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Abstract: This paper addresses the growing demand for healthcare systems, particularly among the
elderly population. The need for these systems arises from the desire to enable patients and seniors to
live independently in their homes without relying heavily on their families or caretakers. To achieve
substantial improvements in healthcare, it is essential to ensure the continuous development and
availability of information technologies tailored explicitly for patients and elderly individuals. The
primary objective of this study is to comprehensively review the latest remote health monitoring
systems, with a specific focus on those designed for older adults. To facilitate a comprehensive
understanding, we categorize these remote monitoring systems and provide an overview of their
general architectures. Additionally, we emphasize the standards utilized in their development and
highlight the challenges encountered throughout the developmental processes. Moreover, this paper
identifies several potential areas for future research, which promise further advancements in remote
health monitoring systems. Addressing these research gaps can drive progress and innovation,
ultimately enhancing the quality of healthcare services available to elderly individuals. This, in
turn, empowers them to lead more independent and fulfilling lives while enjoying the comforts and
familiarity of their own homes. By acknowledging the importance of healthcare systems for the
elderly and recognizing the role of information technologies, we can address the evolving needs of
this population. Through ongoing research and development, we can continue to enhance remote
health monitoring systems, ensuring they remain effective, efficient, and responsive to the unique
requirements of elderly individuals.

Keywords: remote health monitoring system; smart health; health edge computing; health fog
computing; elderly people health monitoring; ambient assisted living healthcare; concept drift
in healthcare; machine learning in healthcare

1. Introduction

Remote Health Monitoring Systems (RHMS) can manage, maintain and monitor a
specific set of tasks efficiently over a network with reduced cost and errors. This network
can be an Internet-of-Things (IoT) system or a local network system with a series of
connected devices [1]. They are scalable and provide multiple opportunities to implement
changes. They use certain devices, either vision-based devices such as cameras or sensor-
based devices such as Accelerometers or Gyroscopes, to form a network. The selection of
devices for these systems depends on the environment, requirements, and application [2].

Remote Monitoring System (RMS) is often used in sensor-based technologies with
applications such as radars, satellites, and aeroplanes. In the context of this study, another
impactful application of RMS is in the health sector, usually labelled as RHMS. Real-time
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health monitoring of patients by a doctor from a remote location has a significant impact on
the avoidance of irregularities. It provides first aid within the nick of time. These systems
show great promise, especially for elderly and physically disabled patients [3].

Wearable sensors and health-monitoring devices, including heart rate sensors, pulse
sensors, oxygen sensors, and blood pressure sensors, play a crucial role in remote health
monitoring systems, whether in open or closed environments, for observing patients [4].
These sensors detect any abnormalities in the patient’s behavior, prompting immediate
action from caregivers or doctors, enabling them to take necessary measures promptly
to address the situation. In addition to these wearable sensors, vision-based sensors
are also employed to monitor the health conditions of patients. For instance, a camera
mounted near the patient’s vicinity keeps track of the patient’s movement. If the system
detects any abnormal movement by the patient, it promptly triggers an alarm to notify the
caretaker [5]. By combining wearable and vision-based sensors, healthcare providers can
comprehensively monitor and respond to the well-being of patients in real-time.

In recent years, we have not found any surveys in the healthcare domain that summa-
rize the different computing platforms used in remote healthcare applications. Additionally,
a comparison of a variety of Machine Learning approaches has been conducted to identify
health-related diagnoses and activities. The primary objective of this study is to comprehen-
sively review the latest remote health monitoring systems, with a specific focus on those
designed for the elderly. Moreover, this paper identifies several potential areas for future
research like concept drift, which hold promise for further advancements in RHMS.

1.1. Data Analysis in the Context of RHMS

One aspect of RHMS is the availability of a considerable amount of data that must be
analysed and exploited to attain certain results. Many of these applications usually run on
web servers and require continuous transmission and reception of data, which causes a
delay in the service; and when it is concerned with real-time monitoring of patients, this
delay can be impactful to life-threatening scenarios. To avoid this persisting problem, an
efficient remote health monitoring system is analysed based on a layered structure. The
layers usually comprise edge computing, fog computing, and cloud computing [6].

1.2. Fog and Cloud Computing

There is no need to manage and maintain local or online servers for data management
and processing. Cloud servers are used to handle and compute the data over the internet,
which reduces the cost and increases the efficiency of the RHMS. Cloud-based monitoring
enables effective remote monitoring and smart resource scheduling by removing the delays
and data communication issues [7]. Many cloud based health monitoring systems have
been presented to overcome the limitations of manual server-based data communication [8].
Though there are many advantages to migrating to cloud-based servers, there are also
some concerns. The vast distance between multiple devices can cause high latency in data
communication, which can cause problems for IoT apps that require low latency. Security
and privacy are also major concerns as the data is globally communicated through different
channels along with other users, it may cause data loss and be prone to cyberattacks [9].

Fog computing is an extension of cloud computing, though both are composed of
different nodes, which ultimately link to the devices; however, the nodes in fog computing
are closer to the end-user or devices as compared to cloud computing nodes. In general,
cloud computing can be described as a centralized system while Fog computing is more
of a distributed system. Fog computing is not a separate or independent system, but a
mediator between device and cloud server, which handles the flow of data from the devices
to the cloud. The decision regarding the data and its magnitude to be sent to the cloud
server is extremely critical and enables the cloud server to work efficiently and maintain
the load between the client and server [10]. Abundant work is being conducted by utilizing
the fog computing framework in healthcare monitoring as well. Vora et al. [11] presented
a fog computing-based health monitoring system for ambient assisted living. Movement
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patterns of patients are collected through inertial sensors and the data are passed through
fog gateways. The major contribution of this work is the low data communication latency
and data load management between the cloud server and output devices. In another work,
Vora et al. [12] proposed architecture for remote monitoring of heart rate of patients using
fog computing. They used a heart rate sensor to gather data from multiple patients with
heart diseases and sent it to the fog layer. They introduced a data compression technique
for efficient bandwidth utilization at the fog layer. The results showed better accuracy
compared to other state-of-the-art cloud-based architectures.

Though fog computing improves the overall communication between client/server
data transmission, it has some drawbacks. With the addition of an extra layer (fog comput-
ing layer), the overall system becomes a little complex. Cost is also increased to implement
software and hardware utilities and another important consideration is that fog computing
is not as scalable as cloud computing [13].

Mobile Edge Computing (MEC) [14], is a distributed computing architecture that
brings computational capabilities and resources closer to the edge of the network. It aims
to reduce latency and improve the efficiency of mobile networks by deploying computing
resources, such as servers, storage, and networking equipment, at the edge of the network,
typically at the base stations or access points. MEC [15] enables data processing, analysis,
and storage to be performed locally, reducing the time it takes for data to travel back and
forth to centralized cloud data centers.

