
c© 2015 Honghai Yu

LEARNING COMPACT HASHING CODES FOR LARGE-SCALE
SIMILARITY SEARCH

BY

HONGHAI YU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Pierre Moulin, Chair
Professor Minh N. Do
Assistant Professor Paris Smaragdis
Professor Venugopal V. Veeravalli

ABSTRACT

Retrieval of similar objects is a key component in many applications. As

databases grow larger, learning compact representations for efficient storage

and fast search becomes increasingly important. Moreover, these represen-

tations should preserve similarity, i.e., similar objects should have similar

representations. Hashing algorithms, which encode objects into compact bi-

nary codes to preserve similarity, have demonstrated promising results in

addressing these challenges. This dissertation studies the problem of learn-

ing compact hashing codes for large-scale similarity search. Specifically, we

investigate two classes of approach: regularized Adaboost and signal-to-noise

ratio (SNR) maximization. The regularized Adaboost builds on the classical

boosting framework for hashing, while SNR maximization is a novel hash-

ing framework with theoretical guarantee and great flexibility in designing

hashing algorithms for various scenarios.

The regularized Adaboost algorithm is to learn and extract binary hash

codes (fingerprints) of time-varying content by filtering and quantizing per-

ceptually significant features. The proposed algorithm extends the recent

symmetric pairwise boosting (SPB) algorithm by taking feature sequence

correlation into account. An information-theoretic analysis of the SPB algo-

rithm is given, showing that each iteration of SPB maximizes a lower bound

on the mutual information between matching fingerprint pairs. Based on

the analysis, two practical regularizers are proposed to penalize those filters

generating highly correlated filter responses. A learning-theoretic analysis

of the regularized Adaboost algorithm is given. The proposed algorithm

demonstrates significant performance gains over SPB for both audio and

video content identification (ID) systems.

SNR maximization hashing (SRN-MH) uses the SNR metric to select a

set of uncorrelated projection directions, and one hash bit is extracted from

each projection direction. We first motivate this approach under a Gaussian

ii

model for the underlying signals, in which case maximizing SNR is equiva-

lent to minimizing the hashing error probability. This theoretical guarantee

differentiates SNR-MH from other hashing algorithms where learning has to

be carried out with a continuous relaxation of quantization functions. A

globally optimal solution can be obtained by solving a generalized eigenvalue

problem. Experiments on both synthetic and real datasets demonstrate the

power of SNR-MH to learn compact codes.

We extend SNR-MH to two different scenarios in large-scale similarity

search. The first extension aims at applications with a larger bit bud-

get. To learn longer hash codes, we propose a multi-bit per projection al-

gorithm, called SNR multi-bit hashing (SNR-MBH), to learn longer hash

codes when the number of high-SNR projections is limited. Extensive ex-

periments demonstrate the superior performance of SNR-MBH. The second

extension aims at a multi-feature setting, where more than one feature vector

is available for each object. We propose two multi-feature hashing methods,

SNR joint hashing (SNR-JH) and SNR selection hashing (SNR-SH). SNR-JH

jointly considers all feature correlations and learns uncorrelated hash func-

tions that maximize SNR, while SNR-SH separately learns hash functions

on each individual feature and selects the final hash functions based on the

SNR associated with each hash function. The proposed methods perform fa-

vorably compared to other state-of-the-art multi-feature hashing algorithms

on several benchmark datasets.

iii

To my family.

iv

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude and deepest appreciation

to my advisor, Prof. Pierre Moulin, for his guidance and support throughout

the course of my PhD. It is because of his expertise, understanding, and

patience that help me overcome the difficulties during my graduate study.

Without his supervision and encouragement, this dissertation would not be

possible.

I thank Professors Minh N. Do, Paris Smaragdis, and Venugopal V. Veer-

avalli for serving on my doctoral committee and their helpful suggestions and

advice. A special mention is appropriate for Prof. Kee Chaing Chua and Dr.

Sumei Sun for encouraging me to pursue a doctorate. I wish to thank Doc-

tors Sujoy Roy, Stefan Winkler, Bingbing Ni, Jiwen Lu, and Shenghua Gao

for illuminating discussion and helpful comments.

It is a pleasure to thank all my research colleagues at the Beckman Insti-

tute, Shankar Sadasivam, Yen-Wei Huang, Scott Deeann Chen, Rohit Naini,

Ben Chidester, Patrick John-stone, Igor Fedorov, Xinqi Chu, Zhen Li, Jian-

chao Yang, Shiyu Chang, Sujeeth Bharadwaj, and Huiguang Yang for making

my research life memorable with their help and friendship.

My heartfelt thanks go to my parents for their unconditional support,

faith, and love. Finally, my special thanks go to my wife, Wen Huang, for

the constant encouragement and always staying by my side.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Outline of the Dissertation . 3

CHAPTER 2 BACKGROUND . 5
2.1 Unsupervised Hashing Algorithms 5

2.1.1 Locality Sensitive Hashing 5
2.1.2 Spectral Hashing . 6
2.1.3 Iterative Quantization 7

2.2 Supervised Hashing Algorithms 9
2.2.1 Semi-Supervised Hashing 9
2.2.2 Symmetric Pairwise Boosting 12

CHAPTER 3 REGULARIZED ADABOOST FOR CONTENT
IDENTIFICATION . 15
3.1 Statement of the Content ID Problem 16
3.2 Performance Metrics . 16
3.3 Structured Content ID Codes 17
3.4 Mutual Information between Fingerprints 19

3.4.1 Mutual Information and Content ID capacity 19
3.4.2 Information-Theoretic Analysis of SPB 20
3.4.3 Temporal Dependencies 22

3.5 Regularized Adaboost . 23
3.5.1 Mutual Information of Gauss-Markov Process as a

Regularizer . 23
3.5.2 Average Correlation Coefficient as a Regularizer 24
3.5.3 Learning-Theoretic Analysis of the Regularized Ad-

aboost Algorithm . 26
3.6 Experimental Results and Discussion 27

3.6.1 Video Fingerprinting 28
3.6.2 Audio Fingerprinting 31

3.7 RGB-D Content Identification 33
3.7.1 Kinect Depth Image 34
3.7.2 Statistical Difference between RGB and Depth Images 36
3.7.3 RGB-D Content ID Systems 38

vi

CHAPTER 4 SNR MAXIMIZATION HASHING 45
4.1 Statistical Model . 47

4.1.1 Statistical Model for Hashing 47
4.1.2 Error Probability Analysis under Gaussian Model . . . 48

4.2 SNR Maximization Hashing 51
4.3 Experimental Results and Discussion 53

4.3.1 Results on Synthetic Data 53
4.3.2 Results on Audio Content Identification 55
4.3.3 Results on Object Retrieval 56

CHAPTER 5 MULTI-BIT HASHING 58
5.1 Deteriorating Effect of Low-SNR Projections 59
5.2 Cutoff Number of Projections 60
5.3 A Bit Allocation Strategy . 63
5.4 Multi-Bit Quantization . 64
5.5 Experimental Results and Discussion 64

5.5.1 Results on Synthetic Data 64
5.5.2 Results on MNIST Dataset 65
5.5.3 Results on CIFAR-10 Dataset 67

CHAPTER 6 MULTI-FEATURE HASHING 70
6.1 Background and Related Work 71

6.1.1 Multi-Feature Kernel Hashing 71
6.1.2 Hash Bit Selection . 73

6.2 SNR Joint Hashing . 73
6.3 SNR Selection Hashing . 75
6.4 Experimental Results and Discussion 77

6.4.1 Protocols and Baseline Methods 77
6.4.2 Datasets and Features 77
6.4.3 Results and Discussions 78

CHAPTER 7 HASHING REVISITED: OBSERVATIONS AND
OPEN PROBLEMS . 86
7.1 Hamming Metric versus Euclidean Metric 87
7.2 SNR Distribution versus Projection Correlation 90

CHAPTER 8 CONCLUSIONS . 93
8.1 Summary of Contributions . 93
8.2 Future Directions . 94

APPENDIX A RELATION BETWEEN PFN AND PMISS 96

APPENDIX B EQUIVALENCE BETWEEN SNR MAXIMIZA-
TION (4.15) AND GENERALIZED EIGENPROBLEM (4.16) . . . 97

REFERENCES . 99

vii

CHAPTER 1

INTRODUCTION

Recent years have witnessed an explosive growth of multimedia data. Every

day, more than 350 million photos are uploaded to Facebook.1 Every minute,

100 hours of video are uploaded to YouTube.2 On the one hand, these large-

scale databases create many opportunities for novel applications. On the

other hand, the large volume poses unique challenges for retrieval of similar

objects from the database. In particular, any application requiring large-scale

similarity search has to address the following challenges:

1. How to define similarity between objects;

2. How to design compact representations so that multimedia objects can

be efficiently stored;

3. How to design fast search algorithms so that queries can be evaluated

cheaply.

These challenges have motivated the recent studies on hashing methods,

where multimedia content is encoded into compact binary hash codes which

allows efficient storage and real-time search [1]. The hash codes must be

robust to various content-preserving distortions, while being discriminative

enough to distinguish perceptually different signals.

Hashing algorithms can be broadly divided into two categories: unsuper-

vised and supervised, depending on how they address the first challenge. In

unsupervised hashing, a multimedia signal is represented as a feature vector,

and distance (such as Euclidean distance or cosine similarity) between fea-

ture vectors is assumed to reflect semantic similarity. For instance, images

from the same category should have smaller distance between their feature

1http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
2Retrieved Dec 27, 2014, from https://www.youtube.com/yt/press/statistics.html

1

vectors than that of images from different categories. The goal of unsuper-

vised hashing is to design binary codes that preserve a given distance metric

in the feature space. Though people continuously search for better features

to represent multimedia signals, there still exists a semantic gap between fea-

ture representations and the richness of human semantics. Often, retrieval

performance in the feature space is not satisfactory, yet it provides an upper

bound on the performance one would expect with unsupervised hashing algo-

rithms. Locality-sensitive hashing (LSH) [2] and its variants [3, 4], spectral

hashing (SH) [5], and iterative quantization (ITQ) [6] are among the most

popular and well studied unsupervised algorithms.

Most supervised hashing algorithms also use feature vectors as inputs be-

cause it can be difficult to extract good (i.e., robust and discriminative) hash

codes directly from high-dimensional raw multimedia signals. However, the

goal of supervised hashing is to learn binary codes that preserve semantic

labels rather than some distance metric in the feature space. With super-

vised information, one could potentially obtain better retrieval performance

in the Hamming space than that in the feature space, and thus bridge the

semantic gap. The superior performance in the Hamming space has been

demonstrated in many of our experiments as well as in [7, 8]. Semantic la-

bels have been used in boosting [9], support vector machines (SVMs) [10],

and deep neural networks [11] to learn compact binary codes in a supervised

manner. Semi-supervised hashing [12] maximizes the empirical accuracy on

the labeled data and uses unlabeled data as a regularizer. In Chapter 2, we

will study some of the most famous unsupervised and supervised hashing

algorithms in more detail.

Note that standard hash functions such as MD5 and SHA-1 cannot be

used on multimedia retrieval because the output of such functions changes

dramatically with even a single bit change in the input [13]. However, two

images or two songs appearing identical to humans can have distinct digital

representations. To differentiate from the standard hash functions, hash-

ing for similarity search is often termed robust hashing, semantic hashing,

or fingerprinting. Moreover, different from watermarking, which inserts an

identifier into the multimedia content and thus changes the content, hashing

for multimedia content identification (ID) extracts a signature (fingerprint)

from the multimedia content without changing it.

2

On the information-theoretic side, a framework for fingerprint-based con-

tent ID systems was presented in [14], and derived a fundamental relation

between database size and query length under some statistical assumptions.

Decoding of correlated fingerprints was studied in [15, 16]. The design of

scalar quantizers inspired by the notion of biometric identification system

capacity [17] was studied in [18]. The related problem of physical object

identification was studied in [19].

The goal of this dissertation is to develop better supervised hashing algo-

rithms for large-scale similarity search. We propose two frameworks, namely

regularized Adaboost and signal-to-noise ratio (SNR) maximization, to ad-

dress the aforementioned challenges. Regularized Adaboost, presented in

Chapter 3, is motivated by a theoretical study of the boosting framework

for content ID, which is one of major applications of large-scale similarity

search. The SNR maximization framework, presented in Chapter 4, is mo-

tivated by the analysis under a Gaussian model and can be extended into

multi-bit hashing in Chapter 5 and multi-feature hashing in Chapter 6. Be-

sides content ID, SNR maximization hashing is applicable to a wider range

of applications, such as content-based image retrieval (CBIR). A detailed

outline of the rest of the dissertation is provided below.

1.1 Outline of the Dissertation

• Chapter 2 surveys some of the most popular hashing algorithms, un-

supervised and supervised, which we will improve upon or compare

with in the rest of the dissertation.

• Chapter 3 first performs an information-theoretic analysis of the boost-

ing framework and then proposes a regularized Adaboost algorithm

aiming at increasing the mutual information between original and de-

graded fingerprints. A learning-theoretic analysis of the proposed al-

gorithm is also provided, followed by experimental evaluations.

• Chapter 4 proposes a novel hashing algorithm based on signal-to-noise

ratio (SNR) maximization to learn compact binary codes, where the

SNR metric is used to select a set of projection directions, and one hash

bit is extracted from each projection direction. We first motivate this

3

approach under a Gaussian model for the underlying signals, in which

case maximizing SNR is equivalent to minimizing the hashing error

probability. A globally optimal solution can be obtained by solving a

generalized eigenvalue problem.

• Chapter 5 develops a multi-bit per projection algorithm to learn

longer hash codes when the number of high-SNR projections is lim-

ited. We first show the deteriorating effect of low-SNR projections

both theoretically and empirically, and propose a remedy which we call

SNR multi-bit hashing (SNR-MBH). SNR-MBH is an automatic pro-

cedure that determines the number of available high-SNR projections,

the number of bits for each projection, and the positions of quantiza-

tion thresholds. Experiments on a synthetic dataset and real datasets

demonstrate the superior performance of SNR-MBH.

• Chapter 6 proposes two multi-feature hashing methods based on signal-

to-noise ratio (SNR) maximization. The first one jointly considers all

feature correlations and learns uncorrelated hash functions that max-

imize SNR, while the second method separately learns hash functions

on each individual feature and selects the final hash functions based

on the SNR associated with each hash function. The proposed meth-

ods perform favorably compared to other state-of-the-art multi-feature

hashing algorithms on several benchmark datasets.

• Chapter 7 reviews and discusses some current research on hashing

algorithms, and make two observations within the SNR maximization

framework, which we believe could be generalized to other hashing

settings and worth further exploration.

Chapter 8 summarizes the contributions of this dissertation, and dis-

cusses future research directions.

4

CHAPTER 2

BACKGROUND

As introduced in Chapter 1, hashing is a clever way to address the chal-

lenges for large-scale similarity search. In hashing, each database item is

represented by a compact binary code. The code is constructed such that

similar items have similar binary codes. Binary codes are storage efficient

and computing Hamming distance can be extremely fast with just a few ma-

chine instructions. Millions of database items can be compared to a query in

less than a second. Over the last decade, there has been a surge in hashing

algorithms, both unsupervised and supervised. In this chapter, we survey

some of the most popular hashing algorithms, which we will improve upon

or compare with in the rest of the dissertation.

2.1 Unsupervised Hashing Algorithms

When databases are huge, many machine learning tasks such as image scene

classification can be performed by a simple nearest neighbor search. How-

ever, exhaustively comparing a query with every point in the database may

become prohibitively expensive as the database size and feature dimension

grow. To reduce search complexity with little performance loss, unsuper-

vised hashing has established itself as an efficient framework for approximate

nearest neighbor (ANN) search.

2.1.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH), proposed in the late 1990s, was considered

a breakthrough for ANN search in high dimensional space and became the

paradigm of unsupervised hashing [2]. As depicted in Fig. 2.1a, LSH gen-

erates binary codes by randomly projecting data followed by thresholding

5

the projections, and can achieve sublinear search complexity. To preserve

locality, each binary hash function φk : R
d → {±1} must satisfy

Pr{φk(x) = φk(y)} = sim(x,y), (2.1)

where sim(x,y) ∈ [0, 1] is the similarity score in the feature space, e.g.,

sim(x,y) = exp{−
‖x− y‖2

σ2
}. A typical class of LSH functions is parame-

terized by a random projection wk ∈ Rd and a random threshold bk ∈ R:

φk(x) = sgn(wT
k x + bk), (2.2)

where wk are sampled randomly from a p-stable distribution, e.g., standard

Gaussian, and bk from a uniform distribution [20].

Although there exists a theoretical guarantee that the Hamming distance

between LSH codewords will asymptotically approach the Euclidean distance

between the feature vectors [21], it is not very efficient in practice since it

requires multiple tables with long codes. Many variants of LSH, such as

kernelized LSH [3, 4], have been proposed to exploit the same theoretical

guarantee.

2.1.2 Spectral Hashing

In practice, LSH and its variants can lead to very inefficient codes as their

hash functions are data independent. To utilize the abundant training data

available in large-scale databases, spectral hashing (SH) was proposed to

design compact binary codes in a data dependent manner. In addition to

the common desired properties of a hash code, i.e., mapping similar samples

to similar binary codewords, using a small number of bits to code the full

database, and easily computing for a novel point, SH requires the codes to be

balanced and uncorrelated [5]. Among all codes that have these properties,

SH seeks the ones where the average Hamming distance between similar

points is minimal. In particular, SH formulates the hashing problem as the

6

following constrained minimization:

minimize
φ

∑

i,j

sim(xi,xj)‖φ(xi)− φ(xj)‖
2

subject to φ(xi) ∈ {−1, 1}J

∑

i

φ(xi) = 0

∑

i

φj(xi)φk(xi) = 0, ∀j 6= k,

(2.3)

where sim(xi,xj) = exp{−
‖x− y‖2

σ2
} is defined in (2.1), and Φ(x) = {φ1(x),

. . . , φK(x)} denotes K hash functions.

The authors have noted that solving problem 2.3 with a single bit is equiv-

alent to balanced graph partitioning and is NP hard. The combination of

K-bit balanced partition will be even harder because of the pairwise un-

correlated constraints. By relaxing the binary constraint and independent

constraint, the above optimization was solved by thresholding eigenvectors

of a graph Laplacian. With the assumption of uniform data distribution, the

spectral solution can be efficiently generalized to out of samples extension

with three key steps [5]: (1) find the maximum variance directions of the data

using Principal Component Analysis (PCA); (2) select analytical eigenfunc-

tions using a rectangular approximation along every PCA direction, which

prefers dimensions with large range and low spatial frequency; (3) threshold

the analytical eigenfunctions at zero.

SH is one of the earliest data dependent hashing algorithms. One major

criticism of SH is the assumption of uniform data distribution, which is often

too restrictive for practical applications. Following SH, many hashing algo-

rithms have been proposed to better exploit training data for constructing

compact binary codes.

2.1.3 Iterative Quantization

Many hashing algorithms encode the PCA directions to generate binary codes

[5, 12, 22]. They all note that encoding each direction with the same number

of bits leads to poor performance as higher-variance directions carry much

more information. To address the imbalanced variance, iterative quantization

7

(ITQ) [6] aims to balance the variance of different PCA directions by finding

a rotation to the PCA-projected data to minimize the quantization error (see

Fig. 2.1 for an illustration).

Let X ∈ RD×n denote the zero-centered data matrix with n data points,

W ∈ RD×K the PCA matrix with top K eigenvectors of the data covariance

matrix XXT , and B ∈ {−1, 1}K×n the binary code matrix. The goal of

ITQ is to learn an orthogonal rotation matrix R ∈ RK×K that minimizes the

quantization loss

Q(B,R) = ‖B − (WR)TX‖2F , (2.4)

where ‖ · ‖F denotes the Frobenius norm, in two alternating steps.

1. Fix R and update B: B = sgn((WR)TX).

2. Fix B and update R: R = ŜST , where Ŝ and S are obtained by

computing he SVD of the K ×K matrix BXTW as SΩŜT .

A local optima could be found by alternating between updates to B and

R for several iterations. As noted in [6], 50 iterations are often enough to

balance the variance and produce good performance.

10

11

00

01

(a) LSH

11 10

01 00

(b) PCA

10

00

11

01

(c) ITQ

Figure 2.1: Illustration of different hashing.

Recently, product quantization (PQ), a structured vector quantization

technique, has been applied to ANN search in high dimensional spaces, where

distance between two data points is approximated by the distance between

8

their codewords [23, 24, 25]. For any quantization technique, a large code-

book is required to keep the quantization error small and model fidelity high.

The strength of a product quantizer is to produce a large effective codebook

with the Cartesian product of several small sub-codebooks. ITQ [6] can be

considered a special case of PQ. To extract K-bit codes, the codewords are

constrained to be taken from the vertexes of a K-dimensional hypercube

C = {±1}K , so each sub-quantizer of ITQ is a scalar quantizer (the sign of

the projected data). PQ’s superior ANN search performance over unsuper-

vised hashing methods is largely due to its adaptive K-means quantization

and more precise distance computation than Hamming distance. However,

PQ is 10-20 times slower than hashing in search speed [26].

