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Abstract. In this article, we establish the existence of solutions for integral inclusion of fractional
order. The study holds in the case when the set-valued (multi-valued) function has convex and
non-convex values. Also we illustrate our results with examples to which our abstract theory
applies.
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1. INTRODUCTION

The class of fractional operator equations of various types plays very important
role not only in mathematics but also in physics, control systems, dynamical systems
and engineering. Naturally, such equations required to be solved. There are numerous
books focused in this direction, that is concerning the linear and nonlinear problems
involving different types of fractional derivatives as well as integral see [20, 22, 23,
27, 28]. In [13, 14, 17], El-Sayed and A. G. Ibrahim gave the concept of the definite
integral of fractional order for set-valued function. Integral and integro-differential
(linear and nonlinear) in abstract spaces has been studied by several authors see [3,
18, 24, 25]. Applications of this type of problem arise in the study of control systems
(see [1,2,10]). This paper concerned with the following fractional integral inclusion.

u.t/�

nX
iD1

bi .t/u.t � �i / 2 I
˛F.t;u.t//I 0 < ˛ � 1; t 2 J WD Œ0;T �; (1.1)

where �i � t 2 J; 8i D 1; :::;n; F W J �R! P .R/ is a set-valued function with
nonempty values in R;P .R/ is the family of all nonempty subsets of R; I˛F.t;u.t//
are the definite integral for the set-valued functions F of order ˛ which is defined as

I˛F.t;u.t//D

�
1

� .˛/

Z t

0

.t � �/˛�1f .�;u.�//d� W f .t;u/ 2 SF .u/

�
;
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where
SF .u/D

˚
f 2 L1.J;R/ W f .t/ 2 F.t;u.t// a:e: t 2 J

	
denotes the set of selections of F and bi W J ! R is a continuous function such that
B WDmax1�i�n fsupt2J fjbi .t/jgg.

This paper will be organized as follows: In Section 2, we recall briefly some basic
definitions and preliminary facts from set-valued analysis which will be used later. In
Section 3, we establish the existence of the solution for the single-valued problem

u.t/D

nX
iD1

bi .t/u.t � �i /CI
˛f .t;u.t//I 0 < ˛ � 1; t 2 J; f 2 F.t;u.t//; (1.2)

by using the Schauder fixed point theorem, (see [6]) and the uniqueness of the solu-
tion by using the Banach fixed point theorem (see [29]). In Section 4, we shall study
the existence of solution for the set-valued problem 1.1 when F has convex values,
as well when it has with non-convex values, via the single-valued problem as well as
fixed point theorems of the set-valued function. In the first case (convex) a fixed point
theorem due to Bohnenblust and Karlin (see [8, 31]) is used. A fixed point theorem
for contraction set-valued functions due to Covitz and Nadler [11] is applied in the
second one (non-convex). Also we illustrate our results with examples.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts from set-
valued analysis which are used throughout this paper. For further background and
details pertaining to this section we refer the reader to [4, 7, 15, 16, 19, 26, 30].

B WD C ŒJ;R� is the Banach space of all continuous functions from J into R with
the norm

kuk D supfju.t/j W t 2 J g

for each u 2 B: L WD L1ŒJ;R� denotes the Banach space of measurable functions
u W J ! R which are Lebesgue integrable normed by

kukL1 D

Z T

0

ju.t/jdt;

for each u 2L: Let .X; j:j/ be a normed space, Pcl.X/D fY 2P .X/ W Y is closedg;
Pb.X/ D fY 2 P .X/ W Y is boundedg; Pcp.X/ D fY 2 P .X/ W Y is compactg;
Pc.X/ D fY 2 P .X/ W Y is convexg; Pcl;c.X/ D fY 2 P .X/ W Y is closed and
convexg; Pcp;c.X/ D fY 2 P .X/ W Y is compact and convexg: A set-valued func-
tion F W X ! P .X/ is called convex (closed) valued if F.x/ is convex (closed) for
all x 2 X: F is called bounded valued on bounded set B if F.B/ D

S
x2B F.x/

is bounded in X for all B 2 Pb.X/ i.e. supx2Bfsupfjuj W u 2 F.x/gg <1: F

is called upper semi-continuous (u.s.c) on X if for each x0 2 X the set F.x0/ is
nonempty closed subset of X and if for each open set N of X containing F.x0/;
there exists an open neighborhood N0 of x0 such that F.N0/ � N: F is u:s:c if
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the set F�1.A/ D fx 2 X W Fx � Ag is open in X for every open set A in X:
F is called lower semi-continuous (l.s.c) on X if A is any open subset of X then
F�1.A/ D fx 2 X W Fx

T
A ¤ ¿g is open in X: F is called continuous if it is

lower as well as upper semi-continuous on X . F is called compact if for every M
bounded subset of X; F.M/ is relatively compact. Finally F is called completely
continuous if it is upper semi-continuous and compact on X .

