
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

May 2020

HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS

AND ROBUSTNESS ANALYSIS OF DEEP NEURAL NETWORKS AND ROBUSTNESS ANALYSIS OF DEEP NEURAL NETWORKS

Yantao Lu
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Lu, Yantao, "HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS AND ROBUSTNESS ANALYSIS
OF DEEP NEURAL NETWORKS" (2020). Dissertations - ALL. 1161.
https://surface.syr.edu/etd/1161

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1161?utm_source=surface.syr.edu%2Fetd%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract
In recent years, there has been significant amount of research work on human activity

classification relying either on Inertial Measurement Unit (IMU) data or data from static

cameras providing a third-person view. There has been relatively less work using wearable

cameras, providing egocentric view, which is a first-person view providing the view of the

environment as seen by the wearer. Using only IMU data limits the variety and complexity

of the activities that can be detected. Deep machine learning has achieved great success

in image and video processing in recent years. Neural network based models provide im-

proved accuracy in multiple fields in computer vision. However, there has been relatively

less work focusing on designing specific models to improve the performance of egocen-

tric image/video tasks. As deep neural networks keep improving the accuracy in computer

vision tasks, the robustness and resilience of the networks should be improved as well to

make it possible to be applied in safety-crucial areas such as autonomous driving.

Motivated by these considerations, in the first part of the thesis, the problem of hu-

man activity detection and classification from egocentric cameras is addressed. First, a

new method is presented to count the number of footsteps and compute the total traveled

distance by using the data from the IMU sensors and camera of a smart phone. By incorpo-

rating data from multiple sensor modalities, and calculating the length of each step, instead

of using preset stride lengths and assuming equal-length steps, the proposed method pro-

vides much higher accuracy compared to commercially available step counting apps. After

the application of footstep counting, more complicated human activities, such as steps of

preparing a recipe and sitting on a sofa, are taken into consideration. Multiple classification

methods, non-deep learning and deep-learning-based, are presented, which employ both

ego-centric camera and IMU data. Then, a Genetic Algorithm-based approach is employed

to set the parameters of an activity classification network autonomously and performance

is compared with empirically-set parameters.

Then, a new framework is introduced to reduce the computational cost of human tem-

poral activity recognition from egocentric videos while maintaining the accuracy at a com-

parable level. The actor-critic model of reinforcement learning is applied to optical flow

data to locate a bounding box around region of interest, which is then used for clipping a

sub-image from a video frame. A shallow and deeper 3D convolutional neural network is

designed to process the original image and the clipped image region, respectively. Next, a

systematic method is introduced that autonomously and simultaneously optimizes multiple

parameters of any deep neural network by using a bi-generative adversarial network (Bi-

GAN) guiding a genetic algorithm(GA). The proposed Bi-GAN allows the autonomous ex-

ploitation and choice of the number of neurons for the fully-connected layers, and number

of filters for the convolutional layers, from a large range of values. The Bi-GAN involves

two generators, and two different models compete and improve each other progressively

with a GAN-based strategy to optimize the networks during a GA evolution. In this analy-

sis, three different neural network layers and datasets are taken into consideration:

• First, 3D convolutional layers for ModelNet40 dataset. We applied the proposed ap-

proach on a 3D convolutional network by using the ModelNet40 dataset. ModelNet

is a dataset of 3D point clouds. The goal is to perform shape classification over 40

shape classes.

• LSTM layers for UCI HAR dataset. UCI HAR dataset is composed of Inertial

Measurement Unit (IMU) data captured during activities of standing, sitting, laying,

walking, walking upstairs and walking downstairs. These activities were performed

by 30 subjects, and the 3-axial linear acceleration and 3-axial angular velocity were

collected at a constant rate of 50Hz.

• 2D convolutional layers for Chars74k Dataset. Chars74k dataset contains 64 classes

(0-9, A-Z, a-z), 7705 characters obtained from natural images, 3410 hand-drawn

characters using a tablet PC and 62992 synthesised characters from computer fonts

giving a total of over 74K images.

In the final part of the thesis, network robustness and resilience for neural network mod-

els is investigated from adversarial examples (AEs) and automatic driving conditions. The

transferability of adversarial examples across a wide range of real-world computer vision

tasks, including image classification, explicit content detection, optical character recogni-

tion (OCR), and object detection are investigated. It represents the cybercriminal’s situa-

tion where an ensemble of different detection mechanisms need to be evaded all at once.

Novel dispersion Reduction(DR) attack is designed, which is a practical attack that over-

comes existing attacks’ limitation of requiring task-specific loss functions by targeting on

the “dispersion” of internal feature map. In the autonomous driving scenario, the adversar-

ial machine learning attacks against the complete visual perception pipeline in autonomous

driving is studied. A novel attack technique, tracker hijacking, that can effectively fool

Multi-Object Tracking (MOT) using AEs on object detection is presented. Using this tech-

nique, successful AEs on as few as one single frame can move an existing object in to or

out of the headway of an autonomous vehicle to cause potential safety hazards.

HUMAN ACTIVITY RECOGNITION FROM
EGOCENTRIC VIDEOS AND ROBUSTNESS
ANALYSIS OF DEEP NEURAL NETWORKS

By

Yantao Lu

M.S., Syracues University, Syracuse, US, 2015

B.S., Xian Jiaotong University, Xi’an, China, 2013

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Syracuse University

May 2020

Copyright c© 2020 Yantao Lu

All Rights Reserved

Acknowledgements
First, I would like to thank my advisor, Prof. Senem Velipasalar, for her help and guidance

during my entire Ph.D. study. In this period, I have gained much experience in research,

and completed many studies in the area of computer vision and machine learning.

I would like to thank my parents and my wife Yilan for supporting me to pursue my

Ph.D. degree.

I would also like to thank my Ph.D. defense committee members Prof. Lixin Shen,

Prof. Qinru Qiu, Prof. Pramod Varshney, Prof. Makan Fardad and Prof. Garrett Katz for

the reading and guidance of my thesis.

Finally, I would like to thank all my labmates and friends for their support during these

years in Syracuse University and Baidu Sunnyvale research lab. I had really wonderful

time studying and working with them.

vi

For all the support, time, motivation, and patience: this thesis is dedicated to my family

and friends, especially my wife Yilan.

