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Abstract 

In the world of big data, large amounts of images are 
available in social media, corporate and even personal 
collections. A collection may grow quickly as new images 
are generated at high rates. The new images may cause 
changes in the distribution of existing classes or the 
emergence of new classes, resulting in the collection being 
dynamic and having concept drift. 

For efficient image retrieval from an image collection 
using a query, a hash table consisting of a set of hash 
functions is needed to transform images into binary hash 
codes which are used as the basis to find similar images to 
the query. If the image collection is dynamic, the hash table 
built at one time step may not work well at the next due to 
changes in the collection as a result of new images being 
added. Therefore, the hash table needs to be rebuilt or 
updated at successive time steps. 

Incremental hashing (ICH) is the first effective method 
to deal with the concept drift problem in image retrieval 
from dynamic collections. In ICH, a new hash table is 
learned based on newly emerging images only which 
represent data distribution of the current data environment. 
The new hash table is used to generate hash codes for all 
images including old and new ones. Due to the dynamic 
nature, new images of one class may not be similar to old 
images of the same class. In order to learn new hash table 
that preserves within-class similarity in both old and new 
images, incremental hashing with sample selection using 
dominant sets (ICHDS) is proposed in this paper, which 
selects representative samples from each class for training 
the new hash table. Experimental results show that ICHDS 
yields better retrieval performance than existing dynamic 
and static hashing methods. 
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1. Introduction 

With the rapid development of digital technologies, 
multimedia data such as videos, images and audios are 
generated in large quantities and at high rates. Similarity 
search is thus becoming more and more important. How to 
quickly find the most relevant data from large collections of 
multimedia data is a challenge. The hashing method has 
been successfully applied for approximate nearest neighbor 
search from large-scale image collections [1]. Hashing 
methods learn hash functions to map images from 
high-dimensional content feature space to low-dimensional 

Hamming space. By training the hash function, the compact 
hash code representation of the massive data is learned so 
that the hash code can maintain the similarity relationship of 
the data in the original space. Hamming distance between 
binary hash codes of images are computed to evaluate the 
similarities between images. Since hash codes are binary 
with much smaller dimension comparing to the original 
feature of images, hashing methods retrieve relevant images 
of the query efficiently with lower storage space cost. 

In the literature, a lot of hashing methods have been 
proposed for image retrieval, but most of which learn hash 
functions in static environments. The real-life data 
environment will change over time and the newly generated 
data may cause change to the distribution of the current 
collections, resulting in the so-called concept drift. Therefore, 
the hash model trained in a static environment usually loses 
the ability to learn new samples and cannot adapt well to 
changes in the data distribution of the dynamic environment.  

There are some online or incremental hashing methods 
being proposed to address data changes in a dynamic 
environment, such as OKH [23], OSH [26], ICH [30], etc. 
However, most of them only assume the data appearing in an 
online manner, without considering the distribution changes 
and emerging of new classes, i.e. concept drift problem. 
Incremental hashing (ICH) is the first image retrieval 
method to deal with the concept drift problem in dynamic 
environment. However, the new hash table learned at each 
time step in ICH is based on the newest data batch only, 
which just contains the similarity information of the current 
data environment. Since hash codes of all images including 
old and new ones are generated based on this new hash table, 
similarity information in both old and new images should be 
considered holistically for the training of new learned hash 
table.  

Therefore, a semi-supervised incremental hashing with 
sample selection using dominant sets (ICHDS) is proposed 
in this paper, which selects representative samples for each 
class from old and new image collections. Dominant sets 
clustering method is employed to evaluate the semantic 
concept differences between samples for sample selection 
when new data appears. Selected representative samples are 
combined as the semantic pool for training. ICHDS utilizes 
all the images in the semantic pool to train a new hash table 
and updates the weights of hash tables at successive time 
steps, thereby dynamically learning the changes of the data 
distribution due to the new images appearing. 

The contributions of this paper are summarized as 



follows: 
1) A sample selection method based on dominant sets is 

proposed in this paper to select representative samples from 
each class for hash learning. Dominant sets sample selection 
method is robust to noise and does not require prior 
knowledge about the number of classes and distribution of 
samples in each class. These selected representative samples 
provide comprehensive data distribution information of each 
class for the training of a new hash table.  

2) A semi-supervised incremental hashing with sample 
selection using dominant sets (ICHDS) is proposed, which 
employs multiple hash tables with corresponding weights to 
generate a multi-hashing system. At each time step, a new 
hash table is trained based on the similarity information of 
images in the semantic pool. Hash tables and corresponding 
weights in the multi-hashing system of ICHDS are updated 
dynamically with new data appearing.    

