
Graduate Theses, Dissertations, and Problem Reports

2020

Representation Learning with Adversarial Latent Autoencoders Representation Learning with Adversarial Latent Autoencoders

Stanislav Pidhorskyi M.S.
West Virginia University, stpidhorskyi@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Pidhorskyi, Stanislav M.S., "Representation Learning with Adversarial Latent Autoencoders" (2020).
Graduate Theses, Dissertations, and Problem Reports. 7810.
https://researchrepository.wvu.edu/etd/7810

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F7810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=researchrepository.wvu.edu%2Fetd%2F7810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/7810?utm_source=researchrepository.wvu.edu%2Fetd%2F7810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

REPRESENTATION LEARNING WITH
ADVERSARIAL LATENT

AUTOENCODERS

Stanislav Pidhorskyi

Dissertation submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in
Computer Science

Gianfranco Doretto, Ph.D., Chair
Donald A. Adjeroh, Ph.D., Chair

Xin Li, Ph.D.
Yanfang (Fanny) Ye, Ph.D.

Yu Gu, Ph.D., Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2020

Keywords: Computer Vision, Machine Learning, Deep Learning, Autoencoder, Generative
Adversarial Network, Image Autoencoding, Novelty Detection, Anomaly Detection,

Similarity Search, Similarity Retrieval

Copyright c© 2020 Stanislav Pidhorskyi

ABSTRACT

Representation Learning with Adversarial Latent Autoencoders

Stanislav Pidhorskyi

A large number of deep learning methods applied to computer vision problems require
encoder-decoder maps. These methods include, but are not limited to, self-representation
learning, generalization, few-shot learning, and novelty detection. Encoder-decoder maps
are also useful for photo manipulation, photo editing, superresolution, etc. Encoder-decoder
maps are typically learned using autoencoder networks.

Traditionally, autoencoder reciprocity is achieved in the image-space using pixel-wise
similarity loss, which has a widely known flaw of producing non-realistic reconstructions.
This flaw is typical for the Variational Autoencoder (VAE) family and is not only limited to
pixel-wise similarity losses, but is common to all methods relying upon the explicit maximum
likelihood training paradigm, as opposed to an implicit one. Likelihood maximization,
coupled with poor decoder distribution leads to poor or blurry reconstructions at best.

Generative Adversarial Networks (GANs) on the other hand, perform an implicit maxi-
mization of the likelihood by solving a minimax game, thus bypassing the issues derived
from the explicit maximization. This provides GAN architectures with remarkable gen-
erative power, enabling the generation of high-resolution images of humans, which are
indistinguishable from real photos to the naked eye. However, GAN architectures lack
inference capabilities, which makes them unsuitable for training encoder-decoder maps,
effectively limiting their application space.

We introduce an autoencoder architecture that (a) is free from the consequences of
maximizing the likelihood directly, (b) produces reconstructions competitive in quality with
state-of-the-art GAN architectures, and (c) allows learning disentangled representations,
which makes it useful in a variety of problems. We show that the proposed architecture
and training paradigm significantly improves the state-of-the-art in novelty and anomaly
detection methods, it enables novel kinds of image manipulations, and has significant
potential for other applications.

I dedicate my dissertation work to my family and friends. I dedicate this work to my loving

parents, Natalia Pidhorska and Yuriy Pidhorskyi, for their love, support, belief in me, and

sacrifice. I dedicate this work to my wonderful daughter Valeria. I also dedicate this work

and thank my uncle Petro Fomychov. I dedicate this work and give special thanks to Irene

Derzhko for her support.

iii

Acknowledgments

I want to especially thank my PhD advisors, Dr. Gianfranco Doretto and Dr. Donald

Adjeroh, for their advice and support, as well as all my labmates. I must also acknowledge

all my teachers during my student life for their encouragement and motivation.

This work was supported in part by funding from the US National Science Foundation

(Award #1761792 and Award #1920920).

iv

Contents

Abstract ii

Acknowledgments iv

List of Figures viii

List of Tables xv

1 Introduction 1

1.1 Problem Definition . 1

1.2 Motivation and Challenges . 3

1.2.1 Vanila Autoencoder . 3

1.2.2 Variational Autoencoders . 5

1.3 Related work . 9

1.3.1 Autoencoders . 9

1.3.2 Novelty Detection . 10

1.3.3 Similarity Retrieval . 14

1.4 Contribution and Dissertation Structure 16

1.4.1 Chapter 2 . 16

1.4.2 Chapter 3 . 17

1.4.3 Chapter 4 . 17

v

2 Adversarial Latent Autoencoders 19

2.1 Introduction . 19

2.2 Preliminaries . 21

2.3 Adversarial Latent Autoencoders . 22

2.3.1 Relation with other autoencoders 24

2.4 StyleALAE . 26

2.5 Implementation . 28

2.6 Experiments . 29

2.6.1 Training details . 29

2.7 Latent space projections . 30

2.7.1 Representation learning with MLP 31

2.8 Ablation . 34

2.8.1 Learning style representations . 36

3 Generative Probabilistic Novelty Detection with Adversarial Autoencoders 43

3.1 Introduction . 43

3.2 Generative Probabilistic Novelty Detection 45

3.2.1 Computing the distribution of data samples 47

3.3 Manifold learning with adversarial autoencoders 48

3.3.1 GPND with Adversarial Autoencoders 50

3.3.2 GPND with Adversarial Latent Autoencoders 52

3.3.3 Performing inference . 57

3.4 Implementation Details and Complexity 57

3.4.1 Model correction . 61

3.5 Experiments . 61

3.5.1 Datasets . 63

3.5.2 Results . 65

3.6 Conclusion . 72

vi

4 Deep Supervised Hashing with Spherical Embedding 73

4.1 Introduction . 73

4.2 Problem Overview . 75

4.3 Hash Function Learning . 76

4.4 Spherical Embedding . 78

4.5 Quantization . 79

4.6 Triplet Spherical Loss . 80

4.6.1 Margin Loss . 80

4.6.2 Label Likelihood Loss . 81

4.6.3 Spring Loss . 81

4.7 Experiments . 84

4.7.1 Experimental setup . 84

4.7.2 Results . 86

4.7.3 Ablation Study . 89

4.8 Conclusions . 90

5 Conclusion and Future Work 92

5.1 Conclusion . 92

5.2 Future Work . 93

Appendix 126

vii

List of Figures

1.1 Synthetic images generated by GANs. Comparison of images produced

by vanilla GAN 1.1a and StyleGAN 1.1b 2

1.2 Plain Autoencoder. Architecture of vanila autoencoder, reciprocity en-

forced in data space with MSE loss. Here x is input sample, E is encoding

map, D is decoding map, z - latent vector, ∆ - reciprocity loss. 3

1.3 Reconstructions with AE and VAE. Comparison of reconstructions done

by vanilla AE 1.4a and VAE [9] 1.4b . 5

1.4 Generations with AE and VAE. Comparison of sampling samples from

vanilla AE 1.4a and VAE [9] 1.4b . 8

2.1 ALAE Architecture. Architecture of an Adversarial Latent Autoencoder. . 23

2.2 StyleALAE Architecture. The StyleALAE encoder has Instance Normal-

ization (IN) layers to extract multiscale style information that is combined

into a latent code w via a learnable multilinear map. 26

2.3 Projections ofZ andW spaces. Qualitatively shows that labels inZ space

are arbitrary entangled, whileW is more disentangled. Samples inW were

project to 2D space using t-SNE [123] . 31

viii

2.4 MNIST reconstruction. Reconstructions of the permutation-invariant

MNIST. Top row: real images. Middle row: BiGAN reconstructions. Bot-

tom row: ALAE reconstructions. The same MLP architecture is used in

both methods. 31

2.5 MNIST traversal. Reconstructions of the interpolations in the Z space,

and theW space, between the same digits. The latter transition appears to

be smoother. 32

2.6 CelebA reconstructions. Qualitative results for CelebA reconstructions.

Top row: real images. Second row: ALAE reconstructions. Third row:

ALAE no-style reconstructions. Fourth row: ALAE LR reconstructions.

Last row: ALAE Z reconstructions. In can be noted how ALAE LR

produces reconstructions that look fairly good, but resemble less the original

subject. For ALAE Z instead, besides diminished resemblance with the

original subject, the reconstructions definitely look more degraded. 35

2.7 FFHQ reconstructions. Reconstructions of unseen images with StyleALAE

trained on FFHQ [2] at 1024× 1024. 35

2.8 FFHQ generations. Generations with StyleALAE trained on FFHQ [2] at

1024× 1024. 37

2.9 LSUN generations and reconstructions. Generations (first row), and re-

constructions using StyleALAE trained on LSUN Bedroom [130] at resolu-

tion 256× 256. 39

2.10 CelebA-HQ reconstructions. CelebA-HQ reconstructions of unseen sam-

ples at resolution 256×256. Top row: real images. Second row: StyleALAE.

Third row: Balanced PIONEER [132]. Last row: PIONEER [131]. StyleALAE

reconstructions look sharper and less distorted. 40

ix

2.11 Attribute traversals. Qualitative results for reconstructions and attribute

traversals on FFHQ dataset at resolution 1024 × 1024. Reconstructions

from images that are not part of FFHQ. Left column: real images. Columns

from the second to the last one: StyleALAE reconstructions of the source

image with feature corresponding to an attribute being modified. TheW

representation of the input image was modified by adding/subtracting a

vector that was identified as principal direction for the selected attribute. All

manipulations on the spaceW are linear. All directions were determined as

perpendiculars to the decision boundary of a Linear SVM fitted to detect a

particular attribute on the spaceW . 41

2.12 Two sets of real images were picked to form the Source set and the Des-

tination set. The rest of the images were generated by copying specified

subset of styles from the Source set into the Destination set. This experi-

ment repeats the one from [2], but with real images. Copying the coarse

styles brings high-level aspects such as pose, general hair style, and face

shape from Source set, while all colors (eyes, hair, lighting) and finer facial

features resemble the Destination set. Instead, if we copy middle styles

from the Source set, we inherit smaller scale facial features like hair style,

eyes open/closed from Source, while the pose, and general face shape from

Destination are preserved. Finally, copying the fine styles from the Source

set brings mainly the color scheme and microstructure. 42

3.1 Manifold schematic representation. This figure shows connection be-

tween the parametrized manifoldM, its tangent space T , data point x and

its projection x‖. 45

x

3.2 Reconstruction of inliers and outliers. This figure showns reconstruc-

tions for the autoencoder network that was trained on inlier of label "7" of

MNIST [143] dataset. First line is input of inliers of label "7", the second

line shows corresponding reconstructions. The third line corresponds to

input of outlier of label "0" and the forth line, corresponding reconstructions. 45

3.3 Projection of the sample datapoint. This figure shows that projection of

the input data point can be represented as a sequence of applying functions

f and g. 46

3.4 AAE based architecture of the network for manifold learning as pre-

sented in our NeurIPS 2018 paper [71]. It is based on Adversarial Autoen-

coders (AAE) [142] and additionaly has a discriminator that adds adversarial

component in image space. 49

3.5 Inference time architecture. Architecture for performing novelty test as

presented in our NeurIPS 2018 paper [71]. Only two networks remained

from the training step: encoder g and decoder f 49

3.6 Architecture of the network for manifold learning. It is based on Ad-

versarial Latent Autoencoders (ALAE) [101] and similarly to Adversarial

Autoencoders (AAE) [142] has additional discriminator that aims to bring

latent distribution close to normal. 50

3.7 Inference time architecture. Architecture for performing novelty test.

Only two networks remained from the training step: encoder g and decoder f . 50

3.8 COVID-Net. Sample of the annotation of the source image from COVID-

Net dataset. 64

3.9 COVID-Net. Samples of the aligned COVID-Net dataset. 64

3.10 COVID-Net Reconstructions . First row - real input images. Second row -

reconstructed images. 64

xi

3.11 ROC curves. Ablation study on MNIST dataset using Protocol 1 under the

following conditions: a) GPND – the proposed approach, uses both parallel

and perpendicular components, b) GPND+J – parallel and perpendicular

components, where parallel part is includes Jacobian computation, c) GPND-

parallel – parallel component only, d) GPND-perpendicular – perpendicular

component only. 70

4.1 Overview. Overview of the approach, highlighting the stages of the hash

embedding learning, and the optimal quantization. 75

4.2 Embedding distribution. Bimodal distribution of the hash embedding

components (a) early on during training, and (b) at advanced training stage,

when modes are separated. 76

4.3 Quantization. (a) Distribution of hash embeddings on the unit circle for

two classes. The sign quantization assigns different hash codes to samples

in the same class. (b) Rotated distribution of hash embeddings. The sign

quantization assigns same hash codes to samples in the same class, thus

increasing the mAP. 76

4.4 Spring loss. Unit sphere where two points with different class labels are

pulled apart by an elastic force proportional to the displacement 2−d, while

constrained to remain on the sphere. 81

4.5 Regular polyhedrons. Three left-most images: Three unit spheres with

5× n points at minimum elastic potential, where n is the number of classes.

From left to right n is equal to 4, 12, 24. The 5 points per class coincide

with the class centroid at equilibrium. Right-most image: For n = 12, the

points at minimum margin loss do not reach a uniform distribution on the

sphere. 83

xii

4.6 Average mAP scores. Comparison of mAP values w.r.t. bit number for our

method (SDSH-ML, SDSH-LL, SDSH-S) with DPSH [93], DTSH[94] and

DVSQ[100]. 88

4.7 Precision-Recall Curves Comparison of P-R curves from our method,

DVSQ [100] and DTSH [94] on CIFAR-10 reduced, top 5000 samples

@ 32 bits. 90

4.8 Effect of quantization step. Contribution of quantization step for different

losses on NUS-WIDE Full @ 24 bits, 32bits. 90

4.9 Effect of learning rotation Comparison of mAP values for a range of bit

number for three scenarios: ITQ [74] and random search optimization and

no rotation optimization. 90

5.1 Identity preservation. Comparison of input image 5.1a, reconstruction 5.1b,

and optimizaed reconstruction 5.1c . 94

5.2 Image restoration. 94

5.3 Feature space manipulations This figure shows concatenation of two im-

ages in feature space. 95

5.4 Image to image translation. 95

5.5 Real image interpolations. Qualitative results for interpolations of re-

constructed images using StyleALAE trained on FFHQ with resolution

1024 × 1024. The images at the corners are real, and were not part of

the training portion of FFHQ. All other images were obtained by bilinear

interpolation in the latent spaceW . 117

5.6 StyleALAE vs StyleGAN generations on FFHQ dataset. Original single

face image resolution is 1024× 1024. 118

5.7 StyleALAE generations on FFHQ dataset. Original single face image

resolution is 1024× 1024. 119

xiii

5.8 StyleALAE generations on Celeba-HQ dataset. Original single face im-

age resolution is 256× 256. 120

5.9 StyleALAE reconstructions on FFHQ dataset. Reconstructions from

images that are not part of FFHQ. Original single face image resolution is

1024× 1024. 121

5.10 StyleALAE reconstructions on FFHQ dataset. Reconstructions from

images that are not part of FFHQ. Original single face image resolution is

1024× 1024. 122

5.11 StyleALAE reconstructions on FFHQ dataset. Reconstructions from

images that are from the test split of FFHQ. Original single face image

resolution is 1024× 1024. 123

5.12 StyleALAE generations on LSUN-Bedroom. Original image resolution

is 256× 256. 124

5.13 StyleALAE reconstructions on LSUN-Bedroom. Reconstructions from

test split of LSUN-Bedroom. Original image resolution is 256× 256. . . . 125

xiv

List of Tables

2.1 Autoencoder criteria used: (a) for matching the real to the synthetic data

distribution; (b) for setting/learning the latent distribution; (c) for which

space reciprocity is achieved. 24

2.2 MNIST classification. Classification accuracy (%) on the permutation-

invariant MNIST [124] using 1NN and linear SVM, with same writers (SW)

and different writers (DW) settings, and short features (sf) vs. long features

(lf), indicated as sf/lf. 32

2.3 Ablation study. FID scores (lower is better) measured on CelebA [129] at

resolution 128× 128. 34

2.4 FID scores. FID scores (lower is better) measured on FFHQ [2] and LSUN

Bedroom [130]. 36

2.5 PPL. Perceptual path lengths on FFHQ measured in theZ and theW spaces

(lower is better). 37

2.6 Comparison of FID and PPL scores for CelebA-HQ images at 256×256

(lower is better). FID is based on 50,000 generated samples compared to

training samples. 37

3.1 Results of tuning α and β parameters on validation set of MNIST dataset. . 61

3.2 AUROC results for novelty detection on MNIST using Protocol 1. 66

xv

3.3 F1 scores on MNIST [143]. Inliers are taken to be images of one category,

and outliers are randomly chosen from other categories. 66

3.4 AUROC results for novelty detection on COVID dataset. 66

3.5 AUROC results for novelty detection on MNIST dataset. Each row repre-

sents a different class on which baselines and our model are trained. 67

3.6 AUROC results for novelty detection on CIFAR10 dataset. Each row repre-

sents a different class on which baselines and our model are trained. 67

3.7 Results on Coil-100. Inliers are taken to be images of one, four, or seven

randomly chosen categories, and outliers are randomly chosen from other

categories (at most one from each category). 68

3.8 Results on Fashion-MNIST [157]. Inliers are taken to be images of one

category, and outliers are randomly chosen from other categories. 68

3.9 Comparison with ODIN [66]. ↑ indicates larger value is better, and ↓

indicates lower value is better. 69

3.10 F1 and AUROC results on MNIST using Protocol 1. Ablation study on

MNIST dataset using Protocol 1 under the following conditions: a) GPND –

the proposed approach, uses both parallel and perpendicular components,

b) GPND+J – parallel and perpendicular components, where parallel part

is includes Jacobian computation, c) GPND-parallel – parallel component

only, d) GPND-perpendicular – perpendicular component only. 69

3.11 F1 and AUROC results on MNIST using Protocol 1.. Comparison with

baselines. 70

4.1 Mean Average Precision (MAP) Results for Different Number of Bits of

CIFAR-10: In the case of DTSH and DVSQ we have filled some additional

results which were not presented by the original papers by using the authors’

respective released source code to replicate their experiments such that we

may compare with them across more hash sizes. 86

xvi

4.2 Mean Average Precision (MAP) Results for Different Number of Bits on

NUS_WIDE . 87

4.3 Mean Average Precision (MAP) Results for Different Number of Bits of

MNIST . 87

xvii

Chapter 1

Introduction

1.1 Problem Definition

An important cornerstone of the deep learning paradigm in modern computer vision is

autoencoders. Autoencoder consists of encoder-decoder maps that can map input image to

some compressed, hight-level representations and then map them back to the image space.

Autoencoders became the core of many methods applied to computer vision problems,

which include, but are not limited to, self-representation learning, generalization, few-shot

learning, and novelty detection. The modern variant of the autoencoder is also generative,

meaning that the decoder network is also capable of generating samples, and is often referred

to as a generator network, rather than a decoder network. Autoencoders combine generative

and representational properties by learning an encoder-generator map.

However, generative power and quality of reconstructions of autoencoders lag behind

those of modern generative models.

In recent years GANs [1] gained remarkable generative power, see Figure 1.1. They

allow learning generator maps from fixed, known distributions by observing samples

from the target distribution. The generator map is such map that maps a known, easy to

sample distribution, such as normal distribution, to a distribution which resembles the target

1

(a) Synthetic images from original GAN paper by Good-
fellow et al. [1]

(b) Synthetic image from StyleGAN by Kar-
ras et al. [2]

Figure 1.1: Synthetic images generated by GANs. Comparison of images produced by vanilla GAN 1.1a
and StyleGAN 1.1b

distribution.

GANs can learn this target distribution in an unbiased way and perform implicit likeli-

hood maximization. We will discuss what implicit maximization is and why it is unbiased

in the following sections.

One of the most notable steps forward in improving GANs quality was StyleGAN [2],

which enabled the generation of high-resolution images of human faces, which are indistin-

guishable from real photos to the naked eye. With all these good qualities of GANs, they

lack inference capabilities. GANs learn target distribution is an implicit way, through a the

generator map, which makes it not possible to estimate the probability density of a given

sample or find a reverse mapping of the given sample to the fixed, known distribution.

On the other hand, fully implicit likelihood maximization is not possible for autoencoders

due to reciprocity requirements, and as a result, this leads to poor or blurry reconstructions

at best.

Can we take the best from two worlds and develop a unified architecture that would

combine generative and representational properties of autoencoder as well as the generative

power of GANs?

2

Figure 1.2: Plain Autoencoder. Architecture of vanila autoencoder, reciprocity enforced in data space with
MSE loss. Here x is input sample, E is encoding map, D is decoding map, z - latent vector, ∆ - reciprocity
loss.

1.2 Motivation and Challenges

In this dissertation, we try to develop a new autoencoder architecture that would provide a

combination of the generative power of GANs and representational properties of autoen-

coders. We also explore the application space of such architecture and demonstrate how it

can be used to advance the state of the art methods in Computer Vision.

But before, let us discuss the key aspects and problems of autoencoders that prevent them

from having high-quality generations, and the reasons why GANs managed to overcome

them.

1.2.1 Vanila Autoencoder

Simple, feedforward autoencoders (AE) were known since late 80s [3, 4, 5], and popularized

later by Salakhutdinov et al. [6]. Vanilla AE consists of encoder-decoder maps, and it is

trained to replicate its input on its output, see Figure 1.2. Traditionally, reciprocity in AE

is achieved in the image-space using pixel-wise similarity loss, which has a widely known

flaw of producing non-realistic reconstructions.

Most commonly, MSE loss is used as a similarity loss. Autoencoder is trained to

minimize expected MSE of reconstruction 1.1

arg min
φ,θ

Ex∼pdata ‖x−Dθ ◦ Eφ(x)‖2 (1.1)

3

where pdata is data distribution, φ, and θ - parameters of encoder map E and decoder map

D respectively.

On the contrast, generative models are commonly trained to match target distribution

using likelihood maximization paradigm: arg max
θ

Ex∼pdata log pθ(x), where pθ(x) is a

probability distribution describing generator.

We can rewrite AE formulation in terms of likelihood maximization paradigm:

arg max
φ,θ

Ex∼pdata log pθ(x|z), z = Eφ(x) (1.2)

And thus, if pθ(x|z) is a factorized Gaussian Dφ(z) ∼ N (x|µθ(z), I), then be can derive

that:

− log pθ(x|z) = 1
2
‖x− µθ(z)‖22 (1.3)

In such a way, we can see that MSE minimization is a particular case of the likelihood

maximization paradigm when we assume decoder distribution to be a factorized Gaussian.

It is known that the explicit maximum likelihood training paradigm has a well-recognized

issue [7]. Thus: (a) explicit likelihood maximization and (b) poor decoder distribution

(observational model), e.g. factorized Gaussian lead to blurry and unrealistic results.

Virtually, AE produces expectation of plausible samples, but not a plausible one. In fact,

outputs are not even blurry but noisy. That is because, the majority of implementations tend

to display the mean of pθ(x|z), rather than drawing samples from it.

Since 1.2 is not tracktable, we need to make simplification in order to transform 1.2 into

something feasible (such as 1.9). Due to the simplifications and relaxation of the original

objective, the resulting method becomes biased. Even we do not use pixel-wise loss, which

is an extremely bad type of loss for the image domain but replace it with perceptual loss,

4

(a) Reconstructions by vanilla autoencoder. (b) Reconstructions by VAE [9].