vii

Table of Contents

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Research Impact . 4

1.2 Publications . 6

1.3 Literature Review . 8

1.3.1 Footstep Counting and Traveled Distance Calculation by Mobile

Devices . 8

1.3.2 Autonomous Human Activity Classification from Wearable Multi-

Modal Sensors . 9

1.3.3 Autonomously and Simultaneously Refining Deep Neural Network

Parameters by a Bi-Generative Adversarial Network Aided Genetic

Algorithm . 13

1.3.4 Efficient Human Activity Classification From Egocentric Videos

Incorporating Actor-Critic Reinforcement Learning 15

1.3.5 Cross-task Transferability of Adversarial Examples with Disper-

sion Reduction . 16

1.3.6 Robust Analysis of Multiple Object Tracking Based on Automatic

Driving . 17

viii

1.3.7 Practical Pruning for Adversarial Training 19

2 Footstep Counting and Traveled Distance Calculation by Mobile Devices 20

2.1 Methodology . 22

2.1.1 Step Counting . 22

2.1.2 Computing the Total Traveled Distance 24

2.2 Experimental Results . 28

2.3 Conclusion . 30

3 Human Activity Classification from Wearable Devices with Cameras 33

3.1 Methodology . 34

3.1.1 Feature extraction . 34

3.1.2 Classification . 36

3.1.3 Training . 37

3.2 Experimental Results . 37

3.3 Conclusion . 39

4 Human Activity Classification Incorporating Egocentric Video And Inertial

Measurement Unit Data 41

4.1 Methodology . 42

4.1.1 Input Data . 44

4.1.2 Processing of IMU Data Sequence 44

4.1.3 Processing of Egocentric Video Data 44

4.1.4 Classification . 45

4.2 Experimental Results . 45

4.3 Conclusion . 48

5 Autonomous Human Activity Classification from Wearable Multi-Modal Sen-

sors 49

ix

5.1 Methodology . 50

5.1.1 Autonomously and Simultaneously Refining the Network Parameters 52

5.2 Experimental Results . 59

5.2.1 Experimental Setup . 59

5.2.2 Results and Discussion . 60

5.3 Conclusion . 66

6 Efficient Human Activity Classification From Egocentric Videos Incorporat-

ing Actor-Critic Reinforcement Learning 69

6.1 Methodology . 70

6.1.1 Clipper Model Trained with Deep Reinforcement Learning 71

6.2 Experimental Results . 74

6.3 Conclusion . 76

7 Autonomously and Simultaneously Refining Deep Neural Network Parameters

by a Bi-Generative Adversarial Network Aided Genetic Algorithm 78

7.1 Methodology . 79

7.1.1 Bi-GAN network . 81

7.1.2 Genetic Algorithm . 85

7.2 Experimental Results . 89

7.3 Conclusion . 93

8 Enhancing Cross-task Transferability of Adversarial Examples with Disper-

sion Reduction 94

8.1 Methodology . 95

8.2 Experimental Results . 99

8.2.1 Experimental Settings . 100

8.2.2 Diagnostics . 101

8.2.3 Open Source Model Experiments 103

x

8.2.4 Cloud API Experiments . 105

8.3 Discussion and Conclusion . 108

8.4 Appendix . 108

8.4.1 Target models . 108

8.4.2 Experiments on ImageNet . 109

8.4.3 Average Results . 112

8.4.4 Visualization . 113

9 Robust Analysis of Multiple Object Tracking for Autonomous Driving 114

9.1 Method . 115

9.1.1 Attack Methodology . 117

9.2 Evaluation . 120

9.2.1 Experiment Methodology . 121

9.2.2 Evaluation Results . 122

9.3 Discussion . 124

9.4 Conclusion . 125

10 Boosting Ticket: Towards Practical Pruning for Adversarial Training with

Lottery Ticket Hypothesis 126

10.1 Empirical Study of Boosting tickets . 127

10.1.1 Existence of Boosting Tickets . 127

10.1.2 Learning Rate . 131

10.1.3 Pruning Ratio . 131

10.1.4 Model Capacity . 132

10.2 Boosting Tickets in Adversarial Settings 133

10.2.1 Applicability for Adversarial Training 133

10.2.2 Convergence Speedup . 135

xi

10.2.3 Boosting Ticket Applications on adversarially trained WideResNet-

34-10 . 136

10.3 Conclusion . 138

11 Conclusion 139

xii

List of Figures

2.1 (a) Experimental setup showing the subject with the phone holder, (b) the user

holding the phone, (c) image from the camera while walking. 21

2.2 Flow diagram . 22

2.3 (a) Gray scale image, (b) detected edges, (c) correlation coefficient values, (d,e)

feet subimages, (f,g) shape context. 24

2.4 (a) Gray scale image, (b) detected edges, (c) correlation coefficient values, (d,e)

feet subimages, (f,g) shape context. 24

2.5 The template used for matching. 24

2.6 camera geometry. 26

2.7 Valleys in the x-coordinates of (a) left foot and (b) right foot. 27

2.8 Magnitude of the accelerometer data. 28

2.9 (a) Gray scale image, (b) detected edges, (c) correlation coefficient values, (d,e)

feet subimages, (f,g) shape context. 32

3.1 The flow diagram of the proposed approach. 35

3.2 The built HMM. 37

3.3 Experimental setup. 37

3.4 The overall precision and recall values across all subjects. 38

3.5 The precision and recall values for each subject. 38

3.6 Variation of the (a) precision, and (b) recall values. 39

xiii

3.7 Example images from a test video showing the detection of chairs (a-c), sofas (d-f)

and doorways (g-i). 39

3.8 Example images from another test video showing the detection of chairs (a-c) and

doorways (d-f). 40

4.1 Details of the architecture. 42

4.2 Example images of CMU-MMAC dataset. Columns (a) cracking egg, (b) beating

eggs, (c) pouring oil, (d) pouring a bag of cake mix, (e) stirring in a bowl, (f) using

fridge. 43

4.3 The confusion matrix showing the actual versus predicted classes together with

the number of instances of each action. 47

4.4 The recall values for the activity classes. 47

4.5 The precision values for the activity classes. 47

5.1 Details of The architecture. 52

5.2 The structure of The Genetic Algorithm . 53

5.3 Crossover process for the GA . 57

5.4 The recall values for each of the 9 classes. 61

5.5 The precision values for each of the 9 classes. 62

5.6 The recall values for each of the 26 classes. 62

5.7 The precision values for each of the 26 classes. 62

5.8 Confusion matrices showing the correct versus predicted classes together with the

number of instances of each activity for (a) 9-class and (b) 26-class activity clas-

sification. 63

xiv

5.9 Example images of the 9 activity classes from the CMU-MMAC dataset. Rows:

(1) using fridge, (2) taking eggs, (3) pouring into big bowl, (4) pouring into a

measuring cup, (5) stirring in a big bowl, (6) taking bowl, (7) taking baking pan,

(8) taking measuring cup, (9) twisting cap (on or off). Columns (a), (b) and (c)

show images from the beginning, middle and end of each activity. 67

5.10 Examples images of challenging cases causing confusion. Rows: (1) taking a

small cup (on the left) vs. big cup (on the right), (2) walking to fridge (on the left)

vs. closing fridge (on the right), (3) pouring into pan (on the left) vs. putting the

pan into oven (on the right). 68

6.1 Overall structure of the proposed Deep-Shallow Network. 70

6.2 Deep and shallow network model details. 71

6.3 Actor-critic based clipper model. 73

6.4 Examples showing the autonomously placed bounding boxes. 1st and 2nd rows

show frames (t-10) and t, respectively. 73

6.5 Deep-Shallow network training loss. 74

6.6 Actor model training loss. 75

6.7 Actor model training reward. 75

6.8 Processing speed comparison . 76

6.9 Precision values for each activity class . 76

6.10 Recall values for each activity class . 76

7.1 Proposed Bi-GAN aided GA network for refining deep neural network pa-

rameters. 79

7.2 Proposed Bi-GAN incorporating two generators and one discriminator. . . . 82

7.3 Generator network . 83

7.4 Discriminator network . 85

7.5 Crossover. 88

xv

7.6 Sample voxelized objects from ModelNet40 dataset. 89

7.7 Accuracy of different network refinement approaches over time. 90

7.8 Accuracy with every evolution of the method and the Small-set GA. 92

7.9 Loss with every evolution of the method and the Small-set GA. 92

8.1 DR attack targets on the dispersion of feature map at a specific layer of fea-

ture extractors. The adversarial example generated by minimizing dispersion at

conv3.3 of VGG-16 model also distorts feature space of subsequent layers (e.g.,

conv5.3), and its effectiveness transfers to commercially deployed GCV APIs. . 96

8.2 Results of DR attack with different steps N . We can see that our DR attack

outperforms all baselines even starting from small steps (e.g. N = 20). 99

8.3 Results of DR attack with different attack layers of VGG16. We see that

attacking the middle layers results in higher drop in the performance compared to

attacking top or bottom layers. At the same time, in the attacking process, the drop

in std of middle layers is also larger than the top and bottom layers. This motivates

us that we can find a good attack layer by looking at the std drop during the attack. 100