2.2 Supervised Hashing Algorithms

Different from unsupervised hashing, supervised hashing algorithms are not

designed to preserve any metric similarity. Instead, semantic labels are used

to construct binary codes that have the potential to better preserve the se-

mantic similarity than the original feature vector.

2.2.1 Semi-Supervised Hashing

Semi-supervised hashing (SSH) was proposed to better preserve semantic

similarity with labeled data and use unlabeled data as a regularizer [12,

22]. Specifically, SSH was formulated as a maximization of the classification

accuracy on the labeled data regularized by data variance over the labeled

and unlabeled data. Moreover, SSH considers three different constraints to

achieve various degrees of hash bit dependency.

Let X ∈ RD×n denote the zero-centered data matrix with n data points,

in which l < n points are associated with at least one of the categories T+

or T−. A pair of points (xi,xj) ∈ T+ is considered a matching pair, and

(xi,xj) ∈ T− a nonmatching pair. Let φ = {φ1, . . . , φK} be a sequence of K

hash functions parameterized by K projections W = {w1, . . . ,wK} ∈ RD×K ,

where

φk(xi) = sgn(wT
k xi). (2.5)

9

The goal of SSH is to learn hash functions φ that maximize the empirical

accuracy on the labeled training data:

maximize
φ

∑

k


 ∑

(xi,xj)∈T+

φk(xi)φk(xj)−
∑

(xi,xj)∈T−

φk(xi)φk(xj)


 . (2.6)

To strive for a balanced partition of the projected data, SSH uses the variance

of hash bits
∑

k var[φk(x)] as a regularizer.

Since the sgn(·) function in the objective and regularizer is nondifferen-

tiable, the sign of projection is replaced with signed magnitude. Written in

matrix form, the actual objective function of SSH is

J(W) =
1

2
tr
{
WTXlSX

T
l W

}
+
η

2
tr
{
WTXXTW

}

=
1

2
tr
{
WT

[
XlSX

T
l + ηXXT

]
W
}
, (2.7)

where Xl ∈ RD×l is formed as the l columns of X containing the l labeled

data points, and S ∈ Rl×l is the label matrix which incorporates the pairwise

relationship between points from Xl as:

Sij =





1 (xi,xj) ∈ T+

−1 (xi,xj) ∈ T−

0 otherwise.

(2.8)

With (2.7) as the objective function, the authors considered three different

constraints on hash bit dependency, corresponding to three SSH algorithms.

Algorithm 1: Imposing the orthogonality constraint on the projection

directions, WTW = I, the learning of optimal projections becomes a typical

eigen-problem, which can be solved by doing an eigenvalue decomposition on

matrix M = XlSX
T
l + ηXXT :

Worth = [e1, . . . , eK], (2.9)

where ek, k = 1, . . . , K are the eigenvectors of M corresponding to the top

eigenvalues.

Algorithm 2: Similar to the motivation of ITQ, the authors also noted

that imposing orthogonality constraint forces one to progressively pick those

10

directions that have very low variance, substantially reducing the quality of

lower bits. Hence, the second algorithm allows subsequent directions to be

non-orthogonal with a penalty term:

J(W) =
1

2
tr
{
WTMW

}
−
ρ

2
‖WTW− I‖2F . (2.10)

The following procedure was proposed to find a local optimal solution to the

nonconvex objective function (2.10).

Choose ρ > max(0,−λmin), where λmin is the smallest eigenvalue of M.

Then Q = I + 1
ρ
M will be positive definite. Let Q = LLT be the Cholesky

decomposition. The final non-orthogonal projections are derived as:

Wnonorth = LUK , (2.11)

where UK are the top K eigenvectors of M.

Algorithm 3: The adjustment over the orthogonal ones is done by a

single-shot in Algorithm 2. However, the resulting solution is sensitive to

the choice of the penalty coefficient. The third algorithm is to learn each

projection in a sequential manner. The algorithm is given in Table 2.1,

where S̃
k
∈ Rl×l measures the signed magnitude of pairwise relationships of

the kth projections of Xl:

S̃
k
= XT

l wkw
T
kXl, (2.12)

and

T(S̃
k

ij,Sij) =

{
S̃
k

ij sgn(Sij · S̃
k

ij) < 0

0 sgn(Sij · S̃
k

ij) ≥ 0.
(2.13)

In Algorithm 3, those labeled pairs for which the current hash function

predicts their bits wrongly exert more influence on the learning of the next

hash function, biasing the new projection to produce correct bits for such

pairs. Intuitively, Algorithm 3 has a flavor of boosting-based methods we

will introduce next.

11

Table 2.1: Algorithm 3 Semi-supervised sequential projection learning for
hashing (S3PLH).

Input: data X, pairwise labeled data Xl, initial pairwise
labels S1, length of hash codes K, constant α
Do for k = 1, . . . , J

1. Compute adjusted covariance matrix:

Mk = XlSkX
T
l + ηXXT

2. Extract the first eigenvector e of Mk and set:

wk = e

3. Update the labels from vector wk:

Sk+1 = Sk − αT(S̃
k

ij ,Sij)

4. Compute the residual:

X = X−wkw
T
kX

2.2.2 Symmetric Pairwise Boosting

Boosting-based hashing algorithms have been applied to pose estimation [9],

music identification [27, 28], and video content ID [29]. In this section, we

summarize the most recent boosting-based hashing algorithm, symmetric

pairwise boosting (SPB).

The SPB algorithm [28, 29] operates as follows. A training set T ,
{(xt, yt, zt) ∈ X 2×{±1}, t ∈ T } is comprised of a subset T+ of |T |/2matching

pairs and a subset T− of |T |/2 nonmatching pairs, where a pair (xt, yt) ∈ X 2

is said to be matching if the second signal is a distorted version of the first,

and nonmatching if the two signals are independent. The binary variable

(label) zt is equal to 1 (resp. -1) if (xt, yt) is matching (resp. nonmatching).

Define a set of J weak classifiers hj : X 2 → {±1}, 1 ≤ j ≤ J , as

hj(x, y) =

{
+1 if φj(x) = φj(y)

−1 otherwise,
(2.14)

12

where φj is parameterized by a filter λj : X → R and a quantizer Qj : R → A,

φj(x) = Qj(λj(x)). (2.15)

Denote by H the class of feasible classifiers (indexed by the choice of filters

and quantizers).

Figure 2.2: 3-D Haar-like filters [29]: (a) spatio-temporal average, (b) temporal
difference, (c,d) spatial difference, and (e,f) spatio-temporal difference. The
x-coordinate is video frame index.

A popular family of filters is the Haar-like Viola-Jones filters used in [27,

28, 29] which are easy to compute and rich enough to describe perceptually

significant visual features. The filter outputs for the 3-D Haar-like filters in

[29] are the average difference between values in light and dark regions shown

in Fig. 2.2.

To reduce the computational complexity of the training, a limited number

of candidate quantizers are evaluated. In [28], 19 candidate thresholds that

minimize the mean squared quantization error of the filter responses of the

training data are considered. In [29], 17 logarithmically spaced candidate

thresholds are considered. For 4-level quantization, |A| = 4, 969 and 680

candidate quantizers are evaluated for each filter for 19 and 17 candidate

thresholds respectively.

The SPB algorithm is an adaptation of the well-known Adaboost classi-

fication algorithm given in Table 2.2. Upon completion of the algorithm,

Adaboost would output the boosted classifier

hB(x, y) , sgn

[∑

1≤j≤J

αjhj(x, y)

]
.

However the algorithms of [28, 29] do not use the boosted classifier. Only the

filter λj and quantizer Qj associated with each hj are used to produce the fin-

gerprints. The weights {αj} could be used to compute a weighted Hamming

distance D(f, g) =
∑J

j=1 αjdH(fj, gj), where dH denotes the Hamming dis-

13

tance. However, in our content ID experiments, decoders based on Hamming

and weighted Hamming distances yield similar results, whereas computing

weighted Hamming distance is considerably slower. Thus, we simply report

results for Hamming distance.

Table 2.2: Adaboost for filter and quantizer selection.

Input: training set T , {(xt, yt, zt) ∈ X 2×{±1}, t ∈ T }

Initialization: define equal weights w
(1)
t = 1/|T |, ∀t ∈

T
Do for j = 1, . . . , J

1. Choose the classifier hj that minimizes the
weighted error over h ∈ H

ej =
∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}. (2.16)

2. Compute αj =
1
2
log

1−ej
ej

.

3. Update the weights

w
(j+1)
t = w

(j)
t exp{−αjzthj(xt, yt)}.

4. Normalize the weights so that
∑

t∈T w
(j+1)
t = 1.

Output: J pairs of filter and quantizer {(λj , Qj)}Jj=1

parameterizing the chosen J classifiers {hj}Jj=1.

14

CHAPTER 3

REGULARIZED ADABOOST FOR
CONTENT IDENTIFICATION

Content identification (ID) has received considerable attention from both

academia and industry. For instance, YouTube uses content ID to detect

registered audio and video uploads in real time. Shazam and SoundHound

use content ID for music identification on mobile devices. Other applica-

tions include advertisement tracking, broadcast monitoring, copyright con-

trol, and law enforcement [30, 31, 32, 33]. In these applications, the content

is encoded into a short fingerprint which allows for real-time search. The fin-

gerprint must be robust to various content-preserving distortions, while being

discriminative enough to distinguish perceptually different signals. The fin-

gerprint is also known as a robust hash, or semantic hash.

As illustrated in Fig. 3.1, a typical content ID system takes a snippet of a

signal as a query and seeks a match in a fingerprint database. The system

can be broken down into an offline part and an online part. The fingerprint

database is built offline by extracting fingerprints from all database signals.

When a query comes in, its fingerprint is extracted and used as a query in

the fingerprint database.

Database

Signals

Fingerprint

Extraction

Fingerprint

Database

Query

Signal

Fingerprint

Extraction

Fingerprint

Matching

Offline

Online Query ID?

Figure 3.1: Overview of a video content ID system.

15

3.1 Statement of the Content ID Problem

Following [14], a content database is defined as a collection of M elements,

x(m) ∈ XN , m = 1, 2, . . . ,M , each of which is a sequence of N slices

{x1(m), x2(m), . . . , xN (m)}. A slice could be a short video clip, a short se-

quence of image blocks, or a short audio snippet. Slices may be overlapping

spatially, temporally, or both, to prevent misalignment during identification

[30]. For instance, the video fingerprinting paper [29] uses overlapping time

windows that are 1 sec long and start every 100 ms; the temporal overlap is

9/10. A 3-minute video is represented by N = 1791 slices. It is desired that

the video be identifiable from a short clip, say 10 sec long, corresponding

to L = 91 slices. This is called the granularity of the video ID system [29].

Typically L≪ N .

The problem is to determine whether a given query consisting of L < N

slices, y ∈ X L, is related to some element of the database, and if so, iden-

tify which one. To this end, an algorithm ψ(·) must be designed, returning

the decision ψ(y) ∈ {0, 1, 2, . . . ,M}, where ψ(y) = 0 indicates that y is

unrelated to any of the database elements. This is a single-output decoder.

Alternatively, a variable-size list decoder L(y) ⊆ {1, 2, . . . ,M}might be used,

returning 0, 1, 2 or more matches.

For applications where a unique output is desirable, such as the YouTube

content ID system, the single-output decoder is used. The variable-size list

decoder is useful for applications, such as the SoundHound music identifi-

cation, that can tolerate a few incorrect items as long as the correct one

is on the list. To comprehensively analyze the proposed algorithm, we will

consider both decoders for our experiments in this chapter.

3.2 Performance Metrics

Different performance metrics are considered depending on which decoder

is used. Two types of error, namely false positive and false negative, are

associated with the single-output decoder ψ(y). In [14], the content ID

problem is viewed as a hypothesis testing problem with M + 1 hypotheses

H0, H1, . . . , HM , where the null hypothesis H0 indicates the query is unre-

16

lated to any of the database item, the probability of false positive is

PFP , Pr[ψ(Y) > 0|H0], (3.1)

and the probability of false negative is

PFN ,
1

M

M∑

m=1

Pr[ψ(Y) 6= m|Hm]. (3.2)

There are two error events of interest for the variable-size list decoder of

L(Y):

• Miss: The correct m does not appear on the decoder’s list, m 6∈ L(Y).

• Incorrect Decoding: One or more incorrect m′ 6= m appear on the

decoder’s list, m′ ∈ L(Y). The number of incorrect items on the list is

Ni(m) ,
∑

m′ 6=m
1≤m′≤M

1{m′ ∈ L(Y)|Hm}.

Corresponding to these two events are the probability of miss:

Pmiss ,
1

M

M∑

m=1

Pr[m 6∈ L(Y)|Hm] (3.3)

and the expected number of incorrect items on the list:

E[Ni] ,
1

M

M∑

m=1

E[Ni(m)] (3.4)

=
1

M

M∑

m=1

∑

m′ 6=m
1≤m′≤M

Pr[m′ ∈ L(Y)|Hm].

3.3 Structured Content ID Codes

In this chapter, we restrict our attention to the following fairly general class

of fingerprint-based content ID codes. The codes of [30, 27, 28, 29] among

others, fall in this category.

17

Definition 1. A (M,N,L) structured content ID encoder for a size-M database

populated with XN -valued content items, and granularity L, is a mapping

φ : X → F generating an encoding function Φ : XN → FN that returns a

fingerprint f = Φ(x) with components fi = φ(xi) for each 1 ≤ i ≤ N .

Hence the mapping φ is applied independently to each slice. It might be

convenient to impose additional structure on the code. For instance, the

mapping φ : X → F in [28, 29] is obtained by applying a set of J optimized

filters to each slice and quantizing each of the J real-valued filter outputs to

four levels. Hence F takes the form AJ with A = {a, b, c, d}. In this case

we view the fingerprint as an array f = {fij, 1 ≤ i ≤ N, 1 ≤ j ≤ J} and the

query fingerprint as an array g = {gij, 1 ≤ i ≤ L, 1 ≤ j ≤ J} where i denotes

time and j filter index. We also use the notation f = {fj , 1 ≤ j ≤ J} for

the subfingerprint associated with a given slice. We also write φ in vector

form as φ = {φj, 1 ≤ j ≤ J}. The length of the binary subfingerprint f is

J log2 |A|.

In most content ID systems, the decoding function is constructed from

a distance measure between fingerprints [28, 29, 14, 16]. Define a decod-

ing metric d : F2 → R, extended additively to pairs of subfingerprints

{fi+N0
, gi, 1 ≤ i ≤ L} at time offset N0 ∈ {0, 1, 2, . . . , N − L} as follows:

d(f, g|N0) ,
L∑

i=1

d(fi+N0
, gi). (3.5)

In this chapter, the Hamming metric is used to allow a fair comparison with

the SPB algorithm of [28, 29]. Further define the distance between the query

fingerprint g and the database fingerprint f as the minimum over N0

d∗(f, g) , min
N0

d(f, g|N0). (3.6)

Based on the decoding metric d, the two decoders are defined as follows

for a decision threshold τ .

18

Definition 2. The single-output decoder is

ψ(g) ,

{
m if d∗(f(m), g) < τ and d∗(f(m), g) < d∗(f(m′), g), ∀m′ 6= m

0 if no such m exists.

(3.7)

When the minimizer of d∗(f(m), g) is not unique, the single-output decoder

declares no match (ψ(g) = 0). Ties could also be broken at random, but

returning a single incorrect match is often more costly than returning no

match.

Definition 3. The variable-size list decoder is

L(g) , {m ∈ {1, 2, . . . ,M} : d∗(f(m), g) < τ} . (3.8)

Note that E[Ni] can be greater than one, whereas PFP ≤ 1. Moreover,

we have Pmiss ≤ PFN as shown in Appendix A. The decision threshold τ

is associated with a point on the receiver operating characteristic (ROC)

curve, and is chosen according to the desired false positive / false negative

error probability tradeoff.

3.4 Mutual Information between Fingerprints

In this section we first review the relevance of mutual information for fin-

gerprint code design, then establish a connection to Adaboost, and finally

set up a framework for handling temporal dependencies within fingerprint

sequences.

3.4.1 Mutual Information and Content ID capacity

A content ID system, like any other communication system, is subject to a

fundamental capacity limit that upper bounds the rate at which information

can be decoded with arbitrarily low probability of error. The content ID

capacity is the supremum of all fingerprint code rates such that both E[Ni]

and Pmiss vanish as L→ ∞ [14]. For an i.i.d. signal process X, memoryless

degradation channel, and fixed structured content ID code (Def. 1 and Def. 3)

with mapping φ : X → F , the content ID capacity is given by C = I(F ;G)

19

[14], where G is a distorted version of fingerprint F and is stochastically

related to F via the conditional probability distribution PG|F . If φ is a

code design parameter, then C = maxφ I(F ;G). Roughly speaking, the

largest database that can be handled is M ≈ 2LC . When the signal X is

an ergodic stationary process and the degradation channel from X to Y

is stationary ergodic, we propose to use the closely related design criterion

CL = maxφ
1
L
I(F;G).

The normalized mutual information, 1
L
I(F;G), is a nondecreasing func-

tion of the number of classifiers J , which is fixed here. Furthermore, in

the analysis of Adaboost-based fingerprinting methods, we make the rea-

sonable assumption that the mutual information is approximately additive

over filters, i.e., I(F;G) ≈
∑J

j=1 I(Fj;Gj). This assumption is justified by

the near-independence between learned filters for both SPB and regularized

Adaboost.

3.4.2 Information-Theoretic Analysis of SPB

We now show that at each iteration 1 ≤ j ≤ J , SPB maximizes a lower

bound on the mutual information I(Fj;Gj) = H(Fj)−H(Fj|Gj) associated

with the joint probability distribution PFjGj induced by the choice (2.15) of

φj. Indeed we may rewrite (2.16) as follows. SPB selects the weak classifier

that minimizes the weighted error

hj = argmin
h∈H

[∑

t∈T+

w
(j)
t 1{h(xt, yt) = −1}+

∑

t∈T−

w
(j)
t 1{h(xt, yt) = 1}

]
, (3.9)

where the two error terms are the empirical weighted false-negative and false-

positive error probabilities, respectively. For a given classifier h ∈ H, the

empirical version of the false-negative error probability for matching finger-

prints, Pe,j = PFjGj(Fj 6= Gj), is given by

P̂e,j = P̂r(Fj 6= Gj |T+, h) =
∑

t∈T+

w
(j)
t 1{h(xt, yt) = −1}, (3.10)

and the empirical false-positive error probability, PFjPGj (Fj = Gj), is

P̂r(Fj = Gj |T−, h) =
∑

t∈T−

w
(j)
t 1{h(xt, yt) = 1}. (3.11)

20

First, we derive a link between P̂r(Fj 6= Gj |T+, h) and Ĥ(Fj|Gj). By

Fano’s inequality [34]

H(Fj|Gj) ≤ h2(Pe,j) + Pe,j log(|A| − 1), (3.12)

where Pe,j , PFjGj (Fj 6= Gj), A is the alphabet for Fj , and h2(Pe,j) is the

binary entropy function. One may expect that a similar inequality holds

using the empirical version of H(Fj|Gj) and Pe,j:

Ĥ(Fj |Gj) . h2(P̂e,j) + P̂e,j log(|A| − 1). (3.13)

We have observed empirically that inequality (3.13) is tight. Fig. 3.2a shows

the empirical equivocation Ĥ(Fj |Gj) and Fano’s upper bound h2(P̂e,j) +

P̂e,j log(|A| − 1) evaluated from 16,000 matching pairs and 16 classifiers.

In view of (3.10) and (3.13), minimizing P̂r(Fj 6= Gj |T+, h) is tantamount

to minimizing a tight upper bound on the empirical conditional entropy

Ĥ(Fj |Gj).

4 8 12 16

0.5

1

1.5

2

Empirical Equivocation H(F|G)
Fano upper bound

(a) Ĥ(Fj |Gj) and

h2(P̂e,j) + P̂e,j log(|A| − 1).

4 8 12 16
1

1.5

2

Empirical Entropy H(F)
Lower bound

(b) Ĥ(Fj) and

− log P̂r(Fj = Gj).

Figure 3.2: Simulation results of (3.13) and (3.15). The x-coordinate is the
classifier index j.

Next, we derive a link between P̂r(Fj = Gj |T−, h) of (3.11) and Ĥ(Fj).

When Fj and Gj are generated from nonmatching pairs, we model them by

a product distribution with identical marginals. From Lemma 2.10.1 in [34],

we have PFjPGj(Fj = Gj) ≥ 2−H(Fj), for two i.i.d. random variables Fj and

Gj. Hence H(Fj) is lower bounded by

H(Fj) ≥ − logPFjPGj(Fj = Gj). (3.14)

21

The empirical version of (3.14) would be

Ĥ(Fj) & − log P̂r(Fj = Gj |T−, h). (3.15)

Again, we have observed empirically that (3.15) holds and is tight from non-

matching pairs, as shown in Fig. 3.2b. Thus, minimizing P̂r(Fj = Gj |T−, h)

is tantamount to maximizing a tight lower bound on Ĥ(Fj).