Figure 1.3: Reconstructions with AE and VAE. Comparison of reconstructions done by vanilla AE 1.4a and
VAE [9] 1.4b

such as LPIPS [8], that still does not solve the problem.

Explicit likelihood maximization and blurriness is typical for VAE [9], but as we see, not

limited to it. It is a common trait of all methods that utilize explicit likelihood maximization,

such as AAE [10], VampPrior [11], etc.

Explicit likelihood maximization problem typically arises in AE when reciprocity is

achieved with a similarity criterion in data-space, even if the similarity is perceptual.

1.2.2 Variational Autoencoders

In order to support the ideas described in the previous section, let us focus on variational

autoencoder. Variational AE architectures [12, 13] have been appreciated for their theoretical

foundation and their stability and ease of training. On the construct to AE, VAE is first of all

a generative model. The foundation of VAE starts from maximizing the likelihood, which is

typical for generative models:

5

arg max
θ

Ex∼pdata log pθ(x) (1.4)

The key idea of VAE is that since optimizing 1.6 is not feasible, we are going to

optimize evidence lower bound (ELBO) of 1.6. This is where bias is introduced into VAEs.

Optimizing lower bound is definitely a good approach to the problem, but it is unavoidably

not the same as optimizing 1.6

Using ELBO, we can arrive to:

arg max
θ

Ex∼pdata
[
Ez∼qφ(z|x) log pθ(x|z)−KL(qφ(z|x)‖pθ(z))

]
(1.5)

Or, we can rewrite that into minimization of the sum of two losses:

arg min
θ

Ex∼pdata [LREC + LKL] (1.6)

where

LREC = −Ez∼qφ(z|x) log pθ(x|z) (1.7)

LKL = KL(qφ(z|x)‖pθ(z)) (1.8)

We can see now that even after using ELBO we end up with non-feasible optimization

problems. The reconstruction part LREC 1.7 is not tractable and we need to make simplifi-

cations. The majority of practical implementations of VAEs use factorized Gaussian with

covariance matrix set to identity matrix for the observation model, which brings us back to

6

pixel-wise MSE loss 1.9:

LREC = ‖x−Dθ ◦ Eφ(x)‖22 (1.9)

As we can see, in practice, explicit likelihood maximization leads to image space

similarity loss at best, and often it is implemented as pixel-wise MSE. This results into

blurred images and this flaw is not specific to VAE, but is shared across all AE that approach

reciprocity by enforcing image space similarity.

From Figure 1.3 we can see that reconstructions are not just blurry, but also shift to the

mean face occurs. AE outputs an expected image, which is quite far from a realistic one.

Since VAE also enforces information bottleneck [14], reconstructions are less similar to the

input. One can clearly see that it preserves high frequency only for those features that are

the most predictable, thus require less information to encode, such as eyes, nose, mouse. On

the other hand, those parts of the image that are less predictable, such as background, hair,

face contour lost the most of high frequencies.

From Figure 1.4, we can see that despite that AE produces slightly sharper results than

VAE, we can not sample it’s latent space to generate images. The reason is that the latent

space is not compact because AE didn’t need to utilize the whole capacity of the channel, in

contrast to VAEs.

In this study we focus on the following three problems:

• Adversarial Latent Autoencoders.

• Novelty detection.

• Large scale similarity retrieval via hashing

We develop a new autoencoder architecture that overcomes current limitations of autoen-

coders and then demonstrate it’s applicability to several state of the art methods in Computer

Vision.

7

(a) Sampling vanilla autoencoder. (b) Sampling VAE [9].

Figure 1.4: Generations with AE and VAE. Comparison of sampling samples from vanilla AE 1.4a and
VAE [9] 1.4b

8

1.3 Related work

1.3.1 Autoencoders

Our approach builds directly on the vanilla GAN architecture [15]. Since then, a lot of

progress has been made in the area of synthetic image generation. LAPGAN [16] and

StackGAN [17, 18] train a stack of GANs organized in a multi-resolution pyramid to

generate high-resolution images. HDGAN [19] improves by incorporating hierarchically-

nested adversarial objectives inside the network hierarchy. In [20] they use a multi-scale

generator and discriminator architecture to synthesize high-resolution images with a GAN

conditioned on semantic label maps, while in BigGAN [21] they improve the synthesis by

applying better regularization techniques. In PGGAN [22] it is shown how high-resolution

images can be synthesized by progressively growing the generator and the discriminator of

a GAN. The same principle was used in StyleGAN [2], the current state-of-the-art for face

image generation, which we adapt it here for our StyleALAE architecture. Other recent work

on GANs has focussed on improving the stability and robustness of the training [23]. New

loss functions have been introduced [24], along with gradient regularization methods [25, 26],

weight normalization techniques [27], and learning rate equalization [22]. Our framework is

amenable to these improvements, as we explain in later sections.

Variational AE architectures [12, 13] have not only been appreciated for their theoretical

foundation, but also for their stability during training, and the ability to provide insightful

representations. Indeed, they stimulated research in the area of disentanglement [28],

allowing learning representations with controlled degree of disentanglement between factors

of variation in [14], and subsequent improvements in [29], leading to more elaborate metrics

for disentanglement quantification [30, 31, 2], which we also use to analyze the properties of

our approach. VAEs have also been extended to learn a latent prior different than a normal

distribution, thus achieving significantly better models [32].

A lot of progress has been made towards combining the benefits of GANs and VAEs.

9

AAE [10] has been the precursor of those approaches, followed by VAE/GAN [33] with

a more direct approach. BiGAN [34] and ALI [7] provide an elegant framework fully

adversarial, whereas VEEGAN [35] and AGE [36] pioneered the use of the latent space for

autoencoding and advocated the reduction of the architecture complexity. PIONEER [37]

and IntroVAE [38] followed this line, with the latter providing the best generation results

in this category. Section 2.3.1 describes how the proposed approach compares with those

listed here.

Finally, we quickly mention other approaches that have shown promising results with

representing image data distributions. Those include autoregressive [39] and flow-based

methods [40]. The former forego the use of a latent representation, but the latter does not.

1.3.2 Novelty Detection

Novelty detection is a task of recognizing whether the given sample is inlier or outlier with

respect to the training data. The literature in this area is sizable. Novelty detection methods

can be split into four large groups: probabilistic, reconstruction-based, density estimation

methods, and out-of-distribution methods.

Probabilistic methods [41, 42, 43, 44] investigate ways to compute the density function

of normal, not novel data. The main difficulty concerns how to compute the densities of

high-dimensional and complex data. Typically it is accomplished with different strategies of

approximation of density function or lowering dimensionality of the space.

Kernel-based methods learn null space of training data and rely on distance measure

to perform density estimation implicitly, [45] introduced the Kernel Null Foley-Sammon

Transform (KNFST) for multi-class novelty detection, where training samples of each known

category are projected onto a single point in the null space and then distances between

the projection of a test sample and the class representatives are used to obtain a novelty

measure. [46] improves on previous approaches by proposing an incremental procedure

called Incremental Kernel Null Space-Based Discriminant Analysis (IKNDA). Modern

10

approaches rely on deep representations typically obtained with autoencoders [47, 48].

Reconstruction-based methods. Since outliers do not have sparse representations,

self-representation approaches have been proposed for outlier detection in a union of

subspaces [49, 50]. Similarly, deep learning based approaches have used neural networks

and leveraged the reconstruction error of encoder-decoder architectures. [51, 52] used

deep learning based autoencoders to learn the model of normal behaviors and employed a

reconstruction loss to detect outliers.

[53] used a GAN [54] based method. Despite the fact that an encoder is not available in

GAN setup, this method is still reconstruction based. They used a generator to recover latent

representation with gradient descent by optimizing reconstruction error, which then is used

as a novelty score. [55] trained GANs using optical flow images to learn a representation

of scenes in videos. [56] minimized the reconstruction error of an autoencoder to remove

outliers from noisy data, and by utilizing the gradient magnitude of the auto-encoder

they make the reconstruction error more discriminative for positive samples. In [57] they

proposed a framework for one-class classification and novelty detection. It consists of two

main modules learned in an adversarial fashion. The first is a decoder-encoder convolutional

neural network trained to reconstruct inliers accurately, while the second is a one-class

classifier made with another network that produces the novelty score.

Computing reconstruction error in image space is not ideal, in fact, l2 norm works poorly

with images. [58] uses as a novelty score not only reconstruction error in image space,

but also in hidden spaces. They pass the reconstructed image to the encoder and observe

activations of all the intermediate layers in the encoder and compare those to activations

induced by the original image. [59] extends this approach by adding adversarial loss that

matches the distribution of hidden activations for real and reconstructed inliers.

Density estimation methods. State-of-the-art works on density estimation for image

compression include Pixel Recurrent Neural Networks [60] and derivatives [61, 62]. These

pixel-based methods allow us to sequentially predict pixels in an image along the two spatial

11

dimensions. Because they model the joint distribution of the raw pixels along with their

sequential correlation, it is possible to use them for image compression. Although they

could also model the probability distribution of known samples, they work at a local scale

in a patch-based fashion, which makes non-local pixels loosely correlated. Our approach,

instead, does not allow modeling the probability density of individual pixels but works with

the whole image. It is not suitable for image compression, and while its generative nature

allows in principle to produce novel images, in this work, we focus only on novelty detection

by evaluating the inlier probability distribution on test samples.

Out-of-distribution methods. These are methods that typically improve robustness

of existing classification or detection systems, in order to detect erroneous sample that

otherwise would be classified incorrectly. A recent line of work has focused on detecting

out-of-distribution samples by analyzing the output entropy of a prediction made by a pre-

trained deep neural network [63, 64, 65, 66, 67]. This is done by either simply thresholding

the maximum softmax score [64], or by first applying perturbations to the input, scaled

proportionally to the gradients w.r.t. to the input and then combining the softmax score

with temperature scaling, as it is done in Out-of-distribution Image Detection in Neural

Networks (ODIN) [66]. While these approaches require labels for the in-distribution data

to train the classifier network, our method does not use label information. Therefore, it

can be applied for the case when in-distribution data is represented by one class or label

information is not available. Despite the fact that out-of distribution methods solve problem

that is similar to the novelty detection problem, the evaluation protocol differs significantly,

making it hard to compare to novelty detection methods. Under novelty detection setting,

typically, one class of the dataset is used as inlier set, and all other classes are used as

outlier set. Distinctively, out-of-distribution methods are evaluated typically using one

dataset as inliers and other dataset as outliers [63, 64, 65, 66, 68, 67]. OOD methods can

not be applied to the setting typical for novelty detection, since they require labels inside

the inlier dataset. Using different datasets as inlier and outliers creates domain shift, those

12

datasets may have different statistics, distributions, etc.. For example, ODIN [66] uses

CIFAR10 and CIFAR100 as inliers, with TinyImageNet, iSUN, LSUN as outliers. [67] also

includes scenarios of using CIFAR10 vs SVHN vs Caltech256, etc and [68] does MNIST vs

FashionMNIST. Obviously, MNIST and FashionMNIST are extremely different, similarly

CIFAR10 and SVHN are extremely different, which of course is a desirable property for

a classifier to detect such cases instead of returning a random label. Sometimes, it can

go to such extremes as taking images of CT scans as inliers and images of cats and dogs

as outliers [69]. Indeed, resizing ImageNet images to the same resolution as in CIFAR10

may create different image statistics, unless resizing is used precisely with the same filters.

On the other hand, labels of CIFAR10 and CIFAR 100 largely overlap with ImageNET.

Thus, OOD methods are more targeted to detect samples coming from completely different

distributions and are more associated with robustness of classification/detection systems,

while novelty detection methods are more targeted at detecting samples coming from the

same or similar distribution but representing novel, not previously observed class. Thus,

OOD makes emphasis on reliability, while novelty detection makes emphasis on discovery

of novel classes. These differences between OOD and novelty detection, and inability of

OOD to run on the same benchmarks as novelty detection does, makes comparison between

OOD and novelty detection methods complicated and often not fair.

Latent code density estimation. Reconstruction based methods take into account only

the reconstruction error, in image or feature space, which may not be enough. Using deep

autoencoder architectures also allows us to examine density of latent representation. [70]

equip autoencoder with a density estimator of the latent codes that learns the probability

distribution of latent codes of the inlier data. A combination of the density estimation of

the latent code plus reconstruction error is used as a novelty score. In this way, this method

relates to both reconstruction-based and probabilistic methods.

The proposed approach relates to the probabilistic methods and reconstruction-based

methods the same way as [70]. Similarly to probabilistic methods, it aims at computing

13

the probability distribution of test samples as novelty scores, but it does so by learning the

manifold structure of the distribution with an encoder-decoder network.

The proposed method, similarly to [70] relies on the density estimation of the latent

code of the sample as well as the reconstruction error. In our framework, we begin with a

probabilistic approach and attempt to derive a way to estimate the probability density of the

sample, and through series of assumptions, we make it possible to factorize the probability

density of the sample into the probability of the latent code and the probability density of

the reconstruction error. In such a way, two factorized probability densities can be united in

a natural way into a single novelty score. Though the ideas of the proposed method go very

close to [70], the proposed method (GPND) was initially presented as a conference paper

in [71] before [70].

1.3.3 Similarity Retrieval

The existing variety of data-dependent, learning based hashing methods can be categorized

into unsupervised and supervised methods [72].

Unsupervised methods [73, 74, 75, 76, 77, 78, 79, 80] use unlabeled data to learn a

hashing function that preserves some metric distance between data points. This work

instead falls into the supervised category, which tries to improve the quality of hashing by

leveraging label information to learn compact codes. Supervised methods can be divided

into those which use off-the-shelf visual features versus those that leverage deep networks.

Representative examples of non-deep methods include Minimal Loss Hashing (MLH) [81],

Supervised Hashing with Kernels (KSH) [82] and Latent Factor Hashing (LFH) [83].

The initial attempts to utilize deep learning [84, 85, 86, 87] for hashing included

CNNH [88] and DNNH [89]. Deep Hashing Network (DHN) [90] and Deep Supervised

Hashing (DSH) [91] extend DNNH by performing a continuous relaxation of the intractable

discrete optimization by introducing a quantization error prior which is controlled by a

quantization loss. DHN uses a cross entropy loss to link the pairwise Hamming distances

14

with the pairwise similarity labels, while DSH uses max-margin loss. Deep Cauchy Hashing

(DCH) [92] improves DHN by utilizing Cauchy distribution. Deep Pairwise-Supervised

Hashing (DPSH) [93] uses pairwise similarity labels and a loss-function similar to LFH,

which maximizes the log-likelihood of the pairwise similarities. The log-likelihood is mod-

eled as a function of the Hamming distance between the corresponding data points. Deep

Triplet-Supervised Hashing (DTSH) [94] extends DPSH by using triplet label information.

The learning problem of deep hashing methods (DHN, DSH, DPSH, DTSH, etc.) turns

out to be NP-complete, due to the discrete nature of the codomain of the hash function being

sought, which is the Hamming space. The workaround is to relax the native space into

the continuous Euclidean counterpart. This makes the original learning problem ill-posed,

and a regularizing prior becomes necessary, which is often chosen to encourage the sought

mapping to produce a nearly binary output. While needed, such prior complicates the

training and might lead to performance reduction. Discrepancy Minimizing Deep Hashing

(DMDH) [95] suggests an alternating optimization approach with a series expansion of the

objective. Our work instead, leverages a different relaxation, which has the advantage of

maintaining a well-posed learning problem, without the need for extra priors. Besides the

obvious computational advantage, the framework allows to identify a class of triplet losses,

and to define new ones, tailored to seeking good hash functions.

Another line of work, like Deep Quantization Network (DQN) [96], avoid the use of

relaxation by incorporating quantization methods into the approach [97, 98, 99]. DQN

performs a joint learning of image representations and a product quantization for generating

compact binary codes. Deep Visual-Semantic Quantization (DVSQ) [100] extends DQN

by adding semantic knowledge extracted from the label space. In this way, hash codes

are directly optimized. While being an interesting direction, it significantly increases the

complexity of the learning process. Indeed, that might be one of the contributing factors

that make our approach comparing favorably against those.

Finally, our approach also considers the quantization problem. Indeed, the proposed

15

relaxation suggests learning a spherical embedding, which is an equivalence class of so-

lutions, because the loss turns out to be rotation invariant with respect to the embedded

spherical space. This allows picking, as a solution, a representative of the class that will

affect the quantization of the spherical embedding in such a way that it directly maximizes

the mean average precision. This is different from previous approaches, and it is different

also from approaches like Iterative Quantization (ITQ) [74], which is unsupervised, and it

aims at minimizing the quantization error. Our comparison with ITQ shows that linking the

quantization directly to the retrieval metric leads to better solutions.

1.4 Contribution and Dissertation Structure

In this dissertation, we introduce algorithms for novelty detection and large scale similarity

retrieval problem, as well as outline future work for missing annotation aware recognition

systems. Chapter 2 proposses a new autoencoder architecture from our CVPR2020 pa-

per [101]. Chapter 3 proposses a novelty detection method based on generative, probabilistic

approach that is an updated version of our NeurIPS 2018 paper [71]. Chapter 4 proposses a

deep similarity retrieval method via hashing and draws significantly from our work published

at ACCV 2018 [102].

1.4.1 Chapter 2

We introduce a novel autoencoder architecture - ALAE, that is simple, flexible and affective.

It bridges the gap between autoencoders and GANs in terms of the quality of generated

images. It allows learning the probability distribution of the latent space while the data

distribution is aligned with real data distribution in an adversarial way. We conduct extensive

set of experiments that confirm that this enables learning representations that are likely less

entangled. We also introduce StyleALAE which is an extension of ALAE to StyleGAN

and this is the first autoencoder capable of generating and manipulating images while

16

maintaining the same level of visual detail as StyleGAN.

1.4.2 Chapter 3

Recent approaches on novelty detection primarily leverage deep encoder-decoder network

architectures to compute a reconstruction error that is used to either compute a novelty score

or to train a one-class classifier. In contrust to the previous works, we take a probabilistic

approach and effectively compute how likely it is that a sample was generated by the

inlier distribution. We make the computation of the novelty probability feasible because

we linearize the parameterized manifold capturing the underlying structure of the inlier

distribution, and show how the probability factorizes and can be computed with respect to

local coordinates of the manifold tangent space.

Section 3.2 introduces the Generative Probabilistic Novelty Detection (GPND) frame-

work, and Section 3.3 describes the training and architecture of the adversarial autoencoder

network. Section 3.5 shows a rich set of experiments showing that GPND is very effective

and produces state-of-the-art results on several benchmarks.

We create a new dataset - aligned COVID-Net [103], by manually annotating samples

from COVID-Net dataset and then aligning them. We demonstrate performance of our

method on this new dataset and show that it performs better than state of the art methods.

1.4.3 Chapter 4

We propose Spherical Deep Supervised Hashing (SDSH), a new supervised deep hashing

approach to learn compact binary codes. In contrust to the previous works, we not only

impose learning similarity preserving codes, but also encouraging them to be balanced. We

propose a different relaxation method, that instead of using binarization priors, learns a

spherical embedding, which overcomes the challenge of maintaining the learning problem

well-posed. Our second contribution is formulation of a general triplet loss framework, with

the introduction of the spring loss for learning balanced codes. Our third contribution is

17

quantization of the spherical embedding that maximizes the mean average precision.

Section 4.3 introduces formulation of a general triplet loss framework, and Section 4.4

describes the spherical embedding. Section 4.5 introduces quantization algorithm, and Sec-

tion 4.6 describes triplet spherical loss. Section 4.7 shows a rich set of experiments showing

that SDSH is very effective and produces state-of-the-art results on several benchmarks.

18

Chapter 2

Adversarial Latent Autoencoders

2.1 Introduction

Generative Adversarial Networks (GAN) [1] have emerged as one of the dominant unsuper-

vised approaches for computer vision and beyond. Their strength relates to their remarkable

ability to represent complex probability distributions, like the face manifold [104], or the

bedroom images manifold [105], which they do by learning a generator map from a known

distribution onto the data space. Just as important are the approaches that aim at learning

an encoder map from the data to a latent space. They allow learning suitable representa-

tions of the data for the task at hand, either in a supervised [106, 107, 108, 109, 110], or

unsupervised [111, 112, 14, 29, 31, 21] manner.

Autoencoder (AE) [12, 13] networks are unsupervised approaches aiming at combining

the “generative” as well as the “representational” properties by learning simultaneously

an encoder-generator map. General issues subject of investigation in AE structures are

whether they can: (a) have the same generative power as GANs; and, (b) learn disentangled

representations [28]. Several works have addressed (a) [10, 33, 34, 7, 38]. An important

testbed for success has been the ability for an AE to generate face images as rich and sharp

as those produced by a GAN [22]. Progress has been made but victory has not been declared.

19

A sizable amount of work has addressed also (b) [14, 29, 30], but not jointly with (a).

We introduce an AE architecture that is general, and has generative power comparable

to GANs while learning a less entangled representation. We observed that every AE

approach makes the same assumption: the latent space should have a probability distribution

that is fixed a priori and the autoencoder should match it. On the other hand, it has

been shown in [2], the state-of-the-art for synthetic image generation with GANs, that an

intermediate latent space, far enough from the imposed input space, tends to have improved

disentanglement properties.

The observation above has inspired the proposed approach. We designed an AE architec-

ture where we allow the latent distribution to be learned from data to address entanglement

(A). The output data distribution is learned with an adversarial strategy (B). Thus, we retain

the generative properties of GANs, as well as the ability to build on the recent advances in this

area. For instance, we can seamlessly include independent sources of stochasticity, which

have proven essential for generating image details, or can leverage recent improvements on

GAN loss functions, regularization, and hyperparameters tuning [24, 113, 27, 114, 26, 21].

Finally, to implement (A) and (B) we impose the AE reciprocity in the latent space (C).

Therefore, we can avoid using reconstruction losses based on simple `2 norm that operate in

data space, where they are often suboptimal, like for the image space. We regard the unique

combination of (A), (B), and (C) as the major techical novelty and strength of the approach.

Since it works on the latent space, rather than autoencoding the data space, we named it

Adversarial Latent Autoencoder (ALAE).

We designed two ALAEs, one with a multilayer perceptron (MLP) as encoder with a

symmetric generator, and another with the generator derived from a StyleGAN [2], which we

call StyleALAE. For this one, we designed a companion encoder and a progressively growing

architecture. We verified qualitatively and quantitatively that both architectures learn a latent

space that is more disentangled than the imposed one. In addition, we show qualitative

and quantitative results about face and bedroom image generation that are comparable with

20

StyleGAN at the highest resolution of 1024×1024. Since StyleALAE learns also an encoder

network, we are able to show at the highest resolution, face reconstructions as well as several

image manipulations based on real images rather then generated.

2.2 Preliminaries

A Generative Adversarial Network (GAN) [1] is composed of a generator network G mapping

from a space Z onto a data space X , and a discriminator network D mapping from X onto

R. The Z space is characterized by a known distribution p(z). By sampling from p(z), the

generator G produces data representing a synthetic distribution q(x). Given training data D

drawn from a real distribution pD(x), a GAN network aims at learning G so that q(x) is as

close to pD(x) as possible. This is achieved by setting up a zero-sum two-player game with

the discriminator D. The role of D is to distinguish in the most accurate way data coming

from the real versus the synthetic distribution, while G tries to fool D by generating synthetic

data that looks more and more like real.

Following the more general formulation introduced in [25], the GAN learning problem

entails finding the minimax with respect to the pair (G, D) (i.e., the Nash equilibrium), of the

value function defined as

V (G, D) = EpD(x)[f(D(x))] + Ep(z)[f(−D(G(z)))] , (2.1)

where E[·] denotes expectation, and f : R → R is a concave function. By setting f(t) =

− log(1 + exp(−t)) we obtain the original GAN formulation [1]; instead, if f(t) = t we

obtain the Wasserstein GAN [24].