3) ICHDS is compared with state-of-the-art hashing 
methods in 11 dynamic data scenarios. Experimental results 
show that ICHDS achieves significant performance 
improvement over the original ICH method and outperforms 
other comparative hashing methods as well. 

This paper is organized as follows. Section 2 describes 
related works of static and dynamic hashing methods. We 
propose ICHDS in Section 3. Section 4 shows experimental 
results in 11 dynamic data scenarios in three real world 
image datasets. Finally, Section 5 concludes this work. 

2. Related Works 

Most of hashing methods for image retrieval are 
presented in a static data environment. As time goes by, the 
scale of new data continues to increase. Static hashing 
methods do not adapt well to changes in dynamic data 
environments. Some hashing methods for image retrieval 
problems in dynamic data environments have been studied. 
Sections 2.1 and 2.2 describe the existing static hashing and 
dynamic hashing methods, respectively. 

2.1 Static Hashing Methods 

According to whether the semantic similarity 
information is used for the training of hash functions, 
existing static hashing methods can be summarized into 
three broad categories: unsupervised hashing, supervised 
hashing, and semi-supervised hashing, respectively.  

Unsupervised hashing does not require labeled 
information of data. The unsupervised locality-sensitive 
hashing (LSH) [2] which randomly constructs hash function 
is considered as the most primitive image retrieval method. 
KLSH [3] is an improvement and extension based on LSH. 
KSLH employs kernel functions and sparse sets in the image 
collections to construct random maps. A subset of the 
threshold feature vectors of the Laplacian matrix of the 
graph is used in SH [4] to obtain a hash function by the 
relaxation condition. Iterative quantization (ITQ) [5] 
employs PCA to reduce the dimensions of data and projects 
the data to the vertices of a binary hypercube. MIPS [6] 
maximizes the correlation between the raw data and the 

inner product of the binary code based on the inner product 
fitting framework. The objective functions including binary 
quantization loss, shared subspace contribution, and spectral 
embedding loss are introduced in [7] to guide the learning of 
the hashing function. In [8], the objective function is 
optimized by augmenting the Lagrangian method. QRank [9] 
trains multiple hash tables and employs query-adaptive 
bitwise weighting for each hash table. 

Due to the existence of the semantic gap, the 
unsupervised hashing method does not preserve the 
similarity relationship of semantic images. Therefore, 
supervised hashing utilizing semantic information is 
proposed to achieve higher retrieval accuracy. Supervised 
hashing with kernels (KSH) [10] replaces the Hamming 
distance with the coded inner product and correlates well 
with the similarity matrix, which greatly reduces the 
computation time and improves the efficiency. Top-RSBC 
[11] aims to optimize the accuracy of the top position in the 
Hamming distance ranking list to protect semantic 
information. The sorting information of the sample is carried 
in the loss function. The key of SDH [12] is to minimize the 
loss function to obtain hash code and regress the obtained 
hash code to its corresponding label. Different from the 
traditional SDH method, in FSDH [13], the class label of the 
training example is regressed to the corresponding hash code 
to speed up the training of hash model. Another supervised 
discrete hashing COSDISH [14] directly trains discrete hash 
codes and selects the hash code in each iteration. COSDISH 
decomposes the selected hash code into two parts and 
optimizes them alternately. The hashing method of deep 
learning is also a hot topic today. Deep discrete supervised 
hashing (DDSH) [15] directly guides hash codes and depth 
features with paired semantic information to enhance 
feedback between each other. 

Supervised hashing method requires the identification 
of all data in dataset, but it is difficult to achieve in real life. 
Therefore, semi-supervised hashing (SSH) [16] is proposed. 
SSH not only uses semantic information, but also minimizes 
empirical errors on labeled data. At the same time, SSH also 
uses the theoretical regularization of unlabeled data and 
labeled data. Classic unsupervised hashing methods are 
SPLH [17] and BSPLH [18]. SPLH iteratively updates the 
pairwise label matrix, and the training of each hash function 
is corrected according to the error caused by the training of 
the previous hash function. BSPLH effectively corrects 
errors based on training of samples that have not been 
learned by all previous hash functions. Unlike SSH and 
BSPLH, SCEM-SSH [33] sequentially maximizes the joint 
entropy between the hash codes of each bit to train the hash 
function. SCEM-SSH corrects all previous hash bits that 
have not been learned well. DCH [19] is multiple hash tables 
learning method, and each hash table is trained using SPLH. 
DCH gradually learns the hash function and the hash table 
by performing error correction based on the previous hash 
function and the hash table. SSMDH [20] learns the 
relationship between multiple features of different view 
samples, and combines discrete learning hash functions. 
BSPLH is also used in BBSHR [21] to train multiple hash 



tables. BBSHR uses query adaptive weighting for re-ranking 
to improve retrieval accuracy. SIF [34] uses bucket and 
location sensitivity measurement to score the retrieved 
image. RBFNN training is used in SIF to select out 
dissimilar images. In addition, in the field of deep learning, 
the hash code obtained by semi-supervised deep hashing 
(SSDH) [22] can maintain semantic similarity information 
and distribution of underlying data.  