8.4 Visualization of images chosen from testing set and their corresponding AEs gen-

erated by DR. All the AEs are generated on VGG-16 conv3.3 layer, with per-

turbations clipped by l∞ ≤ 16, and they effectively fool the four GCV APIs as

indicated by their outputs. 105

8.5 Samples of Detection and Segmentation Results 112

9.1 The complete visual perception pipeline in autonomous driving, i.e., both

object detection and Multiple Object Tracking (MOT) [1, 2, 3, 4, 5, 6, 7]. . 115

9.2 Description of the tracker hijacking attack flow (a), and two different attack

scenarios: object move-in (b) and move-out (c), where tracker hijacking

may lead to severe safety consequences including emergency stop and rear-

end crashes. 116

xvi

9.3 Comparison between previous object detection attack and our tracker hi-

jacking attack. Previous attack that simply erase the bbox has no impact on

the tracking output (b), while tracker hijacking attack that fabricates bbox

with carefully chosen position successfully redirects the tracker towards

attacker-specified direction (c). 120

9.4 In normal measurement noise covariance range (a), our tracker hijacking

attack would require the adversarial example to fool only 2˜3 consecu-

tive frames on average to successfully deviate the target tracker despite

the (R,H) settings. Moreover we compare the success rate of tracker hi-

jacking with previous adversarial attack against object detectors only un-

der different attacker capabilities, i.e., the number of consecutive frames

the adversarial example can reliably fool the object detector (b). Tracker

hijacking achieves superior attack success rate (100%) even by fooling as

few as 3 frames, while previous attack is only effective when the adversar-

ial example can reliably fools at least R consecutive frames. 122

10.1 Validation accuracy during the training process on VGG-16 (a, b) and

ResNet-18 (c, d) for winning tickets, boosting tickets, and randomly initial-

ized weights. In both models, the boosting tickets show faster convergence

rate and equally good performance as the winning tickets. 128

10.2 Validation accuracy when the total number of epochs are 20, 40, 60, 80,

100 for both the boosting tickets (straight lines) and winning tickets (dash

lines) on VGG-16. Plot (a) and (b) contains the validation accuracy for all

the training epochs in different scales. Plot (c,d,e,f) compare the validation

accuracy between models trained for fewer epochs and the one for 100

epochs. 129

xvii

10.3 The final test accuracy achieved when total number of epochs vary from 20

to 100 on four different tickets. Each line denotes one winning ticket found

by learning rate 0.005, 0.01, 0.05, and 0.1 for VGG-16 (a) and ResNet-18

(b). 130

10.4 Under various pruning ratios, the changes of validation accuracy after the

first and fifth training epoch, trained from the original initialized weights

of boosting tickets and randomly reinitialized ones for VGG-16 (a) and

ResNet-18 (b). 132

10.5 Plot (a) and (b) correspond to boosting tickets for various of model widths.

Plot (c) and (d) correspond to boosting tickets for various of model depths.

While a wider model always boosts faster, deep models have similar boost-

ing effect when the depth is large enough. 133

10.6 The clean accuracy (a) and robust accuracy (b) of pruned models on the

validation set. The models are pruned based on different training meth-

ods (natural training, FGSM-based adversarial training, and PGD-based

adversarial training). For each obtained boosting ticket, it is retrained with

PGD-based adversarial training with 100 training epochs. 133

10.7 We show clean (a,c) and robust accuracy (b,d) for both winning tickets and

randomly initialized weights on LeNet (a,b) and Vgg-16 (c,d) on MNIST

with adversarial training. 135

10.8 Validation robust accuracy of pruned models with PGD-based adversarial

training on VGG-16 where the total number of epochs are 20, 40, 60, 80,

100 respectively. Plot (a) and (b) show all the results while plot (c), (d),

(e), (f) compare each model with the baseline model. The baseline model

is obtained by 100-epoch PGD-based adversarial training on the original

full model. 136

xviii

List of Tables

2.1 Step Counting Results Part-1 . 28

2.2 Traveled Distance Results Part-1 . 28

2.3 Step Counting Results Part-2 . 29

2.4 Traveled Distance Results Part-2 . 29

2.5 Step count results for the experiment involving stopping and starting during

walks. 30

2.6 Traveled distance results for the experiment involving stopping and starting

during walks. 30

2.7 Step Counting Results From holder . 31

2.8 Traveled Distance Results from holder . 31

3.1 Description of different extracted features. 36

4.1 Accuracy rates for different modalities and methods 46

5.1 Parameters Autonomously Chosen by the GA 53

5.2 Overall accuracies for the 9- and 26-class labeling with and without using The

GA-based parameter setting . 61

5.3 Accuracy rates from different modalities and approaches for 9-label classi-

fication . 65

5.4 Accuracy rates from different modalities and approaches for 26-label clas-

sification . 65

xix

5.5 Comparison of different approaches . 66

6.1 Comparison table . 76

7.1 Parameter Choices . 80

7.2 Accuracy values obtained with different networks 90

7.3 Comparison of the method with the Small-set GA for different population

sizes. 91

7.4 Final Parameter Values . 91

8.1 Detection results using validation images of COCO2017 and VOC2012 datasets. The

DR attack performs best on 25 out of 30 different cases and achieves 12.8 mAP on average

over all the experiments. It creates 3.9 more drop in mAP compared to the best of the

baselines (TI-DIM: 16.7 mAP). 102

8.2 Semantic Segmentation results using validation images of COCO2017 and

VOC2012 datasets. DR attack performs best on 11 out of 12 different cases and

achieves 20.0 mIoU on average over all the experiments. It achieves 5.9 more drop

in mIoU compared to the best of the baselines (DIM: 25.9 mIoU). 104

8.3 The degraded performance of four Google Cloud Vision models, where we

attack a single model from the left column. DR attack degrades the accuracy of

Lables and SafeSearch to 23% and 35%, the mAP of Objects and Texts

to 32.9 and 20.9, the word recognition accuracy of Texts to only 4.1%, which

outperform existing attacks. 106

8.4 Backbone and pretrained dataset for target models. 109

8.5 Average results for detection and segmentation using COCO, VOC and

ImageNet validation images. 109

8.6 Detection results for ImageNet. 110

8.7 Segmentation Results for ImageNet. 111

xx

10.1 Final test accuracy of winning tickets and boosting tickets trained in various

numbers of epochs on VGG-16. 130

10.2 Best test clean and robust accuracy for PGD-based adversarial training on

boosting tickets obtained by FGSM-based adversarial training in various

numbers of epochs on VGG-16. Baseline model is obtained by 100-epoch

PGD-based adversarial training on original full model. 136

10.3 Best test clean accuracy, robust accuracy, and training time for PGD-based

adversarial training on boosting tickets obtained by FGSM-based one in

various numbers of epochs on WideResNet-34-10. Overall, our training

strategy based on boosting tickets can save up to 49% of the total training

time while performing better compared to regular adversarial training on

the full model. 137

xxi

Chapter 1

Introduction

There has been significant amount of research work on human activity classification rely-

ing either on Inertial Measurement Unit (IMU) data or data from static cameras providing a

third-person view. However there are relatively less work using wearable cameras, provid-

ing first-person or egocentric view, and even fewer approaches combining egocentric video

with IMU data. Using only IMU data limits the variety and complexity of the activities that

can be detected. On the other hand, most of the camera-based activity detection works use

static cameras watching the subjects, and thus providing a third-person view. Wearable sen-

sors are becoming more and more ubiquitous in our lives. Potential applications of activity

recognition from egocentric videos include life logging, video diaries and video summa-

rization, health care, elderly care, personal assistance to users or caregivers, navigation and

assistance for the visually impaired, robotics, human-human and human-robot interaction

and law enforcement. Compared to static cameras, there have been relatively less work as

well as much fewer datasets focusing on wearable cameras, egovision and combination of

wearable camera data with other sensor modalities.

Step counting is being increasingly used as an activity-level measure, which is evi-

denced by different types of widely available commercial wristbands, pedometers, and apps

developed for smart phones and smart watches. In addition to measuring daily activity lev-

1

els and keeping logs for health monitoring, an accurate and reliable count of footsteps can

be used for motion estimation, calculating traveled distance and indoor navigation. Yet,

most of the available devices and approaches for step counting rely only on accelerometer

data, and thus are prone to over-counting. Accelerometer based step counting can also be-

come unreliable during slow walking, or other activities such as jumping, and if a person

stops and starts walking again. In addition, most existing devices calculate the traveled

distance based on the counted number of steps and a preset stride length. On the other

hand, most work on distance calculation relies on GPS data, which might not be suitable

for GPS-denied areas and indoor environments. It is benefited to use an autonomous and

robust method for counting footsteps, and tracking and calculating stride length by using

both accelerometer and camera data.

The design of the network architecture and the choice of parameters are important fac-

tors affecting the performance of deep neural networks. However, there has not been much

work on developing an established and systematic way of building the structure of a neural

network, and this task heavily depends on trial and error, empirical results, and the de-

signer’s experience. Considering that there are many design and parameter choices, such

as the number of layers, number of neurons in each layer, number of filters at each layer,

the type activation function, the choice of using drop out or not and so on, it is not possible

to cover every possibility, and it is very hard to find the optimal structure. In fact, often

times some common settings are used without even trying different ones. Moreover, the

hyper-parameters in training phase also play important role on how well the model will per-

form. Likewise, these parameters are also tuned manually in an empirical way most of the

time. Genetic Algorithms (GA) have been used before to determine network parameters.

Yet, GAs perform a finite search over a discrete set of pre-defined candidates.

There have been many methods for human activity classification, which rely on third-

person video data from static cameras watching activities of person(s). Compared to human

activity video datasets obtained from static cameras, there has been much less video data

2

from egocentric cameras. Similarly, compared to works that use static cameras installed

in the environment, there has been relatively less work using egocentric videos, meaning

providing the first-person view from wearable cameras. Many approaches have been de-

veloped, which employ deep neural networks to perform human activity classification. In

addition to the networks having deeper structures, higher resolution image data needs to be

processed in many cases. This increases the computational complexity. Thus, researchers

have also focused on speeding up the processing. However, most of the work are tailored

to particular network structures, and may not generalize well to new architectures.