From the above argument, we conclude that each iteration 1 ≤ j ≤ J of

SPB simultaneously minimizes an upper bound on H(Fj|Gj) and maximizes

a lower bound on H(Fj), thus maximizing a lower bound on I(Fj ;Gj) =

H(Fj)−H(Fj|Gj).

3.4.3 Temporal Dependencies

In content ID systems, slices are temporally overlapped to overcome misalign-

ment during identification, which results in temporally correlated fingerprints

Fj = {F1j , F2j, . . . , FLj} for each chosen classifier hj . In a memoryless chan-

nel where each Gij only depends on Fj only via Fij , we have [34]

I(Fj;Gj) ≤
L∑

i=1

I(Fij ;Gij). (3.16)

Equality holds when the input components {F1j , F2j , . . . , FLj} are indepen-

dent. Conversely,

I(Fj;Gj) ≪
L∑

i=1

I(Fij ;Gij), (3.17)

when {F1j, F2j , . . . FLj} are highly correlated. Thus we can increase the mu-

tual information by decorrelating temporal fingerprints. Many slice-wise dis-

tortions can be modeled as memoryless channels, including resizing, cropping

and rotation.

In the next section, we show that the classifiers’ ability to decorrelate

slices differs dramatically across different types of filters. In order to increase

mutual information by decorrelating temporal fingerprints, we propose to use

a regularizer to effectively eliminate from the candidate pool H those filters

that generate highly correlated fingerprints. Experiments demonstrate the

effectiveness of this regularizer.

22

3.5 Regularized Adaboost

A shortcoming of Adaboost for filter selection is the implicit assumption that

slices are drawn independently from some unknown distribution. In practice,

slice overlapping is necessary to overcome misalignment during identification.

For instance, the papers [28] and [29] use overlapping factors of 10/11 and

9/10 respectively. Then slices are significantly correlated. In this section,

we propose two regularizers to improve the content ID performance of the

Adaboost algorithm in Table 2.2.

3.5.1 Mutual Information of Gauss-Markov Process as a

Regularizer

The first regularizer we propose is based on a first-order stationary Gauss-

Markov process model for the filter response λ(X). The statistical structure

of the centered process is completely determined by the correlation coefficient

between two consecutive samples λ(Xi) and λ(Xi+1). Equivalently, the pro-

cess is characterized by the mutual information between λ(Xi) and λ(Xi+1)

[34]

I(λ) = −
1

2
log(1− ρ2), (3.18)

where ρ ∈ [−1, 1] is the correlation coefficient between λ(Xi) and λ(Xi+1).

The functional I(λ) captures the filter’s ability to decorrelate consecutive

slices and can be easily estimated from the training dataset. In Fig. 3.3, we

show the estimated I(λ) for the family of Haar-like filters of Fig. 2.2 applied to

video data. Within the family, type (b), (e) and (f) filters compute temporal

differences and decorrelate temporal overlapping slices extremely well. Type

(a) filters compute the average pixel intensity across the 3-D volume and

produce highly correlated responses due to high temporal overlapping. For

the spatial difference filters, type (d) filters produce less correlated responses

than type (c) filters because horizontal camera movement is normally more

frequent than vertical movement, resulting in more spatial difference in the

horizontal direction.

From (3.18), we see that for small |ρ|, I(λ) can be approximated by a linear

function of |ρ|, while for large |ρ|, I(λ) increases much faster than linearly.

We penalize filters with large mutual information between consecutive output

23

Figure 3.3: Mutual information I(λ) for the family of Haar-like filters on video
slices.

samples using the new objective function

eREG
j =

∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}+ γI(h), (3.19)

where I(h) = I(λ) indicates the weak classifier h is parameterized by the

filter λ, and γ ≥ 0 is the regularization parameter which can be chosen by

cross validation. If γ = 0, filters are selected by their weighted error on the

training dataset without considering their ability to decorrelate overlapping

slices. If γ → ∞, filters are chosen solely based on I(h). By varying the

parameter γ, one can explore the tradeoff between a filter’s ability to classify

a single slice and to decorrelate overlapping slices. The mutual information

regularized (MIR) Adaboost is given in Table 3.1 by replacing R(h) with

I(h).

3.5.2 Average Correlation Coefficient as a Regularizer

Our second regularizer makes no Markovian or stationarity assumption about

the filter response process. For a given filter λ (such as those from Fig. 2.2),

the response λ(X) = {λ(Xi), 1 ≤ i ≤ L} is an L-dimensional random vector.

Denote by ρ(s, t) ∈ [−1,+1] the correlation coefficient between two random

variables λ(Xs) and λ(Xt). Define the average correlation coefficient (ACC)

of λ(X) as

ρ(λ) ,
1

L2 − L

∑

s 6=t

|ρ(s, t)|. (3.21)

The functional ρ(λ) captures the filter’s ability to decorrelate overlapping

24

Table 3.1: Regularized Adaboost for filter and quantizer selection. R(h) is a
generic regularizer. We use R(h) = I(h) for MIR Adaboost and R(h) = ρ(h) for
ACCR Adaboost.

Input: training set T , {(xt, yt, zt) ∈ X 2×{±1}, t ∈ T }

Initialization: define equal weights w
(1)
t = 1/|T |, ∀t ∈

T
Do for j = 1, . . . , J

1. Choose the classifier hj that minimizes the
weighted error over h ∈ H

eREG
j =

∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}+ γR(h). (3.20)

2. Compute αj =
1
2
log

1−eREG
j

eREG
j

.

3. Update the weights

w
(j+1)
t = w

(j)
t exp{−αjzthj(xt, yt)}.

4. Normalize the weights so that
∑

t∈T w
(j+1)
t = 1.

Output: J pairs of filter and quantizer {(λj , Qj)}
J
j=1

parameterizing the chosen J classifiers {hj}Jj=1.

slices and can be easily estimated from the training dataset. Similarly to

I(λ) in Fig. 3.3, we observe a similar contrast pattern across different types

of filters, as shown in Fig. 3.4. But I(λ) displays a larger dynamic range

than ρ(λ) due to its heavier penalty for large ρ.

We penalize filters with large ACC using the new objective function

eREG
j =

∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}+ γρ(h), (3.22)

where ρ(h)=ρ(λ) indicates the weak classifier h is parameterized by the filter

λ. The ACC regularized (ACCR) Adaboost is given in Table 3.1 by replacing

R(h) with ρ(h).

25

Figure 3.4: Average correlation coefficient ρ(λ) for the family of Haar-like filters
on video slices.

3.5.3 Learning-Theoretic Analysis of the Regularized
Adaboost Algorithm

In this section, we show that the regularized Adaboost in Table 3.1 fits an

additive logistic regression model

δ(x, y) =
∑

1≤j≤J

αjhj(x, y),

under the regularized exponential loss function

L(z, δ(x, y)) , exp{−zδ(x, y)}+ γ
∑

1≤j<J

2 sinh(αj)R(hj). (3.23)

The analysis is inspired by [35, 36] and does not depend on the specific form

of the regularizer. As long as the regularizer is a functional of h, it can

be plugged into the regularized Adaboost algorithm and the same analy-

sis applies, which makes this approach fairly general. Hence, we show the

derivation for a generic regularizer R(h).

Using the regularized exponential loss function (3.23), at iteration j, one

must solve

(αj , hj) = arg min
α∈R,h∈H

[∑

t∈T

w
(j)
t exp{−αzth(xt, yt)}+ 2 sinh(α)γR(h)

]
,

(3.24)

where w
(j)
t = exp{−ztδj−1(xt, yt)} and

26

δi(x, y) ,
∑

1≤j≤i

αjhj(x, y).

Using the fact that h(x, y) ∈ {−1, 1}, the objective function of (3.24) can

be expressed as


e−α

∑

h(xt,yt)=zt

w
(j)
t + eα

∑

h(xt,yt)6=zt

w
(j)
t


+

(
eα − e−α

)
γR(h),

which in turn can be written as

[
(
eα − e−α

)∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}+ e−α

∑

t∈T

w
(j)
t

]
+
(
eα − e−α

)
γR(h).

Since
∑

t∈T w
(j)
t = 1, the objective function becomes

2 sinh(α)

[∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}+ γR(h)

]
+ e−α· (3.25)

The minimum over h ∈ H is given by

hj = argmin
h∈H

∑

t∈T

w
(j)
t 1{h(xt, yt) 6= zt}+ γR(h). (3.26)

Plugging hj into (3.25) and solving for α, we obtain

αj =
1

2
log

1− eREG
j

eREG
j

, (3.27)

where eREG
j is given by (3.20). Equation (3.26) and (3.27) are equivalent to

Step 1 and 2 of the regularized Adaboost algorithm in Table 3.1.

3.6 Experimental Results and Discussion

In this section, we test the proposed MIR and ACCR Adaboost algorithms

for both video and audio content ID systems. The results are compared with

SPB in [29] and [28]. We examine the content ID performance based on the

two decoders defined in Section 3.3.

27

3.6.1 Video Fingerprinting

Experimental Setup

The video dataset we use contains 1,700 randomly selected videos from the

publicly available Internet Archive videos (IACC.1.C) [37]. The archive cov-

ers a variety of genres including news, politics, animation, education, ani-

mals, vehicles, music and sports. We randomly divide the 1,700 videos into

training, validation, and testing subsets consisting of 100, 100, and 1,500

videos respectively. From the training videos, we generate 20,000 matching

and 20,000 nonmatching pairs (|T | = 40, 000) of 1 sec video sequences. The

training pairs are generated from the following video distortions :

1. Cropping of 25%;

2. Resizing to CIF (352 × 288);

3. Frame rate change to 15 fps;

4. WMV lossy compression at 256 kb/s;

5. Rotation at 10 degrees;

6. Shifting downward and left by 20 pixels.

We adopt the same video normalization as in [29]. Videos are resampled at

10 fps, converted to grayscale, and resized to QVGA (320×240). These pre-

processing steps aim to make the fingerprinting algorithm robust to frame

rate change, color variation, and image resizing. After preprocessing, we

extract intermediate features from each image before applying filters. The

intermediate feature used in our experiments and in [29] is block mean lumi-

nance (BML), which is perceptually significant and reduces computational

complexity. The BML is extracted on 36 (4× 9) blocks per frame. One sec-

ond of intermediate features (4 × 9 × 10 blocks) becomes the basic building

block (a slice) for fingerprint extraction.

The training dataset contains an equal number of pairs from each distor-

tion, and J = 16 filters and quantizers are selected by SPB or regularized

Adaboost. Each filter output is quantized into 4 levels (A = {a, b, c, d}) and

converted to binary fingerprint by gray code. As noted in Section 2.2.2, SPB

28

chooses each quantizer from 680 and 969 candidate quantizers for the video

and audio fingerprinting systems respectively. Besides the high computation

cost, these candidate quantizers are not chosen based on any optimality cri-

terion for content ID performance. In the paper [27], where |A| = 2, the

authors noted that all thresholds learned by APB were approximately at the

median of the filter response distribution. Putting a threshold at the median

maximizes the bit entropy. Similarly, for |A|-level quantization, we propose

to use the |A| quantiles of the filter response distribution as the thresholds for

a given filter. This quantization scheme produces bins with equal probabili-

ties (1/|A|) and therefore maximizes bit entropy. It also makes the training

process much faster (nearly three orders of magnitude faster than evaluating

19 candidate thresholds). Note that achieving maximum entropy for each

bit is a desirable property for many hashing algorithms [5, 12, 22, 38]. How-

ever, uniform distribution does not necessarily lead to maximization of the

mutual information (except for some simple channels, e.g., symmetric chan-

nels), which is the proposed objective function for selecting hash functions

in Section 3.4.1. Here, we choose such a quantization rule mainly due to the

simpler training requirement.

We choose the regularization parameter λ by validation on a few candidate

choices. The validation set contains 100 videos independent from both train-

ing and testing. For the single-output decoder, we select the λ that generates

the smallest PFN at a fixed PFP of interest. While for the variable-size list

decoder, we seek the smallest Pmiss at a fixed E[Ni] of interest.

The training time for regularized Adaboost is the same as SPB. To select

16 filters, the training time for both SPB and regularized Adaboost is 596 s

on a desktop with Intel Xeon W3530 @ 2.80GHz processor and 6GB RAM.

Selected Filters

In all our experiments, SPB selects more filters from the high-correlation

group (type (a), (c) and (d) filters), whereas filters chosen by regularized

Adaboost are dominated by the low-correlation group (type (b), (e) and

(f) filters). As Adaboost reweighs training examples after each iteration,

to correctly classify those higher weighted examples (incorrectly classified in

previous iterations) may require a different type of filters. Thus, SPB se-

lects different types of filters to best fit the training examples. However, in

29

regularized Adaboost, reducing weighted classification error is not the only

objective at each iteration. The ability to decorrelate overlapping slices in

order to increase mutual information is also considered. The regularizers

effectively demote filters of type (a), (c) and (d) which generate highly corre-

lated responses on overlapping slices. The superiority of the low-correlation

filters is demonstrated next in a comparative test.

Comparative Test

To compare the content ID performance of SPB and regularized Adaboost,

we generate 25, 200 queries of 10-second intermediate feature sequences by

applying the six distortions to the 1,500 testing videos, where the original

1,500 testing videos serve as the database in estimating PFN , Pmiss and E[Ni].

To estimate PFP of the single-output decoder, we use the leave-one-subject-

out (LOSO) scheme. In each run, we choose the samples from one testing

video as the queries, and the remaining testing videos serve as the database.

Fig. 3.5 shows the content ID performance under the single-output decoder

and the list decoder. Irrespective of the regularizer and decoder used, regu-

larized Adaboost outperforms SPB. Fig. 3.5 reports the overall performance

under different video distortions. The performance under each individual

distortion follows the same trend. Note that E[Ni] can be much larger than

one, but we only show E[Ni] < 1 as they represent the most relevant region

for a practical content ID system.

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

ACCR Adaboost
MIR Adaboost
SPB

(a) Single-output decoder.

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

E[N
i
]

P
miss

ACCR Adaboost
MIR Adaboost
SPB

(b) List decoder.

Figure 3.5: Video content ID performance.

30

3.6.2 Audio Fingerprinting

Experimental Setup

The audio dataset is a collection of 1,700 songs spanning a variety of mu-

sic genres including classical, vocal, rock and pop. We randomly divide the

1,700 songs into training, validation, and testing subsets consisting of 100,

100, and 1,500 songs respectively. From the training songs, we generate

22,400 matching and 22,400 nonmatching SSC image pairs. The audio dis-

tortions are created by the software GoldWave [39] and the audio distortions

considered in this chapter are as follows:

1. Bandpass filtering (BPF): 400 Hz to 4 kHz bandpass filtering.

2. Echo (E): Tunnel reverberation.

3. Equalization 1 (EQ1): Boost bass.

4. Equalization 2 (EQ2): Recording industry association of America (RIAA).

5. Audio slice misalignment (ASM): 92.9 ms shift.

6. Sampling rate change (SR): Down-sampling to 16 kHz.

7. Volume change (V): Attack-Decay-Sustain-Release (ADSR) envelop.

8. WMA encoding (WMA): 64 kb/s WMA encoding.

On top of the above distortions, each audio signal is encoded by 96 kb/s MP3

encoding.

We follow the same experimental setup as in [28] for audio fingerprinting.

An audio signal is first normalized to mono with 11,025 Hz sampling rate, and

then converted into overlapping segments by a window with size 371.52 ms

and shift 185.76 ms. For every segment, an M-dimensional spectral subband

centroid (SSC) vector is computed [40] fromM = 16 critical subband linearly

spaced in mel scale from 300 Hz to 5300 Hz. A SSC image, built from N = 10

consecutive SSC vectors, is the basic building block (a slice) for fingerprint

extraction. For every shift of 185.76 ms, an SSC image is obtained from an

audio slice of length 2.04 s.

31

Different from the 3-D Haar-like filters for video (see Fig. 2.2), the candi-

date filters for audio are 2-D Haar-like filters (see Fig. 3.6) applied onM×N

SSC images.

(a) (c) (b) (d) (e) (f)

Figure 3.6: 2-D Haar-like filters [28]: The filter outputs are the average
difference between values in light and dark regions.

The training set contains an equal number of SSC image pairs from each

distortion. Similar to video fingerprinting, J = 16 filters are selected. Each

filter response is quantized into A = 4 levels and converted to binary finger-

print by gray code. The regularization parameter γ is chosen by validation

on a few candidate choices. To select 16 filters, the training time for both

SPB and regularized Adaboost is 152 s on a desktop with Intel Xeon W3530

@ 2.80GHz processor and 6GB RAM.

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

ACCR Adaboost
MIR Adaboost
SPB

(a) Single-output decoder.

0 0.05 0.1 0.15 0.2
10

−3

10
−2

10
−1

10
0

E[N
i
]

P
miss

ACCR Adaboost
MIR Adaboost
SPB

(b) List decoder.

Figure 3.7: Audio content ID performance.

Comparative Test

To compare the content ID performance of SPB and regularized Adaboost,

we generate 112,000 queries of 10-second SSC images equally divided by the

eight considered distortions. As in [28], the overlapping factor between two

32

consecutive slices is 10/11 and a 10-second query corresponds to L = 44

slices.

Fig. 3.7 shows the audio content ID performance under both decoders.

Irrespective of the regularizer and decoder used, regularized Adaboost out-

performs SPB. Moreover, ACCR Adaboost and MIR Adaboost perform com-

parably.

Audio Slice Misalignment

Most content ID systems use a high overlapping factor for fingerprint ex-

traction. Though slice overlapping increases system complexity, it is a prac-

tical compromise to overcome misalignment between query fingerprint and

database fingerprint. For our audio content ID system, a 2.04 s subfinger-

print is extracted for every 185.76 ms shift. So the worst misalignment we

will encounter is 92.9 ms, which represents less than 5% of a subfingerprint.

To further examine the effect on misalignment for audio content ID sys-

tems, we add the worst slice misalignment to each distortion. As shown in

Fig. 3.8, MIR Adaboost and ACCR Adaboost still outperform SPB under

both decoders. Comparing Fig. 3.7 with Fig. 3.8, both SPB and regularized

Adaboost perform worse under slice misalignment. However, the misalign-

ment has a stronger impact on MIR Adaboost than ACCR Adaboost because

MIR penalizes filters generating highly correlated responses on two consec-

utive slices, where correlation between two consecutive slices helps alleviate

slice misalignment. Note that the misalignment problem does not exist for

our video query fingerprints because the shift is a single frame.

3.7 RGB-D Content Identification

Over the years, many image hashing algorithms have been proposed and have

demonstrated good performance in large-scale similarity search applications

[41]. Despite promising results, they still face the limitation that images are

2-D projections of the 3-D world and depth information is lost. Fortunately,

advances in sensing technology have now made it possible to equip images

with depth information. In particular, Xbox Kinect cameras are inexpensive

and output both RGB and depth [42]. Kinect was originally designed for

33

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

ACCR Adaboost
MIR Adaboost
SPB

(a) Single-output decoder.

0 0.05 0.1 0.15 0.2
10

−3

10
−2

10
−1

10
0

E[N
i
]

P
miss

ACCR Adaboost
MIR Adaboost
SPB

(b) List decoder.

Figure 3.8: Audio content ID performance with maximum misalignment.

gaming, but soon found applications to various research problems in Signal

Processing, Computer Vision, Robotic Navigation, and Computer Graphics.

The application of Kinect to real-time human pose recognition won the best

paper at the top computer vision conference CVPR [43] in 2011. We expect

that RGB+depth (RGB-D) data will become widespread in the future, and

that databases such as [44, 45, 46, 47] will be commonplace. Since the com-

bination of RGB and depth information is intrinsically more suitable than

RGB alone or depth alone for representing scene content, the central goal

of this chapter is to investigate how to combine RGB and depth to generate

better hash codes for various similarity search applications such as RGB-D

content ID and RGB-D near-duplicate image detection (NDID).

3.7.1 Kinect Depth Image

Depth information has traditionally been either estimated from RGB images

using stereo matching, which is computationally expensive, or measured by

expensive laser scanners. However, recent development in sensing technology

makes depth acquisition computationally and financially more affordable.

In particular, Xbox Kinect (see Fig. 3.9) outputs real-time, high-quality,

synchronized videos of RGB and depth (RGB-D) at a cost of about one

hundred dollars.

The Kinect sensor consists of an infrared laser emitter, an infrared camera,

34

Figure 3.9: Xbox Kinect.

and an RGB camera, as shown in Fig. 3.9. The emitter emits fixed patterns

to the environment, and the infrared camera receives the reflected signal.

