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University of Pittsburgh, 2021

In recent years, deep learning has shown tremendous success in different applications,

however these modes mostly need a large labeled dataset for training their parameters. In

this work, we aim to explore the potentials of efficient learning frameworks for training deep

models on different problems in the case of limited supervision or noisy labels.

For the image clustering problem, we introduce a new deep convolutional autoencoder

with an unsupervised learning framework. We employ a relative entropy minimization as the

clustering objective regularized by the frequency of cluster assignments and a reconstruction

loss.

In the case of noisy labels obtained by crowdsourcing platforms, we proposed a novel deep

hybrid model for sentiment analysis of text data like tweets based on noisy crowd labels. The

proposed model consists of a crowdsourcing aggregation model and a deep text autoencoder.

We combine these sub-models based on a probabilistic framework rather than a heuristic way,

and derive an efficient optimization algorithm to jointly solve the corresponding problem.

In order to improve the performance of unsupervised deep hash functions on image

similarity search in big datasets, we adopt generative adversarial networks to propose a

new deep image retrieval model, where the adversarial loss is employed as a data-dependent

regularization in our objective function.

We also introduce a balanced self-paced learning algorithm for training a GAN-based

model for image clustering, where the input samples are gradually included into training from

easy to difficult, while the diversity of selected samples from all clusters are also considered.

In addition, we explore adopting discriminative approaches for unsupervised visual rep-

resentation learning rather than the generative algorithms, such as maximizing the mutual

information between an input image and its representation and a contrastive loss for de-

creasing the distance between the representations of original and augmented image data.
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1.0 Introduction

In recent years, deep learning has shown impressive performance in wide range of ap-

plications, such as computer vision [78], natural language processing [26], social network

embedding [153], speech recognition [59], and even biological science [31]. The competence

of deep models is based on leaning hierarchical representations of data using scalable learning

methods. However, learning wide and deep sets of features in multi-layer neural networks

is a challenging task, since deep models are mostly prone to overfitting and getting stuck in

undesirable local minima in the training process. Usually a large labeled dataset is utilized

to train the parameters of deep models, but this is not a possible option in several practi-

cal problems. Several tricks and techniques are developed in the literature to alleviate this

issue such as dropout [61], normalization layers like batch normalization [67] and weight nor-

malization [134], non-saturating activation functions like rectified linear unit (ReLU) [103]

and leaky rectified linear unit (LReLU) [98], clever architectures like Inception model [144],

ResNet [56, 187] and DenseNet [65], and advanced optimization algorithms like Adam [74]

and AdaGrad [34]. However, these techniques are not sufficient to address the problem of

training deep models, where the training labeled data is scares. In this work, we propose

efficient learning frameworks for training deep models with limited supervision. We mainly

focus on image clustering, sentiment analysis and hashing functions problems as described

in the following sections.

1.1 Unsupervised Deep Image Clustering Autoencoder

Clustering is one of the essential active research topics in machine learning and data

mining, and has many different applications in various fields. The clustering problem has

been extensively studied in the literature, and numerous algorithms were introduced to train

clustering models without any supervisory signals. However, the current methods suffer

either from inflexible shallow models or unstable deep embedding functions [41, 180]. The

1



shallow methods cannot often capture the nonlinear nature of data due to their shallow

and linear embedding function, have difficulties in scaling to large datasets because of their

non-stochastic learning approach, and mostly degrades the results by using uncustomized

hand-crafted features. Although the deep models are able to model the nonlinearity of

data and efficiently deal with large-scale datasets, they are prone to getting stuck in bad

local minima on training of their models with huge complexity, since there is no supervised

information in the training process.

To address the mentioned challenging issues, we propose a new clustering algorithm,

called deep embedded regularized clustering (DEPICT ), which exploits the advantages of

both discriminative clustering methods and deep embedding models. DEPICT generally

consists of two main parts, a multinomial logistic regression (soft-max) layer stacked on

top of a multi-layer convolutional autoencoder. The soft-max layer along with the encoder

pathway can be considered as a discriminative clustering model, which is trained using

the relative entropy (KL divergence) minimization. We further add a regularization term

based on a prior distribution for the frequency of cluster assignments. The regularization

term penalizes unbalanced cluster assignments and prevents allocating clusters to outlier

samples. Moreover, we utilize the reconstruction loss function of autoencoder models as a

data-dependent regularization term for avoiding the overfitting issue. In order to benefit

from a joint learning framework for embedding and clustering, we simultaneously train all

of the encoder and decoder layers together along with the soft-max layer by summing up

the squared error reconstruction loss functions between the decoder and their corresponding

(clean) encoder layers and add them to the clustering loss function.

1.2 Sentiment Analysis via Deep Hybrid Text-Crowd Model

Recently rapidly growing use of social media has provided a huge source of public opin-

ions about different topics. Efficient mining of these opinions is very valuable for various

industries and businesses. However, exploring the sentiment of public opinions is a very

challenging task for automatic language models due to different variations in the texts, such
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as diverse contexts, genders of authors, writing styles and varied viewpoints. Crowdsourcing

platforms provide an efficient tool to solve this type of the problems by using the knowledge

of crowd workers in different tasks at low cost and time. Hence, the human skills in language

understanding can be used to interpret the sentiments of texts with different variations.

However, the collected labels via crowdsourcing are often noisy and inaccurate, because

crowd workers are usually inexpert in the assigned task. In order to address this issue, it

is common to collect multiple crowd labels for each sample to increase the credibility of the

estimated true labels. Several studies have proposed different models to aggregate the crowd

labels and estimate the potential true labels, which are also called truths [27, 22, 43]. But

these crowdsourcing aggregation models become drastically incompetent, when the number

of crowd labels per worker is not enough to train the reliability parameters of workers, or

a document dataset is extremely large that collecting crowd labels for all samples is not

practically feasible. In addition, crowdsourcing aggregation models do not utilize text data,

and only use crowd labels as the source of information (i.e. input data).

We introduce a new hybrid model for sentiment analysis, which utilizes both crowd la-

bels and text data. In particular, our proposed model, called CrowdDeepAE, consists of a

generative aggregation model for crowd labels and a deep autoencoder for text data. These

two sub-models are coupled in a probabilistic framework rather than a heuristic approach.

Using this probabilistic framework, we introduce a unified objective function that incorpo-

rates the interests of both sub-models. We further derive an efficient optimization algorithm

to solve the corresponding problem via an alternating approach, in which the parameters

are updated while the truths are assumed to be known, and the truths are estimated when

the parameters are fixed.

1.3 Unsupervised Deep Image retrieval Network

Image similarity search in big datasets has gained tremendous attentions in different

applications such as information retrieval, data mining and pattern recognition [156]. With

rapid growth of image data, it has become crucial to find compact and discriminative repre-
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sentations of images in huge datasets in order to have efficient storage and real-time matching

for millions of images. Hashing functions provide an effective solution for this problem by

attributing a binary code to each image, and consequently reducing the similarity search

between high dimensional images to calculating the Hamming distance between their binary

codes [47, 163]. Typically, hash functions are carefully designed to extract distinctive pat-

terns from images relevant to their semantic categorizes, while being robust to various image

transformations such as rotation, translation, scale, and lightning [93, 179, 66].

Generally, hash functions can be divided into supervised [94, 172, 51, 89] and unsuper-

vised methods [55, 163, 157, 58]. The supervised hashing methods [82, 32, 199, 179] showed

remarkable performance in representing input data with binary codes. Although, these deep

hash functions take advantages of deep learning models in representing images with dis-

criminative attributes, they require costly human-annotated labels to train their large set of

parameters. Thus, their performance is dramatically degraded by getting stuck in bad local

minima when there is not enough labeled data for training. The unsupervised hashing meth-

ods address this issue by providing learning frameworks without requiring any supervisory

signals. The unsupervised hashing methods either use shallow models with hand-crafted

features [17, 85, 3] as inputs, or employ deep architectures for obtaining both discriminative

features and binary hash codes together. However, the unsupervised shallow functions may

not capture the non-linear similarities between real-world images due to their low capacity.

They also suffer from hand-crafted features and dimension reductions techniques, which are

not robust to noise and image transformations.

We propose a new unsupervised deep hashing model, called HashGAN, which nor suffers

from shallow hash functions and hand-crafted features, neither needs the supervised pre-

training to have discriminative binary codes. Our framework jointly learns a hash function

with a generative adversarial network (GAN ). In particular, we tie the discriminator of the

GAN with the hash function, employing the adversarial loss function as a data-dependent

regularization term in training our deep hash function. Furthermore, we introduce a novel

loss function for hashing real images, minimizing the entropy of hash bits for each image,

maximizing the entropy of frequency of hash bits, improving the consistency of hash codes

against different image transformations, and providing independent hash bits. Moreover, we
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provide a collaborative loss function, which enforces the encoder to have the same binary

hash code for a synthesized image by the generator, as the binary input variable provided

to the generator while synthesizing the image.

1.4 Generative Adversarial Clustering Network

Clustering is one of the essential active research topics in computer vision and machine

learning communities with various applications. Clustering problem has been extensively

studied in the literature by introducing numerous algorithms with unsupervised learning

frameworks [177]. However, the existing methods that employ shallow or deep models suffer

from different issues. The shallow clustering models may not capture the nonlinear nature of

data due to their shallow and linear embedding functions, adversely affect their performance

by using inflexible hand-crafted features, and have difficulties in scaling to large datasets.

In contrast, the deep clustering methods have enough capacity to model the non-linear

and complex data, and are able to deal with large-scale datasets. But they are prone to the

overfitting issue leading to get stuck in bad local minima, since there is no reliable supervisory

signal for training their large number of parameters.
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To tackle these issues, we propose a generative adversarial clustering network, called

ClusterGAN, as a novel deep clustering model to address the aforementioned issues. Clus-

terGAN adopts the adversarial game in GAN for the clustering task, and employs an efficient

self-paced learning algorithm to boost its performance. Unlike the traditional GAN, Clus-

terGAN consists of three networks, a discriminator D, a generator G, and a clusterer C

(i.e. a clustering network). The generator and clusterer are both conditional generative

networks, where G : z → x̂ generates the realistic data samples given the latent variables

and C : x→ ẑ generates the discriminative latent variables given the real data. The discrim-

inator D accepts a joint distribution of samples and features (i.e. latent variables) as the

input, and tries to identify whether the paired samples belong to the generator (z, x̂) or the

clusterer (ẑ,x). Thus, training the generator and clusterer to fool the discriminator leads to

generating synthesized samples similar to real data and learning discriminative embedding

space in the clusterer similar to the generator latent variables.

Moreover, we introduce a novel clustering objective, which is directly applied on the

output of the clusterer given the real samples. The basic idea is to impose a block diagonal

constraint on the adjacency matrix of the real data. To do so, we first compute the similarity

values between real samples using the cosine similarity function applied on the clusterer

outputs. Then, a minimum entropy loss function is imposed to the similarity values to

push them towards 0 (i.e. dissimilar) or 1 (i.e. similar). However, the main challenge is

that the ground-truth similarities are unknown in unsupervised learning, which makes it

difficult to train a deep clustering model from the scratch. In order to tackle this issue, we

enhance the minimum entropy objective by utilizing a novel self-paced learning algorithm.

The self-paced learning algorithm initiates the training process with easy samples, and then

gradually takes more difficult samples into the training. In addition, we take the prior of

selected samples into consideration using an exclusive lasso regularization. This helps us to

select a more diverse set of samples in each training step, and prevents learning from easy

samples belonging only to a few clusters.
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1.5 Unsupervised Visual Representation Learning

The explosive growth of image data in the internet and social media has driven huge in-

terest in efficient unsupervised models that are able to find similar patterns among the data.

For instance, there are many studies on approximate nearest neighbor search (ANNS) algo-

rithms, which aim to provide efficient image similarity search on large-scale image datasets.

Hashing-based ANNS methods tackle this problem by representing image data with binary

codes, providing an effective solution for the similarity search and storage of millions of im-

ages [47, 163, 94, 156, 89]. Categorizing similar/dissimilar images into the same/different

sets is another essential task in machine learning and computer vision. This problem is ex-

tensively studied in the literature by introducing models that find discriminative boundaries

between different image categories [177, 96]. These models are required to extract semantic

features from image data related to their categories, and be robust to different image styles

caused by spatial/geometric transformations and color distortions.

Supervised deep models have shown remarkable performance in image classification

and retrieval by training their flexible mapping function using large sets of labeled data

[55, 163, 157, 56, 65, 145]. However, unsupervised deep hashing and clustering models gen-

erally lag behind their supervised counterparts on image data, since the lack of reliable

supervisory signals may lead to learning some arbitrary representations in deep models with

large numbers of free parameters. In order to address this problem, some studies employ aux-

iliary reconstruction or generative loss functions as additional regularizations [174, 101, 18].

However, these regularizations usually enforce the models to contain some unnecessary gen-

erative information that is not directly relevant to the required ability of discriminative

representations. Also the unsupervised deep models usually provide insignificant improve-

ments compared to their shallow counterparts, and sometimes need a variant of supervised

pretrainings to initialize their parameters [93, 66].

To address these issues, we propose a new unsupervised learning framework for deep

models in image retrieval and clustering tasks based on three loss functions, an adversarial

loss between three networks including a critic, a generator, and an encoder, a maximum

mutual information loss and a contrastive loss for the encoder. The adversarial loss enforces
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the generator to learn the conditional image distribution given a set of random content and

style latent variables, the encoder to map the input images to a set of content and style latent

representations, and the critic to distinguish its joint input data belonging to the generator or

encoder. The maximum mutual information loss aims to increase the correlation of between

images and their latent representations based on a Jensen–Shannon (i.e. JS) divergence in

a GAN-style sub-network. The contrastive loss tries to disentangle the content and style

representations by decreasing/increasing the distance between content features of an image

and its augmented variant/other images.

1.6 Contribution

We summarize our contribution as follows:

• Proposing a discriminative non-linear embedding subspace via the deep convolutional

autoencoder, that is trained with an end-to-end joint learning approach unifying the

clustering and embedding tasks and avoiding layer-wise pretraining;

• Introducing a hybrid crowd-text model for sentiment analysis, consisting of a generative

crowd aggregation model and a deep sentimental autoencoder, which are combined based

on a probabilistic framework;

• Proposing a novel framework for unsupervised hashing model by coupling a deep hash

function and a generative adversarial network.

• introduce a deep clustering model by adopting the generative adversarial network for

clustering and employing a novel balanced self-paced learning algorithm to gradually

include samples into training steps from easy to difficult while considering the diversity

of selected samples from all clusters.

• Proposing a novel unsupervised visual representation learning framework for training

deep models to map image data into disentangled content and style representations using

a generative adversarial loss and discriminative contrastive and mutual information loss

functions.
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2.0 Deep Clustering via Joint Convolutional Autoencoder Embedding and

Relative Entropy Minimizatione

2.1 Introduction

Clustering is one of the fundamental research topics in machine learning and computer

vision research, and it has gained significant attention for discriminative representation of

data points without any need for supervisory signals. The clustering problem has been

extensively studied in various applications; however, the performance of standard clustering

algorithms is adversely affected when dealing with high-dimensional data, and their time

complexity dramatically increases when working with large-scale datasets. Tackling the

curse of dimensionality, previous studies often initially project data into a low-dimensional

manifold, and then cluster the embedded data in this new subspace [126, 146, 160]. Handling

large-scale datasets, there are also several studies which select only a subset of data points

to accelerate the clustering process [138, 97, 90].

However, dealing with real-world image data, existing clustering algorithms suffer from

different issues: 1) Using inflexible hand-crafted features, which do not depend on the in-

put data distribution; 2) Using shallow and linear embedding functions, which are not able

to capture the non-linear nature of data; 3) Non-joint embedding and clustering processes,

which do not result in an optimal embedding subspace for clustering; 4) Complicated clus-

tering algorithms that require tuning the hyper-parameters using labeled data, which is not

feasible in real-world clustering tasks.

To address the mentioned challenging issues, we propose a new clustering algorithm,

called deep embedded regularized clustering (DEPICT ), which exploits the advantages of

both discriminative clustering methods and deep embedding models. DEPICT generally

consists of two main parts, a multinomial logistic regression (soft-max) layer stacked on

top of a multi-layer convolutional autoencoder. The soft-max layer along with the encoder

pathway can be considered as a discriminative clustering model, which is trained using the

relative entropy (KL divergence) minimization. We further add a regularization term based
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(a) Raw Data (b) NonJoint DEPICT (c) Joint DEPICT

Figure 1: Visualization to show the discriminative capability of embedding subspaces using

MNIST-test data. (a) The space of raw data. (b) The embedding subspace of non-joint

DEPICT using standard stacked denoising autoencoder (SdA). (c) The embedding subspace

of joint DEPICT using our joint learning approach (MdA).

on a prior distribution for the frequency of cluster assignments. The regularization term

penalizes unbalanced cluster assignments and prevents allocating clusters to outlier samples.

Although this deep clustering model is flexible enough to discriminate the complex real-

world input data, it can easily get stuck in non-optimal local minima during training and

result in undesirable cluster assignments. In order to avoid overfitting the deep clustering

model to spurious data correlations, we utilize the reconstruction loss function of autoencoder

models as a data-dependent regularization term for training parameters.

In order to benefit from a joint learning framework for embedding and clustering, we

introduce a unified objective function including our clustering and auxiliary reconstruction

loss functions. We then employ an alternating approach to efficiently update the parameters

and estimate the cluster assignments. It is worth mentioning that in the standard learning

approach for training a multi-layer autoencoder, the encoder and decoder parameters are

first pretrained layer-wise using the reconstruction loss, and the encoder parameters are

then fine-tuned using the objective function of the main task [152]. However, it has been

argued that the non-joint fine-tuning step may overwrite the encoder parameters entirely

and consequently cancel out the benefit of the layer-wise pretraining step [194]. To avoid
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this problem and achieve optimal joint learning results, we simultaneously train all of the

encoder and decoder layers together along with the soft-max layer. To do so, we sum up

the squared error reconstruction loss functions between the decoder and their corresponding

(clean) encoder layers and add them to the clustering loss function.

Figure 1 demonstrates the importance of our joint learning strategy by comparing differ-

ent data representations of MNIST-test data points [83] using principle component analysis

(PCA) visualization. The first figure indicates the raw data representation; The second one

shows the data points in the embedding subspace of non-joint DEPICT, in which the model

is trained using the standard layer-wise stacked denoising autoencoder (SdA); The third

one visualizes the data points in the embedding subspace of joint DEPICT, in which the

model is trained using our multi-layer denoising autoencoder learning approach (MdA). As

shown, joint DEPICT using MdA learning approach provides a significantly more discrim-

inative embedding subspace compared to non-joint DEPICT using standard SdA learning

approach.

Moreover, experimental results show that DEPICT achieves superior or competitive re-

sults compared to the state-of-the-art algorithms on the image benchmark datasets while

having faster running times. In addition, we compared different learning strategies for DE-

PICT, and confirm that our joint learning approach has the best results. It should also be

noted that DEPICT does not require any hyper-parameter tuning using supervisory sig-

nals, and consequently is a better candidate for the real-world clustering tasks. Thus, we

summarize the advantages of DEPICT as:

• Providing a discriminative non-linear embedding subspace via the deep convolutional

autoencoder;

• Introducing an end-to-end joint learning approach, which unifies the clustering and em-

bedding tasks, and avoids layer-wise pretraining;

• Achieving superior or competitive clustering results on high-dimensional and large-scale

datasets with no need for hyper-parameter tuning using labeled data.
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2.2 Related Works

There is a large number of clustering algorithms in literature, which can be grouped

into different perspectives, such as hierarchical [57, 167, 191], centroid-based [95, 11, 108, 6],

graph-based [137, 109, 159, 106], sequential (temporal) [72, 135, 131, 198, 128], regression

model based [38, 155], and subspace clustering models [1, 70, 37, 107]. In another sense,

they are generally divided into two subcategories, generative and discriminative clustering

algorithms. The generative algorithms like K-means and Gaussian mixture model [12] ex-

plicitly represent the clusters using geometric properties of the feature space, and model

the categories via the statistical distributions of input data. Unlike the generative clustering

algorithms, the discriminative methods directly identify the categories using their separating

hyperplanes regardless of data distribution. Information theoretic [86, 7, 76], max-margin

[193, 176], and spectral graph [105] algorithms are examples of discriminative clustering mod-

els. Generally it has been argued that the discriminative models often have better results

compared to their generative counterparts, since they have fewer assumptions about the data

distribution and directly separate the clusters, but their training can suffer from overfitting

or getting stuck in undesirable local minima [76, 105, 121]. Our DEPICT algorithm is also

a discriminative clustering model, but it benefits from the auxiliary reconstruction task of

autoencoder to alleviate this issues in training of our discriminative clustering algorithm.

There are also several studies regarding the combination of clustering with feature embed-

ding learning. Ye et al. introduced a kernelized K-means algorithm, denoted by DisKmeans,

where embedding to a lower dimensional subspace via linear discriminant analysis (LDA) is

jointly learned with K-means cluster assignments [182]. [154] proposed to a new method

to simultaneously conduct both clustering and feature embedding/selection tasks to achieve

better performance. But these models suffer from having shallow and linear embedding

functions, which cannot represent the non-linearity of real-world data.

A joint learning framework for updating code books and estimating image clusters was

proposed in [175] while SIFT features are used as input data. A deep structure, named

TAGnet was introduced in [160], where two layers of sparse coding followed by a clustering

algorithm are trained with an alternating learning approach. Similar work is presented in
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[161] that formulates a joint optimization framework for discriminative clustering and feature

extraction using sparse coding. However, the inference complexity of sparse coding forces

the model in [161] to reduce the dimension of input data with PCA and the model in [160]

to use an approximate solution. Hand-crafted features and dimension reduction techniques

degrade the clustering performance by neglecting the distribution of input data.

Tian et al. learned a non-linear embedding of the affinity graph using a stacked au-

toencoder, and then obtained the clusters in the embedding subspace via K-means [146].

Trigeorgis et al. extended semi non-negative matrix factorization (semi-NMF ) to stacked

multi-layer (deep) semi-NMF to capture the abstract information in the top layer. After-

wards, they run K-means over the embedding subspace for cluster assignments [148]. More

recently, Xie et al. employed denoising stacked autoencoder learning approach, and first

pretrained the model layer-wise and then fine-tuned the encoder pathway stacked by a clus-

tering algorithm using Kullback-Leibler divergence minimization [174]. Unlike these models

that require layer-wise pretraining as well as non-joint embedding and clustering learning,

DEPICT utilizes an end-to-end optimization for training all network layers simultaneously

using the unified clustering and reconstruction loss functions.

Yang et al. introduced a new clustering model, named JULE, based on a recurrent

framework, where data is represented via a convolutional neural network and embedded

data is iteratively clustered using an agglomerative clustering algorithm [180]. They derived

a unified loss function consisting of the merging process for agglomerative clustering and

updating the parameters of the deep representation. While JULE achieved good results

using the joint learning approach, it requires tuning of a large number of hyper-parameters,

which is not practical in real-world clustering tasks. In contrast, our model does not need

any supervisory signals for hyper-parameter tuning.

2.3 Deep Embedded Regularized Clustering

In this section, we first introduce the clustering objective function and the corresponding

optimization algorithm, which alternates between estimating the cluster assignments and
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updating model parameters. Afterwards, we show the architecture of DEPICT and provide

the joint learning framework to simultaneously train all network layers using the unified

clustering and reconstruction loss functions.

