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Sensor based human activity recognition (HAR) is an emerging and challenging research 

area. The physical activity of people has been associated with many health benefits and 

even reducing the risk of different diseases. It is possible to collect sensor data related to 

physical activities of people with wearable devices and embedded sensors, for example 

in smartphones and smart environments. HAR has been successful in recognizing 

physical activities with machine learning methods. However, it is a critical challenge to 

annotate sensor data in HAR. Most existing approaches use supervised machine learning 

methods which means that true labels need be given to the data when training a machine 

learning model. Supervised deep learning methods have outperformed traditional 

machine learning methods in HAR but they require an even more extensive amount of 

data and true labels.  

 

In this thesis, machine learning methods are used to develop a solution that can recognize 

physical activity (e.g., walking and sedentary time) from unannotated acceleration data 

collected using a wearable accelerometer device. It is shown to be beneficial to collect 

and annotate data from physical activity of only one person. Supervised classifiers can be 

trained with small, labeled acceleration data and more training data can be obtained in a 

semi-supervised setting by leveraging knowledge from available unannotated data. The 

semi-supervised En-Co-Training method is used with the traditional supervised machine 

learning methods K-nearest Neighbor and Random Forest. Also, intensities of activities 

are produced by the cut point analysis of the OMGUI software as reference information 

and used to increase confidence of correctly selecting pseudo-labels that are added to the 

training data. A new metric is suggested to help to evaluate reliability when no true labels 

are available. It calculates a fraction of predictions that have a correct intensity out of all 

the predictions according to the cut point analysis of the OMGUI software. 

 

The reliability of the supervised KNN and RF classifiers reaches 88 % accuracy and the 

C-index value 0,93, while the accuracy of the K-means clustering remains 72 % when 

testing the models on labeled acceleration data. The initial supervised classifiers and the 

classifiers retrained in a semi-supervised setting are tested on unlabeled data collected 

from 12 people and measured with the new metric. The overall results improve from 96-

98 % to 98-99 %. The results with more challenging activities to the initial classifiers, 

taking a walk improve from 55-81 % to 67-81 % and jogging from 0-95 % to 95-98 %. It 

is shown that the results of the KNN and RF classifiers consistently increase in the semi-

supervised setting when tested on unannotated, real-life data of 12 people.   

 

 

Keywords: human activity recognition, wearable sensors, acceleration data, machine 

learning, semi-supervised learning, unlabeled data 
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1 Introduction 

Sensor-based human activity recognition (HAR) is an emerging and challenging research 

area. The goal in HAR is to recognize physical activities of people by monitoring their 

daily lives. It is important to ensure the quality and quantity of physical activity that has 

been associated with many health benefits like maintaining physical fitness and even 

reducing the risk of different diseases [5]. The embedded sensors in smartphones, 

wearable devices and smart environments have made the sensor data stream more 

accessible, and HAR is used in many real-life applications in areas like health 

management, smart assistive technologies, and human computer interaction [1].    

 

HAR applications can use the data of wearable devices, such as accelerometers and 

gyroscopes. The data can be processed by machine learning methods to recognize and 

analyze physical activities like sitting, walking, and jogging or for example, activities of 

daily living such as sleeping and doing domestic tasks [2]. 

 

The light, non-invasive and low-cost wearable accelerometer devices, such as Axivity 

accelerometer [11], play a significant role in remote health monitoring [16]. They can 

continuously and remotely monitor physical activities of the users. The devices collect 

acceleration values of body movements in three dimensions over time and save the values 

in X, Y and Z axes in a defined frequency. For example, the accelerometer can be placed 

on a thigh and the frequency can be set to 100 Hz. In that case, the device collects 

acceleration values caused by the gravity (9,81 m/s/s) and the movements of the thigh a 

hundred times per second.  

 

Machine learning methods allow extracting information from data. A model is trained 

based on data using a machine learning algorithm. Machine learning algorithms can learn 

from the data (and the corresponding true labels of the data) by minimizing the error and 

maximizing the likelihood of the predictions being true [6]. A good HAR model learns to 

predict labels and thus, learns to recognize activities, from the new sensor data of the 
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wearable device. The model learns to find patterns in the data related to physical activities 

performed by the people using the wearable device.   

 

The human physical level can be interpreted from the physical, often regular activities, 

that people perform in their daily lives. For example, the activities can be grouped into 

sedentary time and light, moderate and vigorous activity. If a machine learning model 

predicts activities like sleeping and sitting, it can be assumed that these activities 

correspond to sedentary time or light activity. If jogging is predicted, the activity level of 

the person has likely been vigorous activity [10].  

 

1.1  Motivation 

 
Various studies in the literature have proposed machine learning methods for HAR 

applications [1,2,15]. However, it is still an attractive and challenging research topic. The 

existing approaches mostly use supervised machine learning methods that require 

annotation, which means that true labels need be given to the data when training a 

machine learning model. However, the majority of the sensor data has no labels and 

acquiring annotated sensor data of wearable devices is especially challenging in HAR [1]. 

It is even more challenging to annotate sensor data for long-term HAR applications. 

 

The objective of this thesis is to build a machine learning solution to recognize physical 

activity (e.g., walking, and sedentary time) from unannotated acceleration data collected 

using an Axivity accelerometer positioned on a thigh. The solutions are tested on real-life 

acceleration data collected from 12 people who were asked to wear an Axivity 

accelerometer on a thigh for one week. Although no true labels and no ground truth are 

available, the performance and the reliability of the new model should be evaluated.  

 

The existing HAR solutions are studied  to define the current state of the research related 

to the task of recognizing physical activities from unannotated sensor data. The 

characteristics and challenges of HAR and the used approaches to recognize physical 



 

3 
 

activities with different machine learning methods are examined. Approaches that use 

supervised machine learning with annotated data and unsupervised machine learning with 

no true labels are studied. Also, semi-supervised learning, that can use both unannotated 

data and a smaller annotated dataset, is investigated.  

 

1.2  Research questions 

 
This thesis aims to fulfil the following research questions: 

 

RQ1:  Can different activity levels be reliably extracted from an accelerometer device 

with machine learning using only unlabeled acceleration data? 

 

RQ2: Can machine learning models that are trained with new labeled acceleration data 

from a single person be used to annotate unlabeled acceleration data reliably? 

 

RQ3:  How can both unlabeled and new labeled acceleration data be used together when 

extracting activities from unlabeled acceleration data?  

 

RQ4: How to get information about the performance of the solution without true labels 

and the ground truth? 

 

1.3  Contributions 

 
In this thesis, the following contributions are made. 

 

• The current state-of-the-art HAR studies are reviewed and discussed. 
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• Several types of machine learning solutions are developed based on unsupervised, 

supervised, and semi-supervised approaches to recognize physical activities in 

unannotated sensor data of the Axivity accelerometer device. 

 

• New acceleration data of one person is gathered and annotated for one week to 

acquire annotated data for evaluating the performance of the solutions and to study 

how to benefit from the new annotated data when developing them. 

 
• The solutions are tested on unlabeled, real-life data collected from 12 participants 

of the study. 

 

1.4  Thesis structure 

 
The rest of the thesis is organized as follows: Chapter 2 describes challenges and 

commonly used methods and metrics in HAR. Chapter 3 introduces related work in HAR. 

Chapter 4 describes the solutions that are developed to extract activities from the Axivity 

accelerometer device. Chapter 5 explains experiments with the new solutions. In Chapter 

6, the results are discussed, and in Chapter 7 conclusions of the study are made. 
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2 Background 

 

2.1  Challenges in HAR 

 
Machine learning methods have been successfully used in HAR in areas like healthcare 

and wellness [5]. However, the existing approaches in HAR mostly use supervised 

machine learning methods that require annotated data, while the majority of the sensor 

data has no labels. The annotation of the ground truth is a critical challenge for HAR and 

may not always be feasible [2]. The number of sensor data records is usually huge. If the 

sampling rate is for example 100 Hz, the number of records is 360 000 for an hour. It is 

time consuming to label the records and difficult to remember the activities performed at 

a specific time. It is especially challenging to assign a correct label for short periods or at 

the boundary of consecutive activities [8]. Alternative solutions are to use camera-based 

methods to monitor individuals’ physical activities. However, the methods are privacy-

invasive and thus not suitable [13]. 

 

Other challenges in HAR are intraclass variability, interclass similarity and class 

imbalance. The data captured for the same activity from different users of the device may 

not be similar in nature, for example because of gender or age, and the data related to 

different activities may be similar, for example for jogging and running. The duration of 

various activities may differ and cause class imbalance. There are also heterogeneities 

across the sensing devices and device positioning [2]. In addition, segmenting a 

continuous data stream and preserving complete activities is difficult. It is challenging to 

find the precise start and end time of the activities that are not clearly separated by a 

predefined posture or pause [1]. 
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2.2  Methods used in HAR 

 

2.2.1  Filtering 

 
The sensor data that has been collected with wearable devices is usually preprocessed 

with filtering methods because the raw sensor data is scattered and noisy. In signal 

processing, a filter is a device or process that removes unwanted parts of the signal such 

as random noise or components lying within a certain frequency range [20]. Useful signal 

for HAR usually lies in low frequencies, while noise and random dithering usually lie in 

high frequencies [23]. For example, Butterworth low-pass filtering is used to keep the 

frequencies that are important to recognize human physical activities and to discard 

higher frequencies [20]. 

 

2.2.2  Segmentation 

 
To associate a sensor data stream of wearable devices to physical activities, the sensor 

data needs to be divided into smaller segments of the signals. Each segment can then be 

labeled and recognized as one physical activity. The sliding window approach is the most 

widely used segmentation method in HAR because of simplicity and lack of 

preprocessing. In this approach, a window with a fixed size and a fixed shift slides over 

the signal data with no inter-window gaps. There may be an overlap between adjacent 

windows to handle transitions of activities more accurately [19].  

 

The window lengths from 0,08 seconds to 30 seconds are commonly used in HAR [16]. 

The size of the window is often considered to be a tradeoff between recognition speed 

and accuracy where small windows allow a faster activity recognition and large windows 

are beneficial to recognize complex activities. However, very small window lengths may 
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be effective in recognizing activities and should be considered especially in cases when 

speed is prioritized over the best possible accuracy [19].   

 

There are also activity-defined and event-defined window approaches used in HAR, but 

they require pre-processing of the sensor data and often laboratory settings. For example, 

in the activity-defined approach activity changes in the sensor data are detected with 

methods like analyzing variations of the features or asking feedback from users. In the 

event-defined approach, specific events are located and used for example with gait 

analysis detecting heel strikes and toe-offs or with external mechanisms like human 

supervision [19]. 

 

2.2.3  Feature extraction 

 
In traditional machine learning in HAR, the features are manually extracted from the 

segments of the sensor data. They may include statistical features, such as mean, variance 

and entropy. The features may be extracted in the time domain, where the data is 

represented with respect to time, or in the frequency domain, where the data has been 

transformed into values corresponding frequencies using for example fast Fourier 

transform [21], discrete cosine transform [22] or wavelet transform [23]. The advantage 

of these features is that they can be derived from the signal easily and have been effective 

in the HAR systems [1]. However, this is dependent on human knowledge of the domain 

and restricts extending the models to other domains [2]. 

 

The development of deep neural network (DNN) architectures has allowed learning the 

features directly from the segments of the raw sensor data without the need to extract the 

features manually [3]. In DNN, there is an input layer, many hidden layers, and an output 

layer. The input layer receives the input data, the hidden layers extract patterns within the 

data, and the output layer produces the results. The layers of DNN can progressively 

extract higher-level features from the raw input data. However, training DNN models 

require large volumes of labeled data to get reliable results on new data and not to overfit 
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on the training data. They also need high computational capacity, because they are 

complex compared to traditional shallow machine learning methods [6]. 

 

2.2.4  Machine learning algorithms 

  
Machine learning algorithms that have successfully been used in sensor based HAR are 

introduced in this chapter. They can be defined as supervised, unsupervised, or semi-

supervised methods. In supervised methods, true labels are needed. Unsupervised 

methods can be applied on unlabeled data. In semi-supervised methods, both 

unsupervised machine learning with unannotated data, and supervised machine learning 

with a smaller annotated dataset are used [12]. Semi-supervised methods aim to reduce 

the need to annotate sensor data and still train models that can make predictions more 

accurately than unsupervised learning.  

 

Deep learning methods are also machine learning methods and can be used in 

unsupervised, supervised, and semi-supervised machine learning. Deep learning methods 

work well on unstructured data and achieve higher accuracy than traditional machine 

learning methods. However, most deep learning methods used in HAR are supervised 

methods. They need an extensive amount of data to avoid overfitting and acquiring a large 

volume of labeled data is a challenge in HAR [6]. 

 

2.2.4.1 Supervised machine learning 

algorithms 

 
In supervised machine learning, true labels of the training data set are available. A 

supervised machine learning algorithm is applied on the training data to make predictions 

by minimizing the error between the predicted and true labels. The model learns to find 

patterns in the training data related to the given labels and in this way learns to predict 

labels for new data [12].  
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2.2.4.1.1 K-nearest neighbor 

 
K-nearest neighbor algorithm (KNN) is an instance-based learning algorithm that predicts 

labels straight from the data instances in the training data, where the labels of the training 

data instances are known. The idea is that similar data instances should have similar labels 

and similarity can be determined with a distance between the instances [9]. 

 

In KNN the data instances are represented in a multi-dimensional space where each 

feature extracted from the data illustrates one dimension. The parameter k (the number of 

neighbors) is chosen. When the model predicts a label for a new data instance, KNN 

searches k training data instances that are nearest to the new one. The predicted label is 

based on majority voting between the labels of the found instances. The parameter k tunes 

the complexity of the model and the distance can be determined by using any distance 

metric like Euclidean distance [9].   

 

KNN is a simple algorithm to implement, and it can learn complex nonlinear functions. 

