9 research outputs found

    Numerical Solution for Solving Nonlinear Fuzzy Fractional Integral Equation by Using Approximate Method

    Get PDF
    In this paper, we discus fractional order for fuzzy non-linear integral equation . The fractional integral is consider in the sense Riemann-liouvilleΒ  and establish the exists solutionΒ  of nonlinear fuzzy fractional Β integral equation. Finally, Numerical Β examples are given to Β illustrate the results

    Recent Fixed Point Techniques in Fractional Set-Valued Dynamical Systems

    Get PDF
    In this chapter, we present a recollection of fixed point theorems and their applications in fractional set-valued dynamical systems. In particular, the fractional systems are used in describing many natural phenomena and also vastly used in engineering. We consider mainly two conditions in approaching the problem. The first condition is about the cyclicity of the involved operator and this one takes place in ordinary metric spaces. In the latter case, we develop a new fundamental theorem in modular metric spaces and apply to show solvability of fractional set-valued dynamical systems

    Existence solution for fractional integral inclusion

    Get PDF

    Analytical investigation of fractional differential inclusion with a nonlocal infinite-point or Riemann–Stieltjes integral boundary conditions

    Get PDF
    Here, we investigate the existence of solutions for the initial value problem of fractional-order differential inclusion containing a nonlocal infinite-point or Riemann–Stieltjes integral boundary conditions. A sufficient condition for the uniqueness of the solution is given. The continuous dependence of the solution on the set of selections and on some data is studied. At last, examples are designed to illustrate the applicability of the theoretical results

    Аnalysis of energy dissipation in the impact problems of two or more bodies

    Get PDF
    Анализиран јС судар Π΄Π²Π° Ρ‚Π΅Π»Π° ΠΊΠ°ΠΎ ΠΈ Π΄ΠΈΡΠΈΠΏΠ°Ρ†ΠΈΡ˜Π° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ ΡƒΠΊΡ™ΡƒΡ‡Π΅Π½Π° ΠΊΡ€ΠΎΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·Π°ΠΌ сувог Ρ‚Ρ€Π΅ΡšΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°Π½ΠΎΠ³ Π½Π΅Π³Π»Π°Ρ‚ΠΊΠΎΠΌ Π²ΠΈΡˆΠ΅Π²Ρ€Π΅Π΄Π½ΠΎΡΠ½ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜ΠΎΠΌ ΠΈ ΠΊΡ€ΠΎΠ· Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Ρƒ вискоСластичног ΡˆΡ‚Π°ΠΏΠ° Ρ‡ΠΈΡ˜ΠΈ ΠΌΠΎΠ΄Π΅Π» ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π΅ ΠΈΠ·Π²ΠΎΠ΄Π΅. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌ судара Π΄Π²Π° Ρ‚Π΅Π»Π° јС ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ Ρƒ Ρ„ΠΎΡ€ΠΌΠΈ КошијСвог ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° који ΠΏΡ€ΠΈΠΏΠ°Π΄Π° класи Π½Π΅Π³Π»Π°Ρ‚ΠΊΠΈΡ… Π²ΠΈΡˆΠ΅Π²Ρ€Π΅Π΄Π½ΠΎΡΠ½ΠΈΡ… Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈΡ… Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΡ™Π½ΠΎΠ³ Ρ€Π΅Π°Π»Π½ΠΎΠ³ Ρ€Π΅Π΄Π°. КошијСв ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ јС Ρ€Π΅ΡˆΠ΅Π½ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΠΌ поступком заснованим Π½Π° Π’Π°Ρ€Π½Π΅Ρ€ΠΎΠ²ΠΎΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ. Π˜ΡΠΏΠΈΡ‚Π°Π½ΠΎ јС ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ систСма ΠΈ Π΄ΠΈΡΠΈΠΏΠ°Ρ†ΠΈΡ˜Π° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Π·Π° Ρ€Π°Π·Π½Π΅ врСдности ΡƒΠ»Π°Π·Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°. Показано јС Π΄Π° сС ΡƒΠ²Π΅Π΄Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΌΠΎΠ³Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ ΠΈ Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ судара Ρ‚Ρ€ΠΈ Ρ‚Π΅Π»Π°.Analiziran je sudar dva tela kao i disipacija energije uključena kroz mehanizam suvog trenja modeliranog neglatkom viΕ‘evrednosnom funkcijom i kroz deformaciju viskoelastičnog Ε‘tapa čiji model uključuje frakcione izvode. Problem sudara dva tela je prikazan u formi KoΕ‘ijevog problema koji pripada klasi neglatkih viΕ‘evrednosnih diferencijalnih jednačina proizvoljnog realnog reda. KoΕ‘ijev problem je reΕ‘en numeričkim postupkom zasnovanim na Tarnerovom algoritmu. Ispitano je kretanje sistema i disipacija energije za razne vrednosti ulaznih parametara. Pokazano je da se uvedene metode mogu primeniti i na problem sudara tri tela.Impact of two bodies was analyzed as well as energy dissipation, which was included through dry friction phenomena modelled by a set-valued function, and through deformation of a viscoelastic rod modelled by fractional derivatives. The impact problem was presented in the form of the Cauchy problem that belongs to a class of set-valued fractional differential equations. The Cauchy problem was solved by the numerical procedure based on Turner’s algorithm. Behaviour and energy dissipation of the system was investigated for different values of input parameters. It was shown that suggested procedure can be applied on the problem of impact of three bodies

    Immobilization of lead and chromium by fly ash based geopolymers.

    No full text
    Π“Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈ су синтСтисани Π°Π»ΠΊΠ°Π»Π½ΠΎΠΌ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ˜ΠΎΠΌ СлСктрофилтСрског ΠΏΠ΅ΠΏΠ΅Π»Π° (Π•Π€ΠŸ), ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ раствора Π½Π°Ρ‚Ρ€ΠΈΡ˜ΡƒΠΌ-силиката ΠΌΠΎΠ΄ΡƒΠ»Π° 1,5, ΠΏΡ€ΠΈ Ρ‡Π΅ΠΌΡƒ јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° услова синтСзС. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° услова синтСзС Π³Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° јС ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π»Π° ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ΅ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ (55, 80, 95 C) ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅ (4, 8, 16 ΠΈ 24 h) Π½Π° чврстоћС Π³Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°. Π£Ρ‚Π²Ρ€Ρ’Π΅Π½ΠΎ јС Π΄Π° ΠΏΠΎΡΡ‚ΠΎΡ˜ΠΈ јасна ΠΊΠΎΡ€Π΅Π»Π°Ρ†ΠΈΡ˜Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ карактСристика Π•Π€ΠŸ, услова синтСзС ΠΈ чврстоћа Π³Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°. На основу врСдности максималних ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»Π½ΠΈΡ… чврстоћа ΠΏΡ€ΠΈ притиску Π³Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½ јС ΠΈΠ·Π±ΠΎΡ€ Π•Π€ΠŸ ΠΈ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… Π³Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° Π·Π° Π΄Π°Ρ™Π΅ ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ΅ процСса ΠΈΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ»ΠΎΠ²Π° ΠΈ Ρ…Ρ€ΠΎΠΌΠ°. Π“Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ максималних чврстоћа ΠΏΡ€ΠΈ притиску, синтСтисан јС Π½Π° Π±Π°Π·ΠΈ Π•Π€ΠŸ, који сС ΠΏΠΎΠΊΠ°Π·Π°ΠΎ ΠΊΠ°ΠΎ Π½Π°Ρ˜Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ˜ΠΈ Ρ‚ΠΎΠΊΠΎΠΌ Π°Π»ΠΊΠ°Π»Π½Π΅ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ˜Π΅, односно ΠΏΠΎΡΠ΅Π΄ΡƒΡ˜Π΅ Π½Π°Ρ˜Π²Π΅Ρ›ΠΈ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ чСстица ΠΌΠ°ΡšΠΈΡ… ΠΎΠ΄ 43 m, стакластС Ρ„Π°Π·Π΅, ΠΊΠ°ΠΎ ΠΈ растворљивог ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈ Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡ˜ΡƒΠΌΠ° Ρƒ јако алкалној срСдини. Π‘ Π΄Ρ€ΡƒΠ³Π΅ странС, Π³Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»Π½ΠΈΡ… чврстоћа ΠΏΡ€ΠΈ притиску, синтСтисан јС Π½Π° Π±Π°Π·ΠΈ Π•Π€ΠŸ који јС мањС Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π°Π½, Ρ‚Ρ˜. ΠΏΠΎΡΠ΅Π΄ΡƒΡ˜Π΅ мањи ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ чСстица ΠΌΠ°ΡšΠΈΡ… ΠΎΠ΄ 43 m, стакластС Ρ„Π°Π·Π΅ ΠΈ растворљивог ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈ Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡ˜ΡƒΠΌΠ°. Π“Π΅ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈ Π½Π° Π±Π°Π·ΠΈ ΠΈΠ·Π°Π±Ρ€Π°Π½ΠΈΡ… ΠΏΠΎΠ»Π°Π·Π½ΠΈΡ… Π•Π€ΠŸ прСдстављали су Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈ систСм Ρƒ Π΄Π°Ρ™ΠΈΠΌ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠΈΠΌΠ° ΠΈ синтСтисани су Π½Π° собној Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ (20 oC), Π° Π²Ρ€Π΅ΠΌΠ΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π΅ јС износило 28 Π΄Π°Π½Π°...Geopolymers were synthesized by alkali activation of fly ash (FA), using sodium silicate solution with modulus 1.5, whereby optimization of the synthesis conditions was performed. Optimization of geopolymers synthesis conditions implied the investigation of the effect of temperature (55, 80 and 95 Β°C) and reaction time (4, 8, 16 and 24 h) on the geopolymers strength. It was found that there was a correlation between FA characteristics, synthesis conditions, and strength of geopolymers. The selection of FA samples and corresponding geopolymers for further investigation of chromium and lead immobilization was performed based on the maximum and minimum values of the geopolymers compressive strength. Geopolymer with the maximum compressive strength was synthesized of the most reactive FA in the reaction of alkali activation i.e. which had the highest content of particles smaller than 43 m, glassy phase, and soluble silicon and aluminum in a strongly alkaline medium. On the other hand, geopolymer with minimum compressive strength was synthesized of less reactive FA, which had lower content of particles smaller than 43 m, glassy phase, and soluble silicon and aluminum. Geopolymers based on selected FA samples represented the reference system in further research and were synthesized at room temperature (20 Β°C) with the reaction time of 28 days..

    On the existence for diffeo-integral inclusion of Sobolev-type of fractional order with applications

    Get PDF
    By using a suitable fixed point theorems, we study the existence of solutions for fractional diffeo-integral inclusion of Sobolev-type. The study arises in the case when the set-valued function has convex and non-convex values. References R. Hilfer, Fractional diffusion based on Riemann--Liouville fractional derivatives, J. Phys. Chem. Bio. 104(2000) 3914--3917. R. Hilfer, The continuum limit for self-similar Laplacians and the Green function localization exponent, 1989, UCLA-Report 982051. B. Ross, Fractional Calculus and its Applications , Vol. 457 of Lecture Notes in Mathematics, Springer, Berlin, 1975. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Pub.Co.: Singapore, 2000. K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, John-Wily and Sons, Inc., 1993. I. Podlubny, Fractional Differential Equations, Acad.Press, London, 1999. V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser., Vol. 301, Longman/Wiley, New York, 1994. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives (Theory and Applications), Gorden and Breach, New York, 1993. K. B. Oldham and J. Spanier, The Fractional Calculus, Math. in Science and Engineering, Acad. Press, New York/London, 1974. A. M. A. El-Sayed, A. G. Ibrahim, Multi-valued fractional differential equations, Appl. Math. Comput. 68(1995) 15--25. A. G. Ibrahim, A. M. A. El-Sayed, Define integral of fractional order for set valued function, J. Frac. Calculus 11 (May 1997). A. M. A. El-Sayed, A. G. Ibrahim, Set valued integral equations of fractional-orders, Appl. Math. Comp. 118(2001) 113--121. N. S. Papageeorgion, On integral inclusion of Volterra type in Banach spaces, Czechoslovak Math. J. 42(1992) 693--714. N. S. Papageeorgion, On non convex valued Volterra integral inclusions in Banach spaces, Czechoslovak Math. J. 44(1994). S. Aizicovici, V. Staicu, Continuous selections of solutions sets to Volterra integral inclusions in Banach spaces, Elec. J. Diffe. Equa. Vol. 2006(2006) 1--11. M. Kanakaraj, K. Balachadran, Existence of solutions of Sobolev-type semilinear mixed integrodifferential inclusions in Banach spaces, J. of Applied and Stochastic Analysis 16:2(2003) 163--170. K. Balachandar and J. P. Dauer, Elements of Control Theory, Narosa Publishing House, 1999. L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford,1982. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag,1985. D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1980. C. Avramescu, A fixed point theorem for multivalued mappings, Electronic. J. Qualitative Theory of Differential Equations. Vol. 17 (2004) 1--10. K. Demling, Multivalued Differential Equations, Walter de Gruyter, New York, 1992. J. P. Aubin, A. Cellina. Differential Inclusions. Springer, Berlin, 1984. V. Barbu. Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff international Pupl. Leyden, 1976. S. Hu, N. S. Papageeorgion. Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997. S. Hu, N. S. Papageeorgion. Handbook of Multivalued Analysis, Vol. II: Applications. Kluwer, Dordrecht, 2000. A. G. Kartsatos, K. Y. Shin. Solvability of functional evolutions via compactness methods in general Banach spaces. Nonlinear Anal., 21(1993) 517--535. N. H. Pavel. Nonlinear Evolution Operators and Semigroups, Lecture Notes in Mathematics, Vol. 1260. Springer, Berlin, 1987. I. I. Vrabie, Compactness Methods for Nonlinear Evolutions. Longman, Harlow, 1987. M. Kisielewicz. Differential Inclusions and Optimal Control. Dordrecht, The Netherlands, 1991. C. Avramescu, A fixed point theorem for multivalued mappings, Electronic. J. Qualitative Theory of Differential Equations. Vol. 17 (2004) 1--10. A. M. A. El-Sayed, F. M. Gaafar, Fractional calculus and some intermediate physical processes, Appl. Math. and Comp. 144(2003) 117--126. R. C. Cascaval, E. C. Eckstein, C. L. Frota, and J. A. Goldstein, Fractional telegraph equations, J. Math. Anal. Appl. 276 (2002) 145--159. R. W. Ibrahim, Continuous solutions for fractional integral inclusion in locally convex topological space, Appl. Math. J. Chinese Univ. 24(2)(2009) 175--183
    corecore