21

2.3 Adversarial Latent Autoencoders

We introduce a novel autoencoder architecture by modifying the original GAN paradigm.

We begin by decomposing the generator G and the discriminator D in two networks: F , G,

and E, D, respectively. This means that

G = G ◦ F , and D = D ◦ E , (2.2)

see Figure 2.1. In addition, we assume that the latent spaces at the interface between F and

G, and between E and D are the same, and we indicate them asW . In the most general case

we assume that F is a deterministic map, whereas we allow E and G to be stochastic. In

particular, we assume that G might optionally depend on an independent noisy input η, with

a known fixed distribution pη(η). We indicate with G(w, η) this more general stochastic

generator.

Under the above conditions we now consider the distributions at the output of every

network. The network F simply maps p(z) onto qF (w). At the output of G the distribution

can be written as

q(x) =

∫
w

∫
η

qG(x|w, η)qF (w)pη(η) dη dw , (2.3)

where qG(x|w, η) is the conditional distribution representing G. Similarly, for the output

of E the distribution becomes

qE(w) =

∫
x

qE(w|x)q(x)dx , (2.4)

where qE(w|x) is the conditional distribution representing E. In (2.4) if we replace q(x)

with pD(x) we obtain the distribution qE,D(w), which describes the output of E when the

real data distribution is its input.

Since optimizing (2.1) leads toward the synthetic distribution matching the real one, i.e.,

q(x) = pD(x), it is obvious from (2.4) that doing so also leads toward having qE(w) =

22

Training

Inference

Real/Fake
Target: Fake

Target: Real
Real/Fake

∆

Figure 2.1: ALAE Architecture. Architecture of an Adversarial Latent Autoencoder.

qE,D(w).

In addition to that, to achieve reciprocity, we want learn such qE (w|x) and qG (x|w) that

maximize marginal likelihood qE(w). We do so by maximizing the expectation of qE (w|x)

over the distribution of qG (x|w) in expectation over the distribution qF (w), where qG (x|w)

is marginal distribution over the pη(η), i.e. qG (x|w) =
∫
η
qG(x|w, η)pη(η).

arg max
E,G

Ew∼qF
[
Ex∼qG(x|w) log qE (w|x)

]
(2.5)

Computing marginal distribution qE(w) is generally intractable, so we make several

approximations discussed later in 2.3.1.

In this way we could interpret the pair of networks (G,E) as a generator-encoder

network that autoencodes the latent spaceW .

If we incorporate likelihood maximization into the learning process by regularizing the

GAN loss (2.1) with the goal (2.5) via alternating the following two optimizations

minF,G maxE,D V (G ◦ F,D ◦ E) (2.6)

arg max
E,G

Ew∼qF
[
Ex∼qG(x|w) log qE (w|x)

]
(2.7)

23

Table 2.1: Autoencoder criteria used: (a) for matching the real to the synthetic data distribution; (b) for
setting/learning the latent distribution; (c) for which space reciprocity is achieved.

Autoencoder (a) Data (b) Latent (c) Reciprocity
Distribution Distribution Space

VAE [12, 13] similarity imposed/divergence data
AAE [10] similarity imposed/adversarial data
VAE/GAN [33] similarity imposed/divergence data
VampPrior [32] similarity learned/divergence data
BiGAN [34] adversarial imposed/adversarial adversarial
ALI [7] adversarial imposed/adversarial adversarial
VEEGAN [35] adversarial imposed/divergence latent
AGE [36] adversarial imposed/adversarial latent
IntroVAE [38] adversarial imposed/adversarial data
ALAE (ours) adversarial learned/divergence latent

We refer to a network optimized according to (2.6) (2.7) as an Adversarial Latent Au-

toencoder (ALAE). The building blocks of an ALAE architecture are depicted in Figure 2.1.

2.3.1 Relation with other autoencoders

Data distribution. In architectures composed by an encoder network and a generator

network, the task of the encoder is to map input data onto a space characterized by a latent

distribution, whereas the generator is tasked to map latent codes onto a space described by a

data distribution. Different strategies are used to learn the data distribution. For instance,

some approaches impose a similarity criterion on the output of the generator [12, 13, 10, 32],

or even learn a similarity metric [33]. Other techniques instead, set up an adversarial game

to ensure the generator output matches the training data distribution [34, 7, 35, 36, 38]. This

latter approach is what we use for ALAE.

Latent distribution. For the latent space instead, the common practice is to set a

desired target latent distribution, and then the encoder is trained to match it either by

minimizing a divergence type of similarity [12, 13, 33, 35, 32], or by setting up an adversarial

game [10, 34, 7, 36, 38]. Here is where ALAE takes a fundamentally different approach.

Indeed, we do not impose the latent distribution, i.e., qE(w), to match a target distribution.

24

The only condition we set, is given by (2.5). In other words, we do not want F to be the

identity map, and are very much interested in letting the learning process decide what F

should be.

Reciprocity. Another aspect of autoecoders is whether and how they achieve reciprocity.

This property relates to the ability of the architecture to reconstruct a data sample x from

its code w, and vice-versa. Clearly, this requires that x = G(E(x)), or equivalently that

w = E(G(w)). In the first case, the network must contain a reconstruction term that

operates in the data space. In the latter one, the term operates in the latent space. While most

approaches follow the first strategy [12, 13, 10, 33, 38, 32], there are some that implement

the second [35, 36], including ALAE.

Indeed, we can make (2.7) tracktable by assuming distribution qE (w|x) to be factorized

Gaussian. We can compute integral over pη(η) using Monte Carlo integration with one

sample, like it is done in [12] leading to minimization of the expected coding reconstruction

error, as follows

arg min
E,G

Ep(z)
[
‖F (z)− E ◦G ◦ F (z)‖22

]
(2.8)

Imposing reciprocity in the latent space gives the significant advantage that simple `2, `1

or other norms can be used effectively, regardless of whether they would be inappropriate

for the data space. For instance, it is well known that element-wise `2 norm on image pixel

differences does not reflect human visual perception. On the other hand, when used in latent

space its meaning is different. For instance, an image translation by a pixel could lead to a

large `2 discrepancy in image space, while in latent space its representation would hardly

change at all. Ultimately, using `2 in image space has been regarded as one of the reasons

why autoencoders have not been as successful as GANs in reconstructing/generating sharp

images [33]. Another way to address the same issue is by imposing reciprocity adversarially,

as it was shown in [34, 7]. Table 2.1 reports a summary of the main characteristics of most

of the recent generator-encoder architectures.

25

A

A

A

A

B

B

B

B

Const 4×4×512

AdaIN

AdaIN

AdaIN

AdaIN

Upsample

Conv 3×3

Conv 3×3

Conv 3×3

4×4

style

style

style

style

Noise
Generator network G

8×8

ω

C

Conv 3×3

4×4

Encoder network E

8×8

IN

Downsample

IN

Conv 3×3

C

C

Conv 3×3

IN

Downsample

IN

Conv 3×3

C

style

style

style

style

Figure 2.2: StyleALAE Architecture. The StyleALAE encoder has Instance Normalization (IN) layers to
extract multiscale style information that is combined into a latent code w via a learnable multilinear map.

2.4 StyleALAE

We use ALAE to build an autoencoder that uses a StyleGAN based generator. For this we

make our latent spaceW play the same role as the intermediate latent space in [2]. Therefore,

our G network becomes the part of StyleGAN depicted on the right side of Figure 2.2. The

left side is a novel architecture that we designed to be the encoder E.

Since at every layer, G is driven by a style input, we design E symmetrically, so that

from a corresponding layer we extract style information. We do so by inserting Instance

Normalization (IN) layers [115], which provide instance averages and standard deviations

for every channel. Specifically, if yEi is the output of the i-th layer of E, the IN module

extracts the statistics µ(yEi) and σ(yEi) representing the style at that level. The IN module

also provides as output the normalized version of the input, which continues down the

pipeline with no more style information from that level. Given the information flow between

E and G, the architecture is effectively mimicking a multiscale style transfer from E to G,

26

with the difference that there is not an extra input image that provides the content [115, 116].

The set of styles that are inputs to the Adaptive Instance Normalization (AdaIN) lay-

ers [115] in G are related linearly to the latent variable w. Therefore, we propose to combine

the styles output by the encoder, and to map them onto the latent space, via the following

multilinear map

w =
N∑
i=1

Ci

µ(yEi)

σ(yEi)

 (2.9)

where the Ci’s are learnable parameters, and N is the number of layers.

Similarly to [22, 2] we use progressive growing. We start from low-resolution images

(4× 4 pixels) and progressively increase the resolution by smoothly blending in new blocks

to E and G. For the F and D networks we implement them using MLPs. The Z andW

spaces, and all layers of F and D have the same dimensionality in all our experiments.

Moreover, for StyleALAE we follow [2], and chose F to have 8 layers, and we set D to

have 3 layers.

Algorithm 1 ALAE Training
1: θF , θG, θE , θD ← Initialize network parameters
2: while not converged do
3: Step I. Update E, and D
4: x← Random mini-batch from dataset
5: z ← Samples from prior N (0, I)

6: LE,Dadv ← softplus(D ◦ E ◦G ◦ F (z))) + softplus(−D ◦ E(x)) + γ
2 EpD(x)

[
‖∇D ◦ E(x)‖2

]
7: θE , θD ← ADAM(∇θD,θEL

E,D
adv , θD, θE , α, β1, β2)

8: Step II. Update F, and G
9: z ← Samples from prior N (0, I)

10: LF,Gadv ← softplus(−D ◦ E ◦G ◦ F (z)))

11: θF , θG ← ADAM(∇θF ,θGL
F,G
adv , θF , θG, α, β1, β2)

12: Step III. Update E, and G
13: z ← Samples from prior N (0, I)
14: LE,Gerror ← ‖F (z)− E ◦G ◦ F (z)‖22
15: θE , θG ← ADAM(∇θE ,θGLE,Gerror, θE , θG, α, β1, β2)
16: end while

27

2.5 Implementation

Adversarial losses and regularization. We use a non-saturating loss [1, 26], which in (2.1)

we introduce by setting f(·) to be a SoftPlus function [117]. This is a smooth version

of the rectifier activation function, defined as f(t) = softplus(t) = log(1 + exp(t)). In

addition, we use gradient regularization techniques [118, 26, 119]. We utilize R1 [23, 26],

a zero-centered gradient penalty term which acts only on real data, and is defined as

γ
2

EpD(x) [‖∇D ◦ E(x)‖2], where the gradient is taken with respect to the parameters θE and

θD of the networks E and D, respectively.

This regularization prevents the discriminator from creating non-zero gradients orthogo-

nal to the data manifold, which would cause a deviation from the Nash-equilibrium when the

generator produces a distribution close to the real data distribution. With the non-saturating

loss and R1 regularization we observe better convergence and stability compared to the

standard GAN loss [1]. This is in line with what was reported in [2].

Training. In order to optimizate (2.6) (2.7) we use alternating updates. One iteration

is composed of three updating steps: two for (2.6) and one for (2.7). Step I updates the

discriminator (i.e., networks E and D). Step II updates the generator (i.e., networks F

and G). Step III updates the latent space autoencoder (i.e., networks G and E). The

procedural details are summarized in Algorithm 1. For updating the weights we use the

Adam optimizer [120] with β1 = 0.0 and β2 = 0.99, coupled with the learning rate

equalization technique [22] described below. For non-growing architectures (i.e., MLPs)

we use a learning rate of 0.002, and batch size of 128. For growing architectures (i.e.,

StyleALAE) learning rate and batch size depend on the resolution.

Learning rate equalization. We use learning rate equalization as opposed to batch

normalization. The idea is to compensate for different dynamic ranges of the network

parameters. However, we implement it differently than in [22]. There the weights are

initialized with N (0, 1) and scaled dynamically, which means that the scaling operation is

part of the computational graph and participates in the gradient computation. The weights

28

are scaled according to the He’s initializer [121], setting ŵi = wi
√

2/ni, where wi are the

weights of the i-th layer, and ni is the number of connections of a response in that layer

(i.e., the fan-in). The benefit here is that the dynamic range of all weights is the same, while

providing a good initialization. The downside is that a scaled copy of all weights should be

computed each forward pass and all gradients should be scaled back each backward pass. In

order to reduce the amount of computation, we take a slightly different route and initialize

the weights with N (0,
√

2/ni), while we correct the learning rate for that scale factor as

η̂i = η
√

2/ni, where η here is a global learning rate, and η̂i is the learning rate corrected for

the i-th layer. In this way the same behaviour is achieved without the need to explicitly store

weights with a normalized dynamic range.

2.6 Experiments

2.6.1 Training details

We implemented our approach with PyTorch [122], code and uncompressed images are

available at https://github.com/wvuvl/ALAE. As a byproduct of our implemen-

tation, we have also reimplemented StyleGAN [2] and PGGAN [22]. To verify that our

implementation matches the original, we have implemented methods for loading the original

StyleGAN weights, and we were able to reproduce the same FID score reported in [2].

Most of the experiments were conducted on a machine with 8× GPU Titan RTX. We

trained StyleALAE on 60000 training samples from the FFHQ [2] dataset for 147 epoch,

from which 18 epochs were spent at resolution 1024× 1024. Starting from resolution 4× 4

we have grown the StyleALAE up to 1024× 1024. When growing to a new resolution level

we used 500k training samples during the transition, and another 500k samples for training

stabilization. Once reached the maximum resolution of 1024× 1024, we continued training

for 1M images. Thus, the total training time measured in images was 10M.

We contrast our training time with the one reported for StyleGAN [2]. At every resolution

29

https://github.com/wvuvl/ALAE

level they used 600k images during the transition, and 600k images for stabilization. Their

total training time was 25M images, and 15M of them were used for training at resolution

1024× 1024. Note that at the same resolution we trained StyleALAE with only 1M images,

so, 15 times less. Unfortunately, our reduced budget did not allow us to train for a longer

time, and we reported all the scores, including the FID score, at 1M training time, while

observing that it was still improving. We regard the large training time difference between

StyleALAE and StyleGAN (1M vs 15M) as likely to be the cause of discrepancy between

the corresponding FID scores.

On the FID score. We would like to point out a major limitation of the FID score as a

measurement for how good are the generations of a GAN. As mentioned above, we verified

that the FID score of StyleGAN is 4.4, when computed as described in [2]. In addition

to that, we computed the FID score between 50000 training samples from FFHQ, and the

10000 images from FFHQ that we use for testing. In this case the FID score is 4.5. This

result suggests that the generations are “closer” to the training distribution than the real

images, which is not true. On the other hand, this result highlights how limited the FID

score is as a metric for generation, and that more research should be done in the future to

come up with more meaningful metrics in this domain.

2.7 Latent space projections

After training ALAE on the permutation-invariant MNIST dataset [124, 125], we projected

the Z space and theW space representations of the training dataset based on t-SNE [123].

The result is depicted in Figure 2.3, where the digit labels are color coded. Since the

distribution of the Z space is a multivariate Gaussian, as expected t-SNE does not unwrap

any manifold structure. However, it can be observed how randomly distributed are the

labels. On the other hand, the t-SNE projection of theW space shows that labels are much

more aggregated in clusters. This seems to suggest that a traversal in theW space should

30

40 20 0 20 40
Component 0

60

40

20

0

20

40

60

Co
m

po
ne

nt
 1

label
0
1
2
3
4
5
6
7
8
9

(a) Projection of Z space

60 40 20 0 20 40 60
Component 0

40

20

0

20

40

Co
m

po
ne

nt
 1

label
0
1
2
3
4
5
6
7
8
9

(b) Projection ofW space

Figure 2.3: Projections ofZ andW spaces. Qualitatively shows that labels inZ space are arbitrary entangled,
whileW is more disentangled. Samples inW were project to 2D space using t-SNE [123]

Input

BiGAN

ALAE

Figure 2.4: MNIST reconstruction. Reconstructions of the permutation-invariant MNIST. Top row: real
images. Middle row: BiGAN reconstructions. Bottom row: ALAE reconstructions. The same MLP
architecture is used in both methods.

lead to a smoother transition in image space, as opposed to a transition performed in the Z

space. This indeed is observed also in Figure 2.5, where we show two type of traversals:

one obtained by interpolating in the Z space, and the other obtained by interpolating the

representation of the same samples, but in theW space.

2.7.1 Representation learning with MLP

We train ALAE with MNIST [124], and then use the feature representation for classification,

reconstruction, and analyzing disentanglement. We use the permutation-invariant setting,

where each 28 × 28 MNIST image is treated as a 784D vector without spatial structure,

which requires to use a MLP instead of a CNN. We follow [125] and use a three layer MLP

31

Z space

W space

Figure 2.5: MNIST traversal. Reconstructions of the interpolations in the Z space, and theW space, between
the same digits. The latter transition appears to be smoother.

Table 2.2: MNIST classification. Classification accuracy (%) on the permutation-invariant MNIST [124]
using 1NN and linear SVM, with same writers (SW) and different writers (DW) settings, and short features
(sf) vs. long features (lf), indicated as sf/lf.

1NN SW Linear SVM SW 1NN DW Linear SVM DW

AE(`1) 97.15/97.43 88.71/97.27 96.84/96.80 89.78/97.72
AE(`2) 97.52/97.37 88.78/97.23 97.05/96.77 89.78/97.72
LR 92.79/97.28 89.74/97.56 91.90/96.69 90.03/97.80
JLR 92.54/97.02 89.23/97.19 91.97/96.45 90.82/97.62
BiGAN [125] 95.83/97.14 90.52/97.59 95.38/96.81 91.34/97.74
ALAE (ours) 93.79/97.61 93.47/98.20 94.59/97.47 94.23/98.64

with a latent space size of 50D. Both networks, E and G have two hidden layers with 1024

units each. In [125] the features used are the activations of the layer before the last of the

encoder, which are 1024D vectors. We refer to those as long features. We also use, as

features, the 50D vectors taken from the latent space,W . We refer to those as short features.

MNIST has an official split into training and testing sets of sizes 60000 and 10000

respectively. We refer to it as different writers (DW) setting since the human writers of

the digits for the training set are different from those who wrote the testing digits. We

consider also a same writers (SW) setting, which uses only the official training split by

further splitting it in two parts: a train split of size 50000 and a test split of size 10000, while

the official testing split is ignored. In SW the pools of writers in the train and test splits

overlap, whereas in DW they do not. This makes SW an easier setting than DW.

Results. We report the accuracy with the 1NN classifier as in [125], and extend those

results by reporting also the accuracy with the linear SVM, because it allows a more direct

analysis of disentanglement. Indeed, we recall that a disentangled representation [126,

32

127, 28] refers to a space consisting of linear subspaces, each of which is responsible

for one factor of variation. Therefore, a linear classifier based on a disentangled feature

space should lead to better performance compared to one working on an entangled space.

Table 2.2 summarizes the average accuracy over five trials for ALAE, BiGAN, as well as the

following baselines proposed in [125]: Latent Regressor (LR), Joint Latent Regressor (JLR),

Autoencoders trained to minimize the `2 (AE(`2)) or the `1 (AE(`1)) reconstruction error.

The most significant result of Table 2.2 is drawn by comparing the 1NN with the

corresponding linear SVM columns. Since 1NN does not presume disentanglement in order

to be effective, but linear SVM does, larger performance drops signal stronger entanglement.

ALAE is the approach that remains more stable when switching from 1NN to linear SVM,

suggesting a greater disentanglement of the space. This is true especially for short features,

whereas for long features this effect fades away because linear separability grows.

We also note that ALAE does not always provide the best accuracy, and the baseline

AE (especially AE(`2)) does well with 1NN, and more so with short features. This might

be explained by the baseline AE learning a representation that is closer to a discriminative

one. Other approaches instead focus more on learning representations for drawing synthetic

random samples, which are likely richer, but less discriminative. This effect also fades for

longer features.

Another observation is about SW vs. DW. 1NN generalizes less effectively for DW, as

expected, but linear SVM provides a small improvement. This is unclear, but we speculate

that DW might have fewer writers in the test set, and potentially slightly less challenging.

Figure 2.4 shows qualitative reconstruction results. It can be seen that BiGAN recon-

structions are subject to semantic label flipping much more often than ALAE. Finally,

Figure 2.5 shows two traversals: one obtained by interpolating in the Z space, and the other

by interpolating in the W space. The second shows a smoother image space transition,

suggesting a lesser degree of entanglement.

33

Metric ALAE ALAE
no

style

ALAE
LR

ALAE
Z

FID [128] 15.15 19.28 7.55 17.78
LPIPS [8] 0.3266 0.3226 0.3923 0.7700

Table 2.3: Ablation study. FID scores (lower is better) measured on CelebA [129] at resolution 128× 128.

2.8 Ablation

We perform an ablation study using 128 × 128 crops from the CelebA [104] dataset. We

analyze the behavior of StyleALAE for the cases when:

• The style-based encoder is replaced by a regular encoder, with an architecture similar

to the discriminator network of StyleGAN (denoted as ALAE no-style).

• The encoder E is not part of the discriminator pipeline and is not included in the

minimax game. This architecture is similar to the Latent Regressor defined in [34];

however, in our case it still uses heW space (denoted as ALAE LR).

• The latent space distribution is imposed. This means that the Z space is the latent

space, notW . Consequently, also the reciprocity is imposed in the Z space (denoted

as ALAE Z).

Table 2.5 shows the FID [128] and LPIPS [8] scores for the four configurations of

the ALAE architecture. As it can be seen, the style-based encoder helps with the FID

score, compared with ALAE no-style, indicating that it better allows to capture the training

distribution. Similarly, the FID score also increases when the latent space distribution is

imposed, as shown in ALAE Z . On the other hand, the FID score decreases for ALAE LR.

This can be explained because that architecture is more directly focussed on learning the

distribution of the training set, just like a regular GAN architecture is. In ALAE instead, the

encoder participates in the minimax game, making it harder for the generator to learn the

training distribution. However, ALAE LR pays a price: the encoder is fully trained with

generated images only, and never sees real images. Therefore, it never learns how to encode

34

Reals

ALAE

ALAE no-style

ALAE LR

ALAE Z

Figure 2.6: CelebA reconstructions. Qualitative results for CelebA reconstructions. Top row: real images.
Second row: ALAE reconstructions. Third row: ALAE no-style reconstructions. Fourth row: ALAE LR
reconstructions. Last row: ALAE Z reconstructions. In can be noted how ALAE LR produces reconstructions
that look fairly good, but resemble less the original subject. For ALAE Z instead, besides diminished
resemblance with the original subject, the reconstructions definitely look more degraded.

Figure 2.7: FFHQ reconstructions. Reconstructions of unseen images with StyleALAE trained on FFHQ [2]
at 1024× 1024.

real images well. This is reflected in the higher LPIPS score, and in the reconstructions in

Figure 2.10. About ALAE Z instead, again, imposing the latent distribution does not help

even with the LPIPS score, as it is also visible in the reconstructions in Figure 2.10.

In ALAE no-le we show how in the case of MNIST, even if we do not use the learning

equalization we obtain comparable results. On the other hand, in our experiments with

larger networks like for StyleALAE, we have observed that adding learning equalization

generally provides for greater performance increases. For ALAE Z instead, we witness a

clear deterioration of the performance. In particular, with short features the linear SVM

performs much worse, highlighting a much more entangled space.