The following definitions are used in the sequel.

Definition 1. A mapping p W J �R! R is said to be Carathéodory if

(i) t ! p.t;u/ is measurable for each u 2 R;
(ii) u! p.t;u/ is continuous a.e. for t 2 J:

A Carathéodory function p.t;u/ is called L1.J;R/-Carathéodory if

(iii) for each number r > 0 there exists a function hr 2L1.J;R/ such that jp.t;u/j �
hr.t/ a.e t 2 J for all u 2 R with juj � r .

A Carathéodory function p.t;u/ is called L1X .J;R/-Carathéodory if

(iv) there exist a function h 2L1.J;R/ such that jp.t;u/j � h.t/ a.e t 2 J for all
u 2 R where h is called the bounded function of p.

Definition 2. A set-valued function F W J !P .R/ is said to be measurable if for
any x 2X; the function t 7! d.x;F.t//D inf fjx�uj W u 2 F.t/g is measurable.

Definition 3. A set-valued function F W J �R!P .R/ is called Carathéodory if

(i) t 7! F.t;x/ is measurable for each x 2 R; and
(ii) x 7! F.t;x/ is u.s.c. for almost t 2 J .

Definition 4. A set-valued function F W J �R!P .R/ is called L1-Carathéodory
if

(i) F is Carathéodory and
(ii) For each r > 0; there exists hr 2 L1.J;R/ such that kF.t;u/k D supfjf j W

f 2 F.t;u/g � hr.t/ for all juj � r and for a.e. t 2 J .

Definition 5 ([12]). A set-valued functionF WJ �R!P .R/ is called L1X -Carathéodory
if there exists a function h 2 L1.J;R/ such that

kF.t;u/k D supfjf j W f 2 F.t;u/g � h.t/; a:e: t 2 J

for all x 2 R; and the function h is called a growth function of F on J �R:
Let A;B 2Pcl.X/ and let a 2 A. Then by

D.a;B/D inf fka�bk W b 2 Bg and �.A;B/D supfD.a;B/ W a 2 Ag

the function H WPcl.X/�Pcl;b.X/! RC defined by

H.A;B/Dmaxf�.A;B/;�.B;A/g
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is metric and is called Hausdorff metric on X: Moreover .Pcl;b.X/;H/ is a metric
space and .Pcl.X/;H/ is a complete metric space(see [21]). It is clear that

H.0;C /D supfkck W c 2 C IC 2Pb.X/g:

Definition 6. A set-valued function F W R!Pcl.R/ is called

(i)  -Lipschitz if and only if there exist  > 0 such that

H.F.x/;F.y//� kx�yk;for each x;y 2X

the constant  is called a Lipschitz constant.
(ii) a contraction if and only if it is  -Lipschitz with  < 1.

Definition 7. A set-valued function F W J �R!Pcl.R/ is called

(i) .t/-Lipschitz if and only if there exists  2 L1.J;RC/ such that

H.F.t;x/;F.t;y//� .t/kx�yk;for each x;y 2X:

(ii) a contraction if and only if it is .t/-Lipschitz with kk< 1

The following remark and lemmas are used in the sequel.

Remark 1 ([5]). Let M � X: If F WM ! P .X/ is closed and F.M/ is relatively
compact then F is u.s.c. onM:And if F WX!P .X/ is closed and compact operator
then F is u.s.c. on X:

Lemma 1 (Bohnenblust-Karlin). Let M be a closed and convex subset of the
Banach space X and F WM !P .M/ a set-valued function. Suppose that:

(i) the set F.M/ is relatively compact;
(ii) the set-value function F is u.s.c on M I

(iii) the set F.x/ is nonempty closed and convex for all x 2M .

Then there is x 2M such that x 2 F.x/.

