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Abstract

By using a suitable fixed point theorems, we study the existence of
solutions for fractional diffeo-integral inclusion of Sobolev-type. The
study arises in the case when the set-valued function has convex and
non-convex values.
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1 Introduction

Many investigators have proposed the use of fractional time derivatives on
a purely mathematical or heuristic basis [1, 2, 3]. From the perspective
of theoretical physics this proposal touches upon fundamental principles
such as locality, irreversibility and invariance under time translations because
fractional derivatives are non-local operators that are not invariant under time
reversal [4]. Moreover, the fractional time derivatives with orders between 0
and 1 may generally appear as macroscopic time evolution [4]. There are
several kinds of fractional derivatives [5, 6, 7, 8, 9]. El-Sayed and A. G.
Ibrahim gave the concept of the definite integral of fractional order for set-
valued function [10, 11, 12]. We all know that the existence of the solution for
nonlinear (integral, differential and diffeo-integral) inclusion is very important.
Many interesting extensions are used in many applications; for example in
control systems, fuzzy systems, and dynamic systems [13, 14, 15, 16]. We
continue the study of this kind of problem by considering the following
inclusion

Dαu(t) ∈ F
(
t,u(t), Iβk (t,u(t))

)
, 0 < α 6 1 , β > 0 , t ∈ J := [0, T ],

(1)
subject to the initial condition u(0) = 0 with α + β ∈ (0, 1] , where F :
J×R×R→ P(R) is compact set-valued function with nonempty values in R,
and P(R) is the family of all nonempty subsets of R. Let IαF (t,u(t)) be the
definite integral for the set-valued function F of order α:

IαF (t,u(t)) =

{
1

Γ(α)

∫ t
0

(t− τ)α−1f (τ,u(τ)) dτ : f(t,u) ∈ SF(u)
}

,



1 Introduction E3

where

SF(u) =
{
f ∈ L1(J,R) : f(t) ∈ F (t,u(t)) , almost everywhere t ∈ J

}
denotes the set of selections of F.

This article consists of the following sections. Section 2 deals with some
basic definitions and preliminary facts from set-valued analysis to be used.
Section 3 establishes the existence of solution for the single-valued problem

Dαu(t) = f
(
t,u(t), Iβk (t,u(t))

)
,

0 < α 6 1 , β > 0 , t ∈ J , f ∈ F
(
t,u(t), Iβk (t,u(t))

)
, (2)

subject to the initial condition u(0) = 0 using the Schauder fixed point
theorem [17, 18, 19], and uniqueness of solutions using the Banach fixed point
theorem [20]. Section 4 studies the existence of solutions for the set-valued
problem (1) when F has convex as well as non-convex values via the single-
valued problem as well as fixed point theorems of the set-valued function.
In the first case (convex) a generalization of the Leray–Schauder principle
for set-valued functions is used [21]. A fixed point theorem for contraction
set-valued functions due to Covitz and Nadler [22] is applied in the second
one (non-convex). We also illustrate our results with an example.

As an application of the fractional diffeo-integral inclusions and equations
covers widely known classical fields and topics. Viscoelasticity appears to
be the field of the most extensive applications of diffeo-integral inclusions
and equations, and perhaps the only one. In this case the mathematical
modeling of viscoelastic materials is quite natural. For example, the well-
known relationship between stress and strain for solids is

σ(t) = EDαε(t), 0 6 α < 1 ,

with ε(t) =
1

κ
Iβg(t), β > 0 ,

where E and κ are material constants and g is a continuous function on
J = [0, T ], which represents as an ideal solid material. The main reasons for
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the theoretical development of fractional order (non-integer order) models are
mainly the wide use of polymers in various fields of engineering. Moreover,
the fractional laws of deformation find uses in solving practical problems of
viscoelasticity [6].