1.3. Human Activity Recognition in RHMS

There is a significant focus on ambient assistive living because of a rapid increase in
the aging population and related complicated challenges. The goal of improving health care
services while reducing the cost is on the agenda of every government. Due to a rapidly
increasing aging population and its associated challenges in health and social care, ambient
assistive living has become the focal point for both researchers and industry alike [16–18].

As mentioned earlier, the current availability of huge data covering every aspect of
elderly people’s life is not a big issue. Therefore, once the data are available, the next
important component of the remote health monitoring system is its analysis to recognize
patients’ behaviour and activities. The automatic interpretation of human activities can
play a pivotal role to revolutionize various routine activities. Human activity recognition
has been deemed as one of the quintessential research areas for the past two decades [19].
Activity recognition refers to an ability to infer ongoing activity by processing raw data
through diversified mechanisms, varying from traditional statistical measures to advanced
data mining, machine learning and deep learning concepts [20–23].

Human activity recognition systems are beneficial in inferring human activities for
providing feedback to take necessary actions for intervention. Typically, human activ-
ities are classified into two broad categories: (i) ambulation or fitness activities and
(ii) functional activities [2]. Uncountable motions, such as walking, jogging, walking
in upward/downward directions, fall under the category of ambulation or fitness activities.
Functional activities include routine tasks such as attending calls, washing foods, and
cooking [20,24]. These behavioural or functional activities can play a consequential role
in determining human wellness [25,26]. Human motions of the same activity may have a
significant difference because of constraints including environment, time, and culture [27].
Automatic recognition of human activities becomes a challenging task due to diversity in
humans’ physical appearances and actions.

1.4. Structure of the Paper

This paper provides a comprehensive survey of the remote health monitoring system,
especially in the context of elderly people. To this end, this paper discusses various
gateways ranging from smart devices to fog/edge computing to cloud-based solutions.
Moreover, the paper also discusses automated human activity recognition techniques that
provide the basis for doctors and experts to make decisions.
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The rest of this paper is organized as follows: Section 2 details the review of gateways
often used in remote health monitoring systems, Section 3 provides the details of human
activity recognition in the context of the monitoring of elderly people, Section 4 lists
existing challenges related to the remote health monitoring systems, and finally, Section 5
provides conclusions.

2. GATEWAYS: Data Computation in a Remote Health Monitoring System

Remote health monitoring systems help patients reduce the number of visits to the
hospital and predicts health-related anomalies sooner with recent Fog enabled healthcare
technologies [28]. The most used sensors in health applications include respiratory rate,
heart rate, blood pressure, body temperature, blood glucose, electrocardiogram (ECG), and
an electroencephalogram (EEG) [29,30].

In IoT and cloud-based architectures, cloud servers store and process a massive amount
of data collected from sensor nodes. Therefore, applications deployed on cloud servers
can benefit from large amounts of resources and computation power [31]. Regardless of
the benefits that we achieve from this architecture, a cloud-based approach is not suitable
for health applications because of high network bandwidth requirements, latency, and
scalability issues [32]. Healthcare applications are latency-sensitive; therefore, to design an
effective real-time application, the fog-based approach plays a beneficial role [33].

In healthcare applications, wrong treatment decisions could be declared with an
increased probability of processing and transmitting large and complex data [34]. Many
articles included in this survey discuss scalable solutions for health applications using
fog architecture, enabling real-time analysis and decision making based on local network
resources [35]. In critical healthcare applications, distributed computing on the fog layer on
the edge of the networks ensures low latency, reduced energy consumption, low execution
time, scalability, privacy, and security [36].

In rural areas, where remote health monitoring of patients is more challenging because
of weak internet coverage, fog computing is a workable solution due to its lower latency
and spare capacity of locally available resources. In case of unavailability of the Internet,
most critical tasks can be performed on the patient’s data at the fog nodes and forwarded
to the cloud later upon internet availability [37].

Mach and Becvar [38] discussed some other data computation architectures such
as Mobile Cloud Computing (MCC) and Mobile Edge Computing (MEC). The authors
discussed the critical challenges in MEC, i.e., (i) computation offloading to User Equipment
(UE) to reduce energy consumption and execution delay, (ii) efficient allocation of the
computing resources to minimize execution delay and balance load of both computing
resources and communication links, and (iii) mobility management for the applications
offloaded to the MEC guaranteeing service continuity. This paper also discussed the
computational offloading possibilities including fully offloading, partial offloading, and
non-offloading of MEC applications.

Wang et al. [39] discussed fog computing real-time processing and event response for
healthcare applications. Their experiments proved that the healthcare system using fog
computing responded faster and is more energy-efficient than cloud-only approaches. For
example, fog computing can efficiently detect falls of stroke patients by scheduling analytical
tasks to the most appropriate edge server, guaranteeing the low latency and high throughput.

Rahmani et al. [40] proposed a smart e-Health system based on a fog computing-based
remote health monitoring architecture that uses gateway resources to improve processing
efficiency of health sensors’ data. The author showed an RHMS with Early Warning Scores
(EWS) using hierarchical fog-assisted cloud computing. The results show improvement in
sensing-to-actuation latency in fog computing up to 140ms over cloud computing.

Stantchev et al. [41] illustrated three-level architecture to emphasize the essentials of
the computing paradigm related to fog computing to provide improved performance. First,
before accessing the cloud, the sensing devices connect to localized fog devices that cater to
their needs, such as computing and storage. Fog devices can provide local management
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for the sensors and handle mobility. Second, interconnectivity with enhanced Quality
of Service (QoS) of this computing paradigm as latency is toned down because of the
proximity between the fog device and sensors. Third, fog devices provide computing
redundancy and backup if the link to the cloud is faulty. In addition, access control can
provide better management measures for data flow to and from the cloud. Ko et al. [42]
discussed issues in conventional design for mobile computation offloading in which a
computation task is fetched to another server only when it is handed over. This mechanism
requires excessive fetching of a large volume of data for handover and thus brings long
fetching latency. Moreover, it also causes heavy loads on the MEC network. The proposed
solution handles this issue by pre-fetching parts of future computation data to potential
servers during the server-computation time, referred to as live pre-fetching. This technique
can significantly reduce the handover latency via mobility prediction and enable energy-
efficient computation offloading by enlarging the transmission time. However, it also
encounters several challenges, with the two most critical ones described as follows: the
first challenge arises from trajectory prediction. An accurate prediction can allow seamless
handovers among edge servers and reduce the pre-fetching redundancy. The second
challenge lies in the selection of the pre-fetched computation data. The computation-
intensive components should be pre-fetched earlier with adaptive transmission power
control to maximize the probability of complete offloading of data from edge devices.