35

Table 2.4: FID scores. FID scores (lower is better) measured on FFHQ [2] and LSUN Bedroom [130].

Method FFHQ LSUN
Bed-
room

StyleGAN [2] 4.40 2.65
PGGAN [22] - 8.34
IntroVAE [38] - 8.84
Pioneer [131] - 18.39
Balanced Pioneer [132] - 17.89
StyleALAE Generation 13.09 17.13
StyleALAE Reconstruction 16.52 15.92

2.8.1 Learning style representations

FFHQ. We evaluate StyleALAE with the FFHQ [2] dataset. It is very recent and consists of

70000 images of people faces aligned and cropped at resolution of 1024× 1024. In contrast

to [2], we split FFHQ into a training set of 60000 images and a testing set of 10000 images.

We do so in order to measure the reconstruction quality for which we need images that were

not used during training.

We implemented our approach with PyTorch. Most of the experiments were conducted

on a machine with 4× GPU Titan X, but for training the models at resolution 1024× 1024

we used a server with 8× GPU Titan RTX. We trained StyleALAE for 147 epochs, 18

of which were spent at resolution 1024 × 1024. Starting from resolution 4 × 4 we grew

StyleALAE up to 1024 × 1024. When growing to a new resolution level we used 500k

training samples during the transition, and another 500k samples for training stabilization.

Once reached the maximum resolution of 1024×1024, we continued training for 1M images.

Thus, the total training time measured in images was 10M. In contrast, the total training time

for StyleGAN [2] was 25M images, and 15M of them were used at resolution 1024× 1024.

At the same resolution we trained StyleALAE with only 1M images, so, 15 times less. It

takes slightly over two days to reach resolution 512 × 512 and slightly over two days to

continue training and reach resolution 1024× 1024 on a machine with 8 X Titan RTX.

Table 2.4 reports the FID score [128] for generations and reconstructions. Source images

36

Table 2.5: PPL. Perceptual path lengths on FFHQ measured in the Z and theW spaces (lower is better).

Method Path length
full end

StyleGAN Z 412.0 415.3
StyleGAN no mixingW 200.5 160.6
StyleGAN W 231.5 182.1
StyleALAE Z 300.5 292.0
StyleALAE W 134.5 103.4

Figure 2.8: FFHQ generations. Generations with StyleALAE trained on FFHQ [2] at 1024× 1024.

for reconstructions are from the test set and were not used during training. The scores of

StyleALAE are higher, and we regard the large training time difference between StyleALAE

and StyleGAN (1M vs 15M) as the likely cause of the discrepancy.

Table 2.5 reports the perceptual path length (PPL) [2] of SyleALAE. This is a mea-

Table 2.6: Comparison of FID and PPL scores for CelebA-HQ images at 256×256 (lower is better). FID is
based on 50,000 generated samples compared to training samples.

FID PPL
full

PGGAN [22] 8.03 229.2
GLOW [40] 68.93 219.6
PIONEER [131] 39.17 155.2
Balanced PIONEER [132] 25.25 146.2
StyleALAE (ours) 19.21 33.29

37

surement of the degree of disentanglement of representations. We compute the values for

representations in theW and the Z space, where StyleALAE is trained with style mixing in

both cases. The StyleGAN score measured in Z corresponds to a traditional network, and

inW for a style-based one. We see that the PPL drops from Z toW , indicating thatW is

perceptually more linear than Z , thus less entangled. Also, note that for our models the PPL

is lower, despite the higher FID scores.

Figure 2.8 shows a random collection of generations obtained from StyleALAE. Fig-

ure 2.7 instead shows a collection of reconstructions.

Figure 2.11 instead shows traversals based on principal directions along CelebA-HQ

attributes. The principal directions are obtained in this way. Given an attribute (e.g.,

old/young), we train a binary linear SVM classifier that distinguishes old vs young people,

based on the latent space representation. We then use the direction orthogonal to the SVM

separating boundary as the principal direction of variation for that attribute. Then, given an

image, we compute the latent representation, and add to it a variation along the principal

direction of variation. We can then draw noise and use the generator network to generate

face images.

In Figure 2.12 instead, we repeat the style mixing experiment in [2], but with real images

as sources and destinations for style combinations. We note that the original images are faces

of celebrities that we downloaded from the internet. Therefore, they are not part of FFHQ,

and come from a different distribution. Indeed, FFHQ is made of face images obtained from

Flickr.com depicting non-celebrity people. Often the faces do not wear any makeup, neither

have the images been altered (e.g., with Photoshop). Moreover, the imaging conditions of

the FFHQ acquisitions are very different from typical photoshoot stages, where professional

equipment is used. Despite this change of image statistics, we observe that StyleALAE

works effectively on both reconstruction and mixing.

LSUN. We evaluated StyleALAE with LSUN Bedroom [130]. Figure 2.9 shows genera-

tions and reconstructions from unseen images during training. Table 2.4 reports the FID

38

Figure 2.9: LSUN generations and reconstructions. Generations (first row), and reconstructions using
StyleALAE trained on LSUN Bedroom [130] at resolution 256× 256.

scores on the generations and the reconstructions.

CelebA-HQ. CelebA-HQ [22] is an improved subset of CelebA [104] consisting of

30000 images at resolution 1024× 1024. We follow [131, 132, 40, 22] and use CelebA-HQ

downscaled to 256 × 256 with training/testing split of 27000/3000. Table 2.6 reports the

FID and PPL scores, and Figure 2.10 compares StyleALE reconstructions of unseen faces

with two other approaches.

39

Figure 2.10: CelebA-HQ reconstructions. CelebA-HQ reconstructions of unseen samples at resolution
256× 256. Top row: real images. Second row: StyleALAE. Third row: Balanced PIONEER [132]. Last row:
PIONEER [131]. StyleALAE reconstructions look sharper and less distorted.

40

Reals Traversal

feminine/masculine

smile

wavy-hair

old/young

small lips/big lips

skinny/chubby

glasses

Figure 2.11: Attribute traversals. Qualitative results for reconstructions and attribute traversals on FFHQ
dataset at resolution 1024 × 1024. Reconstructions from images that are not part of FFHQ. Left column:
real images. Columns from the second to the last one: StyleALAE reconstructions of the source image
with feature corresponding to an attribute being modified. The W representation of the input image was
modified by adding/subtracting a vector that was identified as principal direction for the selected attribute. All
manipulations on the spaceW are linear. All directions were determined as perpendiculars to the decision
boundary of a Linear SVM fitted to detect a particular attribute on the spaceW .

41

Destination set

So
ur

ce
se

t

C
oa

rs
e

st
yl

es
fr

om
So

ur
ce

se
t

M
id

dl
e

st
yl

es
fr

om
So

ur
ce

se
t

Fi
ne

fr
om

So
ur

ce

Figure 2.12: Two sets of real images were picked to form the Source set and the Destination set. The rest of
the images were generated by copying specified subset of styles from the Source set into the Destination set.
This experiment repeats the one from [2], but with real images. Copying the coarse styles brings high-level
aspects such as pose, general hair style, and face shape from Source set, while all colors (eyes, hair, lighting)
and finer facial features resemble the Destination set. Instead, if we copy middle styles from the Source set, we
inherit smaller scale facial features like hair style, eyes open/closed from Source, while the pose, and general
face shape from Destination are preserved. Finally, copying the fine styles from the Source set brings mainly
the color scheme and microstructure.

42

Chapter 3

Generative Probabilistic Novelty

Detection with Adversarial

Autoencoders

3.1 Introduction

Novelty detection is the problem of identifying whether a new data point is considered to be

an inlier or an outlier. From a statistical point of view this process usually occurs while prior

knowledge of the distribution of inliers is the only information available. This is also the

most difficult and relevant scenario because outliers are often very rare, or even dangerous to

experience (e.g., in industry process fault detection [133]), and there is a need to rely only on

inlier training data. Novelty detection has received significant attention in application areas

such as medical diagnoses [134], drug discovery [135], and among others, several computer

vision applications, such as anomaly detection in images [49, 136], videos [137], and outlier

detection [56, 138]. We refer to [139] for a general review on novelty detection. The most

recent approaches are based on learning deep network architectures [55, 57], and they tend

to either learn a one-class classifier [140, 57], or to somehow leverage as novelty score, the

43

reconstruction error of the encoder-decoder architecture they are based on [141, 56].

In this work, we introduce a new encoder-decoder architecture as well, which is based on

adversarial autoencoders [142]. However, we do not train a one-class classifier, instead, we

learn the probability distribution of the inliers. Therefore, the novelty test simply becomes

the evaluation of the probability of a test sample, and rare samples (outliers) fall below

a given threshold. We show that this approach allows us to effectively use the decoder

network to learn the parameterized manifold shaping the inlier distribution, in conjunction

with the probability distribution of the (parameterizing) latent space. The approach is made

computationally feasible because for a given test sample we linearize the manifold, and show

that with respect to the local manifold coordinates the data model distribution factorizes

into a component dependent on the manifold (decoder network plus latent distribution), and

another one dependent on the noise, which can also be learned offline.

We named the approach generative probabilistic novelty detection (GPND) because we

compute the probability distribution of the full model, which includes the signal plus noise

portion, and because it relies on being able to also generate data samples. We are mostly

concerned with novelty detection using images, and with controlling the distribution of

the latent space to ensure good generative reproduction of the inlier distribution. This is

essential not so much to ensure good image generation, but for the correct computation of

the novelty score. This aspect has been overlooked by the deep learning literature so far,

since the focus has been only on leveraging the reconstruction error. We do leverage that

as well, but we show in our framework that the reconstruction error affects only the noise

portion of the model. In order to control the latent distribution and image generation we

learn an adversarial autoencoder network with two discriminators that address these two

issues.

Section 3.2 introduces the GPND framework, and Section 3.3 describes the training

and architecture of the adversarial autoencoder network. Section 3.5 describe a rich set of

experiments showing that GPND is very effective and produces state-of-the-art results on

44

Figure 3.1: Manifold schematic representa-
tion. This figure shows connection between the
parametrized manifoldM, its tangent space T , data
point x and its projection x‖.

Input:

Reconstruction:

Label “7” - inlier

Label “0” - outlier
Input:

Reconstruction:

Figure 3.2: Reconstruction of inliers and outliers.
This figure showns reconstructions for the autoen-
coder network that was trained on inlier of label "7"
of MNIST [143] dataset. First line is input of inliers
of label "7", the second line shows corresponding re-
constructions. The third line corresponds to input of
outlier of label "0" and the forth line, corresponding
reconstructions.

several benchmarks.

3.2 Generative Probabilistic Novelty Detection

We assume that training data points x1, . . . , xN , where xi ∈ Rm, are sampled, possibly with

noise ξi, from the model

xi = f(zi) + ξi i = 1, · · · , N , (3.1)

where zi ∈ Ω ⊂ Rn. The mapping f : Ω → Rm defines M ≡ f(Ω), which is a

parameterized manifold of dimension n, with n < m. We also assume that the Jacobi matrix

of f is full rank at every point of the manifold. In addition, we assume that there is another

mapping g : Rm → Rn, such that for every x ∈ M, it follows that f(g(x)) = x, which

means that g acts as the inverse of f on such points.

Given a new data point x̄ ∈ Rm, we design a novelty test to assert whether x̄ was

sampled from model (3.1). We begin by observing that x̄ can be non-linearly projected onto

x̄‖ ∈M via x̄‖ = f(z̄), where z̄ = g(x̄). Assuming f to be smooth enough, we perform a

45

Figure 3.3: Projection of the sample datapoint. This figure shows that projection of the input data point can
be represented as a sequence of applying functions f and g.

linearization based on its first-order Taylor expansion

f(z) = f(z̄) + Jf (z̄)(z − z̄) +O(‖z − z̄‖2) , (3.2)

where Jf (z̄) is the Jacobi matrix computed at z̄, and ‖ · ‖ is the L2 norm. We note that

T = span(Jf (z̄)) represents the tangent space of f at x̄‖ that is spanned by the n independent

column vectors of Jf (z̄), see Figure 3.1. Also, we have T = span(U‖), where Jf (z̄) =

U‖SV > is the singular value decomposition (SVD) of the Jacobi matrix. The matrix U‖ has

rank n, and if we define U⊥ such that U = [U‖U⊥] is a unitary matrix, we can represent the

data point x̄ with respect to the local coordinates that define the tangent space T , and its

orthogonal complement T ⊥.

This is done by computing

w̄ = U>x̄ =

 U‖
>
x̄

U⊥
>
x̄

 =

 w̄‖

w̄⊥

 , (3.3)

where the rotated coordinates w̄ are decomposed into w̄‖, which are parallel to T , and w̄⊥

which are orthogonal to T .

We now indicate with pX(x) the probability density function describing the random

variableX , from which training data points have been drawn. Also, pW (w) is the probability

density function of the random variable W representing X after the change of coordinates.

The two distributions are identical. However, we make the assumption that the coordinates

W ‖, which are parallel to T , and the coordinates W⊥, which are orthogonal to T , are

46

statistically independent. This means that the following holds

pX(x) = pW (w) = pW (w‖, w⊥) = pW ‖(w
‖)pW⊥(w⊥) . (3.4)

This is motivated by the fact that in (3.1) the noise ξ is assumed to predominantly deviate

the point x away from the manifoldM in a direction orthogonal to T . This means that

W⊥ is primarely responsible for the noise effects, and since noise and drawing from the

manifold are statistically independent, so are W ‖ and W⊥.

From (3.4), given a new data point x̄, we propose to perform novelty detection by

executing the following test

pX(x̄) = pW ‖(w̄
‖)pW⊥(w̄⊥) =

 ≥ γ =⇒ Inlier

< γ =⇒ Outlier
(3.5)

where γ is a suitable threshold.

3.2.1 Computing the distribution of data samples

The novelty detector (3.5) requires the computation of pW ‖(w‖) and pW⊥(w⊥). Given a test

data point x̄ ∈ Rm its non-linear projection ontoM is x̄‖ = f(g(x̄)). Therefore, w̄‖ can

be written as w̄‖ = U‖
>
x̄ = U‖

>
(x̄ − x̄‖) + U‖

>
x̄‖ = U‖

>
x̄‖, where we have made the

approximation that U‖>(x̄ − x̄‖) ≈ 0. Since x̄‖ ∈ M, then in its neighborhood it can be

parameterized as in (3.2), which means that w‖(z) = U‖
>
f(z̄)+SV >(z− z̄)+O(‖z− z̄‖2).

Therefore, if Z represents the random variable from which samples are drawn from the

parameterized manifold, and pZ(z) is its probability density function, then it follows that

pW ‖(w
‖) = |detS−1| pZ(z) , (3.6)

47

since V is a unitary matrix. We note that pZ(z) is a quantity that is independent from the

linearization (3.2), and therefore it can be learned offline, as explained in Section 3.4.

In order to compute pW⊥(w⊥), we approximate it with its average over the hypersphere

Sm−n−1 of radius ‖w⊥‖, giving rise to

pW⊥(w⊥) ≈
Γ
(
m−n
2

)
2π

m−n
2 ‖w⊥‖m−n

p‖W⊥‖(‖w⊥‖) , (3.7)

where Γ(·) represents the gamma function. This is motivated by the fact that noise of a given

intensity will be equally present in every direction. Moreover, its computation depends on

p‖W⊥‖(‖w⊥‖), which is the distribution of the norms of w⊥, and which can easily be learned

offline by histogramming the norms of w̄⊥ = U⊥
>
x̄.

3.3 Manifold learning with adversarial autoencoders

In this section we describe the network architecture and the training procedure for learning

the mapping f that define the parameterized manifoldM, and also the mapping g. The

mappings g and f represent and are modeled by an encoder network, and a decoder network,

respectively. Similarly to previous work on novelty detection [144, 145, 146, 56, 57, 141],

such networks are based on autoencoders [147, 3].

The autoencoder network and training should be such that they reproduce the manifold

M as closely as possible. For instance, ifM represents the distribution of images depicting

a certain object category, we would want the estimated encoder and decoder to be able to

generate images as if they were drawn from the real distribution. Differently from previous

work, we require the latent space, represented by z, to be close to a known distribution,

preferably a normal distribution, and we would also want each of the components of z to be

maximally informative, which is why we require them to be independent random variables.

Doing so facilitates learning a distribution pZ(z) from training data mapped onto the latent

space Ω. This means that the autoencoder has generative properties because by sampling

48

Real
or

Fake

Convolutional Layers Fully connected Layers Fake Sample Real Sample

Real
or

Fake

Encoder Decoder

Discriminator

Discriminator

Distribution prior

Figure 3.4: AAE based architecture of the network for manifold learning as presented in our NeurIPS
2018 paper [71]. It is based on Adversarial Autoencoders (AAE) [142] and additionaly has a discriminator
that adds adversarial component in image space.

Inlier
or

Outlier

Convolutional Layers Fully connected Layers

Encoder Decoder

Novelty detector

Figure 3.5: Inference time architecture. Architecture for performing novelty test as presented in our NeurIPS
2018 paper [71]. Only two networks remained from the training step: encoder g and decoder f .

from pZ(z) we would generate data points x ∈M. Note that differently from GANs [54]

we also require an encoder function g.

Variational Auto-Encoders (VAEs) [9] are known to work well in the presence of

continuous latent variables, and they can generate data from a randomly sampled latent

space. VAEs utilize stochastic variational inference and minimize the Kullback-Leibler (KL)

divergence penalty to impose a prior distribution on the latent space that encourages the

encoder to learn the modes of the prior distribution. Adversarial Autoencoders (AAEs) [142],

in contrast to VAEs, use an adversarial training paradigm to match the posterior distribution

of the latent space with the given distribution. One of the advantages of AAEs over

VAEs is that the adversarial training procedure encourages the encoder to match the whole

distribution of the prior.

49

Real/Fake

∆

- Network

- Data

Real/Fake

Distribution prior

Distribution prior

Figure 3.6: Architecture of the network for manifold learning. It is based on Adversarial Latent Autoen-
coders (ALAE) [101] and similarly to Adversarial Autoencoders (AAE) [142] has additional discriminator
that aims to bring latent distribution close to normal.

∆

- Network

- Data

Novelty
Score

Figure 3.7: Inference time architecture. Architecture for performing novelty test. Only two networks
remained from the training step: encoder g and decoder f .

Similarly to AAEs, PixelGAN autoencoders [148] introduce the adversarial component

to impose a prior distribution on the latent code, but the architecture is significantly different

since it is conditioned on the latent code.

Our initial version of GPND, as in our NeurIPS 2018 paper [71], uses architecture based

on AAE presented in 3.4 and 3.5.

Unfortunately, since we are concerned with working with images, both AAEs and VAEs

tend to produce examples that are often far from the real data manifold.

3.3.1 GPND with Adversarial Autoencoders

We start from a basic AAE architecture and similarly to [149, 57] we add an adversarial

training criterion to match the output of the decoder with the distribution of real data. This

allows us to reduce blurriness and add more local details to the generated images.

Our full objective consists of three terms. First, we use an adversarial loss for matching

the distribution of the latent space with the prior distribution, which is a normal with 0

mean, and standard deviation 1, N (0, 1). Second, we use an adversarial loss for matching

50

the distribution of the decoded images from z and the known, training data distribution.

Third, we use an autoencoder loss between the decoded images and the encoded input image.

Figure 3.4 shows the architecture configuration.

Adversarial losses

For the discriminator Dz, we use the following adversarial loss:

Ladv−dz(x, g,Dz) = E[log(Dz(N (0, 1)))] + E[log(1−Dz(g(x)))] , (3.8)

where the encoder g tries to encode x to a z with distribution close to N (0, 1). Dz aims to

distinguish between the encoding produced by g and the prior normal distribution. Hence, g

tries to minimize this objective against an adversary Dz that tries to maximize it.

Similarly, we add the adversarial loss for the discriminator Dx:

Ladv−dx(x,Dx, f) = E[log(Dx(x))] + E[log(1−Dx(f(N (0, 1))))] , (3.9)

where the decoder f tries to generate x from a normal distributionN (0, 1), in a way that x is

as if it was sampled from the real distribution. Dx aims to distinguish between the decoding

generated by f and the real data points x. Hence, f tries to minimize this objective against

an adversary Dx that tries to maximize it.

Autoencoder loss

We also optimize jointly the encoder g and the decoder f so that we minimize the recon-

struction error for the input x that belongs to the known data distribution.

Lerror(x, g, f) = −Ez[log(p(f(g(x))|x))] , (3.10)

51

where Lerror is minus the expected log-likelihood, i.e., the reconstruction error. This loss

does not have an adversarial component but it is essential to train an autoencoder. By

minimizing this loss we encourage g and f to better approximate the real manifold.

Full objective

The combination of all the previous losses gives

L(x, g,Dz, Dx, f) = Ladv−dz(x, g,Dz) + Ladv−dx(x,Dx, f) + λLerror(x, g, f) , (3.11)

where λ is a parameter that strikes a balance between the reconstruction and the other

losses. The autoencoder network is obtained by minimizing (3.11), giving:

ĝ, f̂ = arg min
g,f

max
Dx,Dz

L(x, g,Dz, Dx, f) . (3.12)

The model is trained using stochastic gradient descent by doing alternative updates of

each component as follows

• Maximize Ladv−dx by updating weights of Dx;

• Minimize Ladv−dx by updating weights of f ;

• Maximize Ladv−dz by updating weights of Dz;

• Minimize Lerror and Ladv−dz by updating weights of g and f .

3.3.2 GPND with Adversarial Latent Autoencoders

Unfortunately, the presented modified AAE approach still tends to produce examples that

are often far from the real data manifold.

This is because the reciprocity of the network is achieved only from a reconstruction

loss that is typically a pixel-wise similarity loss between input and output image. Such

52

loss often causes the generated images to be blurry, which has a negative effect on the

proposed approach. The blurriness of reconstructions is typical for VAEs, AAE, and

other autoencoders that achieve reciprocity with a similarity criterion in image space.

The main reason for this is explicit likelihood training paradigm [150] as apposed to

implicit. Likelihood maximization combined with poor decoder distribution results in blurry

reconstructions. Practically, the only feasible decoder distribution for VAEs is factorized

Gaussian distribution, where all pixels are assumed independent, which makes likelihood

maximization equivalent to MSE minimization.

We updated the GPND architecture and we utilize paradigm, where the reciprocity is

achieved in latent space [151, 152, 101], as opposed to image space. We adopt architec-

ture from [101], which is distinctive from other autoencoder architectures by enforcing

reciprocity in latent space, not in image space, which eliminates the need for pixel-wise

reconstruction loss. Moreover, we also combine the adversarial training criterion with AAEs,

which results in having two adversarial losses: one to impose a prior on the latent space

distribution, and the second one to impose a prior on the output distribution.

Our full objective consists of three terms. First, we use an adversarial loss for matching

the distribution of the latent space with the prior distribution, which is a normal with 0 mean,

and standard deviation 1, N (0, 1). Second, we use an adversarial loss for matching the

distribution of the images decoded from normal distribution and the known training data

distribution. Third, we impose reciprocity on the latent space using `2 loss on latent vector

reconstruction error. Figure 3.6 shows the architecture configuration.

Adversarial Latent Autoencoders

We use the architecture of Adversarial Latent Autoencoders, introduced in [101], which

we modify in two ways. First, we eliminate intermediate spaceW and function F , for the

following reasons. Distribution of the intermediate space is unconstrained, thus computing

pw(w), w ∈ W would require as to use chain rule and find the inverse of F function.