2.3.1 DEPICT Algorithm

Let’s consider the clustering task of N samples, X = [x1, ...,xn], into K categories, where

each sample xi ∈ Rdx . Using the embedding function, ϕW : X → Z, we are able to map raw

samples into the embedding subspace Z = [z1, ..., zn], where each zi ∈ Rdz has a much lower

dimension compared to the input data (i.e. dz � dx). Given the embedded features, we use

a multinomial logistic regression (soft-max) function fθ : Z → Y to predict the probabilistic

cluster assignments as follows.

pik = P (yi = k|zi,Θ) =
exp(θTk zi)
K∑
k′=1

exp(θTk′zi)

, (2.1)

where Θ = [θ1, ...,θk] ∈ Rdz×K are the soft-max function parameters, and pik indicates the

probability of the i-th sample belonging to the k-th cluster.

In order to define our clustering objective function, we employ an auxiliary target variable

Q to refine the model predictions iteratively. To do so, we first use Kullback-Leibler (KL)

divergence to decrease the distance between the model prediction P and the target variable

Q.

L= KL(Q‖P) =
1

N

N∑
i=1

K∑
k=1

qik log
qik
pik

, (2.2)

In order to avoid degenerate solutions, which allocate most of the samples to a few clusters

or assign a cluster to outlier samples, we aim to impose a regularization term to the target

variable. To this end, we first define the empirical label distribution of target variables as:

fk = P (y = k) =
1

N

∑
i

qik , (2.3)
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where fk can be considered as the soft frequency of cluster assignments in the target distri-

bution. Using this empirical distribution, we are able to enforce our preference for having

balanced assignments by adding the following KL divergence to the loss function.

L= KL(Q‖P) +KL(f‖u) (2.4)

=
[ 1

N

N∑
i=1

K∑
k=1

qik log
qik
pik

]
+
[ 1

N

K∑
k=1

fk log
fk
uk

]
=

1

N

N∑
i=1

K∑
k=1

qik log
qik
pik

+ qik log
fk
uk
,

where u is the uniform prior for the empirical label distribution. While the first term in

the objective minimizes the distance between the target and model prediction distributions,

the second term balances the frequency of clusters in the target variables. Utilizing the

balanced target variables, we can force the model to have more balanced predictions (cluster

assignments) P indirectly. It is also simple to change the prior from the uniform distribution

to any arbitrary distribution in the objective function if there is any extra knowledge about

the frequency of clusters.

An alternating learning approach is utilized to optimize the objective function. Using this

approach, we estimate the target variables Q via fixed parameters (expectation step), and

update the parameters while the target variables Q are assumed to be known (maximization

step). The problem to infer the target variable Q has the following objective:

min
Q

1

N

N∑
i=1

K∑
k=1

qik log
qik
pik

+ qik log
fk
uk
, (2.5)

where the target variables are constrained to
∑

k qik = 1. This problem can be solved using

first order methods, such as gradient descent, projected gradient descent, and Nesterov

optimal method [104], which only require the objective function value and its (sub)gradient

at each iteration. In the following equation, we show the partial derivative of the objective

function with respect to the target variables.

∂L

∂qik
∝ log

(qikfk
pik

)
+

qik
N∑
i′=1

qi′k

+ 1 , (2.6)

Investigating this problem more carefully, we approximate the gradient in Eq.(4.5) by re-

moving the second term, since the number of samples N is often big enough to ignore the
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second term. Setting the gradient equal to zero, we are now able to compute the closed form

solution for Q accordingly.

qik =
pik/(

∑
i′ pi′k)

1
2∑

k′
pik′/(

∑
i′ pi′k′)

1
2

, (2.7)

For the maximization step, we update the network parameters ψ = {Θ,W} using the

estimated target variables with the following objective function.

min
ψ
− 1

N

N∑
i=1

K∑
k=1

qik log pik , (2.8)

Interestingly, this problem can be considered as a standard cross entropy loss function for

classification tasks, and the parameters of soft-max layer Θ and embedding function W can

be efficiently updated by backpropagating the error.
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Figure 2: Architecture of DEPICT for CMU-PIE dataset. DEPICT consists of a soft-max

layer stacked on top of a multi-layer convolutional autoencoder. In order to illustrate the joint

learning framework, we consider the following four pathways for DEPICT : Noisy (corrupted)

encoder, Decoder, Clean encoder and Soft-max layer. The clustering loss function, LE, is

applied on the noisy pathway, and the reconstruction loss functions, L2, are between the

decoder and clean encoder layers. The output size of convolutional layers, kernel sizes,

strides (S), paddings (P) and crops (C) are also shown.

17



2.3.2 DEPICT Architecture

In this section, we extend our general clustering loss function using a denoising autoen-

coder. The deep embedding function is useful for capturing the non-linear nature of input

data; However, it may overfit to spurious data correlations and get stuck in undesirable

local minima during training. To avoid this overfitting, we employ autoencoder structures

and use the reconstruction loss function as a data-dependent regularization for training the

parameters. Therefore, we design DEPICT to consist of a soft-max layer stacked on top

of a multi-layer convolutional autoencoder. Due to the promising performance of strided

convolutional layers in [120, 184], we employ convolutional layers in our encoder and strided

convolutional layers in the decoder pathways, and avoid deterministic spatial pooling layers

(like max-pooling). Strided convolutional layers allow the network to learn its own spatial

upsampling, providing a better generation capability.

Unlike the standard learning approach for denoising autoencoders, which contains layer-

wise pretraining and then fine-tuning, we simultaneously learn all of the autoencoder and

soft-max layers. As shown in Figure 2, DEPICT consists of the following components:

1) Corrupted feedforward (encoder) pathway maps the noisy input data into the embedding

subspace using a few convolutional layers followed by a fully connected layer. The following

equation indicates the output of each layer in the noisy encoder pathway.

z̃l = Dropout
[
g(Wl

ez̃
l−1)
]
, (2.9)

where z̃l are the noisy features of the l-th layer, Dropout is a stochastic mask function that

randomly sets a subset of its inputs to zero [143], g is the activation function of convolutional

or fully connected layers, and Wl
e indicates the weights of the l-th layer in the encoder. Note

that the first layer features, z̃0, are equal to the noisy input data, x̃.

2) Followed by the corrupted encoder, the decoder pathway reconstructs the input data

through a fully connected and multiple strided convolutional layers as follows,

ẑl−1 = g(Wl
dẑ
l) , (2.10)

where ẑl is the l-th reconstruction layer output, and Wl
d shows the weights for the l-th layer

of the decoder. Note that input reconstruction, x̂, is equal to ẑ0.
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3) Clean feedforward (encoder) pathway shares its weights with the corrupted encoder, and

infers the clean embedded features. The following equation shows the outputs of the clean

encoder, which are used in the reconstruction loss functions and obtaining the final cluster

assignments.

zl = g(Wl
ez
l−1) , (2.11)

where zl is the clean output of the l-th layer in the encoder. Consider the first layer features

z0 equal to input data x.

4) Given the top layer of the corrupted and clean encoder pathways as the embedding

subspace, the soft-max layer obtains the cluster assignments using Eq.( C.2).

Note that we compute target variables Q using the clean pathway, and model prediction

P̃ via the corrupted pathway. Hence, the clustering loss function KL(Q‖P̃) forces the model

to have invariant features with respect to noise. In other words, the model is assumed to

have a dual role: a clean model, which is used to compute the more accurate target variables;

and a noisy model, which is trained to achieve noise-invariant predictions.

As a crucial point, DEPICT algorithm provides a joint learning framework that optimizes

the soft-max and autoencoder parameters together.

min
ψ
− 1

N

N∑
i=1

K∑
k=1

qik log p̃ik +
1

N

N∑
i=1

L−1∑
l=0

1

|zli|
‖zli − ẑli‖2

2 , (2.12)

where |zli| is the output size of the l-th hidden layer (input for l = 0), and L is the depth of

the autoencoder model.

The benefit of joint learning frameworks for training multi-layer autoencoders is also

reported in semi-supervised classification tasks [122, 194]. However, DEPICT is different

from previous studies, since it is designed for the unsupervised clustering task, it also does

not require max-pooling switches used in stacked what-where autoencoder (SWWAE) [194],

and lateral (skip) connections between encoder and decoder layers used in ladder network

[122]. Algorithm 1 shows a brief description of DEPICT algorithm.
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Algorithm 1: DEPICT Algorithm

1 Initialize Q using a clustering algorithm

2 while not converged do

3 min
ψ
− 1
N

∑
ik

qik log p̃ik + 1
N

∑
il

1
|zli|
‖zli − ẑli‖2

2

4 p
(t)
ik ∝ exp(θTk zLi )

5 q
(t)
ik ∝ pik/(

∑
i′ pi′k)

1
2

6 end

2.4 Experiments

In this section, we first evaluate DEPICT 1 in comparison with state-of-the-art clustering

methods on several benchmark image datasets. Then, the running speed of the best cluster-

ing models are compared. Moreover, we examine different learning approaches for training

DEPICT. Finally, we analyze the performance of DEPICT model on semi-supervised clas-

sification tasks.

Datasets: In order to show that DEPICT works well with various kinds of datasets, we

have chosen the following handwritten digit and face image datasets. Considering that

clustering tasks are fully unsupervised, we concatenate the training and testing samples

when applicable. MNIST-full : A dataset containing a total of 70,000 handwritten digits

with 60,000 training and 10,000 testing samples, each being a 32 by 32 monochrome image

[83]. MNIST-test : A dataset which only consists of the testing part of MNIST-full data.

USPS : It is a handwritten digits dataset from the USPS postal service, containing 11,000

samples of 16 by 16 images. CMU-PIE : A dataset including 32 by 32 face images of 68

people with 4 different expressions [139]. Youtube-Face (YTF): Following [180], we choose

the first 41 subjects of YTF dataset. Faces inside images are first cropped and then resized

to 55 by 55 sizes [168]. FRGC : Using the 20 random selected subjects in [180] from the

original dataset, we collect 2,462 face images. Similarly, we first crop the face regions and

resize them into 32 by 32 images. Table 10 provides a brief description of the datasets.

1Our code is available in https://github.com/herandy/DEPICT
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Table 1: Dataset Descriptions

Dataset # Samples # Classes # Dimensions

MNIST-full 70,000 10 1×28×28
MNIST-test 10,000 10 1×28×28
USPS 11,000 10 1×16×16
FRGC 2,462 20 3×32×32
YTF 10,000 41 3×55×55
CMU-PIE 2,856 68 1×32×32

Clustering Metrics: We have used 2 of the most popular evaluation criteria widely used

for clustering algorithms, accuracy (ACC) and normalized mutual information (NMI). The

best mapping between cluster assignments and true labels is computed using the Hungarian

algorithm [79] to measure accuracy. NMI calculates the normalized measure of similarity

between two labels of the same data [178]. Results of NMI do not change by permutations of

clusters (classes), and they are normalized to have [0, 1] range, with 0 meaning no correlation

and 1 exhibiting perfect correlation.
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Table 2: Clustering performance of different algorithms on image datasets based on accuracy

(ACC) and normalized mutual information (NMI). The numbers of tuned hyper-parameters

(# tuned HPs) using the supervisory signals are also shown for each algorithm. The results

of alternative models are reported from original projects, except the ones marked by (∗) on

top, which are obtained by us running the released code. We put dash marks (-) for the

results that are not practical to obtain.

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE # tuned
HPsNMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means 0.500∗0.534∗ 0.501∗0.547∗ 0.450∗0.460∗ 0.287∗0.243∗ 0.776∗0.601∗ 0.432∗0.223∗ 0
N-Cuts 0.411 0.327 0.753 0.304 0.675 0.314 0.285 0.235 0.742 0.536 0.411 0.155 0
SC-ST 0.416 0.311 0.756 0.454 0.726 0.308 0.431 0.358 0.620 0.290 0.581 0.293 0
SC-LS 0.706 0.714 0.756 0.740 0.681 0.659 0.550 0.407 0.759 0.544 0.788 0.549 0
AC-GDL 0.017 0.113 0.844 0.933 0.824 0.867 0.351 0.266 0.622 0.430 0.934 0.842 1
AC-PIC 0.017 0.115 0.853 0.920 0.840 0.855 0.415 0.320 0.697 0.472 0.902 0.797 0
SEC 0.779∗0.804∗ 0.790∗0.815∗ 0.511∗0.544∗ - - - - - - 1
LDMGI 0.802∗0.842∗ 0.811∗0.847∗ 0.563∗0.580∗ - - - - - - 1

NMF-D 0.152∗0.175∗ 0.241∗0.250∗ 0.287∗0.382∗ 0.259∗0.274∗ 0.562∗0.536∗ 0.920∗0.810∗ 0
TSC-D 0.651 0.692 - - - - - - - - - - 2
DEC 0.816∗0.844∗ 0.827∗0.859∗ 0.586∗0.619∗ 0.505∗0.378∗ 0.446∗0.371∗ 0.924∗0.801∗ 1
JULE-SF 0.906 0.959 0.876 0.940 0.858 0.922 0.566 0.461 0.8480.684 0.984 0.980 3
JULE-RC 0.913 0.964 0.915 0.961 0.913 0.950 0.574 0.461 0.8480.684 1.00 1.00 3

DEPICT 0.9170.965 0.9150.963 0.9270.964 0.6100.470 0.802 0.621 0.974 0.883 0
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2.4.1 Evaluation of Clustering Algorithm

Alternative Models: We compare our clustering model, DEPICT, with several baseline

and state-of-the-art clustering algorithms, including K-means, normalized cuts (N-Cuts)

[137], self-tuning spectral clustering (SC-ST ) [188], large-scale spectral clustering (SC-LS )

[23], graph degree linkage-based agglomerative clustering (AC-GDL) [191], agglomerative

clustering via path integral (AC-PIC ) [192], spectral embedded clustering (SEC ) [110], local

discriminant models and global integration (LDMGI ) [181], NMF with deep model (NMF-

D) [148], task-specific clustering with deep model (TSC-D) [160], deep embedded clustering

(DEC ) [174], and joint unsupervised learning (JULE ) [180].

Implementation Details: We use a common architecture for DEPICT and avoid tuning

any hyper-parameters using the labeled data in order to provide a practical algorithm for

real-world clustering tasks. For all datasets, we consider two convolutional layers followed by

a fully connected layer in encoder and decoder pathways. While for all convolutional layers,

the feature map size is 50 and the kernel size is about 5×5, the dimension of the embedding

subspace is set equal to the number of clusters in each dataset. We also pick the proper

stride, padding and crop to have an output size of about 10× 10 in the second convolutional

layer. Inspired by [120], we consider leaky rectified (leaky RELU) non-linearity [98] as the

activation function of convolutional and fully connected layers, except in the last layer of

encoder and first layer of decoder, which have Tanh non-linearity functions. Consequently,

we normalize the image intensities to be in the range of [−1, 1]. Moreover, we set the

learning rate and dropout to 10−4 and 0.1 respectively, adopt adam as our optimization

method with the default hyper-parameters β1 = 0.9, β2 = 0.999, ε = 1e − 08 [74]. The

weights of convolutional and fully connected layers are all initialized by Xavier approach

[46]. Since the clustering assignments in the first iterations are random and not reliable

for clustering loss, we first train DEPICT without clustering loss function for a while, then

initialize the clustering assignment qik by clustering the embedding subspace features via

simple algorithms like K-means or AC-PIC. More details about architecture of our networks

are represented in Appendix A.1.

Quantitative Comparison: We run DEPICT and other clustering methods on each
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dataset. We followed the implementation details for DEPICT and report the average results

from 5 runs. For the rest, we present the best reported results either from their original

papers or from [180]. For unreported results on specific datasets, we run the released code

with hyper-parameters mentioned in the original papers, these results are marked by (∗)

on top. But, when the code is not publicly available, or running the released code is not

practical, we put dash marks (-) instead of the corresponding results. Moreover, we mention

the number of hyper-parameters that are tuned using supervisory signals (labeled data) for

each algorithm. Note that this number only shows the quantity of hyper-parameters, which

are set differently for various datasets for better performance.

Table 2 reports the clustering metrics, normalized mutual information (NMI) and accu-

racy (ACC), of the algorithms on the aforementioned datasets. As shown, DEPICT outper-

forms other algorithms on four datasets and achieves competitive results on the remaining

two. It should be noted that we think hyper-parameter tuning using supervisory signals is

not feasible in real-world clustering tasks, and hence DEPICT is a significantly better clus-

tering algorithm compared to the alternative models in practice. For example, DEC, SEC,

and LDMGI report their best results by tuning one hyper-parameter over nine different

options, and JULE-SF and JULE-RC achieve their good performance by tweaking several

hyper-parameters over various datasets. However, we do not tune any hyper-parameters

for DEPICT using the labeled data and only report the result with the same (default)

hyper-parameters for all datasets.

2.4.2 Running Time Comparison

In order to evaluate the efficiency of our clustering algorithm in dealing with large-scale

and high dimensional data, we compare the running speed of DEPICT with its competing

algorithms, JULE-SF and JULE-RC. Moreover, the fast versions of JULE-SF and JULE-

RC are also evaluated. Note that JULE-SF(fast) and JULE-RC (fast) both require tuning

one extra hyper-parameter for each dataset to achieve results similar to the original JULE

algorithms in Table 2 [180]. We run DEPICT and the released code for JULE algorithms2

2https://github.com/jwyang/JULE-Torch
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Figure 3: Running time comparison of DEPICT and JULE clustering algorithms on image

datasets.

on a machine with one Titan X pascal GPU and a Xeon E5-2699 CPU.

Figure 3 illustrates the running time for DEPICT and JULE algorithms on all datasets.

Note that running times of JULE-SF and JULE-RC are shown linearly from 0 to 30,000

and logarithmically for larger values for the sake of readability. In total, JULE-RC, JULE-

SF, JULE-RC (fast), JULE-SF (fast) and DEPICT take 66.1, 35.5, 11.0, 6.6 and 4.7 hours

respectively to run over all datasets. While all algorithms have approximately similar running

times on small datasets (FRGC and CMU-PIE ), when dealing with the large-scale and high-

dimensional datasets (MNIST-full and YTF ), DEPICT almost shows a linear increase in the

running time, but the running times of original JULE algorithms dramatically grow with the

size and number of input data. This outcome again emphasizes the practicality of DEPICT

for real-world clustering tasks.

2.4.3 Evaluation of Learning Approach

In order to evaluate our joint learning approach, we compare several strategies for training

DEPICT. For training a multi-layer convolutional autoencoder, we analyze the following

three approaches : 1) Standard stacked denoising autoencoder (SdA), in which the model

is first pretrained using the reconstruction loss function in a layer-wise manner, and the
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Table 3: Clustering performance of different learning approaches, including SdA, RdA and

MdA, for training DEPICT and Deep-ConvAE+AC-PIC models.

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE
NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Deep-ConvAE
+

AC-PIC

SdA 0.255 0.348 0.313 0.345 0.223 0.290 0.120 0.230 0.414 0.302 0.354 0.266
RdA 0.615 0.455 0.859 0.900 0.886 0.866 0.443 0.363 0.597 0.425 0.912 0.817
MdA 0.729 0.506 0.876 0.942 0.906 0.878 0.583 0.427 0.640 0.448 0.931 0.883

DEPICT
SdA 0.365 0.427 0.353 0.390 0.328 0.412 0.211 0.300 0.414 0.302 0.354 0.266
RdA 0.808 0.677 0.899 0.950 0.901 0.923 0.551 0.444 0.652 0.450 0.951 0.926
MdA 0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883

encoder pathway is then fine-tuned using the clustering objective function [152]. 2) Another

approach (RdA) is suggested in [174] to improve the SdA learning approach, in which all of

the autoencoder layers are retrained after the pretraining step, only using the reconstruction

of input layer while data is not corrupted by noise. The fine-tuning step is also done after

the retraining step. 3) Our learning approach (MdA), in which the whole model is trained

simultaneously using the joint reconstruction loss functions from all layers along with the

clustering objective function.

Furthermore, we also examine the effect of clustering loss (through error back-prop) in

constructing the embedding subspace. To do so, we train a similar multi-layer convolutional

autoencoder (Deep-ConvAE ) only using the reconstruction loss function to generate the

embedding subspace. Then, we run the best shallow clustering algorithm (AC-PIC ) on the

embedded data. Hence, this model (Deep-ConvAE+AC-PIC ) differs from DEPICT in the

sense that its embedding subspace is only constructed using the reconstruction loss and does

not involve the clustering loss.

Table 8 indicates the results of DEPICT and Deep-ConvAE+AC-PIC when using the

different learning approaches. As expected, DEPICT trained by our joint learning approach

(MdA) consistently outperforms the other alternatives on all datasets. Interestingly, MdA

learning approach shows promising results for Deep-ConvAE+AC-PIC model, where only

reconstruction losses are used to train the embedding subspace. Thus, our learning approach

is an efficient strategy for training autoencoder models due to its superior results and fast
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end-to-end training.

2.4.4 Semi-Supervised Classification Performance

Representation learning in an unsupervised manner or using a small number of labeled

data has recently attracted great attention. Due to the potential of our model in learning a

discriminative embedding subspace, we evaluate DEPICT in a semi-supervised classification

task. Following the semi-supervised experiment settings [122, 194], we train our model using

a small random subset of MNIST-training dataset as labeled data and the remaining as

unlabeled data. The classification error of DEPICT is then computed using the MNIST-

test dataset, which is not seen during training. Compared to our unsupervised learning

approach, we only utilize the clusters corresponding to each labeled data in training process.

In particular, only for labeled data, the cluster labels (assignments) are set using the best

map technique from the original classification labels once, and then they will be fixed during

the training step.

Table 4 shows the error results for several semi-supervised classification models using

different numbers of labeled data. Surprisingly, DEPICT achieves comparable results with

the state-of-the-art, despite the fact that the semi-supervised classification models use 10,000

validation data to tune their hyper-parameters, DEPICT only employs the labeled training

data (e.g. 100) and does not tune any hyper-parameters. Although DEPICT is not mainly

designed for classification tasks, it outperforms several models including SWWAE [194],

M1+M2 [75], and AtlasRBF [118], and has comparable results with the complicated Ladder

network [122]. These results further confirm the discriminative quality of the embedding

features of DEPICT.

2.5 Conclusion

In this paper, we proposed a new deep clustering model, DEPICT, consisting of a soft-

max layer stacked on top of a multi-layer convolutional autoencoder. We employed a reg-
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Table 4: Comparison of DEPICT and several semi-supervised classification models in

MNIST dataset with different numbers of labeled data.

Model 100 1000 3000

T-SVM [149] 16.81 5.38 3.45
CAE [125] 13.47 4.77 3.22
MTC [124] 12.03 3.64 2.57
PL-DAE [84] 10.49 3.46 2.69
AtlasRBF [118] 8.10 3.68 -
M1+M2 [75] 3.33±0.14 2.40±0.05 2.18±0.04
SWWAE [194] 8.71±0.34 2.83±0.10 2.10±0.22
Ladder [122] 1.06±0.37 0.84±0.08 -

DEPICT 2.65±0.35 2.10±0.11 1.91±0.06

ularized relative entropy loss function for clustering, which leads to balanced cluster as-

signments. Adopting our autoencoder reconstruction loss function enhanced the embedding

learning. Furthermore, a joint learning framework was introduced to train all network layers

simultaneously and avoid layer-wise pretraining. Experimental results showed that DEPICT

is a good candidate for real-world clustering tasks, since it achieved superior or competitive

results compared to alternative methods while having faster running speed and not needing

hyper-parameter tuning. Efficiency of our joint learning approach was also confirmed in

clustering and semi-supervised classification tasks.
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3.0 Sentiment Analysis via Deep Hybrid Textual-Crowd Learning Model

3.1 Introduction

Recently rapidly growing use of social media has provided a huge source of public opinions

about different topics. Efficient mining of these opinions is very valuable for various industries

and businesses. For instance, hotels, airlines, lenders, banks and even politicians utilize these

data to find new costumers, target new products, analyze the personality of clients and make

better decisions. However, exploring the sentiment of public opinions is a very challenging

task for automatic language models due to different variations in the texts, such as diverse

contexts, genders of authors, writing styles and varied viewpoints.