Then depth information is measured by a triangulation process [48]. The

current Kinect works only in indoor environments and has a working range

of 0.5 m to 5.0 m according to the specifications [48]. Still it has the potential

to make consumer-grade video cameras produce RGB-D videos and project

them in a 3D TV [49].

Following the introduction of Kinect, many datasets have been created

and made publicly available including the NYU depth V2 dataset [44], ADSC

human daily activity dataset [47], LIRIS human activities dataset [45], and

University of Washington RGB-D object dataset [46]. Among them, the

NYU depth V2 dataset, comprised of 464 scenes taken from three cities,

captures the most comprehensive indoor environments and is used in all of

our experiments.

Fig. 3.10 shows some random RGB-D images from the NYU depth V2

dataset. Depth images are not compressed, and each pixel is presented by

the 11 bits outputted by Kinect. It is clear that depth images are quite noisy.

There are missing pixel values which are caused by shadows from the disparity

between the infrared emitter and camera or random missing or spurious

values from specular or low albedo surfaces [44]. These missing values could

be filled by a colorization scheme [44], but it is computationally expensive

to fill one image, which makes it impractical for application demanding real-

time search. Moreover, the intermediate feature uses only the block average

information which alleviates the missing value problem.

35

Figure 3.10: NYU depth dataset.

3.7.2 Statistical Difference between RGB and Depth Images

Intuitively, depth images contain more homogeneous patches and fewer lo-

calized features, such as lines, edges and corners. One way to quantify this

is to fit the fine-scale wavelet coefficients into a two-parameter generalized

Gaussian distribution (GGD) model [50, 51, 52]

PX(x : s, p) =
exp (−|x/s|p)

Z(s, p)
, (3.28)

where the normalization constant is Z(s, p) = 2 s
p
Γ(1

p
) with Γ denoting the

gamma function. Here, s is the standard deviation and p is the shape pa-

rameter. The GGD model contains the Gaussian and Laplacian probability

density functions (PDFs) as special cases, using p = 2 and p = 1, respectively.

36

For decreasing values of p, the tails of the distribution become increasingly

flat.

(a) (b)

(c) (d)

Figure 3.11: Log histogram of Haar wavelet coefficient in LH subband: (a)
RGB image; (b) depth image; (c) GGD fit for RGB; (d) GGD fit for depth.

Fig. 3.11 shows the fit of the GGD model to the log histogram of Haar

wavelet coefficients in the LH subband, which captures the image’s horizontal

edges. The GGD parameters are estimated by maximizing the likelihood of

the data [53]. A larger shape parameter for the depth image suggests that

the depth image contains fewer horizontal edges than the RGB image. This

is confirmed by the absence of book edges in Fig. 3.11b.

Table 3.2: Statistics of the estimated shape parameters.

Range Mean
RGB [0.15, 0.76] 0.4045
Depth [0.16, 1.27] 0.6008

37

To be statistically significant, we fit the GGD model to another 1400

RGB+depth image pairs and summarize the estimated shape parameters in

Table 3.2. The large difference between mean values of the shape parameters

is consistent with our intuition that depth images contain more homogeneous

regions and fewer localized features.

3.7.3 RGB-D Content ID Systems

Depth Features

As Fig. 3.11 illustrates, depth images contain more homogeneous patches and

fewer localized features, such as lines, edges and corners, than RGB images.

If the intermediate feature x ∈ X consists of averages of homogeneous spa-

tiotemporal patches of a depth video segment, x is approximately a sufficient

statistic for the depth video segment. In practice, determining the number

of homogeneous patches and their locations can be difficult and time con-

suming, and thus we propose the block mean depth (BMD) as intermediate

features for depth video. First, each depth frame is divided into Nr × Nc

blocks (Nr rows and Nc columns). The intermediate feature x at block Br,c,t

in the r-th row, c-th column and t-th (1 ≤ t ≤ T) frame of a depth video

segment is calculated as

x(r, c, t) =
1

|Br,c,t|

∑

(i,j)∈Br,c,t

d(i, j, t), (3.29)

where |·| denotes set cardinality, and d(i, j, t) is the depth value at coordinates

(i, j) in the t-th frame. Hence, the feature space X = RNr×Nc×T . The

averaging operation in the BMD feature makes it relatively robust to the

acquisition noise in depth frames. We use the BML as the intermediate

feature for RGB videos.

The Hybrid System

As illustrated in Fig. 3.11, most humans can reasonably infer the depth

information from the corresponding RGB image. A mathematical algorithm

has recently been developed to estimate depth information from a single RGB

38

image [54]. However, this kind of inference requires global image processing,

and local features such as block mean luminance (for RBG) and block mean

depth are more likely to be independent. Thus we can build a hybrid system

to harvest the diversity gain, when both RGB and depth are available in

video signals.

Figure 3.12: Fingerprint extraction for a hybrid system.

Fig. 3.12 illustrates our RGB-D fingerprint code design. We train half of

the filters and quantizers from RGB intermediate features, and the other

half from depth intermediate features. Thus for each RGB-D video, half of

the fingerprint is generated from RGB and half from depth. Then filtering

and quantization are applied, and the combined final fingerprint is used to

identify the video in the hybrid system.

Performance Evaluation

Experimental Setup: The NYU Depth V2 dataset captures comprehen-

sive indoor environments and used in our experiments. It is comprised of

464 indoor scenes taken from three cities. Each scene is recorded as a short

RGB-D video. We exclude extremely short videos as well as videos with

frame rate less than 15 fps from our experiments. The 380 videos left are

randomly divided into a training set of 100 videos and a testing set of 280

videos. From the training data, we generate 16,000 matching and 16,000

nonmatching pairs (|T | = 32, 000) of sequences of intermediate features from

10 consecutive synchronized RGB and depth frames. The training pairs are

39

generated from the video distortions illustrated in Fig. 3.13: 50% cropping,

vertical mirroring, frame rotation of 15 degrees and frame shifting down-

ward and left by 100 pixels. We consider geometric distortions only as they

represent the most challenging video distortions to detect.

Figure 3.13: Sample distorted images. Top row: Original RGB and depth
images. Bottom two rows: Distorted RGB and depth images. Distortions from
left to right are: cropping of 50%, vertical mirroring, rotation of 15 degree and
shift downward and left by 100 pixels.

We adopt the same video normalization as in [29]. Before extraction

of intermediate features, both RGB and depth videos are resampled at 10

frames per second, converted to grayscale (RGB only) and resized to QVGA

(320x240). These preprocessing steps aim to make the fingerprinting algo-

rithm robust to frame rate change, color variation, and frame resizing. After

preprocessing, block mean luminance (BML) and block mean depth (BMD)

are extracted from RGB and depth video clips on 36 (Nr = 4, Nc = 9) blocks

per frame. The temporal length of the intermediate features is 1 second,

and the query length is 5 seconds with overlapping factor of 9/10. We train

J = 16 classifiers each for RGB and depth. The first 8 classifiers from RGB

and depth are combined to generate hybrid fingerprints. Each filter output

is quantized into 4 levels. Hence our query fingerprint is 1312 bits long. For

regularized Adaboost, we use MIR Adaboost with a regularization parameter

of γ = 0.03 for both RGB and depth.

Experimental Results: The first result we notice from Fig. 3.14 is that

the hybrid system outperforms the RGB-alone and depth-alone systems for

40

all the considered distortions, irrespective of the fingerprinting algorithms

used. We expect hybrid systems to perform better, but the gain is rather

significant, often in orders of magnitude. In Fig. 3.14d, the hybrid system

even presents a perfect ROC curve for the 20,500 queries in our experiment.

Secondly, depth systems outperform RGB systems uniformly. This is sur-

prising because depth is often considered as a supplement to RGB. One

possible explanation is that the rich information of RGB is compressed heav-

ily by the black mean features, and it gives an unfair advantage to depth.

Experiments with other intermediate features are on the way.

Lastly, regularized Adaboost performs significantly better than SPB, irre-

spective of the modalities used. This is just another testimony to the superior

performance of the regularized Adaboost algorithm, in addition to the video

and audio results in Section 3.6.

Statistical Interpretation: In general, the superiority of regularized Ad-

aboost over SPB stems from its ability to select more independent features. A

similar phenomenon applies here, especially when we consider RGB features

and depth features.

We first define the within-modality correlation of two filters λj and λk

(1 ≤ j, k ≤ J) as

Rm(j, k) =
E
[
(λmj (X

m)− µmj)(λ
m
k (X

m)− µmk)
]

σmj σ
m
k

, (3.30)

where m ∈ {RGB, D} denotes RGB and depth (D) respectively, Xm is the

intermediate feature of one segment from the corresponding modality, µmj

and σmj are the mean and standard deviation of λmj (X
m). We also define the

between-modality correlation

RRGB-D(j, k) =
E
[
(λRGB

j (XRGB)− µRGB
j)(λDk (X

D)− µD
k)
]

σRGB
j σD

k

, (3.31)

the average absolute within-modality correlation,

R
m
=

2

J2 − J

J−1∑

j=1

J∑

k=j+1

|Rm(j, k)|, (3.32)

41

and the average absolute between-modality correlation,

R
RGB-D

=
1

J2

J∑

j=1

J∑

k=1

|RRGB-D(j, k)|, (3.33)

of these filters. The expectations are estimated from the training dataset,

and their values are shown in Table 3.3. The average between-modality

correlation is almost an order of magnitude smaller than the average within-

modality correlation.

Table 3.3: Average within-modality and between-modality correlations.

R
RGB

R
D

R
RGB-D

SPB 0.1496 0.1025 0.0208
Regularized Adaboost 0.2303 0.1705 0.0199

We also show in Fig. 3.15 the distributions of Hamming distance for match-

ing and nonmatching pairs under the vertical mirroring distortion (other dis-

tortions exhibit the same trend). The better histogram separation of the

second row is consistent with regularized Adaboost’s superior content ID

performance in Fig. 3.14d over SPB in Fig. 3.14c. The clear improvement in

histogram separation from the left two columns (single modality) to the last

column (RGB-D) is consistent with the better ROC curves of hybrid systems

in Fig. 3.14c and Fig. 3.14d. Overall, a hybrid system based on regularized

Adaboost performs significantly better than the other systems we considered.

42

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(a) Cropping

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(b) Cropping

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(c) Vertical mirroring

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(d) Vertical mirroring

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(e) Rotation

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(f) Rotation

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(g) Shift

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

RGB
Depth
Hybrid

(h) Shift

Figure 3.14: ROC curves for SPB (1st column) and regularized Adaboost (2nd
column) under various distortions.

43

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

Figure 3.15: Distributions of Hamming distance for matching and nonmatching
pairs for the vertical mirroring distortion. First row from left to right are SPB
for: depth, RGB, and RGB-D. Second row from left to right are regularized
Adaboost for: depth, RGB, and RGB-D.

44

CHAPTER 4

SNR MAXIMIZATION HASHING

A popular family of hash functions, which assumes centered (mean-subtracted)

inputs x ∈ Rd, a projection matrix W ∈ Rd×k, and binary scalar quantiza-

tion, is given by

h(x,W) = sgn(W Tx) ∈ {±1}k, (4.1)

where sgn(v) = 1 if v ≥ 0 and −1 otherwise. For a matrix or vector, sgn(·)

denotes the element-wise operation. Many hashing algorithms fall in this

category [2, 12, 22, 6, 55]. Other families of hash functions based on learning

kernels [56], multilayer neural networks [11, 7], and boosting [28, 57] are more

expensive to train and evaluate.

Traditionally, W was generated by randomly sampling a distribution that

satisfies the locality-sensitive property [20, 4]. However, data-independentW

can lead to inefficient codes, and thus require much longer codes (larger k)

to work well. Recently, learning W from training datasets has been shown to

outperform data-independent W for the same code length [12, 6, 7, 55]. To

learn W , the nondifferentiable and nonconvex sgn function of (4.1) is often

approximated by either the identity function h(x;W) = W Tx [12, 22, 6],

which obviously introduces a large approximation error when the magnitude

of W Tx is large, or the hyperbolic tangent function tanh(W Tx) [55], which

can cause the optimization to be trapped in a bad local optimum due to the

nonconvexity of the tanh function.

In this chapter, we introduce SNR maximization as a candidate for se-

lecting the projection directions. We show that this approach minimizes

the hashing error probability under a Gaussian model. We propose a SNR

maximization hashing (SNR-MH) algorithm that iteratively finds uncorre-

lated projections that maximize the SNR. Our method does not require any

approximation to the sgn function and finds the global optimal solution.

SNR has been used as the performance measure in many applications, such

45

as lossy compression [58], matched filtering [59], relay functionality in mem-

oryless relay networks [60], and beamforming in narrowband sensor arrays

[61, 62]. Among these applications, matched filtering and beamforming are

closely related to our linear projection learning. In both matched filtering

and beamforming, the observed signalY = X+Z ∈ Rd consists of the desired

signal X ∈ Rd corrupted by independent additive noise Z ∈ Rd.

In matched filtering, the signal X is deterministic and consists of temporal

samples. In beamforming, the signal X is stochastic and consists of samples

from spatially separated sensors. In both cases, the goal is to construct a

linear filter w∗ ∈ Rd such that the signal-to-noise ratio at the filter output is

maximized:

w∗ =argmax
w

wTRXw

wTRZw
, (4.2)

where RZ , E[ZZT] is the noise auto-correlation matrix and RX , E[XXT]

is the signal autocorrelation matrix. Note that RX reduces to RX = XXT

when X is deterministic. The solution to (4.2) can be obtained by solving

a generalized eigenproblem. To guarantee uniqueness of the solution, the

noise power is usually normalized, e.g., wTRZw = 1. For matched filtering,

when Z is additive white Gaussian noise (AWGN) with covariance matrix

RZ = σ2
ZI, the solution w∗ is a scaled version of X, i.e., w∗ = cX, which

not only maximizes SNR, but can be used for optimal detection as well.

For beamforming, w∗ is the optimal transformation that linearly combines d

different copies of the desired signal from d sensors.

Unlike matched filtering and beamforming, hashing does not aim to recover

X. Rather, the decision to be made is whether two signals X and Y are

related or not. The decision is not based on X and Y directly but on binary

hash codes extracted from X and Y. Moreover, hashing learns k projection

vectors {w1, . . . , wk} instead of just one vector as in the matched filtering

and beamforming applications.

To our knowledge, SNR has not yet been used as the performance measure

for hashing in the literature. In the next section, we show that maximizing

SNR is equivalent to minimizing the hashing error probability in a Gaussian

model. In Section 4.2, we derive the SNR-MH algorithm and relate it to

other hashing algorithms. Section 4.3 contains simulation results for both

synthetic and real datasets, demonstrating SNR-MH’s superior performance

in learning compact binary codes.

46

4.1 Statistical Model

In this section, we introduce a second-order statistical model for hashing and

motivate SNR maximization by showing that under an additional Gaussian

assumption, a larger SNR results in a smaller hashing error probability.

4.1.1 Statistical Model for Hashing

The second-order statistical model consists of the following ingredients:

(A1) The signal X ∈ Rd follows a distribution PX with mean 0 and covari-

ance matrix CX ∈ Rd×d.

(A2) If the query item Y is related to X, the following distortion model

holds:

Y = X+ Z, (4.3)

where the noise Z is independent of X and follows a distribution PZ

with mean 0 and positive-definite covariance matrix CZ .

(A3) If X and Y are unrelated, Y is independent of X and follows a distri-

bution PY.

The hashing code is as follows:

(A4) The projection matrixW ∈ Rd×k, k ≤ d is such that the k×k matrices

W TCXW and W TCZW are both diagonal.1 Hence, the transformed

feature components {wTi X}ki=1 are uncorrelated, and the transformed

noise components {wTi Z}
k
i=1 are also uncorrelated. Denote by {σ2

i }
d
i=1

and {λ2i }
d
i=1 the diagonal entries ofW

TCXW andW TCZW respectively.

For the i-th projection, we have wTi Y = wTi X + wTi Z. We define the

i-th signal-to-noise ratio for the i-th projection as

SNRi ,
σ2
i

λ2i
, 1 ≤ i ≤ k. (4.4)

1The existence of such W is guaranteed [63, Theorem 15.3.2].

47

(A5) Binary fingerprints are extracted using the component-wise sgn func-

tion:

F = sgn(W TX) ∈ {±1}k

G = sgn(W TY) ∈ {±1}k, (4.5)

with Fi = sgn(wTi X) and Gi = sgn(wTi Y), 1 ≤ i ≤ k.

(A6) Upon seeing a pair (x,y), a binary decision about whether x and y are

similar or dissimilar is made based on the fingerprints f = sgn(W Tx)

and g = sgn(W Ty). Similar and dissimilar (x,y) pairs are defined as

follows:

Similar (S) : x and y are related by (4.3);

Dissimilar (D) : x and y are independent.

(A7) The decision rule is

dH(f, g)
S

⋚
D

τ, (4.6)

where dH(f, g) ,
∑k

i=1 1{fi 6=gi} is the Hamming distance between f and

g, and τ ∈ {0, 1, . . . , k} is a decision threshold. The rule declares

(x,y) similar when dH(f,G) ≤ τ and dissimilar when dH(f,G) > τ . A

refinement on (4.6) would be to randomize the decision in the event that

dH(f, g) = τ . This make it possible to achieve a desired false-positive

error probability, as will be discussed in Sections 4.3.1 and 5.2.

These assumptions on the hashing system are motivated by practical de-

signs such as in [5, 2, 12, 22, 6, 55]. In particular, the uncorrelatedness

property of hash codes in (A4) was first proposed in [5] and used by many

subsequent hashing algorithms [12, 64, 65]; hash functions in the form of

(A5) were used in [2, 12, 22, 6, 55], and the decision rule (A7) is widely used

as Hamming distance can be computed extremely fast using bitwise XOR.

4.1.2 Error Probability Analysis under Gaussian Model

Based on the above statistical model, we analyze the hashing error probabili-

ties under the additional assumption that X ∼ N (0, CX) and Z ∼ N (0, CZ).

48

For Gaussian random vectors, uncorrelatedness of W TX and W TZ implies

independence. It then follows from (A4) that {Fi}ki=1 are independent and

from (A2) that so are {Gi}ki=1. For non-Gaussian X and Y, we would only

have uncorrelated {Fi}ki=1 and uncorrelated {Gi}ki=1.

Denote by PFG(f, g) =
∏k

i=1 PFiGi(fi, gi) the joint distribution of (F,G)

when X and Y are similar and by PFPG(f, g) =
∏k

i=1 PFiPGi(fi, gi) the dis-

tribution when X and Y are dissimilar. The performance of the hashing

system is quantified using probability of miss

PM , PFG{dH(F,G) > τ} (4.7)

and probability of false alarm

PF , PFPG{dH(F,G) ≤ τ}. (4.8)

In the rest of this section, we prove the following proposition with the help

of Lemmma 1 and 2 below.

Proposition 1. Under the Gaussian model, for a fixed τ , PM is a decreasing

function of {SNRi}ki=1 and PF is independent of {SNRi}ki=1.

Proof. When F = sgn(W TX) and G = sgn(W TY) are generated from inde-

pendent X and Y, we have

PFiPGi{Fi 6= Gi} =
1

2
, 1 ≤ i ≤ k. (4.9)

As the pairs (Fi, Gi), 1 ≤ i ≤ k are independent, dH(F,G) follows the bino-

mial distribution with k trials and parameter 1
2
:

dH(F,G) ∼ Bi(k,
1

2
). (4.10)

Hence, PF does not depend on {SNRi}ki=1.

When F and G are generated from similar X and Y, define

pi , PFiGi{Fi 6= Gi}, 1 ≤ i ≤ k. (4.11)

Since the pairs (Fi, Gi), 1 ≤ i ≤ k are independent, the Hamming distance

between F and G follows the Poisson binomial distribution (PBD) with pa-

49

rameter {p1, . . . , pk} ∈ [0, 1]k:

PFG{dH(F,G) = l} =
∑

A∈El

∏

i∈A

pi
∏

j∈Ac

(1− pj), 0 ≤ l ≤ k, (4.12)

where El is the set of all subsets of l integers that can be selected from

{1, 2, . . . , k} and Ac = {1, 2, . . . , k}\A is the complement of A. In the special

case of uniform probabilities pi ≡ p, we have dH(F,G) ∼ Bi(k, p).

Define the random variable T Sk = dH(F,G) for similar F and G, so T Sk ∼

PBD({p1, . . . , pk}). Then we have PM = Pr{T Sk > τ}.

Lemma 1. For a given decision threshold τ ∈ {0, 1, . . . , k− 1} and probabil-

ities {p1, p2, . . . , pk−1}, Pr{T
S
k > τ} is an increasing function of pk.

Proof. Let T Sk−1 ∼ PBD({p1, . . . , pk−1}). For l = 0, 1, . . . , k, we have

Pr{T Sk = l} = pk × Pr{T Sk−1 = l − 1}+ (1− pk)× Pr{T Sk−1 = l}. (4.13)

Since every PBD is unimodal, and the mode is either unique or shared by

two adjacent integers [66], let l∗ be the unique mode (or the smaller of the

two modes) of T Sk−1. When l ≤ l∗, we have Pr{T Sk−1 = l−1} < Pr{T Sk−1 = l},

so Pr{T Sk = l} decreases with pk. When l > l∗ (or l > l∗ + 1 when there

are two modes), we have Pr{T Sk−1 = l − 1} > Pr{T Sk−1 = l}, so Pr{T Sk = l}

increases with pk.