2.2 Dynamic Hashing Methods 

Most of existing hashing models are offline, however 
the real-life data environment is not always static. The 
offline hashing and static hashing methods can't adapt well 
to the dynamic data environment. Existing static hashing 
methods usually lose the learning ability against new data 
samples when the difference of distribution between the 
previous and new data is large. In order to solve this 
problem, several online hashing and dynamic hashing 
methods have been proposed to address data changes in a 
dynamic environment. Online kernel-based hashing (OKH) 
[23] constantly updates the hash function according to the 
similarity of the newly added pairwise samples. Online 
hashing (OH) [24] is an expanded version of OKH. OH 
minimizes the loss function of the similarity of the pairwise 
samples in Hamming space to update the hash function. A 
multi-model MMOH proposed in OH aims to train multiple 
complementary hashes based on the similarity loss function. 
Another online hashing MIHash [25] optimizes objective 
functions online based on mutual information using gradient 
descent method, thereby reducing unnecessary hash table 
updates. Unsupervised online sketching hashing (OSH) [26] 
is proposed to update the hash function online based on the 
concept of data sketching. OSH trains the new hash function 
based on the small size sketch of dataset to get main features 
needed. Unlike unsupervised OSH, supervised OSSH [35] 
combines supervised semantic information with streaming 
data to construct data sketch to guide the training of hash 
functions. Based on error correcting output codes (ECOCs), 
the hash function of online supervised hashing [27] learns 
new labeled data, and updates the hash function in a 
discerning manner. The stochastic gradient descent (SGD) 
method is employed in [28] to iteratively update the hash 
function based on the newly emerging samples. 

These online hashing methods only consider the 
constant emergence of data streams, regardless of the new 
data that may result in data distribution changes. Incremental 
hash-bit learning (IBL) [29] and incremental hashing (ICH) 
[30] are currently proposed for image retrieval to solve the 
problem of concept drift in dynamic environment. IBL trains 
a new hash table with the new data batch, and picks up the 
hash functions that best fit the current environment to update 
the hash table. In ICH, the latest data batch is used to train a 
new hash table and calculate the weights of all hash tables. 

Semantic image retrieval is queried from the entire 
collections, including the latest data batch and data emerging 
in previous time steps. However, ICH only uses all the 
images in the latest data batch to train a new hash table. 

Using the representative data that more fully expresses the 
relationship between the images of each concept, the hash 
code obtained by the newly learned hash function training 
can divide the concept as well as possible. Therefore, this 
paper proposes a semi-supervised incremental hashing 
method with sample selection using dominant sets (ICHDS). 
Different from ICH, ICHDS not only considers the 
distribution of current new samples, but also considers the 
semantic information in the previous collections to adapt to 
the dynamic data environment, thereby improving retrieval 
performance.  

In [36], a preliminary version of this work is proposed. 
Different from this preliminary method, the process of 
sample selection using dominant sets in this paper is based 
on the nature characteristics of the images, i.e. the similarity 
measure and the relationship matrix. It is not necessary to 
randomly initialize the cluster centroid position, which 
reduces the error of sample selection. The selected 
representative samples describe the comprehensive 
distribution of each class, not just filtering noisy or 
anomalous samples.  

3. Incremental Hashing with Sample Selection Using 
Dominant Sets  

There may be differences in the distribution between 
the newly emerged data batch and the previous data batches. 
The purpose of ICHDS is to dynamically update the 
multi-hashing system  at time T to adapt to changes of 
data distribution with new images emerging sequentially. It 
is assumed that that a new data batch  emerges 
in each time step, where n and d represent the number of 
images and the feature dimension of each image, 
respectively. The amount of images in data batch at each 
time step is consistent. The data batch  can be divided 
into labeled dataset  and unlabeled dataset . All 
representative samples used for training generate a semantic 
pool, i.e. . In ICHDS, representative samples are firstly 

selected from the new labeled dataset  and the data in 

old semantic pool  using dominant sets clustering at 
time T. The selected representative data is used to update the 
semantic pool . The semantic pool which provides 
supervised information is combined with the latest unlabeled 
dataset  as training set  for training the new hash 
table.  