Also the fractional diffeo-integral inclusion of Sobolev-type appears in the
theory of control of dynamical systems, when the controlled system or/and the
controller is described by a fractional diffeo-integral inclusion of Sobolev-type
and for specific case by diffeo-integral equation of Sobolev-type. Furthermore,
the mathematical modeling and simulations of systems and processes are
based on the description of their properties in term of fractional diffeo-
integral inclusion of Sobolev-type. These new models are more adequate than
previously used integer order models. Inclusions and equations involving
both fractional operators (differential and integral) play the role of ‘reality’
and ‘model’. For example, we set a control fractional differential equation
as follows: let Kc(Rn) denote the collection of all nonempty compact convex
subsets of Rn, then the fractional derivative of order α ∈ (0, 1] is

DαX(t) = F
(
t,X(t), IβU(t)

)
, 0 < α 6 1 ,

where X(0) = 0, X(t) ∈ Kc(Rn), IβU(t) ∈ Kc(Rm), t ∈ J := [0, T ],

F
(
t,X(t), IβU(t)

)
: J× Kc(Rn)× Kc(Rm) −→ Kc(Rn).

2 Preliminaries

The following preliminary facts from set-valued analysis are used throughout
this article [23, 24, 25, 26, 27, 28, 29].

B := C[J,Rn] is a Banach space of all continuous functions from J into Rn
with the norm

‖u‖∞ = sup {|u(t)| : t ∈ J} , for all u ∈ B .
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L := L1[J,Rn] denotes the Banach space of measurable functions u : J→ Rn
which are Lebesgue integrable normed by

‖u‖L1 =
∫ T
0

|u(t)|dt , for all u ∈ L .

Let (X, |.|) be a Banach space,

• Pcl(X) = {Y ∈ P(X) : Y is closed},

• Pb(X) = {Y ∈ P(X) : Y is bounded},

• Pcp(X) = {Y ∈ P(X) : Y is compact},

• Pc(X) = {Y ∈ P(X) : Y is convex},

• Pcl,c(X) = {Y ∈ P(X) : Y is closed and convex},

• Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

In addition,

• a set-valued function F : X→ P(X) is called convex (closed) valued if
F(x) is convex (closed) for all x ∈ X .

• F is called bounded valued on bounded set B if F(B) =
⋃
x∈B F(x) is

bounded in X for all B ∈ Pb(X); that is, supx∈B{sup{|u| : u ∈ F(x)}} <∞ .

• F is called upper semi-continuous on X if for each x0 ∈ X the set F(x0)
is nonempty closed subset of X and if for each open set N of X con-
taining F(x0), there exist an open neighbourhood N0 of x0 such that
F(N0) ⊆ N . In other words, F is upper semi-continuous if the set
F−1(A) = {x ∈ X : F(x) ⊂ A} is open in X for every open set A in X.

• F is called lower semi-continuous on X if A is any open subset of X
then F−1(A) = {x ∈ X : F(x)

⋂
A 6= ∅} is open in X.
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• F is called continuous if it is lower as well as upper semi-continuous
on X.

• F is called compact if for every M bounded subset of X, F(M) is
relatively compact.

• Finally, F is called completely continuous if it is upper semi-continuous
and compact on X.

The following definitions are used in subsequent sections.

Definition 1 A mapping p : J× Rn × Rn → Rn is Carathéodory if

1. t→ p(t,u, v) is measurable for each (u, v) ∈ Rn × Rn ,

2. (u, v)→ p(t,u, v) is continuous almost everywhere for t ∈ J .

Definition 2 A set-valued function F : J→ P(Rn) is measurable if for any
x ∈ X , the function t 7→ d (x, F(t)) = inf{|x− u| : u ∈ F(t)} is measurable.

Definition 3 A set-valued function F : J × Rn × Rn → P(Rn) is called
Carathéodory if

1. t 7→ F(t, x,y) is measurable for each (x,y) ∈ Rn × Rn , and

2. (x,y) 7→ F(t, x,y) is upper semi-continuous for almost t ∈ J .

Let A,B ∈ Pcl,b(X) and let a ∈ A . Then by

D(a,B) = inf{‖a− b‖ : b ∈ B} and ρ(A,B) = sup{D(a,B) : a ∈ A},

the Hausdorff metric H : Pcl,b(X)× Pcl,b(X)→ R+ is defined by

H(A,B) = max{ρ(A,B), ρ(B,A)}

such that
H(0,C) = sup{‖c‖ : c ∈ C, C ∈ Pcl,b(X)}.