As neural network models are reaching higher and higher accuracies in computer vision

fields, more research should focus on improving the robustness performance. However,

there are few robustness improvement recently in image processing field. Recent research

in adversarial learning has brought the weaknesses of deep neural networks (DNNs) to the

spotlights of security and machine learning studies. Given a deep learning model, it is easy

to generate adversarial examples (AEs), which are close to the original but are misclassi-

fied by the model. More importantly, their effectiveness sometimes transfer, which may

severely hinder DNN based applications especially in security critical scenarios. While

such vulnerabilities are alarming, little attention has been paid on the realistic threat model

of commercial or proprietary vision-based detection systems against real-world cybercrim-

inals, which turn out to be quite different from those intensively studied by aforementioned

research. To overcome the weakness of deep learning in individual domain, real-world CV

systems tend to employ an ensemble of different detection mechanisms to prevent evasions.

To evade detections with uncertain mechanisms, attackers turn to generate adversarial ex-

amples that transfer across CV tasks. However, most of the methods are designed for image

classification tasks, and rely on task-specific loss function (e.g., cross-entropy loss), which

limits their effectiveness when transferred to other CV tasks. On the other hand, signifi-

cant progress in Machine Learning (ML) techniques like Deep Neural Networks (DNNs)

recently has enabled the development of safety-critical ML systems like autonomous vehi-

3

cles. Recent results show that autonomous vehicles have become very efficient in practice

and already driven millions of miles without any human interventions. Twenty US states

including California, Texas, and New York have recently passed legislation to enable test-

ing and deployment of autonomous vehicles. However, despite the tremendous progress,

DNNs have been shown to be vulnerable to adversarial examples, inputs that are carefully

crafted to fool the model. Even worse, these perturbed images, if carefully crafted, can stay

adversary when taken as input from the physical world using a camera.

1.1 Research Impact

We explore a few different computer vision tasks within the context of improving ap-

proaches via fusion based approaches. These computer vision tasks have a variety of impli-

cations across many applications. Moreover, we explore robustness improvement on neural

networks.

By leveraging data from multiple sensor modalities, more specifically egocentric video

and IMU sensor data from wearable devices, we present a robust and autonomous method

to perform fine-grain activity classification. In contrast to many CNN-based approaches,

we use a capsule network to obtain features from egocentric video data. We incorporate

a generative adversarial network-based approach to increase the range of parameters that

can be chosen autonomously. The Bi-GAN allows the autonomous exploitation and choice

of the number of neurons, for the fully-connected layers, and number of filters for the

convolutional layers, from a large range of values. The Bi-GAN approach can be used

to autonomously refine the number of convolutional layers and dense layers, number and

size of kernels, and the number of neurons; choose the type of the activation function; and

decide whether to use dropout and batch normalization or not, to improve the accuracy

of different deep neural network architectures. Without loss of generality, the method has

been tested with the ModelNet database, and compared with the 3D Shapenets and two

4

GA-only methods.

For robustness analysis, we present Dispersion Reduction (DR) attack to improve the

cross-task transferability of adversarial examples. Specifically, our method reduces the dis-

persion of intermediate feature maps by iterations. Compared to existing black-box attacks,

the results on MS COCO, PASCAL VOC and ImageNet show that DR method performs

better on attacking black-box cross-CV-task models. One intuition behind the DR attack

is that by minimizing the dispersion of feature maps, images become ”featureless”. This

is because few features can be detected if neuron activations are suppressed by perturb-

ing the input. Moreover, with the observation that low-level features bear more similarities

across CV models, we hypothesize that the DR attack would produce transferable adversar-

ial examples when one of the middle convolution layers is targeted. Evaluation on different

CV tasks shows that this enhanced attack greatly degrades model performance by a large

margin compared to the state-of-the-art attacks, and thus would facilitate evasion attacks

against a different task model or even an ensemble of CV-based detection mechanisms. We

hope that DR attack can serve as benchmark for evaluating robustness of future defense

mechanisms.

In autonomous driving perception system, we are the first to study adversarial machine

learning attacks against the complete visual perception pipeline in autonomous driving, i.e.,

both object detection and MOT. We discover a novel attack technique, tracker hijacking,

that exploits the tracking error reduction process in MOT and can enable successful AEs

on as few as one frame to move an existing object in to or out of the headway of an au-

tonomous vehicle to cause potential safety hazards. The evaluation results show that on

average when 3 frames are attacked, our attack can have a nearly 100% success rate while

attacks that blindly target object detection only have up to 25%. Our discovery and results

strongly suggest that MOT should be systematically considered and incorporated into fu-

ture adversarial machine learning research targeting the visual perception in autonomous

driving. Our work initiates the first research effort along this direction, and we hope that it

5

can inspire more future research into this largely overlooked research perspective.

Moreover, the training procedure and model scale optimality, we investigate boost-

ing tickets, sub-networks coupled with certain initialization that can be trained with sig-

nificantly faster convergence rate. As a practical application, in the adversarial training

scheme, we show pruning a weakly robust model allows to find boosting tickets that can

save up to 49% of the total training time to obtain a strongly robust model that matches the

state-of-the-art robustness. We reveals an direction to investigate whether there is a way

to find boosting tickets without training the full model beforehand, as it is technically not

necessary.

The research presented in this thesis resulted in several publications including respected

Institute of Electrical and Electronics Engineers (IEEE) journals and international confer-

ence proceedings.

1.2 Publications

Peer-reviewed Journals

• Y Lu, S Velipasalar, ”Autonomous Human Activity Classification From Wearable

Multi-Modal Sensors”, IEEE Sensors Journal 19 (23), 11403-11412

• Y Lu, S Velipasalar, ”Autonomous footstep counting and traveled distance calcula-

tion by mobile devices incorporating camera and accelerometer data”, IEEE Sensors

Journal 17 (21), 7157-7166

Peer-reviewed Conferences

• Y Lu, S Velipasalar, ”Robust footstep counting and traveled distance calculation by

mobile phones incorporating camera geometry”, 2016 IEEE International Confer-

ence on Image Processing (ICIP), 464-468

6

• Y Lu, S Velipasalar, ”Human activity classification from wearable devices with cam-

eras”, 2017 51st Asilomar Conference on Signals, Systems, and Computers, 183-187

• Y Lu, S Velipasalar, ”Human activity classification incorporating egocentric video

and inertial measurement unit data”, 2018 IEEE Global Conference on Signal and

Information Processing (GlobalSIP), 429-433

• Y Lu, Y Li, S Velipasalar, ”Efficient Human Activity Classification from Egocen-

tric Videos Incorporating Actor-Critic Reinforcement Learning”, 2019 IEEE Inter-

national Conference on Image Processing (ICIP), 564-568

• Y Lu, S Velipasalar, ”Autonomous Choice of Deep Neural Network Parameters by a

Modified Generative Adversarial Network”, 2019 IEEE International Conference on

Image Processing (ICIP), 3846-3850

• Y Jia, Y Lu, J Shen, QA Chen, H Chen, Z Zhong, T Wei, ”Fooling Detection Alone

is Not Enough: First Adversarial Attack against Multiple Object Tracking”, 2020

International Conference on Learning Representations (ICLR)

• Y Lu, Y Jia, J Wang, B Li, W Chai, L Carin, S Velipasalar, ”Enhancing Cross-

task Black-Box Transferability of Adversarial Examples with Dispersion Reduc-

tion”, submitted to 2020 Conference on Computer Vision and Pattern Recognition

(CVPR)

Book Chapter

• Y Lu, S Velipasalar, ”Wearable Sensor Applications: Processing of Egocentric Videos

and Inertial Measurement Unit Data”, Embedded, Cyber-Physical, and IoT Systems,

149-173

7

1.3 Literature Review

1.3.1 Footstep Counting and Traveled Distance Calculation by Mobile

Devices

With their widespread availability, and thanks to their rich set of onboard sensors and rel-

atively powerful processors, smart phones are increasingly being employed in detecting

different human activities. Zhang et al. [8] describe a hierarchical method of activity clas-

sification based on a smart phone, equipped with an embedded 3D-accelerometer. Ozcan

and Velipasalar [9] present a fall detection method incorporating accelerometer and camera

data on portable devices. A survey by Song et al. [10] presents various approaches, em-

ploying wearable sensors and mobile phones, for activity monitoring, fall detection, and

heart rate and sleep sensing.