ICHDS generates a multi-hashing system at time T. 
The new system at this time step consists of two parts, M 
hash tables and corresponding weights. In ICHDS, each hash 
table contains K hash functions. M hash tables in this system 
are trained by employing data from different time steps. At 
each time step, ICHDS employs semi-supervised BSPLH 
and training set  to train a new hash table. Then ICHDS 
computes the weights of existing M + 1 hash tables based on 
the retrieval performance of each hash table. Only M hash 
tables with the highest weight are kept. The final M hash 
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tables and their corresponding weights  generate a 

multi-hashing system  as follows:  

                (1) 

where ,  denote the ith hash table and the weight of 
the hash table at time T, respectively.  

3.1 Sample Selection for Training Using Dominant Sets 

For the scenario in which samples of new classes 
emerge, the semantic information and distribution 
information of the samples are different from the old 
samples. Samples of new classes provide useful similarity 
information to train a new hash table. Therefore, samples of 
new classes are added to the semantic pool directly. For the 
scenario in which the distribution drift occurs for existing 
classes, the distribution between samples of the same class 
may also have large differences. For example, whales and 
dolphins are aquatic mammals, but their visual 
characteristics are significantly different.  

The distribution difference between samples is judged 
by the idea of dominant sets clustering in [31, 32]. Samples 
that are not in a dominant set are considered to have large 
differences with other samples. These samples located 
distinctively provide representative semantic information 
and are added to the semantic pool for training. In this way, 
new samples in a dominant set are viewed as redundant data 
and not used for training. 

3.1.1 Dominant Sets 

Among existing clustering methods, dominant sets [32] 
achieve excellent clustering performance and 
competitiveness in terms of stability, segmentation accuracy, 
robustness, and computation time comparing to K-means 
and other spectral methods, such as the Normalized Cut 
(Ncut) method. Therefore, the idea of dominant sets 
clustering is employed for sample selection in ICHDS. 

Images being clustered are defined as an undirected 
graph , where , , 

 denote vertex set, edge set, and the weights of all edges, 
respectively. Relationship matrix represents the 

relationship between images, where  represents the 

similarity between the ith image and the jth image. Images in 
a dominant set are equivalent to the fact that the images 
belong to a cluster. The problem of finding a dominant set 
can be transformed into a problem of solving the quadratic 
maximum of a standard simplex, i.e. 

                      (2) 

where . 

The support set of vector  can be defined as a 
subscript set of non-zero elements in vector , then its 

support is a dominant set, as follows: 

                           (3) 

Due to the correspondence between dominant sets and 
quadratic form (2), solving quadratic maximum on this 
simplex can be solved by the equation derived from decision 
theory [31] as follows: 

                 (4) 

where  denotes the element in vector  and  
is the number of iteration steps. The element value in  
indicates the possibility of the corresponding sample 
belonging to the cluster. The support set of the vector  is 
the vertex corresponding to the dominant set, as the 
segmentation criterion [31]. Each element  
corresponds to an image in the original image set . When 
the value of this element is larger, the possibility of the 
corresponding image belonging to the cluster is higher.  

ICHDS draws on the selection of the relationship 
matrix in [32], and defines the relationship matrix  

as follows: 

                 (5) 

where  represents the similarity measure function of 
the ith image and the jth image in the image feature library. 
The parameter  is a scale factor, which plays an 
important role in regulating cluster sensitivity. The similarity 
relationship between images can be measured by Euclidean 
distance as follows:  

            (6) 

where d denotes the feature dimension of each data. The 
Euclidean distance  is employed in this paper which 
can be described as  according to Eq.(6). 

In the clustering process, images with low weights of 
edges are not forced into a certain cluster. The number of 
clusters generated by this method is not set by the user in 
advance. Rather, it is determined by the nature of the image, 
that is, the similarity measure and the relationship matrix. 
Therefore, the size and structure of the class is determined 
by the characteristics of the image itself. Algorithm 1 
describes the pseudo code of dominant sets clustering. 

Algorithm 1：Dominant sets clustering. 

Input: Relationship matrix . 
Output: Support set . 
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1. Initialize vector . 

2. Compute  in Eq.(4). 

3. Output the clustering result  of the original images 
according to Eq.(3). 
4. The corresponding value of the image in the previous cluster is 
removed from the relation matrix .  
5. Determine whether most of the images are clustered. If yes, the 
algorithm is terminated. If not, the remaining image sets perform 
Step 1 to Step 4. 