Moreover, (Pcl,b(X),H) is a complete metric space [30].

Definition 4 A set-valued function F : R→ Pcl(R) is called
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1. γ-Lipschitz if and only if there exists γ > 0 such that

H(F(x), F(y)) 6 γ‖x− y‖, for each x,y ∈ X .

The constant γ is called a Lipschitz constant.

2. a contraction if and only if it is γ-Lipschitz with γ < 1 .

Definition 5 A set-valued function F : J× R→ Pcl(R) is called

1. γ(t)-Lipschitz if and only if there exists γ ∈ L1(J,R+) such that

H(F(t, x), F(t,y)) 6 γ(t)‖x− y‖, for each x,y ∈ X .

2. a contraction if and only if it is γ(t)-Lipschitz with ‖γ‖L1 < 1 .

Definition 6 A measurable set-valued function F : J→ Pcp(R) is integrably
bounded if there exists a function h ∈ L1(J,R+) such that ‖v‖ 6 h(t) almost
everywhere t ∈ J for all v ∈ F(t).

Definition 7 The fractional (arbitrary) order integral of the function f of
order α > 1 is defined by [5, 6, 7, 8, 9]

Iαaf(t) =

∫ t
a

(t− τ)α−1

Γ(α)
f(τ)dτ .

When a = 0 , we write Iαaf(t) = f(t)∗φα(t), where (∗) denoted the convolution
product [5], φα(t) = t

α−1/Γ(α), t > 0 , and φα(t) = 0 , t 6 0 , and φα → δ(t)
as α→ 0 where δ(t) is the delta function.

Definition 8 The fractional (arbitrary) order derivative of the function f of
order α > 1 is defined by [5, 6, 7, 8, 9]

Dα
af(t) =

d

dt

∫ t
a

(t− τ)−α

Γ(1− α)
f(τ)dτ =

d

dt
I1−αa f(t).

The following remarks and lemmas are used in remaining sections.
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Remark 9 [31] Let M ⊂ X . If the graph of F : M → P(X) is closed and
F(M) is relatively compact, then F is upper semi-continuous on M.

Remark 10 [25] It is known that if F : J→ Pcp(R) is a measurable set-valued
operator, then the set S1F of all Lebesgue integrable selections of F is closed
and nonempty.

Remark 11 [5, 6] The fractional order derivative and integral for a continu-
ous function f have the relation

Iαa (D
α
af(t)) = D

α
a (I

α
af(t)) = f(t).

Lemma 12 [21] Consider the operator F : X→ P(X). Suppose that

1. for all x ∈ X , F(x) is a closed, convex and compact set-valued operator,

2. F is upper semi-continuous on X.

Then either the set A := {x ∈ X : there exists λ ∈ (0, 1), x ∈ λF(x)} is un-
bounded or there exists a fixed point x ∈ X such that x ∈ F(x).

Lemma 13 (Covitz–Nadler) [22] Let (X,d) be a complete metric space.
If G : X→ Pcl(X) is a contraction, then G has a fixed point.

3 Single-valued problem

Let | · | be the norm on Rn. Define a Banach space B := C[J,Rn]. We
establish the existence and uniqueness solution for the fractional diffeo-integral
equation (2). For this purpose we impose the following assumptions.

Assumption H1 The function f is Carathéodory.

Assumption H2 Assume that

|f(t,u, v)| 6 ρ(t)(‖u‖∞ + ‖v‖∞),

where ‖u‖∞ := supt∈J{|u(t)|} and ρ ∈ L1(J,R+).
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Assumption H3 There exists a positive function p ∈ C(J,R+) such that
|k(t,u)| 6 p(t)(1+ ‖u‖∞) implies that

Iβ|k(t,u)| 6
‖p‖∞Tβ
Γ(β+ 1)

(1+ ‖u‖∞), t ∈ [0, T ].