53

Function F is a normalizing flow and can be reversed, but unfortunately, in practice, that

gives highly unstable results. Computing F−1(E(x)) of an input x results in values that

have an extremely low probability of being sampled from the normal distribution. We think

that it is likely the case is E(x) returns point that does not lie perfectly on the manifold

F (z), z ∈ N (0, 1), and the error gets amplified a lot due to the computing of the inverse

mapping F−1. Eliminating the intermediate spaceW and function F means that we train

the encoder E to regress back to Z space directly. The proposed architecture consist of

four networks: generator f , encoder g, discriminator D and z-space discriminator Dz.

Discriminator D together with encoder g work on aligning distribution of the output of

the generator with real data distribution, while z-space discriminator Dz aims at aligning

distribution of the encoder output with normal distribution.

Adversarial losses

According to generalized GAN formulation [25], the value function V (G, D) of the minimax

game for a generic GAN can be defined as

V (G, D) = EpD(x)[η(D(x))] + Ep(z)[η(−D(G(z)))] , (3.13)

where η : R→ R is a concave function.

Following [101], we decompose the discriminator network D into two other networks: g

and D, see Figure 3.6. This means that D = D ◦ g. We assume that the latent space on the

input of generator network f and interface between g and D are the same and we indicate

them as Z .

Consequently, the two alternating minimax games of the proposed architecture can be

defined as followes using the generalized value function V (·, ·):

54

minf maxg,D V (f,D ◦ g) (3.14)

ming maxDz V (g ◦ f,Dz) (3.15)

When training g and D, real data is data coming from the image samples of the dataset.

When training g and Dz - real data is data sampled from the normal distribution.

Distribution alignment

The output distribution of f can be expressed as

q(x) =

∫
w

qf (x|z)pZ(z)dz , (3.16)

where distribution qf (x|z) represents generator network f and pZ(z) is probability density

of the normal distribution N (0, 1). Thus, the output of the encoder network g, when fed

with output from generator will be:

qg(z) =

∫
x

qg(z|x)q(x)dx , (3.17)

where distribution qg(z|x) represents encoder network g. Adversarial training aims to bring

close distribitions of q(x) and distribution of real data pD(x), and consequently that lead to

qg(z) = qg,D(z), where qg,D(z) is marginal distribution of the output of encoder network,

when fed with real data, e.g. when in (2.4) q(x) is replaced with pD(x). Additionaly to that,

we also try to bring both distributions qg(z) and qg,D(z) close to normal distribution with

additional discriminator Dz.

55

Reciprocity

In order to achieve reciprocity, we learn such qg (z|x) and qf (x|z) that maximize marginal

likelihood qg(z). Simultaneously to optimizing two GAN losses, we also maximize the

expectation of qg (z|x) over the distribution of qf (x|z).

arg max
g,f

Ez∼N (0,1)

[
Ex∼qf (z|w) log qg (z|x)

]
(3.18)

Assuming the encoder distribution qg (z|x) to be factorised Gaussian, equation (3.18)

becomes MSE loss in latent space Z:

arg min
g,f

Ez∼N (0,1)‖z − g ◦ f(z)‖22 (3.19)

Autoencoder training

Following [153, 101] we use non-saturating loss [54] and set η(·) to a softplus function

η(t) = log(1 + exp(t)). In addition, we utilize R1 gradient regularization techniques [118,

26, 119], which is a zero-centered gradient penalty term which is computed only on real

data applied only to the networks g, D, Dz.

Following [22, 153, 101] we use learning rate equalization we find it a crucial component

for stable GAN training. We implement learning rate equalization, described in [22] by

changing the learning rate for each layer individually, ensuring that all layers are trained at

the same speed. This slightly differs from learning rate equalization implemented in [22],

because we eliminate intermediate weight scaling operation, more details are explained in

[101]

The model is trained using stochastic gradient descent by doing alternations of three

steps:

• Adversarial step. Updating encoder g and discriminator D. Simultaneously maximize

V (f,D ◦ g) and minimize V (g ◦ f,Dz) with respect to weights of g and D;

56

• Adversarial step. Updating generator f and discriminator Dz. Simultaneously min-

imize V (f,D ◦ g) and maximize V (g ◦ f,Dz) with respect to weights of f and

Dz;

• Reciprocal step. Updating encoder-generator pair. Minimize ‖z − g ◦ f(z)‖22 by

updating weights of f and g.

See Figure 3.6 for details.

3.3.3 Performing inference

During the inference, the input data is fed into encoder network g and then to generator

network f , hence the other two discriminator networks are dropped. The resulting latent

space and the reconstruction space is used to perform a novelty test, see Figure 3.7.

3.4 Implementation Details and Complexity

The novelty detector (3.5) requires the computation of pW ‖(w‖) and pW⊥(w⊥). Given a test

data point x̄ ∈ Rm its non-linear projection ontoM is x̄‖ = f(g(x̄)).

As reflected in 3.3, w̄‖ is a component of w̄ that is parallel to the tangent space T , that

is defined as w̄‖ = U‖
>
x̄. Similarly, as reflected in 3.3, w̄⊥ is a component of w̄ that is

orthogonal to the tangent space T , that is defined as w̄⊥ = U⊥
>
x̄.

We note that since U⊥ is a null space of the linearization of f(z) at the point z̄, s.t.

x̄‖ = f(z̄), thus:

U⊥
>
x̄‖ = 0 , (3.20)

Eq. 3.20 means that distance between x‖ and the tangent plane T is zero.

We introduce x̄⊥ = x̄− x̄‖ - which is a vector connecting x̄ and its projection onto the

manifoldM - x̄‖. Thus, x̄‖ lies in the span of U‖ and x̄⊥ lies in the span of U⊥. Since

57

bases U‖ and U⊥ are orthogonal, points x̄‖ and x̄⊥ are also orthogonal. Thus, the difference

between x̄ and its projection x̄‖ fully lies in the complement to the tangent space T >, so

that projection of the difference onto the tangent spaces is zero:

U‖
>

(x̄− x̄‖) = U‖
>
x̄⊥ = 0 , (3.21)

Using 3.21 we can rewrite w̄‖ in terms of the x̄‖:

w̄‖ = U‖
>
x̄ = U‖

>
(x̄⊥ + x̄‖) = U‖

>
x̄‖ (3.22)

Similarly, we can rewrite w̄⊥ in terms of the reconstruction difference: x̄− x̄‖:

w̄⊥ = U⊥
>
x̄ = U⊥

>
x̄− U⊥>x̄‖ = U⊥

>
(x̄− x̄‖) (3.23)

On the other hand, as discussed in 3.2.1, in order to compute pW⊥(w⊥), we approximate

it with its average over the hypersphere Sm−n−1 of radius ‖w⊥‖, thus we are interested only

in euclidean norm of w̄⊥.

Taking into account that bases U‖ and U⊥ are orthogonal and according to pythagoras

theorem:

‖U>(x̄− x̄‖)‖2 = ‖U‖>(x̄− x̄‖)‖2 + ‖U⊥>(x̄− x̄‖)‖2 (3.24)

Using 3.21 we can further conclude that:

‖U>(x̄− x̄‖)‖ = ‖U⊥>(x̄− x̄‖)‖ (3.25)

Since U is a unitary matrix an thus it does not change length of the vector:

‖x̄− x̄‖‖ = ‖U⊥>(x̄− x̄‖)‖ (3.26)

58

Thus from 3.23 and 3.26 we derive that euclidian norm of w̄⊥ equals to reconstruction

error:

‖w̄⊥‖ = ‖x̄− x̄‖‖ (3.27)

Thus, expression 3.7 for pW⊥(w⊥) can be rewritten as:

pW⊥(w⊥) ≈
Γ
(
m−n
2

)
2π

m−n
2 ‖x̄− x̄‖‖m−n

p‖W⊥‖(‖x̄− x̄‖‖) , (3.28)

This means that we don’t need to compute Full-SVD in order to obtain U⊥, neither we

need to compute w̄⊥ or w̄‖.

Taking into account 3.22 we transform 3.2 by multiplying both sides by U‖> and

defining U‖>f(z) as function w‖(z):

w‖(z) = U‖
>
f(z̄) + U‖

>
U‖SV >(z̄)(z − z̄)

+ U‖
>
O(‖z − z̄‖2) ,

= U‖
>
f(z̄) + SV >(z̄)(z − z̄)

+ U‖
>
O(‖z − z̄‖2) ,

(3.29)

Therefore, if Z represents the random variable from which samples are drawn from the

parameterized manifold, and pZ(z) is its probability density function, then it follows that

pW ‖(w
‖) = |detS−1| pZ(z) , (3.30)

Since V is a unitary matrix. We note that pZ(z) is a quantity that is independent of the

linearization (3.2), and therefore it can be learned offline.

After learning the autoencoder network, by mapping the training set onto the latent space

through g, we fit to the data a generalized Gaussian distribution and estimate pZ(z).

Computing a derivative, i.e. the Jacoby matrix Jf , can be done numerically or using

autograd capabilities of the deep learning frameworks. In the case of numerical computation

59

with central differences it will require 2 ·n of forward passes. If autograd is used, then it will

require m backward passes, since all practical implementations of autograd in deeplearning

frameworks can only compute derivative of a scalar. Thus both cases are very slow and in

m+1 or 2 ·n+1 times slower compared to single forward pass. If we ignore the component

|detS−1|, single forward pass is enough for the rest of the computations.

Experimentally we found that component |detS−1| has minor contribution, and we

demonstrate that in the ablation study subsection 3.5.2. For the rest of the experimental

study we make a decision to ignore the Jacobian component completly and approximate

pW ‖(w
‖) as:

pW ‖(w
‖) ≈ pZ(z) , (3.31)

Thus, this approximation completely eliminates need for computing Jacoby matrix Jf

and SVD. For the detection test 3.5 we compute log likelihood of the test data point as

follows:

log pX(x) = log pZ(z)− (m− n) log(‖x̄− x̄‖‖)

+ log p‖W⊥‖(‖x̄− x̄‖‖)

+ C .

(3.32)

Where C = log Γ
(
m−n
2

)
− m−n

2
log 2π. We compute log-likelihood up to a constant C

that we ignore because of the tuneable threshold in the detection test.

In addition, by histogramming the quantities ‖x− x‖‖ we estimate p‖W⊥‖(x− x‖). The

entire training procedure takes about 4 hours with a high-end PC with one NVIDIA TITAN

X for a MNIST-like dataset.

When a sample is tested, the procedure entails mainly computing a forward pass of the

autoencoder. The computational cost of evaluating 3.32 is neglectable compared to the cost

of the forward pass.

60

Table 3.1: Results of tuning α and β parameters on validation set of MNIST dataset.

Digits Mean SD

0 1 2 3 4 5 6 7 8 9

α 11.73 11.02 9.495 17.19 4.333 17.45 17.55 17.34 15.84 13.05 13.45 4.68
β 0.3807 0.4994 0.1765 0.4937 0.5665 0.4327 0.6939 0.4295 0.2848 0.4273 0.4397 0.1517

3.4.1 Model correction

Experimentally we found that performance of the method can be significantly improved

by utilizing model correction described below. In 3.2.1, one of the assumptions was that

noise will be equally present in every direction, which is a strong assumption that generally

would not hold, leading to wrong exponents in 3.7. To compensate for that, we suggest to

modify 3.32 with tunable parameters: α, and β.

log pX(x) =α log pZ(z)− β(m− n) log(‖x̄− x̄‖‖)

+ log p‖W⊥‖(‖x̄− x̄‖‖)

+ C .

(3.33)

We found that those parameters are not very sensible to the data, and we use α = 13,

and β = 0.4. This pair of parameters was found by taking the average of optimals among all

classes of MNIST dataset, but was also used for experiments on CIFAR-10, FashionMNIST,

and Coil-100 datasets. Table 3.5 and Table 3.6 show also results obtained by tuning α, and

β on validation set and results obtained without tuning, by setting α = 13, and β = 0.4. For

each digit, using grid search, we found optimal pair of α, and β on validation set. The mean

values of the optimal parameters α, and β are 13.45 and 0.4397 with standard deviation of

4.68 and 0.1517, see Table 3.1.

3.5 Experiments

We evaluate our novelty detection approach, which we call Generative Probabilistic Novelty

Detection (GPND), against several state-of-the-art approaches and with several performance

61

measures. Our initial version of GPND, as in our NeurIPS 2018 paper [71] as described

in 3.3.1, we call GPND AAE.

We evaluate performance in one-class novelty detection setting using F1 measure and

the area for the ROC curve (AUROC). In addition to that, under the out-of-distribution

setting we also use the FPR at 95% TPR (i.e., the probability of an outlier to be misclassified

as inlier), the Detection Error (i.e., the misclassification probability when TPR is 95%),

and the area under the precision-recall curve (AUPR) when inliers (AUPR-In) or outliers

(AUPR-Out) are specified as positives. All reported results are from our publicly available

implementation1 and the initial version of GPND, as in our NeurIPS 2018 paper [71] is

available at2, based on the deep machine learning framework PyTorch [122].

For one class novelty detection we implement Protocol 1 and Protocol 2 setting [154].

Protocol 1 : Dataset is split into training, validation, and testing sets at random. Testing

set contains 20% of all samples, while training and validation sets contain the remaining

80%. We use 60% of all samples as training set, 20% as validation set for all cases except

for the Coil-100 dataset [155], where we do not use validation set due to the small size of

the dataset. Outlier samples from training set are removed and they are not used during

testing or training. The area under the ROC curve (AUROC) is computed for the case when

outlier samples constitute half of the testing set. F1 measure is computed for a tabulated

outlier-inlier proportions.

Protocol 2 : For MNIST and CIFAR-10 official splits for training and testing sets are

used. Outlier samples from training set are removed and they are not used during testing or

training. The area under the ROC curve (AUROC) is computed for the case when outlier

samples constitute half of the testing set.

1https://github.com/wvuvl/GPND2
2https://github.com/wvuvl/GPND

62

https://github.com/wvuvl/GPND2
https://github.com/wvuvl/GPND

3.5.1 Datasets

We evaluate GPND on the following datasets.

MNIST [143] contains 70, 000 handwritten digits from 0 to 9 labeled accordingly with ten

classes. Each of the ten classes is used as inlier class and the rest of the categories are used

as outliers. Has official split into training and testing sets constituting 60, 000 and 10, 000

samples

CIFAR-10 [156] contains 60, 000 32 × 32 colour images in 10 classes. Each of the ten

classes is used as inlier class and the rest of the categories are used as outliers. Has official

split into training and testing sets constituting 50, 000 and 10, 000 samples

The Coil-100 dataset [155] contains 7, 200 images of 100 different objects. Each object has

72 images taken at pose intervals of 5 degrees. We downscale the images to size 32× 32.

We take randomly n categories, where n ∈ 1, 4, 7 and randomly sample the rest of the

categories for outliers. We repeat this procedure 30 times.

Fashion-MNIST [157] is a new dataset comprising of 28× 28 grayscale images of 70, 000

fashion products from 10 categories, with 7, 000 images per category. The training set has

60, 000 images and the test set has 10, 000 images. Fashion-MNIST shares the same image

size, data format and the structure of training and testing splits with the original MNIST.

COVID-Net [103] is a new dataset comprising of large set of chest x-ray that combine covid

patients, pneumonia cases and normal chest x-rays. We made custom annotation for this

dataset in order to align images for easier training of autoencoder. After alignment is done,

we downscale the images to resolution 128× 128. Training split of the dataset consists of:

normal cases - 7956, pneumonia - 5373, covid - 425 images. Testing split of the dataset

consists of: normal cases - 880, pneumonia - 589, covid - 98 images. Annotation sample is

shown in Figure 3.8. Samples of the aligned dataset are shown in Figure 3.9

Others. We compare GPND with ODIN [66] using their protocol. For inliers we used

samples from CIFAR-10(CIFAR-100) [156], which is a publicly available dataset of small

images of size 32× 32, which have each been labeled to one of 10 (100) classes. Each class

63

Figure 3.8: COVID-Net. Sample of the annotation of the source image from COVID-Net dataset.

Figure 3.9: COVID-Net. Samples of the aligned COVID-Net dataset.

Figure 3.10: COVID-Net Reconstructions . First row - real input images. Second row - reconstructed
images.

64

is represented by 6, 000 (600) images for a total of 60, 000 samples. For outliers we used

samples from TinyImageNet [158], LSUN [159], and iSUN [160]. For more details please

refer to [66]. We reuse the prepared datasets of outliers provided by the ODIN GitHub

project page.

3.5.2 Results

MNIST dataset. We perform two experiments that correspond to Protocol 1 and Protocol

2, the results are displayed in tables 3.2, 3.2, and 3.5. We follow the Protocol 1 described

in [57, 56] with some differences discussed below. The dataset is randomly divided into

three sets: 60% of each class is used for training, 20% for validation, and 20% for testing.

The same way of splitting the dataset is also adopted by [154]. Once pX(x̄) is computed for

each validation sample, we search for the γ that gives the highest F1 measure. For each class

of digit, we train the proposed model and simulate outliers as randomly sampled images

from other categories with proportion equal 50% (Table 3.2) or ranging from 10% to 50%

(Table 3.3). Results for D(R(X)) and D(X) reported in [57] correspond to the protocol for

which data is not split into separate training, validation and testing sets, meaning that the

same inliers used for training were also used for testing. We diverge from this protocol and

do not reuse the same inliers for training and testing. We follow the 60%/20%/20% splits

for training, validation and testing. This makes our testing harder, but more realistic, while

we still compare our numbers against those obtained by others with easier settings. Results

reporting AUC measure on the MNIST dataset using Protocol 1 are shown in Table 3.2,

where we compare with [154]. Results reporting F1 measure on the MNIST dataset using

Protocol 1 are shown in Table 3.3, where we compare with [57, 161, 56].

We report results on COVID-Net dataset by training novelty detector on normal only

samples and then detecting covid cases. Areas for the ROC curve (AUROC) on COVID-Net

dataset for plain AE, OCGAN, and our methods are reported in the Table 3.4. Reconstruc-

tions of the dataset samples are shown in Figure 3.10

65

Table 3.2: AUROC results for novelty detection on MNIST using Protocol 1.

MNIST COIL fMNIST
ALOCC DR [57] 0.88 0.809 0.753

ALOCC D [57] 0.82 0.686 0.601

DCAE [146] 0.899 0.949 0.908

OCGAN [154] 0.977 0.995 0.924

GPND (ours) 0.984 0.9994 0.930

Table 3.3: F1 scores on MNIST [143]. Inliers are taken to be images of one category, and outliers are randomly
chosen from other categories.

% of outliers D(R(X)) [57] D(X) [57] LOF [161] DRAE [56] GPND AAE (Ours) GPND w. t.(Ours) GPND (Ours)

10 0.97 0.93 0.92 0.95 0.983 0.981 0.981
20 0.92 0.90 0.83 0.91 0.971 0.970 0.970

30 0.92 0.87 0.72 0.88 0.961 0.961 0.962
40 0.91 0.84 0.65 0.82 0.950 0.953 0.953

50 0.88 0.82 0.55 0.73 0.939 0.946 0.945

Table 3.4: AUROC results for novelty detection on COVID dataset.

AUROC
AE [154] 0.637

OCGAN [154] 0.692

GPND (ours) 0.835

66

Table 3.5: AUROC results for novelty detection on MNIST dataset. Each row represents a different class on
which baselines and our model are trained.

OC SVM KDE DAE VAE Pix CNN GAN AND OCGAN GPND(our)

0 0.988 0.885 0.991 0.998 0.531 0.926 0.993 0.998 0.997
1 0.999 0.996 0.999 0.999 0.995 0.995 0.999 0.999 0.999
2 0.902 0.710 0.891 0.962 0.476 0.805 0.959 0.942 0.985
3 0.950 0.693 0.935 0.947 0.517 0.818 0.966 0.963 0.986
4 0.955 0.844 0.921 0.965 0.739 0.823 0.956 0.975 0.977
5 0.968 0.776 0.937 0.963 0.542 0.803 0.964 0.980 0.983
6 0.978 0.861 0.981 0.995 0.592 0.890 0.994 0.991 0.996
7 0.965 0.884 0.964 0.974 0.789 0.898 0.980 0.981 0.984
8 0.853 0.669 0.841 0.905 0.340 0.817 0.953 0.939 0.970
9 0.955 0.825 0.960 0.978 0.662 0.887 0.981 0.981 0.987

avg 0.951 0.814 0.942 0.969 0.618 0.866 0.975 0.975 0.986

Table 3.6: AUROC results for novelty detection on CIFAR10 dataset. Each row represents a different class on
which baselines and our model are trained.

OC SVM KDE DAE VAE Pix CNN GAN AND OCGAN GPND(our)

0 0.630 0.658 0.718 0.688 0.788 0.708 0.735 0.757 0.767
1 0.440 0.520 0.401 0.403 0.428 0.458 0.580 0.531 0.653
2 0.649 0.657 0.685 0.679 0.617 0.664 0.690 0.640 0.679
3 0.487 0.497 0.556 0.528 0.574 0.510 0.542 0.620 0.545
4 0.735 0.727 0.740 0.748 0.511 0.722 0.761 0.723 0.749
5 0.500 0.496 0.547 0.519 0.571 0.505 0.546 0.620 0.548
6 0.725 0.758 0.642 0.695 0.422 0.707 0.751 0.723 0.740
7 0.533 0.564 0.497 0.500 0.454 0.471 0.535 0.575 0.647
8 0.649 0.680 0.724 0.700 0.715 0.713 0.717 0.820 0.701
9 0.508 0.540 0.389 0.398 0.426 0.458 0.548 0.554 0.670

avg 0.586 0.610 0.590 0.586 0.551 0.592 0.641 0.657 0.670

We also follow Protocol 2, described in [70], where official splits for training and testing

sets are used. We use 80% of official training split for training, the rest is used for validation.

Similarly to Protocol 1, once pX(x̄) is computed for each validation sample, we search for

the γ that gives the highest score. For each class of digit, we train the proposed model and

simulate outliers as randomly sampled images from other categories with proportion equal

50% and report AUC measure. We report AUC measure separately for each digit and also

the average value in Table 3.5 where we compare with [70].

Coil-100 dataset. We follow the protocol described in [138] with some differences dis-

67

Table 3.7: Results on Coil-100. Inliers are taken to be images of one, four, or seven randomly chosen categories,
and outliers are randomly chosen from other categories (at most one from each category).

OutRank [164]CoP [165] REAPER [166] OutlierPursuit [167] LRR [168] DPCP [169]
`1 thresh-

olding [50]
R-

graph [138]
GPND

AAE(our)
GPND
(our)

Inliers: one category of images , Outliers: 50%

AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997 0.968 0.9994
F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990 0.979 0.982

Inliers: four category of images , Outliers: 25%

AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996 0.945 0.983
F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970 0.960 0.970

Inliers: seven category of images , Outliers: 15%

AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996 0.919 0.973
F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955 0.941 0.959

Table 3.8: Results on Fashion-MNIST [157]. Inliers are taken to be images of one category, and outliers are
randomly chosen from other categories.

% of outliers 10 20 30 40 50

GPND AAE

F1 0.968 0.945 0.917 0.891 0.864

AUC 0.928 0.932 0.933 0.933 0.933

GPND

F1 0.971 0.948 0.926 0.903 0.877
AUC 0.930 0.930 0.930 0.930 0.930

cussed below. Results are averages from 5-fold cross-validation. Each fold takes 20% of

each class. Because the count of samples per category is very small, we use 80% of each

class for training, and 20% for testing. We find the optimal threshold γ on the training set.

Results reported in [138] correspond to not splitting data into separate training, validation

and testing sets, because it is not essential, since they leverage a VGG [162] network pre-

trained on ImageNet [163]. We diverge from that protocol and do not reuse inliers and

follow 80%/20% splits for training and testing.