KNN has reached good accuracy in many domains. However, it has computational and 

memory complexity and irrelevant features may decrease the accuracy of the model 

because all features contribute equally to distance [9]. 

     

2.2.4.1.2  Random forest 

 
Random forest classifier (RF) is an ensemble of decision tree classifiers illustrated in 

Figure 1. A decision tree is a hierarchical flow chart algorithm. It uses branches of a tree 

to describe every possible decision based on the attribute values in the training data. The 

tree is constructed by decision nodes that symbolize the attributes, branches that mean 

decisions based on the value of the attribute and leaf nodes that are the labels. Every 

branch of the tree ends up with a leaf node and the leaf node of the selected branch is the 

predicted label [7]. 
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In RF, multiple decision tree classifiers are trained simultaneously, and each of them 

independently predicts labels for the data instances. The idea is that combining 

independent decision trees increases the stability of the model by reducing variance of 

the results. The model more unlikely predicts a label incorrectly than a single decision 

tree. An ensemble of weak classifiers results in a strong classifier [7]. 

 

The most commonly used parameters for a RF classifier are the number of trees and 

maximum depth of the trees. The training data is first randomly divided into subsamples. 

Features are also randomly selected for the selected number of trees. A decision tree is 

then formulated from each subsample. The prediction of the label for a new data instance 

is based on majority voting between the decision trees. The idea behind randomly 

selecting subsamples and features is to reduce the correlation between the decision tree 

classifiers in the ensemble helping them to predict labels more independently from each 

other [7].  

 

 

Figure 1 Random Forest classifier 

 
RF works well with nonlinear data and has low risk of overfitting. It has also achieved 

good accuracy. RF is quite slow to train but it is fast when making predictions [7]. 
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2.2.4.1.3  DNN architectures 

 
In a fully connected DNN, the network consists of fully connected layers: an input layer, 

many hidden layers, and an output layer. Each successive layer takes the output of the 

previous layer and feeds the result to the next layer. The result is calculated as a dot 

product of the input values of the neurons of the layer and the weights that have been 

calculated to the neurons [12]. Each layer extracts features from the previous layer 

gradually increasing the abstraction level of the features. The network optimizes the result 

by iteratively calculating the error of the predictions and recalculating the weights of the 

neurons with an error backpropagation algorithm [14]. A fully connected DNN is 

illustrated in Figure 2. 

 

 

Figure 2 A fully connected neural network with tree hidden layers 

 
A convolutional neural network (CNN) processes a volume of activations rather than 

vectors and produces feature maps. The activations of the neurons use convolution 

operations that extract features to the next layer. In a convolution operation, a convolution 

unit is shifted step by step across the input values using a weight vector (or a filter) 

resulting in inputs to the units of the next layer [14]. The CNN has also subsampling 

layers (or maxpooling layers) that reduce the size of the feature maps. The CNNs can 

model temporal dependencies in the data when gradually extracting more high-level 

features from the previous layers to the next ones [12]. 

 

A temporal convolutional network (TCN) is a CNN developed for sequential data. TCNs 

use dilated convolutions that can only use present and past inputs like convolutions in 
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CNNs but can take a sequence of any length in the previous layer and map it to an output 

sequence of the same length. In this way, an output can represent a wider range of inputs 

and TCNs can have long effective history sizes [44]. 

 

Recurrent neural networks (RNN) can include circles unlike DNNs and CNNs that are 

feedforward networks. In RNNs, the output depends on both present and past inputs. They 

can create and process memories of the temporal sequences of the data and mix both 

sequential and parallel information [14]. The RNN architectures with long short-term 

memory units (LSTM) or gated recurrent units (GRU) can keep track of internal states 

that represent the memory of the network. They improve the learning of long time-scale 

temporal dependences of the sequences and help the system to model more complex 

patterns [1].  

 

Bi-directional RNNs can be used when both past and future content of the sequences of 

the data are known in advance. The bi-directional RNN processes the sequences from 

start to end and from end to start and makes predictions from their combined outputs. The 

RNNs can also be stacked to create deep RNNs [14]. 

 

Attention models have been developed to alleviate RNNs difficulties to learn from long 

input sequences. They can selectively access the most important parts of the input 

sequences based on the current contexts instead of accessing the input sequences through 

fixed size vectors [55].  

 

DNN architectures can learn complex nonlinear functions and have outperformed 

traditional machine learning methods in accuracy. However, they have significant 

computational complexity and require large volumes of data for not overfitting when 

training the models.  
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2.2.4.2 Unsupervised machine learning 

algorithms 

 
In unsupervised machine learning, there are no true labels associated with the training 

data. The aim is to draw inferences from the data and to model the underlying structure 

and the distribution [12]. It is assumed that certain patterns occur more often than others 

related to the output values to be predicted [13]. When hidden patterns are found in the 

groups of the training data, groups of similar physical activities may have been identified 

[32].   

 

2.2.4.2.1  K-means clustering 

 
Centroid-based K-means clustering aims to identify clusters of similar data instances. The 

number of clusters must be defined with a parameter k. The centers of the clusters are 

first randomly initialized and each data instance in the data is pointed to the cluster, the 

center of which is closest to it. Then new centers of clusters are computed as a mean 

vector of the assigned data instances. These two steps are repeated until the centers of the 

clusters do not change anymore. Like with KNN, different distance measures can be used, 

most commonly the Euclidian distance [9].  

 

K-means clustering is fast, and it has achieved good accuracy in many domains. However, 

K-means clustering is sensitive to the initial positions of the centers of the clusters, and it 

may fail if they are badly initialized. Also, the number of clusters has to be pre-specified 

which may be challenging [9].   
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2.2.4.2.2  DBSCAN 

 
Density-based spatial clustering of applications with noise (DBSCAN) is a density-based 

clustering algorithm. The idea is that high data density corresponds to clusters. The given 

parameters are the initial size of the neighborhood area and the number of data instances 

that should be in the area. The DBSCAN starts with finding an area according to the 

parameters. The neighborhood area is expanded as long as the density criteria is satisfied. 

The area forms a cluster that is removed from the data set. These two steps are repeated 

until suitable areas cannot be found any more [9]. 

 

In DBSCAN the number of clusters is not needed. DBSCAN is efficient, and it has also 

shown good accuracy. It can find clusters of arbitrary shape, but it is not effective when 

clusters have varying densities [9].   

  

2.2.4.2.3  Hierarchical agglomerative clustering 

 
Hierarchical agglomerative clustering (HIER) builds clusters hierarchically first 

considering each data instance as a separate cluster. The two clusters that are closest to 

each other are joined together. This step is repeated until a suitable number of clusters 

given with a parameter k are formed. Similarity of data clusters can be calculated for 

example with Euclidean distance between the centroids or mean value vectors of the 

clusters [9]. 

 

In HIER the number of clusters is not needed. The output of HIER is a dendrogram where 

the hierarchical relationship of the clusters can be visualized. It is possible to choose 

suitable clusters also merging subclusters [9]. 

 



 

15 
 

2.2.4.2.4  Gaussian mixture model 

 
A Gaussian mixture model (GMM) is a probabilistic clustering algorithm. GMM 

optimizes the fit between data and a parametric distribution like a Gaussian or Poisson 

distribution for each cluster. The data is modeled by a mixture of the distributions. The 

optimal values for the parameters: a mean, a variance, and a prior probability of the 

distribution are calculated for each distribution maximizing the likelihood of the data with 

regards to the model parameters. GMM is a soft clustering method where data instances 

are not associated only to one cluster, but probabilities of belonging to different clusters 

are calculated for each data instance [38]. 

 

2.2.4.2.5  Principal Component Analysis 

 
In Principal Component Analysis (PCA) dimensionality of data is reduced while trying 

to retain most of the variation in the data. PCA identifies orthogonal directions called 

principal components, that maximize the variation of the components. It projects features 

of data instances to these principal components forming new features that are linear 

combinations of the original ones. The original features of the data are compressed to 

fewer features preserving as much variance as possible [9]. 

 

PCA is a linear method that is suitable for reducing the number of features and for 

visualizing data in two or three dimensions [9]. 

 

2.2.4.2.6  Deep learning autoencoders 

 
Autoencoders (AE) are an unsupervised technique of neural networks (NN) that can learn 

compressed knowledge representations of input data. They are a nonlinear generalization 

of PCA. The task of the AEs is to reconstruct the input data by minimizing the 

reconstruction error to find structure in the data. First, an encoder encodes the input data 
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to a latent state representation of the data and a decoder reconstructs the representation 

back to the input data through the network. The aim is to learn a generalizable way to 

encode and decode data, not just to memorize the input values [31] . 

 

In a bottleneck AE architecture, hidden layers have fewer nodes than the input layer 

forming a bottleneck that forces the network to learn compressed latent state 

representations of the data [31]. The AE with a bottleneck architecture is illustrated in 

Figure 3.  

 

Figure 3 An autoencoder with a bottleneck architecture 

 
 
In a sparse AE architecture, the number of nodes in the hidden layers is not reduced, but 

only a small number of nodes are activated to learn compressed latent state 

representations. This is done with a loss function that penalizes activations within hidden 

layers. Because the activations depend on the input data different input values activate 

different nodes through the network [31]. The sparse AE architecture is illustrated in 

Figure 4.  

 

 

Figure 4 A sparse autoencoder with a restricted number of nodes activated 
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Denoising and contractive AEs aim to learn representations that are robust against noise. 

In the denoising AE, the input data is slightly corrupted, and the target output is 

maintained as the original input data. In the contractive AE, a loss function penalizes 

large derivatives of hidden layer activations with respect to the input data. In this way 

small changes in the input data maintain similar encoded values and contract a 

neighborhood of the input values into a smaller neighborhood in the output values [31]. 

 

Variational AEs use a probabilistic way to describe values in latent state representations. 

Instead of giving single values to the attributes in the representation vector, the variational 

encoder describes a probability distribution for each latent attribute. The encoder builds 

two output vectors, one describing the mean and the other the variance of the latent state 

distributions. A vector for the decoder is generated randomly sampling from each latent 

state distribution. A loss function penalizes the reconstruction error and encourages 

learning distributions like the true distribution simultaneously. The result is a smooth 

latent space representation where the outputs are ranges of possible values instead of 

single values [31].  

 

2.2.4.3 Semi-supervised machine learning 

methods 

 
In semi-supervised techniques a large amount of unannotated data is used on top of 

limited annotated data. The idea in semi-supervised learning is that useful information in 

the unannotated data can be leveraged to learn more effectively from a small set of 

annotated data [4].  

 

2.2.4.3.1  Self-learning method 

 
Self-learning iteratively uses a supervised machine learning method. A supervised 

classifier is first trained on a small amount of annotated data, and the classifier is then 
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used to predict pseudo-labels to some or all the unannotated data. Typically, pseudo-

labels are given to the most confident predictions. The data with pseudo-labels can then 

be used together with the annotated data to retrain the classifier and the self-learning 

procedure is repeated [41]. The challenge in this approach is that the initial model trained 

with limited annotated data needs to be good [4]. 

 

2.2.4.3.2 Co-learning method 

 
Co-learning follows the procedure of self-learning also simultaneously augmenting the 

training process with an additional source of information. For example, two separately 

trained classifiers can teach one another by augmenting each other’s training sets with the 

most confident predictions. The classifiers are retrained, and the process is repeated. In 

this method, it is assumed that the two separate training sets are sufficient to train the 

classifiers to make reliable predictions. Also, one classifier’s high confidence data 

instances need to be independent and identically distributed for the other classifier [41]. 

 

2.2.4.3.3 En-Co-Training and democratic co-

learning methods 

 
En-Co-Training is like self-learning, but consensus of classifiers determines the 

confidence of the predictions. Confident predictions are added to a common training set 

and classifiers are retrained on it. En-Co-Training uses majority voting to make the 

predictions. In democratic co-learning majority voting is used to make predictions and 

then for example the most confident labeled samples are added to the separate training 

sets of the classifiers that disagreed with the majority. In En-Co-Training and democratic 

co-learning the classifiers can be trained on the same data unlike in co-learning. They rely 

on the difference between the classifiers instead of different feature sets [35]. 
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2.2.4.3.4  Deep semi-supervised methods 

 
Another approach in semi-supervised machine learning is to try to learn class boundaries 

that are smooth for example with consistency-based methods like denoising AEs. The 

intuition is that the data should be in the right representation exhibiting clustering, where 

the classes correspond to the clusters. Because consistency-based methods encourage 

smooth class boundaries they may not promote clustering that would be needed with very 

few available labels, though [4]. 

 

A ladder network simultaneously trains an AE on unlabeled data and an NN with labeled 

data. The ladder network consists of a noisy feed forward path (an encoder), a decoder, 

and a clean feed forward path. The noisy feed forward path and the clean feed forward 

path share the same mapping function, and the decoder has cost functions on each layer 

minimizing the difference between the mappings of the noisy and the clean feed forward 

paths. The output of the noisy feed forward path is also trained with labeled data [47]. 

 

Semi-supervised approaches that incorporate pairwise similarity information about 

different data instances may be used to more explicitly separate classes. For example, 

Siamese NNs and Triplet networks learn representations from similar/dissimilar pairs [4]. 

Siamese NNs include dual branches and shared weights between pairs of data instances. 

They process input pairs and learn pairs of representations, the distances of which can be 

used to describe the semantic similarity of the pairs [1]. 

 

2.2.5  Evaluation metrics  

 
Metrics that are used when evaluating the performance of the solution of this thesis and 

metrics often used as evaluation metrics of the solutions in HAR are described in this 

chapter.  
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2.2.5.1 Metrics used in supervised machine 

learning 

 

2.2.5.1.1 Accuracy 

 
Accuracy tells the fraction of correct predictions out of all the predictions of the model. 

It can also be defined with the terms true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN) with the equation 1 below.  

               (1) 

Accuracy is an often-used metric, but very sensitive to class imbalance [9].    

 

2.2.5.1.2 F1-score 

 
F1-score is a balanced combination of precision and recall and can be calculated with the 

equation 2. 