Saidi [43] focused on extending elderly home care in the safest possible conditions by
preventing the risks of people living alone. The proposed system monitors older people
remotely and designs a method for solving the privacy protection issues for healthcare data
based on the F2C computing scheme.

Jamil et al. [44] discussed that increasing numbers of Internet of Everything (IoE)
devices are generating vast amounts of data, due to which cloud computing is unable to
meet real-time applications such as low latency, location awareness, and mobility support.

Fog computing has overcome these limitations and emerged as a new computing
paradigm that complements cloud computing by providing real-time processing and an-
alytics and storage facilities near the edge device. This paper has designed and implemented
an optimized job-scheduling algorithm to minimize the delays for latency-critical applications.
A case study is discussed for healthcare to demonstrate the latency-sensitive and delay-tolerant
requests from IoE devices. The proposed algorithm schedules jobs on fog devices based on
the length and reduces the average loop delay and network usage. However, the proposed
algorithm reduces the waiting time and can starve the tuples with more extensive lengths.

In Table 1, we identified a set of parameters from the literature to summarize the
features and performance of each technology. Next, we explore each of these parameters
comprehensively and illustrate how these parameters can affect healthcare applications.
In Figure 1, cloud-based sensors data processing is compared with Fog- and MEC-based
infrastructure based on lower and higher bandwidth utilization.

Table 1. Gateways comparison with different parameters.

Cloud Computing Mobile Edge Computing Fog Computing

Network Latency High Medium Low
Internet Bandwidth

Utilization High Medium Low

Power Consumption High High Low
Access Mechanisms Wi-Fi, Mobile Networks Mobile Networks Bluetooth, Wi-Fi

Execution Time Low Medium High
Resources Availability High Medium Low

Context Awareness Low High Medium
Real Time Compatibility Low Medium High

Technology Devices Centralized Servers,
Data Centers

Servers running
in base stations Gateways (Routers, Switches)
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Figure 1. Comparison of cloud based with Fog and MEC.

2.1. Network Latency

Cloud servers are centralized and usually deployed far away from the end-users,
so the network latency becomes high. On the other hand, fog gateways are near to end
users’ devices, so the network latency is much lower than cloud, as discussed in [40]. The
experiment performed by [40] shows that latency in fog is 21 ms and 161 ms in cloud, using
the Wifi platform for a healthcare application. In MEC, the user devices connect with the
server at the base station, so the network latency is higher than fog.

2.2. Internet Bandwidth Utilization

For applications such as remote health monitoring, where health monitoring sensors
produce frequent data in large amounts, fog gateways and MEC servers can process and store
data locally so that only the summarized data are transmitted over the cloud. Based on this
fact, the bandwidth utilization is reduced significantly over the Internet [45]. The bandwidth
utilization difference in these technologies’ architectures can be analyzed in Figure 1.

2.3. Power Consumption

Performance of FC and MEC is magnificently improved in terms of power consump-
tion over the cloud computing approach. Hartmann [46] discussed that a distributed
architecture such as fog consumes less power than MEC and cloud computing. Moreover,
for healthcare applications, refining sensor data at the local level reduces the amount of
data transmitted over the cloud, which reduces power consumption.

2.4. Execution Time

The discussion conducted in [47] concludes that cloud is rich in storage capacity and
computing resources. Cloud can also be capable of extending the resources on demand
based on the requirements of data processing. Based on this fact, the execution time is
very low for processing immense data generated by health applications. Whereas, in MEC,
servers with base stations have relatively limited resources, so the execution time to process
data is higher. Furthermore, fog devices are usually low-power devices; these devices’
processing power and storage capacities result in higher execution times.

2.5. Context Awareness

Context-awareness is one of the essential concepts utilized in health applications
where information such as patient location, other patients in the vicinity, and resources in
the environment can be exploited. Therefore, collaborations could accomplish real-time
context-aware applications such as remote health monitoring among MEC platforms for
better decisions. However, since the nodes for fog Computing are usually devices with a
narrower view of the network, such as routers or switches, the context awareness is lower
than that of MEC. However, the ability to communicate among the nodes mitigates this
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issue to some extent. On the other hand, cloud computing is low context-aware because it
is developed as a standalone server connected to the Internet [48,49].

2.6. Real-Time Compatibility

In the cloud computing approach, health sensor data are sent directly to cloud servers
without filtering data. Based on this reason, the cloud computing approach is not helpful
for real-time applications. In fog computing, local data processing helps health applications
to detect unwanted events in real-time and respond to the concerned persons for that event
quickly. The real-time feedback collection encompasses solutions aiming to provide quick
responses to critical situations in healthcare environments [45]. In [50], the authors imple-
mented a real-time signal processing algorithm for fall detection, delivering information to
caregivers. These algorithms are executed at the network’s border by fog servers, collecting
and processing all health information. Another approach [51] proposes a real-time analytic
system to monitor falls caused by strokes. All mentioned applications need a real-time
response to caregivers or actuators for further actions.

3. Human Activity Recognition in RHMS

RHMS, which works independently at home and in offices, is now vital in the wake of
growing lifestyle-related disease and an increase in the ageing population. Independent of
the hospitals, processing and acquisition of the patients’ physiological data is conducted
while they are at home or the workplace [52].

Human Activity Recognition (HAR) is a process that involves the recognition, de-
tection, interpretation, and examination of human activities. It mainly focuses on the
movements and actions that humans make in their daily lives. The data collected from
these actions and movements are collected through different wearable sensors and de-
vices, which can be utilized in several aspects that can make our daily life better and
more convenient [20].

Vision-based devices, such as cameras, video recorders, etc., can be fixed in a certain
place to track the movements of a person. Over a certain amount of time, enough data
can be gathered to identify the movement of a person against a certain action. Similarly,
wearable sensors such as motion detectors, compasses, accelerometers, etc., can be attached
to a person at different body locations, and movement data can be gathered. The gathered
data from these devices is then fine-tuned to remove any redundancies before feeding it to
a data-processing model [53].

In recent years, HAR research has attracted significant attention because of its ad-
vantages and widespread applications. These widespread applications include (but are
not limited to) fashion, smart homes, self-driving cars, surveillance, and healthcare. The
ability to recognize and detect human activity has been an important concept in the field
of machine learning [27,54–57]. Different Human Activity Recognition systems have been
designed to automate these applications; however, building a fully automated HAR system
can be a very difficult task because it requires a huge pool of labeled data and efficient
data classification models. Moreover, it is very difficult to accurately classify movement
data, as a single activity can be performed in multiple ways, and different activities can be
performed in similar ways. Nonetheless, progress is still being made in HAR, as hybrid
models are being introduced, which can efficiently differentiate between activities, hence
leading to a better classification of features [58].