Results on Coil-100 are shown in Table 3.7. We do not outperform R-graph [138],

however as mentioned before, R-graph uses a pretrained VGG network, while we train an

autoencoder from scratch on a very limited number of samples, which is on average only 70

per category.

Fashion-MNIST dataset. We repeat the same experiment with the same protocol that we

68

Table 3.9: Comparison with ODIN [66]. ↑ indicates larger value is better, and ↓ indicates lower value is better.

Outlier dataset FPR(95%TPR)↓ Detection↓ AUROC↑ AUPR in↑ AUPR out↑

CIFAR-10

ODIN-WRN-28-10 / ODIN-Dense-BC / GPND

TinyImageNet (crop) 23.4/4.3/29.1 14.2/4.7/15.7 94.2/99.1/90.1 92.8/99.1/84.1 94.7/99.1/99.5
TinyImageNet (resize) 25.5/7.5/11.8 15.2/6.3/8.3 92.1/98.5/96.5 89.0/98.6/95.0 93.6/98.5/99.8
LSUN (resize) 17.6/3.8/4.9 11.3/4.4/4.9 95.4/99.2/98.7 93.8/99.3/98.4 96.1/99.2/99.7
iSUN 21.3/6.3/11.0 13.2/5.7/7.8 93.7/98.8/96.9 91.2/98.9/96.1 94.9/98.8/99.7
Uniform 0.0/0.0/0.0 2.5/2.5/0.1 100.0/99.9/99.9 100.0/100.0/100.0 100.0/99.9/99.5
Gaussian 0.0/0.0/0.0 2.5/2.5/0.0 100.0/100.0/100.0 100.0/100.0/100.0 100.0/100.0/99.8

CIFAR-
100

TinyImageNet (crop) 43.9/17.3/33.2 24.4/11.2/17.2 90.8/97.1/89.1 91.4/97.4/83.8 90.0/96.8/98.7
TinyImageNet (resize) 55.9/44.3/15.0 30.4/24.6/9.5 84.0/90.7/95.9 82.8/91.4/94.6 84.4/90.1/99.4
LSUN (resize) 56.5/44.0/6.8 30.8/24.5/5.8 86.0/91.5/98.3 86.2/92.4/98.0 84.9/90.6/99.6
iSUN 57.3/49.5/14.3 31.1/27.2/9.3 85.6/90.1/96.2 85.9/91.1/95.6 84.8/88.9/99.3
Uniform 0.1/0.5/0.0 2.5/2.8/0.0 99.1/99.5/100.0 99.4/99.6/100.0 97.5/99.0/99.7
Gaussian 1.0/0.2/0.0 3.0/2.6/0.0 98.5/99.6/100.0 99.1/99.7/100.0 95.9/99.1/100.0

Table 3.10: F1 and AUROC results on MNIST using Protocol 1. Ablation study on MNIST dataset
using Protocol 1 under the following conditions: a) GPND – the proposed approach, uses both parallel
and perpendicular components, b) GPND+J – parallel and perpendicular components, where parallel part
is includes Jacobian computation, c) GPND-parallel – parallel component only, d) GPND-perpendicular –
perpendicular component only.

F1 AUROC
GPND 0.945 0.985

GPND+J 0.954 0.987

GPND-parallel 0.901 0.961

GPND-perpendicular 0.925 0.969

have used for MNIST, but on Fashion-MNIST. Results are provided in Table 3.8.

CIFAR-10 (CIFAR-100) dataset. We follow the protocol described in [66], where for

inliers and outliers are used different datasets. ODIN relies on a pretrained classifier and

thus requires label information provided with the training samples, while our approach

does not use label information. The results are reported in Table 3.9. Despite the fact that

ODIN relies upon powerful classifier networks such as Dense-BC and WRN with more

than 100 layers, the much smaller network of GPND competes well with ODIN. Note that

for CIFAR-100, GPND significantly outperforms both ODIN architectures. We think this

might be due to the fact that ODIN relies on the perturbation of the network classifier output,

which becomes less accurate as the number of classes grows from 10 to 100. On the other

hand, GPND does not use class label information and copes much better with the additional

complexity induced by the increased number of classes.

69

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
False Positive Rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic example

GPND (area = 0.985)
GPND+J (area = 0.987)
GPND-parallel (area = 0.961)
GPND-perpendicular (area = 0.969)

Figure 3.11: ROC curves. Ablation study on MNIST dataset using Protocol 1 under the following conditions:
a) GPND – the proposed approach, uses both parallel and perpendicular components, b) GPND+J – parallel
and perpendicular components, where parallel part is includes Jacobian computation, c) GPND-parallel –
parallel component only, d) GPND-perpendicular – perpendicular component only.

Table 3.11: F1 and AUROC results on MNIST using Protocol 1.. Comparison with baselines.

10% 20% 30% 40% 50%

F1

GPND 0.981 0.970 0.962 0.953 0.945
AE 0.848 0.796 0.795 0.776 0.756
P-VAE 0.976 0.958 0.942 0.924 0.905
P-AAE 0.973 0.955 0.940 0.920 0.902

AUROC

GPND 0.984 0.984 0.984 0.984 0.984
AE 0.934 0.938 0.934 0.929 0.928
P-VAE 0.952 0.957 0.956 0.958 0.959
P-AAE 0.952 0.956 0.953 0.952 0.953

70

In the ablation study we motivate the importance of both, parallel and perpendicular

components of pX(x̄) in (3.5) and also demonstrate the effect of the approximation in 3.31.

To demonstrate the importance of parallel and perpendicular components, we repeat the

experiment with MNIST using Protocol 1 (as in Table 3.2) under the following conditions:

a) GPND is the proposed approach where pX(x̄) is computed as in 3.5 and uses the

approximation 3.31 (jacobian is not computed) and implemented as in 3.33, b) GPND+J is

the proposed approach as in 3.5, but without approximation 3.31, e.i. jacobian is computed,

c) GPND-parallel – parallel component only, drops pW⊥ and assumes pX(x̄) = pW ‖(w̄
‖);

d) GPND-perpendicular – perpendicular component only, drops pW ‖ and assumes pX(x̄) =

pW⊥(w̄⊥). For this ablation study we report F1 and AUROC measures, see Table 3.10

and we show the ROC curves see Figure 3.11. The ablation study demonstrates that both,

parallel and perpendicular components of pX(x̄) in (3.5) significantly contribute to the

overall performance of the proposed approach. The Jacobian component also contributes to

performance improvement, however the computational cost outweight its role thus justifing

the approximation in 3.31.

Next, we compare GPND with some baselines to better appreciate the improvement

provided by the architectural choices, see Table 3.11.

The baselines are: i) vanilla AE with thresholding of the reconstruction error and same

pipeline (AE); ii) proposed approach where the AAE is replaced by a VAE (P-VAE); iii)

proposed approach where the AAE is without the additional adversarial component induced

by the discriminator applied to the decoded image (P-AAE).

Additional implementation details include the choice of hyperparameters. For MNIST

and COIL-100 the latent space size was chosen to maximize F1 on the validation set. It is

32, and we varied it from 16 to 64 without significant performance change. For CIFAR-10

and CIFAR-100, the latent space size was set to 64. We use the Adam optimizer with betas

equal to β1 = 0 and β2 = 0.99, learning rate of 0.002, and learning rate equalization [170].

We use batch size of 32, and train the network for 160 epochs. On MNIST, CIFAR-10 and

71

CIFAR-100 it takes approximately 3 hours to train the network on Titan X GPU. It takes

approximately 10 hours to train on COVID-Net dataset, longer time is due to the larger size

of the images.

3.6 Conclusion

We introduced GPND, an approach and a network architecture for novelty detection that

is based on learning mappings f and g that define the parameterized manifoldM which

captures the underlying structure of the inlier distribution. Unlike prior deep learning based

methods, GPND detects that a given sample is an outlier by evaluating its inlier probability

distribution. We have shown how each architectural and model components are essential to

the novelty detection. In addition, with a relatively simple architecture we have shown how

GPND provides state-of-the-art performance using different measures, different datasets,

and different protocols, demonstrating to compare favorably also with the out-of-distribution

literature.

72

Chapter 4

Deep Supervised Hashing with Spherical

Embedding

4.1 Introduction

Indexing and searching large-scale image databases leverage heavily hashing based approxi-

mate nearest neighbor search technology. The goal of hashing is to map high dimensional

data, such as images, into compact codes in a way that visually, or semantically similar

images are mapped into similar codes, according to the Hamming distance. Given a query

image, hierarchically structured based methods can then be used for the rapid retrieval of

the neighbors within a certain distance from the query [171].

Recent data-dependent methods for hashing images (as opposed to data-independent

methods [172]) leverage deep neural networks due to their ability to integrate the image

feature representation learning with the objective of the hashing task [173, 89, 88, 94, 100],

leading to a superior efficiency and compactness of the codes. However, so far the focus of

these approaches has been on designing architectures only with the similarity preserving

goal of mapping similar images to similar codes. On the other hand, hashing methods based

on hand-crafted image features [174], have improved performance also by requiring codes

73

to have certain properties, for example, to be balanced, uncorrelated, or to be obtained with

a small quantization error [73, 175, 176, 74, 177, 82, 178].

Balanced codes are such that bits partition data in equal portions [73, 175]. It is a

desirable property because it increases the variance of bits since they approach 50% chance

of being one or zero. Also code bits that are uncorrelated, or even better independent,

increase their information content. In addition, learning hash functions generally require

solving intractable optimization problems that are made tractable with the continuous

relaxation of the codomain of the function. This means that quantization is required to

discretize the continuous embedding into codes, and controlling the quantization error has

been shown to improve performance [74].

In this work, we propose a deep supervised hashing approach that goes beyond similarity

preserving, and that aims at learning hashing functions that map onto codes with good

quality, by encouraging them to be balanced, and to maximize the mean average precision.

We do so by advocating the use of a different continuous relaxation strategy that has several

advantages, incto overcome the challenge of maintaining the learning problem well-posed,

without the addition of costly priors that typically encourage a binary output, and that have

led deep hashing approaches to focus, so far, only on similarity preserving codes. This

approach allows learning a hashing function composed of a spherical embedding followed

by an optimal quantization. Specifically, the embedding is based on a convolutional neural

network, learned with a triplet loss framework [179], that has the advantage of being more

general, because it allows the use of different triplet losses, and it allows introducing a

new triplet spring loss that aims at learning balanced codes. Moreover, the loss framework

is rotation invariant in the embedded space, which allows optimizing the quantization for

a rotation that provides the highest mean average precision. We call the resulting model

Spherical Deep Supervised Hashing (SDSH), and provides state-of-the-art performance on

standard benchmarks, including a significantly greater performance at more compact code

dimensions.

74

query

positive

negative

Spherical embedding Rotation optimization

Image feature learning

Shared
weights

Shared
weights

Figure 4.1: Overview. Overview of the approach, highlighting the stages of the hash embedding learning, and
the optimal quantization.

4.2 Problem Overview

Given a training set of N images I = {I1, · · · , IN}, with labels Y = {y1, · · · , yN}, we are

interested in learning a hash function h that maps an image I onto a compact binary code

b = h(I) ∈ {+1,−1}B of length B. The typical approach based on deep learning assumes

that given three images Ii, Ij , Ik, with labels yi, yj , yk, such that yi = yj , and yi 6= yk, then

the hash function should be such that the corresponding binary codes bi and bj should

be close, while bi and bk should be far away in the Hamming space. If dH(·, ·) indicates

the Hamming distance, this means that dH(bi,bj) should be as small as possible, while

dH(bi,bk) should be as large as possible.

In addition to that, ideally, we would want to encourage hash codes to be maximally

informative, where bits are independent and balanced, and to ultimately maximize the mean

average precision (mAP). These aspects have been of secondary importance thus far, because

deep learning approaches have to use binarizing priors to regularize loss functions that are

already computationally intensive to optimize.

We overcome the major hurdle of the binarizing prior by advocating the use of a

different relaxation method, which does not require additional priors, and learns a spherical

embedding. This modeling choice has ripple effects. Besides simplifying the learning

by eliminating the binarizing prior, it enables a unified formulation of a class of triplet

losses [179] that are rotation invariant, and it allows to introduce one, which we name

75

3 2 1 0 1 2 3
(a)

3 2 1 0 1 2 3
(b)

Figure 4.2: Embedding distribution. Bimodal dis-
tribution of the hash embedding components (a) early
on during training, and (b) at advanced training stage,
when modes are separated.

(a) (b)

Figure 4.3: Quantization. (a) Distribution of hash
embeddings on the unit circle for two classes. The
sign quantization assigns different hash codes to sam-
ples in the same class. (b) Rotated distribution of
hash embeddings. The sign quantization assigns
same hash codes to samples in the same class, thus
increasing the mAP.

spring loss, that encourages balanced hash codes. In addition, the rotation invariance allows

us to look for a rotation of the embedding hypersphere that leads to its optimal quantization

for producing hash codes that directly maximize the retrieval mAP. This two-stage approach

is depicted in Figure 4.1.

4.3 Hash Function Learning

The desired hash function should ensure that the code bi of image Ii would be closer to all

other codes bj of Ij because yi = yj , than it would be to any code bk of Ik since yi 6= yk.

Therefore, if T = {(i, j, k)|yi = yj 6= yk} is the set of the allowed triplet labels, then we

certainly desire this condition to be verified

dH(bi,bj) < dH(bi,bk) ∀(i, j, k) ∈ T . (4.1)

A loss function that aims at achieving condition (4.1) could simply be written as

L(h) =
∑

(i,j,k)∈T

`(dH(bi,bj)− dH(bi,bk)) (4.2)

where `(·) : R→ [0,+∞) is the cost for a triplet that does not satisfy (4.1). Equation (4.2)

is a more general version of the well known triplet loss [179].

76

As pointed out in [94], it is easy to realize that

dH(bi,bj)− dH(bi,bk) =
1

2
b>i bk −

1

2
b>i bj . (4.3)

In particular, the Hamming space where codes are defined, and through which depends

the estimation of the hash function h, makes the optimization of (4.2) intractable [93].

Therefore, the typical approach is to relax the domain of b from the Hamming space to

the continuous space RB [93, 94]. However, this method has severe drawbacks. The first

and most important one is that optimizing (4.2) becomes an ill-posed problem, with trivial

solutions corresponding to pulling infinitely apart relaxed codes with label mismatch. This

forces the introduction of a regularizing prior to the loss, which typically is designed to

encourage the relaxed code b̃ to be also “as binary as possible”, or in other words, to stay

close to one of the vertices of the Hamming space.

Computationally, adding a prior is a major setback because it increases the number of

hyperparameters at best, with all the consequences. In addition, if we look at the distribution

of the values of the components of b̃, we have observed experimentally that as the two main

modes around +1 and −1 become separated, the corresponding hash codes, obtained simply

by taking b = sgn(b̃), stop changing during the training procedure. See Figure 4.2. This

“locking” behavior might prevent from learning a hash function that could potentially be

more efficient if it still had room to adjust the outputs. Finally, we note that (4.3) does not

hold in the relaxed space, meaning that

∥∥∥∥∥ b̃i − b̃j
2

∥∥∥∥∥
2

−

∥∥∥∥∥ b̃i − b̃k
2

∥∥∥∥∥
2

6= 1

2
b̃>i b̃k −

1

2
b̃>i b̃j . (4.4)

even though there are approaches that rely on the left-hand-side of (4.4) being approximately

equal to the right-hand-side [94].

The following section addresses the drawbacks outlined above by advocating the use of

a different relaxation for hash function learning.

77

4.4 Spherical Embedding

The hash function learning problem can be summarized as learning a function h̃ such that

h(I) = sgn[h̃(I)], where h̃ optimizes a relaxed version of (4.2). Differently from previous

hashing work, we propose to use a relaxation where h̃ is a spherical embedding, meaning

that we constrain the output s = h̃(I) to be defined on the (B − 1)-dimensional unit

sphere. This means that, using the previous notation, s .
= b̃/‖b̃‖, and the meaning of

Equations (4.1), (4.2), and (4.3) remain valid by simply substituting b with s, and dH(bi,bj)

with ‖(si − sj)/2‖2. Therefore, we advocate the end-to-end learning of a function h̃, given

by minimizing the loss

L(h̃) =
∑

(i,j,k)∈T

`(s>i sk − s>i sj) . (4.5)

This approach, also used in [179] to regularize the spreading of the embedding, is

leveraged here to address the limitations of the continuous relaxation described in Section 4.3.

Indeed, a spherical embedding makes the optimization of the relaxed version of (4.2) (which

is (4.5)) a well-posed problem, and this was the main reason why previous works required

a regularizing prior. In addition, previous priors encouraged the embedding space to be

“as binary as possible” by moving b̃ closer to a vertex of the Hamming cube, without

direct evidence that this was producing better hash codes. On the other hand, we observed

this practice to encourage a “locking” behavior, wich we do not have with the spherical

embedding because there are no forces pushing towards the Hamming cube, and s is free

to move on the unit sphere. Moreover, if h̃ is an optimal spherical embedding, so is Rh̃,

where R is a rotation matrix, since it still minimizes (4.5). Therefore, since (4.5) is rotation

invariant, h̃ is found modulo a rotation, which can be estimated at a later stage to optimize

other hash code properties (Section 4.5).

In Section 4.6 we design different triplet loss functions `(·), leading to different spherical

embeddings. In practice, the spherical embedding comprises a convolutional neural network

with a number of layers aiming at learning visual features from images, followed by fully

78

connected layers with an output dimension equal to the number of bits B of the hash code.

We adopt the VGG-F architecture [180], and replace the last fully connected layer, but other

architectures can also be used [84, 181].

4.5 Quantization

Given an image I , its hash code is computed with a sign quantization as b = sgn(h̃(I)).

Since h̃ minimizes (4.5), we observed that also a rotated version Rh̃ does, so it is important

to analyze the difference between the two solutions. Figure 4.3(a) shows a case where the

spherical embeddings of two classes along the unit circle are such that the sign quantization

assigns different hash codes to samples of the same class. Therefore, a rotation R could

be applied to the embeddings as in Figure 4.3(b), where the sign quantization would now

produce the expected results.

We propose to use the extra degrees of freedom due to the rotation invariance of (4.5) for

learning a rotation matrix R that finds the quantization that produces the best hash function.

We do so by estimating the rotation R that maximizes the mean average precision (mAP),

which is the metric that we value the most for retrieval

R̂ = arg max
R

mAP(R) . (4.6)

Since mAP(·) is not a smooth function, and has zero gradient almost everywhere, (4.6) is

not easy to optimize, even with derivative-free methods. On the other hand, we found that

a standard random search optimization with a linear annealing schedule allows to achieve

good results quickly. At the i-th iteration we apply a random perturbation Q(i) to the current

rotation matrixR(i) to obtain the updateR(i+1) = Q(i)R(i), which we retain if it improves the

mAP. Since the perturbation should be random, uniform, and with a controllable magnitude,

we generate it by setting Q(i) = P (i)E(θ)P (i)>, where P (i) is a random unitary matrix,

generated with a simplified approach based on the SV D decomposition of a matrix with

79

normally sampled elements [182, 183]. E(θ) instead represents a rotation by θ on the plane

identified by the first two basis vectors. The angle θ defines the perturbation magnitude

and varies linearly with the iteration number, starting with θ0 = 1.0 down to 0 when the

maximum number of iterations is reached, which was 800 in our experiments. Algorithm 2

summarizes the steps. We compute the mAP with a C++ implementation, where we take

1000 samples from the training set as queries and 16000 samples as database, or a smaller

number if the training set is smaller. With a PC workstation with CPU Core i7 5820K

3.30GHz the running time for one iteration update is around 0.4s, keeping the time for the

random search optimization very small, if compared with the time for training the deep

network of the spherical embedding.

We now note that if R is an optimal solution, by swapping two columns of R we obtain

a new solution, corresponding to swapping two bits in all hash codes. Since there are B!

of these kind of changes, it means that the order of growth of the solution space is O(B!).

Therefore, as B increases, estimating R according to (4.6) becomes less important because

the likelihood that a random R is not far from an optimal solution has increased accordingly.

The experimental section supports this observation.

4.6 Triplet Spherical Loss

In this section we give three examples of rotation invariant triplet loss ` that can be used

in (4.5), namely the margin loss, the label likelihood loss, and the new spring loss. To

shorten the notation, we define the quantity di,j,k
.
= s>i sk − s>i sj .

4.6.1 Margin Loss

The first loss that we consider is well known, and stems from requiring condition (4.1) to be

verified with a certain margin α, in combination with using the standard hinge loss. This

80

2

d

Figure 4.4: Spring loss. Unit sphere where two points with different class labels are pulled apart by an elastic
force proportional to the displacement 2− d, while constrained to remain on the sphere.

translates into the following margin loss

`(di,j,k) = max{0, di,j,k + α} . (4.7)

4.6.2 Label Likelihood Loss

The second loss has been originally proposed in [94], where it was used with the Hamming

space relaxed into the continuous space RB for learning a hashing function. Here we extend

it for learning a spherical embedding. The loss is derived from a probabilistic formulation

of the likelihood of the triplet labels T , where triplets that verify condition (4.1) by bigger

margins have a bigger likelihood, and where the margin parameter α can affect the speed of

the training process. This label likelihood loss, adapted to our framework becomes

`(di,j,k) = di,j,k + α + log(1 + e−di,j,k−α) . (4.8)

4.6.3 Spring Loss

While both the margin loss and the label likelihood loss produce remarkable results, none

of them make explicit efforts towards clustering samples in the spherical embedding space,

according to their classes, and in a way that classes cover the sphere in a spatially uniform

manner. This last property is very important because if we assume an equal number of

81

samples per class, for each bit b, balanced codes satisfy the property

N∑
i=1

hb(Ii) = 0, b = 1, · · · , B . (4.9)

Therefore, we note that condition (4.9) is satisfied whenever the spherical embedding

distributes the classes uniformly on the unit sphere, thus producing balanced codes, where

code bits have higher variance and are more informative. This has motivated the design of

the loss that we introduce.

Algorithm 2 Random search for the optimal rotation R.
Result: Returns the optimal matrix R according to a random search
1: R(0) = I . Initialize rotation matrix with identity matrix
2: i = 0
3: while i < number of iterations do
4: θ(i) ← f(i); . f(i) is a linear annealing schedule to update the rotation magnitude
5: . θ(i) is the magnitude of perturbational rotation for iteration i
6: E(i) ← E(θ(i)); . E(θ(i)) Returns rotation around some fixed axis, with magnitude θ(i)

7: P (i) ← random unitary matrix
8: Q(i) ← P (i)E(i)P (i)> . Q(i) is a random perturbational rotation matrix with magnitude θ(i)

9: R′ ← Q(i)R(i) . Update rotation matrix R with perturbation
10: if mAP(R′) >mAP(R(i)) then . If updated version of R is better, then keep it
11: R(i+1) ← R′

12: else
13: R(i+1) ← R(i)

14: end if
15: i← i+ 1
16: end while
17: return Ri

Let us consider two points si and sk on the (B − 1)-dimensional sphere of unit radius,

and let us assume that a spring is connecting them. The Euclidean distance d = ‖si− sk‖
.
=√

di,k, between the points varies in the range [0, 2]. At distance 2, we consider the spring

unstretched, while at distance d < 2, the spring will have accumulated an elastic potential

energy proportional to (2 − d)2. See Figure 4.4. This suggests that we could train the

hash embedding by minimizing (4.5), with `(di,k) = (2−
√
di,k)

2, where we would limit

the summation to the pairs (i, k) ∈ Q = {(i, j)|yi 6= yj}. In this way, the training would

aim at minimizing the total elastic potential energy of the system of springs. The effect

is that samples from different classes would be mapped on the sphere, but as far apart as

82

Figure 4.5: Regular polyhedrons. Three left-most images: Three unit spheres with 5× n points at minimum
elastic potential, where n is the number of classes. From left to right n is equal to 4, 12, 24. The 5 points per
class coincide with the class centroid at equilibrium. Right-most image: For n = 12, the points at minimum
margin loss do not reach a uniform distribution on the sphere.

possible. We note that minimizing this loss is equivalent to solving a first order linear

approximation to the Thomson’s Problem [184], which concerns the determination of the

minimum electrostatic potential energy configuration of N electrons, constrained to the

surface of a unit sphere. The solution has been rigorously identified in only a handful

of cases, which mostly correspond to spatial configurations forming regular polyhedrons,

which we have observed also in our simulations using the spring loss described before, as it

can be seen in Figure 4.5. If we were to perform a Voronoi tessellation on the sphere based

on the class centroids, we clearly would obtain a pretty uniform partition of the sphere,

which is our main goal. For comparison, the right-most image in Figure 4.5 is obtained with

the margin loss, which stops pulling apart query and negative samples once they are more

far apart than the margin. This leads to a less uniform distribution of the classes.