Crowdsourcing platforms like Amazon Mechanical Turk1 provide an efficient tool to solve

this type of the problems by using the knowledge of crowd workers in different tasks at

low cost and time. Hence, the human skills in language understanding can be used to

interpret the sentiments of texts with different variations. However, the collected labels via

crowdsourcing are often noisy and inaccurate, because crowd workers are usually inexpert

in the assigned task. In order to address this issue, it is common to collect multiple crowd

labels for each sample to increase the credibility of the estimated true labels. Several studies

have proposed different models to aggregate the crowd labels and estimate the potential true

labels, which are also called truths [27, 22, 165, 196, 43]. But these crowdsourcing aggregation

models become drastically incompetent, when the number of crowd labels per worker is not

enough to train the reliability parameters of workers, or a document dataset is extremely

large that collecting crowd labels for all samples is not practically feasible. In addition,

crowdsourcing aggregation models do not utilize text data, and only use crowd labels as the

source of information (i.e. input data).

In this project, we propose a new hybrid model for sentiment analysis, which utilizes

both crowd labels and text data. In particular, our proposed model, called CrowdDeepAE,

consists of a generative aggregation model for crowd labels and a deep autoencoder for text

1https://www.mturk.com/
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(a) MV-DeepAE (b) CrowdDeepAE

Figure 4: 2D visualization of CrowdDeepAE (ours) and MV-DeepAE features on Crowd-

Flower dataset using PCA, when only 20% of the crowd data is available.

data. These two sub-models are coupled in a probabilistic framework rather than a heuristic

approach. Using this probabilistic framework, we introduce a unified objective function that

incorporates the interests of both sub-models. We further derive an efficient optimization

algorithm to solve the corresponding problem via an alternating approach, in which the

parameters are updated while the truths are assumed to be known, and the truths are

estimated when the parameters are fixed.

Therefore, CrowdDeepAE exploits the intelligence of crowd workers and the underlying

informations of text data to categorize sentiments more accurately. To do so, it employs

a non-linear generative aggregation model to flexibly aggregate noisy crowd labels, and

leverages a deep denoising autoencoder to learn a discriminative embedding for text data. In

particular, the deep autoencoder uses text data to find similar patterns between text samples

and prevent the crowd aggregation model from overfitting, and the crowd aggregation model

utilizes human language skills to assist the autoencoder in differentiating the samples with

large (semantic) variations.

Experimental results indicate that our model achieves superior or competitive results

compared to the state-of-the-art models on two large text-crowd datasets. Specifically,

CrowdDeepAE outperforms the alternative models with significant margins when the crowd
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labels are scarce. Figure 4 visualizes the discriminative ability of our model (CrowdDeepAE )

compared to an alternative hybrid model (MV-DeepAE ), when only 20% of the crowd labels

are available on CrowdFlower dataset. MV-DeepAE contains majority voting aggregation

method (MV ) and our autoencoder sub-model (DeepAE ). The outcome demonstrates more

discriminative features using our model, indicating the importance of our joint learning

framework. The contribution of this project can be summarized as follows:

• Proposing a hybrid crowd-text model for sentiment analysis, consisting of a generative

crowd aggregation model and a deep sentimental autoencoder, which are combined based

on a probabilistic framework;

• Defining a unified objective function for the hybrid model, and deriving an efficient opti-

mization algorithm to solve the problem;

• Achieving superior or competitive results compared to alternative models in our experi-

ments, especially when the crowd labels are scarce.

3.2 Related Works

There are several datasets in different applications, which are labeled using crowdsourc-

ing platforms like Amazon Mechanical Turk [4, 166, 130, 129]. However, crowd labels are

often noisy and unreliable, since crowd workers mostly lack expertise in the assigned tasks.

To tackle this issue, each sample is usually labeled by multiple crowd workers, then these

redundant crowd labels are used to estimate the potential true labels (i.e. truths). There

are several studies, which proposed discriminative and generative models to efficiently ag-

gregate crowd labels [136, 195]. The discriminative aggregation models directly estimate

the truths regardless of the crowd data distribution. Majority voting (MV ) is the simplest

discriminative aggregation model, which considers equal reliability for crowd workers and

simply averages their votes. An intuitive and fast extension of majority voting, called it-

erative weighted majority voting (IWMV ), is introduced in [88], which improves MV by

considering a reliability parameter for each worker. Tian and Zhu also enhanced MV model

by adopting the notion of max-margin from support vector machines, and introduced max-
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margin mjority voting (M3V ) as a new discriminative aggregation models [147].

In contrast to the discriminative aggregation models, the generative models employ a

probabilistic model to represent the distribution of noisy observations (crowd labels) given

the unknown variables (true labels) and model parameters. Dawid and Skene introduced a

well known model (DS ), which considers a confusion matrix as a reliability parameter for each

worker in [27]. Furthermore, several studies extended DS by assuming a prior distribution for

parameters, and used Bayesian approach to compute their posterior distributions [123, 22].

Another generative model, called GLAD, considers a scalar parameter for the reliability of

each worker and the difficulty of each task, and calculates the probability of truths using

the logistic function of the parameters [165]. Moreover, GLAD is extended in [164] such

that a vector instead of a scalar is considered as the parameter of each worker and sample.

In addition to a confusion matrix as the reliability parameter of each worker, Zhou et al.

assigned a confusion matrix as a difficulty parameter for each sample, and proposed an

aggregation model based on minimax conditional entropy of crowd labels [196, 197]. Later,

Tian and Zhu regularized a variant of DS with the discriminative M3V model, and jointly

learned the parameters of both sub-models [147]. In order to tackle the aggregation problem

when crowd labels per worker are scarce, Venanzi et al. proposed CommunityBCC, which

groups crowd workers into a few types (communities) and learns similar reliability parameters

for each community [150].

The aforementioned aggregation models only use crowd labels to estimate the truths, but

do not benefit from text data. There are a few studies on sentiment analysis using both crowd

and text data [14, 102, 141]. In a recent work [141], a Bayesian model is employed to combine

the two modalities by considering a confusion matrix for each word and worker. Our proposed

model also utilizes both crowd labels and text data; however, it leverages the power of deep

models to provide a more discriminative language model, despite the shallow BCCwords

model in [141]. Our model is also unique in the way that it combines a generative crowd

aggregation model with a deep sentimental autoencoder using a probabilistic framework.

Moreover, experimental results show the superiority of our model compared to BCCwords,

especially when crowd labels are scarce.
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3.3 Hybrid Sentiment Analysis Model

In this section, we first introduce our hybrid model by showing its architecture and

explaining the intuition behind it. We then formulate its unified objective function based

on a probabilistic framework, and derive an optimization algorithm for updating parameters

and estimating truths.

3.3.1 CrowdDeepAE Architecture

The proposed hybrid model, denoted by CrowdDeepAE, consists of two main parts, a

deep denoising autoencoder for text data and an aggregation model for crowd labels. Figure

5 demonstrates the architecture of CrowdDeepAE, in which the deep denoising autoencoder

has two tasks, reconstructing the corrupted text data by noise and estimating the truths

from text data. The crowdsourcing aggregation model is also supposed to estimate the

truths from the noisy crowd labels. Hence, the truths are obtained by contributions of both

crowd and text data.

Coupling the deep autoencoder and crowd aggregation model in CrowdDeepAE has sev-

eral advantages:

• CrowdDeepAE exploits two sources of information to estimate the truths more accurately,

text data via the encoder pathway of the autoencoder and crowd data through the

aggregation model;

• The multi-layer autoencoder provides powerful discriminative features for the text sam-

ples, which have more capabilities than shallow models in learning the non-linear em-

bedding space of real-world text data;

• The reconstruction loss function in the denoising autoencoder plays a role of data-

dependent regularization term, indirectly preventing the crowdsourcing aggregation model

from overfitting;

• CrowdDeepAE is able to annotate the entire dataset, even the samples without any crowd

labels, since the autoencoder can be efficiently trained using the supervision of limited

number of crowd labels and the unsupervised reconstruction task;
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• The aggregation model assists training the autoencoder using the semantic knowledge of

crowd workers, which is very beneficial due to the large variations on text data;

• The joint learning framework used for CrowdDeepAE leads to more optimal results com-

pared to a naive non-joint learning approach, where the textual and crowd sub-models

are trained separately.

3.3.2 CrowdDeepAE Objective Function

Lets consider the crowdsourcing task includes N questions, each with K possible options.

The crowd and text data are represented by X = {XCr,XTe}, respectively, and Y indicates

the unknown true labels. We provide a probabilistic framework to combine our autoencoder

and aggregation sub-models, and consequently define a unified objective function for our

hybrid model. The general likelihood function of CrowdDeepAE parameters (ψ) given the

observations (XCr,XTe) is:

P (XCr,XTe|ψ) =
N∏
i=1

P (XCr
i ,XTe

i |ψ) (3.1)

=
N∏
i=1

K∑
c=1

P (XCr
i ,XTe

i , Yi = c|ψ)

=
N∏
i=1

K∑
c=1

P (XCr
i ,XTe

i |Yi = c,ψ)P (Yi = c|ψ)

=
N∏
i=1

K∑
c=1

P (XCr
i |Yi = c,θ)︸ ︷︷ ︸

Crowd Aggregation Model

P (Yi = c|XTe
i ,W)P (XTe

i |W)︸ ︷︷ ︸
Deep Autoencoder

,

where i and c are the indices of questions and options, and W and θ represent the parameters

of autoencoder and crowd aggregation sub-models, respectively. Note that the samples are

assumed independent and identically distributed (i.i.d), and XCr
i and XTe

i are supposed to

be conditionally independent given the true labels.
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Figure 5: CrowdDeepAE architecture, consisting of a deep denoising autoencoder and a

crowd aggregation model.
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We are now able to decompose the likelihood function in Eq. ( C.2) into the crowd

aggregation and deep autoencoder objectives. Considering that M crowd workers are hired

in the crowdsourcing task, our generative crowd aggregation model has the following form.

P (XCr
i |Yi = c,θ) =

M∏
j=1

K∏
k=1

[ exp(θjck)∑
k′
exp(θjck′)

]1(xCrij =k)

=
M∏
j=1

K∏
k=1

[pijck]
1(xCrij =k) , (3.2)

where XCr
i = {xCri1 , ...,xCriM} is the set of crowd labels for the i-th question. Also pijck shows

the probability of a crowd label such that the j-th worker selects the k-th option for the

i-th question, when c is the true label. Therefore, the joint probability of crowd data for

each question is based on the probability of each conditionally independent crowd label. The

aggregation model considers a confusion matrix θj as the reliability parameter of each worker,

in which higher diagonal elements θjkk indicate more reliability for the worker. Moreover, the

exponential non-linearity increases the flexibility of our crowdsourcing aggregation model in

dealing with the noisy crowd labels.

The direct optimization of log-likelihood function L(ψ|X) = logP (XCr,XTe|ψ) is dif-

ficult, hence we use Expectation-Maximization (EM) learning approach to solve this prob-

lem. Following, we present Proposition 1 to alleviate the optimization problem, and pro-

vide its proof in Appendix B.1. For the sake of simpler notations, hereafter we denote

P (Yi = c|XTe
i ,W) = eic and P (XTe

i |W) = di as the probability of encoder and decoder

pathways, respectively, and 1(xCrij = k) = 1ijk.

Proposition 1: Iteratively improving the following auxiliary function Q is sufficient to

maximize the log-likelihood function L(ψ|X).

Q(ψ|ψ(t)) =
∑
ijck

q
(t)
ic log

(
dieic[pijck]

1ijk
)
where q

(t)
ic =

∏
jk

eic[pijck]
1ijk∑

c′

∏
jk

eic′ [pijc′k]1ijk
(3.3)

where q
(t)
ic shows the probability distribution of a truth. Technically, it is the expectation

of an unknown true label with respect to the current parameters. Thus, we can iteratively

improve the auxiliary function Q instead of the log-likelihood function L.

In the Q function, the autoencoder and crowd workers have similar effects in the objective

function and calculating the truths. However, it is expected that the deep autoencoder has
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more accurate predictions than the inexpert crowd workers due to the learned knowledge

from all of questions. Hence, we control the influence of each factor in our objective function

using adjustable weights. Following, we present the updated objective function, which can

be derived similar to proposition 1.

max
θ,W,1Tα=M+1,α≥0

∑
ijck

q
(t)
ic log

(
[di]

λd [eic]
α0 [pijck]

αj1ijk
)

where q
(t)
ic ∝

∏
jk

(eic)
α0(pijck)

αj1ijk (3.4)

where α and λd are the adjustable weights and the hyperparameter for the reconstruction loss

of autoencoder, respectively. Note that α can be seen as the gating parameters (see Figure

5), which adjust the contribution of each worker and also the autoencoder in estimating the

truths. In other words, α gives one more degree of freedom to our hybrid model about the

credibility of crowd workers and autoencoder. For example, when there are several (non-

expert) crowd workers labeling a question with (very noisy) crowd labels, a high weight

for (discriminative) autoencoder can help estimating the truth accurately. Note that we

define the weight for probability of decoder pathway by λd, since di does not affect the

truths, and only regulates the autoencoder objective function. Furthermore, we add two

more regularization penalty terms for the parameters to avoid overfitting.

min
θ,W,1Tα=M+1,α≥0

−
∑
ijck

q
(t)
ic log

(
[di]

λd [eic]
α0 [pijck]

αj1ijk
)

+ λθ
∑
j

‖θj‖F + λα‖α‖2 , (3.5)

where λθ and λα are the hyperparameters of regularization terms. Also adding two con-

straints for α (under min operation) is beneficial in our objective function for having com-

petitive learning and avoiding the trivial solution α = 0.
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3.3.3 CrowdDeepAE Optimization Algorithm

In order to efficiently solve problem (3.5), we employ an alternating learning strategy to

update the parameters and estimate the truths. In particular, each one of the parameters

ψ = {θ,α,W} is updated while the other parameters and truths are fixed, and the prob-

ability of truths Q = {q1, ...,qN} are estimated when the parameters are assumed to be

known.

Update θ: The problem for updating the parameters of crowd aggregation model is

reduced to:

min
θ
−
∑
ijck

q
(t)
ic log

(
[pijck]

αj1ijk
)

+ λθ
∑
j

‖θj‖F (3.6)

There are several first-order optimization algorithms that can be used to solve this prob-

lem. Using the following gradient of the objective function wrt the parameter θ, we employ

L-BFGS algorithm to iteratively update the parameters.

∂Q

∂θjck
=
∑
i

q
(t)
ic αj[1ijk − pijck] (3.7)

Update α: The problem to update the gating parameters boils down to:

min
1Tα=M+1,α≥0

λαα
Tα−αTβ (3.8)

where β0 =
∑

ic q
(t)
ic log eic, βj =

∑
ick q

(t)
ic 1ijk log pijck. We efficiently solve this problem using

the Lagrangian multiplier method as shown in Appendix B.2.

Update W: The problem to update the parameters of deep denoising autoencoder has

the following form.

min
W
−
∑
ic

q
(t)
ic logPW (Yi = c|XTe

i )− λd
α0

logPW (XTe
i ) ,

where the first term is the standard cross entropy loss function for classification problems.

But for the second probability term, we use a theorem in [9] in order to change the term to

reconstruction loss function in the standard denoising autoencoder.

The general idea is that if the observation variable X is corrupted into X̃ by a noise

with conditional distribution C(X̃|X), training a denoising autoencoder actually estimates
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Algorithm 2: CrowdDeepAE Algorithm

1 Initialize qi by majority voting ∀i ∈ {1, ..., N}
2 while not converged do
3 Solve problem (3.6) to update θ
4 Solve problem ( B.8) to update α
5 Solve problem (3.9) to update W
6 qic ∝

∏
jk

(eic)
α0(pijck)

αj1ijk

7 end

the reverse conditional distribution P (X|X̃). It has been shown that a consistent estimator

of P (X) can be estimated using a Markov chain that alternates between sampling from

P (X|X̃) and sampling from C(X̃|X) as follows.

Xt ∼ PW (X|X̃t−1) X̃t ∼ C(X̃|Xt)

The theorem proves that PW (X|X̃) of conventional denoising autoencoder [151, 9, 41] is

a consistent estimator of the true conditional distribution. Also as the number of samples

N →∞, the asymptotic distribution of the generated samples by the denoising autoencoder

converges to original data-generating distribution. Hence, we reformulate the objective func-

tion of the text model as follows:

min
W
−
∑
ic

q
(t)
ic logPW (Yi = c|XTe

i )− λd
α0

logPW (XTe
i |X̃D

i ) , (3.9)

where X̃D
i is a sample corrupted by a random noise. Now it is clear how we can use the

denoising autoencoder as our text-based sub-model.

Interestingly, our learning approach does not have memory exhaustion problems when

handling very large datasets. In order to learn the reliability parameters θ for large number

of crowd workers, we can split the crowd data into several mini-batches, each one only

including the crowd labels of a few workers. Dealing with a large set of text samples, we

are able to distribute the text samples into a set of mini-batches and train the autoencoder

parameters with stochastic optimization algorithms. Therefore, the computation and space

complexities can be managed using stochastic and parallel learning approaches.
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(a) CrowdFlower (CF ) (b) SentimentPolarity (CF )

Figure 6: Accuracy of crowdsourcing aggregation models on CrowdFlower (CF ) and Senti-

mentPolarity (SP) datasets, when increasing the number of crowd labels.

Algorithm 2 shows the CrowdDeepAE algorithm, in which the truths are first initialized

by majority voting. It then alternates between updating the model parameters and estimat-

ing the truths until convergence. It is worth mentioning that we compute the truths using

the clean text samples in E-step. But the classification loss function with noisy text inputs

in Eq. (3.9) has the regularization effect in training the parameters W, and results in to the

more robust and generalized autoencoder model.

3.4 Experiments and Discussions

In this section, we first evaluate the performance of our hybrid model in the crowd

aggregation task, and then examine the quality of the learned language models. In order to

compare the proposed model with the state-of-the-art aggregation models, we use two large-

scale crowdsourcing datasets, which have text data along with crowd labels for sentiment

analysis.
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Table 5: Comparison of crowdsourcing aggregation models on CrowdFlower (CF ) and Senti-

mentPolarity (SP) datasets with 20% of crowd labels. The comparison metrics are accuracy,

ave. recall, AUC (the higher the better), and NLPD (the lower the better).

CF (20% labels) SP (20% labels)
Model Accuracy Ave. recall NLPD AUC Accuracy Ave. recall NLPD AUC

C
ro

w
d

MV 0.625 0.550 1.392 0.725 0.710 0.710 1.192 0.704
IWMV 0.630 0.562 1.368 0.735 0.710 0.710 1.167 0.715
VD 0.650 0.585 1.252 0.745 0.710 0.710 1.112 0.728
DS 0.610 0.488 1.285 0.681 0.500 0.500 0.695 0.500

IBCC 0.688 0.545 0.972 0.822 0.740 0.740 0.516 0.835
CBCC 0.635 0.532 1.052 0.800 0.726 0.726 0.540 0.818
Entropy 0.688 0.545 1.014 0.818 0.745 0.745 0.508 0.842

C
ro

w
d

-T
ex

t MV-BW 0.665 0.602 2.133 0.749 0.722 0.722 0.648 0.784
MV-DeepAE 0.682 0.611 1.372 0.792 0.738 0.738 0.615 0.800
BCCwords 0.715 0.578 0.918 0.830 0.750 0.750 0.516 0.840

CrowdDeepAE 0.790 0.642 0.889 0.876 0.816 0.816 0.500 0.875
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Datasets: CrowdFlower (CF ) dataset was a part of the 2013 Crowdsourcing at Scale

shared task challenge, collected by CrowdFlower2 as a rich source for the sentiment analysis

of tweets about the weather. The dataset includes 569,375 crowd labels for 98,980 tweets.

But the gold-standard (true) labels are only provided for 300 tweets, which correspond to

1720 crowd labels collected from 461 workers. In the crowd task, workers are requested to

label the sentiment of tweets related to weather using the following options, negative (0),

neutral (1), positive (2) and not related to weather (4). The crowd workers are also able to

skip the questions by the can not tell (5) option.

Sentiment Polarity (SP) dataset includes the sentiment analysis of crowd workers about

the movie reviews across two categories, “fresh” (positive) and “rotten” (negative). The

dataset consists of 5,000 sentences from the movie reviews in RottenTomatoes website3,

which is extracted by [115]. A task requester hired 203 crowd workers to label the dataset,

resulting in 27,747 crowd labels totally. The gold-standard labels for all the questions are

available in SP dataset.

Implementation details: For both CF and SP datasets, we first use the stemming

approach to parse the texts [119], then remove the common English stop words and finally

extract the top 1000 words according to the term frequency-inverse document frequency

(tf-idf) score [5].

For the deep autoencoder, we consider three fully connected layers for both encoder and

decoder pathways with 512, 256, and 128 neurons as the feature maps, and then add a soft-

max layer on top of the encoder pathway. The leaky rectified activation (leaky RELU) is

used as the activation function for the autoencoder layers, except the reconstruction layer

at the end of decoder pathway, which has rectified activation (RELU) to reconstruct text

samples. Moreover, we set the learning rate to 10−4 and adopt Adam [73] as our optimiza-

tion method. The weights of all layers are also initialized by the Xavier or GlorotUniform

initialization approach [46].

Since the crowdsourcing task is an unsupervised problem, we did not use any true labels

for setting the hyper-parameters {λθ, λα, λd} and dropout noise value. We use a trick in [147],

2www.crowdflower.com
3www.rottentomatoes.com
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that employs the non-related likelihood for selecting the hyper-parameters. In particular,

we utilize the likelihood function p(XCr|Y,θ) to choose λα, λd and dropout from λsetα =

{0.01, 0.1, 1}, λsetd = {0.01, 0.1, 1} and dropoutset = {0.1, 0.2, 0.3}, and adopt p(Y|XTe,W)

as a criterion to choose λθ from λsetθ = {0.01, 0.1, 1}. Thus using this approach, we make

sure to select the hyper-parameters without any knowledge from the true labels.

3.4.1 Evaluation of Aggregation Models

To evaluate the performance of our model, we run several experiments using CF and SP

datasets to estimate the truths using crowd labels and text data. For the sake of comparison,

we use the following alternative models and comparison metrics.

Alternative models: We compare our model, CrowdDeepAE, with several baseline

methods, including majority voting (MV ), iterative weighted majority voting (IWMV ) [88],

vote distribution (VD), Dawid and Skene model (DS ) [27], Independent Bayesian Classi-

fier Combination model (IBCC ) [140], Community-Based Bayesian Classifier Combination

model (CBCC ) [150], multi-class minimax entropy model (Entropy) [196], combination of

majority voting aggregation model and bag-of-words text classifier (MV-BW ), combination

of majority voting aggregation model and a deep sentimental autoencoder similar to our

autoencoder (MV-DeepAE ), and Bayesian classifier combination with words model (BCC-

words) [141].

It should be noted that VD can be considered as a probabilistic version of MV, since it

computes the probability of each option, while assuming equal reliability for all the workers.

Moreover, the MV-BW model trains a classical bag-of-words classifier for text data using

the target label induced by majority voting aggregation model. Similarly, MV-DeepAE uses

the predicted labels of majority voting aggregation model to train the deep autoencoder

model for text data. The results of alternative models are reported from reference papers,

except MV-DeepAE that is implemented by us with the similar autoencoder network to

CrowdDeepAE.
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Table 6: Comparison of crowdsourcing aggregation models on CrowdFlower (CF ) and Sen-

timentPolarity (SP) datasets, when all crowd labels are available. The comparison metrics

are accuracy, ave. recall, AUC (the higher the better), and NLPD (the lower the better).