3.1.2 Sample Selection Using Dominant Sets 

The first data batch  that emerges at time T = 0 
serves as the most primitive data for training. The labeled 
data in  is used to build the original semantic pool . 

For the scenario in which new labeled data  of 
existing classes emerges at time T = t, there are a total of 

 classes in the database. For a certain 

class , the latest labeled data in this class and the 
data of the same class in the semantic pool establish a 
two-point-one-line edge relationship. These labeled samples 
are clustered using the concept of dominant sets based on the 
similarity weights of the edges. The data in a dominant set is 
considered to be the most similar data with redundant 
information, and is not utilized for training. The remaining 
labeled data is stored in the semantic pool  for training 
of new hash table.  

For the scenario in which labeled data  of new 
classes  emerges at time T = t. The 
previous hash tables could not preserve the relevant 
semantic information well. Therefore, the data of a new 
emerging class  is informative and valuable for 
the training of new hash table. These data of new emerging 
classes is added to the semantic pool  directly for the 
training of new hash table. ICHDS evaluates each labeled 
data in semantic pool with function to determine 
whether new labeled data of existing classes is used for 
training as follows: 

          (7) 

where 
 
denotes the labeled data is not in a 

dominant set. According to Eq.(7), new labeled sample is 
added to semantic pool when its  function value 
equals to 0 or 1. The semantic pool at each time step is 
updated as follows: 

   (8) 

The semantic pool  combines with the latest 

unlabeled dataset  as training set  for each time 
step to train the new hash table, as follows:  

              (9) 

Figure 1 shows the steps of sample selection in IHCDS 
at time T = t. 

 
Figure 1. The step of sample selection using dominant sets 
clustering in ICHDS. 

3.2 Hash Table Training and Calculation of Weights for 
Ranking 

In each time step, ICHDS employs semi-supervised 
BSPLH to train a new hash table. The objective function of 
the semi-supervised hashing is described in the form of a 
compact matrix. It tries to maximize the objective functions 
as follows: 

            (10) 

where  and  denote the similarity matrix of pairwise 
labeled data  and the parameter of regularization, 
respectively. The training of the objective function consists 
of two aspects. The former  is the 

empirical accuracy using the labeled information  to 
learn the hash function. The latter  employs 
the regularization item to prevent over-fitting problems 
caused by the number of labeled data being too small in the 
entire dataset. To improve generalization capabilities, 
regularization employs all labeled and unlabeled data which 
is used for training, rather than relying solely on labeled data. 
Hash functions in one hash table is trained sequentially in 
ICHDS. Each hash function is trained by correcting the 
errors caused by its previous ones. 
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The weight of hash table is evaluated based on its 
performance on the latest training images. Firstly, the 
Hamming distance based on the K-bit hash codes of images 
should be consistent with the real semantic similarity 
between images based on the label, i.e. semantic consistency. 
Moreover, hash functions are expected to partition the 
dataset in balance which leads maximum entropy and 
variance for each hash bit. Therefore, hash code variance of 
each hash table is used as the second part for weighting. The 
weight of the ith hash table at time T consists of two parts, i.e. 
the semantic consistency  and the corresponding hash 
code variance , which is computed as follows: 

                                     (11) 

    Based on the weights of hash tables in the 
multi-hashing system of ICHDS, weighted Hamming 
distance between images are computed to evaluate their 
similarities. Figure 2 shows the overview of ICHDS. The 
pseudo code of ICHDS at time T = t is described in 
Algorithm 2.  

 

Figure 2. The overview of ICHDS. 

Algorithm 2：ICHDS algorithm at time T = t.  

Input: M hash tables, new data batch  containing labeled 
dataset  and unlabeled dataset , the semantic pool 

. 

Output: Generate a new multi-hashing system . 
1. Create the relationship of the edges between the data in the 
semantic pool  and the labeled data  in new data batch 

. 
2. Employ dominant sets clustering according to the similarity of 
edges. 
3. Select representative data using Eq.(7). 
4. Update the semantic pool  using Eq.(8). 

5. The latest training set  used to train the hash tables is 
composed of the latest unlabeled dataset  and the updated 

semantic pool  using Eq.(9). 

6. Employ semi-supervised BSPLH and latest training set  to 
train a new K-bit hash table .  

7. Calculate the weight  of all  hash tables 

 using Eq.(11). 

8. Rank the weights and the M hash tables with the highest weight 
are kept. 
9. Generate a new multi-hashing system  using the final M 
hash tables and their associated weights. 