Remark 14 In view of Remark 11, we easily find that equation (2) is equiv-
alent to the integral equation of the form

u(t) = Iαf
(
t,u(t), Iβk (t,u(t))

)
, (3)

that is, the existence of solution of (2) is equivalent to the existence of solution
of (3).

Theorem 15 Let H1–H3 hold. Then equation (2) has a solution u(t) on J.

Proof: Define an operator P : B→ B as

(Pu)(t) := Iαf
(
t,u(t), Iβk (t,u(t))

)
. (4)

In order to show that (1) has a solution we have to show that the operator (4)
has a fixed point.

|(Pu)(t)| = |Iαf
(
t,u(t), Iβk (t,u(t))

)
|

6 Iα|f
(
t,u(t), Iβk (t,u(t))

)
|

6
Tα

Γ(α+ 1)
‖ρ‖L1

(
‖u‖∞ + |Iβk (t,u(t)) |

)
6

Tα

Γ(α+ 1)
‖ρ‖L1

(
‖u‖∞ + Iβ|k (t,u(t)) |

)
6

Tα

Γ(α+ 1)
‖ρ‖L1

[
‖u‖∞ +

‖p‖∞Tβ
Γ(β+ 1)

(1+ ‖u‖∞)

]
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Thus we obtain that ‖P‖ 6 r , r > 0 , where

r :=
‖ρ‖L1Tα+β‖p‖∞]

Γ(β+ 1)Γ(α+ 1)

[
1−
‖ρ‖L1Tα

Γ(α+ 1)

(
1+

Tβ‖p‖∞
Γ(β+ 1)

)]−1
.

Then P maps Br into itself: P maps the convex closure of P[Br] into itself for
sufficiently small T > 0 . Since f is bounded on Br,P[Br] is equicontinuous
(Arzela–Ascoli): for 0 6 t1 6 t2 6 T such that |t2 − t1| 6 δ , δ > 0 and
u ∈ B[0, r],

|Pu(t1) − Pu(t2)| 6

[
‖f‖

Γ(α+ 1)

]
|(tα1 − t

α
2 + 2(t1 − t2)

α)|

6

[
2‖f‖

Γ(α+ 1)

]
|(t2 − t1)

α| 6

[
2‖f‖

Γ(α+ 1)

]
|(t2 − t1)|

α

6
2δα‖f‖
Γ(α+ 1)

.

Hence the Schauder fixed point theorem shows that P has a fixed point u ∈ B

such that Pu(t) = u(t), which corresponds to the solution of (2). ♠

Now we discuss the uniqueness of solution for the single-valued problem (2).
For this purpose let us impose the following assumptions

Assumption H4 The function f satisfies that there exist a function L(t) ∈
L1(J,R+) such that for each u1, v1 and u2, v2 ∈ B , we have

|f(t,u1(t), v1(t)) − f(t,u2(t), v2(t))| 6 L(t)[‖u1 − u2‖∞ + ‖v1 − v2‖∞].

Assumption H5 The function k satisfies that there exist a function `(t) ∈
L1(J,R+) such that for each u1,u2 ∈ B we have

|k (t,u1(t)) − k (t,u2(t)) | 6 `(t)‖u1 − u2‖∞.

Theorem 16 Let H4 and H5 hold. If

‖L‖L1Tα[Γ(β+ 1) + ‖`‖L1Tβ]
Γ(β+ 1)Γ(α+ 1)

< 1, (5)

then (2) admits a unique solution u(t) on J.
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Proof: Recalling the operator P defined in equation (4), we only need to
show that P is a contraction mapping; that is, P has a unique fixed point
which corresponds to the unique solution of the equation (2). Let u1,u2 ∈ B

then for all t ∈ J , we obtain that

|(Pu1)(t) − (Pu2)(t)|

6 Iα|f(t,u1(t), I
βk (t,u1(t))) − f(t,u2(t), I

βk (t,u2(t)))|

6
Tα

Γ(α+ 1)
‖L‖L1

[
‖u1 − u2‖∞ + ‖Iβk (t,u1(t)) − Iβk (t,u2(t)) ‖

]
6

Tα

Γ(α+ 1)
‖L‖L1

[
‖u1 − u2‖∞ + Iβ‖k (t,u1(t)) − k (t,u2(t)) ‖

]
6

Tα

Γ(α+ 1)
‖L‖L1

[
‖u1 − u2‖∞ +

Tβ

Γ(β+ 1)
‖`‖L1‖u1 − u2‖∞

]
6
‖L‖L1Tα

Γ(α+ 1)

[
‖u1 − u2‖∞ +

‖`‖L1Tβ

Γ(β+ 1)
‖u1 − u2‖∞

]
=
‖L‖L1Tα

[
Γ(β+ 1) + ‖`‖L1Tβ

]
Γ(β+ 1)Γ(α+ 1)

‖u1 − u2‖∞
Hence by the assumption of the theorem we have that P is a contraction.
Then in view of the Banach fixed point theorem, P has a unique fixed point
which corresponds to the solution of equation (2). ♠

4 Set-valued problem

We establish the existence results for the integral inclusion (1) when the right
hand side has convex as well as non-convex values. The study is taken in
view of fixed point theorems of set-valued functions.

Definition 17 A function u(.) ∈ C(J,Rn) is said to be a solution of (1)
if there exists f ∈ L1(J,Rn) such that f ∈ F(t,u(t), v(t)), where v(t) =
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Iβk (t,u(t)) and

u(t) =

∫ t
0

(t− τ)α−1

Γ(α)
f(τ)dτ for all t ∈ J .

Using Remark 11, we obtain the following result.

Lemma 18 Let f ∈ F(t,u(t), v(t)), then u(t) = Iαaf(t) is a solution for
inclusion (1).

Let us illustrate the following assumptions.

Assumption H6
The set-valued function F : J× Rn → Pc,cp(Rn) is Carathéodory.

Assumption H7 Assume that

‖F(t,u, v)‖ 6 ρ(t)(‖u‖∞ + ‖v‖∞),

where ρ ∈ L1(J,R+).

Theorem 19 (Convex case) Let H3, H6 and H7 hold. Then the integral
inclusion (1) has at least one solution u(t) ∈ B .

Proof: Now we show that the assumptions of Lemma 12 are satisfied. By
H7 it follows that

‖F(t,u, v)‖ 6 ρ(t)(‖u‖∞ + ‖v‖∞).

But F has a compact values in R, then for every u ∈ B we have F is
measurable. Therefore F(t,u, v) is measurable and integrably bounded where
v(t) := Iβk (t,u(t)) and consequently the set

SF(u) := {f ∈ L, f(t) ∈ F(t,u(t), v(t))}

is closed and non-empty that for all u ∈ B (Remark 10). Define the opera-
tor N(u) on B by

N(u) :=
{
u ∈ B : u(t) = Iαf

(
t,u(t), Iβk (t,u(t))

)
, f ∈ SF(u)

}
. (6)
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Our aim is to show that N(u) satisfies the conditions of Lemma 12 and this
is proven in four steps.

1. N(u) is closed and convex. Firstly in view of Remark 10, the set SF(u)
is closed. Then consequently N is closed. Now let h1(t),h2(t) ∈ N(u)
then there exist f1, f2 ∈ SF(u) such that

hj(t) = I
αfj
(
t,u(t), Iβk (t,u(t))

)
, j = 1, 2 .

Let 0 6 δ 6 1 , then for each t ∈ J

[δh1 + (1− δ)h2] (t)

= δIαf1
(
t,u(t), Iβk (t,u(t))

)
+ (1− δ)Iαf2

(
t,u(t), Iβk (t,u(t))

)
= Iαδf1

(
t,u(t), Iβk (t,u(t))

)
+ Iα(1− δ)f2

(
t,u(t), Iβk (t,u(t))

)
= Iα

[
δf1
(
t,u(t), Iβk (t,u(t))

)
+ (1− δ)f2

(
t,u(t), Iβk (t,u(t))

)]
by the convexity of SF(u), implies that [δf1 + (1− δ)f2] ∈ SF(u) then
consequently [δh1 + (1− δ)h2] (t) ∈ N(u). Hence N(u) is a convex.