CF (all labels) SP (all labels)
Model Accuracy Ave. recall NLPD AUC Accuracy Ave. recall NLPD AUC

C
ro

w
d

MV 0.840 0.764 0.921 0.852 0.852 0.852 0.797 0.885
IWMV 0.860 0.764 0.912 0.041 0.885 0.885 0.752 0.891
VD 0.883 0.779 0.458 0.942 0.887 0.887 0.338 0.947
DS 0.830 0.745 0.459 0.897 0.914 0.914 0.340 0.957

IBCC 0.860 0.763 0.437 0.935 0.915 0.915 0.374 0.957
CBCC 0.886 0.746 0.526 0.942 0.915 0.915 0.383 0.957
Entropy 0.886 0.746 0.551 0.938 0.914 0.914 0.391 0.957

C
ro

w
d

-T
ex

t MV-BW 0.867 0.764 0.921 0.859 0.885 0.885 0.797 0.891
MV-DeepAE 0.880 0.768 0.571 0.922 0.885 0.885 0.752 0.891
BCCwords 0.890 0.807 0.591 0.877 0.915 0.915 0.389 0.957

CrowdDeepAE 0.912 0.825 0.479 0.948 0.915 0.915 0.389 0.957

44



(a) Pos-docStatistic (b) Neg-docStatistic (c) Pos-CrowdDeepAE (d) Neg-CrowdDeepAE

Figure 7: Word clouds of the positive (Pos) and negative (Neg) sentiments in SP dataset.

The extracted word clouds using the statistics of documents (docStatistic) and our language

model (CrowdDeepAE ) are shown in the left and right, respectively. The colors are only for

legibility.

Comparison metrics: Following [141], we measure the performance of models using

accuracy, average recall, negative log-probability density (NLPD) [150], and area under curve

(AUC) [140]. For CF dataset, we use mean AUC over pair of classes as shown in [53].

Performance comparison: In order to examine the effectiveness of the aforementioned

aggregation models, we run several experiments with different subsets (number of crowd

labels) of CF and SP datasets. Following [140], we estimate the truths using the aggregation

models when only 2% randomly-chosen crowd labels are available. Then, we increase the

number of crowd labels by adding an extra 2% randomly-chosen crowd labels, and rerun all

the models. This process is repeated until all of the crowd labels are used for training.

Figure 6 shows the accuracy of aggregation models on both CF and SP datasets. As it is

shown, CrowdDeepAE consistently outperforms the other models with significant margins,

especially when a small number of crowd labels are available. Interestingly in CF dataset,

our model only requires 16% of the crowd labels to have a better accuracy than the all

of other models, which are using 30% of the crowd labels. CrowdDeepAE also achieves a

higher accuracy with 8% of the crowd labels in CF dataset versus MV model with 30%

of the crowd labels. Furthermore, CrowdDeepAE consistently improves the performance of

MV-DeepAE, and consequently confirms the importance of our joint learning framework and
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our crowd aggregation sub-model. Note that we only show a limited portion of the results

(approximately 150,000 and 10,000 crowd labels in CF and SP datasets) in Figure 6 for the

sake of a clear visualization.

Furthermore, Table 5 and 6 report the mentioned comparison metrics for the aggregation

models on CF and SP datasets, when 20% and 100% of crowd labels are available, respec-

tively. We divide the models in the tables into two groups of single and hybrid models,

where the first ones only employ crowd labels to estimate the truths, and the second ones

utilize both crowd labels and text data for the prediction task. Using only 20% of crowd

labels, approximately 70% of the text samples have at least one crowd label. In this case,

using text data is more crucial, since enough crowd labels are not available for training the

crowd parameters. The hybrid crowd-text models have relatively better performances than

the crowd models, because the hybrid models are able to employ language model to classify

the samples with no crowd labels. But the crowd models suffer from insufficient crowd labels

for training, and assign a default category for the unlabeled samples based on their prior dis-

tribution. Our proposed model, CrowdDeepAE, benefits from the deep autoencoder trained

by a small subset of crowd data, and is able to efficiently label the samples with no crowd

labels. When only 20% of crowd labels are available, our model outperforms the alternative

models on both SP and CF datasets according to all metrics. In addition, CrowdDeepAE

still achieves superior or competitive results in comparison with the state-of-the-art mod-

els on both datasets using all crowd labels. It indicates that CrowdDeepAE leverages the

powerful deep language model along with the efficient crowd aggregation model to provide

accurate predictions using crowd and text data.

3.4.2 Evaluation of Language Models

In order to visualize the learned language model in CrowdDeepAE, we show the word

clouds for both CF and SP datasets. In particular, the word cloud represents the importance

(probability) of each word in a document with its font size. Using this visual representation,

a viewer can quickly identify the dominant words in a document using their relative sizes.

For each word in the datasets, we generate an auxiliary variable by setting the corresponding
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element in XTe
i equal to 1 and the remaining ones to zero, and then compute the probability

of the word for every class. Figure 7 demonstrates the word clouds of CrowdDeepAE in CF

dataset for the positive and negative classes. We also show the word cloud of CF dataset

using the probability (frequency) of each word in every sentiment class. The world clouds

extracted from the documents statistic (docStatistic) mostly assign greater importance to

the highly repeated words like “movie”, “film”, and “stori”, which do not differentiate the

two classes. However, the word clouds of CrowdDeepAE discriminantly represent the positive

sentiments using the words with roots like “refresh”, “deft”, “delight” and “gentl”; and the

negative class with the words like “lose”, “hasn”, “tedious”, and “unfunni”. The word clouds

for CF dataset are shown in Appendix B.3.

3.5 Conclusion

In this project, we proposed a new crowdsourcing aggregation model that is augmented

by a deep sentimental autoencoder. The crowd aggregation and autoencoder sub-models are

combined in a probabilistic framework rather than a heuristic way. We introduced a unified

objective function, and then derived an efficient optimization algorithm to alternatingly solve

the corresponding problem. Experimental results showed that our model outperforms the

alternative models, especially when the crowd labels are scarce. Although the proposed

model was applied only in sentiment analysis, it can be used as the general hybrid model for

different applications in future works.
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Figure 8: Visualization of HashGAN representations for a query set on MNIST using TSNE

projection. The real and synthesized data are indicated by colored and gray circles respec-

tively. Some of the synthesized images are randomly shown from different parts of space.

4.0 Unsupervised Deep Generative Adversarial Hashing Network

4.1 Introduction

Image similarity search in big datasets has gained tremendous attentions in different

applications such as information retrieval, data mining and pattern recognition [156]. With

rapid growth of image data, it has become crucial to find compact and discriminative repre-

sentations of images in huge datasets in order to have efficient storage and real-time matching

for millions of images. Hashing functions provide an effective solution for this problem by

attributing a binary code to each image, and consequently reducing the similarity search

between high dimensional images to calculating the Hamming distance between their binary

codes [47, 163, 94, 89]. Typically, hash functions are carefully designed to extract distinctive

patterns from images relevant to their semantic categorizes, while being robust to various

image transformations such as rotation, translation, scale, and lightning [93, 179, 66].
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Generally, hash functions can be divided into supervised [94, 172, 51, 89] and unsuper-

vised methods [55, 163, 157, 58]. The supervised hashing methods, especially deep hash

functions [82, 32, 199, 179], showed remarkable performance in representing input data with

binary codes. Although, these deep hash functions take advantages of deep learning models

in representing images with discriminative attributes, they require costly human-annotated

labels to train their large set of parameters. Thus, their performance is dramatically de-

graded by getting stuck in bad local minima when there is not enough labeled data for

training.

The unsupervised hashing methods address this issue by providing learning frameworks

without requiring any supervisory signals. The unsupervised hashing methods either use

shallow models with hand-crafted features [17, 127, 85, 3] as inputs, or employ deep archi-

tectures for obtaining both discriminative features and binary hash codes together. However,

the unsupervised shallow functions may not capture the non-linear similarities between real-

world images due to their low capacity. They also suffer from hand-crafted features and

dimension reductions techniques (e.g. principle component analysis (PCA)), which are not

robust to noise and image transformations. On the other hand, the unsupervised deep hash

functions usually have insignificant improvements against the shallow models, since they can

not exploit the power of deep models due to overfitting and lack of supervision. Some of

the unsupervised deep hash functions tackle this issue by initializing their parameters using

supervised pretraining with large datasets (e.g. ImageNet dataset [28]) [93, 66].

We propose a new unsupervised deep hashing model, called HashGAN, which nor suffers

from shallow hash functions and hand-crafted features, neither needs the supervised pre-

training to have discriminative binary codes. Our framework jointly learns a hash function

with a generative adversarial network (GAN ). In particular, we tie the discriminator of the

GAN with the hash function, employing the adversarial loss function as a data-dependent

regularization term in training our deep hash function. Furthermore, we introduce a novel

loss function for hashing real images, minimizing the entropy of hash bits for each image,

maximizing the entropy of frequency of hash bits, improving the consistency of hash codes

against different image transformations, and providing independent hash bits. Moreover, we

provide a collaborative loss function, which enforces the encoder to have the same binary
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hash code for a synthesized image by the generator, as the binary input variable provided

to the generator while synthesizing the image. We show that this collaborative loss function

is a helpful auxiliary task for obtaining discriminative hash codes.

Figure 8 illustrates a 2D visualization of HashGAN hash codes for a query set of real

and fake images on MNIST dataset [83]. As shown, HashGAN not only achieves discrim-

inative representations for real data, but also generates synthesized images conditioned on

their binary inputs, representing the semantic categories. Experimental results indicate that

our proposed model outperforms unsupervised hash functions with significant margin in

information retrieval tasks. Moreover, HashGAN achieves superior or competitive results

compared to the state-of-the-art models in image clustering tasks. We also explore the effect

of each term in our loss function using an ablation study. Therefore, our experiments confirm

the effectiveness of HashGAN in unsupervised attribute learning across different tasks. Our

contributions are summarized as follows:

• Proposing a novel framework for unsupervised hashing model by coupling a deep hash

function and a generative adversarial network.

• Introducing a new hashing objective for real images, regularized by the adversarial and

collaborative loss functions on synthesized images, resulting in minimum-entropy, uni-

form frequency, consistent, and independent hash bits.

• Achieving state-of-the-art results compared to alternatives on information retrieval and

clustering tasks.

4.2 Related Works

4.2.1 Hash Functions

Generally, hash functions can be grouped into supervised [94, 39, 172, 92, 51] and unsu-

pervised methods [55, 163, 157, 58]. The supervised methods require class labels or pairwise

similarity ground truths in their learning process, whereas the unsupervised approaches need

only input samples. With the growing success of deep learning in different applications, sev-
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eral studies have been published about supervised deep hash functions [82, 32, 199, 89, 179].

They mostly use pairwise relationships in different variants of ranking loss functions (e.g.

triplet [162], contrastive [52] objectives) to simultaneously learn discriminative features and

encode hash bits. However, the performance of these supervised hashing models crucially

depends on availability of labeled data in the training process.

Among the shallow models, locality sensitivity hashing (LSH ) [45] maps original data

into a low dimensional feature space using random linear projections, and then obtains

binary hash codes. Later in [80, 171], LSH was extended to kernel-based variants of hash

functions. Gong et al. introduced another well-known model, called iterative quantization

(ITQ) [47], which uses an alternating optimization approach for learning efficient projections

and performing binarization. Spectral hashing (SpeH ) [163] computes binary hash codes

by implementing spectral graph partitioning using the similarity information in a feature

space. However, these models suffer from shallow hash functions and inflexible hand-crafted

features, which limit their capabilities in dealing with complex and high dimensional real

world data.

In unsupervised deep hashing models, semantic hashing [132] is one of the early studies,

which adopts Restricted Boltzmann Machine (RBM ) [60] model as a deep hash function,

and trains its parameters using an unsupervised learning approach. Deep Hashing (DH ) [36]

applies an unsupervised loss function to a hierarchical neural networks to have quantized,

balanced and independent hash code bits. Lin et al. introduced DeepBit [93] as an unsuper-

vised deep hashing algorithm by defining an objective function based on quantization loss

and balanced and rotation invariant hash bits. In addition to quantization and balanced

hash bits loss functions, unsupervised triplet hashing (UTH ) [66] employs an unsupervised

triplet loss, which minimizes the distance of an anchor image and its rotated version (i.e.

positive pair) while maximizing the distance of the anchor image with a random image (i.e.

negative pair). Another method with two steps is introduced in [64] to learn discriminative

binary representations in an unsupervised manner. A convolutional neural network (CNN )

is trained using a clustering algorithm in the first step, and then the learned cluster assign-

ments are used as soft pseudo labels in a triplet ranking loss for training a deep hash function

in the second step.
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Our proposed model falls in the category of unsupervised deep hash functions. But un-

like the unsupervised deep hash functions, which have insignificant improvements over the

shallow alternatives, and/or require supervised pretraining using a large labeled dataset,

HashGAN outperforms unsupervised alternatives with significant margins without any su-

pervised pretraining.

4.2.2 Applications of GAN

Goodfellow et al. proposed a powerful generative model, called generative adversarial

networks (GAN ) [48], which is able to synthesize realistic images with great details. Particu-

larly, GAN objective includes a two-player minimax game between two networks, a generator

and a discriminator. The discriminator aims to distinguish between the real and synthesized

(i.e. fake) images, and the generator maps samples from arbitrary distribution (i.e. ran-

dom noise) to the distribution of real images, trying to synthesize fake images that fool

the discriminator. Several studies [30, 120] further addressed problems such as the unstable

training process of GAN and noisy and blurry synthesized images, resulting in higher quality

images. Moreover, some works [99, 113] tried to improve the quality and diversity of gener-

ated images by conditioning on the supervisory signals like class labels and text descriptions,

and incorporating these supervised information into the generative and discriminative path-

ways. In addition, GAN has been adopted in supervised and semi-supervised tasks to use

the input data distribution as a generalization force, and enhance the classification results

[142, 133, 120]. Unlike these supervised/semi-supervised studies, our model employs GAN

in the unsupervised hashing task, and does not require any supervisory signals like class

labels and image captions.

In recent years, deep learning has shown remarkable results in wide range of applications,

such as computer vision [78], natural language processing [26], speech recognition [59], and

even biological science [31]. The impressive capability of deep models is due to efficient and

scalable leaning of discriminative features from raw data via multi-layer networks. Among

different models, Goodfellow et. al. proposed a powerful generative model, called generative

adversarial networks (GAN) [48], particularly for image generation task. GAN consists of two
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sub-networks, a generator and a discriminator, and aims to play a minimax game between

these sub-networks. While the generator’s goal is to fool the discriminator by synthesizing

realistic images from arbitrary distribution (i.e. random noise), the discriminator tries to

distinguish between the real and synthesized (i.e. fake) images. GAN model is also applied to

different tasks, including image generation [30, 71], image translation [200], semi-supervised

image classification [133], image inpainting [117, 185], speech enhancement [116] and drug

discovery [10].

We also adopts adversarial loss on GAN objective to regularize our graph CNN model,

which is different with previous studies. Besides, our task is regression on graph-structured

data, which is differing from supervised classification on image data in standard GAN model.

4.3 Unsupervised Deep Generative Adversarial Hashing Network

In this section, we first introduce HashGAN by showing its architecture and explaining

the intuition behind the model. Then, we define its loss function and describe the effect of

each term in our learning framework.

53



G
(z
) x

D
(G
(z
))

E(G
(z)) D

(x
) E(x)

z=
[z
’,b

’]

G
en

er
a
to

r
T

ied
D

iscrim
in

a
to

r
&

E
n

co
d
e
r

0
.7

5

0
.9

3

110…010 010…110

𝐿
ℎ
𝑎
𝑠ℎ

𝐿
𝑎
𝑑
𝑣

𝐿
𝑎
𝑑
𝑣

110…010

𝐿
𝑐
𝑜
𝑙

Figure 9: HashGAN architecture, including a generator (green), a discriminator (red)

and an encoder (blue), where the last two share their parameters in several layers

(red⊕blue=purple). The arrows on top represent the loss functions.
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4.3.1 HashGAN Architecture

Our proposed HashGAN model consists of three components, a generator, a discrimina-

tor and an encoder. The generator is supposed to synthesize images that fool the discrim-

inator by mapping samples from a random distribution to the real data distribution. The

discriminator is expected to distinguish the synthesized images from real ones. The encoder

is designed to map the images to discriminative binary hash codes. As shown in Figure 9,

the discriminator and encoder share all of their parameters except for the weights of their

last layer. The inputs of generator are also the concatenation of samples from two random

distributions, including binary and uniform random variables.

In order to train the discriminator parameters, we use the standard adversarial loss

function in GAN models. The parameters of encoder are trained via a hashing loss on real

data and an `2-norm loss on fake data. The hashing loss ensures having quantized, balanced,

consistent and independent hash codes for real images, and the `2-norm loss is determined to

have similar hash codes as the generator binary inputs for synthesized images. To train the

parameters of generator, we utilize the feature matching loss, introduced in [133], to match

the statistics of the real and fake images. To do so, the expected value of the features in the

last hidden layer of discriminator (encoder) network is selected in the feature matching loss

function.

HashGAN architecture has several advantages in our unsupervised deep learning frame-

work. First, tying the discriminator and encoder is very useful in unsupervised training of

our deep hash function, because the adversarial loss can be considered as a data-dependent

regularization term in training HashGAN, which avoids overfitting and getting stuck in bad

local minima. From another point of view, the encoder pathway utilizes the information in

the data distribution, which is discovered in the latent variables of discriminator.

It has been shown that interpolations in the input space of the generator produce semantic

variations along data distribution [120, 33]. Hence, training the encoder to utilize these

information hidden in the input variables of generator is helpful in learning discriminative

binary codes. The feature matching loss and the `2-norm loss for training the generator

and encoder networks can be considered as collaborative loss functions, which aim to use the
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generator binary inputs as the pseudo-hash-labels for the synthesized images, while they have

similar statistics with the real images. This novel approach fits our unsupervised hashing

problem, and it is different with the conventional conditional GAN models [99, 113], which

need supervisory signals.

4.3.2 HashGAN Loss Function

Consider there are N images in the gallery set, denoted by X = {xi|i = 1, · · · , N},

which are used in training our deep hash function. We utilize a multi-layer hash encoder

to map the input images into the K-bit hash codes. To do so, there are K independent

sigmoid functions in the last layer of our encoder network. Thus, the output of encoder for

each image is represented by ti = E(xi), which shows the composition of K independent

probabilities as tik = P (bik = 1|xi; WE), where tik and bik are the k-th output of encoder

and binary hash code for the i-th image, and WE indicates the encoder parameters. Note

that the binary hash codes are simply computed using bik = 1(tik > 0.5), where 1(.) is the

indicator function.

Our HashGAN model employs a generator network, which maps the samples from a

random distribution to the data distribution. As mentioned earlier, the random input of

generator is concatenation of binary and uniform random variable as zi = [z′i,b
′
i], where

z′i ∼ U(0, 1) shows the uniform random noise and b′i ∼ B indicates the binary random

noise. While the real images are shown by xi, the synthesized images by the generator are

represented by x̂i = G(zi). We also obtain the encoder outputs for the synthesized images

as t̂i = E(x̂i) = E(G(zi)).

The discriminator of HashGAN is supposed to determine whether its input image is a real

or a synthesized sample. A sigmoid function is considered as the last layer of discriminator,

computing the probabilities pi = D(xi) = P (yi = 1|xi; WD) and p̂i = D(G(zi)) = P (yi =

1|x̂i; WD), where pi and p̂i are the probabilities of being real (yi = 1) for the i-th real and

synthesized images respectively.
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Now, we are able to define the loss function in our learning framework. The total loss

function is summation of the adversarial loss, hashing loss, and collaborative loss for the real

and synthesized images:

Ltotal = Ladv + Lhash + Lcol . (4.1)

Following, we describe each term of the loss function in more details, and explain the

role of each one in achieving discriminative binary hash codes. As proposed in [48], the

adversarial loss in GAN models is designed as a minimax play between the discriminator

and the generator models, in which the discriminator is trained to correctly distinguish the

real and synthesized images, and the generator is trained to synthesize fake images that

fool the discriminator. The adversarial loss function for training our discriminator has the

following form:

max
D

Ex∼P (x)

[
log(D(x))

]
+ Ez∼P (z)

[
log(1− D(G(z))

]
(4.2)

where the goal is to train the discriminator D to distinguish the real image x from the syn-

thesized sample G(z). The adversarial loss is maximized w.r.t. the discriminator to increase

the log-likelihood of correct predictions on real images and decrease the log-likelihood of

mis-prediction on fake samples.

The hashing objective for real data contains four losses, including minimum-entropy,

uniform frequency, consistent, and independent bits loss functions. The following equation

shows these loss functions:

min
E
−

N∑
i=1

K∑
k=1

tik log tik + (1− tik) log(1− tik)︸ ︷︷ ︸
minimum entropy bits

+
K∑
k=1

fk log fk + (1− fk) log(1− fk)︸ ︷︷ ︸
uniform frequency bits

+
N∑
i=1

K∑
k=1

‖tik − t̃ik‖2
2︸ ︷︷ ︸

consistent bits

+ ‖WL>

E WL
E− I‖2

2︸ ︷︷ ︸
independent bits

, (4.3)
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where t̃ik = P (bik|x̃i; WE) is the k-th encoder output for the i-th real image, transformed

by translation, rotation, flipping, or noise, fk = 1/N
∑N

i=1 tik is the frequency of the k-th

hash bit code over sampled images, and WL
E is the weights of the last layer on the encoder

network.

The first term in the hashing loss function is equivalent to entropy of each hash bit, and

minimizing this term pushes hash bits for each image toward 0 or 1. Thus, the minimum-

entropy bits loss function reduces the quantization loss without using the sign function.

Considering fk as the empirical frequency of each hash bits, the second term in this loss

function is a negative of entropy for the bits frequency. By maximizing (i.e. minimizing

negative of) the entropy of bits frequency, the encoder tends to have balanced hash codes.

The third term in the loss function constrains the encoder to extract similar hash codes for

an image and its transformed variants, making the encoder robust to the transformations.

Finally, the last term in this loss function pushes the encoder to have independent hash bits.

We also take advantages of the synthesized images in training the encoder network by a

`2-norm loss function, which minimizes the distance of encoder outputs and generator binary

inputs. Following equation shows the `2-norm loss on the synthesized data:

min
E

Ez∼P (z)

[
‖E(G(z))− b′‖2

2

]
, (4.4)

where b′ is the binary random variable in the generator input z = [z′,b′]. Using this `2-norm

loss function, the encoder network is able to provide similar hash codes for the synthesized

images, which share the same binary attributes b′, but vary due to different uniform random

variables z′.

In order to train the generator network, we used the feature matching loss instead of

directly optimizing the output of the discriminator via the traditional adversarial loss func-

tion. The feature matching loss requires the generator to synthesize images that have similar

statistic to the real images. We consider the last hidden layer of discriminator, denoted by

F, as the source of statistic, and define the following loss function:

min
G
‖Ex∼P (x)F(x)− Ez∼P (z)F(G(z))‖2

2 , (4.5)
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where F is also the last hidden layer of encoder network, affecting the hash codes and

the adversarial probability. The feature matching loss provides more stability in training our

model, and leads the synthesized images to share statistic with real data. This is very helpful

in collaborating with `2-norm loss, making the pseudo-hash-labels for fake data effective on

obtaining discriminative binary representations for real images.

In order to train our HashGAN model, we are able to use stochastic learning techniques.

Thus, we alternatively train the generator and tie the discriminator and the encoder net-

works. In particular, we optimize the parameters of discriminator and encoder jointly using

the adversarial, hashing and `2-norm loss functions in one step, and train the parameters of

generator using the feature matching loss in the next step.