4. Experiments 

The experimental results of the emergence of new 
classes and distribution drift are shown in Sections 4.1 and 
4.2, respectively. Section 4.3 is the parameter selection 
section about the clustering sensitivity scale factor r in 
Eq.(5). Comparative experiments are performed based on 
CIFAR-10, MNIST, and CIFAR-100 image databases to 
compare the existing hashing methods with ICHDS.  

CIFAR-10 dataset consists of 60000 32x32 color 
images belonging to 10 classes. Each image belongs to one 
class and is described by a 512-dimensional GIST feature 
vector. The dataset is originally divided into training set with 
50000 images and the test set with 10000 images. 

MNIST dataset is 28x28 handwritten digital grayscale 
images database of 10 classes. Each image is described by a 
784-dimensional GIST feature vector. The training set of the 
MNIST database has 60000 images, and the test set has 
10000 images. Each image belongs to a unique label from 0 
to 9.  

CIFAR-100 dataset is similar to CIFAR-10 dataset, 
except that it has 100 classes and 600 images per class. Each 
class has 500 training images and 100 test images. 100 
classes with a “fine” label in CIFAR-100 are subordinate to 
20 superclasses with a “coarse” label. Each superclass 
contains 5 subclasses. 

The experimental part of ICHDS mainly includes two 
aspects: the emergence of new classes and the distribution 
drift of existing classes. The datasets used to simulate data 
scenarios of the emergence of new classes are CFIAR-10 
dataset and MNIST dataset, respectively. These two datasets 
have in common that they all have different classes from 0 
to 9, with a total of 10 classes. The CFIAR-100 dataset is 
used to simulate data scenarios of distribution drift. 
According to [30], in the experimental setting aspect, a total 
of 0 to 20 time steps of data simulations are set. Each data 
batch randomly selects n images from the dataset. In our 
experiments, n = 1000. That is to say, 1000 images are 
selected in each time step as new data batch for training. The 
training set is used to learn the hash function and construct a 
hash lookup table. In the setting of the training set, 100 
images are randomly selected as the labeled information for 
training hash function. The remaining images are utilized as 
unlabeled information for regularization along with the 
labeled images. Further, the value of the multiple hash tables 
M is set as 5, and the value of bits K of each hash table is set 
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as 64. In the experiments of ICHDS, the performance of the 
hashing methods are evaluated using the Top 100 precision 
and Top 1% precision. The Top 1% precision refers to the 
accuracy of the top 1% image returned by the ranked image 
retrieval results. The Top 100 precision is the retrieval result 
of the top 100 images. In order to reduce the random effects, 
experiments of concept drift are repeated 5 times. The 
average of 5 times experiments is calculated as the final 
experimental result. 

4.1 Experiments Involving the Emergence of New Classes 

The datasets used to simulate the data scenarios of new 
classes emerging are the CIFAR-10 and MNIST datasets.  
The simulation of data scenarios from 0 to 20 time steps is 
arranged as follows. At time T = 0 to 5, 5 classes are 
randomly selected from the dataset as the initial dataset for 
image training. At time T > 5, the remaining 5 classes of 
these two datasets are randomly selected to simulate the 
emergence of 1 new class, 3 new classes and 5 new classes, 
respectively. Figure 3 and Figure 4 show the accuracy of 
ICHDS and the compared hashing method in Top1% 
precision and Top100 precision, respectively. Among them, 
(a) to (c) and (d) to (f) are the results of ICHDS and 
comparative methods on simulated data scenarios of the 
CIFAR-10 dataset and the MNIST dataset, respectively. 

The experimental results show that the classes of new 

images emerging at time T = 6 reduce the retrieval 
performance of all hashing methods. This is because all 
methods have not trained samples of these new classes 
before. Compared with the CIFAR-10 dataset, the 
proportion and characteristics of objects in MNIST are 
different. The noise of the MNIST dataset is small and the 
image is easy to recognize. Therefore, after the emergence 
of the new classes, the retrieval performance of all hashing 
methods on the MNIST dataset increases over time. ICHDS 
proposed in this paper can adapt to dynamic data changes 
well and achieve the best retrieval results. Existing dynamic 
hashing methods IBL, ICH, OKH, and OSH basically have 
better retrieval effects than the static hashing methods 
BSPLH and LSH. IBL and ICH, designed to solve the 
problem of concept drift in a dynamic environment, yield 
better performance than other hashing methods. Online 
hashing OKH and OSH dynamically update the hash 
function. OKH is a supervised hashing method that trains 
with all label information. Unsupervised OSH uses all 
unlabeled information for training. Unsupervised static LSH 
trains the hash function with all unlabeled information. 
However, the hash function of LSH is only trained at the 
beginning, without updating over time. The hash function of 
semi-supervised static BSPLH is trained at the beginning 
only, using both supervised and unsupervised information of 
the training set. Hash functions of BSPLH are also not 
updated over time.  