Activity is recorded using varying modes such as video cameras, RADAR, wearable
physiological sensors, device-free sensing such as Wi-Fi, acoustic sensors, etc., [59,60].
The contemporary state-of-the-art has divided these modes into vision-based devices
and body-worn sensors [53]. The vision-based devices harness modes, such as a video
camera, to capture ongoing activity and are currently being employed by numerous security
applications [61–63]. However, they often suffer from veracity-related issues due to camera
angle, background and, more importantly, they cannot differentiate between targeted
objects and other similar moving objects in the area of interest. For instance, a video camera
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is placed to capture the movement of a patient in a room, but it also captures the activity
of people other than the patient [27]. In such scenarios, vision-based approaches may
produce inaccurate results for applications wherein criticality must not be overlooked, such
as medical health monitoring. On the other hand, wearable physiological sensors mitigate
such issues by stipulating correct information with the least involvement of unwanted
medium [26]. Wearable sensors like gyroscopes and accelerometer sensors are worn on
different parts of the human body to produce 3-axis orientation acceleration, respectively.
Besides these, sensors are comparatively less expensive, environmentally friendly, and hold
the potential to produce multi-level data resulting in precise information [27].

Presently, ubiquitous sensing that focuses on discovering knowledge from data col-
lected via pervasive sensors is considered a hot area of research [26]. This kind of activity
recognition is employed in two different forms, external and wearable sensors [60]. In
external sensors, a predetermined point of interest is selected to place devices that capture
voluntary interactions among users and sensors [64–68]. At the same time, wearable sensors
are attached to the user. Particularly, embedding powerful sensors in smartphones for hu-
man activity recognition (HAR) is receiving major attention from the scientific community
to meet escalating demands in certain areas, including pervasive and mobile computing,
context-aware computing, etc., [26,62,63]. In this survey, we present a comprehensive
analysis of the state-of-the-art in the field of human activity recognition in three differ-
ent dimensions: (1) Evolution of HAR measures from conventional means to machine
learning and deep learning, (2) Role of different sensors in remote health monitoring and
(3) Strategies to process real-time health data in cloud computing [38–43].

With the increasing importance of HAR in IoT and daily life comforts, it is being
applied significantly in the Internet of Health Things (IoHT) environment as well [69,70].
HAR is being used to help patients with psychological and paralysis issues. Moreover,
HAR is being used for patients with congenital diseases and conditions, especially for
children with motor disabilities, to encourage them towards physical activities. HAR is also
being used to detect abnormalities in Cardiac patients; it is even used to detect early signs
of sickness and illness [71–76]. Another aspect of HAR includes the monitoring of elderly
patients to detect their physical state. Monitoring elderly patients by attaching sensors
to different parts of the body or observing the patient’s movement through a camera can
help collect motion data, which can be used to predict irregularities in a patient’s condition,
e.g., if the patient has fallen, is standing, is lying, is walking or running, etc. Collecting
these data and implementing an interactive method to observe their movements has a
significant impact on the health monitoring of elderly patients [77–79].

Currently, there are two major ways to acquire human activity data; either it can
be accomplished via vision-based devices or through some body-worn sensors. While
vision-based data collection has a mature base, it also has some limitations. For example,
the lighting conditions of the place, the image quality of the device, the angle of the device,
and last but not least, the privacy issue. Whereas sensor-based activity recognition has
been initiated in the past couple of years and does not have a mature base, but there are no
impactful limitations to it. Over time, different types of sensors, e.g., accelerometer, gyro-
scope, etc., have been introduced, which also come embedded in most of our smartphones
as well. The progress in sensor development has improved to the extent that the issues
of magnetic interference in sensor data have also been taken care of. The state-of-the-art
sensors can accurately predict the effects of magnetic interference on real-time sensor data.
With the rapid development of new and improved sensors, the data collected from them is
becoming more and more accurate [25,80,81].

Although the sensors have evolved significantly in the past years, so has been the case
with Machine learning as well. The data obtained from vision-based devices or sensors are
trained through a Machine learning method to efficiently detect features from the training
data. However, the accuracy of these methods depends on the quality of data and the
effectiveness of feature extraction. The more labeled the data is, the better the data can
be classified, and features can be extracted. Similarly, the better the training model is, the
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better the accuracy will be. The traditional Machine learning models are available for data
classification, but their shortcoming is the manual feature extraction. For better accuracy,
Deep learning models such as Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM), etc. are used. The solidity of a HAR
system depends on the results of data classification of the Deep learning models. Inaccurate
classification of features can also lead to detrimental effects for users [82–86].

Human activities are difficult to classify due to their irregularities. Human activities
vary from person to person and can be performed in multiple ways, hence making it
a challenging task to classify them efficiently; in such a case, HAR using vision-based
devices is a more challenging task as it involves various limitations and challenges. The
data or dataset collected from a video or pictures may have background lighting issues,
camera angle issues, and vice versa. These issues cannot be sorted out by generic means,
thus making the system costly and complex. To overcome these hurdles and limitations,
in the past few years, sensors have been used to extract movement data with minimum
interference of any unwanted medium [87–89].

Sensors are less costly, can provide multi-levelled data, provide precise data, and
can be used in any environment. However, even a slight fault or malfunction in sensor
hardware can cause adverse effects on the collected data; therefore, it is a must to test
the accurate working of the sensor before data gathering. Activity Recognition using
standard Machine Learning approaches such as Support Vector Model (SVM), decision
tree, etc., can produce substantial results in a controlled environment, but these models
are strictly dependent on the data because huge datasets require a huge amount of time
for training. All in all, the accuracy of these machine learning models strictly depends on
feature extraction as the process is not automated [20,90].

Chang et al. [91] proved that SVM, along with conventional Artificial Neural Networks,
can achieve acceptable results; however, they still lacked accuracy. Islam et al. [92] proposed a
hybrid feature selection model, which used Sequential Floating Forward Search (SFFS) for
feature selection and extraction. Best features are selected, from a subset of features, based
on certain criteria, and pairs of best features are created and compared with the next subset
of features. The overall feature extraction process becomes efficient and optimal features
are extracted. An SVM is then used to classify the data. The main contribution of this work
is the efficient utilization of the SFFS module for efficient feature extraction. However, the
only drawback of this approach is that it performs well if the dataset is relatively small. The
performance degrades if the dataset is too large or there are too many redundancies in it.
Hence, it can be concluded that the HAR systems using conventional machine learning models
usually require preprocessed data to produce convincing results.

Due to the limitations mentioned previously, machine learning has been integrated
with Deep Learning techniques, which cover all the limitations in conventional machine
learning models and provide a broader aspect for feature extraction. Deep Learning
involves in-depth processing of data, efficient feature extraction, and layered structure
for better classification. There are no such drawbacks of Deep Learning other than the
increased computational cost for complex and increasing amount of data. Deep Learning
models are scalable but hard to debug if the algorithm is too complex [93].