   , when           (2) 

      

 

Precision indicates the proportion of true predictions among the data instances that have 

been predicted to belong to the category. Recall that is also called true positive rate or 

sensitivity defines the proportion of true predictions among the data instances that belong 

to the category. It shows how well correct categories have been found. 

 

The values of F1-score may vary between 0 and 1. Values close to 1 indicate particularly 

good precision and recall. F1-score is more robust to class imbalance than accuracy [9]. 
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2.2.5.1.3 Sensitivity 

 
Sensitivity is also called a true positive rate. It shows the fraction of correct positive 

predictions out of the data instances that belong to the predicted category. It is also called 

recall and can be calculated with the equation of recall shown above. 

 

2.2.5.1.4 Specificity 

 
Specificity is also called a true negative rate. It tells the fraction of correct negative 

predictions out of the data instances that do not belong to the predicted category. It can 

be calculated with the equation 3 [36]. 

                   (3) 

 

2.2.5.1.5 Concordance index  

 
Concordance index (C-index) calculates how many times the order of the predictions of 

pairs were correct out of all possible pairs. C-index is a suitable metric to measure the 

performance of the model on the data where the labels can be interpreted as an ordinal 

scale of increasing activity levels. The value 0,5 represents a random prediction and value 

1 corresponds to the best model prediction. C-index can be calculated with the equation 

4 below [34]. 

   , where          (4) 

    is the risk score of a unit i  
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2.2.5.2 Metrics used in unsupervised 

machine learning 

 
Some of the metrics that are used in unsupervised machine learning can be calculated 

without access to true labels and the ground truth of the true clusters such as the Silhouette 

coefficient. However, many of them require true labels making them useless on data that 

has no labels. For example, to calculate clustering accuracy,  the Adjusted Randomizing 

Index (ARI), or Normalized mutual information (NMI) at least some labels are needed to 

present the ground truth of the true clusters.  

 

2.2.5.2.1 Silhouette coefficient 

 
The quality of the clustering can be measured for example with the Silhouette coefficient 

calculated with the following equation 5. 

   , where             (5) 

a(i) is an average distance between i:th data instance and instances in the same cluster 

and b(i) is an average distance between i:th data instance and instances in the other 

clusters. In the clusters formed well the data instances are close to the instances in the 

same cluster and far from those of other clusters. The values of Silhouette coefficient may 

vary between -1 and 1, values close to 1 meaning particularly good clusters [9]. 

 

2.2.5.2.2 Clustering accuracy 

 
Clustering accuracy is a classification accuracy for unsupervised learning. It uses a 

mapping function to find the best mapping between clusters found by the clustering 

algorithm and true clusters. This is needed because the algorithm may use different labels 

from the true labels to represent the same cluster. The clustering algorithm is calculated 

with equation 6 [39].  
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   , where          (6) 

m is a mapping function, y is a true cluster, and c is a cluster found by the clustering 

algorithm. 

     

2.2.5.2.3 Adjusted Randomizing Index 

 
ARI is computed to evaluate similarity between the clusters found by the clustering 

algorithm and the true clusters given in the annotation. ARI computes the similarity 

measure between the clusters by considering all pairs of data instances and counting pairs 

that are assigned in the same or different clusters. It can be calculated with the following 

equation 7. 

   , where     (7) 

 is the number of instances in cluster i formed by the clustering algorithm and the true 

cluster j,  is the number of instances in the cluster i formed by the clustering algorithm, 

and  is the number of instances in the true cluster j. A value close to 0 means random 

labeling and a value 1, that the clusters are identical [1]. 

 

2.2.5.2.4 Normalized mutual information 

  
NMI measures the mutual information between the cluster assignments and the true 

clusters, and it is normalized by the average of entropy in them. It can be calculated with 

the equation 8 below. 

    , where         (8) 

 is the number of data instances in cluster i formed by the clustering algorithm and the 

true cluster j,  is the number of instances,  is the number of instances in the cluster i 
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formed by the clustering algorithm and  is the number of instances in the true cluster j. 

A value 0 indicates that the clusters found by the clustering algorithm and the true 

clusters are totally different, and value 1, that they are similar [1].   
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3 Related work 

 

3.1  Machine learning approaches in 

HAR 

 
Works that have successfully used machine learning methods in supervised, 

unsupervised, or semi-supervised approaches in sensor based HAR are introduced in the 

following chapters. The aim is to study the state of the research, especially related to the 

task  of recognizing physical activities from unannotated acceleration data collected with 

the Axivity accelerometer positioned on a thigh. Possibilities to use a small, annotated 

dataset of one person are also studied. The summaries of supervised, unsupervised, and 

semi-supervised approaches in HAR with information about used sensors, types of 

activities to be recognized, applied methods, and used metrics are shown in Tables 1-3 in 

the end of each corresponding section. 

 

3.1.1  Supervised machine learning in 

HAR 

 
Traditional supervised machine learning methods that use manual feature extraction have 

been successful in recognizing human activities from sensor data of wearable devices 

[15]. However, because of superior performance compared to traditional machine 

learning there has been a shift towards deep machine learning methods in HAR. CNNs, 

RNNs and a combination of CNNs and RNNs have been effective in modelling temporal 

dependencies inherent in sequences captured with sensors of wearable devices [3]. Also, 

an attention-based framework has been proposed for HAR recently [55]. 
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3.1.1.1 Supervised traditional machine 

learning approaches 

 
A work [50] investigated decision tables, an instance-based learning method IBL and 

nearest neighbor, C4.5 decision tree, and Naïve Bayes on datasets annotated by 20 

persons to recognize 20 daily activities in real-life situations. The persons were wearing 

five wire-free bi-axial accelerometers and were asked to perform given tasks outside the 

laboratory setting. Mean, energy, frequency-domain entropy, and correlation features 

were extracted from segments of 6,7 seconds with 50 % overlap. The C4.5 decision tree 

showed the best accuracy (84 %) and nearest neighbor the second-best accuracy (83%). 

When using only two accelerometers, on thigh and wrist or on hip and wrist, the accuracy 

decreased only slightly. The accelerometer placed on a thigh was the most powerful in 

recognizing the activities. It was shown to be possible to recognize daily activities with 

pre-trained classifiers in real-life situations. Some activities appeared to require user-

specific data to be recognized accurately. 

 

In a work [51] the effectiveness of decision tables, C4.5 decision tree, KNN, Support 

Vector Machine (SVM), and Naïve Bayes as well as meta-level methods boosting, 

bagging, plurality voting, and stacking was studied on data collected with an 

accelerometer near the pelvic region from two persons to recognize standing, walking, 

running, climbing up the stairs, climbing down the stairs, sit-ups, vacuuming, and 

brushing teeth. The activities were annotated with the help of a stopwatch. Mean, standard 

deviation, frequency-domain energy, and correlation were extracted from segments of 

5,12 seconds with 50 % overlap. Plurality voting turned out to outperform the other 

classifiers with accuracy (> 90 %). 

 

C4.5 decision tree, KNN, Naïve Bayes, and Bayes Net were compared with accuracy and 

computational complexity to build an online system to recognize sitting, standing, 

walking, ascending stairs, descending stairs, and running in a study [49]. Bi-axial 

acceleration data and light data were collected from six persons, who were wearing a 

sport watch on various body positions and performing given tasks for 45-50 minutes. 
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Time domain features: empirical mean Y axis, root mean square, standard deviation, 

variance, mean absolute deviation, cumulative histogram, n’th percentile, interquartile 

range, zero crossing rate, mean crossing rate, and squared length of X,Y were extracted 

from segments of 4 seconds. The C4.5 decision tree was chosen, because it achieved the 

best balance with accuracy (87 %) and computational complexity. Climbing stairs was 

difficult to distinguish from walking. 

 

A work [48] compared decision tree methods CART and ID3, an adaptive neuro-fuzzy 

inference system ANFIS, Nearest Neighbor, KNN, and Naïve Bayes to recognize daily 

activities lying, standing, jogging, walking, climbing upstairs, and climbing downstairs 

on acceleration data collected from twenty-eight healthy adults for one hour. Step count, 

frequency z axis, frequency x axis, mean of maxima x, angle z, RMS of derivative x, 

energy y, entropy z, entropy x, and area z were the most frequently selected features from 

segments of 4 seconds. A Java application was used to annotate the data with markers, 

descriptions, and timestamps. KNN had the best accuracy (> 96 %) on individual datasets 

and the CART decision tree showed the best accuracy (> 85 %) on group datasets. The 

sensitivity of climbing stairs was the lowest with all the methods.  

 

In a study [52] SVM, NN, and C4.5 decision tree as well as a model combining them with 

majority voting were trained on laboratory data and evaluated on data collected in free-

living conditions. 52 individuals were wearing a tri-axial accelerometer at the lower back 

and other accelerometers on various body positions to gather reference information 

considered as the ground truth, both in a laboratory setting and without supervision. 

Activities were also annotated in diaries. Mean, standard deviation, kurtosis, skewness, 

range, cross-axis correlation, accelerometer angle, spectral energy, spectral entropy, peak 

frequencies, and cross-spectral densities were extracted from the segments of 6,4 seconds. 

All the models showed good accuracy (> 92 %) on laboratory data but a significant 

decrease in accuracy (> 72 %) in free-living conditions. Majority voting had the best 

accuracy (95 % on laboratory data and 75 % in free-living conditions). It was concluded 

that daily-life data is essential when training and testing classification models in HAR.  
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A study [28] created the publicly available PAMAP2 dataset from sensor data collected 

with three inertial measurement units containing two tree-axial accelerometers, a 

gyroscope, and a magnetometer. They were placed on the chest, the dominant arm, and 

the dominant ankle. In addition, a heart rate monitor was positioned on the chest. 9 people 

were performing 12 daily and six optional activities following a protocol. In addition, 

C4.5 decision tree, boosted C4.5 decision tree, bagging C4.5 decision tree, Naïve Bayes, 

and KNN were compared on the data. Time and feature domain features were extracted 

from the acceleration data and mean and gradient from the heart rate data in segments of 

5,12 seconds with a shift of 1 second. The boosted C4.5 decision tree and KNN reached 

the best accuracy and F1-score (both > 99 %).  

 

A work [53] compared KNN, SVM, GMM, and RF to recognize daily activities with 

accuracy, F1-score, recall, precision, and specificity. Sensor data was collected with 

accelerometers worn on the chest, right thigh, and left ankle by six persons who were 

asked to perform 12 daily activities that were annotated by an observer for 30 minutes. 

Mean, variance, median, interquartile range, skewness, kurtosis, root mean square, zero 

crossing, peak to peak, crest factor, range, DC component in FFT spectrum, energy 

spectrum, entropy spectrum, sum of the wavelet coefficients, squared sum of the wavelet 

coefficients and energy of the wavelet coefficients, the correlation coefficients of mean, 

and variance of the norm of each acceleration were extracted from the segments of 1 

second with 80 % overlap. A wrapper approach based on RF feature selection had been 

used to select the features. The KNN and RF reached the best performance with all the 

used metrics F-score, recall, precision, specificity, and accuracy (near 99 %).  

 

3.1.1.2 Supervised deep learning approaches 

 
A generic deep framework based on CNN and RNN was proposed for enhancing 

recognition accuracy and recognizing increasingly complex physical activities in [43]. 

The features were automatically extracted from raw sensor data by CNN and temporal 

dynamics of feature activations were modeled by RNN. Multimodal sensor data could 

also be fused. The framework was evaluated with the task of recognizing standing, 
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walking, sitting, and lying down and right-hand gestures in the OPPORTUNITY dataset 

[54] collected in a sensory-rich environment and 10 different hand gestures in the Skoda 

dataset [26] collected from assembly-line workers in a car production environment. The 

framework outperformed the previously published results, also CNN approaches, on the 

OPPORTUNITY and Skoda datasets with F1-score (between 89 % and 95 %).   

 

A new study [55] suggested the first purely attention-based deep learning framework for 

HAR. In addition, a personalization framework was proposed to adapt the model to a 

specific user acquiring data and labels from the user over time. The framework was 

evaluated on the HHAR [33], PAMAP2 [28], and USC-HAD [56] datasets with F1-score 

(70 – 84 %) outperforming RF and the previously published deep learning approaches. 

Personalization increased the F1-scores (74 – 88 %). It was concluded that purely 

attention-based models are highly capable of extracting temporal dependencies in sensor 

based HAR. 

 

Table 1  Related work with a supervised machine learning approach 

Reference Sensors Activities Methods Metrics 

Ling Bao et al., 

2004 [50]  

Accelerometers  20 daily activities  C4.5 decision tree, 

decision tables, 

instance-based 

methods IBL and 

nearest neighbor, 

Naïve Bayes 

Accuracy with 

C4.5 decision 

tree 84 %, with 

nearest neighbor 

83 % 

Nishkam Ravi 

et al., 2005 [51] 

Accelerometer lying, standing, 

jogging, walking, 

climbing up the 

stairs, climbing 

down the stairs 

boosting, bagging, 

plurality voting, and 

stacking with 

decision tables, C4.5 

decision tree, KNN, 

SVM, and Naïve 

Bayes 

Accuracy with 

plurality voting 

> 90 % 

Uwe Maurer et 

al., 2006 [49] 

Accelerometers 

and light 

sensors of sport 

watches 

sitting, standing, 

walking, ascending 

stairs, descending 

stairs, running 

C4.5 decision tree, 

KNN, Naïve Bayes, 

Bayes Net 

Accuracy with 

C4.5 decision 

tree 87 % 
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Luciana C. 

Jatoba et al., 

2008 [48] 

Accelerometers lying, standing, 

jogging, walking, 

climbing upstairs, 

climbing 

downstairs 

Decision tree 

methods CART and 

ID3, ANFIS, Nearest 

Neighbor, KNN, 

Naïve Bayes  

Accuracy with 

CART decision 

tree 86 %, 

sensitivity 

Illapha Cuba 

Gyllensten et 

al., 2011 [52] 

Accelerometer lying down, sitting / 

standing, dynamic / 

transitions, 

walking, running, 

cycling 

SVM, NN, and C4.5 

decision tree, 

majority voting 

Accuracy with 

majority voting 

95 % (lab data) / 

75 % (free-

living data) 

Attila Reiss et 

al., 2012 [28] 

Accelerometers,  

gyroscopes, 

magnetometers 

12 daily activities  

(PAMAP2) 

C4.5 decision tree, 

boosted C4.5, 

bagging C4.5,  

Naïve Bayes, KNN 

Accuracy and 

F1-score with 

boosted C4.5 

decision tree 

and KNN  

> 99 % 

Attal Ferhat et 

al., 2015 [53] 

Accelerometers 12 daily activities KNN, SVM, GMM, 

RF 

Accuracy with 

KNN and RF 

near 99 %, F1-

score, recall, 

precision, 

specificity 

Francisco Javier 

Ordóñez et al., 

2016 [43] 

Accelerometers, 

gyroscopes, 

magnetometers 

4 locomotion 

activities and 17 

hand gestures in the 

OPPORTUNITY 

dataset, 10 hand 

gestures in the 

Skoda dataset 

Combination of CNN 

and RNN 

F1-score 89 % - 

95 % 

Davide Buffelli 

et al., 2020 [55] 

Accelerometers,  

gyroscopes, 

magnetometers 

Activities of the 

HHAR (6), 

PAMAP2 (12), and 

USC-HAD (12) 

datasets 

Attention model F1-score  

70 – 84 %, with 

personalization  

74 – 88 % 



 

31 
 

3.1.2  Unsupervised machine learning in 

HAR 

 
Unsupervised methods do not need labeled data to train the model, but they have not been 

used as much as supervised machine learning methods in HAR. The performance of 

unsupervised methods has usually been inferior to supervised methods [2]. Research of 

unsupervised learning in HAR has mostly been conducted in clustering of handcrafted 

features, in weight initialization in pre-training, and in unsupervised feature learning prior 

to supervised fine tuning. Some works have been suggested to recognize human activities 

in an unsupervised manner [3].   

 

DNNs have been used to create clustering-friendly representations and cluster 

assignments simultaneously for still image data and impressive results have been 

achieved with unsupervised deep clustering frameworks for computer vision applications. 

However, they have not been able to exploit the sequential nature of sensor data and learn 

representations of human activities from raw sensor data of wearable devices [3].  

 

3.1.2.1 Unsupervised traditional approaches  

 
A study [8] investigated DBSCAN, HIER, GMM, and K-means clustering that were 

applied on means and standard deviations extracted from sensor data of accelerometers 

and gyroscopes of smartphones. Volunteers were asked to perform five activities 

common in daily living: walking, running, sitting, standing, and lying down for ten 

minutes. When the number of clusters was known, GMM showed 100 % accuracy. When 

the number of clusters was unknown DBSCAN and HIER reached over 90 % clustering 

accuracy. The Calinski-Harabasz index was used to find an optimal number of clusters to 

the HIER algorithm. 
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In addition to supervised machine learning methods, the unsupervised methods K-means 

clustering, GMM and Hidden Markov Model were compared in [53]. The Hidden Markov 

Model showed the best performance with F1-score, recall, precision, specificity, and 

clustering accuracy (near 84 %). 

 

A study [36] suggested a protein interaction model MCODE to recognize human 

activities. MCODE, GMM, HIER, centroid-based clustering methods K-means++ and K-

medoids, and a graph-based Spectral clustering were compared. They were applied on 

mean, standard deviation, variance, skewness, kurtosis, correlation, and signal magnitude 

area features that were extracted from segments of 180 seconds with 75 % overlap of 

acceleration data obtained with smartphones. To evaluate the results two datasets were 

collected, one from basketball playing and another from race-walking activities. Video 

was recorded and used to manually annotate the activities. MCODE was shown to 

outperform the other models with ARI, FM-index, accuracy (74% – 88 %), recall, 

precision, specificity, and F1-score on the daily living activities collected by WISDM 

Lab [37] and the two own datasets.  

 

In [57], centroid-based clustering methods K-means, K-mode and CLARANS clustering, 

a hierarchical BIRCH clustering, and DBSCAN clustering were applied on sensor data 

from the UCI HAR [25] dataset collected with accelerometers and gyroscopes of 

smartphones. Features of the time and frequency domain had been extracted from 

segments of 2,56 seconds with 50 % overlap. K-means and DBSCAN clustering reached 

the highest clustering accuracy (95 %) also when the number of features was reduced. 

 

3.1.2.2 Unsupervised deep learning 

approaches 

 
A work [32] proposed a deep learning variational AE model for learning representations 

of human activities. Relative changes of position and orientation were calculated from 

sensor data of accelerometers and gyroscopes of wristbands as input to a variational AE 

consisting of bi-directional LSTMs. The model was evaluated on data collected and 
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annotated in laboratory-based sessions with 10 persons and the epileptic patients’ daily 

activities of the public HHAR dataset [33]. The supervised classifiers, a decision tree 

classifier C4.5, KNN and RF, were applied on the embedded mean vector of the 

variational AE.  They outperformed those applied on hand-crafted features with F1-score. 

The unsupervised model reached a clustering accuracy higher than 87 %. 

 

Recently, the first unsupervised, standalone, end-to-end deep clustering method Deep 

Sensory Clustering [3] was suggested to recognize human activities straight from raw 

sensor data of wearable devices. A recurrent AE with bi-directional GRUs and with 

reconstruction and future prediction objectives, and centroid-based Cluster assignment 

hardening were jointly used to learn clustering-friendly representations and to generate 

soft cluster assignments. The approach was compared with K-means clustering, HIER, 

and end-to-end deep clustering for still images on the public datasets UCI HAR [25], 

Skoda [26] and MHEALTH [27]. They showed consistent improvement of performance 

with metrics of clustering accuracy (53 % – 75 %) and NMI.  

 

Unsupervised Embedding Learning for HAR [1] using deep learning AE architecture was 

also recently suggested for unsupervised clustering in HAR. Mean, variance, standard 

deviation, median value, largest value, smallest value, and interquartile range features 

were extracted from raw sensor data as input to AE with objectives to minimize 

reconstruction, temporal coherence, and locality preserving losses. K-means clustering 

was then applied on the learned representations to find cluster assignments. The approach 

was compared with PCA and the traditional AE on the public datasets PAMAP2 [28], 

REALDISP [29] and SBHAR [30] with metrics of clustering accuracy (71 % – 92 %), 

ARI and NMI showing improved performance.  

  

Table 2 Related work with an unsupervised machine learning approach 

Reference Sensors Activities Methods Metrics 

Yongjin Kwon et 

al., 2014 [8]  

Accelerometers 

and gyroscopes 

of smartphones 

Walking, running, 

sitting, standing, 

lying down 

DBSCAN, HIER 

with Calinski–

Harabasz index, K-

means clustering, 

GMM 

Clustering 

accuracy with 

DBSCAN and 

HIER > 90 %, 

NMI 
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Attal Ferhat et 

al., 2015 [53] 

Accelerometers 12 daily activities Hidden Markov 

Model, K-means, 

GMM 

Accuracy with 

Hidden Markov 

Model near 

84 %, F1-score, 

recall, precision, 

specificity 

Yonggang Lu et 

al., 2017 [36]  

Accelerometers 

of smartphones 

Basketball playing, 

race walking, daily 

activities of the 

WISDM dataset (6) 

MCODE, GMM, 

HIER, K-means++, 

K-medoids, Spectral 

clustering 

Clustering 

accuracy with 

MCODE  

74 – 88 %,  

ARI, FM-index, 

recall, precision, 

specificity, F1-

score 

Jue Wang et al., 

2018 [57] 

Accelerometers 

and gyroscopes 

of smartphones 

6 daily activities of 

the UCI HAR 

dataset 

K-means , K-mode, 

CLARANS, BIRCH, 

DBSCAN  

Clustering 

accuracy with 

K-means and 

DBSCAN 95 % 

Lu Bai et al., 

2019 [32] 

Accelerometers 

and gyroscopes 

of wristbands 

9 daily activities, 

epileptic patient 

daily activities (6) 

of the HHAR 

dataset 

Deep learning 

variational AE with 

bi-directional LSTMs  

Clustering 

accuracy  

> 87 %, 

F1-score 

Alireza Abedin 

et al.,2020 [3] 

Wearable 

devices 

Activities of the 

UCI HAR (6), 

Skoda (10), and 

MHEALTH (12) 

datasets 

End-to-end deep 

learning RNN AE 

with bi-directional 

GRUs and Cluster 

Assignment 

Hardening 

Clustering 

accuracy  

53 – 75 %,  

NMI 

Sheng Taoran, 

2020 [1] 

Wearable 

devices 

Daily and sport 

activities of the 

PAMAP2 (12),  

REALDISP (33), 

and SBHAR (6) 

datasets 

Deep learning AE 

with temporal 

coherence and 

locality preserving 

loss and K-means 

clustering 

Clustering 

accuracy  

71 – 92 %,  

ARI, NMI 
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3.1.3  Semi-supervised machine learning 

in HAR 

 
Relatively little work has been conducted with semi-supervised machine learning in HAR 

[4]. Semi-supervised approaches that use hand-crafted features have been applied to 

reduce the required amount of annotated training data [40]. Most research on semi-

supervised learning in HAR has used sequential AEs to learn representations from 

unlabeled sensor data to improve supervised classification [4]. 

 

Although impressive classification performance has been achieved with semi-supervised 

learning in computer vision using denoising AEs with class-preserving augmentations, 

semi-supervised learning is challenging in HAR. The data segments in the sequential data 

should map to the clusters, but the boundaries of the segments are not known. In addition, 

class-preserving augmentations, such as rotation and mirroring with images, are difficult 

to define in HAR [4]. 

 

3.1.3.1 Semi-supervised traditional machine 

learning approaches 

 
A study [41] explored self-learning and co-learning with a supervised method joint 

boosting on the sensor data in the PLCouple1 dataset [42]. The data was collected with 

accelerometers on the dominant wrist, the dominant hip, and the non-dominant thigh and 

10 infra-red sensors. The male’s daily activities, actively watching tv or movies, 

dishwashing, eating, grooming, hygiene, meal preparation, reading 

paper/book/magazine, using computer, and using phone, had been annotated for 15 days 

with the help of an audio-visual recording system. Mean, variance, energy, spectral 

entropy, area under curve, pairwise correlation between the three axes, and the first ten 

FFT coefficients were extracted from segments of 30 seconds with 50 % overlap from 

the acceleration data. The number of activations of the infra-red sensors were also 
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calculated as features. Both self-learning and co-learning improved the accuracy of the 

classifier. Co-learning using two types of sensors reached the best accuracy (40 % when 

the number of used labels was 2,5 %) compared to self-learning and supervised training. 

 

In [35] semi-supervised methods self-learning, En-Co-Training, and democratic co-

learning were compared to find suitable methods to augment a HAR classifier with new 

unlabeled data after it had been deployed in a mobile device. The mean, variance, and the 

FFT coefficients between 1 and 10 Hz were extracted from the segments of one second 

from acceleration and GPS speed data of smartphones worn by 17 participants staying in 

one place, walking, and running for 90 minutes. It was shown that En-Co-Training and 

democratic co-learning performed well when the accuracy of the initial classifier was 

low, between 75 – 80 %. When the initial accuracy was high, 90 %, the methods did not 

improve the accuracy of the initial classifiers but did not decrease the accuracy either. 

Self-learning did not significantly improve the accuracy of the initial classifier. 

Democratic co-learning was nearly as good as active learning, where a user is asked to 

label the least confident predictions. It was able to improve the initial accuracy from 84 

% to 90 %. 

  

3.1.3.2 Semi-supervised deep learning 

approaches 

 
A work [40] presented two semi-supervised CNN methods, a denoising CNN AE with a 

supervised CNN and a convolutional ladder network, for recognizing human activities 

from both labeled and unlabeled raw sensor data split into segments of 1 second with 50 

% overlap. Both models outperformed a supervised CNN classifier pretrained with 

unlabeled data, self-learning with logical regression, and a pseudo-label method on the 

public ActiTracker [46], the PAMAP2 [28], and MHEALTH [27] datasets with F1-score 

(> 75 % when the number of the labels was 1 %). It was shown that adjusting low-level 

features based on unlabeled data in the CNN AE and the convolutional ladder network 

improved the high-level features. 
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A new semi-supervised sequence classification approach [4] through change point 

detection was suggested to learn representations that incorporate pairwise similarity 

information about data instances in both unlabeled and labeled sensor data. The segments 

between the change points were classified similarly and adjacent segments on opposite 

sides of the change points were classified differently. Similar and dissimilar pairs were 

fed to TCN resulting means of empirical distributions that were used as representations 

of the data. The learned representations were shown to outperform the representations 

learned by a denoising AE in a semi-supervised setting using a DNN classifier. The 

models were tested on simulated and real datasets the HCI [45] and the WISDM [37] with 

F1-score (65 % when the number of the labels 3 %). Also, the results were close to the 

results of training a supervised classifier on the learned representations.  

 

A semi-supervised approach using an AE and a Siamese NN [1] was also recently 

proposed for HAR. Unsupervised temporal and feature consistency criteria were used 

through the AE, and weakly supervised label consistency criteria with pairwise 

constraints was used through the Siamese NN on a mean, variance, standard deviation, 

median, and interquartile range extracted from raw sensor data. K-means clustering was 

applied on the learned clustering-friendly representations. The model outperformed the 

unsupervised Embedding Learning for HAR [1] and the supervised methods RNN with 

LSTM, CNN, DNN, SVM, C4.5 decision tree, and a boosted C 4.5 using 10 % of the 

labeled data on the PAMAP2 dataset [28] with a clustering accuracy (99 %). When the 

number of the labels was 5 % the model reached a clustering accuracy 97 %. 

  

Table 3  Related work with a semi-supervised machine learning approach 

Reference Sensors Activities Methods Metrics 

Maja Stikic et 

al., 2008 [41] 

Accelerometers, 

infra-red sensors 

9 daily activities of 

the PLCouple1 

dataset 

Self-learning and co-

learning with joint 

boosting 

Accuracy 40 % 

when labels  

2,5 % 

 

Brent Longstaff 

et al., 2010 [35] 

Accelerometer 

and GPS speed 

of smartphones 

Staying in one 

place, walking, 

running 

Self-learning with 

C4.5 decision tree, 

En-Co-Training, and 

democratic co-

learning with C4.5 

Accuracy 90 % 

when initial 

accuracy 84 % 
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decision tree, Naïve 

Bayes and SVM 

Ming Zeng et 

al., 2018 [40] 

Accelerometers, 

gyroscopes, 

magnetometers, 

temperature, 

heart rate data, 

ECG data 

Daily and sport 

activities of the 

ActiTracker (6), 

PAMAP2 (12), and 

MHEALTH (12) 

datasets 

Denoising CNN AE 

with supervised 

CNN, Convolutional 

ladder network 

F1-score > 75 % 

when labels 1 % 

Nauman Ahad 

et al., 2020 [4] 

Accelerometers, 

gyroscopes 

Gesture recognition 

of the HCI dataset 

(5), daily activities 

of the WISDM (6) 

dataset 

TCN with Change 

point detection and 

DNN 

F1-score 65 % 

when labels 3 % 

Sheng Taoran, 

2020 [1] 

Accelerometers, 

gyroscopes, 

magnetometers, 

temperature, 

heart rate data, 

ECG data 

The PAMAP2 (12) 

dataset 

AE with Siamese 

NNs with temporal, 

feature, and label 

consistency criteria 

and K-means 

clustering 

Clustering 

accuracy 97 % 

when labels 5 % 

and 99 % when 

labels 10 % 

 

  

3.2  Summary of related work 

 
Although various machine learning approaches have been successfully used in sensor 

based HAR, most of the works have used supervised machine learning methods that 

require all the training data to be labeled. For example, traditional machine learning 

methods such as decision trees used in [48-50], a boosted decision tree and KNN used in 

the work [28], and KNN and RF in [53] achieved good accuracy and outperformed 

supervised methods like SVM and Naïve Bayes reaching accuracies over 80 % up to 99 

%. Supervised deep learning approaches such as the combination of CNN and RNN [43] 

and the recently proposed attention based NN [55] outperformed the traditional methods 

and were able to recognize complex activities more accurately. But the supervised deep 
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learning approaches need even higher volumes of labeled training data and are not 

feasible methods in this thesis.  

 

Unsupervised methods can find patterns in unlabeled data and promising results have 

been achieved with traditional unsupervised approaches such as K-means clustering and 

DBSCAN in a work [57], and DBSCAN and HIER in [8] with over 90 % accuracy. Also, 

the recent unsupervised deep learning approaches in works [1,3,32] were able to 

successfully use deep AE frameworks on sequential sensor data of wearable devices with 

accuracy up to 92 %. However, the performance of unsupervised methods has been 

inferior to supervised methods. In addition, also with unsupervised machine learning, at 

least some labeled data is required to present the ground truth to evaluate the performance 

of the model.  

 

Some works have proposed semi-supervised machine learning methods using both 

unsupervised methods on a large amount of unlabeled data and a small, labeled data set 

in HAR. For example, a work [41] improved the accuracy of the initial classifier with 

self-learning and co-learning and a study [35] improved the initial classifier with En-Co-

Training and democratic co-learning from 84 % to 90 %. Deep AEs have been used to 

learn representations to improve the performance of a supervised classifier. For example, 

a denoising CNN AE and a supervised CNN classifier, and a convolutional ladder 

network were studied in [40] achieving 75 % F1-score. The recent work [1] proposed AE 

with Siamese NN with temporal, feature, and label consistency criteria followed by K-

means clustering. It achieved 97 % accuracy when the number of the labels was 5 % and 

99 % accuracy when the number of the labels was 10 % of all the training data.   

 

Unlike in most previous works, there are no available labels related to the data that is used 

in this thesis to present the ground truth. So, there is no direct way to use supervised or 

semi-supervised machine learning methods or even to evaluate the performance of the 

unsupervised methods comparing the results with the true clusters. A new dataset of one 

user is collected and annotated to be able to evaluate the performance of the unsupervised 

machine learning methods and also to be able to use supervised and semi-supervised 

methods when recognizing activities from the original unannotated acceleration data. 



 

40 
 

Another difference is that the data used has been collected with only one sensor, a tri-

axial accelerometer positioned on the thigh of the participants. Based on a work [50] 

where it was shown that a sensor positioned on a thigh was the most powerful to recognize 

physical activities, it is assumed that it is possible to recognize basic activities like 

sleeping, sitting, sitting in a car, walking around, taking a walk, and jogging from the data 

collected with the Axivity accelerometer positioned on a thigh. 

 

3.3  Open questions in HAR 

 
The challenge of annotating sensor data in HAR and a large amount of continuously 

streaming unlabeled data has increased the interest in methods that help to reduce the 

need for labeled data. In semi-supervised machine learning a small, labeled dataset is used 

together with a large amount of  unlabeled data, but also other methods have been studied 

in HAR to train classifiers with less labeled training data. In active learning, a user is only 

asked to label the training data instances that the classifier has not been able to classify 

with high confidence. In transfer learning, on the other hand, a pre-trained classifier can 

be used and only fine-tuned with a small amount of labeled data that has been collected 

for example from other persons, by other types of sensors or in a different environment 

[2]. 

 

Another challenge in HAR, intra-class variability between people, but also in a data 

stream of one person, is also a current research area in HAR. The sensor data of different 

people typically has variations within the same activities, and sensor data  of  one person 

does not stay static over time either. Change of existing activities and also emergence of 

new activities can be expected. How to adapt a model that has been trained on sensor data 

of a group of people to be able to better recognize activities of other persons and also 

from the evolving data stream of the same person is actively studied in HAR. The aim is 

to personalize a user-independent model to increase its accuracy when recognizing 

activities from an individual data stream and also adapt it with evolving activities [58].  
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Using mobile devices with limited resources to recognize human activities has also 

become an active research area in HAR. Sensors can be embedded in mobile devices like 

smartphones that either transmit the data and receive the results via the backend server, 

where the HAR model is applied, or the HAR model is implemented directly on the 

mobile device. The latter has become a feasible option because of the improved 

computational power of the devices. In a mobile real-time activity recognition both time 

and accuracy are key criteria for measuring performance of a HAR model. An interesting 

possibility is also to aggregate recognized activities from users’ devices on a high-level 

platform like the cloud to be used and studied together with other information for example 

related to a location. In context aware activity recognition, the aim is also to leverage 

information from the context of the surrounding environment to recognize higher level 

and more complex activities more accurately [58]. 

 

Incremental and active learning has become a new and promising research area in HAR.  

In this approach, an initial model is trained on a small amount of labeled data and then 

the model is continuously accumulated with incremental and active learning only asking 

labels for informative samples in a continuous data stream [58]. In incremental learning, 

a model is not retrained with new data, but only incrementally updated to adapt the model 

to new instances in a data stream. Incremental learning without any user interaction has 

also been suggested in HAR. In this approach only the predicted labels of the model are 

used when updating the model. However, this kind of totally autonomous learning can 

lead to concept drift and incorrect predictions [24].  
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4 Extracting activities from Axivity 

accelerometer device 
 

First, to answer the research question RQ1: “Can different activity levels be reliably 

extracted from an accelerometer device with machine learning using only unlabeled 

acceleration data?” the unsupervised machine learning algorithm K-means clustering is 

applied on the unlabeled acceleration data because it has shown good performance in the 

research of HAR [57]. The aim is to find clusters that would correspond to physical 

activities to be recognized. To be able to evaluate the reliability of these unsupervised 

methods new acceleration data is recorded with the Axivity device and annotated. K-

means clustering is applied on data containing both unannotated and new, annotated data. 

The assigned clusters of the annotated data can then be compared with the true labels 

given in the annotation. 

 

Next, to find an answer to the research question RQ2: “Can machine learning models that 

are trained with new labeled acceleration data of one person be used to annotate unlabeled 

acceleration data reliably?” the supervised machine learning algorithms, KNN and RF 

are applied on the new, annotated acceleration data. The KNN and RF have shown 

competitive performance compared to other traditional supervised methods in HAR [28, 

53]. The aim is to train two separate classifiers that can predict physical activities from 

unannotated acceleration data.  

 

To answer the research question RQ3: “How can both unlabeled and new labeled 

acceleration data be used together when extracting activities from unlabeled acceleration 

data?”, the previously trained supervised classifiers are used with the En-Co-Training 

method in a semi-supervised setting. The En-Co-Training is used like in [35], but together 

with two classifiers and making separate predictions by the classifiers instead of majority 

voting. In addition, the cut point analysis of the OMGUI software [18] is performed. The 

activity levels produced by the cut point analysis are used as reference information to 

increase confidence of selecting correct pseudo-labels. The aim is to leverage knowledge 
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from the unannotated data and to improve the classifiers to better generalize on the data 

collected from other users of the Axivity device.  

 

Finally, the research question RQ4: “How to get information about the performance of 

the solution without true labels and the ground truth?” is examined. A new metric is 

proposed. It calculates a fraction of correctly predicted activity levels out of all the 

predictions also according to the cut point analysis of the OMGUI software. The new 

metric is used to get reference information about the reliability of the classifiers to predict 

activities from unannotated acceleration data.  

 

The Jupyter Notebook IDE,  Python version 3.6.8, Scikit Learn Library version 0.20.3 

and Scipy Library version 1.2.1 are used when implementing the solution and performing 

experiments with the data. 

 

4.1  Data 

 
The data of this study has been collected with the Axivity accelerometer device from 12 

people, who were asked to wear an Axivity accelerometer on a thigh for one week. The 

individuals were between 27 and 46 of age. The physical activity rate during the week, 

age, weight, and height were also asked from them. Table 4 shows the background 

information of the participants. 

 

Table 4 Participants’ background information 

Characteristics Values 

Age (years), mean (SD) 36,8 (5,4) 

BMI, mean (SD) 23,0 (2,5) 

Physical activity during the week, n (%) 

         Rarely 

         A few times a week 

         Almost every day 

 

3 (25) 

5 (42) 

4 (33) 
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The acceleration data of the Axivity device is first converted from binary files to CSV 

files in units of g (=9.81 m/s/s) with the OMGUI software [18]. A CSV file is created 

from each day of a participant. The data consists of timestamps and acceleration values 

of X, Y and Z axes that have been recorded in the frequency of 100 Hz. Thus, there are 

360 000 recordings per hour and about 9 million recordings per day. The acceleration 

values of X, Y and Z axes of one user for one day is shown in Figure 5. 

 

 

            

Figure 5 Sensor data from Axivity accelerometer in X, Y and Z axes for one day 

 

4.2  New annotated data 

 
To obtain annotated data more acceleration data of one person is recorded and labeled for 

one week. The true labels are saved in a note application of a mobile phone at a minute 

level and then converted to Excel files. The aim is to label basic daily activities that could 

be reliably recognized also with traditional machine learning methods. The activity types 

should also cover all the activities performed during the week. In addition, it should be 

easy to compare the activity types with the activity levels later produced by the cut point 

analysis of the OMGUI software [18].  
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The activities are annotated using the following labels: 0 = sleeping, 1 = sitting, 2 = sitting 

in a car, 3 = walking around and doing tasks, 4 = doing workout, 5 = taking a walk, 6 = 

jogging, 9 = a break in the annotation, 10 = to be automatically annotated that will be 

used with the unannotated data. The label 4 is combined with the label 3, because the 

results of both labels seem to be close to each other in the analysis.  

 

The labels can be interpreted as an ordinal scale of increasing activity levels. Sleeping, 

sitting, or sitting in a car correspond sedentary time or light activity. Walking around and 

doing tasks can be interpreted as sedentary time, light, or moderate activity. Taking a 

walk should be light or moderate activity and jogging should be vigorous activity [10]. 

The activity types and the corresponding activity levels are shown in Table 5.  

 

Table 5  Activity types and corresponding activity levels 

Label Activity type Activity level  

0 Sleeping Sedentary time / Light activity 

1 Sitting Sedentary time / Light activity 

2 Sitting in a car Sedentary time / Light activity 

3 Walking around and doing tasks Sedentary time / Light activity / Moderate activity 

4 Workout (will be combined with the 

label 3) 

Sedentary time / Light activity / Moderate activity 

5 Taking a walk Light activity / Moderate activity 

6 Jogging Vigorous activity 

9 A break in the annotation  

10 To be annotated (will be used with the 

unannotated data) 

 

 

 

4.3  Methodology 

 
The process used in this thesis follows the steps commonly used in the HAR process: 1) 

data collection 2) preprocessing of sensor data 3) feature extraction and 4) applying 
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machine learning algorithms. The result is 5) a model that can recognize activities from 

new sensor data [1]. The HAR process is shown in Figure 6.  

 

 

Figure 6 Process of human activity recognition 

 

4.3.1  Pre-processing of the acceleration 

data  

 

4.3.1.1  Segmentation 

 
The acceleration data of X, Y and Z axes, that has been collected with the Axivity device, 

is split into consecutive segments to separate different activities in the sensor data stream 

so that each segment can be labeled and recognized as one physical activity. The lengths 

of the segments of 1, 5 and 10 seconds are tested, and the length is set to 10 seconds. It 

seems to be a suitable window size for recognizing the previously chosen activity types.  