We have experimented with the loss described above and indeed, it provides fairly good

results. However, we argue that it can be improved because it does not explicitly pull closer

samples that belong to the same class, besides pulling apart samples with different labels.

We address that issue with the triplet spring loss, which we define as follows

`(di,j,k) = (2−
√

2− di,j,k)2 . (4.10)

Note that di,j,k varies in the range [−2, 2], thus the square root varies in the range [0, 2], and

the loss varies in the range [0, 4]. The loss is minimized when di,j,k approaches −2. Since

83

di,j,k is proportional to ‖si − sj‖2 − ‖si − sk‖2, convergence is approached by maximally

pulling closer si and sj , while maximally pushing apart si and sk. Note that, differently than

before, now even when si and sk have reached a distance of 2, the loss still works to pull si

and sj closer.

4.7 Experiments

We tested our approach on the most relevant datasets for deep hashing applications, namely

CIFAR-10 [156], NUS_WIDE [185], and we also tested on MNIST [124] to compare with

some older methods. For each experimental setting, we report the average mAP score over

5 runs for comparison against the previous works for hashes of size as low as 4 and up to 48

bits.

4.7.1 Experimental setup

Similar to other deep hashing methods we use raw image pixels as input. Following [94,

186, 93], for the spherical embedding we adopt VGG-F [187] pre-trained on ImageNet. We

replace the last layer with our own, initialized with normal distribution. The output layer

doesn’t have activation function and the number of outputs matches the needed number

of bits - B. The input layer of VGG-F is 224x224, so we crop and resize images of the

NUS_WIDE dataset and upsample images of the CIFAR-10 dataset to match the input size.

CIFAR-10: CIFAR-10 [156] is a publicly available dataset of small images of size

32x32 which have each been labeled to one of ten classes. Each class is represented by

6,000 images for a total of 60,000 available samples. In terms of evaluation in the CIFAR

domain, two images are counted as relevant to each other if their labels match. In order for

our experiments to be comparable to as many works as possible, including [94] and [100],

we use two different experimental settings, which are labeled “Full” and “Reduced”.

“Full” setting: For this setting, 1,000 images are first selected randomly from each class

84

of the dataset to make up the test images. Which, by extension, results in 10,000 query

images. The remaining 50,000 images are used as the database images and as the images

used in training.

“Reduced” setting: For this setting, 100 images are selected randomly from each class

for use as 1,000 total test images. From the remaining 59,000 samples we randomly sample

500 images per category to form the reduced training set with only 5,000 images. The

database is composed of all 59,000 samples which were not selected for testing.

The mAP for CIFAR-10, full and reduced setting, is computed based on all samples

from the database set. We have used for training purposes a system with only one NVIDIA

Titan X GPU, in this configuration training takes about four hours for the Cifar Full setting.

NUS_WIDE: NUS_WIDE [185] is another publicly available dataset, but unlike CIFAR-

10 each sample image is multi-labeled from a set of 81 possible labels across all 269,643.

This is reduced slightly, as [94] and [100] have also done in their experiments, by first

removing every image which does not have any of the 21 most common labels associated

with it. This is done as many of the less common labels have very few samples associated

with them, but prepared in this way each of the 21 labels are represented by at least 5,000

samples. In terms of evaluation in the NUS_WIDE domain two images are counted as

relevant to each other if any of their labels match. Note, that despite the usage of samples

associated with the 21 most frequent labels, all 81 labels are used for determining similarity

between samples. To compare with previous work we use three different settings, labeled

“Full”, “Reduced A”, and “Reduced B”.

“Full” setting: For this setting, 100 samples from each of the 21 most frequent labels

are reserved for the test set. And the remaining images are used both as the database and as

the training set. The mAP is computed based on the top 50000 returned neighbors.

“Reduced A” setting: For this setting, the 2100 test samples are selected as in the Full

setting. From the remaining samples, 500 were sampled from the 21 most frequent labels to

compose the training set. The remaining were used for the database. The mAP is computed

85

Table 4.1: Mean Average Precision (MAP) Results for Different Number of Bits of CIFAR-10: In the case of
DTSH and DVSQ we have filled some additional results which were not presented by the original papers by
using the authors’ respective released source code to replicate their experiments such that we may compare
with them across more hash sizes.

CIFAR-10 Full setting: Number of Bits CIFAR-10 Reduced setting: Number of Bits
Method 4 8 12 16 24 32 48 4 8 12 16 24 32 48
DQN[96] - - - - - - - - - 0.554 - 0.558 0.564 0.580
DSH[91] - - 0.616 - 0.651 0.661 0.676 - - - - - - -
DPSH[93] - - 0.763 - 0.781 0.795 0.807 - - 0.763 - 0.727 0.744 0.757
DMDH [95] - - - - - - - - - - 0.704 - 0.719 0.732
DTSH[94] - 0.814 0.859 0.915 0.923 0.925 0.926 - 0.641 0.710 0.723 0.750 0.765 0.774
DVSQ[100] - 0.839 - 0.839 0.843 0.840 0.842 - 0.715 - 0.727 0.730 0.733 0.764
BL[188] 0.870 -
SDSH-ML - 0.839 0.882 0.886 0.939 0.880 0.878 - 0.657 0.712 0.756 0.747 0.765 0.764
SDSH-LL 0.481 0.763 0.854 0.942 0.945 0.944 0.947 0.407 0.673 0.757 0.782 0.799 0.815 0.822
SDSH-S 0.755 0.911 0.939 0.938 0.939 0.939 0.934 0.569 0.697 0.723 0.783 0.801 0.810 0.813

based on top 5000 returned neighbors.

“Reduced B” setting: For this setting, the training set was chosen by sampling the

available images uniformly 5,000 times. From the remaining samples the training set was

uniformly sampled 10,000 times. All of the remaining samples from these two operations

were used as the database. The mAP is computed based on top 5000 returned neighbors.

4.7.2 Results

Our method is abbreviated as SDSH, and the combination with the margin loss, label likeli-

hood loss, and spring loss are indicated as SDSH-ML, SDSH-LL, and SDSH-S respectively.

All reported results are from our publicly available implementation1. The average mAP

scores for all methods on CIFAR-10 are listed in Table 4.1, which includes also the baseline

(BL) classification accuracy. As pointed out in [188], the BL value can be interpreted as

mAP attainable by a supervised system retrieving samples, one class at a time, with classes

ranked according to the class probability of the query. Therefore, a retrieval approach should

surpass the BL threshold to be effective. Table 4.1 shows that the proposed SDSH-S is

above BL starting from 8-bits, and it always outperforms the state-of-the-art methods. In full

setting and B = 8, and 12, SDSH-S shows large improvements, and outperforms DVSQ by

7.2% and 5.7%. SDSH-LL performs slightly better than SDSH-S for B > 12, but has worse
1https://github.com/wvuvl/SDSH

86

https://github.com/wvuvl/SDSH

Table 4.2: Mean Average Precision (MAP) Results for Different Number of Bits on NUS_WIDE

(a) Reduced A settings

Number of Bits
Method 8 12 16 24 32 48
DTSH[94] - 0.773 - 0.808 0.812 0.824
SDSH-ML 0.758 0.770 0.784 0.798 0.802 0.810
SDSH-LL 0.751 0.780 0.792 0.805 0.810 0.817
SDSH-S 0.774 0.789 0.796 0.807 0.812 0.820

(b) Full settings

Number of Bits
Method 16 24 32 48
DTSH[94] 0.756 0.776 0.785 0.799
DPSH[93] 0.715 0.722 0.736 0.741
SDSH-ML 0.794 0.800 0.797 0.805
SDSH-LL 0.452 0.808 0.810 0.812
SDSH-S 0.812 0.817 0.821 0.821

(c) Reduced B settings

Number of Bits
Method 8 16 24 32
DVSQ[100] 0.780 0.790 0.792 0.797
DMDH [95] - 0.751 - 0.781
SDSH-ML 0.739 0.771 0.785 0.791
SDSH-LL 0.750 0.771 0.782 0.789
SDSH-S 0.755 0.783 0.786 0.790

Table 4.3: Mean Average Precision (MAP) Results for Different Number of Bits of MNIST

Number of Bits
Method 16 24 32 48
CNNH[88] 0.957 0.963 0.956 0.960
CNNH+[88] 0.969 0.975 0.971 0.975
DSCH[189] 0.965 0.966 0.972 0.975
DRSCH[189] 0.969 0.974 0.979 0.979
SDSH-ML 0.993 0.995 0.994 0.995
SDSH-LL 0.994 0.994 0.995 0.996
SDSH-S 0.994 0.995 0.995 0.995

performance for lower number of bits. For reduced setting, SDSH-S and SDSH-LL perform

about the same, and always outperforms the state-of-the-art methods with an exception for

the 8-bit case. Figure 4.6 presents the data of Table 4.1 in the form of plots.

Figure 4.7 shows the comparison of the precision-recall curves of SDSH-S with those

produced by two state-of-the-art approaches, namely DTSH [94] and DVSQ [100], high-

lighting the promising performance of the proposed approach.

Tables 4.2b, 4.2a, and 4.2c show average mAP scores on NUS_WIDE for Full, Reduced

A, and Reduced B settings respectively. Unfortunately, the protocol of this experiment

does not allow to compare against the BL value. Although [188] describes two additional

87

8 12 16 24 32 48
Number of Bits

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

m
AP

CIFAR-10 Full

DPSH
DTSH
DVSQ
SDSH-ML
SDSH-LL
SDSH-S

8 12 16 24 32 48
Number of Bits

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

m
AP

CIFAR-10 Reduced

DTSH
DVSQ
SDSH-ML
SDSH-LL
SDSH-S

16 24 32 48
Number of Bits

0.60

0.65

0.70

0.75

0.80

0.85

m
AP

NUS-WIDE Full

DPSH
DTSH
SDSH-ML
SDSH-LL
SDSH-S

8 12 16 24 32 48
Number of Bits

0.74

0.76

0.78

0.80

0.82

0.84

m
AP

NUS-WIDE Reduced A

DTSH
SDSH-ML
SDSH-LL
SDSH-S

8 16 24 32
Number of Bits

0.70

0.72

0.74

0.76

0.78

0.80

m
AP

NUS-WIDE Reduced B

DVSQ
SDSH-ML
SDSH-LL
SDSH-S

Figure 4.6: Average mAP scores. Comparison of mAP values w.r.t. bit number for our method (SDSH-ML,
SDSH-LL, SDSH-S) with DPSH [93], DTSH[94] and DVSQ[100].

protocols, since they are suitable for tasks other than supervised hashing, for comparison with

the state-of-the-art, here we follow protocols that have been in use by the widest majority

of the literature. In particular, SDSH-S, SDSH-LL, and SDSH-ML always outperform the

state-of-the-art methods on Full setting except for SDSH-LL at 8-bit case, where it converged

poorly. On full setting, SDSH-S outperforms other type of losses for all bit numbers. On

Reduced A setting, SDSH-S outperforms the state-of-the-art methods for B < 24 and for

higher B it stays about the same as DTSH and slightly below for B = 48. On Reduced

B setting our method is outperformed by DVSQ. It is important to note that NUS_WIDE

has 81 labels but only 500 samples from the 21 most frequent labels are used for training.

88

Therefore, even though the training set for NUS-WIDE’s reduced setting is still about twice

as large as the training set for CIFAR-10’s reduced setting, the ratio of samples per label

for CIFAR is 500, while the ratio for this NUS_WIDE setting is on average 129.6 per label.

Therefore, for NUS_WIDE reduced setting, the network is more prone to overfitting. As for

CIFAR-10, the bottom row of Figure 4.6 presents the data of Tables 4.2b, 4.2a, and 4.2c in

the form of plots.

In Table 4.3 we show a comparison between CNNH, CNNH+ [88], and DSCH, DRSCH [189]

on the MNIST [124] dataset, noticing that all the three losses provide a performance increase.

4.7.3 Ablation Study

The proposed approach requires two steps for learning a hash function. The first step

learns a spherical embedding that identifies an equivalence class of solutions because of

the rotation invariance of the loss, and then a rotation needs to be identified to pick a

representative of the equivalence class. Here we analyze what happens if use the identity

as rotation, versus using the proposed method, versus using an off-the-shelve method like

ITQ [74]. The summary of the results is shown in Figure 4.9, where the three approaches

have been applied to SDSH-S, which has been tested on CIFAR-10, and NUS_WIDE. The

first observation is that estimating the optimal rotation becomes more important at lower

number of bits. As we suggested in Section 4.5, when B grows, the solution space grows

significantly, so a random solution is more likely to do well. In addition, we note that ITQ

tends to underperform our approach, and often decreases the performance of the identity

solution. We note that ITQ differs from the proposed approach at least in two important

aspects. First, ITQ is an unsupervised method, whereas our random search leverages the

label information. In addition, ITQ aims at minimizing the quantization error, whereas the

proposed method looks for the best quantization that maximizes the mAP. Finally, Figure 4.8

shows the performance improvement that adds rotation optimisation for different loss types,

highlighting, as expected, that each of them can benefit from that step.

89

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

PR curve. CIFAR-10 reduced, 32b

DTSH
DVSQ
SDSH-S

Figure 4.7: Precision-Recall Curves Compari-
son of P-R curves from our method, DVSQ [100]
and DTSH [94] on CIFAR-10 reduced, top 5000
samples @ 32 bits.

ML 24b LL 24b SL 24b ML 32b LL 32b SL 32b
0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

m
AP

Contribution of quantization step
 combined with different losses

RandomSearch
no optimization

Figure 4.8: Effect of quantization step. Contri-
bution of quantization step for different losses on
NUS-WIDE Full @ 24 bits, 32bits.

4 8 16 24 32 48
Number of Bits

0.70

0.75

0.80

0.85

0.90

0.95

1.00

m
AP

Rotation effect on CIFAR-10 Full

RandomSearch
ITQ
no optimization

4 8 16 24 32 48
Number of Bits

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

m
AP

Rotation effect on CIFAR-10 Reduced

RandomSearch
ITQ
no optimization

16 24 32 48
Number of Bits

0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900

m
AP

Rotation effect on NUS-WIDE Full

RandomSearch
ITQ
no optimization

Figure 4.9: Effect of learning rotation Comparison of mAP values for a range of bit number for three
scenarios: ITQ [74] and random search optimization and no rotation optimization.

4.8 Conclusions

We have introduced SDSH, a novel deep hashing method that moves beyond the sole goal

of similarity preserving, and explicitly learns a hashing function that produces quality

codes. This is achieved by leveraging a different relaxation method that eliminates the need

for regularizing priors, and it enables the design of loss functions for learning balanced

codes, and it allows to optimize the quantized hash function to maximize the mAP. Extensive

experiments on three standard benchmark datasets demonstrated the strength of the approach.

In particular, addressing the issue of quality in deep hashing approaches has revealed to

be valuable, because the performance has increased particularly for more compact codes,

which is very important for building efficient retrieval systems.

90

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation we explored the reasons behind poor generative power of autoencoders

compared to GANs, and designed a novel autoencoder architecture that overcomes these

limitations. We explored application space of the introduced architecture and have shown

that it significantly improves state of the art methods in novelty detection.

We introduced ALAE, a novel autoencoder architecture that is simple, flexible and

general, as we have shown to be effective with two very different backbone generator-

encoder networks. Differently from previous work, it allows learning the probability

distribution of the latent space, when the data distribution is learned in adversarial settings.

Our experiments confirm that this enables learning representations that are likely less

entangled. This allows us to extend StyleGAN to StyleALAE, the first autoencoder capable

of generating and manipulating images in ways not possible with StyleGAN alone, while

maintaining the same level of visual detail.

We introduced GPND, an approach and a network architecture for novelty detection that

is based on learning mappings f and g that define the parameterized manifoldM which

captures the underlying structure of the inlier distribution. Unlike prior deep learning based

91

methods, GPND detects that a given sample is an outlier by evaluating its inlier probability

distribution. We have shown how each architectural and model components are essential to

the novelty detection. In addition, with a relatively simple architecture we have shown how

GPND provides state-of-the-art performance using different measures, different datasets,

and different protocols, demonstrating to also compare favorably with the out-of-distribution

methods.

We have introduced SDSH, a novel deep hashing method that moves beyond the sole

goal of similarity preservation, and explicitly learns a hashing function that produces quality

codes. This is achieved by leveraging a different relaxation method that eliminates the need

for regularizing priors, and it enables the design of loss functions for learning balanced

codes, and it allows to optimize the quantized hash function to maximize the mAP. Extensive

experiments on three standard benchmark datasets demonstrated the strength of the approach.

In particular, addressing the issue of quality in deep hashing approaches has revealed to

be valuable, because the performance has increased particularly for more compact codes,

which is very important for building efficient retrieval systems.

5.2 Future Work

The proposed ALAE architecture introduces a new class of autoencoders that can be

applied to large number of existing deep learning approaches in computer vision. We have

deeply explored novelty detection application and have shown how the new architecture

improves state of the art results. Potential future work would include an investigation of the

application of ALAE to self-representation learning, generalization, similarity retrival and

few-shot learning problems. In order for ALAE work well on human faces it is crucial to

improve identity preservation. But even at current state it opens large amount of opportunities

92

(a) Input, real image (b) Reconstruction, no
optimization

(c) Reconstruction,
with identity preserva-
tion

Figure 5.1: Identity preservation. Comparison of input image 5.1a, reconstruction 5.1b, and optimizaed
reconstruction 5.1c

Figure 5.2: Image restoration.

for image manipulations. Here, we would like to present few attempts on using ALAE for

such tasks.

Identity preservation. We add additional loss that forces the recontruction to maintain

the same identy as the input. It tries to bring the reconstructed face perceptually closer to

the input. We use FaceNet [179] to extract features from input and output. Then by using

gradient decent, we adjust latent vector w to minimize MSE of the embeddings. The result

of such optimization can be seen in Figure 5.1.

Image restoration. Since ALAE learns the manifold of the data, it is possible to take a

corrupted sample and project it onto the manifold. ALAE can improve image restoration,

superresolution, inpainting techniques. See Figure 5.2

Image manipulations. ALAE provides large space for image manipulations. Figure 5.3

demonstrates examples where two images were blended together in feature space.

Image translation. Using recent advances in data augmentation for training GANs [190],

93

Figure 5.3: Feature space manipulations This figure shows concatenation of two images in feature space.

Figure 5.4: Image to image translation.

94

it became possible to fine-tune pretrained ALAE and other, smaller dataset. Combining

encoder and generator trained on different domains, it is possible to use ALAE for image to

image translation tasks as it is demonstrated in Figure 5.4, where generator was fine-tuned

on a small toon dataset.

95

Bibliography

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing

Systems (NIPS), pages 2672–2680, 2014.

[2] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial

networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June

2019.

[3] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533, 1986.

[4] Dana H Ballard. Modular learning in neural networks. In AAAI, pages 279–284, 1987.

[5] Ju-Seog Jang, Su-Won Jung, Soo-Young Lee, and Sang-Yung Shin. Optical implementation of

the hopfield model for two-dimensional associative memory. Optics Letters, 13(3):248–250,

1988.

[6] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006.

[7] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville.

Adversarially learned inference. In ICLR, 2016.

[8] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-

sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

96

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[10] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. In

arXiv:1511.05644, 2015.

[11] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on

Artificial Intelligence and Statistics, pages 1214–1223, 2018.

[12] D. P. Kingma and W. Welling. Auto-encoding variational bayes. In International Conference

on Learning Representations (ICLR), 2014.

[13] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation andapproximate

inference in deep generative models. In International Conference on Machine Learning

(ICML), 2014.

[14] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-

chner. beta-vae: Learning basic visual concepts with a constrained variational framework. In

ICLR, 2017.

[15] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint

arXiv:1701.00160, 2016.

[16] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a

laplacian pyramid of adversarial networks. In Advances in Neural Information Processing

Systems (NIPS), pages 1486–1494, 2015.

[17] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and

Dimitris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative

adversarial networks. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV), pages 5907–5915, 2017.

[18] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and

Dimitris N Metaxas. Stackgan++: Realistic image synthesis with stacked generative adversar-

97

ial networks. IEEE transactions on pattern analysis and machine intelligence, 41(8):1947–

1962, 2018.

[19] Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic text-to-image synthesis with a

hierarchically-nested adversarial network. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 6199–6208, 2018.

[20] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.

High-resolution image synthesis and semantic manipulation with conditional gans. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages 8798–8807,

2018.

[21] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural

image synthesis. In ICLR, 2019.

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for

improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[23] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training

of generative adversarial networks through regularization. In Advances in Neural Information

Processing Systems, pages 2018–2028, 2017.

[24] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. In arXiv:1701.07875, 2017.

[25] J. Z. Nagarajan, V.and Kolter. Gradient descent GAN optimization is locally stable. In

International Conference on Neural Information Processing Systems (NIPS), pages 5591–

5600, 2017.

[26] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans

do actually converge? arXiv:1801.04406, 2018.

[27] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normaliza-

tion for generative adversarial networks. In arXiv:1802.05957, 2018.

98

[28] Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep

representations. The Journal of Machine Learning Research, 19(1):1947–1980, 2018.

[29] H. Kim and A. Mnih. Disentangling by factorising. In ICML, 2018.

[30] Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of

disentangled representations. In ICLR, 2018.

[31] R. T. Q. Chen, X. Li, R. Grosse, and R. Duvenaud. Isolating sources of disentanglement in

variational autoencoders. In NeurIPS, 2018.

[32] Jakub M Tomczak and Max Welling. VAE with a VampPrior. In AISTATS, 2018.

[33] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels

using a learned similarity metric. In International Conference on Machine Learning (ICML),

pages 1558–1566, 2016.

[34] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. In ICLR, 2016.

[35] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton. Veegan: Reducing mode

collapse in gans using implicit variational learning. In NIPS, 2017.

[36] D. Ulyanov, A. Vedaldi, and V. Lempitsky. It takes (only) two: Adversarial generator-encoder

networks. In AAAI, 2018.

[37] Ari Heljakka, Arno Solin, and Juho Kannala. Pioneer networks: Progressively growing

generative autoencoder. In Asian Conference on Computer Vision (ACCV), pages 22–38.