In recent years, Deep Learning has achieved remarkable results in the areas of human
activity recognition, image recognition, and Natural Language Processing. One of the
impactful aspects of Deep Learning is automatic feature detection and data classification
with high accuracy, hence leading to a high demand in the field of HAR. Several Deep
Learning models have been introduced over the past years, and each one of them has
positives and negatives of its own. Deep Learning Models are designed and inspired
by the structure of the human brain, which is the reason they are usually referred to as
Neural Networks. CNN is a multilayered model, which is used to extract features from
data [94]. Their generic structure consists of an input layer, two hidden layers, and an
output layer. The input layer consists of the input data, which are fed to the neural network.
The hidden layer usually consists of two sub-layers; one is the convolution layer in which
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multiple filters are applied to the data and the second is the pooling layer, which merges
the data from the convolution layer. The output layer is connected to, and is part of, a fully
connected layer that consists of the merged data from all the hidden layers and classifies it.

RNN is a gate-based neural network that consists of multiple gated units. The output
of each gated unit can be fed an input to the other unit because they can remember the input
of other units. RNN is widely used in the applications of Natural Language Processing and
Image detection [95].

LSTM is a type and subclass of RNN. The major difference between LSTM from
generalized RNN is that RNN suffers from vanishing gradient problems. LSTM, however,
covers up all those problems in RNN by introducing Gates. Moreover, they consist of
memory cells that can store input data for a longer period, which is very beneficial when
the huge pool of data is being trained [96].

These are the most widespread and commonly used classification models used in HAR
in recent years due to their exceptional performance and results. Most of these approaches
utilize sensor data for training purposes. Nonetheless, several HAR systems use wearable
sensors to collect data. These wearable sensors mostly include inertial sensors, such as
accelerometers and gyroscopes, because they are also included in smartphones [58,97].

Many activities, such as lying, walking, running, sleeping, and walking, have been
identified by different HAR systems to detect the rate of falls in elderly people and to avoid
it. But these approaches utilize multiple sensors to collect movement data, which can be
a hassle that affects people’s daily lives. Hence, more studies have been conducted that
are based on a single sensor, which shows notable results when it comes to basic activities
such as walking, running, and sitting but fails when it comes to complex activities such as
smoking, dancing, and exercising [98].

To overcome this hurdle, sensors, such as accelerometers or compasses, are used in
conjunction with other sensors, e.g., gyroscope, heart-rate sensors, etc. Though the huge
pool of data needs to be segmented by having data from multiple sensors, an efficient
classification model can achieve higher accuracy when it comes to feature extraction [99,100].
Wan et al. [101] proposed a CNN-based approach, which showed that the classic CNN
still outperforms the conventional LSTM, Bidirectional LSTM (BLSTM), MLP, and SVM
models when it comes to the accuracy of feature extraction. However, the structure of
these models was not optimized, so the results may vary when it comes to precision. The
major contribution of these approaches is the significantly increased efficiency by adding a
context-aware classification module that overcame certain errors. The results from these
approaches showed a significant increase in classification accuracy as compared to other
classification models such as Decision table, Random Tree, etc.

Wang et al. [102] demonstrated the comparative analysis of conventional HAR ap-
proaches with advanced HAR approaches. Conventional HAR approaches based on pattern
recognition collected raw data from devices such as sensors, Bluetooth, Wi-Fi, etc. and
the features were manually extracted and input to a certain Machine Learning model for
training. However, these methods contain limitations such as only simplistic features could
be extracted, which ultimately leads to average performance. Advanced HAR approaches
based on Deep Learning models overcame all these limitations by introducing Neural
Networks. The manual feature extraction has been fully automated. Moreover, the perfor-
mance of Deep Learning Methods on unlabeled data also far exceeds conventional Machine
Learning methods. The focus of this survey was to demonstrate the importance of evolved
Deep Learning in HAR and the need for lightweight Deep Learning models to minimize
the cost of complex systems.

Ignatov Andrey [103] proposed an enhanced CNN, which overcame the time-series
length effects when extracting features for real-time activity recognition. Testing the pro-
posed system on UCI-HAR (University of California Irvine—Human Activity Recognition)
and WISDM (Wireless Sensor Data Mining) datasets, superior results were achieved as com-
pared to the state-of-the-art CNN-based systems. The proposed work was not only superior
in feature accuracy but was also low cost. However, the data required for this approach
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was preprocessed. As there is no noise removal module or auto-labeling module involved,
the performance of this approach will not be up to the mark for weakly labeled data.

Zhou et al. [104] designed a semi-supervised deep learning framework that was able
to extract features based on weakly labeled data. An auto-labeling system was introduced
to label the unlabeled data, which drastically increased the learning accuracy. A distance-
based reward rule strategy was used to handle the labeling of unlabeled data. The results
of the auto-labeling module were fused with other sensor data and finally passed through a
conventional LSTM module for better feature extraction from the data, which ultimately led
to an efficient classification. However, this approach required a large dataset of unlabeled
data for efficient auto-labeling, thus increasing the cost of the proposed system. Moreover,
by using the BLSTM, data could have been more efficiently classified with the availability
of a larger dataset.

Xu et al. [105] proposed a hybrid neural network approach (InnoHAR), which com-
bined RNN with Inception Neural Network (INN). INN consisting of various deep layers
has multiple convolution layers parallel to pooling layers, which form an inception layer.
These convolution layers are a matrix of 1 × 1, 1 × 3, and 1 × 5, respectively. The main idea
behind the inception layer is to allow the filters to select the required size itself rather than
wasting resources. The output from the INN is then passed through 2 GRU (Gated recurrent
unit) layers for better time efficiency. The results tested on 3 public datasets showed better
results compared to the state-of-the-art Deep Convolutional and LSTM (DeepConvLSTM)
model and CNN model. However, this approach considered the already-available pre-
processed datasets and did not experiment on the real-time sensor data, which requires
additional modules such as noise removal and data segmentation. However, INN has poor
initialization, which requires a lot of computation to get over it, and minor changes to the
model require retraining of data, which is costly. A fine-tuned CNN can achieve the same
performance, which is the reason INN is not used much in state-of-the-art approaches.