Therefore, when 0 ≤ τ ≤ l∗, Pr{T Sk > τ} = 1 −
∑τ

l=0 Pr{T
S
k = l} is

an increasing function of pk. When l∗ + 1 ≤ τ ≤ k − 1, Pr{T Sk > τ} =∑k
l=τ+1 Pr{T

S
k = l} is also an increasing function of pk.

Lemma 2. Under (A2) and (A4), pi is a decreasing function of SNRi for

i = 1, . . . , k.

Proof. Denote by X̃i = wTi X and Z̃i = wTi Z the i-th transformed feature

random variable and transformed noise random variable respectively. Then

X̃i ∼ N (0, σ2
i) and Z̃i ∼ N (0, λ2i). By (4.3) and (4.5), Fi = sgn(X̃i) and

Gi = sgn(X̃i + Z̃i) are independent. It has been shown in [67, Equations 16

and 17] that

pi = PFiGi{Fi 6= Gi} =
1

π
arctan

(
1

SNRi

)
, (4.14)

50

which is a decreasing function of SNRi.

It follows from (4.7), Lemma 1, and Lemma 2 that for fixed τ , PM is a

decreasing function of {SNRi}ki=1.

4.2 SNR Maximization Hashing

Motivated by Proposition 1, we propose SNR-MH, a hashing algorithm that

finds the globally optimal projection directions {wi}ki=1 and then extracts

binary fingerprints according to (4.5).

Denote by X ∈ Rd and Z ∈ Rd the feature random vector and noise

vector respectively (both have mean zero). The problem is to find a d × k

transformation matrix W = [w1, . . . , wk] such that the transformed feature

vector W TX ∈ Rk is uncorrelated and the SNR at each projection SNRi =

var(wTi X)/var(wTi Z) is maximized. Mathematically, the projection vectors

wi, i = 1, 2, . . . , k, are learned sequentially via the following optimization:

wi =argmax
w

wTCXw

wTCZw

subject to wTCXwj = 0, ∀j < i

wTCZwj = 0, ∀j < i

wTCZw = 1,

(4.15)

where CX and CZ are the covariance matrices of X and Z respectively, and

the last constraint is to normalize the transformed noise to unit power so the

solution is unique. To ensure CZ is invertible, a small constant α > 0 is often

added to the diagonal entries of CZ , i.e., CZ is replaced with CZ + αI where

I denotes the identity matrix.

The optimization (4.15) is used in multiclass Fisher discriminant analysis

(FDA) [68] to learn up to k linear projections when there are k + 1 different

classes. In multiclass FDA, CX is the inter-class scatter matrix and CZ

is the intra-class scatter matrix. The solution of (4.15) is given by the k

eigenvectors corresponding to the first k largest eigenvalues of the generalized

eigenproblem [68] (proof is given in Appendix B.)

CXw = γCZw, (4.16)

51

where γ is the eigenvalue (to be interpreted as the SNR in the direction w).

There are several ways to reduce (4.16) to a standard eigendecomposition

problem [63]. One way is to form C−1
Z CX , but in general C−1

Z CX is not

symmetric, so all the nice properties about diagonalizing symmetric matrices

will be lost.

Another way to solve (4.16) is by using the Cholesky decomposition on

CZ [63]. Let CZ = LLT where L is a lower triangular matrix. Then (4.16)

becomes [
L−1CXL

−T
] [
LTw

]
= γ

[
LTw

]
, (4.17)

which is a standard eigendecomposition problem.

Note that the above procedure is equivalent to applying a whitening trans-

formation L−1 on the noise. After whitening, L−1Z and L−1X have covari-

ance matrices L−1CZL
−T = I and L−1CXL

−T respectively.

Connection to PCA Hashing (PCAH): In PCA hashing [12, 6], W

is given by the top k eigenvectors of CX . This is equivalent to assuming CZ

is the identity matrix in (4.16). PCA hashing maximizes the transformed

feature variance without considering the noise. The only case PCA hash-

ing is optimal in the sense of SNR maximization is when the noise Z has

uncorrelated components with equal variances.

Connection to Semi-Supervised Hashing (SSH): SSH [12] was for-

mulated as maximizing a measure of classification accuracy while having

large variance and quasi-independence of the hash bits. After approximating

the sgn function with the identity function, SSH maximizes the following

objective function subject to the constraint W TW = I:

k∑

i=1

[
wTi CXYwi − wTi CXŶwi + βwTi CXwi

]
, (4.18)

where CXY and CXŶ denote the cross-covariance matrices between similar

and dissimilar X and Y respectively, and β > 0 is a weighting parameter

chosen by cross-validation. The optimal projection matrix W then consists

of the top eigenvectors of the matrix CXY − C
XŶ

+ βCX .

Under the second-order statistical model of Section 4.1, CXY becomes CX

and CXŶ is the zero matrix. As a result, the optimal projections of SSH are

equivalent to those of PCA Hashing.

In the next section, we will compare the empirical performance of SNR-MH

52

with that of PCAH, SSH, and other hashing algorithms.

4.3 Experimental Results and Discussion

4.3.1 Results on Synthetic Data

We first run simulations on synthetic datasets and compare SNR-MH and

PCAH under the Gaussian model of Section 4.1.2 We fix the feature di-

mension d = 128. The feature vector X consists of i.i.d. samples from

N (0, CX). The covariance matrix CX = UDXU
T , where U is a random d×d

orthogonal matrix and DX is a d × d diagonal matrix with diagonal entries

uniformly sampled from (0.5, 1) and normalized so that their sum equals to

P = 128, where P is the total signal power. The noise vector Z consists

of i.i.d. samples from N (0, CZ) where CZ = V DZV
T where V is a random

orthogonal matrix and DZ = diag{dz1, dz2, . . . , dzd}. Fixing the total noise

power equal to P above, we consider three different scenarios depending on

how {dz1, dz2, . . . , dzd} are designed:

1. Uniform: dzi = P/d, 1 ≤ i ≤ d.

2. Linear: dzi = a+(i−1)r, 1 ≤ i ≤ d, where a = 0.1 and
∑d

i=1 dzi = P .

3. Exponential: dzi = ar(i−1), 1 ≤ i ≤ d, where r = 1.05 and
∑d

i=1 dzi =

P .

We generate 500,000 similar pairs for training, from which we estimate

CX and CZ and solve (4.15) with these estimates. We generate another

500,000 similar and dissimilar pairs for testing. Simulation results are shown

in Fig. 4.1. The left column shows SNRi for each projection wi learned by

SNR maximization and PCA; the right column shows ROC curves for SNR-

MH and PCAH at different code lengths. The rows corresponds to uniformly,

linearly and exponentially generated {dz1, dz2, . . . , dzd} respectively.

Consider the left column first. As noted in Section 4.2, SNR-MH and

PCAH coincide in the uniform scenario. In the linear (second row) and ex-

ponential (third row) scenarios where noise power is not evenly distributed,

2We only show results for PCAH in the synthetic experiments since PCAH and SSH
are equivalent under the statistical model.

53

20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

10
2

Projection i

S
N

R
i

SNR maximization
PCA

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

SNR−MH 16 bits
SNR−MH 32 bits
SNR−MH 64 bits
SNR−MH 128 bits
PCAH 16 bits
PCAH 32 bits
PCAH 64 bits
PCAH 128 bits

20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

10
2

Projection i

S
N

R
i

SNR maximization
PCA

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

SNR−MH 16 bits
SNR−MH 32 bits
SNR−MH 64 bits
SNR−MH 128 bits
PCAH 16 bits
PCAH 32 bits
PCAH 64 bits
PCAH 128 bits

20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

10
2

Projection i

S
N

R
i

SNR maximization
PCA

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

 SNR−MH 16 bits
SNR−MH 32 bits
SNR−MH 64 bits
SNR−MH 128 bits
PCAH 16 bits
PCAH 32 bits
PCAH 64 bits
PCAH 128 bits

Figure 4.1: Experiments on the synthetic dataset. The left column shows SNRi
for each projection i learned by SNR maximization or PCA; the right column
shows ROC curves for SNR-MH and PCAH at different code lengths. Rows
corresponds to uniformly, linearly and exponentially generated {dz1, dz2, . . . , dzd}
respectively.

SNR1 increases from 1.32 to 9.98 and 81.83 respectively in SNR maximiza-

tion but remains largely unchanged in PCA. Additionally, more high-SNR

projections are learned in the exponential case relative to the linear case be-

cause the number of small dzi’s is larger. On the contrary, PCAH performs

similarly across the three scenarios and SNRi is generally not a monotone

54

function of the PCA projections as PCAH seeks the variance-maximizing

projections of the signal and ignores the noise structure.

To compare the hashing performance of the methods considered, we show

ROC curves in the right column. We obtain k+1 points on the ROC curves,

indexed by the integer threshold τ ∈ {0, 1, . . . , k}. The line segments between

consecutive points are obtained by linear interpolation. They can be achieved

by randomizing between the two deterministic tests corresponding to the

endpoints of each such segment. Showing in the right column, SNR-MH

and PCAH perform indistinguishably in the uniform scenario, whereas SNR-

MH outperforms PCAH significantly in the linear and exponential scenarios,

especially in the latter case where the gain is in orders of magnitude due to

the high-SNR projections learned by SNR maximization.

We notice that in the exponential scenario, 64-bit SNR-MH performs better

than 128-bit SNR-MH. Though compact codes are more desirable in many

applications, we expect performance to improve with longer codes. This

behavior also arises in real datasets where error performance starts to dete-

riorate when more bits are added to the hashing codes. We will address this

issue in more detail in Chapter 5 and propose strategies to keep improving

performance with longer codes.

4.3.2 Results on Audio Content Identification

Next, we test our proposed SNR-MH on an audio content identification (ID)

system. We follow the same experimental setup as in Section 3.6.2 for audio

fingerprinting.

To compare performance, we estimate probability of false positive (PFP)

and probability of false negative (PFN) for the single-output decoder, and

expected number of incorrect items on the list (E(Ni)) and probability of miss

(Pmiss) for the list decoder as defined in Section 3.2. Besides PCAH and SSH,

we also compare with two boosting-based hashing algorithms, symmetric

pairwise boosting (SPB) [28] and a regularized Adaboost (ACCR Adaboost)

[57, 69], which have achieved excellent content ID performance on audio.

Fig. 4.2 shows the performance comparison on the audio content iden-

tification experiments. For both decoders, SNR-MH outperforms all other

methods. For the list decoder, SNR-MH outperforms the next best by almost

55

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
FP

P
FN

SNR−MH
ACCR
Adaboost
SPB
PCAH
SSH

(a) Single-Output Decoder.

0 0.1 0.2 0.3 0.4
10

−4

10
−3

10
−2

10
−1

10
0

E[N
i
]

P
miss

SNR−MH
ACCR
Adaboost
SPB
PCAH
SSH

(b) List Decoder.

Figure 4.2: Experiments on audio content identification. The query consists of
16 audio segments and 32 bits are extracted from each audio segment by each
hashing algorithm.

an order of magnitude.

4.3.3 Results on Object Retrieval

We also evaluate SNR-MH on the University of Kentucky Object Recognition

dataset [70]. There are 2,550 different objects in the dataset, each of which

contains four images taken under different viewpoint, orientation, scale, or

lighting conditions. See Fig. 4.3 for some example objects.

Figure 4.3: Examples from the University of Kentucky Object Recognition
dataset.

Images in the dataset are 640 × 480 pixels. Each image is represented by

56

a 512-dimensional bag-of-SIFT-features (BoSF) [71]. In BoSF, dense SIFT

descriptors are first extracted from every 16 × 16 pixel patches over a grid

with spacing of 8 pixels and assigned to 512 visual words learned by k-means

clustering.

We randomly take one image from each object as query and the rest are

used as database and training set. We compute the recall@K for each query,

where K is the number of top retrieved samples based on the Hamming

distance between the query and database samples, and we report the average

recall@K over all queries.

1 3 5 10 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Number of top retrieved samples, K

R
ec

al
l@

K

SH
ITQ
PCAH
SSH
SNR−MH

(a)

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

R
ec

al
l@

10

SH
ITQ
PCAH
SSH
SNR−MH

(b)

Figure 4.4: Performance comparison of different hashing algorithms on object
retrieval. Results in (a) are generated using 64 bits.

Fig 4.4 shows the performance comparison of SNR-MH and other hash-

ing algorithms including spectral hashing (SH) [5] and iterative quantization

(ITQ) [6]. Fig. 4.4a compares hashing algorithms for 64-bit codes, showing

Recall@K vs K, while Fig. 4.4b shows Recall@10 as a function of code size.

The figures show that SNR-MH outperforms all other algorithms by a large

margin, and Recall@10 increases rapidly as code size increases.

57

CHAPTER 5

MULTI-BIT HASHING

In the previous sections, we have shown that SNR-MH learns compact binary

codes that outperform other hashing algorithms on both synthetic datasets

and real datasets. The ability to learn compact binary codes that preserve

semantic similarity is extremely valuable in large-scale retrieval systems as

compact binary codes are both search- and storage-efficient. However, in

certain applications with a higher bit budget, finding high-SNR projections

that are uncorrelated to the previous chosen ones may become challenging.

As observed by several authors [4, 6], the performance of training data

dependent hashing algorithms1 does not always improve with longer code

length. One possible reason is that learning a large number of projections

overfits the training dataset. For SNR-MH, another reason is the deterio-

rating effect of low SNR projections. We show this effect both theoretically

and empirically, and propose a remedy which we call SNR multi-bit hashing

(SNR-MBH). SNR-MBH is comprised of the following three components: (i)

a simple iterative procedure that automatically determines the cutoff num-

ber of projections beyond which adding bits from the discarded low-SNR

projections would hurt performance; (ii) a bit allocation strategy to allocate

multiple bits to each high-SNR projection when the number of bits needed

exceeds the number of projections; (iii) a multi-bit quantization scheme that

assigns multiple bits to each projection. Experiments on a synthetic dataset

and real datasets demonstrate the superior performance of SNR-MBH.

1Randomized algorithms such as locality sensitive hashing (LSH) [2] and shift-invariant
kernels LSH (SKLSH) [4] are data-independent. Though data-independent algorithms
enjoy the theoretical guarantee that the underlining metrics are increasingly well preserved
as the code length increases, they require much longer codes to work well.

58

5.1 Deteriorating Effect of Low-SNR Projections

Some of our experiments have shown that when bits are extracted from low-

SNR projections, performance deteriorates (see the last subfigure in Fig. 4.1

for an example). In theory, adding more bits can never hurt performance if

the optimal decision rule is used. Under the Gaussian model in Section 4.1,

the optimal decision rule is a likelihood ratio test (LRT). The loglikelihood

ratio

Λ =
k∑

i=1

log2
PFiGi(fi, gi)

PFi(fi)PGi(gi)

= 2k +
k∑

i=1

(
1{fi 6=gi} log2 pi + 1{fi=gi} log2(1− pi)

)

= C +
k∑

i=1

1{fi 6=gi} log2
pi

1− pi
,

where C = 2k +
∑k

i=1 log2(1 − pi) is a constant, is to be compared with

a threshold. Hence the LRT can be expressed in terms of the weighted

Hamming distance

k∑

i=1

(
log2

1− pi
pi

)
1{fi 6=gi}

S

⋚
D

τ, (5.1)

where τ is the threshold of the test and pi is the probability that Fi 6= Gi

for similar fingerprints, as defined in (4.11). If pi = 1/2, the weight log 1−pi
pi

is zero, rendering the i-th bit useless. For pi < 1/2, a positive weight is

assigned, and the smaller the pi the larger the weight.2

On the other hand, the Hamming distance decision rule of (4.6) gives equal

weight to each hash bit, which is a mismatched detector. The deteriorating

effect of using bits from low-SNR projections can only be caused by this

suboptimal decision rule.

To demonstrate the difference between the LRT of (5.1) and the subopti-

mal Hamming distance detector of (4.6), we run simulations on a synthetic

dataset which is generated according to the ‘exponential’ scenario of Section

4.3.1, with the difference that the total noise power is five times of the total

2From (4.14), we know pi <
1

2
. In practice, pi is estimated from a training dataset. To

avoid infinite weights, a small positive constant is added to the estimate.

59

signal power. As shown in Fig. 5.1, LRT and Hamming distance detector

perform similarly up to 64 bits. Then, performance deteriorates from 64 bits

to 96 bits and 128 bits for the Hamming distance detector, while perfor-

mance keeps improving with longer codes for the LRT detector though the

improvement is marginal.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

16 bits
32 bits
64 bits
96 bits
128 bits

(a) Hamming distance detector (4.6)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

16 bits
32 bits
64 bits
96 bits
128 bits

(b) LRT (5.1)

Figure 5.1: ROC curves of SNR-MH on the synthetic dataset.

However, most hashing systems use Hamming distance because of its sim-

plicity and search efficiency [1]. To enjoy these properties without sacrificing

too much performance, we propose next a SNR multi-bit hashing (SNR-

MBH) for which performance keeps improving with longer code length un-

der the Hamming distance detector. In the following three subsections, we

describe the three components of SNR-MBH, and in Section 5.5 we show

SNR-MBH’s superior performance on both the synthetic and real datasets.

Note that SNR-MBH could also be used with LRT in a way similar to the

model-based decision rule in [16], but we leave this for future work.

5.2 Cutoff Number of Projections

The first objective is to establish a simple procedure that determines whether

including the (k+1)-th projection hurts performance. If so, we keep the first

k projections only and discard the rest.

Denoting by TDk and T Sk the Hamming distance between independent and

related k-bit fingerprints respectively, then we express (4.7) and (4.8) in terms

60

of the test threshold: P k
M(τ) , Pr{T Sk > τ} and P k

F (τ) , Pr{TDk ≤ τ}.

The goal is to determine the smallest k ∈ {1, 2, . . . , d} such that for thresh-

olds τk and τk+1 corresponding to a fixed false alarm probability P k
F (τk) =

P k+1
F (τk+1) = α, the probability of miss increases from k to k + 1: P k

M(τ) <

P k+1
M (τk+1). This smallest k will be our cutoff number of projections and

denoted by Kc.

Under the Gaussian model of Section 4.1, we have TDk ∼ Bi(k, 1
2
) and

T Sk ∼ PBD({p1, . . . , pk}). However, working with the binomial distribution

and PBD in determining Kc poses two challenges. First, computing P k
M is

infeasible for large k as the number of terms in PBD is combinatorial (4.12).

Second, there generally exist no τk and τk+1 achieving P
k
F (τk) = P k+1

F (τk+1) =

α due to the discrete nature of binomial distributions. To overcome these

challenges, we use the fact that both TDk and T Sk are sums of independent

random variables. For large k, we use Gaussian approximations in the small-

and moderate-deviations regime. The means of TDk and T Sk are respectively

k/2 and
∑k

i=1 pi, and their variances are respectively k/4 and
∑k

i=1 pi(1−pi).

When the probabilities P k
F (τ) and P k

M(τ) are in the moderate-deviations

regime (τ is a few standard deviations away from the mean), these two error

probabilities can be reasonably well approximated using the Q-function.

Denote by

P̃ k
F (τ) , Q

(
k/2− τ√

k/4

)
, (5.2)

P̃ k
M(τ) , Q


 τ −

∑k

i=1 pi√∑k

i=1 pi(1− pi)


 (5.3)

the Gaussian approximations of P k
F (τ) and P

k
M(τ) respectively, and arrange

pi’s in ascending order. We use the following procedure to determine Kc.

For each k = 1, 2, . . . , d − 1 , obtain τk = k/2 −
√
k/4Q−1(α) and τk+1 =

(k + 1)/2 −
√

(k + 1)/4Q−1(α) from P̃ k
F (τk) = P̃ k+1

F (τk+1) = α, and check

whether the condition P̃ k+1
M (τk+1) < P̃ k

M(τk) fails. The smallest k such that

the condition fails will be the cutoff number of projections Kc. We keep the

first Kc projections and discard the rest.

Throughout our experiments, we use α = 10−3 corresponding to a thresh-

old τ that is about three standard deviations away from the mean k/2. More-

61

over, in calculating P̃ k
M(τ), one needs to estimate {pi} from a training dataset.

While based on approximations, this cutoff selection procedure worked well

in our experiments.

20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

k

P
ro

ba
bi

lit
y

of
 m

is
s

Pk

M

˜Pk

M

Figure 5.2: Comparison between probability of miss from simulation results on

the synthetic dataset and their Gaussian approximations. Both P k
F and P̃ k

F are
fixed at 10−3, where P k

F = 10−3 is obtained by a randomized decision rule.