Springer, 2018.

[38] H. Huang, Z. Li, R. He, Z. Sun, and T. Tan. Introvae: Introspective variational autoencoders

for photographic image synthesis. In NIPS, 2018.

[39] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.

In International Conference on Machine Learning, pages 1747–1756, 2016.

99

[40] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-

volutions. In Advances in Neural Information Processing Systems, pages 10215–10224,

2018.

[41] Arslan Basharat, Alexei Gritai, and Mubarak Shah. Learning object motion patterns for

anomaly detection and improved object detection. In 2008 IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[42] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line unsupervised

outlier detection using finite mixtures with discounting learning algorithms. Data Mining and

Knowledge Discovery, 8(3):275–300, 2004.

[43] JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. Journal of Machine

Learning Research, 13(Sep):2529–2565, 2012.

[44] Eleazar Eskin. Anomaly detection over noisy data using learned probability distributions. In

In Proceedings of the International Conference on Machine Learning. Citeseer, 2000.

[45] Paul Bodesheim, Alexander Freytag, Erik Rodner, Michael Kemmler, and Joachim Denzler.

Kernel null space methods for novelty detection. In Computer Vision and Pattern Recognition

(CVPR), 2013 IEEE Conference on, pages 3374–3381. IEEE, 2013.

[46] Juncheng Liu, Zhouhui Lian, Yi Wang, and Jianguo Xiao. Incremental kernel null space

discriminant analysis for novelty detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 792–800, 2017.

[47] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho,

and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly

detection. In International Conference on Learning Representations, 2018.

[48] Ryota Hinami, Tao Mei, and Shin’ichi Satoh. Joint detection and recounting of abnormal

events by learning deep generic knowledge. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3619–3627, 2017.

100

[49] Yang Cong, Junsong Yuan, and Ji Liu. Sparse reconstruction cost for abnormal event detection.

In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages

3449–3456. IEEE, 2011.

[50] Mahdi Soltanolkotabi, Emmanuel J Candes, et al. A geometric analysis of subspace clustering

with outliers. The Annals of Statistics, 40(4):2195–2238, 2012.

[51] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K Roy-Chowdhury, and Larry S Davis.

Learning temporal regularity in video sequences. In Computer Vision and Pattern Recognition

(CVPR), 2016 IEEE Conference on, pages 733–742. IEEE, 2016.

[52] Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. Learning deep representations

of appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553,

2015.

[53] Huan-gang Wang, Xin Li, and Tao Zhang. Generative adversarial network based novelty detec-

tion usingminimized reconstruction error. Frontiers of Information Technology & Electronic

Engineering, 19(1):116–125, 2018.

[54] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in

neural information processing systems, pages 2672–2680, 2014.

[55] Mahdyar Ravanbakhsh, Moin Nabi, Enver Sangineto, Lucio Marcenaro, Carlo Regazzoni,

and Nicu Sebe. Abnormal event detection in videos using generative adversarial nets. arXiv

preprint arXiv:1708.09644, 2017.

[56] Yan Xia, Xudong Cao, Fang Wen, Gang Hua, and Jian Sun. Learning discriminative re-

constructions for unsupervised outlier removal. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1511–1519, 2015.

[57] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli. Adversari-

ally learned one-class classifier for novelty detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3379–3388, 2018.

101

[58] Ki Hyun Kim, Sangwoo Shim, Yongsub Lim, Jongseob Jeon, Jeongwoo Choi, Byungchan

Kim, and Andre S Yoon. Rapp: Novelty detection with reconstruction along projection

pathway. In International Conference on Learning Representations, 2019.

[59] Seung Yeop Shin and Han-joon Kim. Extended autoencoder for novelty detection with

reconstruction along projection pathway. Applied Sciences, 10(13):4497, 2020.

[60] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural

networks. arXiv preprint arXiv:1601.06759, 2016.

[61] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.

Conditional image generation with pixelcnn decoders. In Advances in Neural Information

Processing Systems, pages 4790–4798, 2016.

[62] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the

pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint

arXiv:1701.05517, 2017.

[63] A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer

vision? In NIPS, pages 5574—-5584, 2017.

[64] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution

examples in neural networks. In ICLR, 2017.

[65] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection

in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[66] Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image

detection in neural networks. In ICLR, 2018.

[67] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via

contrastive learning on distributionally shifted instances. arXiv preprint arXiv:2007.08176,

2020.

102

[68] Xuming Ran, Mingkun Xu, Lingrui Mei, Qi Xu, and Quanying Liu. Detecting out-of-

distribution samples via variational auto-encoder with reliable uncertainty estimation. arXiv

preprint arXiv:2007.08128, 2020.

[69] Ankur Mallick, Chaitanya Dwivedi, Bhavya Kailkhura, Gauri Joshi, and T Yong-Jin Han.

Can your ai differentiate cats from covid-19? sample efficient uncertainty estimation for deep

learning safety. choice, 50:6.

[70] Davide Abati, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Latent space autore-

gression for novelty detection. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 481–490, 2019.

[71] Stanislav Pidhorskyi, Ranya Almohsen, Donald Adjeroh, and Gianfranco Doretto. Gener-

ative probabilistic novelty detection with adversarial autoencoders. In Advances in Neural

Information Processing Systems, pages 6822–6833, 2018.

[72] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning to hash.

IEEE TPAMI, 40(4):769–790, 2018.

[73] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In NIPS, pages 1753–1760,

2009.

[74] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantization:

A procrustean approach to learning binary codes for large-scale image retrieval. IEEE TPAMI,

35(12):2916–2929, 2013.

[75] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In ICML, pages

1–8, 2011.

[76] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image

search. In ICCV, pages 2130–2137. IEEE, 2009.

[77] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive embeddings. In

NIPS, pages 1042–1050, 2009.

103

[78] Kaiming He, Fang Wen, and Jian Sun. K-means hashing: An affinity-preserving quantization

method for learning binary compact codes. In CVPR, pages 2938–2945, 2013.

[79] Kamran Ghasedi Dizaji, Feng Zheng, Najmeh Sadoughi, Yanhua Yang, Cheng Deng, and

Heng Huang. Unsupervised deep generative adversarial hashing network. In CVPR, pages

3664–3673, 2018.

[80] J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon. Spherical hashing: Binary code embedding with

hyperspheres. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(11):2304–

2316, 2015.

[81] Mohammad Norouzi and David M Blei. Minimal loss hashing for compact binary codes. In

ICML, pages 353–360, 2011.

[82] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Supervised hashing

with kernels. In CVPR, pages 2074–2081. IEEE, 2012.

[83] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. Supervised hashing with latent factor

models. In ACM SIGIR, pages 173–182, 2014.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, pages 1097–1105, 2012.

[85] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for object

detection. In NIPS, pages 2553–2561, 2013.

[86] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the

gap to human-level performance in face verification. In CVPR, pages 1701–1708, 2014.

[87] Naiyan Wang and Dit-Yan Yeung. Learning a deep compact image representation for visual

tracking. In NIPS, pages 809–817, 2013.

[88] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Supervised hashing

for image retrieval via image representation learning. In AAAI, volume 1, pages 2156–2162,

2014.

104

[89] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learning and hash

coding with deep neural networks. In CVPR, pages 3270–3278, 2015.

[90] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. Deep hashing network for efficient

similarity retrieval. In AAAI, pages 2415–2421, 2016.

[91] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep supervised hashing for

fast image retrieval. In CVPR, pages 2064–2072, 2016.

[92] Yue Cao, Mingsheng Long, Bin Liu, Jianmin Wang, and MOE KLiss. Deep cauchy hashing

for hamming space retrieval. In CVPR, pages 1229–1237, 2018.

[93] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning based deep supervised

hashing with pairwise labels. arXiv preprint arXiv:1511.03855, 2015.

[94] Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised hashing with triplet labels.

ACCV, 2016.

[95] Zhixiang Chen, Xin Yuan, Jiwen Lu, Qi Tian, and Jie Zhou. Deep hashing via discrepancy

minimization. In CVPR, pages 6838–6847, 2018.

[96] Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and Qingfu Wen. Deep quantization

network for efficient image retrieval. In AAAI, pages 3457–3463, 2016.

[97] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE

TPAMI, 36(4):744–755, 2014.

[98] Ting Zhang, Chao Du, and Jingdong Wang. Composite quantization for approximate nearest

neighbor search. In ICML, number 2, pages 838–846, 2014.

[99] Xiaojuan Wang, Ting Zhang, Guo-Jun Qi, Jinhui Tang, and Jingdong Wang. Supervised

quantization for similarity search. In CVPR, pages 2018–2026, 2016.

[100] Yue Cao, Mingsheng Long, Jianmin Wang, and Shichen Liu. Deep visual-semantic quantiza-

tion for efficient image retrieval. In CVPR, 2017.

105

[101] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent autoen-

coders. In Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), 2020. [to appear].

[102] Stanislav Pidhorskyi, Quinn Jones, Saeid Motiian, Donald Adjeroh, and Gianfranco Doretto.

Deep supervised hashing with spherical embedding. In Asian Conference on Computer Vision,

pages 417–434. Springer, 2018.

[103] Zhong Qiu Lin Linda Wang and Alexander Wong. Covid-net: A tailored deep convolutional

neural network design for detection of covid-19 cases from chest radiography images, 2020.

[104] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in

the wild. In Proceedings of the IEEE International Conference on Computer Vision, pages

3730–3738, 2015.

[105] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. LSUN: construction of a

large-scale image dataset using deep learning with humans in the loop. In arXiv:1506.03365,

2015.

[106] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In International Conference on Neural Information Processing

Systems (NIPS), pages 1097–1105, 2012.

[107] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. ICLR, abs/1409.1556, 2015.

[108] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: towards real-time

object detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems

(NIPS), pages 91–99, 2015.

[109] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

106

[110] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional

block attention module. In The European Conference on Computer Vision (ECCV), September

2018.

[111] M. Mirza and S. Osindero. Conditional generative adversarial nets. In arXiv:1411.1784, 2014.

[112] Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image

Translation Using Cycle-Consistent Adversarial Networks. IEEE International Conference on

Computer Vision (ICCV), 2017-Octob:2242–2251, 2017.

[113] Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. The gan

landscape: Losses, architectures, regularization, and normalization. In arXiv:1807.04720,

2018.

[114] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are

gans created equal? a large-scale study. In Advances in neural information processing systems

(NeurIPS), pages 700–709, 2018.

[115] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance

normalization. In Proceedings of the IEEE International Conference on Computer Vision,

pages 1501–1510, 2017.

[116] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-

to-image translation. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 172–189, 2018.

[117] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence and

Statistics, pages 315–323, 2011.

[118] Harris Drucker and Yann Le Cun. Improving generalization performance using double

backpropagation. IEEE Transactions on Neural Networks, 3(6):991–997, 1992.

107

[119] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and

interpretability of deep neural networks by regularizing their input gradients. In Thirty-second

AAAI Conference on Artificial Intelligence, 2018.

[120] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[121] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1026–1034, 2015.

[122] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

pytorch. In NIPS-W, 2017.

[123] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of

Machine Learning Research, 9(Nov):2579–2605, 2008.

[124] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[125] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv

preprint arXiv:1605.09782, 2016.

[126] Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural Compu-

tation, 4(6):863–879, 1992.

[127] Karl Ridgeway. A survey of inductive biases for factorial representation-learning. arXiv

preprint arXiv:1612.05299, 2016.

[128] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.

Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances

in Neural Information Processing Systems, pages 6626–6637, 2017.

108

[129] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the

wild. In Proceedings of International Conference on Computer Vision (ICCV), December

2015.

[130] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao.

Lsun: Construction of a large-scale image dataset using deep learning with humans in the

loop. arXiv preprint arXiv:1506.03365, 2015.

[131] Ari Heljakka, Arno Solin, and Juho Kannala. Pioneer networks: Progressively growing

generative autoencoder. In Asian Conference on Computer Vision, pages 22–38. Springer,

2018.

[132] Ari Heljakka, Arno Solin, and Juho Kannala. Towards photographic image manipulation with

balanced growing of generative autoencoders. arXiv preprint arXiv:1904.06145, 2019.

[133] Z. Ge, Z. Song, and F. Gao. Review of recent research on data-based process monitoring. Ind.

Eng. Chem. Res., 52(10):3543–3562, 2013.

[134] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and

Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide

marker discovery. In Marc Niethammer, Martin Styner, Stephen Aylward, Hongtu Zhu,

Ipek Oguz, Pew-Thian Yap, and Dinggang Shen, editors, Information Processing in Medical

Imaging, pages 146–157, Cham, 2017.

[135] Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex Zhavoronkov.

drugan: An advanced generative adversarial autoencoder model for de novo generation

of new molecules with desired molecular properties in silico. Molecular Pharmaceutics,

14(9):3098–3104, 2017. PMID: 28703000.

[136] W. Li, V. Mahadevan, and N. Vasconcelos. Anomaly detection and localization in crowded

scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1):18–32, 2014.

[137] M. Sabokrou, M. Fayyaz, M. Fathy, and R. Klette. Deep-cascade: Cascading 3d deep neural

109

networks for fast anomaly detection and localization in crowded scenes. IEEE Transactions

on Image Processing, 26(4):1992–2004, 2017.

[138] Chong You, Daniel P Robinson, and René Vidal. Provable self-representation based outlier

detection in a union of subspaces. arXiv preprint arXiv:1704.03925, 2017.

[139] Marco A.F. Pimentel, David A. Clifton, Lei Clifton, and Lionel Tarassenko. A review of

novelty detection. Signal Processing, 99:215 – 249, 2014.

[140] Shehroz S. Khan and Michael G. Madden. One-class classification: taxonomy of study and

review of techniques. The Knowledge Engineering Review, 29(3):345–374, 2014.

[141] M Sabokrou, M Fathy, and M Hoseini. Video anomaly detection and localisation based on

the sparsity and reconstruction error of auto-encoder. Electronics Letters, 52(13):1122–1124,

2016.

[142] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.

Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[143] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,

1998.

[144] Nathalie Japkowicz, Catherine Myers, Mark Gluck, et al. A novelty detection approach to

classification. In IJCAI, volume 1, pages 518–523, 1995.

[145] Larry Manevitz and Malik Yousef. One-class document classification via neural networks.

Neurocomputing, 70(7-9):1466–1481, 2007.

[146] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear

dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine

Learning for Sensory Data Analysis, page 4. ACM, 2014.

[147] Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and singular

value decomposition. Biological cybernetics, 59(4-5):291–294, 1988.

110

[148] Alireza Makhzani and Brendan J Frey. Pixelgan autoencoders. In Advances in Neural

Information Processing Systems, pages 1972–1982, 2017.

[149] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Au-

toencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300,

2015.

[150] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Mar-

tin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint

arXiv:1606.00704, 2016.

[151] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton.

Veegan: Reducing mode collapse in gans using implicit variational learning. In Advances in

Neural Information Processing Systems, pages 3308–3318, 2017.

[152] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. It takes (only) two: Adversarial

generator-encoder networks. arXiv preprint arXiv:1704.02304, 2017.

[153] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative

adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4401–4410, 2019.

[154] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. Ocgan: One-class novelty detection

using gans with constrained latent representations. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2898–2906, 2019.

[155] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library

(coil-20). 1996.

[156] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[157] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

111

[158] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 248–255. Ieee, 2009.

[159] FYYZS Song and Ari Seff Jianxiong Xiao. Construction of a large-scale image dataset using

deep learning with humans in the loop. arXiv preprint arXiv: 1506.03365, 2015.

[160] Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R Kulkarni, and

Jianxiong Xiao. Turkergaze: Crowdsourcing saliency with webcam based eye tracking. arXiv

preprint arXiv:1504.06755, 2015.

[161] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying

density-based local outliers. In ACM sigmod record, volume 29, pages 93–104. ACM, 2000.

[162] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[163] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-

Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[164] HDK Moonesinghe and Pang-Ning Tan. Outrank: a graph-based outlier detection framework

using random walk. International Journal on Artificial Intelligence Tools, 17(01):19–36,

2008.

[165] Mostafa Rahmani and George K Atia. Coherence pursuit: Fast, simple, and robust principal

component analysis. IEEE Transactions on Signal Processing, 65(23):6260–6275, 2016.

[166] Gilad Lerman, Michael B McCoy, Joel A Tropp, and Teng Zhang. Robust computation of

linear models by convex relaxation. Foundations of Computational Mathematics, 15(2):363–

410, 2015.

[167] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust pca via outlier pursuit. In

Advances in Neural Information Processing Systems, pages 2496–2504, 2010.

112

[168] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmentation by low-rank

representation. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 663–670, 2010.

[169] Manolis C Tsakiris and René Vidal. Dual principal component pursuit. In Proceedings of the

IEEE International Conference on Computer Vision Workshops, pages 10–18, 2015.

[170] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans

for improved quality, stability, and variation. In International Conference on Learning

Representations, 2018.

[171] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. In IEEE FOCS, pages 459–468, 2006.

[172] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via

hashing. In VLDB, volume 99, pages 518–529, 1999.

[173] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. Deep hashing for

compact binary codes learning. In CVPR, pages 2475–2483, 2015.

[174] David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–

110, 2004.

[175] J. Wang, S. Kumar, and S. F. Chang. Semi-supervised hashing for scalable image retrieval. In

CVPR, pages 3424–3431, 2010.

[176] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua. Ldahash: Improved matching with smaller

descriptors. IEEE TPAMI, 34(1):66–78, 2012.

[177] M. Norouzi, D. M. Blei, and R. R. Salakhutdinov. Hamming distance metric learning. In

NIPS, 2012.

[178] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph hashing. In NIPS, pages

3419–3427, 2014.

113

[179] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for

face recognition and clustering. In CVPR, pages 815–823, 2015.

[180] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:

Delving deep into convolutional nets. In BMVC, 2014.

[181] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[182] Dmytro Mishkin and J. L. Matas. All you need is a good init. CoRR, abs/1511.06422, 2015.

[183] Maris Ozols. How to generate a random unitary matrix, 2009.

[184] R. E. Schwartz. The five-electron case of thomson’s problem. Experimental Mathematics,

22(2):157–186, 2013.

[185] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng.

Nus-wide: A real-world web image database from national university of singapore. In ACM

CIVR, pages 48:1–48:9, 2009.

[186] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep semantic ranking based

hashing for multi-label image retrieval. In CVPR, pages 1556–1564, 2015.

[187] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the devil

in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

[188] Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier, and Hervé Jégou. How should we

evaluate supervised hashing? In ICASSP, pages 1732–1736, 2017.

[189] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang. Bit-scalable deep

hashing with regularized similarity learning for image retrieval and person re-identification.

IEEE TIP, 24(12):4766–4779, 2015.

[190] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.

Training generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676,

2020.

114

Appendix

Figure 5.5 shows what happens when we perform a bilinear interpolation in the W space of the

representation of four images that we downloaded from the internet. The model used is StyleALAE

trained on FFHQ. For a given interpolation an image is generated by drawing noise and using the

generator network G. As it can be seen, the traversal that we obtain seems to vary very smoothly.

Figure 5.6 shows examples of generations from StyleALAE and StyleGAN. From a visual

inspection it is very difficult to notice major differences. Figure 5.8 shows a random collection of

generations obtained from StyleALAE.

Figure 5.9 and Figure 5.10 instead show a collection of reconstructions. We note that the original

images are faces of celebrities that we have downloaded from the internet. Therefore they are not

images from FFHQ. This is important because we argue that these images come from a distribution

different from the FFHQ distribution. Indeed, FFHQ is a dataset of faces obtain from Flickr.com.

They represent faces of non-celebrity people. More often than not, the faces do not wear any

makeup, neither have they been altered (e.g., with Photoshop or other tools). In addition, the lighting

conditions and cameras with which the FFHQ face images have been acquired, are normally very

different from typical photoshoot stages where professional equipment is also used. Overall, this can

change significantly the statistics of the images from FFHQ in comparison with those of celebrities.

Nevertheless, we observe that StyleALAE works effectively on both reconstruction and mixing.

Differently from Figure 5.9 and Figure 5.10, Figure 5.11 shows reconstructions from images

extracted from our testing split of the FFHQ dataset. Therefore, they should, in principle, belong to

the same distribution used for training the model.

Figure 5.12 instead shows a random set of generations from the StyleALAE model trained

on LSUN-Bedroom, whereas Figure 5.13 shows bedroom reconstructions from the same dataset.

115

Figure 5.5: Real image interpolations. Qualitative results for interpolations of reconstructed images using
StyleALAE trained on FFHQ with resolution 1024× 1024. The images at the corners are real, and were not
part of the training portion of FFHQ. All other images were obtained by bilinear interpolation in the latent
spaceW .

116

StyleALAE StyleGAN

Figure 5.6: StyleALAE vs StyleGAN generations on FFHQ dataset. Original single face image resolution
is 1024× 1024.

117

Figure 5.7: StyleALAE generations on FFHQ dataset. Original single face image resolution is 1024×1024.

118

Figure 5.8: StyleALAE generations on Celeba-HQ dataset. Original single face image resolution is
256× 256.

119

Figure 5.9: StyleALAE reconstructions on FFHQ dataset. Reconstructions from images that are not part
of FFHQ. Original single face image resolution is 1024× 1024.

120

Figure 5.10: StyleALAE reconstructions on FFHQ dataset. Reconstructions from images that are not part
of FFHQ. Original single face image resolution is 1024× 1024.

121

Figure 5.11: StyleALAE reconstructions on FFHQ dataset. Reconstructions from images that are from the
test split of FFHQ. Original single face image resolution is 1024× 1024.

122

Figure 5.12: StyleALAE generations on LSUN-Bedroom. Original image resolution is 256× 256.

123

Figure 5.13: StyleALAE reconstructions on LSUN-Bedroom. Reconstructions from test split of LSUN-
Bedroom. Original image resolution is 256× 256.

124

Note that the reconstructions are from images taken from the test split, thus, they were not used for

training.

Table 2.6 shows a comparison between StyleALAE and other approaches using the CelebA-HQ

with resolution of 256× 256. The FID score is computed between 50000 generated samples and the

training samples. StyleALAE has the best FID score among the autoencoder type of models, and the

best PPL.

125

	Representation Learning with Adversarial Latent Autoencoders
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Motivation and Challenges
	Vanila Autoencoder
	Variational Autoencoders

	Related work
	Autoencoders
	Novelty Detection
	Similarity Retrieval

	Contribution and Dissertation Structure
	Chapter 2
	Chapter 3
	Chapter 4

	Adversarial Latent Autoencoders
	Introduction
	Preliminaries
	Adversarial Latent Autoencoders
	Relation with other autoencoders

	StyleALAE
	Implementation
	Experiments
	Training details

	Latent space projections
	Representation learning with MLP

	Ablation
	Learning style representations

	Generative Probabilistic Novelty Detection with Adversarial Autoencoders
	Introduction
	Generative Probabilistic Novelty Detection
	Computing the distribution of data samples

	Manifold learning with adversarial autoencoders
	GPND with Adversarial Autoencoders
	GPND with Adversarial Latent Autoencoders
	Performing inference

	Implementation Details and Complexity
	Model correction

	Experiments
	Datasets
	Results

	Conclusion

	Deep Supervised Hashing with Spherical Embedding
	Introduction
	Problem Overview
	Hash Function Learning
	Spherical Embedding
	Quantization
	Triplet Spherical Loss
	Margin Loss
	Label Likelihood Loss
	Spring Loss

	Experiments
	Experimental setup
	Results
	Ablation Study

	Conclusions

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix

