 2 2 2 0

0 1 2 3 3 3 0

0 1 2 2 2 2 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

Fig. 3.3 The result of O \{f,  k ]) where / i s  the original image.

3.4 Summary

We have defined a new concept which is called back-propagation morphology to reach 

the roots of morphological filters. Back-propagation morphology is different from the 

traditional morphology. During image scanning, the back-propagation morphological
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 2 2 2 1 0

0 1 2 3 2 1 0

0 1 2 2 2 1 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

Fig. 3.4 The result of ̂ ( ^ lC A  £i)> £ 2 )-

operations intend to feed back the output at each pixel to overwrite its input and continue 

in the same way until all pixels are scanned and computed. We have developed several 

theorems of a two-scan algorithm using the back-propagation morphology to reach the 

root in only two scans without recursively applying such forward morphological opera

tions. Its operation is independent of the size of a object and saves significantly much 

computational time compared with the proportion to the number of iterations in forward 

morphology. A systolic array implementation will make this two-scan operations much 

more efficient [81]. An example of applications of two-scan operations is shown in Sec

tion 3.3 which showed the computational advantages of back-propagation morphological 

filters in only two scans.
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CHAPTER IV

GEOMETRIC SPECTRUM AND SHAPE DESCRIPTION

A useful morphological shape description tool called G-spectrum is defined, its proper

ties are discussed and its application will be pointed out as an ongoing research.

4.1 INTRODUCTION

Mathematical morphology based on the geometric shape, provides a particular approach 

to the processing and analysis of digital images. The underlying strategy is to understand 

the characteristics of an object by probing its microstructure with various forms which 

are known as structuring elements. The analysis is geometric in character and it 

approaches image processing from the vantage point of human perception. Appropriately 

used, morphological operations also tend to simplify image data while preserving their 

essential shape characteristics and eliminating irrelevancies.

Shape description describes the object shape according to its geometric features. 

The shape of an object refers to its profile and physical structure. These characteristics 

can be represented by the boundary, region, moment, and structural representations. 

These representations can be used for matching shapes, recognizing objects, or making 

measurements on the shape characteristics. Therefore, the shape description is a very 

active and important issue in image processing, computer vision, and pattern recognition 

during recent decades. Many algorithms have been proposed to represent the shape. The 

skeleton representation and shape decomposition are the two most important categories. 

The idea of measuring the successive results of the morphological openings on an image 

by different sized structuring elements was initially suggested by Matheron and Serra.

48
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Matheron explored the properties of these successive openings for the size distribu

tions called granulometries [59]. Intuitively, a binary image is treated as a collection of 

grains (or particles) and the grains are sieved through a filter of increasing mesh size. 

After each filter is applied, the total number of remaining pixels is counted and the distri

bution of these counts reflects the grain size distribution. Serra applied the size distribu

tion for the continuous size and the shape description on two-dimensional binary images 

[75].

Let {5(n)|rt = 0, 1, • • ■, N - 1} be a sequence of structuring elements, such that 

the origin (0, 0) e B (n ), and B (n) contains at least one element, where

N = max {n \ X © A (n) *  0}  , (4.1.1)

and

4(0) = (0 ,0 ) , (4.1.2)

A(/i + l) = A(/i) © B(n),  for n = 0, 1, • ■ • , N - l  . (4.1.3)

More rigorously, the set {X O A (n) \n = 0, 1, • • •, N} of the morphological open

ings of an image X  by the sequence [A (n) \ n = 0, 1, • • •, N} of structuring elements 

provides a great deal of the shape and size information of the given image X. Due to the 

anti-extensive property of the morphological opening, the following is obtained.

X  O 4(0) 3  X  O A (I) □  ••• 2 X 0  4 (A ). (4.1.4)

Maragos proposed a shape-size descriptor which is called pattern spectrum [50, 51, 

53, 55]. The discrete version of pattern spectrum is a very useful quantity for shape 

analysis which is given by
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PSx in, B (n)) = Card(X O A ( n ) - X  O A (n+1)) for n = 0, 1, • • • , N - 1 , (4.1.5)

where A (n+1) is computed by eq. (4.1.3).

Bronskill and Venetsanopoulos proposed pecstrum [8 ] of which the discrete version 

is defined as

PSx(n, B{n))
= r  for n = 0, 1, • • • , N - 1 . (4.1.6)

Card (X )

Another variety called probability distribution function [20] is defined as

<&(„) = 1 ~ CardJ:X  ° y , (/l))- for n = 0 ,  1, , N - 1 .  (4.1.7)
Card{X)

In this chapter we present a useful morphological shape description tool called 

geometric spectrum or G-spectrum, for quantifying the geometric features on multidi

mensional binary images. The G-spectrum is proved to be a superior shape descriptor 

than the above descriptor in eqs. (4.1.5), (4.1.6), and (4.1.7) because of its less redun

dancy property.

This chapter will be organized as followed. The G-spectrum based on the morpho

logical erosion and set transformation, is defined and some examples are given in Section 

4.2. Its properties are discussed in Section 4.3. We propose a shape recognition algo

rithm using G-spectrum in Section 4.4. In the final Section, we give summary and 

further research.

4.2 G-SPECTRUM

The G-spectrum is a measurement for quantifying the geometric shape of discrete mul

tidimensional images. From eq. (4.1.3), we know that

X © A (n  + l) = X G ( A ( n )  © B(n))
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= (X © 4(/i)) 0  B{n)

c  X © 4  (/z), for /z = 0, 1, ■ - ■, N  . (4.2.1)

Let {'Fn | n = 0, 1 ,, • • • ,  N} be a sequence of set transformations which satisfy that 

X © A (n+1) c  'F JX  © A (n+1)] c  X © A(n)  for n = 0, 1, • • •, N  . (4.2.2)

Some widely-used examples of the 'F„ transformation [29] are given as follows.

Example 1: VB(X) = X © fi(« )  for n = 0, 1, • ■ • , N .

Example 2: ^ ( X )  = X ©  CB(/z)«4(«)) for n = 0, 1, ••• , N .

Example 3: ^ n(X) = (X © B in)) • A i n )  for n = 0, 1, • ■ • , N .

We introduce the G-spectrum as a shape descriptor which is based on a set of size

distributions. The formal definition of G-spectrum is given as follows.

Definition 1: The G-spectrum is a set of values defined by

G-spectrum = { G 0 (X), G,(X), • • •, GN(X) } , (4.2.3)

where

CardiX © Ain)) -  Cardiff„[X © ^ («+!)])
Gn(X) =

CardiX)

for « = 0, 1, ■ ■ ■, N . (4.2.4)

If we can find a sequence of transformations {'F„| n = 0 , 1, • • •, N} that satisfy 

eq. (4.2.2) then

X Q Ain)  — 'TJX  © 4  (/z+1)] c  X © 4 in) -  X  © 4  (n+1),

for n = 0, 1, ■ ■ •, N . (4.2.5)
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It is clear that

Card{X  © Ain)  -  0  A (n+1)]) < CardiX  © A in) -  X  © A (/i+ l)) ,

for n = 0, 1, ■ ■ ■, N  . (4.2.6)

According to eqs. (4.2.4) and (4.2.6) we can observe that our defined G-spectrum is less 

redundant than Rn(X); that is

„  .  CardiX © A in)) -  CardiX © A (it+1)) _  n ,v ,G„(X) <   R , m  . (4.2.7)

It has been proved [29] that the upper-bound of the set transformations {'?„} which 

satisfy eq. (4.2.2), is X  © A in) O B in) •  A in) and also the following equation is satis

fied by:

X  O Aik)  =
n=k

i X Q A i n )  -  y j X ©  A in+ !)])©  Ain) (4.2.8)

The difference between two successive openings is 

X  O Ain)  -  X O A (n+1) = i X  Q Ain)  -  © A (n+1)]) © A (n)

3  X  © A in) -  V n[X © A («+l)] . (4.2.9)

It is obviously that eq. (4.2.10)

CardiX O Ain)  -  X O  A (n+1)) > CardiX Q Ain)  -  vFn[X © A (n+1)]) ,  (4.2.10)

implies GniX) < PniX) according to eqs. (4.1.5), (4.1.6), and (4.2.4), where PniX) is the 

/ith element of "pecstrum". Hence, our defined G-spectrum has the least redundant size 

distribution, such that GniX) < Rn(X) and Gn(X) < Pn{X).

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



53

4.3 THE PROPERTIES OF G-SPECTRUM

The properties of G-spectrum are now presented and discussed in this section.

Proposition 4.1: For a given image X , each element of G-spectrum is a positive valued 

function. That is

Gn(X) > 0  for n = 0, 1, • • •, N  . (4.3.1)

[Proof]: From eq. (4.2.2), we know that

X  © A (n) 2  © A («+!)] • (4-3.2)

By applying the cardinality to both sides yields

Card(X Q A (n)) > Card{ 0  A (n+1)]) .  (4.3.3)

Because Card (X) > 0, we have

CardiX Q A i n ) )  -  Card( ¥ „ [*  0  A (n+1)])
Card{X)

> 0 . (4.3.4)

According to eq. (4.2.4), the result in eq. (4.3.1) is obtained.D

Definition 2: The redundant reduction rate (RRT) of a given image X  is defined as

RRTW  = —JTvT X  Card{ V n[X © A (n+1)] -  X Q  A (n+1) ) . (4.3.5)
CardiX)

As stated in Proposition 4.1, the G-spectrum is a set of positive values which gives 

the quantitative feature of an image based upon geometry. The redundant reduction rate 

is an indicator of how much redundant information can be reduced by using the G- 

spectrum. It is found that RRT also can be used in the matching procedure in object 

recognition.
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Proposition 4.2: With a compact region of support, the summation of G-spectrum is

equal to 1 minus the redundant reduction rate (RRT). That is

£G„(X) = 1 - R K T Q C ) .  (4.3.6)
n=0

[Proof]: From the definition of G-spectrum in eq. (4.2.4), we have

Z  G = ~n—wTvT Z  ( X © A (n) ) -  Card( ^ J X  9  A (n+ 1)] ) ) (4.3.7)
„to Card(X) n = 0

1 N
X  Card( *  0  A («) -  9  A («+1) ] ) (4-3-8>CardiX) n%

1 NX  Card(X Q Ain)  -  X Q  A(n+1) -
CardiX)  Btb

( ^ J X  © A (n+1)] -  X © A (n+1)))  (4.3.9)

^  \  Z  C a r d i X Q A i n )  - X © A ( n  + 1)) -  
CardiX)  ^

1 wX  Card( ^ [ X  © A (n+1)] -  X  © A (n+1)) (4.3.10)
CardiX) „ t0

Because X © A (0) = X and X © A (/V+l) = 0 ,  we have

N
X  CardiX © A (n) -  X © A (n+1)) = Card(X © A (0) -  X © A (N+1) )

n = 0

= CardiX).  (4.3.11)

Therefore,
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CardjX)
CardiX)

N

CardiX)  „5,
£  Cardi 'Fn[X © ,4 (n+1)] -  X  0  A (n+1)) (4.3.12)

= 1 -  RRTiX) □

The summation of G-spectrum is used to determine the degree of redundancy for an

image representation. If £  Gn(X) is smaller, it means that the more redundant informa

tion is removed from the image. For an image X, the RRT (X) will be varied with respect 

to the different sets of transformations. By employing the above concept, we are able to 

select a suitable set transformation which leads to the best performance on image coding. 