To evaluate this procedure, we run simulations on the synthetic dataset of

Section 5.1. We fix P k
F and P̃ k

F at α = 10−3, where P k
F = 10−3 is achieved

by the randomized version of the decision rule (4.6). As shown in Fig. 5.2,

the Gaussian approximations are reasonably close to the simulated results.

Moreover, P k
M and P̃ k

M achieve their minima at similar values of k which is

important because the minimum of P̃ k
M is our cutoffKc. The cutoff number of

projections returned by the procedure is Kc = 72, which indicates that using

hash codes that are larger than 72 bits could hurt performance. Indeed, we

see in Fig. 5.1a that 96-bit and 128-bit SNR-MH perform worse than 64-bit

SNR-MH.

62

5.3 A Bit Allocation Strategy

To generate N > Kc bits, one must extract more than one bit from some

projections. Hence the first task is to decide how to allocate N bits across

Kc projections. This type of problem often arises in information theory. In

particular, for a N (0, σ2) source, the rate distortion function R(D) = 1
2
log σ2

D

gives the minimum bit rate needed to describe the source with MSE not

exceeding D [34]. This motivated us to develop a bit allocation strategy

based on log SNRi. Denote by

Bi =

⌈
N

log (SNRi + 1)∑Kc
i=1 log (SNRi + 1)

⌉
(5.4)

the number of bits projection wi can accommodate, where ⌈·⌉ is the ceiling

function and adding one to each SNRi ensures each projection is allocated

at least one bit. The total number of bits for the Kc projections is B =∑Kc
i=1Bi ≥ N . If the inequality is strict, we need to prune B − N bits from

the total.

To do so, we first assign Ni = Bi bits to each projection, and then prune

bits from each projection until
∑Kc

i=1Ni = N , as described in Table 5.1. The

pruning follows two rules: (i) Ni ≥ Nj , ∀i < j; (ii) whenever Nj < Bj ,

Ni ≤ Nj + 1, ∀i < j. These two rules ensure that bits are spread as evenly

as possible among the Kc projections while satisfying Ni ≤ Bi.

Table 5.1: The bit allocation strategy.

Input: number of high-SNR projections K, bit budget N ,
and Bi from (5.4) for 1 ≤ i ≤ Kc.

Initialization: Ni = Bi, ∀i and M =
∑Kc

i=1Ni −N
while M > 0

i = max{j : Nj = max{Nk, k = 1, 2, . . . , Kc}},
Ni −−,

M =
∑Kc

i=1Ni −N .
Output: number of bits assigned to each projection Ni, 1 ≤
i ≤ Kc.

63

5.4 Multi-Bit Quantization

After bit allocation, we need to extract Ni bits from projection wi. An Ni-bit

scalar quantizer partitions the real line into 2Ni bins separated by 2Ni − 1

thresholds. As Ni could be large, we propose a multi-bit quantization scheme

where the number of thresholds grows linearly, rather than exponentially,

with Ni. Motivated by the 2-bit quantization procedure of [28, 69], we define

the i-th threshold, i = 1, . . . , Ni, as the i/(Ni + 1) × 100% quantile of the

distribution of the transformed feature wTi X. The Ni thresholds induce Ni+1

bins, and we assign a length-Ni bit string to the t-th bin with Ni+1− t zeros

followed by t − 1 ones for t = 1, . . . , Ni + 1. Besides the linear growth of

the number of thresholds with Ni, another advantage is that the Hamming

distance between the binary code for the t-th bin and the binary code for the

(t+ s)-th bin is exactly s, which makes the binary code distance preserving.

The quantization scheme is illustrated in Fig. 5.3 with Ni = 3.

001 011 111000

Figure 5.3: The quantization scheme. The three thresholds are the (25%, 50%,
75%) quantiles of the distribution.

5.5 Experimental Results and Discussion

5.5.1 Results on Synthetic Data

We show results on the synthetic dataset of Section 5.1. We select Kc = 72

high-SNR projections as determined by the procedure described in Section

5.2. To generate 96 and 128 bits, we use the bit allocation strategy of Section

64

5.3 (shown in Fig. 5.4a is the bit allocation result for the 128-bit SNR-MBH)

and the multi-bit quantization scheme of Section 5.4. As shown in Fig. 5.4b,

96-bit and 128-bit SNR-MBH using 72 projections outperform the corre-

sponding SNR-MH using all 128 projections.

20 40 60
1

2

3

Projection w
i

Ni

(a) Bit allocation for 128-bit SNR-MBH.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

16 bits, SNR−MH
32 bits, SNR−MH
64 bits, SNR−MH
96 bits, SNR−MH
128 bits, SNR−MH
96 bits, SNR−MBH
128 bits, SNR−MBH

(b) ROC curves for SNR-MH and
SNR-MBH.

Figure 5.4: Experiments on the synthetic dataset generated the same way as
Fig. 5.1. In (b), SNR-MBH uses only the first 72 projections to generate binary
codes.

5.5.2 Results on MNIST Dataset

Next, we conduct experiments on the MNIST handwritten digit dataset3 to

demonstrate the power of SNR-MH to learn compact codes and SNR-MNH

to learn longer codes. The MNIST dataset contains 60,000 training images

and 10,000 testing images of ten handwritten digits. Each image is of size

28× 28 pixels, from which we extract 512-dimensional GIST features [72].

As shown in Fig. 5.5a, the cutoff number of projections is very small Kc =

9, so we expect bits generated from the tenth projection onward start to

hurt performance. Fig. 5.5b shows the 5 nearest neighbor (NN) classification

performance, based on Hamming distance ranking, for different methods at

different code lengths. SNR-MH performs impressively well with the first 9

bits. However, as we include more low SNR projections to generate hash

bits, the performance of SNR-MH deteriorates.

3http://yann.lecun.com/exdb/mnist/

65

1 16 32
0

1

2

3

4

5

6

Projection w
i

S
N

R
i

Kc

(a) SNRi for the first 32 projections
where Kc = 9.

2 4 6 8 9 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of bits

5N
N

 c
la

ss
ifi

ca
tio

n
er

ro
r

SH
ITQ
PCAH
SSH
SNR−MH

(b) 5NN classification error at different
code lengths.

Figure 5.5: Experiments on the MNIST dataset.

2 4 6 8
5

6

7

8

Projection w
i

Ni

(a) Bit allocation for 64-bit SNR-MBH.

8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of bits

5N
N

 c
la

ss
ifi

ca
tio

n
er

ro
r

SH
ITQ
PCAH
SSH
SNR−MBH

(b) 5NN classification error.

Figure 5.6: Experiments on the MNIST dataset using 9 projections for
SNR-MBH.

The bit allocation for 64-bit SNR-MBH with nine high-SNR projections

is shown in Fig. 5.6a, and 5NN performance is shown in Fig. 5.6b. Now,

the classification error keeps decreasing with longer codes and is lower than

that for competing methods. SNR-MBH also exhibits superior performance

in retrieval tasks, as shown in Fig. 5.7.

66

8 16 32 64
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of bits

pr
ec

is
io

n@
50

SH
ITQ
PCAH
SSH
SNR−MBH

Figure 5.7: Retrieval performance on the MNIST dataset. SNR-MBH uses at
most 9 projections.

5.5.3 Results on CIFAR-10 Dataset

The CIFAR-10 dataset [73] consists of 50,000 training and 10,000 test color

images of size 32 × 32 pixels. Images have been manually grouped into ten

classes, namely airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

and truck. From each image, we extract the state-of-the-art Convolutional

Network-based image features using the feature extractor Overfeat [74], re-

sulting in a 4,096-dimensional feature vector. Afterwards, we use PCA to

reduce the feature dimension to 512, which retains 99.8% of the total signal

variance.

Similar to the experiments on the MNIST dataset, Kc = 9 high-SNR pro-

jections are selected by the procedure in Section 5.2. As shown in Fig. 5.8a,

the retrieval performance of SNR-MH drops drastically from 9-bit code to

16-bit code. However in Fig. 5.8b, we see a strong upward trajectory for

SNR-MBH and it outperforms the next best by a large margin across differ-

ent code lengths.

In Fig. 5.9, we also show three retrieval examples. In all three examples,

SNR-MBH returns more true matches than ITQ. Moreover, SNR-MBH is

able to retrieve matches that are not visually similar to the queries, such as

the B-2 bombers to the first query of airplane.

67

2 4 6 8 9 16 32
0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

pr
ec

is
io

n@
50

SH
ITQ
PCAH
SSH
SNR−MH

(a) SNR-MH

8 16 32 64 128
0.2

0.3

0.4

0.5

0.6

0.7

Number of bits

pr
ec

is
io

n@
50

SH
ITQ
PCAH
SSH
SNR−MBH

(b) SNR-MBH using 9 projections.

Figure 5.8: Experiments on the CIFAR-10 dataset.

68

(a)
Query (b) SNR-MBH (c) ITQ

Figure 5.9: Retrieval examples from the CIFAR-10 dataset.

69

CHAPTER 6

MULTI-FEATURE HASHING

Despite the progress achieved in hashing-based similarity search, most ex-

isting methods only utilize one type of feature. However, different features

extracted from the same underlining signal can be complementary to each

other and boost system performance. For instance, combining raw image pix-

els with patch-based features gives better face recognition performance [75].

In near-duplicate video retrieval, combining features such as color histogram

and local binary pattern yields a significant performance improvement [76].

Recently, fusion of RGB and depth features has achieved state-of-the-art

results in many vision tasks, such as object recognition [46], indoor scene

segmentation [44], and video content identification [77].

In the literature, not much work has been reported regarding multi-feature

hashing except [78, 76, 65, 79]. In [78, 65] the final hash function is the

convex combination of individual hash functions on different features, where

hash functions in [78] are linear, whereas [65] learns nonlinear hash function

on each feature using the kernel trick. In [76], features are concatenated

and binary codes are generated using learned hyperplanes to simultaneously

preserve similarities in each individual feature space. In contrast to the other

three, [79] selects hash bits from a pool of hash bits generated by different

hashing methods on different features. The more recent works on multi-

feature kernel hashing (MFKH) [65] and hash bit selection (HBS) [79] have

shown superior performance over previous art [78, 76].

Unlike multi-feature hashing, multimodal hashing for cross-modality sim-

ilarity search between text and images has been well studied [80, 81, 82].

Here, queries are in one modality (tags or images) while database items are

in the other modality (images or tags). In contrast, all features are used for

both database indexing and query search in multi-feature hashing.

In this chapter, we propose two multi-feature hashing methods based on

signal-to-noise ratio (SNR) maximization, which has been shown to be equiv-

70

alent to the minimization of hashing error probability under a Gaussian

model. The first method concatenates different features as one and jointly

learns uncorrelated hash functions that maximize SNR. We call this method

SNR joint hashing (SNR-JH). The second method separately learns hash

functions on each feature based on SNR maximization and the overall hash

functions are selected according the SNR associated with each hash func-

tion. We call this selection procedure SNR selection hashing (SNR-SH).

Both SNR-JH and SNR-SH outperform the state-of-the-art MFKH and HBS

significantly on several benchmark datasets.

6.1 Background and Related Work

In multi-feature hashing, the basic task is to learn a mapping h(x) = {h1(x),

. . . , hk(x)} ∈ {±1}K that projects an input x = {x(1),x(2), . . . ,x(M)} con-

sisting of M features, each having dimensionality dm, onto K-dimensional

binary codes, while preserving some notion of similarity. A simple way to

learn this mapping is to concatenate different features, treat them as one,

and apply the previous single-feature hashing methods. However, without

considering the different statistical properties from different features, most

existing single-feature hashing methods would perform poorly (often worse

than the best single feature). In the following two subsections, we briefly

summarize two state-of-the-art multi-feature hashing methods, multi-feature

kernel hashing and hash bit selection.

6.1.1 Multi-Feature Kernel Hashing

Inspired by multiple kernel learning, Multi-Feature Kernel Hashing (MFKH)

[65] formulates the hashing problem as a similarity preserving hashing with

linearly combined multiple kernels. In particular, each input x(m) is implic-

itly embedded in the high dimensional (possibly infinite dimensional) fea-

ture space by an embedding function φm : Rdm → F (m), and the overall

embedding φ(x) = [µ
1

2

1 φ
T
1 (x

(1)), . . . , µ
1

2

Mφ
T
M(x(M))]T is a weighted concate-

nation of {φm(x(m))}. Therefore, the kernel function Kij = φ(xi)
Tφ(xj) =∑M

m=1 µmK
(m)
ij a linear combination of the kernels on different features. With

71

the embedding function φ(·), the k-th hash function is defined as

hk(x) = sgn
(
vTk φ(x) + bk

)
, (6.1)

where vTk is a projection vector in the high dimensional feature space and bk

is the bias.

Similarly to spectral hashing, the hash codes for N training data are

learned to preserve a similarity matrix S ∈ RN×N while satisfying the balance

and uncorrelated constraints. Formally, MFKH formulates the multi-feature

hashing problem as follows:

min
W,b,µ

1

2

N∑

i,j=1

Sij||yi − yj ||
2 + λ||V ||2F

s.t. yi ∈ {±1}K

N∑

i=1

yi = 0,
1

N

N∑

i=1

yiy
T
i = I

1Tµ = 1, µ � 0,

(6.2)

where yi = h(xi), λ is a regularization parameter, vk =
∑L

l=1Wlkφ(pl) is

represented as a combination of L landmarks pl embedded in the feature

space, and W ∈ RL×K is a weight matrix. By using the kernel trick, one

only needs to evaluate kernel functions instead of working with the high

dimensional feature embedding φ(·).

The motivation for such formulation is to preserve the given similarity S

between examples in the Hamming space. However, due to the nondifferen-

tiable and nonconvex sgn function, the above optimization is difficult to solve.

Similarly to spectral hashing, the sgn function is replaced with the identity

function, after which the minimization problem can be efficiently solved using

an alternating minimization procedure. Though approximating the sgn func-

tion with the identity function makes the optimization tractable, it obviously

introduces large approximation error when the magnitude is large.

72

6.1.2 Hash Bit Selection

Hash Bit Selection (HBS) [79] is a unified framework for various selection

problems in hashing. Here, we limit our attention to the scenario of hashing

with multiple features. In contrast to MFKH, in which bits are generated

from the combination of all features, each bit in HBS is derived from only one

type of feature. In particular, HBS selects K hash bits (corresponding to K

hash functions) from a pool of candidate bits generated by a given hashing

method using different features.

In HBS, the selection criteria are similarity preservation and independence.

Similar to spectral hashing and MFKH, similarity preservation means the bi-

nary codes should preserve the original similarity measure S between training

data points in the Hamming space, and HBS uses a loss function based on

spectral embedding loss [5]. In [5, 12, 65, 79], the independence of hash

functions is considered a desirable property for generating compact binary

codes, and HBS measures the independence using pairwise mutual informa-

tion between hash bits. Combining these two criteria, HBS formulates the

bit selection problem as quadratic programming. By relaxing the discrete

constraint, it can be solved by replicator dynamics [79].

6.2 SNR Joint Hashing

Similarly to many other hashing methods [9, 12, 10, 7, 55], the training

dataset for SNR-MH requires weakly supervised information in the form

of N similar feature pairs {(xi,yi)}
N
i=1 where xi,yi ∈ Rd. Without loss of

generality, we assume that feature vectors are zero-centered, i.e.,
∑N

i=1 xi = 0

and
∑N

i=1 yi = 0. A pair (xi,yi) is said to be similar if yi is a distorted version

of xi, or xi and yi share the same class label. We assume yi is the sum of xi

and independent noise zi as governed by (4.3). For dissimilar pairs of xi and

yi, they are assumed to be independent. Operating under this assumption,

SNR-MH does not require dissimilar pairs for training unlike methods in

[9, 12, 10, 7, 55].

We propose the first SNR-based multi-feature hashing method, SNR joint

hashing (SNR-JH), to learn hash functions from the combination of all fea-

tures. In a multiple feature setting, feature vectors x = {x(1),x(2), . . . ,x(M)}

and y = {y(1),y(2), . . . ,y(M)}, both zero-centered, consist of M different fea-

73

tures. Similarly to SNR-MH, the goal of SNR-JH is to learn K projection

vectors from M different features such that the projected feature vector is

uncorrelated and SNR at each projection is maximized.

Following composite hashing in [78] and MFKH, hash functions hk in SNR-

JH is parameterized by projection vectors {w(m)
k }Mm=1 on each individual fea-

ture m and non-negative weights {µm}
M
m=1 that linearly combine different

features:

hk(x) = sgn

(
M∑

m=1

µmw
(m)T

k x(m)

)
, (6.3)

where
∑M

m=1 µm = 1 and w
(m)
k ∈ Rdm .

In both composite hashing and MFKH, learning of {w(m)
k }Mm=1 and {µm}Mm=1

is done via alternating optimization as the objective functions are nonconvex

with respective to {w(m)
k }Mm=1 and {µm}Mm=1 jointly. However in SNR-JH, we

show that the weights {µm}Mm=1 are redundant and can be incorporated into

{w(m)
k }Mm=1.

Denote by

wk = [µ1w
(1)T

k , µ2w
(2)T

k , . . . , µMw
(M)T

k]T (6.4)

the k-th projection direction. Then we can rewrite (6.3) as hk(x) = sgn
(
wTk x

)
.

Also denote by

CX =




C
(11)
X . . . C

(1M)
X

...
. . .

...

C
(M1)
X . . . C

(MM)
X


 (6.5)

and

CZ =




C
(11)
Z . . . C

(1M)
Z

...
. . .

...

C
(M1)
Z . . . C

(MM)
Z


 (6.6)

the full covariance matrices among M feature vectors and noise vectors re-

spectively, where C
(mn)
X = 1

N

∑N

i=1 x
(m)
i x

(n)T

i andC
(mn)
Z = 1

N

∑N

i=1

(
y
(m)
i − x

(m)
i

)

(
y
(n)
i − x

(n)
i

)T
, m,n = 1, 2, . . . ,M .

Therefore, wk, k = 1, 2, . . . , K can be learned by solving (4.15) with CX

and CZ given by (6.5) and (6.6) respectively. Clearly, SNR-JH does not need

to learn the weights {µm}Mm=1 explicitly. The optimal linear combination of

different features is automatically determined in SNR-JH.

To illustrate how SNR-JH allocates different weights to different features,

74

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

projection directions, wk

||
w

(1
)

k
||

2
/
||
w

k
||

2

Figure 6.1: The ratio between energy allocated to feature 1 and the total energy
of projection wk. {wk}’s are learned from the UK object recognition dataset.

Fig. 6.1 shows ||w(1)
k ||2/||wk||2, i.e., the ratio between energy allocated to

feature 1 and the total energy of projection wk, where {wk}’s are learned

from the UK object recognition dataset. As shown in Fig. 6.3, using feature 1

(the BoSF feature) alone yields much better performance than feature 2 (the

GIST feature) for up to 128 bits, which explains why SNR-JH allocates more

than 90% of the energy to feature 1 for the first few hundreds of projections.

After around k = 700, the ratio falls rapidly, which indicates that low-SNR

projections are comprised mostly of feature 2.

6.3 SNR Selection Hashing

The second SNR-based multi-feature hashing is a selection procedure, termed

SNR selection hashing (SNR-SH). In SNR-SH, K projection directions are

learned separately from each feature by solving (4.15). Unlike HBS where

the selection criteria are similarity preservation and independence, SNR-SH

uses the SNR in the projection direction as the only selection criterion.

On the m-th feature, we extract K projections {w(m)
k }Kk=1 as the top K

eigenvectors of the generalized eigenproblem

C
(m)
X w(m) = γ(m)C

(m)
Z w(m), (6.7)

75

where γ
(m)
k is the SNR in the direction w

(m)
k , in descending order γ

(m)
1 ≥

γ
(m)
2 ≥ . . . ≥ γ

(m)
K . Among the candidate pool of projection directions

w
(m)
k , k = 1, . . . , K,m = 1, . . . ,M , SNR-SH selectsK projections correspond-

ing to the K largest γ
(m)
k , k = 1, . . . , K,m = 1, . . . ,M .

It follows directly from (4.15) that {w(m)
k }ki=1 learned on the m-th feature

give us uncorrelated projection directions , i.e., w
(m)T

i C
(m)
X w

(m)
j = 0 for i 6= j.

However, w
(m)T

i C
(mn)
X w

(n)
j is not zero for m 6= n in general unless features m

and n are uncorrelated, i.e., C
(mn)
X is the zero matrix. Therefore, bits gener-

ated from different features are in general correlated. In contrast, projection

directions learned by SNR-JH are uncorrelated. Uncorrelatedness of hash

bits is often considered desirable for generating compact binary hash codes

[5, 65, 79].

To see the connection between SNR-SH and SNR-JH, let C̃X and C̃Z be

the covariances obtained by forcing all off-diagonal sub-matrices of CX and

CZ to zero. Then SNR-SH is equivalent to finding the top K eigenvectors of

the following generalized eigenproblem

C̃Xw = γC̃Zw. (6.8)

As SNR-JH jointly considers all the correlation structures among different

features, more high SNR projections can be obtained than SNR-SH. On the

other hand, SNR-JH needs to estimate considerably more parameters (all

M ×M sub-matrices C
(mn)
X and C

(mn)
Z), which makes SNR-JH computation-

ally less attractive than SNR-SH.