There is a significant body of work on activity monitoring and step counting based

on accelerometer data. Guo et al. [11] present an evaluation of wearable accelerometer-

based activity monitoring devices. Park et al. [12] presented an accelerometer-based activ-

ity tracker on smartphones. Capela et al. [13] use accelerometer data to analyze walking

patterns and compute the distance traveled for clinical purposes when the phone is attached

on a belt around the waist. Jang et al. [14] presented a robust two-axis accelerometer-based

step detection method, in which the sensor is placed on the ankle. Alvarez et al. [15] pro-

posed a three-axis accelerometer-based step length estimator algorithm. Pan and Lin [16]

proposed an accelerometer-based step counting algorithm for smart phones, which does

not require the user to have the smart phone attached to the body while walking. Brajdic

and Harle [17] tried different locations for the smartphones to test the accelerometer-based

step-counter algorithms, and found that certain locations, such as back pocket of pants,

degrade the performance significantly.

In general, accelerometer-based approaches can count other routine movements, such

as movements of the phone, as steps, and are prone to over-counting. Accelerometer-based

8

step counting can also become unreliable during slow walking, or other activities such

as jumping, if a person stops and starts walking again, and when people are exposed to

acceleration, e.g. inside a moving vehicle or an elevator. Marschollek et al. [18] compared

several accelerometer-based step counting algorithms on both healthy subjects and geriatric

patients with mobility impairments. It is stated that [18] none of the algorithms worked

very well, and that more research is needed to prove the validity of these algorithms for the

elderly.

Instead of accelerometer data, Aubeck et al. [19] use data captured from a camera. They

use template matching to detect steps, and state that template matching creates problems for

fast movements, since moving objects are often fuzzy [19]. Ozcan and Velipasalar [20] also

present a camera-based approach for step counting. The FAST feature points are detected,

and the movement of the cluster center is used to count steps. However, these works still

rely on a single type of sensor, in this case the camera, and do not address the issue of

calculating the traveled distance.

Many of the aforementioned works only focus on the step counting and do not address

the calculation of the total traveled distance. Most existing approaches and commercial

devices calculate the traveled distance based on the number of counted steps and a pre-

set stride length. This stride length is usually asked from the user, or is calculated based

on the user’s height. On the other hand, most work on step length calculation relies on

GPS data, which might not be suitable for GPS-denied areas and complex indoor environ-

ments [21] [22] [23], for which the GPS data is either unavailable or highly unreliable.

1.3.2 Autonomous Human Activity Classification from Wearable Multi-

Modal Sensors

Many approaches have been proposed to perform human activity classification from differ-

ent sensors. Most of the existing methods rely either on Inertial Measurement Unit (IMU)

data [24][25][26][27][28][29][30][31] or data from static cameras in the environment pro-

9

viding a third-person view [32][33][34][35][36].

Mannini and Sabatini [24] [25] use IMU data to classify activities of sitting, standing,

lying down, walking, running, climbing stairs and cycling. Bayat et al. [30] also employ

IMU data to classify activities, such as dancing, going up and down the stairs, slow and

fast walking and running, and compare different classifiers. Ordóñez and Roggen [31]

use accelerometer and gyroscope data, and employ convolutional and Long Short Term

Memory (LSTM) recurrent units for activity recognition. Even though the systems using

only IMU data are computationally efficient, they are limited in terms of the variety and

complexity of the activities that they can detect. They also cannot provide enough context.

For example, IMU data can help to detect a sitting activity, but cannot help determine the

type of furniture the subject sits on or the environment the subject is in. Having data from a

camera sensor fills in these blanks by providing abundant information about surroundings

and the objects with which the subject is interacting.

On the other hand, most of the camera-based activity detection works use static cameras

watching the subjects, and thus providing a third-person view. Karpathy et al. [32] merge

different convolutional neural networks (CNN) for large-scale video classification, and

present results on the UCF-101 Action Recognition Dataset [37]. Donahue et al. [33] use

long-term recurrent network together with CNNs, and also evaluate on UCF-101 dataset.

Instead of using 2D CNN and LSTM, different approaches have been presented using 3D

CNNs for learning spatiotemporal features [34]. Montes et al. [35] use a 3D CNN together

with LSTM to achieve temporal activity detection in untrimmed videos. Instead of using

LSTM, Buch et al. [36] use 3D CNN together with GRUs (Gated Recurrent Unit) on videos

from a third-person view. Heilbron et al. [38] present ActivityNet, which is a large-scale

video benchmark for human activity understanding, and propose a method based on 3D

CNNs. In this video set, the majority of videos are not egocentric.

Wearable sensors are becoming more and more ubiquitous in our lives. Potential ap-

plications of activity recognition from egocentric videos include life logging, video diaries

10

and video summarization, health care, elderly care, personal assistance to users or care-

givers, navigation and assistance for the visually impaired, robotics, human-human and

human-robot interaction and law enforcement. Several surveys [10][39] have been pub-

lished describing various techniques for activity classification, and heart rate and sleep

sensing by wearable sensors. Compared to static cameras, there have been relatively less

work as well as much fewer datasets focusing on wearable cameras, egovision and combi-

nation of wearable camera data with other sensor modalities.

Existing works focusing on egocentric videos differ in terms of the types of objects and

activities that they detect. There have been methods focusing only on hand detection from

egocentric videos [40]. Other approaches employing egocentric video data either classify

the activities observed by the camera [41][42] or the activities of the person wearing the

camera [43][44][45][46][47][48]. Ryoo and Matthies [42] present a method to recognize

what activities others are performing to the observer or the person or robot wearing the

camera. Pirsiavash and Ramanan [45] presented a dataset of egocentric videos covering

Activities of Daily Living (ADL), and reported 40.6% accuracy over 18 classes. McCand-

less and Grauman [46] presented a method for activity recognition by learning the spatio-

temporal partitions. They used the same ADL dataset, and reported 38.7% accuracy over

18 classes. Lu and Grauman [49] presented a method for story-driven video summarization

and tested it on the ADL dataset [45]. Moghimi et al. [48] presented a method for activity

detection using RGB-D egocentric videos. Nguyen et al. [50] provided a survey and re-

view of the egocentric vision systems for the recognition of activities of daily living. It was

concluded that the performance of current systems is far from satisfactory.

The aforementioned approaches, which focus on egocentric videos, are based on only

a single sensor modality, namely the camera. There have been even fewer approaches that

combine egocentric video data with IMU data [51][52][53][54][55]. Zhan et al. [52] use

a smartphone attached on top of safety goggles to collect video and 3-axis acceleration

data. They use optical flow vectors from camera data and classify 12 activities, including

11

walking, going upstairs/downstairs, sitting, standing, drinking and writing. Windau and

Itti [53] also use both IMU and camera data from a prototype eyeglass setup. They ex-

tract GIST features from camera data to perform indoor/outdoor classification. They report

81.5% accuracy for classifying 20 activities including lying down, walking, jogging, bik-

ing, running, playing cello, playing piano, computer work, folding laundry and driving car.

However, both of these methods still focus on activities that can be classified by only ac-

celerometer data. In other words, they do not perform detection of objects in the scene, and

do not focus on activity types involving interactions with different types of objects, which

cannot be classified by only accelerometer data. In earlier work, Spriggs et al. [54] used

the CMU Multi-Modal Activity (CMU-MMAC) database [56], and presented a method

for temporal segmentation and activity classification, focusing on recipe preparation, by

extracting the GIST features from the egocentric video data. They reported 57.8% as the

highest performance.

Different from the eyeglass setup, Conti et al. [51] employed the various sensors on

a smartwatch to perform context classification over only 5 classes (morning preparation,

walking outdoors, public transportation, in the car and in the office).

It should be emphasized that many activities can be very close to each other in the “ac-

tivity space”, in other words, can be very similar, such as using a spoon versus using a fork.

In this case, adding another sensor modality, namely the camera, and detecting objects be-

come even more important to identify activities involving interactions with various-sized

objects. The problem gets much harder for fine-grained classification of activities. As

mentioned above, most of the existing work does not focus on fine-grained activity classi-

fication. On the other hand, the relatively small number of existing works on fine-grained

classification have reported lower accuracies.

