453 research outputs found

    A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition.

    Full text link
    Recent years have witnessed the success of deep learning methods in human activity recognition (HAR). The longstanding shortage of labeled activity data inherently calls for a plethora of semisupervised learning methods, and one of the most challenging and common issues with semisupervised learning is the imbalanced distribution of labeled data over classes. Although the problem has long existed in broad real-world HAR applications, it is rarely explored in the literature. In this paper, we propose a semisupervised deep model for imbalanced activity recognition from multimodal wearable sensory data. We aim to address not only the challenges of multimodal sensor data (e.g., interperson variability and interclass similarity) but also the limited labeled data and class-imbalance issues simultaneously. In particular, we propose a pattern-balanced semisupervised framework to extract and preserve diverse latent patterns of activities. Furthermore, we exploit the independence of multi-modalities of sensory data and attentively identify salient regions that are indicative of human activities from inputs by our recurrent convolutional attention networks. Our experimental results demonstrate that the proposed model achieves a competitive performance compared to a multitude of state-of-the-art methods, both semisupervised and supervised ones, with 10% labeled training data. The results also show the robustness of our method over imbalanced, small training data sets

    Remote health monitoring systems for elderly people: a survey

    Get PDF
    This paper addresses the growing demand for healthcare systems, particularly among the elderly population. The need for these systems arises from the desire to enable patients and seniors to live independently in their homes without relying heavily on their families or caretakers. To achieve substantial improvements in healthcare, it is essential to ensure the continuous development and availability of information technologies tailored explicitly for patients and elderly individuals. The primary objective of this study is to comprehensively review the latest remote health monitoring systems, with a specific focus on those designed for older adults. To facilitate a comprehensive understanding, we categorize these remote monitoring systems and provide an overview of their general architectures. Additionally, we emphasize the standards utilized in their development and highlight the challenges encountered throughout the developmental processes. Moreover, this paper identifies several potential areas for future research, which promise further advancements in remote health monitoring systems. Addressing these research gaps can drive progress and innovation, ultimately enhancing the quality of healthcare services available to elderly individuals. This, in turn, empowers them to lead more independent and fulfilling lives while enjoying the comforts and familiarity of their own homes. By acknowledging the importance of healthcare systems for the elderly and recognizing the role of information technologies, we can address the evolving needs of this population. Through ongoing research and development, we can continue to enhance remote health monitoring systems, ensuring they remain effective, efficient, and responsive to the unique requirements of elderly individuals

    Improved wolf swarm optimization with deep-learning-based movement analysis and self-regulated human activity recognition

    Get PDF
    A wide variety of applications like patient monitoring, rehabilitation sensing, sports and senior surveillance require a considerable amount of knowledge in recognizing physical activities of a person captured using sensors. The goal of human activity recognition is to identify human activities from a collection of observations based on the behavior of subjects and the surrounding circumstances. Movement is examined in psychology, biomechanics, artificial intelligence and neuroscience. To be specific, the availability of pervasive devices and the low cost to record movements with machine learning (ML) techniques for the automatic and quantitative analysis of movement have resulted in the growth of systems for rehabilitation monitoring, user authentication and medical diagnosis. The self-regulated detection of human activities from time-series smartphone sensor datasets is a growing study area in intelligent and smart healthcare. Deep learning (DL) techniques have shown enhancements compared to conventional ML methods in many fields, which include human activity recognition (HAR). This paper presents an improved wolf swarm optimization with deep learning based movement analysis and self-regulated human activity recognition (IWSODL-MAHAR) technique. The IWSODL-MAHAR method aimed to recognize various kinds of human activities. Since high dimensionality poses a major issue in HAR, the IWSO algorithm is applied as a dimensionality reduction technique. In addition, the IWSODL-MAHAR technique uses a hybrid DL model for activity recognition. To further improve the recognition performance, a Nadam optimizer is applied as a hyperparameter tuning technique. The experimental evaluation of the IWSODL-MAHAR approach is assessed on benchmark activity recognition data. The experimental outcomes outlined the supremacy of the IWSODL-MAHAR algorithm compared to recent models