4.4 Experiments

We perform several experiments to evaluate the performance of our proposed model on

multiple datasets. The quality of hash codes extracted by HashGAN is explored in image

retrieval and clustering tasks. We also investigate the effect of each component in our loss

function using an ablation study.

Implementation details: We use almost similar architectures for HashGAN to the

Improved-GAN networks in [133]. We avoid pooling layers and use strided convolutional

layers, utilize weight normalization [134] to stabilize the training process, consider ReLU

and leaky-ReLU non-linearities [98] as the activation function of convolutional layers in our

discriminator and encoder. For image preprocessing, we only normalize the image intensities

to be in the range of [0, 1] or [−1, 1], and consequently use sigmoid and TanH functions

in the last layer of our generator. A zero mean Gaussian noise with standard deviation of

0.15 is also added to the input images of our discriminator/encoder. Moreover, we set the

learning rate to 9 × 10−4 and linearly decrease it to 3 × 10−4, and adopt Adam [74] as our

optimization method with the hyper-parameters β1 = 0.5, β2 = 0.999, ε = 1e − 08. Since

our hashing task is unsupervised, we did not tune any hyper-parameters for adjusting the

effect of our losses in different datasets, and use the default setting. In particular, we set
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Table 7: Image retrieval results (mAP and mAP@1000) of unsupervised hash functions on

CIFAR-10 and MNIST datasets, when the number of hash bits are 16, 32 and 64. The

usage of supervised pretraining is shown for each model using the tick sign. The results of

alternative models are reported from the reference papers, except for the ones marked by

(∗) on top, which are obtained by us running the released code.

Dataset
CIFAR-10 MNIST

S
u

p
er

.
P

re
tr

a
in

mAP (%) mAP@1000 (%) mAP (%) mAP@1000 (%)
Model 16 32 64 16 32 64 16 32 64 16 32 64

S
h

al
lo

w

KMH [55] 13.59 13.93 14.46 24.08∗ 23.56∗ 25.19∗ 32.12 33.29 35.78 59.12∗ 70.32∗ 67.62∗ 7
SphH [58] 13.98 14.58 15.38 24.52∗ 24.16∗ 26.09∗ 25.81 30.77 34.75 52.97∗ 65.45∗ 65.45∗ 7
SpeH [163] 12.55 12.42 12.56 22.10∗ 21.79∗ 21.97∗ 26.64 25.72 24.10 59.72∗ 64.37∗ 67.60∗ 7
PCAH [157] 12.91 12.60 12.10 21.52∗ 21.62∗ 20.54∗ 27.33 24.85 21.47 60.98∗ 64.47∗ 63.31∗ 7
LSH [45] 12.55 13.76 15.07 12.63∗ 16.31∗ 18.00∗ 20.88 25.83 31.71 42.10∗ 50.45∗ 66.23∗ 7
ITQ [47] 15.67 16.20 16.64 26.71∗ 27.41∗ 28.93∗ 41.18 43.82 45.37 70.06∗ 76.86∗ 80.23∗ 7

D
ee

p

DH [36] 16.17 16.62 16.96 - - - 43.14 44.97 46.74 - - - 7
DAR [64] 16.82 17.01 17.21 - - - - - - - - - 7
DeepBit [93] - - - 19.43 24.86 27.73 - - - 28.18 32.02 44.53 3
UTH [66] - - - 28.66 30.66 32.41 - - - 43.15 46.58 49.88 3
HashGAN [ours] 29.94 31.47 32.53 44.65 46.34 48.12 91.13 92.70 93.93 94.31 95.48 96.37 7

the weights for the adversarial (Ladv), feature matching (Lfeat), independent bits (LindBit),

uniform frequency bits (LuniFrqBit), consistent bits (LconsBit) loss functions equal to 1, and

the weight of `2-norm loss (L2) equal to 0.1. For LminEntrpBit in the hash loss function, the

weight is selected from λminEntrpBit = {10−3, 10−2} based on the final epoch loss value in

the training process. Besides, we first train HashGAN without the hash and `2-norm loss

functions by setting its weight equal to zero for one tenth of the maximum epoch, since

the obtained hash codes in the first iterations may not be reliable for training the encoder

parameters. We use Theano toolbox [2] for writing our code, and run the algorithm in a

machine with one Titan X Pascal GPU.

Datasets: We compare our model with unsupervised hash functions in the image re-

trieval task on CIFAR-10 [77] and MNIST [83]. Furthermore, we analyze the discriminative

capability of HashGAN binary codes in the image clustering task on MNIST, USPS, FRGC

[180] and STL-10 [25] datasets. Following, we describe each dataset briefly.

CIFAR-10 dataset [77] contains 60K 32 × 32 colored images balanced across 10 classes
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(i.e. airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck).

MNIST dataset [83] includes 70K 28× 28 gray scale images of hand written digits (0-9)

across 10 classes.

USPS is a dataset of 11K 16×16 gray scale handwritten digits from USPS postal service,

with unbalanced distribution across the ten digits.

FRGC contains 2, 462 facial images from randomly selected 20 subjects on this dataset

[180]. Similar to [180], we crop the images to 32× 32 colored facial images.

STL-10 database [25] includes 13K colored images across 10 classes (i.e. airplane, bird,

car, cat, deer, dog, horse, monkey, ship and truck). The images are resized to 32× 32.

4.4.1 Image Retrieval

Alternative models: For image retrieval, we compare our method with the previous un-

supervised hash functions including K-means hashing (KMH ) [55], spherical hashing (SphH )

[58], spectral hashing (SpeH ) [163], PCA-based hashing (PCAH ) [157], locality sensitivity

hashing (LSH ) [45], iterative quantization (ITQ) [47], deep hashing (DH ) [36], discrimina-

tive attributes representations (DAR) [64], DeepBit [93] and unsupervised triplet hashing

(UTH ) [66].

Evaluation metrics: We evaluate the performance of HashGAN compared to the

aforementioned unsupervised hashing functions using precision and mean average precision

(mAP). We follow the standard protocol for both MNIST and CIFAR-10 datasets, and

randomly sample 1000 images (100 per class) as the query set and use the remaining data

as the gallery set. In particular, we report the results of the image retrieval in terms of

precision@1000, mAP, and mAP@10001, where precision@1000 is the fraction of correctly

retrieved samples from the top 1000 retrieved samples in gallery, mAP is the mean of the

average precision of query images over all the relevant images, mAP@1000 is mAP calculated

over the top 1000 ranked images from the gallery set. The reported results are the average

of 5 experimental results.

1Note that comparisons in some of the previous studies are confusing, as they comapre mAP results of
baseline models with mAP@1000 results of other models. To avoid such confusion, we provide evaluations
in terms of both of these metrics, separately.
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(a) 16 bits (b) 32 bits (c) 64 bits

Figure 10: Precision-Recall curves on CIFAR-10 database for HashGAN and five baselines

with 16, 32, and 64 hash bits.

Performance comparison: Table 15 shows the mAP and mAP@1000 results of Hash-

GAN and other alternative models across different hash bit sizes. To better compare the

models, we divide the hash functions into two groups of shallow and deep models, and in-

dicate whether they use supervised pretraining or not. The results demonstrate that our

model consistently outperforms other models with significant margins across different num-

ber of bits, datasets and metrics. Although, HashGAN gives better performance with more

number of hash bits, its performance has small drops with less hash bits. Interestingly, the

unsupervised deep hash functions, which use supervised pretraining via ImageNet dataset,

show better results on CIFAR-10 dataset compared to the shallow models, but have rel-

atively lower performance on MNIST dataset. This shows that pretraining on ImageNet

dataset is more helpful for CIFAR-10 than for MNIST, which is not that surprising, given

that ImageNet data distribution looks more similar to the CIFAR-10 image distribution than

MNIST. However, our model does not require any supervised pretraining, and consequently

is not affected by pretraining biases, and achieves superior results on both datasets.

Table 8 indicates the results of precision@1000 for HashGAN and some of the unsuper-

vised hash functions. Similar to Table 15, HashGAN achieves superior results in comparison

with the alternative shallow and deep models. The improvements of our model are consis-
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Table 8: Image retrieval results (precision@1000) of unsupervised hash functions on CIFAR-

10 and MNIST datasets, when the number of hash bits are 16, 32 and 64. The results of

alternative models are reported from the reference papers, except for the ones marked by

(∗) on top, which are obtained by us running the released code.

Dataset
CIFAR-10 MNIST

precision@1000 (%) precision@1000 (%)
Model 16 32 64 16 32 64

S
h

al
lo

w

KMH [55] 18.83 19.72 20.16 51.08∗ 53.82∗ 54.13∗

SphH [58] 18.90∗ 20.91∗ 23.25∗ 46.31∗ 54.74∗ 62.50∗

SpeH [163] 18.83 19.72 20.16 51.08∗ 53.75∗ 54.13∗

PCAH [157] 18.89 19.35 18.73 51.79∗ 51.90∗ 48.36∗

LSH [45] 16.21 19.10 22.25 31.95∗ 45.05∗ 55.31∗

ITQ [47] 22.46 25.30 27.09 61.94∗ 68.80∗ 71.00∗

D
ee

p

DH [36] 16.17 16.62 16.96 - - -
DAR [64] 24.54 26.62 28.06 - - -
HashGAN [ours] 41.76 43.62 45.51 93.52 94.83 95.60

tent across both MNIST and CIFAR-10 datasets and different hash code sizes, showing the

effectiveness of our learning framework in dealing with different conditions. We also compare

HashGAN with the baselines using precision-recall curves on CIFAR-10 dataset. Figure 18

clearly demonstrates better performance for HashGAN consistently across different number

of bits.

Moreover, we visualize the HashGAN ’s top 10 retrieved images for some query data

on CIFAR-10 dataset, when the hash bit size is 32. Figure 11 illustrates these results,

qualitatively showing that our hash function is able to extract semantic binary attributes.

4.4.2 Ablation Study

We perform an ablation study to examine the contribution of each loss component in

the achieved results. We evaluate this experiment across LindBit, L2, LconsBit, LuniFrqBit

and Ladv + Lfeat + L2. Note that in the absence of adversarial loss, the feature matching

and `2-norm losses are also excluded due to their co-dependencies with the adversarial loss.
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Table 9: Clustering performance of HashGAN and several other algorithms on four image

datasets based on accuracy (ACC) and normalized mutual information (NMI). The results

of alternative models are reported from the reference papers, except for the ones marked by

(∗) on top, which are obtained by us running the released code.

Dataset MNIST USPS FRGC STL-10
Model NMI ACC NMI ACC NMI ACC NMI ACC

S
h

al
lo

w

K-means 0.500 0.534 0.450 0.460 0.287 0.243 0.209∗ 0.284
N-Cuts [137] 0.411 0.327 0.675 0.314 0.285 0.235 - -
SC-LS [23] 0.706 0.714 0.681 0.659 0.550 0.407 - -
AC-PIC [192] 0.017 0.115 0.840 0.855 0.415 0.320 - -
SEC [110] 0.779 0.804 0.511 0.544 - - 0.245∗ 0.307
LDMGI [181] 0.802 0.842 0.563 0.580 - - 0.260∗ 0.331

D
ee

p

NMF-D [148] 0.152 0.175 0.287 0.382 0.259 0.274 - -
DEC [174] 0.816 0.844 0.586 0.619 0.505 0.378 0.284∗ 0.359
JULE-RC [180] 0.913 0.964 0.913 0.950 0.574 0.461 - -
DEPICT [41] 0.917 0.965 0.927 0.964 0.610 0.470 0.303∗ 0.371∗

HashGAN [ours] 0.913 0.965 0.920 0.958 0.602 0.465 0.316 0.394

We exclude loss components one at a time, measuring the difference in precision@1000 on

MNIST and CIFAR-10 datasets (See Fig. 17). The first observation is that all of the loss

components contribute in improving the results. Furthermore, the figure shows the strong

effect of Ladv + Lfeat + L2 as the key components in avoiding overfitting. In other words,

employing GAN in our model has the highest practical contribution, and removing the

discriminator and generator degrades the performance substantially. It also demonstrates

that the presence of uniform frequency loss is very important. Examining the results achieved

in the absence of this loss demonstrates that some of the binary codes collapse to either zero

or one, reducing the capacity of the assigned hash bit size. The relative analysis of the results

in each dataset demonstrates that consistency loss is more effective in CIFAR-10 than in

MNIST. This is expected as we only use noise for image transformation on MNIST since the

images are centered and scaled, but rely on extra transformations including translations and

horizontal flipping for CIFAR-10. The figure also demonstrates considerable contribution

from the `2-norm loss, showing the effectiveness of our framework in using the synthesized
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Query Retrieved

Figure 11: Top 10 retrieved images for query data by HashGAN on CIFAR-10 dataset with

32 bits hash code.

images for training the encoder network. The lowest effect is provided by the independent

bit loss.

4.4.3 Image Clustering

One way to measure whether the hash function is effective in extracting distinctive codes

is to evaluate their performance in clustering tasks. Hence, we assess HashGAN ’s ability in

clustering, by using the extracted hash codes as low dimensional input features for K-means

and compare the results with alternative clustering models.

Alternative Models: We compare our clustering method with several baselines and

state-of-the-art clustering algorithms, including K-means, normalized cuts (N-Cuts) [137],

large-scale spectral clustering (SC-LS ) [23], agglomerative clustering via path integral (AC-

PIC ) [192], spectral embedded clustering (SEC ) [110], local discriminant models and global

integration (LDMGI ) [181], NMF with deep model (NMF-D) [148], task-specific clustering

with deep model (TSC-D) [160], deep embedded clustering (DEC ) [174], joint unsupervised

learning (JULE-RC ) [180] and DEPICT [41].
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Figure 12: The difference in the precision@1000, when each of the loss components are

excluded from the HashGAN ’s objective function on MNIST and CIFAR-10 datasets.

Evaluation metrics: To compare the clustering results of our model with previous

studies, we rely on the two popular metrics used to evaluate clustering: normalized mutual

information (NMI), and accuracy (ACC). NMI provides a measure of similarity between two

data with the same label, which is normalized between 0 (lowest similarity) to 1 (highest

similarity) [178]. To calculate ACC we find the best mapping between the predicted clusters

and the true labels, following the approach proposed by [79].

Performance comparison: Table 13 gives the evaluation results for our clustering

method and the mentioned algorithms in terms of NMI and ACC across MNIST, USPS,

FRGC, and STL-10 datasets. The results demonstrate that our method (HashGAN + K-

means) achieves superior or competitive results compared to the state-of-the-art clustering

algorithms. Note that our method is not specially designed for clustering, since we only run

K-means algorithm on the HashGAN representations without backpropagating clustering

error through the network. The table also indicates clear advantage of deep models compared

with shallow models, emphasizing the importance of deep representations in image clustering.
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Overall, this experiment demonstrates the effectiveness of HashGAN model in extracting

discriminative representations on different datasets in completely unsupervised manner.

4.5 Conclusion

This project introduced HashGAN, an unsupervised deep hashing model, composed of

a generator, a discriminator and an encoder. We defined a novel objective function to effi-

ciently train our deep hash function without any supervision. Using the tied discriminator

and encoder, we employed the adversarial loss as a data-dependent regularization for un-

supervised learning of our hash function. Our novel hashing loss also led to quantized,

balanced, consistent and independent hash bits for real images. Furthermore, we introduced

a collaborative loss to use the synthesized images in training our hash function. HashGAN

outperformed unsupervised hashing models in information retrieval with significant margin,

and achieved state-of-the-art results in image clustering.
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5.0 Balanced Self-Paced Learning for Generative Adversarial Clustering

Network

5.1 Introduction

Clustering is one of the essential active research topics in computer vision and machine

learning communities with various applications. Clustering problem has been extensively

studied in the literature by introducing numerous algorithms with unsupervised learning

frameworks [177]. However, the existing methods that employ shallow or deep models suffer

from different issues. The shallow clustering models may not capture the nonlinear nature of

data due to their shallow and linear embedding functions, adversely affect their performance

by using inflexible hand-crafted features, and have difficulties in scaling to large datasets.

In contrast, the deep clustering methods have enough capacity to model the non-linear

and complex data, and are able to deal with large-scale datasets. But they are prone to the

overfitting issue leading to get stuck in bad local minima, since there is no reliable supervisory

signal for training their large number of parameters.

In this project, we propose a generative adversarial clustering network, called Cluster-

GAN, as a novel deep clustering model to address the aforementioned issues. ClusterGAN

adopts the adversarial game in GAN for the clustering task, and employs an efficient self-

paced learning algorithm to boost its performance. The standard GAN is formulated as an

adversarial game between two networks, a discriminator and a generator [48]. In particu-

lar, the generator G is supposed to synthesize realistic images to fool the discriminator D

by mapping the random input z into the data space, and the discriminator aims to distin-

guish the real data from the generated samples. The objective function in this two-player

adversarial game between D and G is:

min
G

max
D

Ex∼P (x)

[
log D(x)

]
+ Ez∼P (z)

[
log
(
1− D(G(z))

)]
, (5.1)

where P (x) is the real data distribution, and P (z) is the generator random input distribution.

In this adversarial loss, G is trained to learn the conditional distribution of real data given
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the random variables, and D is trained to find the boundaries between samples drawn from

the real and generated data distributions.

Unlike the traditional GAN, ClusterGAN consists of three networks, a discriminator D,

a generator G, and a clusterer C (i.e. a clustering network). The generator and clusterer are

both conditional generative networks, where G : z→ x̂ generates the realistic data samples

given the latent variables and C : x→ ẑ generates the discriminative latent variables given

the real data. The discriminator D accepts a joint distribution of samples and features

(i.e. latent variables) as the input, and tries to identify whether the paired samples belong

to the generator (z, x̂) or the clusterer (ẑ,x). Thus, training the generator and clusterer

to fool the discriminator leads to generating synthesized samples similar to real data and

estimating features similar to the generator latent variables. By considering a discriminative

distribution for the generator inputs, we employ the adversarial game between D, G and

C, and learn a discriminative embedding space in the output of the clusterer. Figure 13

illustrates the architecture of ClusterGAN.

Moreover, we introduce a novel clustering objective, which is directly applied on the

output of the clusterer given the real samples. The basic idea is to impose a block diagonal

constraint on the adjacency matrix of the real data. To do so, we first compute the similarity

values between real samples using the cosine similarity function applied on the clusterer

outputs. Then, a minimum entropy loss function is imposed to the similarity values to push

them towards 0 (i.e. dissimilar) or 1 (i.e. similar). However, the main challenge is that the

ground-truth similarities are unknown in unsupervised learning, which makes it difficult to

train a deep clustering model from the scratch. In order to tackle this issue, we enhance

the minimum entropy objective by utilizing a novel self-paced learning algorithm. Generally,

the standard self-paced learning algorithm initiates the training process with easy samples,

and then gradually takes more difficult samples into the training. Considering the difficulty

level of samples based on their loss values, the self-paced learning is reported to alleviate

the problem of getting stuck in bad local minima, and provides better generalization for the

models [81]. In addition to this gradually learning approach, we take the prior of selected

samples into consideration using an exclusive lasso regularization. This helps us to select a

more diverse set of samples in each training step, and prevents learning from easy samples
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belonging only to a few clusters. We also provide a theoretical proof for our balanced self-

paced learning algorithm in regard to achieving the global optimum closed form solution.

In our experiments, ClusterGAN achieves state-of-the-art results compared to the alter-

native clustering methods on several datasets. We also examine the effects of each component

in our learning objective function using an ablation study. Moreover, we evaluate the perfor-

mance of ClusterGAN representations in comparison with unsupervised hash functions on

information retrieval tasks. The experimental results confirm the effectiveness of our learning

framework in training unsupervised models with large depth. Therefore, the contribution of

this project can be summarized as the following points.

• We introduce a deep clustering model by adopting the generative adversarial network for

clustering.

• We propose a novel balanced self-paced learning algorithm for clustering by gradually

incorporating easy to more difficult samples into training steps, while keeping the prior

of selected samples balanced in each step.

• Our proposed model achieves comparable results to the state-of-the-art methods on clus-

tering and information retrieval tasks.
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5.2 Related Works

5.2.1 Clustering Algorithms

Countless number of clustering methods have been proposed in the literature, which can

be divided into shallow and deep models. In shallow clustering algorithms, K-means and

Gaussian mixture model (GMM ) [12] are two classical examples of distance-based cluster-

ing methods, which represent the clusters using geometric properties of the data points.

The kernel-based algorithms, like max-margin methods [193, 176], attempt to model the

non-linearity of data via the proper kernel functions. The connectivity-based algorithms,

including spectral methods [105, 189], aim to partition the data points that are highly con-

nected. However, these algorithms are not able to model the complex real-world data because

of their shallow and linear models.

Recently, deep clustering models attract more attentions due to their capabilities in

dealing with complex, high-dimension and large-scale datasets. A mutli-layer sparse cod-

ing network followed by a clustering algorithm is introduced in [160], where an alternative

learning approach is used to update the code books and estimate the clustering assignments.

Trigeorgis et al. stacked multiple semi non-negative matrix factorization layers to achieve

discriminative representations at the top layer, and used K-means to get cluster assignments

[148].

Autoencoder network is also adopted in multiple deep clustering models to build dis-

criminative embedding space using the reconstruction task. Tian et al. trained a stacked

autoencoder on the affinity matrix of a graph, and then obtained the clusters by running

K-means at the top layer features [146]. Xie et al. introduced deep embedded cluster-

ing (DEC ), which is first pre-trained using the reconstruction loss, and then fine-tuned via

Kullback-Leibler divergence minimization [174]. Dizaji et al. proposed DEPICT as a deep

clustering autoencoder network, that is trained using a joint reconstruction loss and relative

entropy minimization. DEPICT also benefits from a regularization term for balancing the

prior probability of cluster assignments [41].
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Moreover, JULE employs a convolutional neural network to represent the features, which

are iteratively clustered using an agglomerative clustering algorithm [180]. Yu et. al. ex-

tended GMM to GAN mixture model by allocating a GAN model for each cluster [186]. Hu

et. al. introduced a clustering algorithm, called IMSAT, by encouraging the predictions for

augmented samples to be close to the original ones, and maximizing the mutual informa-

tion of the predicted representations. IMSAT employs the virtual adversarial training [100]

and geometric transformations as data augmentation approaches [63]. ClusterGAN differs

from the previous models, because it adopts the adversarial game in GAN for unsupervised

learning of discriminative representations, and employs a novel self-paced learning algorithm

for clustering. Consequently, it is able to efficiently train deeper clusterers compared to

alternative algorithms.