Learning projections in SNR-JH and SNR-SH is carried out by solving

generalized eigenproblems, which can be done in less than a minute from a

training dataset of 100,000 feature vectors of 1,000 dimension on a standard

office desktop. Moreover, unlike MFKH and HBS where one needs to tune

multiple parameters, both SNR-JH and SNR-SH are parameter-free, which

makes training much easier.

76

6.4 Experimental Results and Discussion

6.4.1 Protocols and Baseline Methods

We compare SNR-JH and SNR-SH to two state-of-the-art multi-feature hash-

ing methods MFKH and HBS using code provided by the authors. We

also compare with other well-known single-feature hashing methods, iterative

quantization (ITQ) and semi-supervised hashing (SSH), where different fea-

tures are concatenated as one and treated as a single feature. ITQ and SSH

are also served as the base methods for HBS, where a candidate pool of hash

function are generated from each feature by ITQ and SSH, and later chosen

by HBS. Whenever there are parameters in these baseline methods, we try

a few candidate choices and report the best one. For MFKH, we consider

three different kernels: linear, Gaussian and Chi-Square.

For evaluation, we compute the Recall@K or Precision@K for each query,

where K is the number of top retrieved images based on the Hamming dis-

tance between the query and database images, and we report the average

over all queries. We also compute the mean average precision (mAP), or

the area under the precision-recall curve, for different code lengths. Besides

retrieval performance, we also demonstrate the power of multi-feature hash-

ing in terms of K-nearest neighbor (K-NN) classification performance on the

MNIST digit dataset.

6.4.2 Datasets and Features

We perform experiments on five benchmark datasets: (1) the University of

Kentucky (UK) object recognition dataset [70] contains 2,550 different ob-

jects, each of which contains four images of size 640×480 taken under differ-

ent viewpoint, orientation, scale or lighting conditions; (2) the MNIST digit

dataset [83] contains 70,000 images of ten handwritten digits; (3) CIFAR-10

[73] consists of 60,000 color images of size 32 × 32 pixels which have been

manually grouped into ten classes, namely airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, and truck; (4) Scene-15 [84] contains fifteen nat-

ural scene categories, each of which has 200 to 400 images; (5) Caltech-101

[85] contains 101 categories, each of which has about 40 to 800 images.

For the UK object recognition dataset, we randomly select one image from

77

each object (2,550 in total) as queries, and the rest are used for training and

as database against which the queries are performed. For the other three

datasets, we randomly select 1,000 images as queries, and the rest are used

as training and database.

Images in the datasets are represented by the following three features:

512-D GIST feature [72], 512-D bag-of-SIFT-features (BoSF) [71], and 512-D

convolutional neural networks (CNN) features. GIST features are computed

at 8 orientations and 4 different scales, resulting in 512-dimensional feature

vectors. In BoSF, SIFT descriptors are first extracted from every 16 × 16

pixel patches over a grid with spacing of 8 pixels and assigned to 512 vi-

sual words learned by k-means clustering. CNN features are extracted using

Overfeat [74], resulting in 4,096-D feature vectors. Afterwards, we use princi-

pal component analysis (PCA) to reduce the feature dimension to 512, which

retains about 99% of the total signal variance in our experiments. We limit

our experiments to two features on each dataset. For all the multi-feature

methods considered, it is trivial to extend to more than two features. The

dataset-feature combination is shown in Table 6.1.

Table 6.1: The dataset-feature combination.

UK MNIST CIFAR-10 Scene-15 Caltech-101
Feature 1 BoSF GIST GIST GIST CNN
Feature 2 GIST CNN CNN BoSF BoSF

6.4.3 Results and Discussions

Fig. 6.2a to Fig. 6.2c compare all the multi-feature hashing methods at dif-

ferent code lengths on the UK object recognition dataset, showing Recall@K

vs K. First notice that both ITQ and SSH perform poorly on this multi-

feature setting, but combining with the selection procedure HBS, we see a

large performance improvement. Our proposed SNR-JH and SNR-SH both

outperform the next best MFKH method by a large margin. Fig. 6.2d shows

mAP as a function of code size. We see a strong upward trajectory for all

methods. Again, our proposed SNR-JH and SNR-SH methods consistently

outperform the other methods, and the performance gap to the next best

method widens as more bits are used.

78

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

number of top returned images, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(a) 16 bits.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

number of top returned images, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(b) 32 bits

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

number of top returned images, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(c) 128 bits

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

m
A

P

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(d) mAP

Figure 6.2: Comparison with state-of-the-art methods on the UK object
recognition dataset.

We also compare our multi-feature SNR-JH and SNR-SH methods with the

single-feature counterpart SNR-MH on the UK object recognition dataset.

As shown in Fig. 6.3, performance with multiple features is much better than

with single feature, which indicates that our multiple feature methods help

improve retrieval performance by exploiting the complementary information

between features. As illustrated in Fig. 6.1, SNR-JH allocates a much larger

weight on the BoSF feature, which exhibits superior performance over the

GIST feature on this dataset. Moreover, SNR-SH selects 47 projections from

BoSF and 17 projections from GIST for the 64-bit codes.

Displaying the retrieval results on the other four datasets, Fig. 6.4 to

79

16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

m
A

P

SNR−SH
SNR−JH
SNR−MH BoSF
SNR−MH GIST

Figure 6.3: Comparison of multi-feature SNR-JH and SNR-SH with their
single-feature counterparts SNR-MH on the UK object recognition dataset.

Fig. 6.7 show SNR-JH and SNR-SH’s superior Recall@K or Precision@K

performances over all other methods at all code lengths. Moreover, longer

code length leads to larger performance gap between our proposed methods

and the next best one. As shown in the mAP plots, SNR-JH and SNR-SH

scale well with code length, which does not hold for MFKH and HBS.

For datasets such as CIFAR-10, images exhibit large intra-class variation,

which poses a significant challenge for retrieval. However, good features, such

as CNN, BoSF, and GIST, often make different classes linearly separable,

which allows SNR-JH and SNR-SH’s linear model of (4.3) to work well.

In addition to the retrieval performance, we also demonstrate the classi-

fication performance on the MNIST digit dataset. In this setting, we use

the default split of the dataset, i.e., 60,000 images for training and 10,000

images for testing. The 30-NN classification results, based on Hamming dis-

tance ranking, are shown in Fig. 6.8. Using both GIST and CNN features,

SNR-JH and SNR-SH improve upon their single-feature counterpart. More-

over, SNR-JH outperforms SNR-SH by a large margin across different code

lengths. This may due to the following two reasons: (i) as SNR-JH jointly

considers all the correlation structures among different features, more high

80

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

number of top retrieved images, K

P
re

ci
si

on
@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(a) 16 bits.

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

number of top retrieved images, K

P
re

ci
si

on
@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(b) 32 bits

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

number of top retrieved images, K

P
re

ci
si

on
@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(c) 128 bits

16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of bits

m
A

P

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(d) mAP

Figure 6.4: Comparison with state-of-the-art methods on the MNIST digit
dataset.

SNR projections can be obtained than SNR-SH; (ii) the SNR-JH is able to

learn uncorrelated projection directions, while projections from different fea-

tures are correlated in SNR-SH. Strikingly, 128-bit SNR-JH achieves a 30-NN

classification error rate of only 1.13%, which outperforms many sophisticated

discriminative classifiers [7].

In summary, we have proposed SNR-JH and SNR-SH, two multi-feature

hashing methods based on SNR maximization. SNR-JH jointly learns pro-

jection directions from all features, while SNR-SH selects projection direc-

tions from a pool of candidate projections generated from each individual

feature. Despite the simple linear model (4.3) and the simple training pro-

81

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

number of top retrieved images, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(a) 16 bits.

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

number of top retrieved images, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(b) 32 bits

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

number of top retrieved images, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(c) 128 bits

16 32 64 128
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of bits

m
A

P

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(d) mAP

Figure 6.5: Comparison with state-of-the-art methods on CIFAR-10 dataset.

cedure (solving generalized eigenproblems and parameter-free), SNR-JH and

SNR-SH have demonstrated superior retrieval performance over MFKH and

HBS on five benchmark datasets and excellent classification accuracy on the

MNIST digit dataset.

82

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of top retrieved samples, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(a) 16 bits.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of top retrieved samples, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(b) 32 bits

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

number of top retrieved samples, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(c) 128 bits

16 32 64 128
0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

m
A

P

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(d) mAP

Figure 6.6: Comparison with state-of-the-art methods on Scene-15 dataset.

83

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of top retrieved samples, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(a) 16 bits.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of top retrieved samples, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(b) 32 bits

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of top retrieved samples, K

R
ec

al
l@

K

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(c) 128 bits

16 32 64 128
0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

m
A

P

ITQ
SSH
HBS
MFKH
SNR−SH
SNR−JH

(d) mAP

Figure 6.7: Comparison with state-of-the-art methods on Caltech-101 dataset.

84

16 32 64 128
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of bits

30
−N

N
 c

la
ss

ifi
ca

tio
n

er
ro

r

SNR−JH
SNR−SH
SNR−MH CNN
SNR−MH GIST

Figure 6.8: Classification performance of multi-feature SNR-JH and SNR-SH,
and their single-feature counterparts SNR-MH on the MNIST digit dataset.

85

CHAPTER 7

HASHING REVISITED: OBSERVATIONS
AND OPEN PROBLEMS

When semantic labels are used as the groundtruth, we have observed that

nearest neighbor (NN) search using the Hamming metric in Hamming space

can perform better than NN search using the Euclidean metric in feature

space. This behavior has also been observed by others [7, 8]. It seems that

we not only save storage space and increase search speed but also improve

performance by hashing. Often the performance improvement is viewed as

a pleasant surprise. However, since both the Hamming metric and the Eu-

clidean metric are suboptimal decoding metrics (the optimal likelihood “met-

ric” requires knowledge of true data distribution, which is not available here),

there is no reason one should be better than the other. In the first part of this

chapter, we empirically compare the Hamming and Euclidean metrics under

the SNR maximization framework, and demonstrate that in the low-SNR

regime the Hamming metric decisively outperforms the Euclidean metric.

Bit independence is a desired property of many hashing algorithms, such

as SNR-MH and algorithms from [5, 12, 65, 79], while others generate cor-

related bits [9, 6, 22, 86]. Independent bits result in more compact binary

representations. For instance, we used regularizers to penalize hash functions

generating highly correlated bits in regularized Adaboost, and obtained sig-

nificant performance gain over the SPB algorithm where temporal correlation

is ignored. One may argue that correlated bits can be further compressed

by entropy coding, and thus correlated bits should not be avoided. However,

entropy coding will result in variable code length and require more compli-

cated decoding schemes than fixed-length codes. Therefore, we will restrict

our discussion to fixed code length without entropy coding. On the other

hand, it is often difficult to generate equally good independent bits. Under

the unsupervised setting, it has been observed that data distributions are

concentrated in a few high-variance projections [6, 22]. Under the supervised

setting, we have also noticed that the number of high-SNR projections is lim-

86

ited, and bits generated from subsequent uncorrelated low-SNR projections

may deteriorate performance. In Chapter 5, we have proposed a multi-bit al-

gorithm SNR-MBH to keep performance improving with longer code length.

In the second part of this chapter, we consider a different approach to tackle

the low-SNR projections. We show that balancing the SNR among projec-

tions, similarly to the ITQ variance balance approach, can lead to better

performance. Moreover, we can clearly demonstrate the trade-off between

the correlation among projections and the distribution of the SNRs at these

projections.

7.1 Hamming Metric versus Euclidean Metric

In Chapter 4, we proposed an SNR maximization procedure to learn K pro-

jection directions W = {w1, . . . , wK} ∈ RD×K and binarize the projected

data to hash codes: f = sgn(W Tx) ∈ {±1}K and g = sgn(W Ty) ∈ {±1}K .

In this section, we empirically compare the retrieval performance for quan-

tized hash codes and unquantized feature projections under the Gaussian

model.

We assume dissimilar X and Y are i.i.d. Gaussian random vectors, and

similar X and Y follow the relation of (4.3). To make the analysis easier, we

further assume SNRk = σ2
x/σ

2
z , k = 1, . . . , K. Denote by x̃ = W Tx ∈ RK and

ỹ =W Ty ∈ RK the projected feature vectors. We compare the performance

of the Euclidean rule

dE(x̃, ỹ)
S

≶
D

δ, (7.1)

where dE denotes the squared Euclidean distance, and the Hamming rule

dH(f, g)
S

⋚
D

τ. (7.2)

As the SNR maximization procedure normalizes the noise power to unity,

i.e., σ2
z = 1, the only free parameter in our simulations is the SNR. Varying

the values of the SNR, we obtain very different conclusions. When SNR is

high, the Euclidean metric performs better than the Hamming metric (see

Fig. 7.1c). As SNR decreases, histogram separation narrows and performance

drops for both metrics. However, the performance drops much more drasti-

87

cally with the Euclidean metric (see Fig. 7.2c and Fig. 7.3c). This behavior

can be explained by examining the distributions of dE(X̃, Ỹ) and dH(F,G).

Define random variables T SE and TDE as the squared Euclidean distance

between similar and dissimilar X and Y respectively, and T SH and TDH as

the Hamming distance between similar and dissimilar F and G respectively.

Under the Gaussian model, it can be easily shown that T SE ∼ σ2
zχ

2
K and TDE ∼

2σ2
xχ

2
K , where χ

2
K is the chi-squared distribution with K degrees of freedom.

Also, TDH ∼ Bi(K, 1/2) and T SH ∼ Bi(K, p), where p is a monotonically

decreasing function of SNR as shown in (4.14).

Note that when σ2
x = 0.5σ2

z , T
S
E and TDE have the same distribution, hence

the histograms of T SE and TDE are indistinguishable. However, p is well below

0.5 for SNR = 0.5, causing the histograms of T SH and TDH to still be well

separated. As shown in Fig. 7.4a, p is robust to changes in SNR. It is therefore

not surprising that the Hamming metric performs better than the Euclidean

metric at low-SNR regime. In Fig. 7.3, we show results for SNR = 0.6.

The histograms of the Hamming distance are much better separated than

those of the squared Euclidean distance, resulting in orders of magnitude

performance gap in ROC curves.

0 100 200 300 400 500
0

1

2

3

4

5
x 10

4

Similar
Dissimilar

(a) Histograms of dE(x̃, ỹ)

0 50 100
0

2

4

6

8

10
x 10

4

Similar
Dissimilar

(b) Histograms of dH(f,g)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

Euclidean metric
Hamming metric

(c) ROC curves

Figure 7.1: Results for SNR = 1.4.

Since histogram separation is a strong indicator of the performance, we

use a Bhattachayya distance approximation [87]

dB(p1, p2) =
1

4
ln

(
1

4

(
σ2
1

σ2
2

+
σ2
2

σ2
1

+ 2

))
+

1

4

(
(µ1 − µ2)

2

σ2
1 + σ2

2

)
, (7.3)

where (µ1, σ
2
1) and (µ2, σ

2
2) are the mean and variance of distribution p1 and

p2 respectively, to measure the similarity between histograms (T SE , T
D
E) and

88

0 100 200 300 400 500
0

1

2

3

4

5
x 10

4

Similar
Dissimilar

(a) Histograms of dE(x̃, ỹ)

0 50 100
0

2

4

6

8

10
x 10

4

Similar
Dissimilar

(b) Histograms of dH(f,g)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

Euclidean metric
Hamming metric

(c) ROC curves

Figure 7.2: Results for SNR = 1.

0 100 200 300 400 500
0

1

2

3

4

5
x 10

4

Similar
Dissimilar

(a) Histograms of dE(x̃, ỹ)

0 50 100
0

2

4

6

8

10
x 10

4

Similar
Dissimilar

(b) Histograms of dH(f,g)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

Euclidean metric
Hamming metric

(c) ROC curves

Figure 7.3: Results for SNR = 0.6.

(T SH , T
D
H) at different SNR.1 As shown in Fig. 7.4b, the Euclidean metric has

larger Bhattachayya distances in the high-SNR regime, while the Hamming

metric dominates in the low-SNR regime.

In this section, we have clearly shown that Hamming metric on binary hash

codes can perform better than Euclidean metric on feature vectors. Though

we only showed this under the Gaussian model, we would not be surprised to

see this behavior over other datasets. Therefore, supervised hashing, where

semantic labels are the groundtruth, should not be considered a tool for fast

ANN search. In fact, supervised hashing could perform even better than

exact NN search!

1This assumes Gaussian distributions. As K = 128 is relatively large, we approximate
the chi-squared and binomial distributions with Gaussian distributions to obtain the rough
results shown in Fig. 7.4b.

89

0.5 1 1.5 2 2.5 3
0.1

0.15

0.2

0.25

0.3

0.35

SNR

p

(a) p versus SNR.

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

SNR

B
ha

tta
ch

ar
yy

a
di

st
an

ce

T
E
S and T

E
D

T
H
S and T

H
D

(b) dB versus SNR.

Figure 7.4: Results for various values of SNR.

7.2 SNR Distribution versus Projection Correlation

In Section 5.1, we have demonstrated that the optimal decision rule for hash-

ing applications can be expressed in terms of the weighted Hamming distance

(5.1) under the Gaussian model, where the weight for the k-th bit solely de-

pends on SNRk. However, the Hamming metric implicitly assigns the same

weight to each bit, which causes performance to deteriorate when low-SNR

projections are used. To enjoy the simplicity and fast search speed of the

Hamming metric, we consider a balancing strategy that forces {SNRk}Kk=1 to

be more evenly distributed at different projections.

Denoting by W = {w1, . . . , wK} ∈ RD×K the optimal projections from

solving (4.15), we have W TCZW = I and W TCXW is a diagonal matrix

with diagonal entries [SNR1, . . . , SNRK]. Thus,

K∑

k=1

SNRk = Tr
(
W TCXW

)
. (7.4)

To balance the SNRs, we use orthogonal transformations. Multiplying W

with any orthogonal K × K matrix R does not change the total SNR, i.e.,

RTW TCZWR = I and Tr
(
RTW TCXWR

)
= Tr

(
W TCXW

)
=
∑K

k=1 SNRk.

Ideally, we would like to find an orthogonal matrix R such that SNRk’s are

uniformly distributed across different projections while keeping projections

90

uncorrelated, i.e., RTW TCXWR = γ̄I where

γ̄ =
1

K

K∑

k=1

SNRk (7.5)

is the average SNR. Unfortunately, as shown next, no such R exists! There-

fore, balancing SNRs will inevitably introduce correlation among projections.

Denote by Λ = W TCXW the transformed feature covariance matrix. Note

that Λ is a diagonal matrix with diagonal entries Λkk = SNRk, k = 1, . . . , K.

To measure the difference between RTΛR and γ̄I, we have

J(R) = ||RTΛR− γ̄I||2F

= Tr
(
(RTΛR− γ̄I)T (RTΛR− γ̄I)

)

= Tr
(
Λ2 − 2γ̄Λ+ γ̄2I

)

=

K∑

k=1

(SNRk − γ̄)2 ,

which does not depend on R. Unless Λ = γ̄I, J(R) is a positive constant.

In the rest of this subsection, we will examine two heuristic balancing

strategies, and compare them with SNR-MH and SNR-MBH. Hopefully, we

can shed some light on this problem.

For a random orthogonal matrix Rran, R
T
ranΛRran will have nonzero off-

diagonal entries, i.e., nonzero correlations between transformed feature vec-

tors. Since J(R) is a constant, the diagonal entries of RT
ranΛRran will be more

evenly distributed with values not far from γ̄.

From the Shur-Horn Lemma [88], there exists an orthogonal matrix Riso

such that diagonal entries of RT
isoΛRiso all equal to γ̄. Such Riso can be

obtained by the isotropic hashing procedure [89]. As diagonal entries of

RT
isoΛRiso and γ̄I are equal, the sum of the squared off-diagonal entries at-

tains the maximal value
∑K

k=1 (SNRk − γ̄)2, and thus Riso creates the most

correlated feature vectors in terms of the average absolute correlation.

We use the same synthetic dataset as in Chapter 5 and show results for

different orthogonal matrices in Fig. 7.5. In Fig. 7.5a, we see that SNRs

from the SNR maximization are distributed very unevenly. With a random

rotation, SNRs are close to uniform. As Riso forces isotropic diagonal en-

tries, all SNRs are equal. Figure 7.5b compares ROC curves among different

91

schemes. As explained in Section 5.1, SNR-MH suffers from low-SNR projec-

tions. Though Rran and Riso inevitably create dependency among projected

data, we see a significant performance improvement from SNR-MH because

of the more balanced SNRs.