2. N(B[0, r]) is relatively compact in B. For u ∈ B[0, r], then for all
h(t) ∈ N(u), we have |h(t)| 6 r . That is, N(B[0, r]) is bounded set.
Moreover, using the properties of the fractional integral operator (Iα),
we have that for 0 6 t1 6 t2 6 T such that |t2 − t1| 6 δ , δ > 0 and
u ∈ B[0, r], then for all h(t) ∈ N(u),

|h(t1) − h(t2)|

= |Iαf(t1,u(t1), I
βk (t1,u(t1))) − I

αf(t2,u(t2), I
βk (t2,u(t2)))|

6

[
‖f‖

Γ(α+ 1)

]
| (tα1 − t

α
2 + 2(t1 − t2)

α) |

6

[
2‖f‖

Γ(α+ 1)

]
|(t2 − t1)

α|

6

[
2‖f‖

Γ(α+ 1)

]
|(t2 − t1)|

α
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6
2δα‖f‖
Γ(α+ 1)

which is independent of u implies that N(B[0, r]) is equicontinuous. An
application of the Arzela–Ascoli theorem yields that N is a compact
operator. Thus N(B[0, r]) is relatively compact set in B. Hence N is
compact.

3. N is upper semi-continuous on B. Since N is closed and N(B[0, r]) is
relatively compact, then, in view of Remark 9, it follows that N is upper
semi-continuous on B.

4. The setA is not unbounded. Let (u, λ) ∈ B×(0, 1) such that u ∈ λN(u).
Therefore

|u(t)| 6 λIα|f
(
t,u(t), Iβk (t,u(t))

)
|

6 Iα|f
(
t,u(t), Iβk (t,u(t))

)
|

6 r .

It follows that A is bounded set. Thus in view of Lemma 12, N has a
fixed point which corresponds to the solution of inclusion (1).

♠

In order to study the existence for the problem (1) in non-convex case, we
introduce the following assumptions.

Assumption H8 F : J×Rn×Rn → Pcl,cp(Rn), (t, .) 7→ F(t,u, v) is measur-
able for each u, v ∈ Rn .

Assumption H9 The set-valued function F : J × Rn → Pcl,cp(Rn) has a
function L(t) ∈ L1(J,R+) such that for each u1,u2, v1, v2 on J, we have

H(F(t,u1, v1), F(t,u2, v2)) 6 L(t) [‖u1 − u2‖∞ + ‖v1 − v2‖∞] .

Theorem 20 (Non-convex case) Let H5, H8 and H9 hold. If (5) is sat-
isfied, then the integral inclusion (1) has at least one solution u(t) on J.
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Proof: In order to study the existence for problem (1), using Lemma 13
we show that N defined in equation (6) is a contraction set-valued mapping.
The proof takes two steps.

1. N(u) ∈ Pcl(R) for each u ∈ B . Let {um}m>0 ∈ N(u) such that um → ũ

in B. Then ũ ∈ B and there exists fm ∈ SF(u) such that for t ∈ J

um(t) = I
αfm

(
t,u(t), Iβk (t,u(t))

)
.

Using that F has a compact values, we get that fm converges to f
in L1(J,R) and hence, f ∈ SF(u). Then for each t ∈ J

um(t)→ ũ(t) = Iαf
(
t,u(t), Iβk (t,u(t))

)
.

So ũ ∈ N(u).

2. There exist γ < 1 such that

H(N(u1),N(u2)) 6 γ‖u1 − u2‖, for each u1,u2 ∈ B .

