306 research outputs found

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Incremental hashing with sample selection using dominant sets

    Get PDF
    In the world of big data, large amounts of images are available in social media, corporate and even personal collections. A collection may grow quickly as new images are generated at high rates. The new images may cause changes in the distribution of existing classes or the emergence of new classes, resulting in the collection being dynamic and having concept drift. For efficient image retrieval from an image collection using a query, a hash table consisting of a set of hash functions is needed to transform images into binaryhash codeswhich are used as the basis to find similar images to the query. If the image collection is dynamic, the hash table built at one time step may not work well at the next due to changes in the collection as a result of new images being added. Therefore, the hash table needs to be rebuilt or updated at successive time steps. Incremental hashing (ICH) is the first effective method to deal with the concept drift problem in image retrieval from dynamic collections. In ICH, a new hash table is learned based on newly emerging images only which represent data distribution of the current data environment. The new hash table is used to generate hash codes for all images including old and new ones. Due to the dynamic nature, new images of one class may not be similar to old images of the same class. In order to learn new hash table that preserves within-class similarity in both old and new images,incremental hashing with sample selection using dominant sets(ICHDS) is proposed in this paper, which selects representative samples from each class for training the new hash table. Experimental results show that ICHDS yields better retrieval performance than existing dynamic and static hashing methods

    Efficient Learning Framework for Training Deep Learning Models with Limited Supervision

    Get PDF
    In recent years, deep learning has shown tremendous success in different applications, however these modes mostly need a large labeled dataset for training their parameters. In this work, we aim to explore the potentials of efficient learning frameworks for training deep models on different problems in the case of limited supervision or noisy labels. For the image clustering problem, we introduce a new deep convolutional autoencoder with an unsupervised learning framework. We employ a relative entropy minimization as the clustering objective regularized by the frequency of cluster assignments and a reconstruction loss. In the case of noisy labels obtained by crowdsourcing platforms, we proposed a novel deep hybrid model for sentiment analysis of text data like tweets based on noisy crowd labels. The proposed model consists of a crowdsourcing aggregation model and a deep text autoencoder. We combine these sub-models based on a probabilistic framework rather than a heuristic way, and derive an efficient optimization algorithm to jointly solve the corresponding problem. In order to improve the performance of unsupervised deep hash functions on image similarity search in big datasets, we adopt generative adversarial networks to propose a new deep image retrieval model, where the adversarial loss is employed as a data-dependent regularization in our objective function. We also introduce a balanced self-paced learning algorithm for training a GAN-based model for image clustering, where the input samples are gradually included into training from easy to difficult, while the diversity of selected samples from all clusters are also considered. In addition, we explore adopting discriminative approaches for unsupervised visual representation learning rather than the generative algorithms, such as maximizing the mutual information between an input image and its representation and a contrastive loss for decreasing the distance between the representations of original and augmented image data

    Learning compact hashing codes for large-scale similarity search

    Get PDF
    Retrieval of similar objects is a key component in many applications. As databases grow larger, learning compact representations for efficient storage and fast search becomes increasingly important. Moreover, these representations should preserve similarity, i.e., similar objects should have similar representations. Hashing algorithms, which encode objects into compact binary codes to preserve similarity, have demonstrated promising results in addressing these challenges. This dissertation studies the problem of learning compact hashing codes for large-scale similarity search. Specifically, we investigate two classes of approach: regularized Adaboost and signal-to-noise ratio (SNR) maximization. The regularized Adaboost builds on the classical boosting framework for hashing, while SNR maximization is a novel hashing framework with theoretical guarantee and great flexibility in designing hashing algorithms for various scenarios. The regularized Adaboost algorithm is to learn and extract binary hash codes (fingerprints) of time-varying content by filtering and quantizing perceptually significant features. The proposed algorithm extends the recent symmetric pairwise boosting (SPB) algorithm by taking feature sequence correlation into account. An information-theoretic analysis of the SPB algorithm is given, showing that each iteration of SPB maximizes a lower bound on the mutual information between matching fingerprint pairs. Based on the analysis, two practical regularizers are proposed to penalize those filters generating highly correlated filter responses. A learning-theoretic analysis of the regularized Adaboost algorithm is given. The proposed algorithm demonstrates significant performance gains over SPB for both audio and video content identification (ID) systems. SNR maximization hashing (SRN-MH) uses the SNR metric to select a set of uncorrelated projection directions, and one hash bit is extracted from each projection direction. We first motivate this approach under a Gaussian model for the underlying signals, in which case maximizing SNR is equivalent to minimizing the hashing error probability. This theoretical guarantee differentiates SNR-MH from other hashing algorithms where learning has to be carried out with a continuous relaxation of quantization functions. A globally optimal solution can be obtained by solving a generalized eigenvalue problem. Experiments on both synthetic and real datasets demonstrate the power of SNR-MH to learn compact codes. We extend SNR-MH to two different scenarios in large-scale similarity search. The first extension aims at applications with a larger bit budget. To learn longer hash codes, we propose a multi-bit per projection algorithm, called SNR multi-bit hashing (SNR-MBH), to learn longer hash codes when the number of high-SNR projections is limited. Extensive experiments demonstrate the superior performance of SNR-MBH. The second extension aims at a multi-feature setting, where more than one feature vector is available for each object. We propose two multi-feature hashing methods, SNR joint hashing (SNR-JH) and SNR selection hashing (SNR-SH). SNR-JH jointly considers all feature correlations and learns uncorrelated hash functions that maximize SNR, while SNR-SH separately learns hash functions on each individual feature and selects the final hash functions based on the SNR associated with each hash function. The proposed methods perform favorably compared to other state-of-the-art multi-feature hashing algorithms on several benchmark datasets

    Representation Learning with Adversarial Latent Autoencoders

    Get PDF
    A large number of deep learning methods applied to computer vision problems require encoder-decoder maps. These methods include, but are not limited to, self-representation learning, generalization, few-shot learning, and novelty detection. Encoder-decoder maps are also useful for photo manipulation, photo editing, superresolution, etc. Encoder-decoder maps are typically learned using autoencoder networks.Traditionally, autoencoder reciprocity is achieved in the image-space using pixel-wisesimilarity loss, which has a widely known flaw of producing non-realistic reconstructions. This flaw is typical for the Variational Autoencoder (VAE) family and is not only limited to pixel-wise similarity losses, but is common to all methods relying upon the explicit maximum likelihood training paradigm, as opposed to an implicit one. Likelihood maximization, coupled with poor decoder distribution leads to poor or blurry reconstructions at best. Generative Adversarial Networks (GANs) on the other hand, perform an implicit maximization of the likelihood by solving a minimax game, thus bypassing the issues derived from the explicit maximization. This provides GAN architectures with remarkable generative power, enabling the generation of high-resolution images of humans, which are indistinguishable from real photos to the naked eye. However, GAN architectures lack inference capabilities, which makes them unsuitable for training encoder-decoder maps, effectively limiting their application space.We introduce an autoencoder architecture that (a) is free from the consequences ofmaximizing the likelihood directly, (b) produces reconstructions competitive in quality with state-of-the-art GAN architectures, and (c) allows learning disentangled representations, which makes it useful in a variety of problems. We show that the proposed architecture and training paradigm significantly improves the state-of-the-art in novelty and anomaly detection methods, it enables novel kinds of image manipulations, and has significant potential for other applications
    • …
    corecore