Lemma 2 (Covitz-Nadler). Let .X;d/ be a complete metric space. If G W X !
Pcl.X/ is a contraction, then G has a fixed point.

3. SINGLE-VALUED PROBLEM

In this section we prove that the integral equation 1.2 has a solution u.t/ on J . Let
us formulate the following assumption:

(H1) The function f is L1X .J;R/-Carathéodory with bound function h 2L1.J;R/
such that jf .t;u/j � h.t/ a.e. t 2 J for all u 2 R.

Theorem 1. Let .H1/ hold. If 1� nB > 0 then equation 1.2 has at least one
solution u.t/ on J .
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Proof. Define an operator P by

.Pu/.t/ WD

nX
iD1

bi .t/u.t � �i /CI
˛f .t;u.t//: (3.1)

Set r WD T ˛khk
� .˛C1/.1�nB/

; then by the assumption of the theorem and the properties of
the fractional calculus we obtain that

j.Pu/.t/j �

nX
iD1

jbi .t/jju.t � �i /jCI
˛
jf .t;u.t//j

� nBkukCI˛jh.t/j � nBkukCkhk
T ˛

� .˛C1/
:

So we obtain that

kPuk �
T ˛khk

� .˛C1/.1�nB/
:

That is P WBr!Br : Then P maps Br into itself. In fact, P maps the convex closure
of P ŒBr � into itself. Since f is bounded on Br ; thus P ŒBr � is equicontinuous and
the Schauder fixed point theorem shows that P has at least one fixed point u 2B D

C ŒJ;R� such that PuD u; which is corresponding to the solution of 1.2. □

For the uniqueness let us consider the following assumption
(H2) The function f satisfies that there exists a function `.t/ 2 L1.J;RC/ such

that for each u;v 2 C ŒJ;R� we have

jf .t;u/�f .t;v/j � `.t/ku�vk:

Theorem 2. Let .H2/ hold. If nB� .˛C1/CT
˛k`k

� .˛C1/
< 1; then 1.2 has a unique solu-

tion u.t/ on J:

Proof. Assume the operator P defined in equation 3.1 then we have

j.Pu/.t/�.P v/.t/j �

nX
iD1

jbi .t/jju.t��i /�v.t��i /jCI
˛
jf .t;u.t//�f .t;v.t//j

� nBku�vkCI˛`.t/ku�vk

� nBku�vkC
k`kT ˛

� .˛C1/
ku�vk

D .nBC
k`kT ˛

� .˛C1/
/ku�vk:

□
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Hence by the assumption of the theorem we have that P is a contraction mapping.
Then in view of Banach fixed point Theorem, P has a unique fixed point which is
corresponding to the solution of equation 1.2.

4. SET-VALUED PROBLEM

In this section we establish the existence results for the integral inclusion 1.1 when
the right hand side is convex as well as when it is non-convex valued. The study will
be taken in view of the single-valued theorems as well as fixed point theorems of
set-valued function. Let us illustrate the following assumption

(H3) The set-valued function F W J �R! Pcl;c.R/ is L1X .J;R/-Carathéodory
with a growth function h 2 L1.J;R/ such that kF.t;u/k � h.t/ a.e t 2 J for all
u 2 R.

Theorem 3. Let .H3/ hold. If F is lower semi-continuous (l.s.c) and 1�nB > 0
then the integral inclusion 1.1 has at least one solution u.t/ on J .

Proof. The proof here is depending on the single-valued problem. For each u.t/
in R the set SF .u/ is nonempty, since by .H3/; F has a non-empty measurable
selection (see [9]). Thus there exists a function f .t;u/ 2 F where f is a L1X .J;R/-
Carathéodory function with a bounded function h 2 L1.J;R/ such that kf .t;u/k �
h.t/ a.e t 2 J for all u 2 R: Hence the assumptions of Theorem 2 are satisfied so the
integral inclusion 1.1 has a solution. □

Theorem 4. (Convex case) Let .H3/ hold. If 1�nB > 0 then the integral inclu-
sion 1.1 has at least one solution u.t/ on J:

Proof. Now we shall show that the assumptions of Lemma 1 are satisfied. Con-
sider the following space ˝ WD fu W J ! Rju.t/ 2 C ŒJ;R�g which is a Banach space
endow with the sup. norm. Consider the set-valued operator N W˝!P .˝/ defined
by