 

The timestamp of each segment is compared to the timestamp of the annotation data. If 

the annotation is 9 (= a break in an annotation), the segment is not processed further, but 

discarded. Otherwise, the segment will be further processed. 
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4.3.1.2 Butterworth low-pass filtering 

 
The acceleration data of the segments is filtered because the raw sensor data is scattered 

and noisy. Butterworth low-pass filtering [20] is used to keep the low frequencies that are 

important to recognize human physical activities and to discard higher frequencies. The 

order is set to 4 and the cutoff frequency is set to 10 Hz. The order of the Butterworth 

filtering affects the sharpness of the cutoff. The higher the order is the sharper the cut-off  

frequencies are.  

 

4.3.2  Feature extraction 

 

4.3.2.1 Time domain features 

 
Features are extracted from each filtered segment of the sensor data because they are more 

effective for separating different activities than the sensor data. A set of statistical features 

are first extracted from the segments in the time domain, where the segments are 

represented with respect to time like in the original sensor data stream. The features, that 

are extracted from the filtered segments in the time domain, are shown in Table 6. 

 

The following statistical features: mean, median, standard deviation, largest value, 

smallest value, interquartile range, skewness, kurtosis, and root mean square, are 

calculated from the filtered acceleration values of each segment from the X, Y and Z axes 

separately. Also, peak prominences, that measure how much the peaks of the signal stand 

out from the surrounding baseline, and peak widths in the middle of the peak heights and 

contours are calculated and summarized from the segments of each axis. Approximate 

entropy is also calculated to quantify the amount of regularity of fluctuations in the 

filtered acceleration values of the segments. The smaller the approximate entropy is the 

more regular the signal is in the segment. 
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In addition, Pearson correlation coefficients between the axes X and Y, X and Z, and Y 

and Z are calculated from the segments and signal vector magnitudes are calculated to 

describe the intensity of the movements from the filtered acceleration values of the X, Y 

and Z axes from each segment with the equation 9 below.   

                  (9) 

 

Table 6 Features extracted from the segments in the time domain 

Axis Extracted features 

X axis X Mean, X Median, X Standard deviation, X Largest, X Smallest, X Interquartile range, X 

Skewness, X Kurtosis, X Root Mean Square, X Peak prominences sum, X Peak widths sum, 

X Approximate entropy 

Y axis Y Mean, Y Median, Y Standard deviation, Y Largest, Y Smallest, Y Interquartile range, Y 

Skewness, Y Kurtosis, Y Root Mean Square, Y Peak prominences sum, Y Peak widths sum, 

Y Approximate entropy 

Z axis Z Mean, Z Median, Z Standard deviation, Z Largest, Z Smallest, Z Interquartile range,  

Z Skewness, Z Kurtosis, X Rot Mean Square, Z Peak prominences sum, Z Peak widths sum, 

Z Approximate entropy 

Several 

axes 

Pearson correlation (X, Y), Pearson correlation (X, Z), Pearson correlation (Y, Z), Signal 

vector magnitude 

 

 

4.3.2.2 Frequency domain features 

 
Statistical features are also extracted from the segments in the frequency domain. The 

filtered acceleration data is transformed from the time domain to the frequency domain 

to show how much of the signal lies within each given frequency band over a range of 

frequencies. FFT is used to transform the signal data of the segments, that is represented 

in respect to time, to the magnitude values of the frequency content of the signal. The 

features, that are extracted from the segments in the frequency domain, are shown in 

Table 7. 
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The following statistical features are calculated from the magnitude values of the 

frequency content: mean, median, standard deviation, largest value, smallest value, 

interquartile range, skewness, kurtosis, and root mean square. Power spectral densities, 

that measure the signal’s power content versus frequency, are calculated for the 

frequencies from 0 to 10 Hz, within frequency bins of 1 Hz, and the dominant power 

spectral densities are calculated from the segments of the axes. Normalized spectral 

entropy is calculated to measure the uniformity of the power spectral densities in the 

segments of the axes. The smaller the normalized spectral entropy is the more uniform 

the power spectral densities are in the segment. 

 

Table 7 Features extracted from the segments in the frequency domain 

Axis Extracted features in the frequency domain 

X axis X Magnitudes mean, X Magnitudes Median, X Magnitudes Standard deviation,  

X Magnitudes Largest, X Magnitudes Smallest, X Magnitudes Interquartile range,  

X Magnitudes Skewness, X Magnitudes Kurtosis, X Magnitudes Root Mean Square,  

X PSD (Power Spectral Density) 0, X PSD 1, X PSD 2, X PSD 3, X PSD 4, X PSD 5,  

X PSD 6, X PSD 7, X PSD 8, X PSD 9, X PSD10, X Dominant PSD, X Normalized 

Spectral entropy 

Y axis Y Magnitudes mean, Y Magnitudes Median, Magnitudes Standard deviation,  

Y Magnitudes Largest, Y Magnitudes Smallest, Y Magnitudes Interquartile range,  

Y Magnitudes Skewness, Y Magnitudes Kurtosis, Y Magnitudes Root Mean Square,  

Y PSD (Power Spectral Density) 0, Y PSD 1, Y PSD 2, Y PSD 3, Y PSD 4, Y PSD 5,  

Y PSD 6, Y PSD 7, Y PSD 8, Y PSD 9, Y PSD10, Y Dominant PSD, Y Normalized 

Spectral entropy 

Z axis Z Magnitudes mean, Z Magnitudes Median, Z Magnitudes Standard deviation,  

Z Magnitudes Largest, Z Magnitudes Smallest, Z Magnitudes Interquartile range, 

Z Magnitudes Skewness, Z Magnitudes Kurtosis, Z Magnitudes Root Mean Square,  

Z PSD (Power Spectral Density) 0, Z PSD 1, Z PSD 2, Z PSD 3, Z PSD 4, Z PSD 5,  

Z PSD 6, Z PSD 7, Z PSD 8, Z PSD 9, Z PSD10, Z Dominant PSD, Z Normalized Spectral 

entropy 
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4.3.2.3  Standardization 

 
All the extracted features are standardized with Z-score standardization to change the 

values of the features to a common scale so that the mean value will be 0 and the standard 

deviation will be 1 with the equation 10 below. The standardization prevents the features 

with a larger scale from dominating in machine learning algorithms. 

 

, where                          (10) 

is the mean and is the standard deviation. 

 

4.3.3  Applying machine learning 

algorithms  

 
The unsupervised machine learning algorithm K-means clustering is applied on the time 

and frequency domain features extracted from the segments of the unannotated 

acceleration data to study if K-means clustering can find clusters with similar features. 

The similar features between the segments of the data would suggest that the activity 

types of the segments could also be the same.  

 

The supervised machine learning methods, KNN and RF, that are suitable to be used on 

a small amount of data, are applied on the time and frequency domain features extracted 

from the segments of the new, labeled acceleration data. The aim is to study, if the trained 

KNN and RF models can be used to reliably predict labels from the original unannotated 

data collected from the participants of the study. 

 

In addition, the semi-supervised method En-Co-Training is used with the KNN and RF 

models to leverage knowledge from the unannotated acceleration data and to improve the 

generalization performance of the models that have only been trained on the labeled data 
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of one person. The aim is to study if activities can be predicted more reliably from the 

original unannotated acceleration data using both unlabeled and labeled data in a semi-

supervised setting. 

 

4.3.4  Cut point analysis of OMGUI 

software 

 
The cut point analysis of the OMGUI software [18] is performed to produce activity levels 

from the unannotated sensor data for reference information. The activity levels of the cut 

point analysis can be compared to the labels that are predicted by the KNN and RF 

models, and the comparison can help the human evaluation of the predicted labels without 

knowing the true labels and the ground truth.   

 

The cut point analysis of the OMGUI software produces the following activity levels: 0 

= sedentary time, 1 = light activity, 2 = moderate activity and 3 = vigorous activity based 

on the approach proposed in [17]. It predicts energy expenditure of a person given in units 

of a metabolic equivalent of task (MET) based on mean signal vector magnitude values 

that are extracted from segments of acceleration data. It calculates the signal vector 

magnitudes also subtracting the gravity 1 m/s/s with the equation 11 below and sets the 

thresholds between the activity levels to 1,5 MET, 4 MET and 7 MET as suggested in 

[17]. The activity levels of the cut point analysis are shown in Table 8.   

               (11) 

 

Table 8  Activity levels produced by the cut point analysis of OMGUI software 

Label Activity level Measurement 

0 Sedentary time < 1.5 MET 

1 Light activity >= 1,5 MET, < 4 MET 

2 Moderate activity >= 4 MET, < 7 MET 

3 Vigorous activity >= 7 MET 
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MET measures the amount of oxygen consumed per kilogram of body weight per minute. 

1 MET means that a person consumes approximately 3,5 millilitres of oxygen per 

kilogram of body weight in a minute, which is roughly equivalent to being at rest. The 

energy expenditure may differ between persons based on several factors, for example age 

and fitness level, but thresholds can be set to approximate the difference between different 

activity levels [10]. 

 

In the interface of the cut point analysis tool the predictions are chosen to be made every 

minute. A fourth-order Butterworth band-pass filtering between 0,5 and 20 Hz is chosen 

to be used. The position of the device is chosen to be on a hip instead of on a wrist because 

it better corresponds to the true position on a thigh.  

 

Although the cut point analysis predicts the activity levels of the segments based on a 

single feature the result of the analysis is still interesting. It is assumed that the predicted 

activity levels can help to evaluate the reliability of the solution that is implemented in 

the thesis. The signal vector magnitude is shown to correlate to the intensity of the 

physical activity or the activity level well [17] and the activity level should relate to the 

activity types that are predicted by the models [10].   
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5  Experiments 

 

5.1  Recording and annotating new 

data 

 
To evaluate the result of the unsupervised method K-means clustering, new acceleration 

data is recorded with the Axivity device and annotated for one week. The activities are 

carefully annotated at a minute level, which is the same level as will be used in the cut 

point analysis of the OMGUI software [18]. The same level of annotation makes it easy 

to compare the results later.  

 

It is first quite challenging to make annotations in practice at a minute level, but a practical 

way is found with a note application of a mobile phone and a systematic way to annotate 

the activities. It is sometimes difficult to remember the activities performed every minute, 

especially for short periods and to recognize, when the activity has changed to another 

exactly. The most practical way is to use the label 9 (= a break in the annotation) for the 

time periods, when the annotation has not succeeded for some reason or the device has 

been taken off for example because of taking a shower.  

 

The true labels are saved in a note application of a mobile phone. The labels are given 

every time a new activity begins as exactly as possible. No other labels are given to keep 

the amount of the labels as small as possible. The labels in a note application are then 

converted to Excel files. The annotations are quality checked comparing them to the 

corresponding activity levels of the cut point analysis of the OMGUI software to find and 

correct clear misspellings in the annotation. 
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5.2  Analyzing the new annotated data 

 

5.2.1  Visualisation of the segments 

 
The new acceleration data that has been annotated is first pre-processed with segmenting 

and filtering, and the features are extracted from the segments of the X, Y and Z axes. 

Filtered segments of X, Y and Z axes of different activities are first plotted. Also peaks 

of the filtered segments of the Y axis and the contour heights of the peaks,  and magnitude 

values of the frequency content of Y axis are plotted to visually examine possible 

differences between the annotated activities. There seem to be clear differences between 

the segments annotated as different activities. The visualization of each activity type is 

shown in Figures 7-9.  

 

 

 Sleeping          Sitting 
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 Sitting in a car           Walking around and doing tasks 
 

  
   Taking a walk           Jogging 
 
 Figure 7 Filtered segments of the X, Y and Z axes  

             
 

  
     Sleeping                Sitting 
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        Sitting in a car              Walking around and doing tasks 
 
 

     
         Taking a walk             Jogging 
  

 Figure 8 Peaks and contour heights of the filtered segments of  the Y axis 

 

  

        Sleeping           Sitting 
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    Sitting in a car             Walking around and doing tasks 
 

       
      Taking a walk               Jogging 
 
      Figure 9 Magnitude values of  segments of  the Y axis in the frequency domain 

 
 

5.2.2  Positioning of the Axivity device 

 
The positioning of the Axivity device on the thigh is checked with the median of the 

acceleration values of the axes in each segment. The axis, the median of which is closest 

to 1 (or -1) i.e., the gravity (9.81 m/s/s), is the vertical axis and the others are horizontal 

axes in the segment. For example, in the segments that have been labeled as sitting or 

sitting in a car, the median of Z axis is close to -1 and the vertical axis is Z.  The median 

of X axis is close to -1 or 1 in the segments labeled as sleeping. In addition, the median 

of Y axis is close to 1 in the segments labeled as walking and doing tasks, taking a walk, 

or jogging. 
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If the vertical axis seems to differ in the segments labeled as the same activity, it should 

be considered, if the positioning of the Axivity device has changed during recording. 

Then a conversion of the axes may be needed to keep the acceleration data comparable 

in the analysis. 

 

5.3  Finding clusters 

 

5.3.1  K-means clustering 

 
The unsupervised machine learning method, K-means clustering, is first used to find 

clusters in the data including both unannotated acceleration data that has been collected 

from participants of the study and new annotated acceleration data. The clusters with 

similar features could correspond to similar activity types performed by the users of the 

Axivity accelerometer device.  

 

The data of one day from eight users each and four days of the annotated data of one user 

is selected and pre-processed. The data is split into segments of 10 seconds and filtered 

with Butterworth low-pass filtering using cut level 10 Hz and order of 4. The features are 

extracted from the filtered data from each segment of the X, Y and Z axis in the time and 

frequency domain and standardized. Then, K-means clustering is applied to find clusters 

with similar features.  

 

The results with different parameters k (the number of the clusters) of K-means clustering 

are first evaluated using the Silhouette coefficient that measures how far the data 

instances are from the data instances of the same cluster and other clusters in the scale 

from -1 to 1. The best parameter value of k is 2 with Silhouette coefficient 0,66. The k 

value 6 that is the true number of the labels is selected and has the Silhouette coefficient 

value 0,23.  
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5.3.2  Visualisation of clusters 

 
Scatter plots of the selected features added with the information of the clusters are plotted 

to analyze how well the features of the segments have been able to separate the clusters 

found by K-means clustering. For example, the largest value of Y axis and the mean of 

the magnitude values of Y axis can separate the 6 clusters assigned by the K-means 

clustering quite well. The scatter plots of some selected features are shown in Figure 10. 