Proposition 4.3: If ^ [ X  © {z}] = ^ [ X ]  © {z}, for n = 0, 1, • • •, N, then the G- 

spectrum is translation invariant. That is

[Proof]: The proof is derived from the fact of the translation invariance of erosion and 

cardinality, and from the assumption of the translation invariance of TV That is

, {z}) = CardjjX® { z ] ) e A i n ) ) - C a r d C ¥ n[jX®  {z}) 0  A (n+1)])

Ca rd i X ® {z})

N

G„(X© {z}) = G„(X) for n = 0, 1, •••,7V. (4.3.13)

CardUX © A in)) © {z)) -CardQ¥n[X G A( n+1)] © {z})

CardiX®  { z} )

Cardi X Q  A i n ) )  -  Cardi ^ J X  © A (n+1)]) 
CardiX)

(4.3.16)

= Gn(X) • □
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The translation invariance property of the G-spectrum is useful in object recogni

tion. Given any two G-spectrums (G „(X i)|n = 0, 1, ■ ■ ■, N)  and 

{G„(X2) |«  = 0 , 1 , • • •, A''}, if both are the same or differ within a tolerance range, we 

say these two objects are matched. Although the G-spectrum is not scaling invariant, we 

can normalize the object into a pre-defined size. After normalization, the G-spectrum can 

also preserve the scaling invariance.

Proposition 4.4: The G-spectrum is scaling invariant if the set X  is normalized. That is

Gn(Nr(&))  = Gn(Nr(X)) for n = 0, 1, • • •, N  , (4.3.17)

where ^ is an unknown scaling factor and Nr(X) is a normalization function which is 

defined as

< 4 - 3 1 8 >

w h e r e  T i s  a  p r e - d e f i n e d  v a l u e .

[Proof]: Because

( 4 - 3 ' I 9 >

we have

Card( N r ( & )  © A(n) )  -  Cardi V n[Nri$X) 0  A (n+1)]) 

     < 4 - 3 - 2 0 )

Cardi NriX)  © Ai n) )  -  Cardi V n[NriX) © A (n+1)])
(4.3.21)

CardiNriX))

= GniN riX )) □

From Proposition 4.4, if we perform the normalization (note that
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Card (Nr (X)) = i)  on the images with various scaling factors the G-spectrums of qX 

and X  are the same. This implies that the normalization according to a pre-defined value 

x can produce the scaling invariant version of the G-spectrum.

Proposition 45: The first k elements of G-spectrum are zeros. That is

Gn(X) = 0 for n = 0, 1, • • •, Jfc-1 , (4.3.22)

if and only if eqs. (4.3.23) and (4.3.24) are satisfied:

X O A ( k )  = X . (4.3.23)

'F JX  9  A (n+1)] = X  © A (n) O B (n) •  .4 (n) for n = 0, 1, • • •, k - \  . (4.3.24)

[Proof]: Case 1: assuming that eq. (4.3.22) is true, we prove that eqs. (4.3.23) and

(4.3.24) are also true.

According to eq. (4.2.4), we have

Card(X Q A ( n ) )  = Card( 'F JX  9  A (n+1)] ) ,  for n = 0, 1, • • •, Jfc-1 . (4.3.25) 

This implies that

X © A (n) = y„[X © A ( /i+ l)], for n = 0, 1, • • •, Jfc-1 . (4.3.26)

We replace X by X O A (n+1) on the left-hand side of eq. (4.3.26) and obtain 

(X O A (n+1)) © A (n) = (X © A (n+1) © A (n+1)) 0  A (n ) (4.3.27)

= (X © (A (n) © B (n)) © (A (n) © B («))) © A (n) (4.3.28)

= X © A (n) © B (n) © B (n) © A (n) © A (n) (4.3.29)

= X 9  A ( n ) 0  B( n) »  A ( n ) . (4.3.30)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



58

We replace X by X O A (n+1) on the right-hand side of eq. (4.3.26) and obtain

Wn[(X O A (n+1)) © A (n+1)] = ^ [ X  © A (n+1) © A (n+1) © A (n+1)] (4.3.31)

= ^ [ X ©  A (n+1)» A (n+1)]. (4.3.32)

According to the mathematical morphology property, a set which is eroded by a structur

ing element is the same as the eroded result followed by a closing with the same structur

ing element. We then have

¥„[(*  O A (n+1)) © A (n+1)] = 'F JX  © A (n+1)]. (4.3.33)

From eqs. (4.3.30) and (4.3.33), we can obtain

'F JX  © A (n+1)] = X © A (n) O B (n) •  A ( n ) . (4.3.34)

From eqs. (4.2.5) and (4.3.26), we have

N
X O A(k)  = u (X  Q A (n) -  V ^ X G  A (n+!)])& A(n)

jfc-i
U
n=0

( X  Q A(n) -  Y „ [X © A (n + l ) ] )®  A(n) (4.3.35)

= X O A (0) -  0 (4.3.36)

= X (4.3.37)

Case 2: assuming that eqs. (4.3.23) and (4.3.24) are true, we prove that eq. (4.3.22) is 

also true.

^ J X ©  A (n+1)] = X ©  A ( n ) O B ( n ) 9  A(n) (4.3.38)
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= X  © A (n) 9  B (n) © B (n) © A in) © A (n) (4.3.39)

= (X  © (A in) 0  B («)) © (A (n) © B (n) ) )  0  A (n) (4.3.40)

By applying eq. (4.1.3), we obtain

= [X O A (n+1)] 0  A (n ) . (4.3.41)

According to eqs. (4.1.4) and (4.3.23), we obtain

X O A  (n+1) = X for n = 0, 1, • • •, k - \  . (4.3.42)

Hence,

'F JX ©  A (n+1)] = X ©  A {n) for n = 0, 1, • • •, Jfc-1 . (4.3.43)

From the definition of Gn{X) in eq. (4.2.4), we obtain

Card{X Q A i n ) ) -  Cardi ¥ n[X 0  A (n+1)])
G„iX) = -----------------------------------------------------------  (4.3.44)

nK } CardiX)

Cardj X Q A j n ) ) -  Cardi X Q A j n ) )  ( 4  3  45)
CardiX)

= 0  for n = 0 , 1 , • • •, k - 1 . □

If we can find a sequence of the set (A(n) | n = 0, 1, • • •, N} which satisfies eqs. 

(4.3.23) and (4.3.24), the recognition problem can be simplified by matching only 

N -k + l  elements of the G-spectrum. That means, if the G-spectrums of two sets X  i and 

X  2 satisfy the following equation these two sets are regarded as the same.

GttQCi) -  GniX2) < a  for n = k, k+l,  • • ■, IV . (4.3.46)
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Proposition 4.6: If the set of structuring elements is chosen to be isotropic, the G- 

spectrum can be regarded as the rotation invariance.

The proof is straightforward. Since the structuring elements are isotropic, the G- 

spectrum defined as erosions by them, is naturally rotation-invariant. There is a relation

ship between pattern spectrum and G-spectrum. The next proposition will explore the 

relationship and prove that under some constraints, the elements of the G-spectrum and 

those of the pattern spectrum are equal to zero.

Proposition 4.7: There exists that for some n

Gn(X) = 0 , (4.3.47)

if and only if, the following are satisfied:

T 'JX  9  A (/z+1)] = X  © /I (n) O B (n) •  A ( n ) , (4.3.48)

and

PSx ( n , B ( n ) )  = 0 . (4.3.49)

[Proof]:

Case 1: assuming that eq. (4.3.47) is true, we prove that eqs. (4.3.48) and (4.3.49) are 

also true. According to eqs. (4.2.4) and (4.3.47), we have 

Card(X © A (n)) = Card ( T J X  © A (n+1)]). Since both sides are operating as the ero

sion on the same set X, we obtain

X  © A (n) = VnlX © A (n+1)] . (4.3.50)

The proof of eq. (4.3.48) is the same as the proof of eq. (4.3.24) in Proposition 4.5. To 

derive eq. (4.3.49), we first give

X O  A(n)  = X © 4 ( r t ) ©  A(n)  (4.3.51)
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= ( ¥ n[X © A (n+1)]) © A (n) (4.3.52)

From eq. (4.3.48) we have

X O A(n)  = ( X  Q A (n) O B (n) * A ( n ) ) ® A (n) (4.3.53)

= X  © A (n) © B(n)  ® B (n) 0  A (n) © A (n) © A (n) (4.3.54)

= X  © (A (n) © B (n)) © (A (n) © B (n)) Q A ( n ) ®  A (n) (4.3.55)

= X © i4 ( / i+ l )© i4 (n+ l )O i4 ( / i )  (4.3.56)

= X 0  4 ( n + l ) 0 A ( n )  (4.3.57)

c X O A ( / i + l )  (4.3.58)

From eq. (4.1.4), we know X O  A(n)  3  X O A ( n + l ) .  Hence, 

X  O A (n) = X O A (n+1). From eq. (4.1.5), we conclude PSx( n, B( n) )  = 0.

Case 2: assuming that eqs. (4.3.48) and (4.3.49) are true, we prove that eq. (4.3.47) is

also true. From eqs. (4.1.5) and (4.3.49) we have

X O A(n) = X O A (h+1) . (4.3.59)

From the mathematical morphology property we obtain

X  © A (n) = (X O A (n)) © A (n) (4.3.60)

= (XO A (n+1)) © A (n) (4.3.61)

= X  © A ( n ) 0  B (n ) 9  A ( n ) . (4.3.62)

From eqs. (4.1.4), (4.3.48), and (4.3.62), we have
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£  ^  _  Card(X Q A( n) Q B ( n) *  A (n)) -  CardjX Q A( n)Q B ( n ) *  A (n)) ^  ^ 5 3 ) 
n Card(X)

=  0 □

The Proposition 4.7 tells us that if the transformation is constrained by eq. 

(4.3.48) and the nth element of the pattern spectrum is equal to zero, then the nth element 

of G-spectrum will be equal to zero or vice versa.

As many quantitative measures with respect to shape such as turning angles, length 

of sides, area, perimeter, radial lengths, and boundary coordinates have been proposed, it 

is difficult to standardize a minimum set of the shape descriptor to adequately quantify 

various object forms. The shape description techniques can be broadly classified into 

external and internal. The external shape description is based on the contour of a region 

under consideration, whereas the internal description deals with the region under con

sideration as an enclosed space.