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Machine Learning Based Physical Activity Extraction for Unannotated Acceleration Data

    Get PDF
    Sensor based human activity recognition (HAR) is an emerging and challenging research area. The physical activity of people has been associated with many health benefits and even reducing the risk of different diseases. It is possible to collect sensor data related to physical activities of people with wearable devices and embedded sensors, for example in smartphones and smart environments. HAR has been successful in recognizing physical activities with machine learning methods. However, it is a critical challenge to annotate sensor data in HAR. Most existing approaches use supervised machine learning methods which means that true labels need be given to the data when training a machine learning model. Supervised deep learning methods have outperformed traditional machine learning methods in HAR but they require an even more extensive amount of data and true labels. In this thesis, machine learning methods are used to develop a solution that can recognize physical activity (e.g., walking and sedentary time) from unannotated acceleration data collected using a wearable accelerometer device. It is shown to be beneficial to collect and annotate data from physical activity of only one person. Supervised classifiers can be trained with small, labeled acceleration data and more training data can be obtained in a semi-supervised setting by leveraging knowledge from available unannotated data. The semi-supervised En-Co-Training method is used with the traditional supervised machine learning methods K-nearest Neighbor and Random Forest. Also, intensities of activities are produced by the cut point analysis of the OMGUI software as reference information and used to increase confidence of correctly selecting pseudo-labels that are added to the training data. A new metric is suggested to help to evaluate reliability when no true labels are available. It calculates a fraction of predictions that have a correct intensity out of all the predictions according to the cut point analysis of the OMGUI software. The reliability of the supervised KNN and RF classifiers reaches 88 % accuracy and the C-index value 0,93, while the accuracy of the K-means clustering remains 72 % when testing the models on labeled acceleration data. The initial supervised classifiers and the classifiers retrained in a semi-supervised setting are tested on unlabeled data collected from 12 people and measured with the new metric. The overall results improve from 96-98 % to 98-99 %. The results with more challenging activities to the initial classifiers, taking a walk improve from 55-81 % to 67-81 % and jogging from 0-95 % to 95-98 %. It is shown that the results of the KNN and RF classifiers consistently increase in the semi-supervised setting when tested on unannotated, real-life data of 12 people

    Human-centred artificial intelligence for mobile health sensing:challenges and opportunities

    Get PDF
    Advances in wearable sensing and mobile computing have enabled the collection of health and well-being data outside of traditional laboratory and hospital settings, paving the way for a new era of mobile health. Meanwhile, artificial intelligence (AI) has made significant strides in various domains, demonstrating its potential to revolutionize healthcare. Devices can now diagnose diseases, predict heart irregularities and unlock the full potential of human cognition. However, the application of machine learning (ML) to mobile health sensing poses unique challenges due to noisy sensor measurements, high-dimensional data, sparse and irregular time series, heterogeneity in data, privacy concerns and resource constraints. Despite the recognition of the value of mobile sensing, leveraging these datasets has lagged behind other areas of ML. Furthermore, obtaining quality annotations and ground truth for such data is often expensive or impractical. While recent large-scale longitudinal studies have shown promise in leveraging wearable sensor data for health monitoring and prediction, they also introduce new challenges for data modelling. This paper explores the challenges and opportunities of human-centred AI for mobile health, focusing on key sensing modalities such as audio, location and activity tracking. We discuss the limitations of current approaches and propose potential solutions

    HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS AND ROBUSTNESS ANALYSIS OF DEEP NEURAL NETWORKS

    Get PDF
    In recent years, there has been significant amount of research work on human activity classification relying either on Inertial Measurement Unit (IMU) data or data from static cameras providing a third-person view. There has been relatively less work using wearable cameras, providing egocentric view, which is a first-person view providing the view of the environment as seen by the wearer. Using only IMU data limits the variety and complexity of the activities that can be detected. Deep machine learning has achieved great success in image and video processing in recent years. Neural network based models provide improved accuracy in multiple fields in computer vision. However, there has been relatively less work focusing on designing specific models to improve the performance of egocentric image/video tasks. As deep neural networks keep improving the accuracy in computer vision tasks, the robustness and resilience of the networks should be improved as well to make it possible to be applied in safety-crucial areas such as autonomous driving. Motivated by these considerations, in the first part of the thesis, the problem of human activity detection and classification from egocentric cameras is addressed. First, anew method is presented to count the number of footsteps and compute the total traveled distance by using the data from the IMU sensors and camera of a smart phone. By incorporating data from multiple sensor modalities, and calculating the length of each step, instead of using preset stride lengths and assuming equal-length steps, the proposed method provides much higher accuracy compared to commercially available step counting apps. After the application of footstep counting, more complicated human activities, such as steps of preparing a recipe and sitting on a sofa, are taken into consideration. Multiple classification methods, non-deep learning and deep-learning-based, are presented, which employ both ego-centric camera and IMU data. Then, a Genetic Algorithm-based approach is employed to set the parameters of an activity classification network autonomously and performance is compared with empirically-set parameters. Then, a new framework is introduced to reduce the computational cost of human temporal activity recognition from egocentric videos while maintaining the accuracy at a comparable level. The actor-critic model of reinforcement learning is applied to optical flow data to locate a bounding box around region of interest, which is then used for clipping a sub-image from a video frame. A shallow and deeper 3D convolutional neural network is designed to process the original image and the clipped image region, respectively.Next, a systematic method is introduced that autonomously and simultaneously optimizes multiple parameters of any deep neural network by using a bi-generative adversarial network (Bi-GAN) guiding a genetic algorithm(GA). The proposed Bi-GAN allows the autonomous exploitation and choice of the number of neurons for the fully-connected layers, and number of filters for the convolutional layers, from a large range of values. The Bi-GAN involves two generators, and two different models compete and improve each other progressively with a GAN-based strategy to optimize the networks during a GA evolution.In this analysis, three different neural network layers and datasets are taken into consideration: First, 3D convolutional layers for ModelNet40 dataset. We applied the proposed approach on a 3D convolutional network by using the ModelNet40 dataset. ModelNet is a dataset of 3D point clouds. The goal is to perform shape classification over 40shape classes. LSTM layers for UCI HAR dataset. UCI HAR dataset is composed of InertialMeasurement Unit (IMU) data captured during activities of standing, sitting, laying, walking, walking upstairs and walking downstairs. These activities were performed by 30 subjects, and the 3-axial linear acceleration and 3-axial angular velocity were collected at a constant rate of 50Hz. 2D convolutional layers for Chars74k Dataset. Chars74k dataset contains 64 classes(0-9, A-Z, a-z), 7705 characters obtained from natural images, 3410 hand-drawn characters using a tablet PC and 62992 synthesised characters from computer fonts giving a total of over 74K images. In the final part of the thesis, network robustness and resilience for neural network models is investigated from adversarial examples (AEs) and automatic driving conditions. The transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, explicit content detection, optical character recognition(OCR), and object detection are investigated. It represents the cybercriminal’s situation where an ensemble of different detection mechanisms need to be evaded all at once.Novel dispersion Reduction(DR) attack is designed, which is a practical attack that overcomes existing attacks’ limitation of requiring task-specific loss functions by targeting on the “dispersion” of internal feature map. In the autonomous driving scenario, the adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving is studied. A novel attack technique, tracker hijacking, that can effectively fool Multi-Object Tracking (MOT) using AEs on object detection is presented. Using this technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards

    Deep Learning-Based Action Recognition

    Get PDF
    The classification of human action or behavior patterns is very important for analyzing situations in the field and maintaining social safety. This book focuses on recent research findings on recognizing human action patterns. Technology for the recognition of human action pattern includes the processing technology of human behavior data for learning, technology of expressing feature values ​​of images, technology of extracting spatiotemporal information of images, technology of recognizing human posture, and technology of gesture recognition. Research on these technologies has recently been conducted using general deep learning network modeling of artificial intelligence technology, and excellent research results have been included in this edition
    • …
    corecore