.Nu/.t/ WD fu 2˝ W u.t/D

nX
iD1

bi .t/u.t � �i /CI
˛f .t;u.t//If 2 SF .u/g: (4.1)

We shall show that N satisfies the assumptions of Lemma 1. The proof will be given
by several steps. Define a set K WD

n
u 2˝ W kuk � r WD T ˛khk

� .˛C1/.1�nB/

o
such that

supfju.t/j W u 2˝g<1. It is clear thatK is nonempty, bounded, closed and convex
subset of ˝. Note that by (H3) SF .u/¤¿. □

Step 1: N.K/�K: Let u 2K; we must show thatN.u/ 2K: For all h.t/ 2N.u/;
we have

jh.t/j �

nX
iD1

jbi .t/jju.t � �i /jCI
˛
jf .t;u.t//j
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� nBkukCI˛jh.t/j � nBkukC
khkL1T

˛

� .˛C1/

� nrBC .1�nB/r D r:

Step 2: N.K/ is relatively compact set. We must show that N is a compact
operator. Since K is bounded closed and convex set and N.K/ � K, it follows that
N.K/ is bounded closed and convex set. Moreover, for 0 � t1 � t2 � T such that
jt2� t1j< ı; ı > 0 and u 2K then for all h.t/ 2N.u/;

jh.t1/�h.t2/j

D j

nX
iD1

bi .t1/u.t1� �i /CI
˛f .t;u.t1//�

nX
iD1

bi .t2/u.t2� �i /�I
˛f .t;u.t2//j

� 2nBkukCjI˛f .t;u.t1//�I
˛f .t;u.t2//j

� 2nBkukC Œ
kf k

� .˛C1/
�j.t˛1 � t

˛
2 C2.t2� t1/

˛/j

� 2nBkukC Œ
2kf k

� .˛C1/
�j.t2� t1/

˛
j

� 2nBkukC Œ
2kf k

� .˛C1/
�j.t2� t1/j

˛

� 2ŒnBkukC
2ı˛kf k

� .˛C1/
;

which is independent of u, and that implies that N.K/ is equicontinuous. An applic-
ation of Arzela-Ascoli Theorem yields that N maps K into a compact set in ˝, that
is N IK!P .˝/ is a compact operator. Thus N.K/ is relatively compact set.

Step 3: N is upper semi-continuous on K: Since N WK!K is closed and com-
pact and that N.K/ is relatively compact set then in view of Remark 1, we obtain
that N is u.s.c on K:

Step 4: N.u/ is a convex. Let h1.t/;h2.t/ 2 N.u/ then there exist two functions
f1;f2 2 SF .u/ such that

hj .t/D

nX
iD1

bi .t/u.t � �i /CI
˛fj .t;u.t//I j D 1;2:

Let 0� ı � 1, then for each t 2 J we have

Œıh1C .1� ı/h2�.t/D ıŒ

nX
iD1

bi .t/u.t � �i /CI
˛f1.t;u.t//�

C.1� ı/Œ

nX
iD1

bi .t/u.t � �i /CI
˛f2.t;u.t//�
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D

nX
iD1

bi .t/Œıu.t � �i /C .1� ı/u.t � �i /�

CŒıI˛f1.t;u.t//C .1� ı/I
˛f2.t;u.t//�

D

nX
iD1

bi .t/Œıu.t � �i /C .1� ı/u.t � �i /�CI
˛Œıf1.t;u.t//C .1� ı/f2.t;u.t//�

D

nX
iD1

bi .t/u.t � �i /CI
˛Œıf1.t;u.t//C .1� ı/f2.t;u.t//�

by the convexity of SF .u/; and F.t;u/ implies that Œıh1C .1� ı/h2�.t/ 2 N.u/:
Hence N.u/ is convex. As a consequence of Lemma 1, we deduce that N has a fixed
point which is a solution for the integral inclusion 1.1. Hence the proof is complete.

In order to study the existence for the problem 1.1 in non-convex case, we intro-
duce the following assumptions.