Jiang et al. [106] proposed an Attention-based Bidirectional LSTM (ABLSTM), which
used a BLSTM to train data in multi-directions. This approach is based on Wi-Fi data and
thus involves the need for BLSTM, which can process the state of signal data before and
after processing. Two-layered BLSTM is used with one layer directing the data forward
and the other one redirecting the data backward. The output from the BLSTM is passed as
input to the Attention Model. The Attention Model focuses on certain features of data that
are of interest based on some speculations. These speculations involve the scoring of vector
data using the ReLu function and then passing through the Softmax layer for classification.
The results showed superior classification accuracy compared to other similar approaches.
However, the experiments were based on a single channeled Wi-Fi device without real-time
data collection. These two factors can have a huge impact on the accuracy of the proposed
system. Real-time data involve multiple types of interferences on the readings, which can
be caused due to a certain environment or magnetic interference. The dataset used for this
was based on single-user data and the dataset itself was supervised. A lot of work can be
further conducted on this approach. There has been a focus on supervised learning in past
research because labeled data are not available in abundance; hence, recent approaches
mostly focus on semi-supervised data.

Zhu et al. [107] proposed a novel Deep LSTM (DLSTM) approach for efficient feature
recognition. Both labeled and unlabeled, data are used to train the model to detect human
activities using smartphone sensors. DLSTM involves multiple LSTM layers between the
input and output layers. The raw data are passed through the augmentation phase to
increase the amount of data and Gaussian noise removal, which is performed to filter
any inconsistencies in the data followed by the extraction of low-level features. These
low-level features are dropped out and the rest of the features are passed to DLSTM for
high-level feature extraction. The unsupervised data loss, which involves unlabeled data,
is calculated and labeled based on some predictions. The results of the proposed approach
were benchmarked against the UCI-HAR dataset. The results showed its supremacy over
other semi-supervised learning methods. However, this approach was performed in a
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controlled environment. In an uncontrolled environment, where a single activity can be
performed in multiple ways or different activities can be performed in a similar way, the
results may vary.

In a recent study, Wang et al. [108] proposed a hybrid 1-dimensional approach. Data
from multiple sensors are passed through a convolutional neural network and the output
is passed to the LSTM module, which classifies the data. The main achievement of this
approach is the identification of activity transition along with activities in general. Most
of the proposed works do not consider this factor while designing an approach; however,
in human behavior recognition, this is an important task. Moreover, activity transition
detection has a significant effect on real-time movement recognition. The data from two
sensors (accelerometer and gyroscope) are combined into a 2D array and then passed to
the CNN. The respective CNN is a three-layered architecture with three hidden layers,
each consisting of a convolution layer and a pooling layer. The output from the CNN is
passed into the LSTM module in the form of a vector. The features extracted from LSTM
are passed to a fully connected layer which undergoes the process of Batch Normalization
and is finally forwarded to the Softmax layer for classification. The results of this approach
were benchmarked against the publicly available HAPT (Human Activities and Postural
Transitions) dataset, which already contains the activity-transition data. The results showed
that, not only did this approach have a better activity recognition rate than other Deep
Learning models such as CNN, LSTM, CNN-BLSTM, and CNN-GRU, but it also had a
better activity transition recognition rate. The limitations of this approach lie in the fact
that only basic activity transitions (lying–standing or sitting–standing) were identified.
Complex activity transitions, such as walking–smoking, driving–eating or sitting–reading,
may be a different case [108]. Moreover, multiple users may have different movements on
activity transition while this study is based on a smaller number of people’s movements.

Lu et al. [109] proposed an approach for efficient data classification, focusing on
daily life activities. They categorized activities into two types: countable activities, which
involve activities with a fixed number and iterations of gestures like walking, sitting,
eating, and smoking, and uncountable activities, which involve complex and uncountable
gestures like dancing and exercising. Interestingly, in some cases, even walking can be
considered an uncountable activity. The researchers used a method called SFFS (Sequential
Floating Forward Selection) to select relevant features for data extraction. Furthermore,
they introduced three new features to enhance the classification process. Using Sliding
Window, nine features were extracted against every activity using the publicly available
DaLiAc dataset and self-gathered (AmA) dataset.

The features extracted were based on every activity’s specific patterns. The extracted
features were tested on conventional M.L (Machine Learning) models such as KNN, SVM,
GBDT (Gradient Boost Decision Trees), and Random Forest. The results showed a huge boost in
classification accuracy as compared to conventional state-of-the-art M.L approaches mentioned
before. However, there are certain limitations of Sliding Window such as the computational cost.
Cost can be minimized by increasing the window size; however, this will affect the accuracy
of feature extraction. Moreover, as mentioned before, the same activity can be performed in
multiple ways and vice versa and this method does not take this factor into account. Table 2
summarizes the following section to point out the strengths and weaknesses of referenced
approaches. In the “Strength” column, the focus is on the positive aspects or advantages of each
model. These strengths highlight the key features or functionalities that make a particular model
effective for activity recognition. For example, some models may excel in feature extraction,
achieving high accuracy, handling long-term dependencies, or outperforming conventional
approaches. In the “Weakness” column, the focus is on the limitations or drawbacks of each
model. These weaknesses point out the aspects where a particular model may fall short or face
challenges. For instance, some models may have limited accuracy, slow network performance,
overfitting issues, difficulty in adapting to certain configurations, or high time complexity.
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Table 2. Summary for Section 3.

Ref. Model
(M.L/D.L/Hybrid) Strength Weakness

[91] M.L (SVM+ANN)
A unique architecture fused basic SVM
with conventional ANN. Can be very
useful for shallow feature extraction.

Average accuracy, slow network.

[92] M.L (SVM+ SFFS)
A very efficient lightweight feature

filtration technique employing
SFFS module.

Shows good results on smaller
datasets only.

[94] D.L (CNN) Detailed Survey on CNN & its
state-of-the-art applications.

CNN cause overfitting, and typical
models fail to adapt to certain

configurations.

[95] D.L (RNN) Can outperform CNN’s in extracting long
term dependencies.

Can cause extreme
exploding gradients.

[96] D.L (LSTM)

The memory cell enables the network to
perform back propagation and remember

long term dependencies, which better
correlates data; hence, they outperform

conventional RNN’s.

Training time increases
exponentially on larger datasets.

[101] D.L (CNN)
Context-aware classification handled some

errors in conventional CNN, which
increased the overall accuracy.

Compared with vanilla models with
no parameter adjustments

or fine tuning.

[102] M.L/D.L/Hybrid

A detailed survey on conventional vs.
advance activity recognition approaches in
both M.L and D.L. Portrayed the advanced

in D.L.

None.

[103] D.L (Enhanced CNN) Showed superior results compared to
state-of-the-art works.

Results are based on strongly
labelled data only. Performance

may vary on weakly labelled data.

[104] D.L (LSTM+ALM) Auto labelling module showed significant
improvement in accuracy.

The auto labelling module required
a large pool of unlabelled data,
which made the system costly.

[105] Hybrid (InnoHAR)
A fusion of RNN with Inception neural
networks showed good performance on

smaller and larger datasets.

Not implemented in real-time
scenarios. Moreover, the

configuration of INN is very
complicated if a change or

update is required.

[106] D.L (ABiLSTM)

Attention-based BLSTM implemented on
Wi-Fi data. Attention module filtered the
features-f-interest and dropped low level

features, thus making the proposed
approach time efficient.

A single channelled Wi-Fi was used
without any real-time data

collection, which is not a viable
source of activity recognition data.

[107] D.L (DLSTM)

A DLSTM based on labelled and unlabelled
data, which extracts high level features and

retrains low-level features and labels the
unlabelled data. Superior accuracy

compared to state-of-the-art LSTM works.

Results generated in a controlled
environment; performance may

vary in real-time scenarios.
Moreover, DLSTM structure makes

the network too slow and time
complexity increases.

[108] Hybrid (CNN+LSTM)

A state-of-the-artwork employing postural
transition with static activities. Showed

superior performance compared to several
approaches employing transition activities.

Complex structure only considers
basic static and transition activities
while the experiments were based

on a pre-processed dataset with
abundant features. Performance

may vary for datasets where
number of features is far less.
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To summarize, vision-based devices like cameras offer tracking, but can suffer from is-
sues and privacy concerns. Wearable sensors provide precise and multi-level data with less
cost and interference. Deep learning models automate feature extraction and outperform
traditional machine learning models. Multiple sensors improve classification accuracy,
especially for complex activities. Semi-supervised learning and context-aware classification
enhance efficiency. Overall, wearable sensors and deep learning models show promise in
HAR, overcoming limitations of vision-based approaches and manual feature extraction.

4. RHMS for Elderly People

The smart healthcare monitoring system is proposed in [52]. This system can highly
contribute to providing a comfortable and safe environment for elder and disabled people.
This can help them live independently without the fear of any emergency or critical health-
care situation through continuous monitoring of their health. The proposed framework
collects and accumulates patients’ physiological data with the help of wearable sensors and
transmits them to a cloud server for data analyzing and processing. Hence, any change in a
patient’s health data will be detected and transmitted to the patient’s doctor through the
hospital’s cloud server. Thus, any detection of disorder in a patient’s data will be reported
to the patient’s doctors via the hospital platform. The framework is a simple technology
based on a fixable architecture that can be scaled and easily expanded, thus providing
stable and cost-efficient systems to monitor elderly patients remotely. In addition, the
results show that the system could efficiently contribute to improving healthcare services
by being able to monitor the patient’s health in real-time detecting symptoms remotely.
The proposed system, which can monitor patients’ symptoms remotely and in real-time, is
highly effective.

Having a powerful effect on physical and mental health and robust association with
many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have
been considered as a key paradigm for smart healthcare [110]. Traditional methods for
PARM used controlled environments, intending to increase the identifiable activity subjects
completely and improve recognition accuracy and system robustness using novel body-worn
sensors or advanced learning algorithms. The system has now changed with cost-effective
heterogeneous wearable devices and mobile applications. PRAM has been transferred to
uncontrolled and open environments. However, these technologies and their results with
traditional PRAM are currently less known. To help understand the use of IoT technology
in PRAM studies, this research will provide a systematic review, inspecting PARM studies
from a typical IoT layer-based perspective. First, it will summarize the modern techniques
in traditional PARM methodologies as used in the healthcare domain, including sensory,
feature extraction, and recognition techniques. The second thing this research explains is
the identification of some new research trends and challenges in PRAM studies in the IoT
environment. Finally, this paper includes a few successful studies to inculcate PRAM in
industrial applications. In the last two decades, several studies have been conducted to
address critical issues of PRAM because of its importance in healthcare support in a variety of
chronic diseases, musculoskeletal rehabilitation, independent living of the elderly, as well as
fitness goals for active lifestyles. The contribution of this work is from the perspective of the
Internet of Things (IoT) that sequentially covers the sensing layer, network layer, processing
layer, and application layer, distinctively and systematically summarizing existing primary
PARM devices, methods, and environments. Wearable and portable sensors/devices, inertial
signal data processing, and classification/clustering approaches are described and compared
in the light of physical activity types, subjects, accuracy, flexibility, and energy. Typical research
and project applications regarding PARM are also introduced.

In [111], the use of RFID sensors and accelerometers has been proposed to recognize a
user’s daily activity. A decision tree is employed to classify five human body states using
two wireless accelerometers, and detection of RFID-tagged objects with hand movements
provides additional instrumental activity information. The system has already devel-
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oped tagging and visualization tools, making it widely applicable for caring for elderly
people’s health.

Ming et al. [112] proposed a CNN-based elderly monitoring system. The approach
utilizes vision-based devices to capture movement data. They ensure sensitive data protec-
tion by introducing a key-based authorization module with the CNN. The experimental
evaluation reveals the system to be sustainable towards explicit breach attempts. The
proposed framework was tested on the publicly available UCI-HAR dataset with six basic
and six transitional activities and achieved an overall accuracy of 92.02%.

Yang et al. [66] proposed an RFID-based CNN model for the posture detection of
elderly people. Kastersen’s dataset is used in order to evaluate the approach. The dataset
consists of 245 action instances for seven different activities over 28 days, sensed using
RFID technology. They recorded four daily life activities, which include “brushing teeth,
taking a bath, eating and getting dressed”. The CNN utilized was a dense network, which
involved dense layers, thus making the proposed model complicated and prone to errors.
The model demonstrated an accuracy of 82.78%, which showed the effectiveness of the
proposed approach. However, in real-time scenarios, this approach may not produce
substantial results.

To provide a comparison between the aforementioned approaches, let us take a closer
look. In one approach [52], a smart healthcare monitoring system is proposed, utilizing
wearable sensors to collect patients’ physiological data, which is then transmitted to a cloud
server for analysis. Changes in the patients’ health data are detected and reported to their
doctors, enabling real-time monitoring and detection of symptoms. This scalable and cost-
efficient system aims to improve healthcare services for elderly patients remotely.

Another approach [110] focuses on PARM in uncontrolled environments using IoT
technology. It provides a systematic review of traditional PARM methodologies, discussing
sensory, feature extraction, and recognition techniques. It also explores new research trends
and challenges in PARM studies within the IoT environment.

Additionally, RFID sensors and accelerometers are employed in an approach [111] to
recognize daily activities of users, using a decision tree for classification. This system combines
wearable sensors and RFID technology to provide valuable information about user activities.

A CNN-based elderly monitoring system [112] utilizes vision-based devices and sensitive
data protection measures, achieving high accuracy in activity recognition. This approach
ensures privacy and security while effectively monitoring elderly individuals’ movements.

Finally, a CNN model for posture detection of elderly people is proposed [66] using RFID
technology, demonstrating good effectiveness but potential limitations in real-time scenarios.
This system focuses on posture detection, which is crucial for maintaining the health and
safety of elderly individuals.