 

 

 

Figure 10 Scatter plots of the selected features with the information of belonging to the clusters  
   found by K-means clustering 

 

Next, the clusters found by K-means clustering in all the training data and the true clusters 

of the annotated data are visualized with PCA with two principal components. Some 

similarity can be seen between the clusters found by K-means clustering and the true 

clusters with the two principal components of PCA. It can also be seen that no annotated 

data is assigned to the cluster 3 found by K-means clustering. The results of the 

comparison are shown in Figure 11.  
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Figure 11 PCA with the clusters found by K-means clustering above and the true clusters of the  
   annotated data below 
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5.3.3  Performance of K-means clustering 

 
A confusion matrix where the true labels of the annotated data and the labels predicted 

by K-means clustering are compared in a matrix is computed. Information about how the 

annotated data has been assigned to the clusters found by K-means clustering helps to 

evaluate the reliability of K-means clustering to assign all the data including both 

unannotated and annotated data into clusters. 

 

K-means clustering has been able to identify the actual cluster 6 (jogging) almost 

perfectly with accuracy near 100 %. Also, the actual cluster 1 (sitting) and 3 (walking 

around and doing tasks) have been recognized quite well, with 89 % and 84 % accuracies, 

although the latter has been split into two separate clusters. The actual cluster 0 (sleeping) 

has been confused with the actual cluster 1 (sitting) and 3 (walking around and doing 

tasks). The actual cluster 2 (sitting in a car) has been assigned to the same cluster as actual 

cluster 1 (sitting), and the actual cluster 5 (taking a walk) has been assigned to the same 

cluster as the actual cluster 6 (jogging). In addition, no data instances of the annotated 

data have been assigned to one cluster found by K-means clustering. This refers to an 

activity type that has not been performed when collecting and annotating data for one 

person. The confusion matrix of K-means clustering is shown in Figure 12.  

 

 

Figure 12 Confusion matrix of K-means clustering  
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In addition, ARI is computed to evaluate similarity between the clusters found by K-

means clustering and the true clusters given in the annotation. A value close to 0 means 

random labeling and 1, that the clusters are identical. The value of ARI is 0,45 which 

shows that there is some similarity between the clusters found by K-means clustering 

compared to the true clusters. The clustering accuracy is 72 %. 

 

It is shown that it is possible to recognize physical activities from unannotated 

acceleration data of the Axivity accelerometer device positioned on a thigh with K-means 

clustering with 72 %, accuracy and ARI 0,45.  

 

5.4  Training supervised classifiers 

  
Next, supervised machine learning methods KNN and RF are applied on the standardized 

features extracted from the filtered segments of the annotated data. The aim is to study, 

if a KNN model or a RF model trained on labeled data of one person can reliably predict 

labels and recognize activities from unannotated acceleration data of other persons. 

 

5.4.1  KNN classification 

 
The best parameter value k (the number of the neighbors) is selected for KNN using a 

separate training set (three days) and test set (a new day) to avoid overfitting of the model 

because of possible dependencies during the same days. The best k value is 12 resulting 

in a C-index value 0,95. Other KNN parameters like different distance and weight 

parameters are also tested, however not improving the best result.  

 

The final model is trained with both the training and the test set of the previous phase and 

evaluated with a test set of two new days. With the k equals to 12 C-index and accuracy 

are 0,93 and 88%, respectively.  
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A confusion matrix, where the actual labels and the labels predicted by KNN are 

compared in a matrix, is computed. KNN has been able to identify the actual label 1 

(sitting), 3 (walking around and doing tasks), and 5 (taking a walk) well with 94 %, 93 % 

and 91 % accuracies. The actual label 0 (sleeping) has somewhat been confused with the 

actual label 1 (sitting), the actual label 2 (sitting in a car) with the actual label 1 (sitting), 

and the actual label 6 (jogging) with the actual label 5 (taking a walk). Sleeping, sitting 

in a car, and jogging have been recognized with 81 %, 78 % and 87 % accuracy 

correspondingly. The confusion matrix is shown in Figure 13. 

 

 

Figure 13 Confusion matrix of KNN model 

 
The results show that the KNN classifier trained on annotated data of one person can 

predict activities from acceleration data of the same person with C-index value 0,93 and 

88 % accuracy. 

 

5.4.2  Random Forest classification 

 
The parameter n_estimators (the number of forests) is set to 500, and RF is applied on the 

same training and test sets as when evaluating the final KNN model. The result of C-

index with the RF model is 0,93 and the accuracy is 88 %,  the same as with the KNN 

model.  
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A confusion matrix is also computed for RF. Like KNN, RF has been able to identify the 

actual label 1 (sitting), 3 (walking around and doing tasks), and 5 (taking a walk) well 

with 95 %, 92 % and 92 % accuracies. Moreover, like with KNN, the actual label 0 

(sleeping) has somewhat been confused with the actual label 1 (sitting), the actual label 

2 (sitting in a car) with the actual label 1 (sitting), and the actual label 6 (jogging) with 

the actual label 5 (taking a walk). Sleeping, sitting in a car, and jogging have been 

recognized with 79 %, 82 % and 87 % accuracy. The confusion matrix is shown in Figure 

14. 

 

 

Figure 14 Confusion matrix of RF model 

 
The results show that also the RF classifier trained on annotated data of one person has 

learned to recognize activities from acceleration data of the same person with the C-index 

value 0,93 and 88 % accuracy. 

 

5.4.3  The importance of the features 

 
The importance of the features when training the RF model is calculated. This information 

would be useful in a feature selection phase that could be made to further improve the 

classification models. The results of the most important and least important features are 

plotted in Figures 15 and 16. 
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The 4 most important features have been extracted from the values of the Y axis. They 

are Y Largest, Y Magnitudes mean, Y Root mean square and Y Mean. The following 

features are next: X Root mean square, Y median, Y power spectral density of a frequency 

7, X Magnitudes median, Y power spectral density of a frequency 6 and Z Median. The 

least important features are Y Peak widths sum, Y Magnitudes Kurtosis, Y dominant 

frequency, Z Dominant frequency, and X Dominant frequency. 

 

 

Figure 15 The most important features when training RF model 

 

 
Figure 16 The least important features when training RF model 
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5.4.4  Reliability of supervised classifiers 

 
The reliability of the previously trained KNN and RF classifiers to recognize activities 

from unannotated data of other persons is studied next.  

 

5.4.4.1 Using activity levels as reference 

information 

 
Because there are no true labels and ground truth available, the cut point analysis of 

OMGUI software [18] is performed to obtain activity levels from the same data. The aim 

is to compare activities predicted by the classifiers to activity levels produced by the cut 

point analysis. The reliability of the models to predict physical activities from 

unannotated acceleration data can be studied with this reference information.  

 

5.4.4.1.1 New metric: fraction of predictions 

with correct activity levels 

 
A new metric is introduced: a fraction of the labels that correspond to correct activity 

levels out of all the predicted labels. Different activity types should have activity levels 

that are shown in Table 5 in the section 4.2. The metric is used to get information about 

the reliability of the classifiers to predict labels and recognize activities from unannotated 

acceleration data. If a classifier predicts an activity type that can have an activity level 

predicted by the cut point analysis, the prediction is correct also according to this 

reference information. 

 

The new metric is able to highlight the predictions that have a wrong activity type 

according to the cut point analysis produced from the same data. For example, if sleeping 

or sitting has been predicted by the classifier, and an activity level predicted by the cut 
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point analysis is high or vigorous activity the metric interprets the prediction false. The 

metric cannot differentiate the predictions that share the same activity type. For example, 

if the prediction is sleeping and the true activity is sitting, the new metric interprets the 

prediction true because the activity could be sleeping also according to the cut point 

analysis.  

 

Despite of these limitations, the new metric can help to acquire information about the 

reliability of recognizing activities from unannotated acceleration data based on this 

additional source of information when there are no true labels and the ground truth 

available.  

 

5.4.4.2 Predictions from unannotated data 

 
The previously trained KNN and RF classifiers are run to predict activities from 

unannotated data collected from 8 users of the Axivity device for one day each. The new 

metric, a fraction of the predictions that correspond to the correct activity levels in the cut 

point analysis, is then calculated for the supervised models.  

 

The results are 97 % for the KNN model and 98 % for the RF model. The KNN model 

predicts activities with the following results of the new metric: sleeping with 97 %, sitting, 

sitting in a car, and walking around and doing tasks with 100 %, taking a walk 57 %, and 

jogging with 84 %. The RF model predicts sleeping with 97 %, sitting, and sitting in a 

car with 100%, walking around and doing tasks 98 %, taking a walk 75 %, and jogging 

with 95 %. 

 

The results show that the KNN and RF classifiers trained with the small, labeled data of 

one person can make predictions that are correct also according to the activity levels 

predicted in the cut point analysis with 97 % and 98 % “accuracy” from unannotated 

acceleration data of other persons. The predicted activities sleeping, sitting, sitting in a 

car, and walking around and doing tasks correspond well to activity levels produced by 

the cut point analysis of the OMGUI software. Taking a walk has been predicted 
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somewhat differently from the expected activity levels. The RF classifier has predicted 

jogging corresponding well to the activity levels, while the KNN classifier has predicted 

jogging partly differently. 

 

Activity levels of the cut point analysis of the OMGUI software and the predictions made 

by the KNN and RF classifiers are compared in Figure 17.  

 

 

RF has predicted sleeping (0)          RF has predicted sitting (1) 

 

    

RF has predicted sitting in a car (2)        RF has predicted walking around and doing tasks (3)  
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RF has predicted taking a walk (5)          RF has predicted jogging (6) 

 

Figure 17 Comparing activity levels of the cut point analysis and predictions of the KNN and RF  
   classifiers 

 

5.4.4.3 Predictions from annotated data 

 
The same metric is also computed for the supervised KNN and RF models that have 

predicted activities from the test data including only the labeled data of one person. The 

aim is to compare the results of the new metric to the results when predicting activities 

from unannotated data of other persons.  

 

The results are near 100 % for both the KNN and the RF model. The KNN model predicts 

activities with the following results: sleeping, sitting, sitting in a car, and walking around 

and doing tasks with 100 %, taking a walk with 91 %, and jogging with 95 % “accuracy”. 

The RF model predicts sleeping, sitting, sitting in a car, and walking around and doing 

tasks with 100 %, taking a walk with 94 %, and jogging with 96 %.  

 

The results show that all the predicted activities correspond well to activity levels of the 

cut point analysis of the OMGUI software when predictions have been made from the 

data of the same person whose data has been used in training. It is also shown that the 

predictions better correspond to the activity levels, compared to the results when making 

predictions from unannotated data of other persons.  
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Activity levels of the cut point analysis of the OMGUI software, true labels, and the 

predictions made by the KNN and RF classifiers are compared in Figure 18.  

 

    

True label sleeping (0) 

 

 

                True label sitting (1) 
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True label sitting in a car (2) 

 

 

True label walking around and doing tasks (3) 

 

 

True label taking a walk (5) 
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True label jogging (6) 

 

Figure 18 Comparing activity levels of the cut point analysis, true labels, and predictions of the KNN 
   and RF classifiers   

 

5.5  Improving classifiers in semi-

supervised setting 

 
Next, the En-Co-Training method is used with the supervised KNN and RF classifiers 

that have been trained with the labeled data of one person to leverage knowledge from 

unannotated acceleration data of other users of the Axivity device. It is studied if the 

classifiers can be improved to better generalize on unannotated data of other persons. It 

is investigated if the KNN and RF classifiers retrained in a semi-supervised setting can 

recognize activities more reliably than the initial supervised classifiers. 

 

The initial KNN and RF classifiers first make predictions from the training data of 2 

persons. The predictions that both the classifiers have consensus about and have a right 

corresponding activity level are accepted. In addition, if one of the models has predicted 

jogging and the activity level is vigorous activity, the prediction is considered to be 

confident enough and is accepted because jogging should clearly correspond to this one 

activity level. The accepted predictions are added to the set of the true labels as pseudo-

labels and the corresponding data instances are added to the common training set of the 
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models. The models are retrained, and new predictions are made from the training data 

of 2 new persons. This is iterated until predictions have been made from all the training 

data of 8 persons.   

 

Instead of using majority voting of three classifiers like in the work [35] the KNN and 

RF classifiers are used separately to make predictions. In addition, unlike in [35] also the 

activity levels produced by the cut point analysis of the OMGUI software are considered 

as explained previously to increase the confidence of the accepted predictions.  This way 

both information can be leveraged from unannotated acceleration data, and activity levels 

can be used as additional source of information to increase the confidence of selected 

pseudo-labels in the semi-supervised setting.  

 

5.5.1  Reliability of classifiers in semi-

supervised setting 

 

5.5.1.1 Predictions from unannotated data 

 
The semi-supervised training of the initial KNN and RF classifiers is performed and 

evaluated three times on separate training and test sets of unannotated acceleration data. 

In each test round one-day unannotated acceleration data collected from 8 individuals are 

used as the training data, and one-day unannotated acceleration data of 4 individuals as 

the test data.  

 

Similar to the previous evaluation, the new metric, a fraction of the predictions that 

correspond to the correct activity levels in the cut point analysis of the OMGUI software, 

is calculated to evaluate the reliability of the models. In addition, the number of 

predictions that correspond to correct activity levels is calculated. The results of both the 

initial and the retrained classifiers are shown in Table 9. If the number of correct 

predictions shown in parenthesis has improved compared to the initial classifier, the result 



 

74 
 

is bolded. In the test round 3 no jogging has been performed by the persons during the 

selected days. Therefore, the last line in Table 9 is excluded from the comparison of the 

results.  