 

 
(a)1 class emerging                       (b) 3 classes emerging                    (c) 5 classes emerging 

 
(d) 1 class emerging                      (e) 3 classes emerging                     (f) 5 classes emerging 

Figure 3. Top 1% precision of ICHDS and the comparative hashing methods in experiments involving the emergence of new classes. 



 
 (a) 1 class emerging                      (b) 3 classes emerging                    (c) 5 classes emerging 

 
(d) 1 class emerging                       (e) 3 classes emerging                    (f) 5 classes emerging 

Figure 4. Top 100 precision of ICHDS and the comparative hashing methods in experiments involving the emergence of new classes.

 
(a)                                    (b)                                   (c) 

 
(d)                                    (e) 

Figure 5. Top 1% precision of ICHDS and the comparative hashing methods in experiments involving distribution drift. 

 
(a)                                    (b)                                    (c) 



 
(d)                                    (e) 

Figure 6. Top 100 precision of ICHDS and the comparative hashing methods in experiments involving distribution drift. 
 

Table 1 Experimental setting involving distribution drift.

T = 0 T > 0 Figure 

Images randomly selected from 20 superclasses construct the 

scenario of distribution drift. 
Each superclass has distribution drift. (a) 

Images randomly selected from 10 superclasses construct the 

scenario of distribution drift. 
Same as the setting of Figure (a). (b) 

Images randomly selected from 5 superclasses construct the 

scenario of distribution drift. 
Same as the setting of Figure (a). (c) 

Same as the setting of Figure (b). Only 6 superclasses have distribution drift. (d) 

Same as the setting of Figure (b). Only 3 superclasses have distribution drift. (e) 
 

Table 2 Average Top 1% precision of ICHDS and the comparative hashing methods in 11 dynamic data scenarios. 

Figure name LSH BSPLH OKH OSH ICH IBL ICHDS 

Figure 3 (a) 0.3608±0.0267 0.4006±0.0366 0.4021±0.0294 0.4201±0.0313 0.4358±0.0283 0.4953±0.0266 0.5105±0.0250 

Figure 3 (b) 0.3038±0.0683 0.3306±0.0847 0.3320±0.0741 0.3435±0.0746 0.3463±0.0732 0.3939±0.0717 0.4058±0.0715 

Figure 3 (c) 0.2523±0.0762 0.2855±0.1026 0.2764±0.0810 0.2913±0.0814 0.2887±0.0822 0.3309±0.0846 0.3589±0.1066 

Figure 3 (d) 0.6568±0.1025 0.5059±0.1919 0.6749±0.1210 0.7368±0.1052 0.6757±0.1286 0.7393±0.1242 0.7623±0.1927 

Figure 3 (e) 0.6475±0.1041 0.4706±0.1877 0.6831±0.1135 0.7326±0.1008 0.6839±0.1257 0.7321±0.1203 0.7620±0.1826 

Figure 3 (f) 0.6360±0.1018 0.4153±0.2011 0.6722±0.1128 0.7253±0.0997 0.6775±0.1170 0.7309±0.1138 0.7512±0.1785 

Figure 5 (a) 0.1103±0.0192 0.1159±0.0248 0.1157±0.0215 0.1298±0.0263 0.1292±0.0214 0.1376±0.0270 0.1413±0.0268 

Figure 5 (b) 0.1824±0.0294 0.1772±0.0358 0.1889±0.0298 0.2077±0.0349 0.2124±0.0288 0.2333±0.0336 0.2396±0.0293 

Figure 5 (c) 0.3822±0.0461 0.3941±0.0702 0.4188±0.0578 0.4395±0.0537 0.4739±0.0375 0.5143±0.0346 0.5428±0.0211 

Figure 5 (d) 0.2506±0.0280 0.2707±0.0311 0.2726±0.0291 0.2922±0.0358 0.3041±0.0195 0.3371±0.0255 0.3496±0.0108 

Figure 5 (e) 0.2690±0.0051 0.2652±0.0108 0.2845±0.0067 0.3077±0.0071 0.3159±0.0128 0.3548±0.0184 0.3754±0.0378 
 

4.2 Experiments Involving Distribution Drift 

In the dynamic data environment, the image 
distribution of existing classes may change. The data 
scenarios that simulate changes in the distribution of existing 
classes use the CIFAR-100 dataset. CIFAR-100 is a large 
dataset with 20 superclasses which divided into 100 
subclasses. Each of these 5 subclasses is classified as a 
superclass. The distribution and characteristic between the 5 
subclasses in a superclass are somewhat different. In actual 
situations, not all superclasses of images may have a 

distribution drift. Therefore, 5 kinds of data scenarios of 
distribution drift are simulated. The distribution of 
superclass data in the experiment varies from T = 0 to 20 
over time. The images of the subclasses in the superclasses 
change according to the ratio in [30]. Table 1 describes the 
experimental setting of Figures 5 and 6. Figures 5 and 6 
show the experimental results of the Top 1% precision and 
the Top 100 precision of the distribution drift, respectively. 

