421 research outputs found

    Evaluation of Tweedie exponential dispersion model densities by Fourier inversion

    Get PDF
    The Tweedie family of distributions is a family of exponential dispersion models with power variance functions V (μ) = μ^p for p not between (0, 1). These distributions do not generally have density functions that can be written in closed form. However, they have simple moment generating functions, so the densities can be evaluated numerically by Fourier inversion of the characteristic functions. This paper develops numerical methods to make this inversion fast and accurate. Acceleration techniques are used to handle oscillating integrands. A range of analytic results are used to ensure convergent computations and to reduce the complexity of the parameter space. The Fourier inversion method is compared to a series evaluation method and the two methods are found to be complementary in that they perform well in different regions of the parameter space

    Flexible Tweedie regression models for continuous data

    Full text link
    Tweedie regression models provide a flexible family of distributions to deal with non-negative highly right-skewed data as well as symmetric and heavy tailed data and can handle continuous data with probability mass at zero. The estimation and inference of Tweedie regression models based on the maximum likelihood method are challenged by the presence of an infinity sum in the probability function and non-trivial restrictions on the power parameter space. In this paper, we propose two approaches for fitting Tweedie regression models, namely, quasi- and pseudo-likelihood. We discuss the asymptotic properties of the two approaches and perform simulation studies to compare our methods with the maximum likelihood method. In particular, we show that the quasi-likelihood method provides asymptotically efficient estimation for regression parameters. The computational implementation of the alternative methods is faster and easier than the orthodox maximum likelihood, relying on a simple Newton scoring algorithm. Simulation studies showed that the quasi- and pseudo-likelihood approaches present estimates, standard errors and coverage rates similar to the maximum likelihood method. Furthermore, the second-moment assumptions required by the quasi- and pseudo-likelihood methods enables us to extend the Tweedie regression models to the class of quasi-Tweedie regression models in the Wedderburn's style. Moreover, it allows to eliminate the non-trivial restriction on the power parameter space, and thus provides a flexible regression model to deal with continuous data. We provide \texttt{R} implementation and illustrate the application of Tweedie regression models using three data sets.Comment: 34 pages, 8 figure

    Monte Carlo Methods for Insurance Risk Computation

    Full text link
    In this paper we consider the problem of computing tail probabilities of the distribution of a random sum of positive random variables. We assume that the individual variables follow a reproducible natural exponential family (NEF) distribution, and that the random number has a NEF counting distribution with a cubic variance function. This specific modelling is supported by data of the aggregated claim distribution of an insurance company. Large tail probabilities are important as they reflect the risk of large losses, however, analytic or numerical expressions are not available. We propose several simulation algorithms which are based on an asymptotic analysis of the distribution of the counting variable and on the reproducibility property of the claim distribution. The aggregated sum is simulated efficiently by importancesampling using an exponential cahnge of measure. We conclude by numerical experiments of these algorithms.Comment: 26 pages, 4 figure

    New properties and representations for members of the power-variance family. II

    Get PDF
    This is the continuation of [V. Vinogradov, R.B. Paris, and O. Yanushkevichiene, New properties and representations for members of the power-variance family. I, Lith. Math. J., 52(4):444–461, 2012]. Members of the powervariance family of distributions became popular in stochastic modeling which necessitates a further investigation of their properties. Here, we establish Zolotarev duality of the refined saddlepoint-type approximations for all members of this family, thereby providing an interpretation of the Letac–Mora reciprocity of the corresponding NEFs. Several illustrative examples are given. Subtle properties of related special functions are established.An erratum to this article is available at 10.1007/s10986-014-9240-1
    corecore