5.2.2 Self-Paced Learning Algorithms

Inspired by the human learning principle, curriculum learning starts learning with easier

examples, and then gradually takes more complex examples into consideration [8]. But in

order to avoid heuristic “easiness” measures, Kumar et. al. proposed self-paced learning

algorithm that incorporates curriculum learning into the model optimization. It adds a

regularization term to the objective function, and consequently defines “easiness” measures

by the loss value regarding each sample [81]. Jiang et. al. extended self-paced learning to

also consider the diversity of samples selected in each training step [69]. Many studies further

adopted self-paced learning in their tasks to avoid getting stuck in bad local minima and

improve the generalization of their models [190, 91, 87]. Our balanced self-paced learning

approach differs with the existing methods, since it is applied to an unsupervised loss based

on adjacency matrix. It is also specially different with the algorithm in [69], which uses the

`2,1-norm regularization and supervised class labels, but our approach utilizes the exclusive

lasso regularization with no need to supervisory signals.
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5.2.3 Generative Adversarial Networks

GAN [48] is a powerful class of deep generative models, and is able to generate realistic

images with great details. Particularly, its effective approach is relied on a minimax game

between a generator and a discriminator, which compete each other to synthesize more

realistic samples and detect the real samples. Several studies further attempted to improve

the quality of generated images, for instance by using Laplacian pyramid framework [30],

strided convolution layers and batch normalization [120], and a generator conditioning on the

class labels or text descriptions [99, 113]. In addition, GAN has been adopted in supervised,

semi-supervised and unsupervised tasks, which have an inference model (e.g. classifier)

[21, 29, 133, 44, 42, 158]. Among them, ALI [35] and Triple-GAN [24] are more close to our

proposed model, where they are specifically designed for semi-supervised classification, but

ClusterGAN is developed for clustering. In particular, our learning framework is unique by

utilizing a novel self-paced learning algorithm and customized generative adversarial network

for clustering.
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Figure 13: Architecture of ClusterGAN along with the applied loss functions. ClusterGAN

consists of three networks, a generator G, a clusterer Cand a discriminator D. The generator

synthesizes the realistic samples given the discriminative random inputs. The clusterer maps

the real images into the discriminative latent variables. The discriminator distinguishes

whether its input pair belongs to the generator or the clusterer. The adversarial Ladv and

minimum entropy Lent loss functions are applied to the discriminator and clusterer outputs

respectively.
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5.3 Method

In this section, we first define the adversarial game regarding the minimax objective in

ClusterGAN, and then explain our conditional entropy minimization loss, which is enhanced

by the proposed balanced self-paced learning algorithm. Given n unlabeled samples X =

[x1, ...,xn] as the inputs, we aim to cluster them into c categories, where the ground-truth

labels are represented by y = [y1, ..., yn]. While ClusterGAN contains three networks, a

discriminator, a generator, and a clusterer, our final goal is to construct a block diagonal

adjacency matrix A based on the outputs of the clusterer, where aij = 1 if yi = yj and aij = 0

otherwise. Achieving the proper block diagonal adjacency matrix leads to easy clustering

assignments with no need to a complicated clustering algorithm. Since the output layer of

the clusterer is sigmoid function, we simply use the cosine similarity function to compute

the adjacency matrix as aij = ẑᵀi ẑj/‖ẑi‖‖ẑj‖, where ẑi is the clusterer output for the i-th

sample, and ‖.‖ represents the `2-norm function.

5.3.1 Cluster-GAN Adversarial Loss

As shown in Figure 13, ClusterGAN consists of a discriminator D, a generator G and a

clusterer C, in which the generator and clusterer aims to fool the discriminator by synthe-

sizing realistic samples by G : z → x̂ and similar latent variable to the generator inputs by

C : x→ ẑ, and the discriminator tries to distinguish the joint distribution of samples (ẑ,x)

and (z, x̂) coming from the clusterer and generator respectively.

In order to assist constructing the block diagonal adjacency matrix A, we set the random

input vectors of generator z to be orthogonal or parallel. To do so, we consider a binary

random variable with m/c elements equal to 1 and the remaining equal to 0, where m is the

length of z vector. In this case, if the distribution of clusterer output ẑ becomes similar to the

generator input variables z, we achieve the goal of an adjacency matrix with block diagonal

structure. But in order to represent the intra-cluster variations, we add small uniform random

noise to the inputs of the generator. This trick empirically helps to generate realistic samples

with more diversity, and has insignificant effect on the block diagonal adjacency matrix.
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As mentioned, the discriminator in ClusterGAN tries to discriminate the two joint dis-

tributions P (z, x̂) = P (z)PG(x|z) and P (ẑ,x) = P (x)PC(z|x), which are coming form the

generator and clusterer respectively. Since the generator random variable distribution P (z)

and the empirical distribution of real data P (x) are known, our objective is to learn the con-

ditional distribution of PG(x|z) and PC(z|x) to match the distributions P (z, x̂) and P (ẑ,x).

In order to acquire this condition, we employ the adversarial game between D, Gand C such

that the discriminator is trained to identify whether joint pairs are sampled from P (z, x̂) or

P (ẑ,x), whereas the generator and clusterer are learned to fool the discriminator. Therefore,

the objective function of this adversarial game for ClusterGAN is:

min
G,C

max
D

U(D, G, C) = Ex∼P (x)

[
log D

(
C(x),x

)]
+ Ez∼P (z)

[
log
(
1− D

(
z, G(z)

))]
. (5.2)

Using this minimax objective function, we are able to alleviate the overfitting issue

in training of a deep network with large complexity. This becomes more important in

unsupervised clustering task, since there is no reliable supervised information to learn the

deep clustering model. It can be shown that the optimal discriminator defined by this

objective is balanced between the joint distribution of pairs belonging to the clusterer P (ẑ,x)

and generator P (z, x̂).

Lemma 1. For any fixed G and C, the optimal D defined by the utility function U(D, G, C)

is:

D∗(z,x) =
P (x)PC(z|x)

P (x)PC(z|x) + P (z)PG(x|z)

Given D∗(x, z), we can further replace D in the utility function U(D, G, C) and refor-

mulate the objective as V(G, C) = max
D

U(D, G, C), whose optimal value is shown in the

following Lemma.

Lemma 2. The global optimum point of V(G, C) is achieved if and only if P (z, x̂) = P (ẑ,x).

Employing this adversarial game in ClusterGAN, we can attain the desired clusterer and

generator for our problem. In fact, the generator is trained to synthesize the images similar

to the real data distribution. The clusterer is trained to learn the inverse mapping function

of the generator, estimating discriminative features for the real data. Thus, we can construct

an almost block diagonal adjacency matrix from the clusterer outputs. In another point of
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view, this adversarial loss can be considered as a data-dependent regularization in training

our deep clustering model, helping to avoid getting stuck in bad local minima. The proof

for Lemma 1 and Lemma 2 are presented in the Appendix C.1 and C.2.

5.3.2 Cluster-GAN Entropy Minimization Loss

In addition to the adversarial loss, we introduce a clustering objective based on condi-

tional entropy minimization, which is directly applied to the adjacency matrix constructed

from the real data. Maximizing the mutual information or minimizing the conditional en-

tropy has been reported to have successful results in clustering [15, 76]. The conditional

entropy minimization loss in our problem has the following form:

min
C
−

n∑
i,j=1

[
aij log aij + (1− aij) log(1− aij)

]
, (5.3)

in which the adjacency elements aij are pushed towards 0 or 1. Therefore, minimizing

the conditional entropy is in favor of the block diagonal adjacency matrix. However, the

similarity values computed from the clusterer features are not reliable especially at the first

iterations of training. To tackle this issue, we can use the standard self-paced learning

approach, which embeds gradual learning from easy to more difficult samples into model

optimization as follows.

min
C,ν

n∑
i=1

νili − λν
n∑
i=1

νi , s.t. ν ∈ [0, 1]n (5.4)

where li = −
∑n

j=1 aij log aij − (1− aij) log(1− aij) is a loss related to the i-th sample, νi is

the self-paced learning parameter, and λν is a hyper-parameter for controlling the learning

pace. The parameters of self-paced learning algorithm and clusterer are generally trained

using an alternative learning strategy. Keeping the model parameters fixed, the globally

optimum solution for the self-paced learning parameters is ν∗i = 1 if li < λν , and ν∗i = 0

otherwise. It is obvious that by increasing λν throughout training, the self-paced learning

algorithm allows more difficult samples into the training process. However, the standard

self-paced learning does not consider selecting a balanced set of samples from all clusters,

and may choose easy samples of only a few clusters. In order to address this issue, we
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Algorithm 3: ClusterGAN Algorithm

1 for number of training iterations do
2 Sample a batch of pairs

(
x, C(x)

)
and

(
G(z), z

)
using the clusterer and generator

3 Update the discriminator parameters by max
D

n∑
i=1

log D
(
C(xi),xi

)
+

n∑
j=1

log
(
1− D

(
zj , G(zj)

))
4 Update the generator parameters by min

G

n∑
j=1

log
(
1− D

(
zj , G(zj)

))
5 Update the clusterer parameters by min

C

n∑
j=1

log D
(
C(xi),xi

)
+ νili + ‖C(xi)− C(x̃i)‖2

6 Update the self-paced learning parameters by min
ν

n∑
i=1

νili − λν‖ν‖1 + γ‖ν‖e s.t. ν ∈ [0, 1]n

7 end

propose balanced self-paced learning algorithm, which penalizes the lack of diversity using

the following objective function:

min
C,ν

c∑
k=1

[ nk∑
i=1

νki(lki − λν) + γ
( nk∑
i=1

|νki|
)2
]

s.t. ν ∈ [0, 1]n , (5.5)

where γ is the regularization hyper-parameter, and νki represents the self-paced learning

parameter for the i-th sample of the k-th cluster, where the data are assumed to belong to c

clusters as
∑c

k=1 nk = n. The second term in the loss is also the exclusive lasso regularization

‖ν‖e =
∑c

k=1

(∑nk
i=1 |νki|

)2
. Note that the balanced self-paced learning objective has two

regularization terms, −‖ν‖1 = −λν
∑c

k=1

∑nk
i=1 νki that is in favor of selecting easier samples,

and ‖ν‖e that penalizes groups with more selected samples. Thus, the proposed balanced

self-paced learning algorithm consider both the easiness and diversity of selected samples to

ensure robust and unbiased training steps. In order to solve this objective function, we use an

alternative learning approach, where the clusterer parameters are fixed while obtaining the

self-paced learning parameters, and the self-paced parameters are assumed to be known while

updating the clusterer parameters. Given the fixed C, the objective function for estimating

ν is:

min
ν

n∑
i=1

νili − λν‖ν‖1 + γ‖ν‖e s.t. ν ∈ [0, 1]n. (5.6)
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Table 10: Dataset Descriptions

Dataset # Samples # Classes # Dimensions

MNIST 70,000 10 1×28×28
USPS 11,000 10 1×16×16
FRGC 2,462 20 3×32×32
CIFAR-10 60,000 10 3×32×32
STL-10 13,000 10 3×96×96

We derive the global optimum solution for this optimization problem as shown in the

following theorem.

Theorem 1. For any fixed C, the optimal ν∗ defined by the objective function in Eq. (5.6)

is: 
ν∗kq = 1, if lkq < λν − 2γq

ν∗kq =
λν−lkq

2γ
− q, if λν − 2γq ≤ lkq < λν − 2γ(q − 1)

ν∗kq = 0, if lkq ≥ λν − 2γ(q − 1)

where q ∈ {1, ..., nk} is the sorted index based on the loss values {lk1, ..., lknk} in the k-th

group.

This solution intuitively makes sense, since the samples with loss greater/less than

the threshold λν − 2γ(q − 1) are considered as the difficult/easy samples, and are not-

involved/involved in the current training step. Interestingly, the threshold is also a function

of the ordered loss in each group, and consequently is increased as the number of samples

in a cluster increases. Hence, the balanced self-paced learning algorithm considers both the

easiness and diversity of selected samples in our learning framework. The proof for Theorem

1 is presented in Appendix C.3.
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In addition to the adversarial loss and the minimum entropy loss, we utilize a consistency

loss to train the clusterer parameters. The consistency loss encourages the clusterer to have

similar outputs for each samples x and its variations x̃ augmented by image transformations

or noise as follows:

min
C

n∑
i=1

‖C(xi)− C(x̃i)‖2 . (5.7)

The minimum entropy loss function in Eq. (5.3) is defined on the full-batch, and has

quadratic complexity w.r.t. the number of samples. However, we practically alleviate this

scalability issue by applying the loss only to the samples of each mini-batch. Algorithm 3

shows the training steps for ClusterGAN, where all of the networks are trained using our

alternative leaning framework.

5.4 Experiments

We perform several experiments to evaluate the performance of ClusterGAN in clustering

and information retrieval tasks on several datasets. We also examine the effect of each

component in our learning framework using an ablation study.

Datasets: We examine ClusterGAN clustering performance in comparison with alter-

native algorithms on MNIST [83], USPS, FRGC [180], CIFAR-10 [77] and STL-10 [25]

datasets. Moreover, we compare ClusterGAN with unsupervised hash functions in the im-

age retrieval task on MNIST and CIFAR-10 datasets. Table 10 provides the summary of

datasets statistics.

Implementation details: We mainly use the architectures of Triple-GAN in [24] for

ClusterGAN except the last layer of clusterer, which is set as same as the size of generator

input with the sigmoid non-linearity. For image preprocessing, we only normalize the image

intensities to be in the range of [−1, 1] on CIFAR-10 and STL-10 and [0, 1] for the others,

and consequently use the tangent-hyperbolic and sigmoid functions in the last layer of the

generator. The added noise to the generator inputs has uniform distribution with range
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[0, 0.5] which is linearly shrinking to [0, 0.1] throughout training. Moreover, we set the learn-

ing rate to 10−4 and linearly decrease it to 10−5, and adopt Adam [74] as our optimization

method with the hyper-parameters β1 = 0.5, β2 = 0.999, ε = 1e − 08. In order to avoid

manually setting λν and γ for different datasets, we choose them based on the loss values of

samples such that we start training with only 1% of samples at the first iteration, and then

linearly increase λν to include all samples in 3/4 of the maximum epoch. We run K-means

on the clusterer outputs for clustering, and use the indicator function 1(. > 0.5) to binarize

the clusterer outputs for hashing. The reported results are all the average of 5 experimental

outcomes. We use Theano toolbox [2] for writing our code, and run the algorithm on a

machine with one Titan X Pascal GPU.
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Table 11: Clustering performance of ClusterGAN and several alternative models on several

datasets based on ACC and NMI. The results of other models are reported from the reference

papers, except for the ones marked by (∗) on top, which are obtained by us running the

released code. The result with † sign are for the models with supervised pre-training.

Dataset MNIST USPS FRGC CIFAR-10 STL-10
Model NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

S
h

al
lo

w

K-means 0.500 0.534 0.450 0.460 0.287 0.243 0.102∗ 0.239∗ 0.209∗ 0.284∗

N-Cuts [137] 0.411 0.327 0.675 0.314 0.285 0.235 - - - -
SC-LS [23] 0.706 0.714 0.681 0.659 0.550 0.407 0.114∗ 0.258∗ 0.105∗ 0.168∗

AC-PIC [192] 0.017 0.115 0.840 0.855 0.415 0.320 0.118∗ 0.264∗ 0.235∗ 0.329∗

SEC [110] 0.779 0.804 0.511 0.544 - - 0.107∗ 0.249∗ 0.245∗ 0.307∗

LDMGI [181] 0.802 0.842 0.563 0.580 - - 0.109∗ 0.253∗ 0.260∗ 0.331∗

D
ee

p

NMF-D [148] 0.152 0.175 0.287 0.382 0.259 0.274 - - - -
DEC [174] 0.816 0.844 0.586 0.619 0.505 0.378 0.267∗ 0.312∗ 0.284∗ 0.359∗

JULE-RC [180] 0.913 0.964 0.913 0.950 0.574 0.461 0.194∗ 0.275∗ 0.204∗ 0.288∗

DEPICT [41] 0.917 0.965 0.927 0.964 0.610 0.470 0.274∗ 0.326∗ 0.303∗ 0.371∗

IMSAT [63] - 0.984 - - - - - 0.456† - 0.941†

ClusterGAN 0.921 0.964 0.931 0.970 0.615 0.476 0.323 0.412 0.335 0.423
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Table 12: Image retrieval results (%) of ClusterGAN and unsupervised hash functions on

CIFAR-10 and MNIST datasets, when the number of hash bits are 32 and 64. The results

of other models are reported from the reference papers, except for the ones marked by (∗)

on top, which are obtained by us running the released code. The result with † sign are for

the models with supervised pre-training.

Dataset
CIFAR-10 MNIST

precision@1000 mAP mAP@1000 precision@1000 mAP mAP@1000
Model 32 64 32 64 32 64 32 64 32 64 32 64

S
h

al
lo

w

KMH [55] 19.72 20.16 13.93 14.46 23.56∗25.19∗ 53.82∗ 54.13∗ 33.29 35.78 70.32∗67.62∗

SphH [58] 20.91∗ 23.25∗ 14.58 15.38 24.16∗26.09∗ 54.74∗ 62.50∗ 30.77 34.75 65.45∗65.45∗

SpeH [163] 18.83 19.72 12.42 12.56 21.79∗21.97∗ 53.75∗ 54.13∗ 25.72 24.10 64.37∗67.60∗

PCAH [157] 19.35 18.73 12.60 12.10 21.62∗20.54∗ 51.90∗ 48.36∗ 24.85 21.47 64.47∗63.31∗

LSH [45] 19.10 22.25 13.76 15.07 16.31∗18.00∗ 45.05∗ 55.31∗ 25.83 31.71 50.45∗66.23∗

ITQ [47] 25.30 27.09 16.20 16.64 27.41∗28.93∗ 68.80∗ 71.00∗ 43.82 45.37 76.86∗80.23∗

D
ee

p

DH [36] 16.62 16.96 16.62 16.96 - - - - 44.97 46.74 - -
DAR [64] 26.62 28.06 17.01 17.21 - - - - - - - -
DeepBit [93] - - - - 24.86† 27.73† - - - - 32.02† 44.53†

UTH [66] - - - - 30.66† 32.41† - - - - 46.58† 49.88†

ClusterGAN 40.62 42.51 29.4730.53 43.34 45.12 90.83 91.60 88.7089.93 91.48 92.37
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5.4.1 Image Clustering

Alternative Models: We compare our clustering model with several baselines and

state-of-the-art clustering algorithms, including K-means, normalized cuts (N-Cuts) [137],

large-scale spectral clustering (SC-LS ) [23], agglomerative clustering via path integral (AC-

PIC ) [192], spectral embedded clustering (SEC ) [110], local discriminant models and global

integration (LDMGI ) [181], NMF with deep model (NMF-D) [148], deep embedded cluster-

ing (DEC ) [174], joint unsupervised learning (JULE-RC ) [180], DEPICT [41] and IMSAT

[63].

Evaluation metrics: To compare the clustering performance of our model with previous

studies, we rely on the two popular metrics used to evaluate clustering: normalized mutual

information (NMI), and accuracy (ACC). NMI provides a measure of similarity between two

data with the same label, which is normalized between 0 (lowest similarity) to 1 (highest

similarity) [178]. To calculate ACC, we find the best map between the predicted clusters

and the true labels [79].

Performance comparison: Table 13 shows the clustering results of ClusterGAN and

the alternative models on five datasets. As it is expected, the deep clustering models mostly

have better results than their shallow alternatives. Among the deep models, ClusterGAN

outperforms the other methods almost on all datasets. Note that the IMSAT results on

CIFAR-10 and STL-10 are obtained using the 50-layer pre-trained deep residual networks on

ImageNet dataset [28], and cannot be compared to the results of other models trained with no

supervisory signals. It is worth mentioning that ClusterGAN is able to train deeper clustering

networks (e.g. 9 hidden layers on CIFAR-10 ) compared to the other deep models (e.g. 3

or 4 hidden layers on CIFAR-10 ). This effective learning framework could be the reason for

ClusterGAN ’s better performances on the more complex datasets like CIFAR-10 and STL-

10. This experiment confirms the efficiency ClusterGAN discriminative representations in

clustering of different datasets with various sizes, dimensions and complexities.
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Figure 14: The difference in clustering accuracy, when ClusterGAN is trained using some

components of the original objective function.

5.4.2 Ablation Study

We perform an ablation study to examine the contribution of the adversarial loss (GAN ),

the balanced self-paced learning algorithm (BSPL), and the consistency loss (Lcons). To do so,

we train ClusterGAN without GAN architecture and adversarial loss (BSPL+Lcons), without

the balanced self-paced learning algorithm (GAN +Lcons), and without the consistency loss

(GAN +BSPL). Moreover, we explore the effect of exclusive lasso regularization in BSPL by

training ClusterGAN using the standard self-paced learning algorithm (GAN +SPL+Lcons).

Figure 17 illustrates the difference in accuracy between each scenario and the original Clus-

terGAN on MNIST and CIFAR-10 datasets.

The first observation is that all of the terms contribute in improving the results. More-

over, the figure shows the strong effect for GAN as a key components to avoid getting stuck

in bad local minima. It also demonstrates that the balanced self-paced learning is important

in stable training, and also has better results compared to standard self-paced learning ap-

proach. Furthermore, the relative analysis of the results in both dataset demonstrates that

consistency loss is more effective on CIFAR-10 than on MNIST. This is expected as we only
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use noise for image transformation on MNIST since the images are centered and scaled, but

employ extra transformations including translations and horizontal flipping on CIFAR-10.

Moreover, we visualize the embedding subspace of a few clustering models on USPS

dataset in Figure 15. The figure shows the 2D visualization of clusterer outputs for BSPL+Lcons

and ClusterGAN using principle component analysis (PCA). In addition, we also illustrate

the raw data in the input space. As shown in the figure, ClusterGAN provides a significantly

more discriminative embedding subspace compared to the other model and raw data.

5.4.3 Image Retrieval

Alternative models: For image retrieval, we compare our method with the previous un-

supervised hash functions including K-means hashing (KMH ) [55], spherical hashing (SphH )

[58], spectral hashing (SpeH ) [163], PCA-based hashing (PCAH ) [157], locality sensitivity

hashing (LSH ) [45], iterative quantization (ITQ) [47], deep hashing (DH ) [36], discrimina-

tive attributes representations (DAR) [64], DeepBit [93] and unsupervised triplet hashing

(UTH ) [66].

Evaluation metrics: We evaluate the performance of ClusterGAN compared to the

other unsupervised hashing functions using precision and mean average precision (mAP) on

MNIST and CIFAR-10 datasets. We follow the standard protocol, and randomly sample

1000 images as the query set and use the remaining data as the gallery set. In particular, we

report the results of the image retrieval in terms of precision@1000, mAP, and mAP@1000.

Performance comparison: Another way to measure the effectiveness of ClusterGAN

discriminative representation is to evaluate its performance in hashing tasks. As shown in

Table 15, ClusterGAN consistently outperforms alternative models with significant margins

across different number of bits, datasets and metrics. Interestingly, the unsupervised deep

hash functions, which use supervised pre-training via ImageNet dataset, show better results

on CIFAR-10 dataset compared to the shallow models, but have relatively lower performance

on MNIST dataset due to the difference in transfer data distribution. With no need to

supervised pre-training, our model is not affected by pre-training bias and achieves superior

results on both datasets.
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(a) Raw data (b) BSPL+Lcons (c) ClusterGAN

Figure 15: Visualization of different data representations on USPS dataset using principle

component analysis (PCA) . (a) The space of raw data. (b) The embedding subspace of

ClusterGAN without GAN architecture and adversarial loss denoted by BSPL+Lcons. (c)

The embedding subspace of ClusterGAN.

5.5 Conclusion

In this project, we proposed a generative adversarial clustering network, denoted by

ClusterGAN, as a new deep clustering model. ClusterGAN consists of three networks, a

generator, a discriminator, and a clusterer. In order to efficiently train the deep clusterer

without any supervised information, we introduced an adversarial game between the three

networks, such that the generator synthesizes the realistic images given the discriminative

random inputs, the clusterer inversely maps the real samples into the discriminative features.

We further proposed a minimum entropy loss on the real data along with a balanced self-

paced learning algorithm to enhance the training of the clusterer. The balanced self-paced

learning algorithm improves the generalization of our clusterer by gradually decreasing the

easiness of included samples in the training process, while considering the diversity of selected

samples. Experimental results demonstrated that ClusterGAN achieves state-of-the-art re-

sults in the clustering and information retrieval tasks, and confirmed the effectiveness of each

component in our learning framework using an ablation study.
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6.0 Contrastive Generative Adversarial Network for Unsupervised Image

Retrieval and Clustering

6.1 Introduction

The explosive growth of image data in the internet and social media has driven huge in-

terest in efficient unsupervised models that are able to find similar patterns among the data.