In a dynamic data environment, there are scenarios in 
which only the data distribution of existing classes changes 
and data of new classes does not emerge. Therefore, the 
semantic information learned in the early stage can still 



adapt to the new data environment changes. When the 
distribution drift occurs, the image retrieval performances of 
all hashing methods fluctuate significantly. In the presence 
of distribution drift, ICHDS is superior to all other methods. 
IBL and ICH methods, which continuously update the hash 
function with new data batch, take good results. Dynamic 
OKH and OSH that can update the hash function also take 
better image retrieval performance. Static unsupervised LSH 
and semi-supervised BSPLH using single-table training have 
the worst retrieval performance. Therefore, static hashing 
methods cannot adapt to the current changing data 
environment.   

When new data emerges, ICHDS not only considers the 
semantic information of data in the current batch, but also 
judges the semantic difference between data in the current 
batch and data in the old batch by clustering. Redundant data 
is no longer reused for training, which greatly reduces the 
difficulty of classifying new samples. The current data 
distribution is described by selecting representative data to 
improve image retrieval efficiency. Therefore, the retrieval 
performance of ICHDS is better than ICH. 

 In addition, we calculated the average Top 1% 
precision in 11 dynamic scenarios as shown in Table 2, in 
which the mean and standard deviation of the Top 1% 
precision value over all time steps are calculated. According 
to the average results of the Top 1% precision, ICHDS is 
superior to all state-of-the-art hashing methods. 

4.3 Parameter Selection Experiment 

In Eq.(5),  is a cluster-sensitive scale factor. 
Therefore, the experiment of parameter selection is mainly 
to find a suitable value of . In the Euclidean space, when 
the the ith image is very similar to the jth image, the 
Euclidean distance of the two images is smaller. The larger 

 is, the smaller the difference in the relationship matrix 
 will be. However, the size of the weights of all edges in 

dominant sets represents that the edge of the more similar 
images has a larger weight. This paper clusters samples in 
the same class to select representative samples. The 
Euclidean distances of the samples in the same class are not 
much different. Therefore, the difference of the relationship 
matrix  is small when . In the experimental 

parameter adjustment, the verification of the 5 values from 0 
to 2, which are 0.2, 0.4, 0.8, 1, and 2, respectively. In Figure 
7, the ICHDS1 to ICHDS5 in the experimental results 
correspond to the above five parameters, respectively. The 
experimental results show that  has a good effect 
between 0 and 1, and  is set in this paper. 

 
(a) Top 1% precision of ICHDS with different values of r. 

 
(b) Top 100 precision of ICHDS with different values of r. 

Figure 7. The experimental results of ICHDS with different values 
of r on MNIST dataset involving the emergence of 1 new class.  

5.  Conclusion 

In this paper, we propose a semi-supervised 
incremental image hashing method, i.e. ICHDS, to improve 
the accuracy and efficiency of image retrieval in large-scale 
dynamic environments. ICHDS can effectively solve the 
problem of concept drift that occurs in dynamic data 
environments, including the emergence of new classes and 
distribution drift of existing classes. In ICHDS, 
representative samples are selected by dominant sets 
clustering which can provide more comprehensive data 
distribution information of each class in image collections 
for the training of hash tables. Experimental results in a 
variety of data scenarios show that our method is better than 
existing dynamic hashing and static hashing methods.  

The selected representative samples are employed to 
train the new hash table in ICHDS. Moreover, weights of 
hash tables in multi-hashing system are calculated by their 
performance to the current data environment. It is important 
that the selected representative samples provide 
comprehensive distribution information for each class. 
Therefore, in future work more efficient algorithms for 
image selection will be studied in order to reduce training 
time and improve retrieval performance. It would make 
sense to design a more efficient weighting scheme to 
improve the stability of the ICHDS method. The proposed 
method can be further extended to various scenarios with 
dynamic environments, and the possibility of optimization 
during binary code learning is investigated. 
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