The skeleton is one of the most important internal shape descriptors. The idea of 

transforming a binary image into an object skeleton and using the skeleton as a shape 

descriptor was first introduced by Blum [4], If we set up the grass firing starting from 

the contour of a region, the fire burning spreads uniformly in all directions but in such a 

way that the waves generated do not flow through each other. The skeleton (or medial 

axis) is where the waves collide with each other in a frontal or circular manner. The 

skeleton of an object is the locus of the maximal inscribed circles within this object 

region. In other words, the medial axis is the symmetrical central description of the space 

whose boundary is the stimulus contour. The appearance of a skeleton starts at the 

minimum radius of curvature in the figure. The disappearance of a skeleton represents 

the largest circle that can be drawn in the figure. The skeleton sets can be used as the 

base for the shape description, classification and decomposition [50, 56, 87,91].
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The G-spectrum {Gr.(X)lrt = 0, 1 , ■ ■ ■, N} can be used as an internal shape 

descriptor which is based on the quantified geometric features instead of a sequence of 

discrete or connected pixels (e.g. the skeleton representation). Although the original 

image can not be reconstructed from the G-spectrum (i.e., G-spectrum is not an 

information-preserving descriptor), the G-spectrum is more useful than the skeleton in 

the shape recognition. It is not straightforward to apply a set of skeletons in solving the 

matching problem during shape recognition, however it is easier when a set of quantified 

geometric features, such as G-spectrum, is used. In other words, the G-spectrum is not 

only a shape descriptor, but also a tool for object recognition.

4.4 SUMMARY

In this chapter we define the G-spectrum not only as a shape descriptor for describing the 

quantified geometric features of multidimensional binary images, but also as a tool for 

shape recognition. The basis of G-spectrum relies upon the cardinality of a set of non

overlapping segments of an image using morphological operations. We have proved that 

the G-spectrum can preserve the invariance property for the transformations such as 

translation, rotation, and scaling. The G-spectrum can be easily extended and applied to 

multidimensional images.
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CHAPTER V

MORPHOLOGICAL SHAPE RECOGNITION USING G-SPECTRUM

Properties of G-spectrum are presented and discussed in chapter 4. In this chapter, the

application of G-spectrum is presented. It is found that G-spectrum is very useful in

shape recognition.

5.1 The Recognition Algorithm using G-spectrum

By using the G-spectrum, a shape recognition algorithm is proposed as follows.

1. For every model object M/, its G-spectrum and RRT (Mt-) are computed.

4. Given an object O, its G-spectrum and RRT (O) are computed.

3. For every M-t if the following equation is satisfied where £ is a pre-defmed tolerance 

value, we regard it as a candidate and denote as Cr

RRT(0)  -  RRT (Mi) < e (5.1.1)

4. For every candidate Cj we got in step 3, we analysis and compare its G-spectrum

with given object’s G-spectrum. If they are matched (i.e. the following equation is 

satisfied, where a  is a pre-defined tolerance value), we recognize it.

X  Gi(0)  -  Gi(Cj) 
i=o

< a  (5.1.2)

In this algorithm, RRT  is used as a pre-probe which can simplify the recognition pro

cedure. According to proposition 4.7, it shows that if the structuring elements set and 

transformation set {xFn} satisfied the constraint in eq. (4.3.48), the recognition procedure 

will become much simplier.

64
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The shape likeliness between two shapes can be defined by G-spectrum as follows. 

Definition 5.1.1: The shape likeliness between two shapes p and q is defined as

£  GiiSp) -  Gi(Sq)
i=0 ^

(5.1.3)

5.2 Experimental Results

In this section, experimental results will be presented and evaluated. Six different shapes 

are shown in Fig. 5.2 and structuring element sets are shown in Fig. 5.1. The G-spectrum 

(whose values are multiplied by 1 0 0 0  in order to be illustrated clearly) of these six 

shapes using different 'F transformation are shown in Figs. 5.3 - 5.12. The matching 

results of these six shapes using different XF transformation are shown in Figs. 5.13 - 

5.22, which two shapes i and j  are the most alike among these six shapes by selecting the

minimal value of their shape likeliness of £  G,-(<9) -  G,(C,)j .
j=0

o o o o o
0 o o o  o 0 o o o
(a) o o o o o

(b) (C) (d)

O o o O O o o o
O o o o o o 0 o 0 o
o o o o o o o o o o
o o o o o 0 o o o o
o o o o o o o o

(e ) (f )

Fig. 5.1 Structuring element sets (a) h3, (b) v3, (c) din3, (d) sq3, (e) sq5, and (f) r5.
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Fig. 5.2 (a) shape 1, (b) shape2, (c) shape3, (d) shape4, (e) shape5, and (f) shape6 .
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Fig. 5.2 (Continued)
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Object Go Gi G 2 g 3

23 23 14 125 815

Sl 31 31 2 0 74 843

S3 17 17 17 83 865
S4 47 373 580

S5 27 109 74 790

S 6 24 32 2 0 6 8 856

Fig. 5.3 G-spectrum of six shapes where '? ( / )  = / ©  sq 5 and A (n) = sq 5.

Object G o G  i g 2 g 3 g 4 G  5 g 6 g 7 C
l

00 g 9 G io G n G  12 / y ? r

*1 87 87 87 87 87 87 87 46 5 5 5 5 2 328

Sz 55 55 55 55 55 55 55 30 4 4 4 4 2 567

•S3 105 305 105 105 105 105 105 52 214

SA 95 95 95 77 47 36 24 6 527

76 76 76 126 69 38 21 6 513

s6 64 64 64 64 64 64 56 34 12 12 12 6 484

Fig. 5.4 G-spectrum of six shapes where '?(/’)= f ® h  3 and 4 ( n )  = din 3.

Object Go G i G i g 3

326 271 2 1 2 125 6 6

Sl 366 272 173 75 114

S3 362 275 188 83 92
S4 538 373 89

s 5 464 303 74 160

*6 364 276 176 6 8 116

Fig. 5.5 G-spectrum of six shapes where *¥(f) = / ©  A 3 and /4 («) = j^5.
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Object Go Gi Gi g 3

241 187 132 125 314

Sl 315 220 130 75 260

S3 279 210 140 83 288

Sa 450 373 176

Ss 410 315 74 202

S 6 312 224 132 68 264

Fig. 5.6 G-spectrum of six shapes where *¥(f)
©II v3 andA (n) = sq 5.

Object G o Gi G% g 3 Ga Gs g 6 Gi

1 7 1 7 1 2 2 39 923

Si 8 8 8 8 8 4 4 20 933

S3 4 4 4 4 4 4 4 22 948
S4 12 12 12 130 834

S5 2 8 42 17 17 11 903

S 6 0 8 8 8 8 4 8 16 940

Fig. 5.7 G-spectrum of six shapes where*¥(/) = f ® s q  3 and A (n) = sq 3.

Object Go Gi G 2 g 3 G 4 /y?r

Sl 7 7 7 130 2 847

s 2 8 8 8 85 2 890

s 3 4 4 4 122 865

sa 12 107 77 805

s 5 2 126 34 6 832

S 6 0 8 8 78 2 904

Fig. 5.8 G-spectrum of six shapes where XF (/) = /  © r 5 and A (n ) = r 5.
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Object Go G i g 2 Gs g 4 Gs c 6 Gi RRT

144 134 125 116 107 93 84 39 157

Sl 150 134 118 1 0 2 87 67 51 2 0 272

S'S 162 144 127 109 92 74 57 2 2 214
s 4 225 2 0 1 178 130 266

*5 174 172 147 71 46 1 1 378

* 6 144 136 1 2 0 104 8 8 6 8 48 16 276

Fig. 5.9 G-spectrum of six shapes where VF(/') = / ©  h 3 and A (n) = sq 3.

Object Go Gi Gi Gs G a RRT

*i 278 251 223 155 2 91

s i 287 240 193 1 2 0 2 157

ss 314 262 2 1 0 1 2 2 92

sa 432 331 77 160

s$ 372 319 118 6 185

S 6 284 244 196 114 2 160

Fig. 5.10 G-spectrum of six shapes where '? ( /’) = f ® h  3 and A (n) = r 5.

Object Go Gi Gi G3 G a G5 G 6 Gj RRT

Sl 59 50 41 32 23 14 9 39 733

Sl 98 83 67 51 35 24 16 2 0 606

S 3 70 61 52 44 35 26 17 2 2 672

s 4 136 1 1 2 89 130 533

55 1 2 0 118 160 84 50 1 1 458

5 6 92 84 6 8 52 36 24 2 0 16 608

Fig. 5.11 G-spectrum of six shapes where *¥(f) = / ©  v3 and/4 (n) = sq3.
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Object Go G i g 2 g 3 g 4 /w?r

Sl 194 166 139 153 2 346

s 2 236 189 142 120 2 311

S 3 223 179 135 122 341
5 4 343 320 77 260

ss 317 324 113 6 239

s 6 232 192 144 114 2 316

Fig. 5.12 G-spectrum of six shapes where *¥(/) = / ©  v 3 and A (n ) = r  5.

*1 *2 S3 54 *5 *6

S1 73 57 513 275 73

*2 40 452 210 14

*3 486 242 40
54 358 452

*5 202

S 6

Fig. 5.13 Likeliness among six shapes where *¥(/) = f @ s q  5 and A(n)  = sq 5.

s 1 $2 *3 5 4 *5 *6

Sl 244 154 250 267 205

s 2 390 242 241 87

*3 312 341 355
5 4 133 253

*5 234

S6

Fig. 5.14 Likeliness among six shapes where *¥(f) = f @ h 3  and A (n ) = din 3.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



72

*1 Sl S3 *4 S5 S6

si 130 106 651 433 136

S2 30 521 303 16

S3 545 327 30
S 4 218 515

S5 297

S 6

Fig. 5.15 Likeliness among six shapes where *¥(/) = / ©  h 3 and A (n) = sq5.

S \ S l S3 sa , S5 S(>

*1 159 111 652 480 165

S l 64 493 321 16

S 3 557 385 70
s 4 172 487

S s 315

S(>

Fig. 5.16 Likeliness among six shapes where *¥(/) = / ©  v 3 and A (n) = sq5.

S l S 2 S 3 s 4 S 5 S6

Sl 28 36 188 111 42

Sl 22 170 89 16

S3 184 103 30

sa 185 178

S 5 85

S 6

Fig. 5.17 Likeliness among six shapes where'? ( / )  = f ® s q  3 and A (n) = s^3.
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*1 s 2 *3 *4 s 5 *6

S l 48 19 307 277 61

* 2 51 259 231 15

S3 306 270 58
S 4 78 260

S5 220

S 6

Fig. 5.18 Likeliness among six shapes where *¥(/) = / ©  r 5 and A (n) = r 5.

*1 S2 *3 54 S s *6

125 115 538 401 122

S2 58 455 290 21

S3 437 286 63
54 227 450

S5 289

S 6

Fig. 5.19 Likeliness among six shapes where *¥(f) = / ©  h 3 and A (n) = s q3.

S l S2 S3 54 *5 S6

s 1 85 95 537 418 81

s 2 70 474 355 16

S 3 442 323 72
54 119 470

*5 351

*6

Fig. 5.20Likeliness among six shapes whereXF (/) = / ©  /z3 andA(n) = r5.
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*1 *2 *3 54 *5 $6

*1 165 94 370 378 171

*2 77 263 247 18

*3 340 324 81
54 200 267

*5 249

*6

Fig. 5.21 Likeliness among six shapes where VF (/) = /  ® v 3 and A (n ) = sq 3.

S1 *2 S3 54 S5 S6

101 79 520 456 108

*2 34 425 361 15

*3 441 377 41
5 4 72 422

*5 358

*6

Fig. 5.22Likeliness among six shapes where x¥ ( f ) = f @  v3 andi4 (n) = r5 .

5 3  Summary

The experimental results show that the shape likeliness is minimum which indicating that 

these two shapes are the most alike and their RRT are very close. Refining the algorithm 

by real image, discussing the tolerance, and defining the thresholding value of 

equivalence will be the future research topics.
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CHAPTER VI

SOFT MATHEMATICAL MORPHOLOGY AND ITS PROPERTIES

The generation of soft morphological operations was motivated by Koskinen, Astola, and 

Neuvo [44, 45]. The soft morphological operations are less sensitive to additive noise 

and to small variations. New definitions of binary soft morphological operations are 

given. The properties and proofs of soft morphological operations are studied and dis

cussed. It also shows that soft morphological operations commute with thresholding and 

obey threshold-linear superposition. In general, soft closing and soft opening are not 

idempotent operations, but under some constraint the soft operations can be idempotent 

and the prove is given. The properties of idempotent soft morphological filters will be 

studied and discussed.

6.1 INTRODUCTION

Mathematical morphology which is based on set theory, provides an algebraic approach 

to manifest structuring shapes on binary or gray scale images [75, 77]. The underlying 

strategy is to expose the characteristics of an object by probing its microstructure with 

various forms which are known as structuring elements. The analysis is geometrical in 

nature and it approaches to image processing from the vantage point of human percep

tion. The essential morphological operations are dilation, erosion, opening, and closing. 

Dilation by a structuring element corresponds to expansion, and erosion corresponds to 

shrinking. Appropriately combined, the functionality of opening and closing closely 

corresponds to the specification of a filter by its bandwidth. They tend to simplify image 

data while preserving their primary shape characteristics and eliminating irrelevancies. 

The opening of an image will remove all of the pixels in regions that are too small to

75
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contain the probe. The opposite sequence, closing, will fill in holes and concavities 

smaller than the probe. Such morphological filters can be used to suppress spatial 

features or discriminate against objects based on their size distribution [20]. As an exam

ple, if a disk structuring element is used, the opening of an image is equivalent to a low- 

pass filter. The opening residue is of course a high-pass filter. The difference of two 

openings of an image with two structuring elements with different radii corresponds to a 

band-pass filter.

Morphological filters constitute a highly nonlinear system. Another popular family 

of nonlinear filters is the order statistic filters which are based on statistics theory and 

have been applied to signal detection and image enhancement. Maragos and Schafer [57] 

extended the theory of median, order statistic and stack filters to mathematical morphol

ogy. They have shown that the order statistic filters can be used in both function- and 

set-processing and can commute with thresholding.

Soft morphological filters are the combination of the order statistic filters and mor

phological filters. The primary difference to standard morphological filters is that the 

maximum and minimum operations are replaced by more general weighted order statis

tics and the “ soft”  boundary is added to the structuring element. Koskinen et al. [44, 

45] have shown that soft morphological operations are less sensitive to additive noise and 

to small variations in object shape, and they preserve most of the desirable properties of 

standard morphological operations.

In this chapter, the properties of threshold-linear superposition, idempotence, and 

binary soft morphological operations are developed. The soft morphological operations 

are proved to be capable of commuting with thresholding and the threshold-linear super

position property allows fast implementation of gray scale soft morphological operations 

by using only logic gates. The implementation and the analysis of gray scale soft mor

phological operations can be interpreted by focusing only on the case of sets that are
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much easier to deal with since the binary soft morphological operations only involve 

counting the number of pixels instead of sorting the values. The idempotence property 

provides criteria to select the structuring elements and the order index, that leads the soft 

morphological filters to reach the root signal without iteration.

This chapter is organized as follows. In section 6.2 the definitions of soft morpho

logical operations are given. In section 6.3 the properties of soft morphological opera

tions, including increasing and translation-invariant, are discussed. In section 6.4 the 

threshold decomposition and threshold-linear superposition are developed. In section 6.5 

the class of idempotent soft morphological filters are presented. Finally, summary is pro

vided.

6.2 Definitions of Soft Morphological Operations

L e t/b e  a function defined on m-dimensional discrete Euclidean space Z m. Let W be a 

window, a finite subset of Z m containing N  points where N  = Card (MO, the cardinality of 

W. The kth order-statistics (OS) of a function /  (x) with respect to the window M' is a 

function whose value at location x  is obtained by sorting in descendent order the N  values 

of /  (x) inside the window W whose origin is shifted to location x  and picking up the kth 

number from the sorted list, where k ranges from 1 to N. Let Wx denote the translation of 

the origin of a set W to location x. The kxh OS is represented by

&th OS(f,  UOCc) = &th largest of { /  (a^aeM ^}. (6.2.1)

Note that if N  is an odd number and k = (N+1)/2, the kth OS corresponds to a median 

filter. If k = 1, the kth OS becomes a maximum filter. That is

1st OS(f,  MOW = max { /  (a)\ae Wx ). (6.2.2)
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If k = N, the Jtth OS becomes a minimum filter. That is

Nth OS(f,  WOCc) = min { f  (a) \aeWx }. (6.2.3)

The soft morphological operations adopt the concept of order statistics to replace 

the maximum and minimum in standard morphological operations. The basic idea of soft 

morphological operations is that the structuring element B is split into two subsets: the 

core set A and the soft boundary set B \A,  where “ \”  denotes the set difference. Soft 

morphological dilation (erosion) of a function with respect to a finite set are regarded as 

the gray scale soft morphological dilation (erosion) whose output value at location x  is 

obtained by sorting in descendent (ascendent) order of the Card(B \ A) + kxCard{A) 

values of the input image that includes the pixels inside B \ A and k times repetition of 

the pixels inside A and then selecting the &-th order from the sorted list. Let {k 0/  (a)}

denote the repetition k times of / ( a )  which means {k ()f  (a)} =

{ / • • • , f ( a ) }  (k times). The definitions are given as follows, where /  is a

gray scale image and 5  is a flat structuring elements.

Definition 6.2.1: The soft morphological dilation o f /b y  [B, A, k] is defined as

( /©  [B, A, k])(x) = &th largest of ({ k q f ( a ) \ a e A x } u  { f  (b)\b<=(B\A)x}). (6.2.4)

Definition 6.22: The soft morphological erosion of /b y  [B, A, k] is defined as

( /©  [B, A, &])(x) = kth smallest of ({ k q f  (a) \aeAx} u  { f  (b) \be(B\A)x }). (6.2.5)

Definition 6.23: The soft morphological closing o f /b y  [B, A, k] is defined as

/  •  [B, A, k] = /  © [B, A, k] 9  [B, A, k]. (6.2.6)

Definition 6.2.4: The soft morphological opening o f /b y  [B, A, k] is defined as

/  O [B, A, k] = f  9  [B , A , k ] © [B,A,k] .  (6.2.7)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



79

Note that if k = 1, the soft morphological operations in eqs. (6.2.4) - (6.2.7) are 

equivalent to standard morphological operations.

6.3 Properties of Soft Morphological Operations

In this section we present and prove general properties of soft morphological filters 

which are valid for both set- and function-processing. The notations used in the previous 

sections will be continuously used through this chapter.

Definition 6.3.1: A transformation 'P is said to be idempotent if'P('P(/')) = 'P (/). 

Definition 6.32: A transformation 'P is said to be increasing if for any two input signals/ 

and g, such that /  (x) < g (x) for every x, the resultant outputs 'PCf  (x)) < 'PCg (x)). 

Proposition 63.1: The soft morphological dilation and erosion are increasing.

[Proof]: Let /  (x) < g (x) for every x. From eq. (6.2.4) we have

£th largest of ({ k <)f(a)\aeAx } u  { f  (b)\b<=(B\A)x })

< £th largest of ({ k o g ( a ) \ a e A x } u  { g (6 ) |6 e (5 U )x}) (6.3.1)

that implies

( /  © [B, A, &])(x) < (g © [B, A, £])(x) for every x. (6.3.2)

Thus, the soft morphological dilation is increasing. The proof for soft morphological ero

sion can be similarly derived. □

From Proposition 6.3.1, we can easily prove that the soft morphological closing and 

opening are also increasing.

Proposition 6.3.2: The soft morphological closing and opening are increasing.

[Proof]: Denote soft morphological dilation be 'Pi and soft morphological erosion be 4*2-
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L e t/< g . Since and ¥ 2  are increasing, we have

¥ i ( f )  ^  ^ i(gX  and W2(f )  < *F2(g). (6-3.3)

Therefore,

'W i C / ) )  ^  ^O PiCg)) (6-3.4)

and

¥ 1  CF2(/)) ^  ^ i(^2(g))- (6-3-5)

Eqs. (6.3.4) and (6.3.5) states that the soft morphological closing and opening are 

increasing respectively. □

Proposition 63.3: The soft morphological operations are translation-invariant. That is 

for any soft morphological operation *¥ with respect to any z e  Zm, we have

'f'zCf )  = W z)- (6-3-6)

The proof of translation invariance property is straightforward and therefore skipped. 

Proposition 63.4: The soft morphological dilation propagates the local maximum of the 

pixels within B to all the pixels within A and fills up the valley whose area is less than or 

equal to Card (A).

[Proof]: Let /  (x ) be the local maximum in the neighborhood of the translated Bx. 

According to eq. (6.2.4), /  (x') will be changed to /  (x) if x' e Ax. In other word, the local 

maximum /  (x) will be expanded to the neighborhood whose area is Card (A).

Let /  (x ) be the valley whose area is less than or equal to Card (A). It means that some 

values in B \ A are greater than /  (x). Thus the value of /  (x) must be increased after soft 

morphological dilation is applied because the &th largest of {k 0 / (a) | a<=Ax } u  

l f ( b )  | be(B\A)x } must exist in {/(£>) | be(B\A)x}. In other words, the valley is 

filled up. □
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Proposition 6 3 5 :  The soft morphological erosion propagates the local minimum of the 

pixels within B to all the pixels within A and eliminates the peak whose area is less than 

Card (A).

The above proof can be similarly derived from the proof of Proposition 6.3.4 and is 

skipped. The following provides an interesting property that the soft morphological dila

tion is equivalent to the soft morphological erosion if k = Card (B) and Card (A) = 1. 

Proposition 63.6: I f k = Card (B) and Card (A) = l,then

/ ©  [B, A, k] = / ©  [B, A , k ] .  (6.3.7)

[Proof]: From the definition in eq. (6.2.4), if k = Card(B) and Card(A) = 1, for any x, 

f  © [B, A, Jfc](x) is the &th element of the sorted list in which the total number of ele

ments is 2xk -  1. It means that /  © [B, A, k](x) is the middle one of the sorted list. 

According to eq. (6 .2 .5),/ © [B, A, &](*) is the middle one of the sorted list, which is 

exactly the same as /  © [B, A, A: ](x). □

6.4 Threshold Decomposition and Superposition

The soft morphological operations can be applied to both for set- and function- 

processing. Because of the increasing property, they can be threshold decomposed. By 

using the concept of cross-sections of a function and the definition of soft morphological 

operations for set-processing, we can prove that the function-processing soft morphologi

cal operations commute with thresholding. The set-processing soft morphological opera

tions can be equivalently defined as follows, that only involve in counting the number of 

pixels instead of sorting numbers. Let X  be a binary image. Also let n = Card (A) and 

N = Card(B). Thus, the total number of pixels within B after repetition k times is 

kxn + (N - n ).
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Definition 6.4.1: The binary soft morphological dilation of X  by [5, A, k] is defined as

X  0  [B, A, k] = { y \k  x Card(X n A y) + Card{X n  (B \ A)y) > k }. (6.4.1)

Definition 6.42: The binary soft morphological erosion of X  by [B, A, k] is defined as

X  0  [B,A,k] = { y \k x  Card(XnAy) + Card{Xn{B\A)y) > N + {k -l)xn -k+ l}. (6.4.2)

Note that k xCard{X n A y) + Card (X n  (B \ A)y) is always less than or equal to 

N  + (k - l ) xn  which is the total number of pixels involved in computation.

Example: Let X  = {100101111}, B = \ 111}, A -  {1} which is the center point of B, and 

k = 2. The results after the soft morphological dilation and erosion are:

X  0  [B,A,2] ={100111111}, and

X  © [B,A,2\ = {100001111}.

Let X c denote the set complement of X. We will show the interaction of the soft 

morphological dilation of a set X  with its complementation.

Proposition 6.4.3: The soft morphological dilation of a set X  followed by a complement 

is equivalent to the dilation o n X c. iff k = Card(B) -  1 and Card(A) = 1, i.e., the core set 

contains only one center point.

X c 0  [B, A, Card{B)~ 1] = (X  0  [B, A, Card{B)~ 1] f . (6.4.3)

[Proof]:

y e X c © [B, A, Card(B)~ 1] (6.4.4)

(Card(B)- \ )xCard(XcnAy) + Card(Xcn(B\A)y) > Card{B)~ 1 (6.4.5)

<=> {Card(B) - l ) x Card ( XrAy) + Card(Xn(B\A )y) < Card (B) -  1 (6.4.6)
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»  y  4 X  © [B, A, Card(B)~ 1] (6.4.7)

« •  y  e [X© [5, A, C a rd (B )- \\f  (6.4.8)

□

The cross-section Xt(f )  of / a t  level t is the set obtained by thresholding /  at level t:

X j(/) = {x | f ( x ) > t } ,  where < t < o°. (6.4.9)

Theorem 6.4.1: The soft morphological operations of functions commute with threshold

ing. That is for any/, A, B and k -  1,2, • • •, N —l, we have

Xti f  © [B, A, k]) = Xt( f )  © [B, A, k]. (6.4.10)

[Proof]: We only prove that the soft morphological dilation of functions commutes with 

thresholding. The proofs for the other soft morphological operations are similar. Let 

g(x) = ( f ®  [B, A, *])(*). Then

z e X t(g) <*=> g(z) > t (6.4.11)

<=> k x  Card(Xt( f ) n  Az) + Card(Xt(f )  n ( B \ A ) z) > k (6.4.12)

»  z e  X,( f )  © [B, A, k ] (6.4.13)

□

The essence of Theorem 6.4.1 is that the soft morphological operation of a function 

followed by thresholding at level t is equivalent to thresholding of the function at level t 

followed by soft morphological filtering of the resultant cross section. Both ways should 

yield the same result. The implementation and analysis of function-processing soft mor

phological operations can be achieved by the set-processing operations which are much
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easier to deal with because their definitions involve only in counting the number of pixels 

instead of sorting numbers.

Consider the thresholded binary images

f 1 f ( x ) > a
A M = | o  f W < a ,  <6A14)

where 0 < a < L  and most of the case L = 255. It is simple to show that /  can be recon

structed from its thresholded binary images. That is

f i x )  = £ / fl(x) (6.4.15)
a= 1

= max { a | f a(x) = 1 }. (6.4.16)

A transformation 'F obeys the threshold-linear superposition [60] when it satisfies:

W )  = £  W «)- (6-4-17)
<2 = 1

Such transformation 'F can be realized by decomposing /  into all its binary images f a, 

processing each thresholded image by 'F, and creating the output *¥(/) by summing up 

the processed f a.

Theorem 6.42: The soft morphological operations obey the threshold-linear superposi

tion. That is

/  ® [B, A , k ] =  £
a=1 v

f a ® [B, A, k ] (6.4.18)

[Proof]: We only prove the threshold-linear superposition for soft morphological dilation.

/  © [B, A, k] = £  Xa(f  © [B, A, *]) (6.4.19)
<2 = 1
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L
I

a= 1

Xa( f )  ® [B, A, k ] (6.4.20)

L
1

a= 1 "

/ fl ® [S, 4 , k ] (6.4.21)

□

The theorem 6.4.2 is very useful in the sense that the gray scale input image is 

thresholded at each gray level a to get f a followed by the binary soft morphological 

operations for f a, and then summing up all f a 's that is exactly the same as the gray scale 

soft morphological operations we performed. An example is shown in Fig. 6.2 such that 

the soft morphological dilation obeys the threshold superposition, where A j and B are 

shown in Fig. 6.1.

A i A 2 B
•  •  •  •

♦  •  ♦  •  •  ♦  •
•  •  •  •

Fig. 6.1 Two core sets A j , A 2 , and the structuring element B.

6.5 Idempotent Soft Morphological Filters

An idempotent filter maps a class of input signals into an associated set of root 

sequences. Each of these root signals are invariant to additional filter passes. Since the 

nature of the soft morphological operations and their fair nonlinearity, idempotency usu

ally dose not exist in such operations at the first stage. Koskinen et al. [44, 45] con

structed a special class of idempotent soft morphological filters under the constraints that 

A only contains the origin of B and k = Card (B) -  1. In this section, we will show more 

general class of two-dimensional soft morphological closing and opening.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 2 1 1 0 o
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n

0 0 0 0 0 0 0
0 2 4 S 5 5 0 0 0 1 1 1 1 0
0 2 3 3 2 2 0 —»f3 0 0 1 1 0 0 0
0 1 2 1 2 1 0 0 0 0 0 0 0 0
0 4 4 5 5 4 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 1 1 0
0 1 1 1 1 1 0 0 1 1 1 1 1 0
0 1 1 1 1 1 0 — »■ 0 1 1 1 1 1 0
0 1 1 1 1 1 0 0 1 1 I 1 1 0
0 1 I 1 1 1 0 0 1 1 I 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 1 1 0 0
0 1 1 1 1 1 0 0 1 1 1 1 1 0
0 1 1 1 1 1 0 — > ■ 0 1 1 1 1 1 0
0 0 1 0 1 0 0 0 1 1 1 1 1 0
0 1 1 1 1 1 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

J  
O 
X
C/3
P  i— > T 4  02 
X 
H

i  > f S

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 -----2»- 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 1 I 1 1 1 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 — » • 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 1 2 2 2 1 0
0 2 4 5 s 5 0
0 2 3 3 3 2 0
0 2 3 3 3 2 0
0 4 4 s s 4 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 2 1 1 0 0 1 2 2 2 1 0
0 2 4 s 5 s 0 gray scale soft dilation 0 2 4 5 5 5 0
0 2 3 3 2 2 0 ------------------------------------- >■ 0 2 3 3 3 2 0
0 1 2 1 2 1 0 0 2 3 3 3 2 0
0 4 4 5 s 4 0 0 4 4 5 5 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6.2 The soft morphological dilation obeys threshold superposition.
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Proposition 65.1: The soft morphological closing fills up the valley whose area is less 

than or equal to Card (A), where k = Card {B\A) .

[Proof]: According to Proposition 6.4.4, the soft morphological dilation fills up the valley 

whose area is less than or equal to Card (A). The result followed by a soft morphological 

erosion will not be changed in those filled areas. □

Proposition 6 5 2 : The soft morphological closing suppresses the local maximum where 

k = Card (B \A) .

[Proof]: After the soft morphological dilation, the local maximum will be propagated to 

all the pixels within the core set A. According to Proposition 6.4.5, followed by the soft 

morphological erosion the peak will be eliminated. □

We have observed that when k is equal to Card (B \ A ), the soft morphological clos

ing becomes idempotent. For simplicity, only one-dimensional expressions are given. Let 

D [X ] and E [X] denote the positive Boolean functions of binary soft morphological dila

tion and erosion respectively, where X  is the input binary image. Let the core set A = 

{ - a , - a + l ,  • • • , - 1 , 0 ,  1, ••• , a —I, a} and the soft boundary B \ A  = 

{ -b ,- b + 1, • • •, —a —I, a+l,  • ■ • , b —l ,b} .  Since k = Card(B \A),  £>[X] can be 

represented as a logical function as

D[X](0) = £ X ( t )  + n  * ( / ) ,  (6-5.1)
ieA je(B\A)

where X  (/') is the value of input image X  at location i, “ +” is the logic OR, and “ •” is 

the logic AND. The binary soft morphological erosion can be expressed as

E[X](0) = n * ( 0 -  Z  * (/ ')•  (6-5.2)
ieA je(B\A)

Let 'FfX] be the soft morphological closing. Replacing X (z) by D [X](z) yields [17] 

W[X](0) = £[D[X]](0) (6.5.3)
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U D [ X m -  I  D[X](j)
ieA j e  (B\A)

(6.5.4)

n ( 2 * ( 0  + n  * ( / >  x  ( z x ( o +  n  * < /)  (6 .5 .5 )
teA  TgA,- / e ( B \A ) ; je(B\A) i'eAj j'e(B\A)j

c i  x c n  + n  ^ o o )  • • • c z  x o o  + n  x c / 0 )
Tg A . i 'e  A„ /e (B \A )„

< 2 ^ ( 0 + n  x o o ) + • • • + ( z A' ( 0  + n  * ( / ) )
T eA ^, /e (S \A )_ j, Tg Aj, / e ( f i \A )  j

(6.5.6)

= X(0)'F0[X] + 'F1[X], (6.5.7)

For increasing filters, idempotence can be characterized in terms of sum-of-products 

expressions. The minimal sun-of-products of 'FIX ] contain X (0) are separated from those 

do not contain X (0).

Theorem 6 5 .T. For any /a n d  finite sets B and 4, the soft morphological closing is idem- 

potent i ik  = Card(B\A).

[Proof]: Applying *F a second time in eq. (6.5.7) yields

T O ] ] ( 0 )  = 'F[X](0)'F0['F[X ]] + 'Fi['F[X]]. (6.5.8)

Idempotence takes the forms

'F[X](0) = 'F[X](0)'F0['F[X]] + ^ m X ] ]  . (6.5.9)

Let 'FfXKO) be p, XF0['F[X]] be q and 'Fj [VF[X]] be r. The logical identity of eq. (6.5.9) 

is p =pq  + r. If we can show r = p, then pq + r = pq + p  = p. When r = 1, we have

'FiPPPH] = 1 -> n  W K 0 =  1 *eA.
ie(B\A)z

(6.5.10)
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If 'FtXKO) = 0 D[X](0) = 0 and X D [ W )  = 0 (6.5.11)
ieA

X  * ( 0  = 0 (6.5.12)
ie(AuP)

where P = {y \some ye(B\A)}.  But when eq. (6.5.12) is true, according to Propositions 

6.4.4 and 6.4.5, there must be some i such that vF[X](i) = 0 where i e  (B\A) which is con

tradictory to eq. (6.5.10). It implies that 'F[X](0) = 1. That is

[¥ [*]] = 1 -* 'F [X](0)=1  (6.5.13)

-» p = 1 and r =p  (6.5.14)

-> pq + r = p  (6.5.15)

'P['I'[X]](0) = T O K O ) . (6.5.16)

If r = 0 and q > p imply pq = p. When 'Fi['F[X]] = 0, according to Proposition 

6.5.2 that the local maximum will be suppressed after closing, we have

X  W K 0  > n x m - >  ^ o m x ] ]  ^  W K O ) (6-5.17)
i e ( £ \ { 0 } )

q > p (6.5.18)

pq = p (6.5.19)

-> ^ [ X jK O )  = T'tXKO) (6.5.20)

□

Examples are given to show soft morphological closing is idempotent when 

k = Card(B \ A). Core sets and structuring elements set are shown in Fig. 6.1. Input 

image is shown in Fig. 6.3. Results shown in Figs. 6.4 and 6.5 are the idempotent cases,
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i.e. if the operation is applied again, the same results are obtained. Fig. 6.6 shows that 

when k *  CardiB \ A) it is not idempotent and results will be changed by iterations.

0 0 0 q 0 0 0

0 1 2 2 1 1 0

0 2 4 5 7 9 0

0 2 3 3 2 2 0

0 1 2 1 2 1 0

0 4 4 5 5 4 0

0 0 0 0 0 0 0

Fig. 6.3 The original image /.

0 0 0 0 0 0 0

0 1 2 2 1 1 0

0 2 4 5 7 7 0

0 2 3 3 2 2 0

0 1 2 2 2 1 0

0 4 4 5 5 4 0

0 0 0 0 0 0 0

Fig. 6.4 The result of ̂ ( f )  with A \ , B ,  and k= 8.

6.6 Implementations of Soft Morphological Filters

Implementations of soft morphological operations are discussed and presented in this 

section. When the input image is binary, the block diagram of implementing the soft 

morphological dilation using eq. (6.2.1) is shown in Fig. 6.7. The idea of implementation 

is straightforward: provides desired signals in the neighborhood of each pixel x  with 

repetition k time of signals in Ax, sorts these signals, and picks up the &th largest one.
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 4 5 7 7 0

0 0 3 4 5 2 0

0 0 4 4 4 1 0

0 0 4 5 5 4 0

0 0 0 0 0 0 0

Fig. 6.5 The result of VF(/’) with A 2 , B, and k=4.

The neighborhood generator will fetch the signals in the neighborhood of x  e  X  in Bx 

and produce the output of signals in (B\A)X and signals in Ax with repetition k times of. 

The binary sorter [11] is implemented by a pipelined multistage binary sorting network 

consisting of one-bit compare-and-swap elements which contain an AND gate and an OR 

gate. Fig. 6.8 shows the 5-bit binary sorter and the compare-and-swap (CS) element. 

The CS element sorts two binary inputs X q and X \ in the descendent order to be 

To ^  Y i - The truth table of CS elements illustrated what outputs will be produced with 

given inputs is shown in Fig. 6.9.

An example is given to show how the binary sorter works. The input of a 5-bit 

binary sorter is 01011 and the output will be 11100. The binary sorter in Fig. 6.7 sorts 

totally Card(B\A) + kxCard(A) binary signals in the descendent order, and the k\h larg

est signal will be output after the selection of the &th input by a multiplexer.

The improved block diagram of the soft morphological dilation using eq. (6.4.1) is

shown in Fig. 6.10. A parallel counter is used to count the total number of ones in the 

Card{B\A) + kxCard(A)  input bits. The comparator will output 1 if the result of the 

parallel counter is greater than or equal to k and output 0 otherwise.

In the specific case of k equal to Card(B\A), the implementation can be much
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0 0 0 0 0 0 0

0 0 1 2 1 0 0

0 1 2 3 2 1 0

0 2 3 3 3 2 0

0 2 3 3 3 2 0

0 0 2 3 2 0 0

0 0 0 0 0 0 0

(a )

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 2 2 2 0 0

0 1 2 3 2 1 0

0 0 2 3 2 0 0

0 0 0 2 0 0 0

0 0 0 0
____

0 0 0

(b)

Fig. 6.6 The result of (a) *¥[/ ] and (b) ¥ [ '? [ /  ]] with A x, B, and k=4.

easier. The block diagram of the soft morphological dilation and erosion in this case is 

shown in Fig. 6.11, and the logic-gate implementation of the dilation and erosion 

modules is shown in Fig. 6.12.
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MUX
Neighborhood
Generator Binary Sorter

Repetition Selection

Fig. 6.7 The block diagram of the soft morphological dilation, 

input

CS

CS

CS

CS CS

CS

CS CS

CSCS

output

(a)

The CS element

(b)

Fig. 6.8 (a) The 5-bit binary sorter, (b) the compare-and-swap (CS) element.

6.7 Summary

The important properties are discovered that soft morphological operations commute 

with threshold decomposition, obey threshold-linear superposition. The conditions for
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Input Output

Xo X i To Yi

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

Fig. 6.9 The truth table of CS elements.

Parallel
Counter

Comparator
Neighborhood

Generator

Repetition

Fig. 6.10 The improved block diagram of the soft morphological dilation.

the idempotency property to be hold are also developed. New definitions soft morpholog

ical operations of sets by sets and functions by functions are given. The soft morphologi

cal operations commute with threshold decomposition and obey threshold-linear super

position which will lead us the fast implementation by using soft morphological opera

tions of sets by sets instead of functions by sets or functions by functions operations. 

Thus the implementation and analysis of function-processing soft morphological opera

tions can be done by focusing only on the case of sets which not only are much easier to 

deal with because their definitions involve only counting the points instead of sorting
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Neighborhood

Generator

Neighborhood
Generator

Erosion
Module

Dilation
Module * X  ® [B,A,Card(B\A)]

*-X © [B,A,Card(B\A)]

Fig. 6.11 The block diagram of soft dilation and erosion with k = Card(B\A).

Dilation Module Erosion Module

Fig. 6.12 The logic-gate implementation of the dilation and erosion modules.

numbers, but also allow logic gates implementation and parallel pipelined architecture 

leading to real-time implementation. The idempotence property gives us the idea of how 

to choose the structuring element sets and the value of k such that the soft morphological 

filters will reach the root signals without iterations.
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CHAPTER VII

GRAY-SCALE SOFT MATHEMATICAL MORPHOLOGY

Gray-scale soft mathematical morphology is the extension of binary soft mathematical 

morphology which is found to be less sensitive to additive noise and to small variations. 

In this chapter, binary soft morphological operations are reviewed and the definitions of 

gray-scale soft morphological operations are given. The properties of gray-scale soft 

morphological operations are developed. It has been shown that the soft morphological 

operations of functions by sets or functions can commute with thresholding and obey 

threshold superposition. The threshold superposition property allows gray-scale signals 

to be decomposed into multiple binary signals which can be processed by only logic 

gates in parallel and then combined binary results to produce the equivalent output.

7.1 Introduction

Mathematical morphology which is based on set theory, provides an algebraic approach 

to manifest structuring shapes on binary or gray-scale images [74, 76]. Morphological 

filters constitute a highly nonlinear system. Another popular family of nonlinear filters is 

the order statistic filters which are based on order statistics [16] and have been applied to 

signal detection and image enhancement. Maragos and Schafer [57] extended the theory 

of median, order statistic and stack filters to mathematical morphology. They have shown 

that the order statistic filters can be used in both function- and set-processing and can 

commute with thresholding.

Soft morphological filters are the combination of the order statistic filters and mor

phological filters. The primary difference from standard morphological filters is that the 

maximum and minimum operations are replaced by the more general weighted order

96
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statistics and the “ soft’1 boundary is added to the structuring element. Koskinen et al. 

[44, 45] have shown that soft morphological operations are less sensitive to additive 

noise and to small variations in object shape and preserve most of the desirable properties 

of standard morphological operations.

In this chapter, the properties of threshold superposition and the new definitions of 

gray-scale soft morphological operations are presented. The soft morphological opera

tions are proved to be capable of commuting with thresholding, and the property of thres

hold superposition allows fast implementation of function-processing soft morphological 

operations by using only logic gates. The implementation and the analysis of function- 

processing soft morphological operations can be interpreted by focusing only on the case 

of sets that are much easier to deal with since set-processing soft morphological opera

tions only involve in counting the number of pixels instead of sorting the values.

The chapter is organized as follows. In section 7.2 the review of soft morphological 

operations is given. In section 7.3 the gray-scale soft morphological operations are 

defined. In section 7.4 the threshold decomposition for gray-scale soft morphological 

dilation is discussed. In section 7.5 the threshold decomposition for gray-scale soft mor

phological erosion is presented. Finally, conclusions are given.

7.2 Review of Soft Morphological Operations

The definitions of soft morphological operations of functions by sets are given as fol

lows, w here/is a gray-scale image and B is a flat structuring elements.

Definition 7.2.1: The soft morphological dilation o f /b y  [B, A, k] is defined as

( /©  [B,A,k]){x) = £th largest of ({&()/ (,a)\aeAx} u  { f  (b) \be(B\A)x }). (7.2.1)

Definition 7.2.2: The soft morphological erosion of /b y  [B, A, k] is defined as

( /©  [B,i4,*])(x) = *th smallest of ({*$/(a) \aeAx } u  { f  (b) \be(B\A)x )). (7.2.2)
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Definition 7.23 : The soft morphological closing o f /b y  [B, A, fc] is defined as

/ •  [B,A,k] = / ©  [B,A,k] © [B,A,k]. (7.2.3)

Definition 72.4: The soft morphological opening o f /b y  [£, A, k\ is defined as

f O  [B,A,k] = / ©  [B,A,k] © [B ,A ,kl (7.2.4)

The soft morphological operations of sets by sets are defined as follows.

Definition 7.25: The soft morphological dilation of X  by [5, A, &] is defined as

X  © [B,A,k] = {y\kxC ard(X nA y)+CardQCn(B\A)y) > k}. (7.2.5)

Definition 7.2.6: The soft morphological erosion of X  by [B, A, k\ is defined as 

X  © [B,A,k] = {y\kxC ard(XnAy)+Card(Xr\(B\A)y)>N+(.k-l)xn-k+\). (7.2.6)

Referring to eq. (7.2.5) any one pixel within Ax is one or the number of ones within 

{B \ A )x is greater or equal to k will generate an one to the output. According to eq. 

(7.2.6) each pixel within Ax is one and the number of ones within (B \ A ) X is greater or 

equal to N -n -k + l  (i.e. the number of zeros is greater than or equal to k) will generate an 

one to the output. The parallel counter and comparator are easy to implement by logic 

gates which will not be discussed here. The logic-gate implementation of soft dilation 

and erosion is illustrated in Fig. 7.1 where parallel counter counts the number of ones of 

input signals and comparator outputs one when the number outputted from parallel 

counter is greater than or equal to the index k. The general properties of soft morphologi

cal filters which are valid for both sets by sets and functions by sets.

7.3 Gray-Scale Soft Morphological Operations

Serra [75] used the cross section of the signal to generalize the morphological filtering of
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parallel
counter

comparator

k

(a)

parallel
counter

comparatoi

k

(b)

Fig. 7.1 The logic-gate implementation of soft dilation and erosion.

gray-scale signals. Sternberg [95] further generalized morphological filters by consider

ing gray-scale images as surfaces of 3-D volumes. The standard binary morphological 

operations of dilation, erosion, opening, and closing are all naturally extended to gray

scale by the use of a min and max operation [95]. Similarly, the gray-scale soft morpho

logical operations are the extension of the binary soft morphological operations. The 

definitions of soft morphological operations of functions by functions are defined as fol

lows, where f  is the input gray-scale image and a  and p are the gray-scale structuring
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element sets. Let the symmetric function g s(x) with respect to the origin be given by

g s (x) = g i-x ). (7.3.1)

If F  is the domain of / ,  B is the domain of (3, and A is the domain of a . The definitions of 

soft morphological operations of functions by functions are given as follows.

Definition 7.3.1: The soft dilation of /b y  [(3, a , k] is

/ ©  [p,a,£](z) = £th largest of ({£<)( / (y) + a(z-y)} u  {f (b)  + P(z-6)}), (7.3.2)

where z —y  e A and z -  b e B \ A.

Definition 7.32: The soft erosion o f /b y  [p, a , k] is

/ ©  [P,a,£](z) = £ -th  smallest of ({ k 0 ( f (y)  -  oc(z+y)} u  { f  (b) -  p(z+6)}), (7.3.3)

wherez + y  e A a n d z  + b e  B \ A .

Definition 7.33: The soft closing o f /b y  [P, a, k] is

/ •  [p,a,*](x) = / ©  rP,<U] © [P,a,^](x). (7.3.4)

Definition 10: The soft opening o f / b y  [P, a , k] is

/ O  [p ,< U ] ( * ) = /©  [P ,a ,* ]©  [p,ot,A:](x). (7.3.5)

One of the most important links between sets and functions is the umbra which is 

introduced by Sternberg [95]. The umbra of a function /  is defined as

U[f ]  = { ( r , y ) | 0 < y  < / ( * ) } ,  (7.3.6)

where only positive value is considered. The top surface of a set A is defined as

T[A]&)  = max{y|(x, y ) e  A }. (7.3.7)

Figs. 7.2 and 7.3 illustrate the top surface and unbra functions respectively.
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y

T[A]

Fig. 7.2 The top surface T [A ] of a set A.

A

v v v v V V V v v v V v v v y

| \

U[T\A]]

Fig. 7.3 The umbra U[T[A ]] of a function T[A ].

After the operations of taking a top surface of a set and an umbra of a surface are 

defined, we have the following theorems.
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Theorem 7.3.1: The soft morphological dilation of functions by functions is the surface of 

the soft dilation of their umbras. That is

f ®  [(3, a , k] = T{ U \ f ] ®  [ t/s[(3], *]}. (7.3.8)

[Proof]: Let X = U[f ] ,  B = £/5fl3], and A = U s[a] (i.e., B s = t/[p] and A s = (/[a]). The 

soft morphological dilation of functions by functions can be derived as follows.

U \ f ] ®  [£/s[p], £7s[a], k ](z) = X  © [B, A , k](z) (7.3.9)

* "
= £th largest of {k§X(a) \aeAz } u  {X(b)\b&(B\A)z } . (7.3.10)

By applying the umbra operation on eq. (7.3.9), we have

T ( U [ f ] ®  [ t/s[p], Us[a], k]) (7.3.11)

= /:th largest of { k (j ( f  (x) + a(z-x)}  u  { f  (b) + $(z-b)} (7.3.12)

= f ®  [p, a , k]. (7.3.13)

This is because T[X](a) = f  (x) + a  (z - x )  (as shown in Fig. 7.4) where x e Az and 

z —x  e A. □

Similarly, we have the following theorem without proof.

Theorem 73.2: The soft morphological erosion of functions by functions is the surface of 

the soft erosion of their umbras. That is

/ ©  [p, a , k] = T { U \ f ] Q  [ t / m  t /s[a], k]}.  (7.3.14)
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y

x
a

Fig. 7.4 T[X](a)  = f ( x )  + a (z -x )  where a e A z.

7.4 Threshold Decomposition for Soft Morphological Dilation

In this section, we will show that the soft morphological operations of functions by func

tions commute with thresholding and obey the threshold superposition. Let a slice of a 

function / ,  denoted by S \ f  ], be defined as [84]

Definition 7.4.1: A slice of a function/is

f 1 if y = i and f ( x ) > y  
S K K * o 0 = | 0 otherwise. (7.4.1)

Let I and J  be the maximal gray-scale value of /  and |3 respectively, i.e.,

/  = max { a \fa = 1 } and J  = max { a |a a = 1 or = 1 }. The umbra of a function /

can be decomposed into I  slices. That is

U \ f )  = \!jS[fi). (7.4.2)
i=0

From Theorem 7.3.1, we have

/ ©  [p, a , k] = T { U \ f ] ®  [( /[fn , £/[oc*], it]} (7.4.3)
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«=o
(7.4.4)

T l  U
£=0

(7.4.5)

7  UI i=o
5 L /;]© [u 5 [P syL vj-^tcc5j], k]

j =0 7=0
(7.4.6)

I J
T  i  u u

i=0 7=0
(7.4.7)

max T ■{ y  
*■=» I y=o

5 [/;]© [S [3 s7],5 [a5y],A:] (7.4.8)

The result after applying eq. (7.4.8) is shown in Fig. 7.5. Based upon the definition 

of slice, each slice of input signal and structure element sets consists of only one non

zero row. It is possible for us to perform the binary soft dilation in one less dimension. 

The top surface operation in eq. (7.4.8) can be replaced by a summation of all reduced 

dimensionality stacking signals.

/ ®  [(3, a , k] = max -j £
7 = 0

/o  © [psj, asj, k] -  1,

J r
£  f i  © [p*;, asj, k]

7 = 0  L
• I

7= 0

f 2 © [PV a sj, k] + 1, ••• k  (7.4.9)

Let the input signal and structuring element sets be non-negative. The first term in eq. 

(7.4.9) is a constant. That is

I
7= 0

/ 0 © [P5). 0Csy, k] -  1 = J. (7.4.10)

According to eq. (7.4.10), eq. (7.4.9) can be rewritten as
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/©  [P,a,2]=79877974

/  4 - ,
05432510 12421 k=2

LJ
a

S[/o] s \ f i ] S [ f 2] S[ f 3) S l f 4] Slfs] S[Po] S I M S I M S I M S I M
00000000 00000000 00000000 00000000 00000000 01000100 00000 00000 00000 00000 11111
00000000 00000000 00000000 00000000 01100100 00000000 00000 00000 00000 OHIO 00000
00000000 00000000 00000000 01110100 00000000 00000000 00000 00000 01110 00000 00000
00000000 00000000 01111100 00000000 00000000 00000000 00000 00100 00000 00000 00000
00000000 01111)10 00000000 00000000 00000000 00000000 00100 00000 00000 00000 00000
11111111 00000000 00000000 00000000 00000000 00000000

S[/5]S[p0]
01000100 00000000 00000000 00000000 00000000 01000100
00000000 01000100 00000000 00000000 00000000 01000100
00000000 cooooooo 11101110 00000000 00000000 11101110
00000000 00000000 coooooco 11101110 00000000 11101110
01000100 01000100 01000100 01000100 11111110 11111110
00000000 ocoooooo cooooooo ooocoooo cooooooo 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000

U [5[/51© [5(13,1,5 [aj],2]1 
7=o

S[/-4]S[P0] 1/4 J
;'=rO

00000000 00000000 00000000 00000000 00000000 00000000
01100100 00000000 00000000 00000000 00000000 01100100
00000000 01100100 00000000 00000000 00000000 01100100
ocoooooo 00000000 11111110 00000000 00000000 11111110
00000000 00000000 00000000 11111110 00000000 11111110
01100100 01100100 01100100 01100100 11111110 11111110
oocooooo 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000

Fig. 7.5 An example of illustrating eq. (7.4.8).
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Fig. 7.5 (Continued)
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j  r
/ ©  [p, a, k] = m ax\ 7, 2  / i  ® a*/, k] ,

I ;=oL J

i \ f 2 ® [ F j ,  a ? j,k \  + 1 , (7.4.11)
7=0

= max \ J , J +  / i ©  [psy, o f j , k )  (7 — 1) +

Z  / 2 ® + 1’ ••• r- (7.4.12)
j=J-1L

•/ r
= 7 + max j  f x © [Psy, ot5y, *], Z  | / 2 © [P'y, c fy  *]J , • • - j . (7.4.13)

Based upon the eq. (7.4.13), the threshold decomposition algorithm for soft mor

phological dilation of functions by functions is described as follows.

1. Determine the highest gray-scale values of the input signal and the structuring element 

sets, denoted by I and J  respectively.

2. Assume I  >J.  Decompose /  into I  binary images {fa I 1 < a </} and decompose p 

into J  + 1 binary structuring element sets {pa I 0 < a < J } .

3. Compute the binary results Y^,  that is

7 -/+1  <a <J  if 1 <i  <J  
0 < a <J if J < i < I. (7.4.14)

4. Sum up all the stacking binary results to obtain Y-t.

j

if J< i < /. (7.4.15)
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5. Compute the gray-scale result (50 by selecting the maximum value of Yt at each posi

tion x  and then add J  to every position.

Y (x ) = max Yfa)  + J. (7.4.16)

An example is given in Fig. 7.6 to show the threshold decomposition algorithm for 

soft morphological dilation of functions by functions. There are two cases encountered 

in applying the threshold decomposition algorithm: (i) /  > J  and (ii) I  < J.

f  ® [p,cc,2]=79877974

/ P[ |
05432510 12421 k=2

i_i
a

f s 01000100 00100 p5
U 01100100 00100 p4
f s 01110100 OlllOfc
h 01111100 H i l l  (32
f i 01111110 l i m p !

01000100 01100100 01110100 01111100
01000100 01100100 01110100 01111100
11101110 11111110 11111110
11111110 11111110
11111110
35323530 24422420 13331310 02222200

1 L ...... .....A............
M AX

01111110

01111110 
 J...

I
35433530 +  4 — 79877974 

Fig. 7.6 Threshold decomposition for soft dilation of functions by functions.