However, balancing SNRs by Rran or Riso still does not bring ROC curves

near to that of the SNR-MBH algorithm. So far, there is no systematic

way of choosing an orthogonal matrix R that achieves the optimal trade-off

between balancing SNRs and controlling correlation. We believe this is an

important problem in hashing which will require more investigation in the

future.

20 40 60 80 100 120
0

5

10

15

20

Diagonal entry index

S
N

R

R = I
R = R

ran

R = R
iso

(a) Diagonal entries of RTΛR.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
F

P
M

 SNR−MH
R

ran

R
iso

SNR−MBH

(b) ROC curves, 128 bits.

Figure 7.5: Results on synthetic dataset with different orthogonal
transformations.

92

CHAPTER 8

CONCLUSIONS

8.1 Summary of Contributions

The main contributions of this dissertation are as follows:

1. Regularized Adaboost, presented in Chapter 3, is a fairly general frame-

work for identification of time-varying content. Audio and video con-

tent ID systems use substantial overlapping of slices to mitigate mis-

alignment during identification [30, 31, 32]. Hence fingerprinting al-

gorithms such as SPB [28, 29] produce highly correlated fingerprints.

While some correlation in fingerprints is useful to combat misalign-

ment, information-theoretic analysis and real world experiments show

that too much correlation is undesirable. Our proposed fingerprinting

algorithm is based on the boosting framework and uses a regularization

term to control the amount of fingerprint correlation and improve con-

tent ID performance. We have proposed a mutual information regular-

izer (MIR) and an average correlation coefficient regularizer (ACCR),

both of which are easy to compute and can capture the filter’s ability to

decorrelate overlapping slices. Significant performance gains over SPB

have been demonstrated for audio, video and RGB-D video content ID

systems.

2. SNR maximization hashing (SNR-MH), presented in Chapter 4, is a

simple and powerful hashing framework. We have shown that the hash

bits generated from SNR maximization projections minimize the hash-

ing error probability under a Gaussian model for the underlying signals.

Despite the simple linear model (4.3) and the simple training procedure

(solving generalized eigenproblems and parameter-free), SNR-MH ex-

hibits excellent retrieval performance on both synthetic and various

93

real datasets.

3. The multi-bit hashing of Chapter 5 (SNR-MBH) extends SNR-MH to

learn longer hash codes when high-SNR projections are limited. SNR-

MBH is an automatic procedure that determines the number of avail-

able high-SNR projections, the number of bits for each projection, and

the positions of quantization thresholds. SNR-MBH not only demon-

strates superior retrieval performance over many other hashing algo-

rithms, but also excellent classification performance with a simple K-

NN classifier.

4. SNR joint hashing (SNR-JH) and SNR selection hashing (SNR-SH)

of Chapter 6 are two multi-feature hashing algorithms based on SNR

maximization. SNR-JH jointly learns projection directions from all

features, while SNR-SH selects projection directions from a pool of

candidate projections generated from each individual feature. Both

SNR-JH and SNR-SH consider the different statistical properties from

different features and exploit the complementary information between

features. Both SNR-JH and SNR-SH perform favorably compared to

other state-of-the-art multi-feature hashing algorithms on five bench-

mark datasets.

5. In Chapter 7, we present two observations within the SNR maximiza-

tion framework. The first is that in the low-SNR regime the Hamming

metric is decisively better than the Euclidean metric, when semantic

label is used as the groundtruth. The second concerns the trade-off be-

tween SNR distribution and projection correlation. Though these two

observations are only demonstrated in the SNR maximization frame-

work, I believe they can be generalized to other settings and are worth

further investigation.

8.2 Future Directions

Besides the open problems in Chapter 7, I would like to discuss two additional

directions for future research before concluding this dissertation.

1. Kernelized SNR maximization hashing: One of the motivations

94

of SNR-MH is its optimality under the linear Gaussian model of (4.3).

However, the linear model may be too restrictive for the given input

feature vector. Potentially, a nonlinear transformation of the input fea-

ture space could make the noise model linear in the transformed high-

dimensional (possibly infinite dimensional) feature space. To avoid

explicit learning in high-dimensional space, kernel methods have been

successfully applied to many learning problems, such as support vec-

tor machines and kernelized locality sensitive hashing [3, 4]. Therefore,

constructing a kernelized SNR-MH algorithm may be helpful in increas-

ing the capacity of SNR-MH.

2. Combining SNR maximization and deep neural networks:

Among the many image features we have explored in our experiments,

the CNN feature constructed from a deep convolutional neural net-

work (CNN) [74] is certainly the most powerful one. Applying SNR

maximization hashing on top of the CNN feature, we have achieved

start-of-the-art retrieval and classification performances on many im-

age datasets. It might be promising to combine the two in a unified

framework. For instance, one might want to combine the deep CNN

architecture and the supervised SNR metric to learn binary codes from

large amounts of labeled or weakly labeled data.

95

APPENDIX A

RELATION BETWEEN PFN AND PMISS

To derive the link between PFN and Pmiss for the two decoders in Def. 2 and

Def. 3, we express PFN and Pmiss in terms of the decision regions.

For the single-output decoder ψ, the decision regionRψ
m form ∈ {1, 2, . . . ,M}

is given by

Rψ
m = {g : d∗(f(m), g) < τ and d∗(f(m), g) < d∗(f(m′), g), ∀m′ 6= m}. (A.1)

For the variable-size list decoder L, the decision regionRL
m form ∈ {1, 2, . . . ,M}

is given by

RL
m = {g : d∗(f(m), g) < τ}. (A.2)

While {Rψ
m} are disjoint sets, {RL

m} are generally overlapping. It follows

from (3.2) and (3.3) that

PFN =
1

M

M∑

m=1

∑

g 6∈Rψm

Pr[g|Hm], (A.3)

Pmiss =
1

M

M∑

m=1

∑

g 6∈RL
m

Pr[g|Hm]. (A.4)

Clearly, we have Rψ
m ⊆ RL

m. Therefore,

Pmiss ≤ PFN . (A.5)

96

APPENDIX B

EQUIVALENCE BETWEEN SNR
MAXIMIZATION (4.15) AND

GENERALIZED EIGENPROBLEM (4.16)

Denote by γ(w) the objective function of (4.15)

γ(w) =
wTCXw

wTCZw
, (B.1)

where both Cx and Cz are symmetric and Cz is positive-definite. The ratio

γ(w) is known as the Rayleigh quotient. We first show that the critical points

of γ(w) correspond to the eigensystem of the generalized eigenproblem of

(4.16), and then show that these eigenvectors satisfy the constraints of (4.15).

Setting the gradient of γ equal to zero, we have

∂γ

∂w
=

2

wTCzw
(Cxw − γCzw) = 0. (B.2)

Since wTCzw > 0, we have

Cxw = γCzw, (B.3)

which is the generalized eigenproblem of (4.16).

Next, we show eigenvectors from (B.3) satisfy the constraints of (4.15),

i.e.,

wTi Cxwj = 0 ∀i 6= j

wTi Czwj = 0 ∀i 6= j

wTi Czwi = 1 ∀i.

Note that wiCzwi > 0 can always be forced to be one as γ is invariant to

scaling in wi. For the i-th eigenvalue γi and eigenvector wi, we have

Cxwi = γiCzwi. (B.4)

97

The dot product with another eigenvector wj gives

wTj Cxwi = γiw
T
j Czwi. (B.5)

Similarly, we have

wTi Cxwj = γjw
T
i Czwj . (B.6)

As both Cx and Cz are symmetric, we have wTj Cxwi = wTi Cxwj and w
T
j Czwi =

wTi Czwj. Therefore,

γiw
T
i Czwj = γjw

T
i Czwj (B.7)

1

γi
wTi Cxwj =

1

γj
wTi Cxwj. (B.8)

When γi 6= γj, we have wTi Cxwj = 0 and wTi Czwj = 0.

We have shown that the eigenvectors corresponding to the generalized

eigenproblem (4.16) are the solution to the SNR maximization problem (4.15).

98

REFERENCES

[1] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast search in hamming space
with multi-index hashing,” in Proceedings of the 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Washing-
ton, DC, USA, 2012, pp. 3108–3115.

[2] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in ACM STOC, 1998, pp. 604–
613.

[3] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in IEEE International Conference on Computer
Vision (ICCV), 2009.

[4] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Advances in Neural Information Processing
Systems (NIPS), Vancouver, Canada, December 2009, pp. 1509–1517.

[5] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in Neural Information Processing Systems (NIPS), Vancouver, Canada,
December 2008, pp. 1753–1760.

[6] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” in Proceedings of the 2011 IEEE Con-
ference on Computer Vision and Pattern Recognition, ser. CVPR ’11,
Washington, DC, USA, June 2011, pp. 817–824.

[7] M. Norouzi, D. J. Fleet, and R. Salakhutdinov, “Hamming distance
metric learning,” in NIPS, 2012, pp. 1070–1078.

[8] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Im-
proved matching with smaller descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 1, pp. 66–78, Jan. 2012.

[9] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter sensitive hashing,” in In ICCV, 2003, pp. 750–757.

[10] M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact binary
codes,” in ICML, 2011, pp. 353–360.

99

[11] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969–978, July 2009.

[12] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in CVPR, San Francisco, CA, June 2010, pp.
3424–3431.

[13] R. Venkatesan, S.-M. Koon, M. H. Jakubowski, and P. Moulin, “Robust
image hashing,” in IEEE International Conference on Image Processing:
ICIP 2000, Vancouver (BC), CA, September 2000.

[14] P. Moulin, “Statistical modeling and analysis of content identification,”
in Information Theory and Applications Workshop, San Diego, CA,
February 2010.

[15] A. L. Varna and M. Wu, “Modeling and analysis of correlated binary fin-
gerprints for content identification,” IEEE Transactions on Information
Forensics and Security, vol. 6, pp. 1146–1159, 2011.

[16] R. Naini and P. Moulin, “Model-based decoding metrics for content iden-
tification,” in Proceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March
2012, pp. 1829 –1832.

[17] F. Willems, T. Kalker, S. Baggen, and J. paul Linnartz, “On the capacity
of a biometrical identification system,” in In: Proc. of the 2003 IEEE
Int. Symp. on Inf. Theory, Yokohama, Japan, 2003, pp. 8–2.

[18] A. L. Varna, “Multimedia protection using content and embedded fin-
gerprints,” Ph.D. dissertation, University of Maryland, 2011.

[19] T. Holotyak, S. Voloshynovskiy, O. J. Koval, and F. Beekhof, “Fast
physical object identification based on unclonable features and soft fin-
gerprinting,” in Proceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Prague, Czech Republic,
2011, pp. 1713–1716.

[20] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proceed-
ings of the Twentieth Annual Symposium on Computational Geometry.
ACM, 2004, pp. 253–262.

[21] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” Commun. ACM, vol. 51,
no. 1, pp. 117–122, Jan. 2008.

[22] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning
for hashing with compact codes,” in ICML, Haifa, Israel, June 2010, pp.
1127–1134.

100

[23] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 33, no. 1, pp. 117–128, jan 2011. [Online]. Available:
http://lear.inrialpes.fr/pubs/2011/JDS11

[24] M. Norouzi and D. J. Fleet, “Cartesian k-means,” in CVPR, 2013, pp.
3017–3024.

[25] T. Ge, K. He, Q. Ke, and J. S. 0001, “Optimized product quantization
for approximate nearest neighbor search,” in CVPR, 2013, pp. 2946–
2953.

[26] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proceedings
of the 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition, Washington, DC, USA, 2013, pp. 2938–2945.

[27] Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for music
identification,” in Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), Washington,
DC, USA, 2005, pp. 597–604.

[28] D. Jang, C. D. Yoo, S. Lee, S. Kim, and T. Kalker, “Pairwise boosted
audio fingerprint,” IEEE Transactions on Information Forensics and
Security, vol. 4, no. 4, pp. 995–1004, Dec. 2009.

[29] S. Lee, C. D. Yoo, and T. Kalker, “Robust video fingerprinting based
on symmetric pairwise boosting,” IEEE Trans. Circ. and Sys. for Video
Technol., vol. 19, no. 9, pp. 1379–1388, Sep. 2009.

[30] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting sys-
tem,” in Proceedings of the International Symposium on Music Infor-
mation Retrieval, Paris, France, 2002.

[31] S. Baluja and M. Covell, “Audio fingerprinting: Combining computer
vision data stream processing,” in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Hon-
olulu, Hawaii, April 2007.

[32] J. Lu, “Video fingerprinting for copy identification: from research to
industry applications,” in SPIE Electric Imaging Symposium on Media
Forensics and Security I, San Jose, CA, USA, 2009.

[33] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of audio
fingerprinting,” VLSI Signal Processing, vol. 41, no. 3, pp. 271–284,
2005.

101

[34] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
Edition (Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, July 2006.

[35] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. New York:
Springer-Verlag, 2001.

[36] J. H. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regres-
sion: a statistical view of boosting,” Annals of Statistics, vol. 28, pp.
400–407, 1998.

[37] IACC, “http://www-nlpir.nist.gov/projects/tv2012/pastdata/sin.master.
shot.reference.iacc.1.c/iacc.1.C.collection.xml.”

[38] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer, “Compact hashing
with joint optimization of search accuracy and time,” in CVPR, 2011,
pp. 753–760.

[39] GoldWave, “http://www.goldwave.com.”

[40] J. S. Seo, M. Jin, S. Lee, D. Jang, S. Lee, and C. D. Yoo, “Audio
fingerprinting based on normalized spectral subband moments,” IEEE
Signal Process. Lett., vol. 13, no. 4, pp. 209–212, 2006.

[41] K. Grauman and R. Fergus, “Learning binary hash codes for large-scale
image search,” in Machine Learning for Computer Vision, ser. Studies
in Computational Intelligence. Springer Berlin Heidelberg, 2013, vol.
411, pp. 49–87.

[42] “http://www.xbox.com/en-US/KINECT.”

[43] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Washington, DC, USA, June
2011.

[44] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmenta-
tion and support inference from RGBD images,” in Proceedings of the
European Conference on Computer Vision, Firenze, Italy, October 2012.

[45] C. Wolf, J. Mille, L.E., Lombardi, O. Celiktutan, M. Jiu, M. Baccouche,
E. Dellandrea, C. E. Bichot, C. Garcia, and B. Sankur, “The LIRIS hu-
man activities dataset and the ICPR 2012 human activities recognition
and localization competition,” LIRIS Laboratory, Tech. Rep., 2012.

102

[46] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view
rgb-d object dataset,” in IEEE International Conference on Robotics
and Automation, 2011.

[47] B. Ni, G. Wang, and P. Moulin, “RGBD-HuDaAct: A color-
depth video database for human daily activity recognition,” in
IEEE Workshop on Consumer Depth Cameras for Computer
Vision in conjunction with ICCV, 2011. [Online]. Available: http:
//www.adsc.illinois.edu/demos.html

[48] K. Khoshelham and S. O. Elberink, “Accuracy and resolution
of kinect depth data for indoor mapping applications,” Sensors,
vol. 12, no. 2, pp. 1437–1454, 2012. [Online]. Available: http:
//www.mdpi.com/1424-8220/12/2/1437

[49] C. Fehn, “Depth-image-based rendering (DIBR), compression and trans-
mission for a new approach on 3D-TV,” in SPIE Stereoscopic Displays
and Virtual Reality Systems XI, 2004.

[50] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S.-C. Zhu, “On ad-
vances in statistical modeling of natural images,” Journal of Mathemat-
ical Imaging and Vision, vol. 18, pp. 17–33, 2003.

[51] E. P. Simoncelli, “Statistical modeling of photographic images,” in
Handbook of Image and Video Processing, A. Bovik, Ed. Academic
Press, May 2005, ch. 4.7, pp. 431–441, 2nd edition.

[52] P. Moulin and J. Liu, “Analysis of multiresolution image denoising
schemes using Generalized-Gaussian and complexity priors,” IEEE
Trans. Info. Theory, vol. 45, pp. 909–919, 1998.

[53] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using Gen-
eralized Gaussian density and Kullback-Leibler distance,” IEEE Trans.
Image Processing, vol. 11, pp. 146–158, 2002.

[54] A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from
a single still image,” International Journal of Computer Vision (IJCV),
vol. 76, 2007.

[55] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. R. Dick, “Learning
hash functions using column generation,” in ICML, ser. JMLR Proceed-
ings. JMLR.org, 2013, pp. 142–150.

[56] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in in Proc. NIPS, 2009, 2009, pp. 1042–1050.

[57] H. Yu and P. Moulin, “Regularized Adaboost for content identification,”
in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Vancouver, Canada, 2013.

103

[58] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards: Algorithms and Architectures, 2nd ed. Norwell, MA, USA:
Kluwer Academic Publishers, 1997.

[59] J. R. Barry, D. G. Messerschmitt, and E. A. Lee, Digital Communica-
tion: Third Edition. Norwell, MA, USA: Kluwer Academic Publishers,
2003.

[60] K. S. Gomadam and S. A. Jafar, “Optimal relay functionality for snr
maximization in memoryless relay networks,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 2, pp. 390–401, 2007.

[61] B. van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE ASSP Magazine, vol. 5, pp. 4–24, April 1988.

[62] R. A. Monzingo, R. L. Haupt, and T. W. Miller, Introduction to Adaptive
Arrays. Institution of Engineering and Technology, 2011.

[63] B. N. Parlett, The Symmetric Eigenvalue Problem. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1998.

[64] S. Kumar and R. Udupa, “Learning hash functions for cross-view simi-
larity search,” in Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, 2011, pp. 1360–1365.

[65] X. Liu, J. He, D. Liu, and B. Lang, “Compact kernel hashing with multi-
ple features,” in Proceedings of the 20th ACM International Conference
on Multimedia, New York, NY, USA, 2012, pp. 881–884.

[66] S. M. Samuels, “On the number of successes in independent trials,” The
Annals of Mathematical Statistics, vol. 36, no. 4, pp. 1272–1278, 08 1965.

[67] F. Balado, N. Hurley, E. McCarthy, and G. Silvestre, “Performance
analysis of robust audio hashing,” Information Forensics and Security,
IEEE Transactions on, vol. 2, no. 2, pp. 254–266, June 2007.

[68] R. A. Johnson and D.W. Wichern, Applied Multivariate Statistical Anal-
ysis. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[69] H. Yu and P. Moulin, “Regularized Adaboost learning for identification
of time-varying content,” IEEE Transactions on Information Forensics
and Security, vol. 9, no. 10, pp. 1606–1616, 2014.

[70] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2, June 2006, pp. 2161–2168.

[71] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to
object matching in videos,” in ICCV, 2003.

104

[72] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vision, vol. 42,
no. 3, pp. 145–175, May 2001.

[73] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[74] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR 2014), April 2014.

[75] Y. Fu, L. Cao, G. Guo, and T. S. Huang, “Multiple feature fusion by
subspace learning,” in Proceedings of the 2008 International Conference
on Content-based Image and Video Retrieval, Niagara Falls, Canada,
2008, pp. 127–134.

[76] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple fea-
ture hashing for real-time large scale near-duplicate video retrieval,” in
Proceedings of the 19th ACM International Conference on Multimedia,
Scottsdale, Arizona, USA, 2011, pp. 423–432.

[77] H. Yu, P. Moulin, and S. Roy, “RGB-D Video Content Identification,”
in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Vancouver, Canada, 2013.

[78] D. Zhang, F. Wang, and L. Si, “Composite hashing with multiple infor-
mation sources,” in Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Bei-
jing, China, 2011, pp. 225–234.

[79] X. Liu, J. He, B. Lang, and S.-F. Chang, “Hash bit selection: A unified
solution for selection problems in hashing,” in CVPR, 2013.

[80] Y. Zhen and D.-Y. Yeung, “Co-regularized hashing for multimodal
data,” in NIPS, 2012, pp. 1385–1393.

[81] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and W. Gao, “Parametric
local multimodal hashing for cross-view similarity search,” in IJCAI,
2013.

[82] J. Schmidhuber, J. Masci, M. M. Bronstein, and A. M. Bronstein, “Mul-
timodal similarity-preserving hashing,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 4, pp. 824–830, 2014.

[83] “http://yann.lecun.com/exdb/mnist/.”

105

[84] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in CVPR,
2006.

[85] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental Bayesian approach tested
on 101 object categories,” Comput. Vis. Image Underst., vol. 106, no. 1,
pp. 59–70, Apr. 2007.

[86] R.-S. Lin, D. A. Ross, and J. Yagnik, “SPEC hashing: Similarity pre-
serving algorithm for entropy-based coding,” in CVPR, 2010, pp. 848–
854.

[87] G. Coleman and H. C. Andrews, “Image segmentation by clustering,”
Proceedings of the IEEE, vol. 67, no. 5, pp. 773–785, May 1979.

[88] A. Horn, “Doubly stochastic matrices and the diagonal of a rotation
matrix,” American Journal of Mathematics, vol. 76, no. 3, pp. 620–630,
Jul. 1954.

[89] W. Kong and W.-J. Li, “Isotropic hashing,” in Advances in Neural In-
formation Processing Systems 25, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., 2012, pp. 1646–1654.

106