For instance, there are many studies on approximate nearest neighbor search (ANNS) algo-

rithms, which aim to provide efficient image similarity search on large-scale image datasets.

Hashing-based ANNS methods tackle this problem by representing image data with binary

codes, providing an effective solution for the similarity search and storage of millions of im-

ages [47, 163, 94, 156, 89]. Categorizing similar/dissimilar images into the same/different

sets is another essential task in machine learning and computer vision. This problem is ex-

tensively studied in the literature by introducing models that find discriminative boundaries

between different image categories [177, 96]. These models are required to extract semantic

features from image data related to their categories, and be robust to different image styles

caused by spatial/geometric transformations and color distortions.

Supervised deep models have shown remarkable performance in image classification

and retrieval by training their flexible mapping function using large sets of labeled data

[55, 163, 157, 56, 65, 145]. However, unsupervised deep hashing and clustering models gen-

erally lag behind their supervised counterparts on image data, since the lack of reliable

supervisory signals may lead to learning some arbitrary representations in deep models with

large numbers of free parameters. In order to address this problem, some studies employ aux-

iliary reconstruction or generative loss functions as additional regularizations [174, 101, 18].

However, these regularizations usually enforce the models to contain some unnecessary gen-

erative information that is not directly relevant to the required ability of discriminative

representations. Also the unsupervised deep models usually provide insignificant improve-

ments compared to their shallow counterparts, and sometimes need a variant of supervised

pretrainings to initialize their parameters [93, 66].
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Figure 16: Architecture of Contra-Info GAN, consisting of an encoder to map input images

into latent representations, a generator to synthesize images given latent variables, a dis-

criminator to distinguish the encoder data from the generator data, a contrastive classifier

to increase/decrease the distance of negative/positive data pairs, and a mutual information

discriminator to preserve the relevant information of image data in the latent representations.

Three loss functions, Lmim, Lcont and Ladv, are applied to train the networks.
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In this project, we propose a new unsupervised learning framework for deep models in

image retrieval and clustering tasks based on three loss functions: 1) We utilize an adver-

sarial loss between three networks, including a critic, a generator, and an encoder (i.e. our

unsupervised discriminative network), enforcing the generator to learn the conditional image

distribution given a set of random content and style latent variables, the encoder to map the

input images to a set of content and style latent representations, and the critic to distinguish

its joint input data (i.e. a pair of image and latent features) belonging to the generator

or encoder. This adversarial loss is not only beneficial for training the encoder due to the

learned knowledge in the generator network, but also provides this opportunity to impose

the desired constraints and prior to the content and style latent representations. 2) We also

exploit the maximum mutual information loss to increase the correlation of between images

and their latent representations. Instead of directly maximizing the Kullback-Leibler (i.e.

KL) divergence between a latent representations of an image and other representations, we

use a Jensen–Shannon (i.e. JS) divergence in a GAN-style sub-network to better approxi-

mate the mutual information. 3) We introduce a novel contrastive loss to disentangle the

content and style representations by decreasing/increasing the distance between content fea-

tures of an image (i.e. anchor point) and its augmented variant/other images (i.e. positive

point/negative points). Our contrastive loss does not require a large batch size in training to

cover enough negative pairs, and has small overhead to the computation time and memory

size.

In summary, we present Contrastive Information-based Generative Adversarial Network,

denoted by Contra-Info GAN, as an effcient solution for unsupervised image retrieval and

clustering tasks. Our experimental results indicate that Contra-Info GAN achieves state-of-

the-art results compared to alternative models on image retrieval and clustering. Moreover,

we examine the effect of each component in our learning framework using an ablation study.

Therefore, our main contributions of this project can be summarized as follows:

• Proposing a novel unsupervised learning framework for training deep models to map

image data into disentangled content-style representations.

• Introducing a threefold loss function based on a contrastive learning of visual repre-

sentations with small time and space complexities, approximation of maximum mutual
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information via a JS-divergence, and an adversarial game for learning discriminative and

generative pathways between images and latent representations.

• Outperforming state-of-the-art models on image retrieval and clustering with significant

margins.

6.2 Methodology

Given N samples X = [x1, ...,xN ] as the images in the training (i.e. gallery) set, Contra-

Info GAN aims to find a discriminative encoder that maps the input images into a latent

representation z = [zc, zs], consisting of disentangled content and style representations. We

use K dimensional softmax layer or K independent sigmoid layers to obtain the content

representation zc in clustering or retrieval tasks, and a linear layer to obtain the style rep-

resentation zs. While the content representation shows the probability of the input image

belonging to a cluster or a binary hash code (i.e. inter-class information), the style represen-

tation indicates the other factors of variations in the image (i.e. intra-class information). As

shown in Figure 1, we employ three loss functions in our learning framework to accomplish

this goal, and describe them with more details in the following sections.

6.2.1 Contra-Info GAN Adversarial Loss

The vanilla GAN is formulated as an adversarial game between two networks, a discrim-

inator and a generator [48]. In particular, the generator G is supposed to synthesize realistic

images to fool the discriminator D, and the discriminator aims to distinguish the real data

from the generated samples. However, the adversarial game in our learning framework in-

cludes three networks, a discriminator D, a generator G and an encoder E. The generator

aims to synthesize realistic images as G : z → x̂, and the encoder tries to map the input

images into latent representations similar to the generator inputs as E : x→ ẑ. Given a pair

set of images and latent features as the input, the discriminator is supposed to distinguish

whether the paired samples belonging to the generator (z, x̂) or the encoder (ẑ,x). We uti-
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lize the adversarial loss in Wasserstein GAN with gradient penalty (i.e. WGAN-GP) [50] to

learn the joint distribution of images and latent representations through the generator and

encoder using the following objective,

min
G,E

max
D

Ex∼P (x)

[
D
(
E(x),x

)]
− Ez∼P (z)

[
D
(
z, G(z)

)]
+ λWE(z,x)∼P (z̄,x̄)

[(
‖∇z,xD(z,x)‖2 − 1

)2]
, (6.1)

where P (x) is the real images distribution, and P (z) is the generator random input dis-

tribution consisting of the content and style latent variables as z = [zc, zs]. The content

latent variables sampled from a categorical distribution zc ∼ Cat(K, 1/K) in clustering and

K independent random binary distributions as zjc ∼ Bernoulli(U(0, 1)) in image retrieval.

The style latent variables sampled from a normal distribution zs ∼ N(0, 1). P (z̄, x̄) is used

for sampling uniformly along straight lines between pairs of images and latent features as

z̄ = εz + (1− ε)ẑ and x̄ = εx + (1− ε)x̂, where ẑ = E(x) and x̂ = G(z). λW is the gradient

penalty hyper-parameter, adjusting the 1-Lipschitz constraint effect on the discriminator

(also known as critic in WGAN-GP).

This loss function assists the encoder to exploit the learned knowledge in the generation

pathway by learning the inverse function of synthesizing realistic images from the latent

variables in the generator. Moreover, we are able to easily impose the desired constraints (i.e.

prior) on the encoder latent representations ẑ via the chosen distributions for the generator

latent variables z. This point helps us to avoid degenerate solutions on the encoder such

as assigning all images to a few clusters, allocating a cluster to a few outlier samples, or

having imbalanced frequency in hash bits. It is also beneficial to directly use ẑ as the cluster

assignments or hash codes, since ẑ is enforced to become like one-hot or binary vectors of

z. We also explored the helpfulness of pretraining the generator network using the vanilla

adversarial loss in GAN or WGAN-GP, since the generator task in synthesizing realistic

images is way more difficult than the encoder task in mapping input images to the latent

representations. Our experimental results show that this pretraining is useful in stabilizing

our adversarial loss and achieving better results. In addition, we chose the Wasserstein

distance instead of other GAN divergence measures, because it is continuous everywhere,
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Algorithm 4: Contra-Info GAN algorithm for image clustering
1 Input: Unlabeled Dataset X = {xi}Ni=1 and number of clusters K; Initial parameters of the encoder E, generator G,

discriminator D, mutual information discriminator M, and contrastive classifier C; Hyper-parameters M , B, λW ,
ncritic, λadv , λcont, λmim; Augmentation function T

2 while Ladv not converged do
3 for t = 1, ..., ncritic do
4 {xi}Bi=1 ∼ P (x) ; // Sample image data

5 {zi = [zic, z
i
s]}Bi=1 ∼ [Cat(K, 1/K), N(0, 1)] ; // Sample latent variables

6 ẑi ← E(xi) ∀i ∈ [1, ..., B] ; // Obtain latent representations

7 x̂i ← G(zi) ∀i ∈ [1, ..., B] ; // Generate images

8 z̄i ← εzi + (1− ε)ẑi ; // Mix representations

9 x̄i ← εxi + (1− ε)x̂i ∀i ∈ [1, ..., B] ; // Mix images

10 θD← maxD

∑B
i=1 D

(
ẑi,xi

)
− D

(
zi, x̂i

)
+ λW

(
‖∇z̄i,x̄i D(z̄i, x̄i)‖2 − 1

)2
; // Train D

11 end

12 Sample latent variables [zc]Bi=1 ∼ Cat(K, 1/K), [zs]Bi=1 ∼ N(0, 1) ; // Sample latent variables

13 Sample image data [xi]Bi=1 ∼ P (x) ; // Sample image data

14 ẑi = [ẑic, ẑ
i
s]← E(xi) ∀i ∈ [1, ..., B] ; // Obtain latent representations

15 ẑi+ = [ẑi+c , ẑi+s ]← E(T (xi)) ∀i ∈ [1, ..., B] ; // Obtain latent representations of positive samples

16 ẑij− = [ẑij−c , ẑij−s ]← Negi ∀i, j ∈ [1, ..., B], [1, ...,M ] ; // Obtain latent representations of negative

samples

17 θG← minG−
∑B
i=1 D

(
zi, G([zic])

)
; // Train G

18 θC← minC−
∑B
i=1 log

exp
[
C
(
ẑic,ẑ

i+
c )
)]

exp
[
C
(
ẑc,ẑ

+
c

)]
+
∑M

j=1 exp
[
sim
(
ẑc,ẑ

−
c

)] ; // Train C

19 θM← maxM

∑B
i=1 log M

(
ẑi,xi

)
+
∑B
i=1,j 6=i log

(
1−M

(
ẑj ,xi

))
; // Train M

20 θE← minELE
tot ; // Train E using LE

tot in Eq. 6.6

21 end

does not suffer from vanishing or exploding gradient issues, and can be used to estimate the

training convergence of the encoder.

6.2.2 Contrastive Loss of Contra-Info GAN

In order to attain the disentangled latent representations on the encoder, we introduce a

contrastive loss based on the fact that image transformations should not change the content

representations ẑc and may only affect the style representations ẑs representing the other

factors of variations in images. In particular, we augment each image with transformations

such as rotation, scaling, cropping, and color jittering, and enforce the encoder to have

similar content representations for an image x and its augmented variant x+ = T (x). To do

so, we use the following contrastive loss function:

min
E,sim

−Ex∼P (x) log
esim(ẑc,ẑ

+
c )

esim(ẑc,ẑ
+
c ) +

∑
x−∈Neg e

sim(ẑc,ẑ
−
c )
, (6.2)
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where ẑc is the content representation for image x as [ẑc, ẑs] = E(x), ẑ+
c is the content

representation for the augmented image x+ = T (x) as [ẑ+
c , ẑ

+
s ] = E(x+), ẑ−c is the content

representation for another random image x− as [ẑ−c , ẑ
−
s ] = E(x−), and sim is a similarity

function like dot product. Intuitively, the loss value is low when ẑc is similar to its augmented

variant ẑ+
c (i.e. positive example) and dissimilar to latent representations of other images

ẑ−c (i.e. negative examples).

In order to define the set of negative examples for each image (Neg in Eq. 6.2), the

previous contrastive learning studies either use the samples in the current mini-batch [20,

114] or a memory bank containing the representations of all samples in the dataset [170].

While the large number of negative examples is often required to have efficient unsupervised

contrastive loss, the former studies have challenges with the GPU memory size due to the

large mini-batch size, and the latter studies suffer from less consistent representations because

of the slow update rate of sample representations in the memory bank (i.e. only one update

per epoch when the sample is seen during training).

We introduce an efficient contrastive loss in our learning framework that does not limit

the number of negative examples by the mini-batch size and benefits from consistent represen-

tations of the samples throughout training. To provide an approach with small computation

time and memory size overhead, we maintain a queue of representations obtained from the

content latent variables of the generator as Neg = [z1
c , ..., z

M
c ], where M is the predefined

number of negative examples. The samples of the queue are progressively replaced, such

that the content representations of the new generated images that fool the discriminator D

are added to the queue while the same number of older samples are removed. Note that

we exclude the positive examples of each anchor point ẑc from its Neg set by removing the

examples similar to the binarized version of ẑc. Using this approach the size of the queue

can be much larger than the mini-batch size. We consider a fully connected networks with

one hidden layer as sim function in Eq. 6.2 that can be seen as a M + 1-way deep classifier.
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6.2.3 Maximum Mutual Information Estimation in Contra-Info GAN

The encoder network may suffer from learning arbitrary representations for the input

images due to its flexible non-linear mapping function and lack of reliable supervisory signals.

To avoid this problem, we leverage the mutual information maximization to preserve the

relevant information in the latent representations regarding the image retrieval and clustering

tasks. The mutual information between an image x and its encoded latent representation ẑ

is defined as follows,

I(x, ẑ) =

∫∫
P (ẑ|x)P (x) log

P (ẑ|x)P (x)

Q(ẑ)P (x)
dxdẑ (6.3)

= KL
(
P (ẑ|x)P (x)‖Q(ẑ)P (x)

)
,

where P (ẑ|x) is the encoder output distribution, P (x) is the input image distribution, and

Q(ẑ) = Ex∼P (x)

[
P (ẑ|x)] is the empirical posterior distribution of the latent representations.

In order to alleviate the issues of maximizing the unbounded KL-divergence in Eq. 6.3, we

follow [62] and replace the KL-divergence with more stable JS-divergence to approximate

the mutual information as

I(x, ẑ) ≈ JS
(
P (ẑ|x)P (x), Q(ẑ)P (x)

)
. (6.4)

Note that our goal is maximizing the mutual information and not obtaining its precise value,

thus we can use the JS-divergence as the optimization criterion instead of the KL-divergence.

One effective way to estimate the JS-divergence between two distributions is to employ the

adversarial game in the GAN framework [48, 112]. To do so, we employ a discriminator to

approximate the mutual information using the following objective,

max
M,E

Ex∼P (x)

[
log M

(
E(x),x

)]
(6.5)

+ Ex,z∼P (x),Q(ẑ)

[
log
(
1−M

(
z,x
))]

,

where M is the discriminator used for estimating the mutual information. Optimizing this

objective function encourages the encoder network to increase the relevance of an image x

and its latent representation ẑ = E(x) rather than the representation of another image using
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the discriminator M by considering
(
E(xi),xi

)
as a positive sample and

(
E(xj),xi

)
as a

negative sample.

Algorithm 4 shows the training steps of our learning framework in the clustering task,

in which the encoder E maps image data into the disentangled latent representations, the

generator G synthesizes realistic images given the latent variables, discriminator D distin-

guishes whether its input belonging to the generator or encoder, the discriminator M helps

in approximating the mutual information, and the contrastive classifier C enforce the en-

coder to have transformation-invariant representations. The loss function for updating the

parameters of the encoder is

LE
tot = λadvLadv + λcontLcont + λmimLmim , (6.6)

where, Ladv is the adversarial loss shown in Eq. 6.1, Lcont is the contrastive loss presented

in Eq. 6.2, Lmim is the maximum mutual information objective indicated in Eq. 6.5, and

λadv, λcont and λmim are the hyper-parameters balancing the effect of components.

6.3 Experiments

Datasets: We compare our model with clustering models on five datasets including

MNIST containing 70, 000 gray images with (28× 28) size [83], Fashion-MNIST containing

70, 000 gray images with (28×28) size [173], ImageNet-10 [19] containing color 13, 000 images

with (96 × 96) size, CIFAR-10 containing color 60, 000 images with (32 × 32) size [77] and

STL-10 [25] containing color 13, 000 images with (96× 96) size. All of the datasets have 10

clusters. Following [68], we convert the color images to gray images to discourage clustering

based on trivial colour cues. In addition, we use the CIFAR-10 and MNIST datasets for

comparing our model on the image retrieval task.

Implementation Details: For the encoder E, generator G, discriminator D and mutual

information discriminator M, we mainly use similar architectures to [50, 101] with different

number of layers and units for different sizes of input images. The contrastive classifier C

is a multi-layer fully connected network. The dimension of zs and ẑs is set to 100, and
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the dimension of ẑc is set to the priori known number of clusters or size of hash bits. We

also set the learning rate to 10−4 and linearly decrease it to 10−5, and adopt Adam [74]

as our optimization method with the hyper-parameters β1 = 0.5, β2 = 0.9. We add a

small uniform random noise to the content latent representations zc of the generator (i.e.

1→ 1− u and 0→ 0 + u where u ∼ U[0, 0.1]) to make the discriminator job more difficult.

Since the image retrieval and clustering tasks are naturally unsupervised, we did not tune

any hyper-parameters using the supervisory signals. We set the WGAN hyper-parameters

λW = 10 and ncritic = 5, the batch size B = 64, the Neg set size M = 2048, and the loss

weights λadv = 1 and lambdamim = 1. Since the contrastive loss has different effects on

easy and difficult datasets (i.e. MNIST vs. CIFAR-10 ), we set the λcont = 2 for MNIST

and Fashion-MNIST and λcont = 4 for the other datasets. The data augmentation function

includes cropping, horizontal flipping, color jittering and channel shuffling. In particular, we

crop images with the randomly sampled aspect ratio and area from the range of [3/4, 4/3]

and [40%, 100%] respectively, and resize them back to the original image size. The input

images are also flipped horizontally with 50% probability except for the MNIST dataset.

We scale brightness of images with random weights sampled from [0.6, 1.4], and hue with

random coefficients sampled from [0.875, 1.125]. The RGB channels of color images are also

randomly shuffled before graying the images.
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Table 13: Performance of clustering models on five datasets based on ACC and NMI. The

results of alternative models are reported from the reference papers, except for the ones

marked by † on top, which are obtained by us running the released code. The results with ‡

sign are for the models with supervised pre-training.

Dataset MNIST Fashion-MNIST ImageNet-10 CIFAR-10 STL-10

Model NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means 0.500† 0.568† 0.510† 0.472† 0.118† 0.239† 0.090† 0.235† 0.136† 0.228†

N-Cuts [137] 0.411 0.327 0.575 0.508 0.151 0.274 0.103 0.247 0.098 0.159
AC [49] 0.609 0.609 0.570† 0.502† 0.138 0.242 0.105 0.228 0.239 0.332
SC-LS [23] 0.706 0.714 0.662† 0.657† 0.118† 0.246† 0.114 0.258 0.105 0.168
NMF [16] 0.608 0.545 0.425 0.434 0.138 0.242 0.105 0.228 0.239 0.239
NMF-D [148] 0.152 0.175 0.297† 0.386† 0.103† 0.184† 0.078† 0.200† 0.208† 0.222†

DEC [174] 0.772 0.843 0.546 0.518 0.282 0.381 0.301 0.257 0.276 0.359
JULE-RC [180] 0.913 0.964 0.608 0.563 0.175 0.300 0.192 0.272 0.182 0.277
DEPICT [41] 0.917 0.965 0.392 0.392 0.170† 0.252† 0.274 0.326 0.303 0.371
IMSAT [63] - 0.984 - - - - - 0.456‡ - 0.941‡

ClusterGAN-1 [101] 0.890 0.950 0.640 0.630 - - - - - -
ClusterGAN-2 [40] 0.921 0.964 - - - - 0.323 0.412 0.335 0.423
DAC [19] 0.935 0.978 0.588† 0.615† 0.396 0.522 0.366 0.470 0.394 0.527
RTM [111] 0.933 0.968 0.685 0.710 - - 0.197 0.309 - -
IIC [68] - 0.992 0.610† 0.657† - - - 0.617 - 0.499
DCCM [169] - - - - 0.608 0.710 0.496 0.408 0.376 0.482

Contra-Info GAN 0.970 0.989 0.710 0.758 0.645 0.744 0.572 0.659 0.488 0.530
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Table 14: Performance of Cluster assignments with/without K-means on ẑc, ẑs and ẑ.

Dataset MNIST Fashion-MNIST ImageNet-10 CIFAR-10 STL-10

Method NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means on ẑ 0.491 0.538 0.496 0.502 0.122 0.297 0.123 0.300 0.423 0.479
K-means on ẑs 0.970 0.989 0.710 0.758 0.638 0.740 0.568 0.656 0.486 0.527
K-means on ẑc 0.970 0.987 0.710 0.758 0.642 0.741 0.570 0.657 0.488 0.532
Argmax on ẑc 0.970 0.989 0.710 0.758 0.645 0.744 0.572 0.659 0.488 0.530

Evaluation Metrics: To compare the performance of clustering models, we rely on

the two widely used metrics, normalized mutual information (NMI) and accuracy (ACC).

NMI measures the similarity between two data with the same label, and is normalized

between 0 (lowest similarity) to 1 (highest similarity) [178]. Following [79], we find the best

map between the predicted clusters and the true labels to calculate ACC. We also evaluate

the performance of hashing functions using precision and mean average precision (mAP).

We follow the standard protocol for MNIST and CIFAR-10, and randomly sample 1000

images (100 per class) as the query set and use the remaining data as the gallery set. In

particular, we report the results of the image retrieval in terms of precision@1000, mAP,

and mAP@1000, where precision@1000 is the fraction of correctly retrieved samples from

the top 1000 retrieved samples in gallery, mAP is the mean of the average precision of query

images over all the relevant images, mAP@1000 is mAP calculated over the top 1000 ranked

images from the gallery set. The reported results in image retrieval and clustering tasks are

the average of 5 runs.

Performance Comparison on Image Clustering: Table 13 shows the clustering

results of Contra-Info GAN and several alternative models on the five datasets. Contra-

Info GAN outperforms the other methods on all distastes with large margins based on

the both evaluation metrics except MNIST. While IIC has a slightly better accuracy on

MNIST than Contra-Info GAN, our model has significantly better performance than IIC

on Fashion-MNIST, CIFAR-10 and STL-10 datasets. Note that the IMSAT results on

CIFAR-10 and STL-10 are obtained using the 50-layer pre-trained deep residual networks

on ImageNet dataset [28], and cannot be compared to the results of other models trained
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Table 15: Image retrieval results (mAP and mAP@1000) of unsupervised hash functions

on CIFAR-10 and MNIST datasets, when the number of hash bits are 16, 32 and 64. The

results of alternative models are reported from the reference papers.