 

Table 9  A fraction  and the number of predictions that correspond to correct activity levels of the 
   cut point analysis 

Predicted 

Activity 

Initial KNN  

classifier 

Retrained KNN 

classifier 

Initial RF 

classifier 

Retrained RF 

classifier 

Test 1 all activities 97 %   (32264) 98 %  (32597) 98 %   (32597) 99 %  (32929) 

Sleeping 99 %   (12123) 99 %  (13612) 98 %   (11914) 99 %  (12868) 

Sitting 100 % (13060) 100 % (11751) 100 % (12503) 100 % (12189) 

Sitting in a car 100 % (183) 100 % (224) 100 % (180) 100 % (177) 

Walking around 

and doing tasks 

100 % (5839) 100 % (5883) 98 %   (6842) 100 % (6232) 

Taking a walk 58 %   (905) 67 %  (648) 81 %   (510) 77 %   (627) 

Jogging 96 %   (360) 97 %  (668) 95 %   (770) 95 %   (810) 

Test 2 all activities 96 %   (33074) 99 %  (34108) 97 %   (33419) 98 %   (33764) 

Sleeping 95 %   (12179) 98 %  (13215) 96 %   (13157) 95 %    (12981) 

Sitting 100 % (13350) 100 % (11861) 100 % (10854) 100 %  (11677) 

Sitting in a car 100 % (1632) 100 % (1760) 100 % (2429) 100 %  (2040) 

Walking around 

and doing tasks 

100 % (5081) 100 % (6324) 97 %   (6564) 100 %  (5890) 

Taking a walk 55 %   (836) 77 %  (358) 63 %   (219) 81 %   (516) 

Jogging 0 %     (0) 98 %  (548) 95 %   (334) 98 %   (535) 

Test 3 all activities 98 %   (33043) 98 %   (33043) 98 %   (33043) 98 %    (33043) 

Sleeping 98 %   (12520) 98 %   (12114) 97 %   (12540) 98 %   (12814) 

Sitting 100 % (11809) 100 % (11566) 100 % (11998) 100 %  (11285) 

Sitting in a car 100 % (804) 100 % (839) 100 % (1013) 100 %  (886) 

Walking around 

and doing tasks 

100 % (7326) 100 % (8341) 99 %   (7324) 100 % (7771) 

Taking a walk 81 %   (799) 73 %  (428) 79 %    (291) 75 %    (496) 

Jogging 0 %     (0) 8 %   (2) 23 %    (3) 5 %      (2) 

 

 

The overall results are 96-98 % for the initial classifiers and 98-99 % for the retrained 

classifiers. Sleeping, sitting, sitting in a car, and walking around and doing tasks have 

been predicted with over 95 % by all the initial and retrained classifiers. The results of 

taking a walk predicted by the KNN classifiers have changed from 55-81 % to 67-77 % 

and jogging from 0-96 % to 97-98 %. The results of the RF classifiers when predicting 

taking a walk and jogging have changed from 63-81 % to 77-81 %, and from 95 % to 95-

98 % respectively. The number of correctly predicted activities taking a walk and jogging 

have either stayed the same or improved by all the retrained RF classifiers. The number 

of correctly predicted jogging has always improved by the retrained KNN classifiers. 
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It can be concluded that the semi-supervised setting using the En-Co-Training method 

and the KNN and RF classifiers trained with only small, annotated data of one person can 

improve the initial supervised KNN and RF classifiers. In addition, the retrained 

classifiers can predict activities taking a walk and jogging more reliably from acceleration 

data of other persons. 

 

5.5.1.2 Predictions from annotated data 

 
To evaluate the reliability of the KNN and RF classifiers retrained in the 3 test rounds in 

the semi-supervised setting, they are also tested on the same annotated test data of one 

person that has been used when evaluating the initial supervised classifiers. The new 

metric, a fraction of the predictions that correspond to the correct activity levels in the cut 

point analysis, is first calculated. Like with the initial supervised classifiers, the overall 

results are near 100 % for both the KNN and the RF models. Also, all the results of all 

the activities are between 90 % and 100 % like with the initial KNN and RF classifiers 

tested earlier. 

 

The C-index of the retrained KNN and RF classifiers is also calculated. The C-index 

values are 0,94, 0,93 and 0,93 in the test round 1, 2 and 3, respectively. The C-index value 

has either stayed the same or improved compared to the C-index value 0,93 of the initial 

classifiers.  The accuracies have also stayed the same in all the test rounds: i.e., 88 % for 

both the classifiers. 

 

The confusion matrices are plotted from the results of the retrained KNN and RF 

classifiers in the test round 1 in Figures 19 and 20. The results are very similar to the 

results of the initial supervised classifiers tested on the same data. 
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Figure 19 Confusion matrix of retrained KNN model 

 

 

Figure 20 Confusion matrix of retrained RF model 

 
The results show that the KNN and RF classifiers retrained in a semi-supervised setting 

can recognize activities as well as the initial KNN and RF classifiers when measuring 

them both with the new metric and with the C-index value and accuracy. Retraining the 

KNN and RF classifiers in a semi-supervised setting has not decreased their performance 

on the annotated test data.  
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6 Discussion 

This thesis introduces a solution to extract physical activities from unannotated 

acceleration data collected with an Axivity device positioned on a thigh using traditional 

unsupervised, supervised, and semi-supervised machine learning methods. It is shown to 

be beneficial to collect and label new acceleration data although for only one person and 

to use the labeled data to develop supervised KNN and RF classifiers to retrain them in a 

semi-supervised setting using the En-Co-Training method. A new metric is proposed: a 

fraction of the labels that correspond to correct activity levels out of all the predicted 

labels according to the cut-point analysis of the OMGUI software [18]. The reliability of 

the classifiers is shown to consistently improve when comparing the retrained KNN and 

RF classifiers to the initial ones with the new metric. 

 

Although deep learning methods have outperformed traditional machine learning 

methods in HAR, most of them are supervised methods that require an extensive amount 

of labeled training data and are not feasible solutions in this thesis when only unlabeled 

acceleration of 12 people is available. Deep unsupervised and semi-supervised methods 

are not suitable either because of the small amount of available data. The traditional KNN 

and RF methods are easy to implement, and they have been successful in HAR 

outperforming methods like SVM and Naïve Bayes [28,53]. Also, the En-Co-Training 

method has performed well in HAR [35].  

 

Furthermore, traditional machine learning methods are more competitive with deep 

learning methods when an objective is to recognize basic physical activities such as 

sleeping, sitting, sitting in a car, walking around and doing tasks, taking a walk and 

jogging that are used as activity types in this thesis. Physical activity of people can be 

interpreted with these basic activities common in daily life. They can also easily be 

compared with activity levels, reference information that can be obtained with the cut 

point analysis of the OMGUI software. However, if very different activities have been 

performed by other persons the classifiers might be inaccurate. Performing and labeling 
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more different activity types and adding them to the training data could improve the 

reliability of the supervised classifiers.  

 

The classifiers retrained in the semi-supervised setting could be further improved by 

adding more iterations and more unannotated acceleration data to the training data of the 

En-Co-Training method. In that way, more examples of activities performed by other 

people would be added. Adding more unannotated data would also increase the risk of 

choosing wrong predictions as pseudo-labels, and it might decrease the performance 

compared to the initial supervised classifiers. To mitigate this risk, the reliability of the 

retrained classifiers should be compared to the supervised classifiers after retraining. 

 

Also, the reliability of the classifiers could be improved by using data collected from 

another device, for example a smartwatch positioned on a wrist in addition to the Axivity 

accelerometer positioned on a thigh. It would be possible to better separate stationary 

activities like sleeping and sitting where the position of a thigh may be quite identical or 

taking a walk from walking around and doing tasks. It would require collecting and 

annotating new acceleration data using both the devices, training supervised classifiers 

on new training data, and retraining them in the semi-supervised setting. 
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7 Conclusion 

In this thesis, the objective was to develop a machine learning solution that can recognize 

physical activities from unannotated acceleration data collected with an Axivity 

accelerometer positioned on a thigh. The solution was tested on real-life acceleration data 

collected from 12 people. It is a challenge in HAR to annotate acceleration data, and the 

existing approaches in HAR mostly use supervised machine learning methods that require 

true labels. It was studied if different activities can reliably be extracted from unannotated 

acceleration data only using unsupervised machine learning methods. Furthermore, it was 

examined if small, labeled data collected from one person can be utilized with supervised 

and semi-supervised machine learning methods so that they can recognize activities 

reliably. In addition, it was studied how to get information about the reliability of the used 

machine learning methods without knowing true labels and the ground truth. 

 

After a brief introduction to HAR using wearable devices and machine learning, 

characteristics, and challenges in HAR as well as machine learning methods and 

evaluation metrics that are commonly used in HAR were presented in Chapter 2. In 

Chapter 3 the current state of research in sensor based HAR was studied, and works that 

have successfully used supervised, unsupervised, and semi-supervised machine learning 

methods were introduced. The works were summarized with used sensors, methods, 

evaluation metrics, and physical activities that had been recognized. Also, open questions 

in HAR and new promising research areas that aim at utilizing continuously streaming 

unlabeled acceleration data were introduced.  

 

Machine learning solutions were developed for recognizing physical activities from 

unlabeled acceleration data collected with an Axivity accelerometer, and they were 

described in Chapter 4. First, new acceleration data was collected with the Axivity device 

positioned on a thigh and annotated for one person. The unsupervised machine learning 

method K-means clustering was then applied on the preprocessed data including both 

one-day unannotated data of 8 individuals and new, labeled acceleration data of one 

person collected for 4 days. The reliability of the K-means clustering to find correct 
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clusters related to performed physical activities was evaluated studying if the model had 

been able to assign the true labels to correct clusters.  

 

Second, supervised machine learning classifiers were trained on the labeled acceleration 

data of one person collected for 4 days. The KNN and RF classifiers were first used to 

predict activities from labeled data collected from the same person for 3 separate days to 

evaluate their performance with the known true labels. Then, the classifiers were used to 

automatically annotate one-day unlabeled acceleration data of 8 individuals to study if 

the supervised classifiers which were trained on the labeled data of one person could 

reliably recognize activities from unlabeled acceleration data.  

 

Third, the En-Co-Training method was used to retrain the supervised KNN and RF 

classifiers in a semi-supervised setting with the training data of 8 persons and the test data 

of 4 persons collected for one day each in tree test rounds. The activity levels produced 

by the cut point analysis of the OMGUI software [18] were also used as additional 

information when choosing confident pseudo-labels. The retrained classifiers were used 

to automatically annotate unlabeled acceleration data to study if the semi-supervised 

setting helped the classifiers to predict physical activities more reliably. 

 

In the experiments in Chapter 5 it was shown that the unsupervised K-means clustering 

could recognize physical activities from data including both unannotated and annotated 

acceleration data with the ARI value 0,45 and 72 % clustering accuracy. Although the K-

means clustering recognized jogging almost perfectly, the stationary activities sleeping 

and sitting were confused, sitting in a car was assigned to the same cluster as sitting, and 

taking a walk was assigned to the same cluster as jogging. Also, there seemed to be an 

activity type that had not been performed when collecting annotated data.  

 

Both the supervised KNN and RF classifiers trained on the labeled data of one person 

could recognize activities from the data of the same person with the C-index 0,93 and 88 

% accuracy. The activities sitting, walking around and doing tasks, and taking a walk 

were recognized well, but the stationary activities sleeping and sitting in a car had 
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somewhat been confused with sitting, and jogging was partly misclassified as taking a 

walk. 

 

However, it was more important to evaluate how reliably the supervised KNN and RF 

classifiers were able to recognize activities from unlabeled data of other persons. A new 

metric was proposed: i.e., a fraction of predictions that have a correct activity level 

according to the cut point analysis of the OMGUI software run on the same unlabeled 

acceleration data out of all the predictions. This metric was only able to highlight if a 

classifier predicted an activity that should have a different activity level than the cut point 

analysis had predicted. However, it was valuable information when no true labels and the 

ground truth were available.  

 

The new metric was calculated both for the initial supervised KNN and RF classifiers and 

the classifiers retrained in the semi-supervised setting. The overall results of the initial 

supervised classifiers to recognize activities from unlabeled data of other users were 96-

98 %. The results were 95-100 % for all other activities but 55-81 % for taking a walk 

and 0-95 % for jogging. The overall results of the classifiers retrained in the semi-

supervised setting were 98-99 %. The results of activity types were 95-100 % for all other 

activities, but 67-81 % for taking a walk, and 95-98 % for jogging. In addition, the number 

of correctly predicted activities taking a walk and jogging had either stayed the same or 

improved by the retrained RF classifier in all the test rounds. It was shown that the semi-

supervised setting improved the reliability of the classifiers to predict activities that have 

a correct activity level also according to the cut-point analysis of the OMGUI software. 

 

It could be concluded that when only using unlabeled acceleration data and the 

unsupervised K-means clustering method the reliability of recognizing activities 

remained quite modest. The model had challenges to separate stationary activities, and it 

could not differentiate sitting in a car from sitting and taking a walk from jogging. It was 

beneficial to collect and label new acceleration data although for only a single person. 

The labeled data could be used to train supervised KNN or RF classifiers to recognize 

activities from unannotated acceleration data of other users. Furthermore, the reliability 

of the KNN and RF classifiers could consistently be improved when they were retrained 
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in a semi-supervised setting using the En-Co-Training method with the initial supervised 

KNN and RF classifiers leveraging knowledge from unannotated data. In addition, 

reference information of the cut point analysis of the OMGUI software could be used to 

further reduce the risk of choosing wrong pseudo-labels.  

 

It was possible to get information about the reliability of the supervised and semi-

supervised classifiers with the new metric, a fraction of predictions that correspond to the 

activity levels also predicted by the cut point analysis of the OMGUI software out of all 

the predictions. The metric could not separate activity types that share the same activity 

level, but with the new metric, it was possible to evaluate how reliably a classifier had 

predicted activities with correct activity levels also according to the cut point analysis run 

on the same data. 
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