(H4) F W J �R!Pcl.R/; .t; :/ 7! F.t;u/ is measurable for each u 2 R:

(H5)F W J �R!Pcl.R/ is `.t/-Lipschitz

H.F.t;u/;F.t;v//� `.t/ku�vk:

Theorem 5 (Non-convex case). Let .H4/ and .H5/ hold. If

nB� .˛C1/CT ˛k`kL1

� .˛C1/
< 1;

then the integral inclusion 1.1 has at least one solution u.t/ on J:

Proof. For each u.t/ in R the set SF .u/ is nonempty since by .H4/; F has a
nonempty measurable selection (see [9]). Then there exists a function f .t;u/ 2 F
such that f is `.t/-Lipschitz. Thus by the assumption of the theorem and by Theorem
2, the inclusion 1.1 has a solution. Hence the proof is done in view of the single-
valued problem. □

In order to study the existence for problem 1.1 by using Lemma 2, we must show
that N W ˝ ! P .˝/ defined in 4.1 is a contraction set-valued mapping. The proof
will be given in two steps.

Step 1: N.u/ 2 Pcl.˝/ for each u 2˝: Let fumgm�0 2N.u/ such that um!eu
in ˝: Theneu 2˝ and there exists fm 2 SF .u/ such that for t 2 J

um.t/D

nX
iD1

bi .t/u.t � �i /CI
˛fm.t;u.t//:
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Using the fact that F has closed values, we get that fm converges to f in L1.J;R/
and hence f 2 SF .u/: Then for each t 2 J

um.t/!eu.t/D nX
iD1

bi .t/u.t � �i /CI
˛f .t;u.t//:

Soeu 2N.u/:
Step 2: There exists  < 1 such that

H.N.u/;N.v//� ku�vk˝ ; for each u;v 2 ˝:

Let u;v 2˝: Then by .H5/ there exists f 2 F that satisfies

jf .t;u/�f .t;v/j � `.t/ku�vk˝ :

Then h1.t/ 2N.u/ where

h1.t/D

nX
iD1

bi .t/u.t � �i /CI
˛f .t;u.t//:

Then for h2.t/ 2N.v/, where

h2.t/D

nX
iD1

bi .t/v.t � �i /CI
˛f .t;v.t//;

we have

jh1.t/�h2.t/j �

nX
iD1

bi .t/ju.t � �i /�v.t � �i /jC jI
˛f .t;u.t//�I˛f .t;v.t//j

�

nX
iD1

bi .t/ju.t � �i /�v.t � �i /jCI
˛
jf .t;u.t//�f .t;v.t//j

� nBku�vk˝C
T ˛

� .˛C1/
jf .t;u.t//�f .t;v.t//j

� nBku�vk˝C
T ˛

� .˛C1/
`.t/ku�vk˝

� nBku�vk˝C
T ˛k`kL1

� .˛C1/
ku�vk˝

D ŒnBC
T ˛k`kL1

� .˛C1/
�ku�vk˝ :

Denote

 WD Œ
nB� .˛C1/CT ˛k`kL1

� .˛C1/
�:

It follows that

H.N.u/;N.v//� ku�vk˝ ; for each u;v 2 ˝;
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where  < 1: It follows that N is a contraction set-valued mapping. Then, in view of
Lemma 2, N has a fixed point which is corresponding to a solution of inclusion 1.1.
This completes the proof.

Example 1. Let J D Œ0;1� denote a closed and bounded interval in R: Consider the
problem

u.t/ 2
t3

8
u.t � �1/C

t4

12
u.t � �2/C

1

4
u.t � �3/CI

˛F.t;u/I t 2 Œ0;1� (4.2)

where nD 3;˛ D 0:5;B D 0:25 and

F.t;u/D

(
h.t/; if u < 0I
Œh.t/exp

�u.t/
2 ;h.t/�; if u� 0:

It is clear that F isL1X .J;R/�Carath Keodory with a growth function h2L1.J;RC/

such that kF.t;u/k� h.t/ a.e t 2 J for all u2R: Therefore if khk�
p
�
8

then in view
of Theorem 4, the problem 4.2 has a solution.

Example 2. Let J D Œ0;1� denote a closed and bounded interval in R: Consider the
problem

u.t/ 2
t

5
u.t � �1/C

t2

10
u.t � �2/CI

˛F.t;u/I t 2 Œ0;1� (4.3)

where nD 2;˛ D 0:5;B D 1
5

and

F.t;u/D

�
0 if u < 0I
Œ0; u.t/

4
� if u� 0:

It is clear that F is `.t/-Lipschitzian set-valued function with k`k D 1
4

. Therefore,
for  D 0:6 < 1; we have that F is a contraction set-valued mapping. Thus, in view
of Theorem 5, the problem 4.3 has a solution.
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