12

1.3.3 Autonomously and Simultaneously Refining Deep Neural Net-

work Parameters by a Bi-Generative Adversarial Network Aided

Genetic Algorithm

There have been works focusing on optimizing neural network architectures. Most of the

proposed approaches are based on the GAs [57], or evolutionary algorithms, which are

heuristic search algorithms. Benardos and Vosniakos [58] proposed a methodology for de-

termining the best neural network architecture based on the use of a GA and a criterion

that quantifies the performance and the complexity of a network. In their work, they focus

on optimizing four architecture decisions, which are the number of layers, the number of

neurons in each layer, the activation function in each layer, and the optimization function.

Magnier and Haghighat [59] presented an optimization methodology based on a combina-

tion of a neural network and a multi-objective evolutionary algorithm. The methodology

was used for the optimization of thermal comfort and energy consumption in a residential

house. Leung et al. [60] presented the tuning of the structure and parameters of a neural

network using an improved GA. Ritchie et al. [61] proposed a method to automate neural

network architecture design process for a given dataset by using genetic programming. Is-

lam et al. [62] employed a genetic algorithm for finding the optimal number of neurons in

the input and hidden layers. They apply their approach to power load prediction task and

report better results than a manually designed neural network. Yet, their approach is used

to optimize only the number of neurons for input and hidden layers, and optimization of

other important design decisions such as the number of layers or activation function type

are not discussed. Stanley and Miikkulainen [63] presented the NEAT algorithm for op-

timizing neural networks by evolving topologies and weights of relatively small recurrent

networks. In a recent work, Miikkulainen et al. [64] proposed CoDeepNEAT algorithm for

optimizing deep learning architectures through evolution by extending existing neuroevo-

lution methods to topology, components and hyperparameters.

13

The genetic algorithm-based optimization uses a given set of blueprints and models,

i.e. it performs a finite search over a discrete set of candidates. Thus, GAs, in general,

cannot generate unseen configurations, and they can only make a combination of preset

parameters. GAs are good at searching better solutions from limited possibilities, such as

type of layers and activation functions. However, it cannot search for a solution which is

not defined before. In addition, the complexity of GAs increases significantly when the

number of choices increases to large scale. Rylander [65] has shown that the generations

needed for convergence increases exponentially with the node size.

Apart from the genetic algorithms, Bergstra and Bengio [66] have proposed random

search for hyper-parameter optimization, and stated that randomly chosen trials are more

efficient for hyperparameter optimization than trials on a grid. Yan and Zhang [67] opti-

mized architectures’ width and height with growing running time budget through submod-

ularity and suparmodularity.

Generative Adversarial Networks (GANs) [68] are one of the important milestones in

deep learning research. In contrast to CNNs, which extract rich and dense representations

of the source domain, and may eventually map source instances into some classes, GANs

generate instances of the source domain from small noise. They employ deconvolution

operators, or transposed convolutions, to generate N-D instances from 1-D noise. GAN’s

power comes from the competition with the discriminator, which decides whether the gen-

erated instance belongs to the source domain. Discriminator acts like the police who is

trying to intercept counterfeit money, where in this case the generator is the counterfeiter.

Generator and discriminator are trained together until discriminator cannot distinguish the

generated instances from the instances in the source domain. GANs have been adapted in

many applications [69, 70, 71, 72, 73].

14

1.3.4 Efficient Human Activity Classification From Egocentric Videos

Incorporating Actor-Critic Reinforcement Learning

There have been many methods for human activity classification, which rely on third-

person video data [32, 33, 74, 35, 36] from static cameras watching activities of person(s).

Compared to human activity video datasets obtained from static cameras, there has been

much less video data from egocentric cameras. Similarly, compared to works that use static

cameras installed in the environment, there has been relatively less work using egocentric

videos, meaning providing the first-person view from wearable cameras.

Heilbron et al. [38] presented the ActivityNet, which is a large-scale video benchmark

for human activity understanding, and proposed a method based on 3D Convolutional Neu-

ral Networks (CNNs). In this video dataset, majority of videos are not egocentric. Karpathy

et al. [32] proposed a method for large-scale video classification, and presented results on

the UCF-101 Action Recognition Dataset [37], which mostly contains third-person videos.

Instead of using 2D CNN and LSTM, different approaches have been presented using 3D

CNNs for learning spatiotemporal features [74]. Montes et al. [35] use a 3D CNN together

with LSTM to achieve temporal activity detection in untrimmed videos. Instead of using

LSTM, Buch et al. [36] use 3D CNN together with Gated Recurrent Units on videos from

a third-person view.

Many approaches have been developed, which employ deep neural networks to per-

form human activity classification. In addition to the networks having deeper structures,

higher resolution image data needs to be processed in many cases. This increases the com-

putational complexity. Thus, researchers have also focused on speeding up the process-

ing [75, 76, 77, 78]. However, these models are mostly tailored to particular network

structures, and may not generalize well to new architectures. Minh et al. [79] introduced

a recurrent neural network-based model to represent visual attention, and applied it to the

image classification task and a simple game.

Reinforcement learning (RL) provides a mathematical framework for learning or de-

15

riving policies that map situations (i.e. states) into actions with the goal of maximizing

an accumulative reward [80]. Unlike supervised learning, in RL the agent (i.e. learner)

learns the policy for decision making through interactions with the environment. The goal

of the agent is to maximize the cumulative reward by taking the optimal action at each time

step according to the current state while considering the trade-off between explorations

and exploitations. The combination of conventional Q-learning and deep neural network,

i.e. Deep Q-network (DQN) [81], provides a breakthrough in deep reinforcement learning

(DRL). However, the neural network in DQN needs to accumulate enough samples of val-

ues, and the data needed for its training can either come from a model-based simulation

or from actual measurement [82]. Originally developed by DeepMind, the DRL provides

a promising data-driven, adaptive technique in handling large state space of complicated

control problems [83]. The actor-critic deep reinforcement learning [84] has overcome

difficulties in learning control policies of systems with continuous state and action space,

which provides a potential solution for efficient real-time processing of video clips in our

case.

1.3.5 Cross-task Transferability of Adversarial Examples with Dis-

persion Reduction

Recent progress in adversarial machine learning has brought the weaknesses of deep neu-

ral networks (DNNs) into the spotlight, and drawn the attention of researchers working

on security and machine learning. Given a deep learning model, it is easy to generate

adversarial examples (AEs), which are close to the original input, but are easily misclas-

sified by the model [85, 86]. More importantly, their effectiveness sometimes transfers,

which may severely hinder DNN-based applications especially in security critical scenar-

ios [87, 88, 89]. While such problems are alarming, little attention has been paid to the

threat model of commercially deployed vision-based systems, wherein deep learning mod-

els across different tasks are assembled to provide fail-safe protection against evasion at-

16

tacks. Such a threat model turns out to be quite different from those models that have been

intensively studied by aforementioned research.

Cross-task threat model. Computer vision (CV) based detection mechanisms have

been deployed extensively in security-critical applications, such as content censorship and

authentication with facial biometrics, and readily available services are provided by cloud

giants through APIs (e.g., Google Cloud Vision [90]). The detection systems have long

been targeted by evasive attacks from cybercriminals, and it has resulted in an arm race

between new attacks and more advanced defenses. To overcome the weakness of deep

learning in an individual domain, real-world CV systems tend to employ an ensemble of

different detection mechanisms to prevent evasions. Underground businesses embed pro-

motional contents such as URLs into porn images with sexual content for illicit online

advertising or phishing. A detection system, combining Optical Character Recognition

(OCR) and image-based explicit content detection, can thus drop posted images contain-

ing either suspicious URLs or sexual content to mitigate evasion attacks. Similarly, a face

recognition model that is known to be fragile [91] is usually protected by a liveness de-

tector to defeat spoofed digital images when deployed for authentication. Such ensemble

mechanisms are widely adopted in real-world CV deployment.

To evade detection systems with uncertain underlying mechanisms, attackers turn to

generating adversarial examples that transfer across CV tasks. Many adversarial techniques

on enhancing transferability have been proposed [92, 89, 87, 88]. However, most of them

are designed for image classification tasks, and rely on task-specific loss functions (e.g.,

cross-entropy loss), which limits their effectiveness when transferred to other CV tasks.