Case (i): I f /  > J, eq. (7.4.13) becomes

/ ©  [(3, a , k] = J + max <j f x © [p‘y, afj ,  k], £  f i  © IP5/. «*/> *1
M -1
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z
j= J - 2

/ 3 © [Fj ,  o f  j ,  k ] . ••• . I
j =0

/y+i © [PV  cc5j ,  fc]

j  r
z

7=0
f J + 2 ® [ P j , a f j , k ] + i, ••• , Z

j=0
+ 7 -7 -1  K7.4.17)

Case (ii): I f /  < 7 ,  eq. (7.4.13) becomes

/ ©  [p, a , *] = 7 + max \  f x 0  [psy, cc*y, *], £
i= y - i

/ 2 © [P s; , a s; ,* ]

z
j = J -  2

/ 3 © [ps;-, a5y, 4] . • • • .  z
j = J - I +1

/ /  © [p5j, a f j ,  k] (7.4.18)

Note that it is time-consuming in implementation of the maximum selection over each 

position of all signals. By eliminating this drawback, a new implementation is presented 

as follows. From eq. (7.4.7), we have

I J
/ ©  [p, a , k]  =  T  -j u  u  S \ f i l ®  [ S l F j ] , S [ o ? j ] ,  k ]

i= 0 ;= 0
(7.4.19)

Each subgroup from left to right in eq. (7.4.19) possesses the stacking property from bot

tom to top. The top surface of the union of those stacked subgroups is equal to a summa

tion of the reduced-dimensionality stacking signals. Thus

/ © [ p ,  c U ]

f o  ©  [ps0, ccV *] + f i  © [pso, - t lu /o  © [Ps i> *1

f J+1 © [ps0, a s0, k ^ f j  ©  [P5!, a f u  * ]u  • • • © [psy, a sy, k]

f i  © [Psy -!, t fy- i ,  k \ J t- X © [p5y, 0C<y, k] +
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f i  © [P*/, o.sj ,  k ] -  1

= ■{ 1 + 1+  • • • + !  +

f j + 1 © tPso> cĉ o, k] + f j  ® [P^i, a?i , k]  +  ■ + f  \ © [P5y, a?j, k]

f i  © [Ps/-i> oĉ y-ij k]  +//_i © [Psy, a sj ,  k ]

/,©[psy,asy,*] -  1

H  CJ+D+

/ y+1 © [p*o, a5o, k )  + f j  © [ps l5 c ^ ,  *] + ■ ■ ■ + h  © [psy, a 5y, k ]

// © [P5y-i> a*/-i> +//-i © [P*/> asy, £] +

//©[pJy,aJy,M -  1

f J+l © [P*o, aJ0, k]  + f j  © [p*!, c^, *] + ••• + /j © fP*y, aJy, k]

f ,  © [psy_i, ocVi, k]  +//_! © [p5y, a5y, k]

/ /f f i[P sy, a ' y.* ]
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The implementation using OR gates and a Z operation is shown in Fig. 7.7.

/ ©  [p,oc,2]=79877974

/  P |
05432510 12421 k= 2

a

01000100

OR

f s  01000100u 01100100
f 3 01110100 
f 2 01111100
/ i  01111110

01100100
01000100

00100 p4 
00100 p3 
0111002  
l i m p !  
lllllpo

01110100
01100100
11101110

01111100
01110100
11111110
11111110

01111110
01111100
11111110
11111110
11111110

01000100
 A...........

01100100
 A......

11111110
 A......

sum

11111110 11111110

I
35433530 +  4 79877974

Fig. 7.7 New implementation of threshold decomposition for soft dilation.

7.5 Threshold Decomposition for Soft Morphological Erosion

The decomposition algorithm for soft erosion can be derived as follows. The slice com

plement [84] of a function /, denoted by S'[f ], is defined as 

Definition 75.1: The slice complement of a function/is

f 0 if y = i and f ( x ) < y
m o w )  = 1 1 olherwise. p-5.1)

The umbra of a function /  can be decomposed into I slice complements. That is
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From Theorem 7.3.2, we have

r  W ' t / n ©
\ i =0

u W y ] ,  u ^ ra * ;] ,* ]
U=° y=o

/© [p,cc,*]

S' [ f Q] e [ S [ $ sj ] , S [ a sj ] , k ] n

5 '[/i]  © [S[P5y], S [ a sj ) ,  k ]  n  S'I/o] © [ S [ $ SJ - 1], 5 [a sy_!], *] n r

S' l f j ]  © [S[pJy], 5 [oc5y], i ] n S V ;-i]  © [S tP V i] . 5 [a 5y-i]. k ]  n  • • • r

5 '|/o ]© [5 [p Jo L S [a"o ]^ ] n •• n

n /} ]  ©  [5[psy], S[(X*y), £] n  S' l f j- i l  © [StP^y-j], 5[<x^y_i], k ]  n  - • • r

n n 5 '[ /} ]© ^ [P so ] ^ [ a so ] ^ ]

/o  © [PSy, CtSy, *] + / !  © [pSy, a 5y, k ]  n / 0 © [PV -l. « Sy_l, fc]

/} © [Psy. asy, £] n / / - i  0  IPs/-i. aV i. *1 n  "  ' P i / o  ©  tPso< « 50 , £
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H +

// e [p*/, <xsj, k] n f i - i0 $sj-i. â -i» n • • • n //-/0 [P5o> a5o> *3
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The threshold decomposition of soft morphological erosion of functions by func

tions using eq. (7.5.8) is illustrated in Fig. 7.8.

7.6 Summary

In this chapter the gray-scale soft morphological operations are studied and their proper

ties are discussed. The important properties are discovered that soft morphological opera

tions commute with threshold decomposition, obey threshold superposition which will 

lead us the fast implementation by using binary soft morphological operations instead of 

gray-scale operations. Thus the implementation and analysis of the function-processing 

soft morphological operations can be done by focusing only on the case of sets which not 

only are much easier to deal with because their definitions involves only counting the 

points instead of sorting numbers, but also allow logic gates implementation and parallel 

pipelined architecture leading to real-time implementation. The implementations of soft 

morphological dilation and erosion by using threshold decomposition give much 

improvement in computation cost.
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CHAPTER VIII

SUMMARY AND FUTURE RESEARCH

This dissertation is aimed to investigate a powerful mathematical tool — mathematical 

morphology and to develop new useful morphological operations which can be applied to 

image analysis and object recognition. In the final Chapter we summarize the contribu

tions of our research and briefly discuss the further potential research.

8.1 Contribution of this Dissertation

Our research is oriented toward aspects in both theory and application. Therefore, our 

contributions in this dissertation can be divided into two major parts: the theoretical 

research and the application research.

A. Theoretical Research

1. Back-propagation morphology. The new back-propagation morphological opera

tions will compute the current scanning pixel results and simultaneously feed back 

the results to overwrite its input in order to affect the succeeding pixels’ computa

tion and to continue in the same way until all the pixels are scanned.

2. Two-scan algorithm for roots o f morphological operations. The two-scan algorithm 

for reaching roots of morphological operations is based upon the back-propagation 

morphology. It needs only two scans without iteratively applying traditional mor

phological operations.

3. G-spectrum. The defined G-spectrum can not only be a shape descriptor for describ

ing the quantified geometric features of multidimensional binary images, but also be 

a tool for shape recognition. We have proved that the G-spectrum can preserve the
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invariance property for the transformations such as translation, rotation, and scaling. 

The G-spectrum can be easily extended and applied to multidimensional images.

4. Soft mathematical morphology. Soft morphological filters are the combination of 

the order statistic filters and morphological filters. The primary difference to stan

dard morphological filters is that the maximum and minimum operations are 

replaced by more general weighted order statistics and the soft boundary is added to 

the structuring element. It have been shown that soft morphological operations are 

less sensitive to additive noise and to small variations in object shape, and they 

preserve most of the desirable properties of standard moiphological operations.

5. Gray-scale soft mathematical morphology. The new definitions of soft morphologi

cal operations of functions by functions are given. Their properties are investigated 

and discussed.

6. Threshold decomposition o f soft mathematical morphology. It is discovered that 

both functions by functions and functions by sets of soft mathematical operations 

commute with thresholding and obey threshold superposition. This property allows 

logic-gate implementation which leads to real time processing.

7. Idempotent property o f soft morphological filters. It is shown that under some con

ditions the soft morphological filters can be idempotent.

B. Applications Research

1. The maxima-tracking skeletonization. This skeletonization algorithm is based upon 

Euclidean distance function and uses the sequential maxima-tracking method. The 

skeleton generated is connected and composed of simple digital components (arcs). 

With some slight modification, the skeleton generated is eliminated the non

significant short skeletal branches.

2. Distance transformation using the two-scan algorithm. A new approach for
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generating distance functions is by using two-scan algorithm which is based upon 

back-propagation erosion. Using only two scans instead of iterations the two-scan 

distance transformation algorithm can save significant computation time.

3. Shape recognition algorithm using G-spectrum. The shape recognition using G- 

spectrum is presented. The experimental results are satisfied.

4. Logic-gate implementation o f soft morphological filters. The logic-gate implemen

tations of soft morphological filters using the properties of threshold decomposition 

and threshold superposition are developed.

5. Threshold decomposition algorithms o f soft morphological dilation and erosion of 

functions by functions. The threshold decomposition algorithms of gray-scale soft 

morphology into binary soft morphology are developed which allows gray-scale 

operations be processed by only sets processing.

8.2 Future Research

The shape recognition algorithm using G-spectrum is presented. Refining the algorithm 

by real image, discussing the tolerance, and defining the thresholding value of 

equivalence should be investigated further. The practical system for shape recognition 

that uses the G-spectrum will be the future research topic.

We have shown some properties of soft mathematical morphology of both binary 

and gray-scale. It still exists other properties which should be investigated and discussed. 

The threshold decomposition algorithms for soft morphological dilation and erosion are 

presented. The VLSI implementations of these algorithms will be one of the future 

research topic which makes these theoretical issues more practical. Applications using 

soft morphological filters are other future research topics.
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8.3 Epilogue

From the research of this dissertation, morphological operations are studied, new algo

rithms are developed, and new theorems are discovered. The maxima-tracking skeletoni

zation algorithm is proposed to generate skeletons which are connected, composed of 

simple arcs, and equidistant. G-spectrum are proved to be a useful tool not only in shape 

description but also in shape recognition. Shape recognition algorithm is presented to 

recognition shape in the model-based approach. Soft mathematical morphology is the 

combination of order statistics and mathematical morphology. It was introduced and 

investigated in these two years. New definitions of soft morphological operations of sets 

by sets are introduced. Threshold decomposition and superposition properties of soft 

morphological operations lead to a faster implementation by using binary soft morpho

logical operations consisting of only logic gates. The idempotency property gives us an 

idea in choosing the suitable structuring element sets and the value of index k, such that 

the soft morphological filters will produce the root signals without iterations.

My original goal in this dissertation was to study the properties and applications of 

mathematical morphology. The final result is that this dissertation has discovered G- 

spectrum and soft morphological filters, developed shape recognition algorithm and 

threshold decomposition for soft morphological dilation and erosion, and presented the 

implementations of soft morphological filters. I strongly hope that this dissertation will 

be useful for problems in skeletonization, shape recognition, non-linear filtering, and 

morphological filtering.
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