Dataset
CIFAR-10 MNIST

mAP (%) mAP@1000 (%) precision@1000 (%) mAP (%) mAP@1000 (%) precision@1000 (%)

Model 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

KMH [55] 13.59 13.93 14.46 24.08 23.56 25.19 18.83 19.72 20.16 32.12 33.29 35.78 59.12 70.32 67.62 51.08 53.82 54.13

SphH [58] 13.98 14.58 15.38 24.52 24.16 26.09 18.90 20.91 23.25 25.81 30.77 34.75 52.97 65.45 65.45 46.31 54.74 62.50

SpeH [163] 12.55 12.42 12.56 22.10 21.79 21.97 18.83 19.72 20.16 26.64 25.72 24.10 59.72 64.37 67.60. 51.08 53.75 54.13

PCAH [157] 12.91 12.60 12.10 21.52 21.62 20.54 18.89 19.35 18.73 27.33 24.85 21.47 60.98 64.47 63.31 51.79 51.90 48.36

LSH [45] 12.55 13.76 15.07 12.63 16.31 18.00 16.21 19.10 22.25 20.88 25.83 31.71 42.10 50.45 66.23 31.95 45.05 55.31

ITQ [47] 15.67 16.20 16.64 26.71 27.41 28.93 22.46 25.30 27.09 41.18 43.82 45.37 70.06 76.86 80.23 61.94 68.80 71.00

DH [36] 16.17 16.62 16.96 - - - 16.17 16.62 16.96 43.14 44.97 46.74 - - - - - -

DAR [64] 16.82 17.01 17.21 - - - 24.54 26.62 28.06 - - - - - - - - -

DeepBit [93] - - - 19.43 24.86 27.73 - - - - - - 28.18 32.02 44.53 - - -

UTH [66] - - - 28.66 30.66 32.41 - - - - - - 43.15 46.58 49.88 - - -

DistillHash 28.44 28.53 28.67 - - - - - - - - - - - - - - -

HashGAN [44] 29.94 31.47 32.53 44.65 46.34 48.12 41.76 43.62 45.51 91.13 92.70 93.93 94.31 95.48 96.37 93.52 94.83 95.60

Contra-Info GAN 34.63 36.12 38.78 48.15 51.32 54.98 45.34 47.72 50.08 93.71 95.04 95.89 96.66 97.35 98.12 95.08 96.12 97.11

with no supervisory signals. The improvements over the existing models especially on more

complex datasets, like ImageNet-10, CIFAR-10 and STL-10, confirm the effectiveness of our

learning framework in unsupervised training of deep clustering models.

Evaluation of Latent Representations: In order to assess the capability of Contra-

Info GAN in learning disentangled latent representations, we explore the clustering perfor-

mance of z, zc and zs using Argmax and K-means. Table 14 demonstrates the results of

four different ways of obtaining the cluster assignments. Similar performance on zc with

or without K-means indicates the effectiveness of Ladv on imposing desired constraints and

prior to the content representations. In addition, the results K-means on z, zc are similar,

but the outcomes of K-means on zs are considerably worse than the other two. This results

supports the claim that the encoder network is able to learn disentangled representations on

image data.

Performance Comparison on Image Retrieval: Table 15 indicates the results of

Contra-Info GAN and several hashing models on CIFAR-10 and MNIST across different

hash bit sizes. The results demonstrate that Contra-Info GAN consistently outperforms

other models with significant margins with different numbers of bits and evaluation metrics

on the both datasets. Contra-Info GAN has higher improvements on large hash bit size
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Figure 17: Ablation study of the adversarial loss (ADV), the contrastive loss (CONT) and

the mutual information loss (MIM) in image clustering (left figure) and image retrieval (right

figure).

relatively, utilizing the hash codes more efficiently. The unsupervised deep hash functions

with supervised pretraining on ImageNet dataset, like DeepBit and UTH, have better results

on CIFAR-10 dataset compared to the shallow models, but have relatively lower performance

on MNIST dataset. This shows that pretraining on the ImageNet dataset is helpful on

CIFAR-10, which has a similar distribution to ImageNet compared to MNIST. However,

Contra-Info GAN achieves superior results on the both datasets, since it does not require

any supervised pretraining, and consequently is not affected by pretraining biases. Figure

18 shows the precision-recall curve for LSH, ITQ, SphH, Speh, PCAH and Contra-Info

GAN with 16, 32 and 64 bits on CIFAR-10 dataset. Overall, these experiments validate the

effectiveness of our learning framework in dealing with different datasets and hash code sizes.

Based on the Contra-Info GAN hash function, we also visualize the the top 10 retrieved

images for some query data on CIFAR-10 dataset. Figure ?? illustrates these retrieved

images using 32 bits hash codes, indicating that our model is able to extract semantic

binary attributes. We also demonstrates samples assigned to four clusters on MNIST dataset

using the Contra-Info GAN clustering model. Figure ?? shows these images with various

assignment probabilities.
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Figure 18: Precision-Recall curves on CIFAR-10 dataset for Contra-Info GAN and five

baselines with 16, 32, and 64 hash bits.

Figure 19: a) Top 10 retrieved images for query data by the Contra-Info GAN hash function

on CIFAR-10 dataset with 32 bits hash code. b) Image samples assigned to four clusters by

the Contra-Info GAN clustering model on MNIST dataset.
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Ablation Study: We perform an ablation study to examine the contribution of the ad-

versarial loss (ADV), the contrastive loss (CONT) and the mutual information loss (MIM).

Figure 17 illustrates the performance drop of different scenarios on MNIST and CIFAR-

10 datasets based on ACC in clustering and precision@1000 in image retrieval. The first

observation is that all of the components in our loss function contribute in improving the

results. While removing two of the losses degrades the results substantially, the adversarial

loss (ADV) has the strongest effect on the results consistently on both tasks due to impor-

tance imposing prior and avoiding degenerate solutions. Moreover, the figure shows that the

contrastive loss is more important than the mutual information loss in our learning frame-

work. Furthermore, the contrastive loss has relatively more effect on CIFAR-10 compared

to MNIST, since CIFAR-10 has more intra-class variations.

6.4 Related Work

Clustering Algorithms: Many clustering methods have been proposed in the litera-

ture, which can be generally divided into shallow and deep models. Among shallow clustering

algorithms, there are distance-based clustering methods, such asK-means and Gaussian mix-

ture model (GMM ) [12], representing clusters using geometric properties of the data points,

the kernel-based algorithms, like max-margin methods [193, 176], modeling the non-linearity

of data using kernel functions, the connectivity-based algorithms, including spectral methods

[105, 189], partitioning data points that are highly connected. However, these algorithms are

not usually able to model the complex real-world data because of their shallow and linear

models. Among deep clustering models, several studies employ autoencoder networks to

build discriminative embedding space using the reconstruction loss [146, 174, 41]. There are

also some methods using generative adversarial networks for clusterings [101, 40]. The latent

representations in our model has some similarity to the ones in [101], however ours can be

directly used for cluster assignments due to our effective contrastive loss. There are a few

works on direct cluster assignments like [68, 169], where the mutual information between

the latent representations of an image and its augmented variant is maximized in [68], and
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the correlations of image data are increased/decreased based on a pseudo-graph estimating

the similarity of images in [169]. Unlike our learning framework, the former method requires

large batch size to achieve good results (similar to many pair-wised consistency and con-

trastive losses [20, 183]), and the latter method suffers from imprecise pseudo-graph in its

training procedure. The momentum contrastive learning benefits from similar approach to

our model in containing the negative examples in a queue, but requires keeping a copy of a

model that is not the case in our contrastive loss [54].

Hash Functions: The unsupervised hash function can be also grouped into shallow

and deep models. As an instance of shallow models, locality sensitivity hashing (LSH ) uses

random linear projections as the mapping function [45]. Iterative quantization (ITQ) method

uses an alternative approach for learning its projection and estimating the binary codes [47].

Spectral hashing (SpeH ) obtains binary hash codes using spectral graph partitioning on the

similarity information obtained from features [163]. However, these shallow models may not

capture the non-linear nature of real-world data due to their shallow model, non-flexible

mapping function, and hand-crafted features. Among unsupervised deep hashing models,

semantic hashing adopts the restricted Boltzmann machine [60] model as a deep hash function

[132]. Deep Hashing (DH ) obtains quantized, balanced and independent hash bits using an

unsupervised loss function [36]. DeepBit employs a quantization-based loss and a rotation-

invariant consistency loss on deep models [93]. Unsupervised triplet hashing (UTH ) uses

an unsupervised triplet loss to decrease/increase the distance of positive/negative pairs [66].

Another study utilized a clustering algorithm to obtain pseudo labels for training a deep

hash function based on a triplet loss on a CNN model [64]. Tying a discriminator and

encoder parameters, HashGAN regularizes the encoder parameters using an adversarial loss

of a discriminator and a collaborative loss obtained via a generator. Our proposed model

differs with the previous works, as we employ effective contrastive, mutual information and

adversarial losses to obtain disentangled representations.
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6.5 Conclusion

In this project, we proposed a novel learning framework for unsupervised training of deep

models for image retrieval and clustering tasks. Our learning framework benefits from three

losses, the adversarial loss to exploit the generative knowledge and impose the desired prior to

our deep model, the contrastive loss to achieve disentangled content and style representations,

and mutual information loss to preserve the relevant information in the representations.

Experimental results showed the superiority of our model compared to alternative clustering

algorithms and hash functions.
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Appendix A

A.1 Architecture of Convolutional Autoencoder Networks

In this project, we have two convolutional layers plus one fully connected layer in both

encoder and decoder pathways for all datasets. In order to have same size outputs for corre-

sponding convolutional layers in the decoder and encoder, which is necessary for calculating

the reconstruction loss functions, the kernel size, stride and padding (crop in decoder) are

varied in different datasets. Moreover, the number of fully connected features (outputs) is

chosen equal to the number of clusters for each dataset. Table 16 represents the detailed

architecture of convolutional autoencoder networks for each dataset.

A.2 Visualization of learned embedding subspace

In this section, we visualize the learned embedding subspace (top encoder layer) in dif-

ferent stages using the first two principle components. The embedding representations are

shown in three stages: 1) initial stage, where the parameters are randomly initialized with

GlorotUniform; 2) intermediate stage before adding LE, where the parameters are trained

only using reconstruction loss functions; 3) final stage, where the parameters are fully trained

using both clustering and reconstruction loss functions. Figure 20 illustrates the three stages

of embedding features for MNIST-full, MNIST-test, and USPS datasets, and Figure 21 shows

the three stages for FRGC, YTF, and CMU-PIE datasets.
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Table 16: Architecture of deep convolutional autoencoder networks. Conv1, Conv2 and

Fully represent the specifications of the first and second convolutional layers in encoder and

decoder pathways and the stacked fully connected layer.

Dataset Conv1 Conv2 Fully
#feature kernel stride padding #feature kernel stride padding #features

MNIST-full 50 4×4 2 0 50 5×5 2 2 10
MNIST-test 50 4×4 2 0 50 5×5 2 2 10
USPS 50 4×4 2 0 50 5×5 2 2 10
FRGC 50 4×4 2 2 50 5×5 2 2 20
YTF 50 5×5 2 2 50 4×4 2 0 41
CMU-PIE 50 4×4 2 2 50 5×5 2 2 68
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(a) Initial stage on MNIST-full (b) Intermediate stage on MNIST-full (c) Final stage on MNIST-full

(d) Initial stage on MNIST-test (e) Intermediate stage on MNIST-test (f) Final stage on MNIST-test

(g) Initial stage on USPS (h) Intermediate stage on USPS (i) Final stage on USPS

Figure 20: Embedding features in different learning stages on MNIST-full, MNIST-test,

and USPS datasets. Three stages including Initial stage, Intermediate stage before adding

clustering loss, and Final stage are shown for all datasets.
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(a) Initial stage on FRGC (b) Intermediate stage on FRGC (c) Final stage on FRGC

(d) Initial stage on YTF (e) Intermediate stage on YTF (f) Final stage on YTF

(g) Initial stage on CMU-PIE (h) Intermediate stage on CMU-PIE (i) Final stage on CMU-PIE

Figure 21: Embedding features in different learning stages on FRGC, YTF and CMU-PIE

datasets. Three stages including Initial stage, Intermediate stage before adding clustering

loss, and Final stage are shown for all datasets.
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Appendix B

B.1 Proof for Proposition 1

Proposition 1: Iteratively improving the following auxiliary function Q is enough to max-

imize the log-likelihood function L(ψ|X).

Q(ψ|ψ(t)) =
∑
ijck

q
(t)
ic log

(
dieic[pijck]

1ijk
)

(B.1)

where q
(t)
ic =

∏
jk

eic[pijck]
1ijk∑

c′

∏
jk

eic′ [pijc′k]1ijk

Proof : We can decompose the log-likelihood function into two auxiliary functions as follows.

L(ψ|X) = log
( N∏
i=1

K∑
c=1

M∏
j=1

K∏
k=1

dieic[pijck]
1ijk
)

(B.2)

=
∑
ijck

zic log
(
dieic[pijck]

1ijk
)

−
∑
ic

zic log
( di

∏
jk

eic[pijck]
1ijk

di
∑
c′

∏
jk

eic′ [pijc′k]1ijk

)

where zic ∈ {0, 1} is the unknown true label. Since, we do not have access to the actual true

labels (zic) in crowdsourcing task, they can be replaced by their expectation with respect to

the current parameter.

q
(t)
ic = Eψ(t) [zic = 1|Xi] =

∏
jk

e
(t)
ic [p

(t)
ijck]

1ijk

∑
c′

∏
jk

e
(t)
ic′ [p

(t)
ijc′k]

1ijk
(B.3)
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Thus, we approximate the log-likelihood function using,

L(ψ|X) =
∑
ijck

q
(t)
ic log

(
dieic[pijck]

1ijk
)

−
∑
ic

q
(t)
ic log

( ∏
jk

eic[pijck]
1ijk∑

c′

∏
jk

eic′ [pijc′k]1ijk

)
= Q(ψ|ψ(t))−H(ψ|ψ(t)) (B.4)

Note that di is simply canceled out in the last line of Eq. ( C.4).

In order to maximize the log-likelihood function, we can iteratively increase the right

hand side of the above equation. The following equation shows the consecutive difference of

the log-likelihood function.

L(ψ(t+1)|X)−L(ψ(t)|X) (B.5)

= Q(ψ(t+1)|ψ(t))− Q(ψ(t)|ψ(t))

+ H(ψ(t)|ψ(t))−H(ψ(t+1)|ψ(t))

It can be shown that the consecutive difference of H is always non-negative based on

Jansen inequality.

H(ψ(t)|ψ(t))−H(ψ(t+1)|ψ(t)) =
∑
ic

q
(t)
ic log

( q
(t)
ic

q
(t+1)
ic

)
≥ 0 (B.6)

Therefore, iteratively improving Q function is sufficient to maximize the log-likelihood

function.

ψ̂ = argmax Q(ψ|ψ(t))

= argmax
∑
ijck

q
(t)
ic log

(
dieic[pijck]

1ijk
)

(B.7)

�
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(a) Pos-docStatistic (b) Neg-docStatistic (c) Neut-docStatistic

(d) Pos-CrowdDeepAE (e) Neg-CrowdDeepAE (f) Neut-CrowdDeepAE

Figure 22: Word clouds of the positive (Pos), negative (Neg) and neutral (Neut) sentiments

in SP dataset. The extracted word clouds using the statistics of documents (docStatistic)

and our language model (CrowdDeepAE) are shown in the top and bottom rows respectively.

The colors are only for legibility.
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B.2 Solution to update gating parameters

Update α: The problem to update the gating parameters is:

min
1Tα=M+1,α≥0

λαα
Tα−αTβ (B.8)

where β0 =
∑

ic q
(t)
ic log

(
eic
)
, βj =

∑
ick q

(t)
ic 1ijk log pijck. We efficiently solve this problem as

follows. The Lagrangian function for problem ( B.8) is:

l(α, η,µ) = λαα
Tα−αTβ − η(1Tα−M − 1)− µTα ,

where η and µ are Lagrangian multipliers associated with the equality and inequality con-

straints respectively. Suppose α∗, η∗ and µ∗ as the optimal variables, Karush-Kuhn-Tucker

(KKT) conditions [13] yield the following equations,

λαα
∗ − β − η∗1− µ∗ = 0

η∗ ≥ 0

µ∗ ≥ 0

µ∗Tα∗ = 0.

The first equation in the above KKT conditions can be reformulated as α∗j = (βj + η∗ +

µ∗j)/λα for all j ∈ {0, ...,M}. Using the inequality µ∗Tα∗ = 0, we further have:

α∗j =
1

λα
(βj + η∗)+ (B.9)

where (.)+ = max(0, .). So the optimal variable α∗j can be computed by knowing η∗. Using

equality constraint 1Tα = M + 1, we define the following function,

f(η∗) =
∑
j

1

λα
(βj + η∗)+ −M − 1 . (B.10)

Because f(η∗) = 0, we simply obtain η∗ as the root of this function. Note that f(η∗) is

piece-wise linear and monotonically increasing, hence the root can be easily computed using

the Newton method.
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B.3 Word clouds for CrowdFlower dataset

In order to visualize the learned language model in CrowdDeepAE, we show the word

clouds for both CF and SP datasets. In particular, the word cloud represents the importance

(probability) of each word in a document with its font size. Using this visual representation,

a viewer can quickly identify the dominant words in a document using the relative sizes. For

each word in the datasets, we generate an auxiliary variable XTe
i by setting the corresponding

element equal to 1 and the other elements to zero, and then compute the probability of

the word for every class. Figure 22 demonstrates the word cloud of CrowdDeepAE in CF

dataset for the three sentiment options. We also show the word cloud of CF dataset using the

probability (frequency) of each word in every sentiment class. The world clouds extracted

from the documents statistic (docStatistic) mostly assign more importance to the highly

repeated words in CF dataset like ”weather”, ”mention” and ”link”, which do not represent

the sentiment classes. But interestingly, the word clouds extracted from the language model

of CrowdDeepAE have higher probabilities for the discriminative words, such as ”gorgeous”,

”amazing” and ”awesome” for the positive class; ”sucks”, ”ugh” and ”freak” for the negative

option; and ”mph”, ”scatter” and ”forecast” for neutral class.
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Appendix C

C.1 Proofs of Lemma 1

The objective function of the adversarial game for ClusterGAN is:

min
G,C

max
D

U(D, G, C) = Ex∼P (x)

[
log D

(
C(x),x

)]
+ Ez∼P (z)

[
log
(
1− D

(
z, G(z)

))]
. (C.1)

Lemma 1. For any fixed G and C, the optimal D defined by the utility function U(D, G, C)

is:

D∗(z,x) =
P (x)PC(z|x)

P (x)PC(z|x) + P (z)PG(x|z)

=
PC(z,x)

PC(z,x) + PG(z,x)

Proof. Given the clusterer and generator, the utility function U(D, G, C) can be rewritten

as

U(D, G, C) =

∫∫
P (x)PC(z|x) log(D(z,x))dxdz (C.2)

+

∫∫
P (z)PG(x|z) log(1− D(z,x))dxdz

=

∫∫
PC(z,x) log(D(z,x))dxdz

+

∫∫
PG(z,x) log(1− D(z,x))dxdz

=f(D(z,x))

For any
(
PC(z,x), PG(z,x)

)
∈ R2 {0, 0} , the function f(D(z,x)) achieves its maximum

at PC(z,x)
PC(z,x)+PG(z,x)

.
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C.2 Proofs of Lemma 2

Given D∗(x, z), we can further replace D in the utility function U(D, G, C) and refor-

mulate the objective as V(G, C) = max
D

U(D, G, C).

Lemma 2. The global optimum point of V(G, C) is achieved if and only if P (z, x̂) = P (ẑ,x).

Proof. Given D∗(x, z), the utility function V(G, C) can be reformulated as:

V(G, C) =

∫∫
PC(z,x) log

( PC(z,x)

PC(z,x) + PG(z,x)

)
dxdz

+

∫∫
PG(z,x) log

( PG(z,x)

PC(z,x) + PG(z,x)

)
dxdz (C.3)

Sketching the proof in original GAN paper [48], V(G, C) cab be rewritten as:

V(G, C) = − log 4 + 2JSD(PC(z,x)‖PG(z,x)) , (C.4)

where JSD represents the Jensen-Shannon divergence, which is always non-negative. There-

fore, the unique optimum of V(G, C) is achieved if and only if PC(z,x) = PG(z,x), or in

other words

P (z, x̂) = P (ẑ,x)

C.3 Proofs of Theorem 1

The optimization problem for estimating our balanced self-paced learning algorithm is:

min
ν

L(ν) =
n∑
i=1

νili − λν‖ν‖1 + γ‖ν‖e s.t. ν ∈ [0, 1]n. (C.5)
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Theorem 1. For any fixed C, the optimal ν defined by the objective function L(ν) is:
ν∗kq = 1, if lkq < λν − 2γq

ν∗kq =
λν−lkq

2γ
− q, if λν − 2γq ≤ lkq < λν − 2γ(q − 1)

ν∗kq = 0, if lkq ≥ λν − 2γ(q − 1)

where q ∈ {1, ..., nk} is the sorted index of loss values {lk1, ..., lknk} in the k-th group.

Proof.

min
ν

L(ν) =
c∑

k=1

L(νk) (C.6)

=
c∑

k=1

[ nk∑
i=1

νki(lki − λν) + γ
( nk∑
i=1

|νki|
)2
]
, s.t. ν ∈ [0, 1]n ,

We can handle the c groups in Problem ( C.6) separately. Given k, lets define:

b = [
(lk1 − λν)

γ
,
(lk2 − λν)

γ
, . . . ,

(lknk − λν)
γ

] , (C.7)

as the optimization problem w.r.t. the k-th group can be formulated as follows:

min
u

bTu + uT11Tu, s.t. 0 ≤ u ≤ 1 , (C.8)

where u = [vk1, vk2, . . . vknk ]. The Lagrangian function of Problem ( C.8) is

min
u

bTu + uT11Tu− ηTu− λT (1− u) . (C.9)

where η ≥ 0 and λ ≥ 0 are Lagrangian multipliers. Take derivate of Problem ( C.9) w.r.t.

u and set it to zero, we get

η + λ− b = 2m1 . (C.10)

where m = 1Tu. From the KKT condition we can derive ηTu = 0 and λT (1 − u) = 0.

Consequently, we can derive


uq = 0 =⇒ ηq > 0, λq = 0 =⇒ bq

2
+m > 0 ,

0 < uq < 1 =⇒ ηq = 0, λq = 0 =⇒ bq
2

+m = 0 ,

uq = 1 =⇒ ηq = 0, λq > 0 =⇒ bq
2

+m < 0 ,

(C.11)
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where q ∈ {1, ..., nk}. Without loss of generality, suppose b is a sorted vector such that

b1 < b2 < · · · < bnk , then according to Eq. ( C.11) we have 1 ≥ u1 ≥ u2 ≥ · · · ≥ unk ≥ 0,

from which we can derive
uq = 0 =⇒ ur = 0,∀r ≥ q =⇒ m ≤ q − 1 ,

0 < uq < 1 =⇒ ur = 0,∀r > q, and ur = 1,∀r < q =⇒ q − 1 < m < q ,

uq = 1 =⇒ ur = 1,∀r ≤ q =⇒ m ≥ q .

(C.12)

Combining Eq. ( C.11) and Eq. ( C.12) we can derive the solution to Problem ( C.8) as

follows:


− bq

2
≤ q − 1 =⇒ uq = 0 ,

q − 1 < − bq
2
< q =⇒ uq = − bq

2
− q + 1 ,

− bq
2
≥ q =⇒ uq = 1 ,

which can be rewritten based on ν as:
ν∗kq = 1, if lkq < λν − 2γq

ν∗kq =
λν−lkq

2γ
− q, if λν − 2γq ≤ lkq < λν − 2γ(q − 1)

ν∗kq = 0, if lkq ≥ λν − 2γ(q − 1)

118



Bibliography

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications,
volume 27. ACM, 1998.

[2] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry
Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander
Belopolsky, et al. Theano: A python framework for fast computation of mathematical
expressions. arXiv preprint, 2016.

[3] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina key-
point. In IEEE conference on Computer vision and pattern recognition (CVPR), pages
510–517. Ieee, 2012.

[4] Yoram Bachrach, Thore Graepel, Tom Minka, and John Guiver. How to grade a test
without knowing the answers, a bayesian graphical model for adaptive crowdsourcing
and aptitude testing. In arXiv preprint arXiv:1206.6386, 2012.

[5] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999.

[6] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vas-
silvitskii. Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):622–633,
2012.

[7] David Barber and Felix V Agakov. Kernelized infomax clustering. In Advances in
neural information processing systems (NIPS), pages 17–24, 2005.
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