1.3.6 Robust Analysis of Multiple Object Tracking Based on Auto-

matic Driving

Since the first physical adversarial examples against traffic sign classifier demonstrated by

Eykholt et al. [93], several work in adversarial machine learning [94, 95, 96, 97, 98, 99]

17

have been focused on the visual perception task in autonomous driving, and more specifi-

cally, the object detection models. To achieve high attack effectiveness in practice, the key

challenge is how to design robust attacks that can survive distortions in real-world driving

scenarios such as different viewing angles, distances, lighting conditions, and camera limi-

tations. For example, Lu et al. [96] shows that AEs against Faster-RCNN [100] generalize

well across a sequence of images in digital space, but fail in most of the sequence in physi-

cal world; Eykholt et al. [94] generates adversarial stickers that, when attached to stop sign,

can fool YOLOv2 [101] object detector, while it is only demonstrated in indoor experiment

within short distance; Chen et al. [99] generates AEs based on expectation over transfor-

mation techniques, while their evaluation shows that the AEs are not robust to multiple

angles, probably due to not considering perspective transformations [98]. It was not until

recently that physical adversarial attacks against object detectors achieve a decent success

rate (70%) in fixed-speed (6 km/h and 30 km/h) road test [98].

MOT aims to identify objects and their trajectories in video frame sequence. With

the recent advances in object detection, tracking-by-detection [102] has become the dom-

inant MOT paradigm, where the detection step identifies the objects in the images and the

tracking step links the objects to the trajectories (ie., trackers). Such paradigm is widely

adopted in autonomous driving systems today [1, 2, 3, 4, 5, 6, 7]. A per-track Kalman

filter [1, 2, 103, 104, 105] is used to maintain the state model, which operates in a recursive

predict-update loop: the predict step estimates current object state according to a motion

model, and the update step takes the detection results detc|t as measurement to update its

state estimation result track|t.

The association between detected objects with existing trackers is formulated as a

bipartite matching problem [106, 103, 104] based on the pairwise similarity costs be-

tween the trackers and detected objects, and the most commonly used similarity metric

is the spatial-based cost, which measures the overlapping between bounding boxes, or

bboxes [1, 107, 108, 106, 103, 104, 109, 105, 110, 111]. To reduce errors in this associa-

18

tion, an accurate velocity estimation is necessary in the Kalman filter prediction [112, 113].

Due to the discreteness of camera frames, Kalman filter uses the velocity model to estimate

the location of the tracked object in the next frame in order to compensate the object motion

between frames.

1.3.7 Practical Pruning for Adversarial Training

Pruning has served as an important technique for removing redundant structure in neural

networks [114, 115, 116, 117]. Properly pruning can reduce cost in computation and stor-

age without harming performance. However, pruning was until recently only used as a post-

processing procedure, while pruning at initialization was believed ineffective [115, 116].

Recently, [118] proposed the lottery ticket hypothesis, showing that for a deep neural net-

work there exist sub-networks, when trained from certain initialization obtained by pruning,

performing equally or better than the original model with commensurate convergence rates.

Such pairs of sub-networks and initialization are called winning tickets.

This phenomenon indicates it is possible to perform pruning at initialization. However,

finding winning tickets still requires iterative pruning and excessive training. Its high cost

limits the application of winning tickets.

Although [118] shows that winning tickets converge faster than the corresponding full

models, it is only observed on small networks, such as a convolutional neural network

(CNN) with only a few convolution layers. In chapter 10, we show that for a variety of

model architectures, there consistently exist such sub-networks that converge significantly

faster when trained from certain initialization after pruning. We call these boosting tickets.

19

Chapter 2

Footstep Counting and Traveled

Distance Calculation by Mobile Devices

This chapter studies the autonomous and robust system for counting footsteps, tracking and

calculating stride length, and computing the total traveled distance by using camera as well

as accelerometer and gravity sensors of a smart phone or a GoogleTM glass. To provide

higher precision, as opposed to using a preset step or stride length, the system incorporates

data from different sensor modalities to track and calculate the step length for each step.

In addition, if camera is tilted significantly, the angle data obtained from the gravity sensor

is used to account for camera geometry and increase the precision of the calculated step

length. The system performs well even when feet of multiple people are visible in the

image, and also across subjects with varying walking pace, heights and stride lengths. If a

smart phone is being used, the subjects can hold the phone as they normally would when

they read e-mails, or browse pages on the web. A holder is also designed and printed,

by using a 3D printer, for hands-free usage and longer walking experiments. The images

captured by the rear-facing camera of the smart-phone are used for the method. Moreover,

we used a GoogleTM glass as a different use scenario. Different usage styles, and example

images from a smart phone and GoogleTM glass can be seen in Fig 2.1.

20

(a) (b) (c)

Figure 2.1: (a) Experimental setup showing the subject with the phone holder, (b) the user holding
the phone, (c) image from the camera while walking.

Various experiments are performed with a smart phone and a Google glassTM . With

smart phone experiments 15-20 different subjects either carried the phone by hand or used

the holder around the waist. The Google TM glass experiments are performed with 10 sub-

jects. The system is compared with the accelerometer-based step counter apps. In different

sets of experiments, subjects walk continuously, they stopped and started walking again,

and also followed a zig-zag-like pattern. For comparison purposes, the subjects carry three

mobile devices simultaneously at different body locations. More specifically, two smart

phones are carried in front pant pockets and in a backpack, and these phones run readily

available, accelerometer-based apps for step counting and distance calculation. The third

phone is carried in a holder or held by hand to capture data for the method as seen in

Fig. 2.1(a) and (b). The method has been compared with accelerometer-based methods in

terms of both counted steps and the traveled distance. The results show that the method

provides the lowest average error rate in number of steps taken and the distance traveled

compared to commercially available, accelerometer-based step counters and apps.

21

2.1 Methodology

The flow diagram of the method is shown in Fig. 2.2. The details of the step counting and

traveled distance calculation will be described in Sections 2.1.1 and 2.1.2, respectively.

Figure 2.2: Flow diagram

2.1.1 Step Counting

We have trained a Haar-based detector for feet. Initially, only for the first frame, Haar-

based detection is used to detect the feet, and obtain bounding boxes around them. The

22

sizes and locations of the bounding boxes are used to initialize the matching template size,

search region size and the Kalman filter tracker. More specifically, the template size is set

to be the same as the bounding box size. The search region size, to be used in the following

frames, is set to be twice the size of the bounding box for each feet.

For subsequent images, edges are detected first by using the Canny edge detection al-

gorithm. Several example images obtained after edge detection can be seen in Fig. 2.3(b)

and 2.4(b) for different floor surfaces. Then, the binary template, shown in Fig. 2.5, is used

to perform template matching only in the determined search regions. Since much smaller

search regions are used, instead of the entire image, for template matching, the compu-

tational efficiency of the method is increased. Figures 2.3(d) and 2.4(d) show the search

regions. Figures 2.3(c) and 2.4(c) show the normalized value of correlation coefficient

at each pixel location in the search regions, wherein brighter pixels correspond to higher

values, and the two brightest spots are the locations of two detected feet. The detected

locations are marked in green in Figures 2.3(d) and 2.4(d).

As mentioned above, a Kalman filter tracker is created in the first image by using the

bounding boxes around the feet detected by the Haar-based detector. The feet locations

are then tracked in the subsequent frames. If feet locations cannot be detected by using

template matching, then the locations are updated by using the predictions from the tracker.

The detected and tracked locations for the feet are shown in green and red, respectively, in

Fig. 2.3(d) and 2.4(d). Then, the x-coordinates of the feet locations are saved. As seen in

the flow diagram in Fig. 2.2, we then find the valleys in the x-coordinate values by using

a peak detection algorithm by Yoder [119]. The valley points for left and right foot can be

seen in Fig. 2.7(a) and 2.7(b), respectively. The number of steps taken is set to be the total

number of detected valley points.

23

(a) (b) (c)

(d) (e) (f) (g)
Figure 2.3: (a) Gray scale image, (b) detected edges, (c) correlation coefficient values, (d,e) feet
subimages, (f,g) shape context.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.4: (a) Gray scale image, (b) detected edges, (c) correlation coefficient values, (d,e) feet
subimages, (f,g) shape context.

Figure 2.5: The template used for matching.

2.1.2 Computing the Total Traveled Distance

In our method, instead of using preset stride lengths and assuming equal-length steps, we

calculate the length of each step by incorporating data from the camera, the accelerometer

24

and the gravity sensor.

For better accuracy in calculating the step length, it is very important to precisely deter-

mine the start/end frames of a step. The valley locations detected as described in Section

2.1.1 may not exactly correspond to actual start/end of a step. In order to address this

challenge, we incorporate information from the accelerometer. First, the peaks of the mag-

nitude of the accelerometer data are found as shown in Fig. 2.8. This, by itself, does not

solve the problem either, since accelerometer data can be noisy at times and not all the

peaks in the magnitude of the accelerometer data correspond to actual steps. Thus, we

combine the valley information obtained from the camera data with the information from

the accelerometer data. For a valley in x-coordinates of feet locations, the closest peak, in

time, of the accelerometer data is found, and the corresponding frame number is used as

the beginning/end frame of a step. This approach prevents the method being affected by

the noisy peaks in the accelerometer data.