Each of these approaches brings unique features and advantages to the field of healthcare
monitoring and human activity recognition, catering to different scenarios and requirements.

Table 3 summarizes the Section 4 to point out the strengths of referenced approaches.
Figure 2 presents a summarized accuracy-comparison graph, which visually represents
the information provided in the aforementioned table. The arrangement of the approaches
in the graph takes into consideration both the publication year and the novelty of their
architectures. Notably, the graph excludes certain approaches from the reference table
that exclusively encompassed a systematic review of diverse frameworks. The graph
depicts that the mean accuracy of the various approaches lies within the range of 90% to
95%. This range signifies a customary level of accuracy attained through the utilization of
neural network architecture. However, it is imperative to acknowledge that the majority of
these approaches prioritize enhancing the duration of model training, rather than solely
emphasizing accuracy. As expounded upon in the preceding paragraphs, the significance of
model training time should not be disregarded, particularly when formulating an approach
that concentrates on unsupervised data.
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Table 3. Summary for Section 4.

Approach Type Strength

[52] Wearable sensors Able to detect abnormalities in elderly people and capable of
employment in real-time scenarios

[111] RFID + wearable sensors
By the tracking of hand motion, RFID tagged objects are able to
be detected which provides additional pattern data for efficient

human activity recognition

[112] CNN + vision devices Introduced an authentication-based access network to avoid any
unwanted access or breach in the network

[66] RFID + CNN
A dense CNN with RFID unit brought forward a novel RSS based

approach. However no solid strengths were presented in the
research work

Figure 2. Comparison of Machine learning and deep learning techniques in healthcare
system [91,92,95,101–108,111–113].

5. Major Challenges in RHMS
5.1. Data Accuracy and Availability in Real-Time

Logically, the most complex challenge is related to the accuracy of remotely accessed
data. Many of these come under scrutiny from patients and medical staff. It is difficult
for patients accustomed to traditional methods to trust that a small device will provide
great data about their health that they can provide to their doctor. Likewise, front-line
medical service providers find it easy to make decisions based on the information obtained
through traditional methods. They are also inclined to avoid automated digital systems
due to their data inaccuracies. Furthermore, providing information in real-time is also a big
challenge. In particular, if data are to reach a doctor’s system from a patient’s device via a
mobile network, it must first go to the service provider’s infrastructure and then reach its
destination via the internet. In the meantime, if there is a problem somewhere, the data will
not be provided. Moreover, mobile networks are not always available. Therefore, if any
data on which the patient’s life depends are not available to the doctor at the appropriate
time, then the entire RHM system will become meaningless.
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5.2. Data Security and Protection

Besides the accuracy and availability of the data, its security and protection are also
extremely critical. In this case, healthcare standards need to be met. Also, strong data
management practices are essential. A large part of the data management is usually
handled by third parties, which itself possesses a potential risk on individuals’ data. On the
other hand, the challenges for hospitals are also not insignificant, as they risk integrating
third-party systems that endanger the safety and privacy of their patients.

5.3. Selection of Sensors and Devices

In any RHMS, the highlight is the inclusion of sensors and wearable gadgets. They can
be available in a variety of sizes and types. Every sensor may play a vital role in one disease
and may become completely irrelevant in some other disease. Therefore, the selection of
sensors affects the overall efficiency of the system and is not a straightforward task.

5.4. Detection of Concept Drift

In RHMS, machine learning algorithms are used to develop prediction models over
Cloud, MEC, fog, edge layers. These models are trained to over historical medical data
of different patients to predict falls stroke [113], fall detection [114], and different types of
diseases related to health of patient [115]. However, these models are not predicting accurately
over a period. This is known a Model or Concept drift in different systems [116]. Many of the
drift detection approaches has been proposed in different streams of applications [117–119];
however, much less in stream of RHMS.

One recent approach, Ensemble and Continual Federated Learning (ECFL) [120], is a
distributed machine learning approach that considers concept drift detection over multiple
mobile devices. This approach utilizes ensemble learning, where multiple learning algo-
rithms train models locally and aggregate globally to obtain better predictive performance.
In the concept drift detection approach, ECFL preserves the confidence (probability) of
predicted labels, data instance values, and the predicted label in a sliding window with each
new prediction. The ECFL drift detection algorithm detects changes in two consecutive
windows on each edge device. If the change crosses a threshold, the algorithm generates a
drift detection alarm. This approach considers the ML model’s confidence level of predic-
tion. However, if the model is not well-calibrated, in case of drift, the model can predict the
label with the same confidence as before the drift. In this case, as the confidence value may
not differ in case of drift, the detection algorithm may fail to detect the drift.

Under distributed concept drift, the time of change-points of probability distributions
can differ across clients/devices [121]. Wang et al. [121] detect the loss in model at each
client and develop a cluster on which drift is detected. The retraining is performed for
clients that are under the cluster. This approach maintains the accuracy of the overall
application developed over the federated platform. However, the measurement of model
loss is still uncovered in the scope of this article.

The area of concept drift still has vast space for research to accelerate. The issue of
concept drift is critical in RHMS because of inaccurate prediction. More research is needed
to improve the detection and handling of concept drift in distributed machine learning
systems, especially in the context of real-time healthcare monitoring systems.

6. Conclusions

The rapidly growing elderly population and the provision of healthcare facilities to
them present a major challenge for governments and healthcare departments. For elderly
people, going to hospitals daily to inform doctors about their health and seek advice is
impractical. Therefore, Remote Health Monitoring Systems (RHMS) offer a viable solution
for both elderly patients and doctors. In this paper, we conducted a survey of literature
related to the development of efficient RHMS.

We reviewed existing data sensing and gateway technologies, as well as state-of-the-
art Human Activity Recognition (HAR) systems. Our survey explores the benefits of Fog



Sensors 2023, 23, 7095 18 of 23

and mobile edge computing, which overcome limitations of cloud computing such as
high bandwidth, high latency, and high power consumption. Fog and edge computing
have emerged as a new computing paradigm for real-time sensor processing, analytics,
and storage facilities near the edge device. The study provides insights for future work,
encouraging the use of fog and edge computing in health applications to achieve real-time
response to actuators.

Furthermore, we enlisted promising existing RHMS systems, highlighting their po-
tential in healthcare. Finally, we identified and discussed current challenges related to the
development of RHMS. Our future work after this survey leads us to address issues related
to concept drift in Machine Learning (ML) health monitoring models in the distributed fog
environment. Concept drift is a crucial consideration to ensure the accuracy and reliability
of real-time health monitoring systems.

In conclusion, RHMS holds great promise in addressing the healthcare needs of the
elderly population. By leveraging fog and edge computing, we can enhance the efficiency
and effectiveness of health monitoring systems, enabling real-time responses and improving
the overall quality of healthcare services for the elderly.
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