Let u1,u2, v1, v2 ∈ R . Then there exists f ∈ F such that by H9, f satisfies

|f(t,u1, v1) − f(t,u2, v2)| 6 L(t) [‖u1 − u2‖∞ + ‖v1 − v2‖∞] ,

then for h1(t) ∈ N(u1) where

h1(t) = I
αf(t,u1(t), v1(t)) = I

αf(t,u1(t), I
βk (t,u1(t))),

and for h2(t) ∈ N(u2) where

h2(t) = I
αf(t,u2(t), v2(t)) = I

αf(t,u2(t), I
βk (t,u2(t))),

then

|h1(t) − h2(t)|

6 Iα|f(t,u1(t), v1(t)) − f(t,u2(t), v2(t))|
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6
Tα

Γ(α+ 1)
‖L‖L1 [‖u1 − u2‖∞ + ‖v1 − v2‖∞]

6
Tα

Γ(α+ 1)
‖L‖L1

[
‖u1 − u2‖∞ +

Tβ

Γ(β+ 1)
‖`‖L1‖u1 − u2‖∞

]
6

Tα

Γ(α+ 1)
‖L‖L1

[
‖u1 − u2‖∞ +

‖`‖L1Tβ

Γ(β+ 1)
‖u1 − u2‖∞

]
6
‖L‖L1Tα

[
Γ(β+ 1) + ‖`‖L1Tβ

]
Γ(β+ 1)Γ(α+ 1)

‖u1 − u2‖∞ .

Denote that

γ :=
‖L‖L1Tα

[
Γ(β+ 1) + ‖`‖L1Tβ

]
Γ(β+ 1)Γ(α+ 1)

.

By the assumption of the theorem, it follows that

H(N(u1),N(u2)) 6 γ‖u1 − u2‖∞, for each u1,u2 ∈ B ,

for sufficiently small T > 0 , where γ < 1 . This implies that N is a
contraction set-valued mapping. Then in view of Lemma 13, N has
a fixed point which corresponds to a solution of inclusion (1). This
completes the proof.

♠

Example 21 Consider the problem

Dαu(t) ∈ F(t,u(t), v(t)), t ∈ J := [0, 1], (7)

where u ∈ C[J,R], v(t) := Iβk (t,u(t)), α = β = 0.5 , k(t,u) := 0.5u(t) and

F(t,u, v) =

{
0 if u ∈ R \ {[0, 1]},

[0, 0.1(u+ Iβ0.5u)] if u ∈ [0, 1].

F is Carathéodory set-valued function. And |k(t,u)| 6 0.5|u(t)| where p(t) =
0.5 then, ‖p‖ = 0.5 . Also ‖F‖ 6 ρ(t)Ω0(‖u‖ + ‖v‖) where ρ(t) = 0.1 ,
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then ‖ρ‖L1 = 0.1 and Ω0 ' 1.28 . Therefore if r = 0.21 , then in view of
Theorem 19 the problem (7) has a solution.

Indeed, we can show that k(t,u) is `-Lipschitz with a Lipschitz constant
‖`‖L1 = 0.5 . Moreover, F satisfies the assumption H9 with L(t) = 0.1 , then
‖L‖L1 = 0.1 . Therefore if for γ ' 0.17 < 1 , we have that F is a contraction
set-valued mapping. Thus in view of Theorem 20, the problem (7) has a
solution.

5 Conclusion

• We established the existence of locally solutions for diffeo-integral inclu-
sion of Sobolev-type of fractional order because this type of differential
inclusion has many applications in intermediate physical processes,
convection-diffusion and transport-diffusion processes [32]. Also this
type of problems involving the generalized telegraph equations of frac-
tional order [33].

• If F(t,u(t), v(t)) has nonempty closed convex values in Rn, inclusion (1)
reduces to control system where v(t) = Iβk (t,u(t)) is the control
variable. This system is complectly controllable if for all u0,u1 ∈ Rn
there exists a continuous control v(t) ∈ Rm such that u(0) = u0 and
u(T) = u1 [34]. Since, see Definition 7,

u(0) = 0 and u(t) = Iαf(t) =
tα−1 ∗ f(t)
Γ(α)

,

implies

u(T) =
Tα−1∗f(T)
Γ(α)

, f(T) 6= 0 .

Then by arbitrary choice of u0 and u1 we can set u0 = 0 and u1 = u(T).
Hence system (1) is controllable or completely controllable on J.
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