After the start/end of a frame is determined, the next stage is to find the tips of each foot

on those frames so that the step length can be calculated. For this, shape context [120] is

applied to the output of the edge detection. For higher precision, full size images (1920 ×

1080) of these frames are used. The detected tip locations can be seen in Fig.2.3(f) and

2.4(f).

Before computing the step length, camera rotation angle obtained from the gravity sen-

sor is checked. This angle is used to determine if a significant change happened in the

camera orientation or not. More specifically, if the rotation angle is greater than 10 degrees,

which is an empirically determined threshold, then the camera geometry model is used to

incorporate this change, and the image locations of extracted tip points are transformed to

the world coordinate system as described below.

If the angles obtained from the gyroscope are θ′ and φ′, we use θ = θ′ − π
2
, φ =

φ′ − π
2

for the rotation of the camera along the x-axis and y-axis, respectively. Then, the

image coordinates can be transformed to world coordinates by using the rotation matrix.

25

Since the image captured by the camera is assumed to be of a ground plane, a 2D planar

transformation is used. The relationship between the camera coordinate system and the

world coordinate systems is given by:

C =

(
RφRθ T

)(
W T 1

)T
(2.1)

where

C =

XC

YC

ZC

 ,W =

XW

YW

ZW

 , T =

XT

YT

ZT

 ,

Rθ =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 , Rφ =

cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 .

Figure 2.6: camera geometry.

This step is especially important when the camera is hold by hand.

In this case, we are using camera geometry to let camera be perpendicular to the ground

with known hight HC . Because we only need distance of tips of feet, the original point is

irrelevant to the result. For convenience, we let ZW = 0, XT = YT = 0, ZT = −HC ,

26

where HC is the camera height. Thus,

XW

YW

HC

 = R−1
θ R−1

φ C.

By substituting and simplifying the equations above, the transformation from image coor-

dinates to world coordinates can be expressed as:

XW = HC
x sinφ− f cosφ

x sin θ cosφ− y cos θ + f sin θ sinφ
,

YW = HC
x cos θ cosφ+ y sin θ + f cos θ sinφ

x sin θ cosφ− y cos θ + f sin θ sinφ
.

where f is the focal length of the camera, x and y are point location in image.

With known the height of smart phone HC , XW and YW can be calculated and then

stride length is obtained by calculating distance in y direction which is along the walking

direction between tips of feet.

(a) (b)

Figure 2.7: Valleys in the x-coordinates of (a) left foot and (b) right foot.

27

2.2 Experimental Results

In table 2.1 and 2.2, we compared method with and without camera geometry to ac-

celerometer based cell-phone app.

Subjects Ground Truth Method Front pocket-accelerometer Backpack-accelerometer
No. of Steps Counted Error Counted Error Counted Error

Subject 1 295 307 4.07 % 352 19.32% 269 8.81 %
Subject 2 151 159 5.30 % 157 3.97% 170 12.58 %
Subject 3 356 365 2.53 % 242 32.02% 201 43.54 %
Subject 4 278 283 1.80 % 215 22.66% 166 40.29 %
Subject 5 176 184 4.55% 259 47.16% 156 11.36 %
Subject 6 153 163 6.54% 174 13.73% 213 39.22 %
Subject 7 363 374 3.03 % 280 22.87% 243 33.06 %
Subject 8 217 221 1.84 % 201 7.37% 239 10.14 %
Subject 9 230 240 4.35% 188 18.26% 205 10.87 %
Subject 10 255 264 3.53% 198 22.35% 271 6.27 %

Avg. err 3.75% Avg. err 20.97% Avg. err 21.67%

Table 2.1: Step Counting Results Part-1

Subjects Ground Truth Method with camera geometry Method without camera geometry Front pocket-accelerometer Backpack-accelerometer
Distance (feet) Distance (mile) Distance (feet) Error Distance (feet) Error Distance (mi) Error Distance (mi) Error

Subject 1 344 0.065 330.6 3.90% 328.1 4.62% 0.14 115.38 % 0.11 69.23 %
Subject 2 309 0.059 300.7 2.69% 296.8 3.95% 0.06 1.69 % 0.07 18.64 %
Subject 3 335 0.063 311.2 7.10% 297.4 11.22% 0.10 58.73 % 0.08 26.98 %
Subject 4 282 0.053 273.5 3.01% 269.1 4.57% 0.08 50.94 % 0.07 32.08 %
Subject 5 294 0.056 284.0 3.40% 281.6 4.22% 0.10 78.57 % 0.06 7.14 %
Subject 6 317 0.060 307.8 2.90% 297.9 6.03% 0.07 16.67 % 0.08 33.33 %
Subject 7 302 0.057 299.2 0.93% 297.0 1.66% 0.11 92.98 % 0.10 75.44 %
Subject 8 290 0.055 276.9 4.52% 270.3 6.79% 0.08 45.45 % 0.10 81.82 %
Subject 9 316 0.060 305.9 3.20% 298.2 5.63% 0.08 33.33 % 0.08 33.33 %
Subject 10 323 0.061 312.7 3.19% 306.4 5.14% 0.08 31.15 % 0.11 80.33 %

Avg. err 3.48% Avg. err 5.38% Avg. err 52.49% Avg. err 45.83%

Table 2.2: Traveled Distance Results Part-1

In table 2.3 and 2.4, we compared method without camera geometry to accelerometer

Figure 2.8: Magnitude of the accelerometer data.

28

based cell-phone app.

Subjects Ground Truth Method Front pocket-accelerometer Backpack-accelerometer
No. of Steps Counted Error Counted Error Counted Error

Subject 1 258 266 3.10 % 212 17.83% 220 14.73 %
Subject 2 257 262 1.95 % 238 7.39% 294 14.40 %
Subject 3 254 263 3.54 % 199 21.65% 185 27.17 %
Subject 4 330 334 1.21 % 183 44.55% 230 30.30 %
Subject 5 180 171 5.00% 240 33.33% 193 7.22 %
Subject 6 282 274 2.84% 84 70.21% 68 75.89 %
Subject 7 227 236 3.96 % 225 0.88% 213 6.17 %
Subject 8 277 280 1.08 % 207 25.27% 271 2.17 %
Subject 9 300 289 3.67% 57 81.00% 195 35.00 %
Subject 10 284 279 1.76% 216 23.94% 245 13.73 %
Subject 11 207 198 4.35% 160 22.71% 199 3.86 %
Subject 12 228 221 3.07% 105 53.95% 100 56.14 %
Subject 13 244 237 2.87% 208 14.75% 252 3.28 %
Subject 14 272 279 2.57% 259 4.78% 75 72.43 %
Subject 15 238 230 3.36% 174 26.89% 225 5.46 %

Avg. err 2.96% Avg. err 29.94% Avg. err 24.53%

Table 2.3: Step Counting Results Part-2

Subjects Ground Truth Method Front pocket-accelerometer Backpack-accelerometer
Distance (feet) Distance (mile) Distance (feet) Error Distance (mi) Error Distance (mi) Error

Subject 1 301.2 0.057 298.10 1.03% 0.08 40.35 % 0.08 40.35 %
Subject 2 300.6 0.057 299.29 0.44% 0.09 57.89 % 0.09 57.89 %
Subject 3 300.3 0.057 295.14 1.72% 0.08 40.35 % 0.07 22.81 %
Subject 4 335.0 0.063 321.76 3.95% 0.06 4.76 % 0.08 26.98 %
Subject 5 336.7 0.064 304.58 9.54% 0.09 40.63 % 0.08 25.00 %
Subject 6 330.0 0.063 307.23 6.90% 0.03 52.38% 0.03 52.38%
Subject 7 327.4 0.062 312.67 4.50% 0.09 45.16 % 0.09 45.16 %
Subject 8 325.8 0.062 316.03 3.00% 0.08 29.03 % 0.11 77.42 %
Subject 9 330.9 0.063 318.33 3.80% 0.02 68.25% 0.08 26.98 %

Subject 10 324.8 0.062 307.26 5.40% 0.09 45.16% 0.10 61.29 %
Subject 11 319.9 0.061 308.51 3.56% 0.06 1.64% 0.08 31.15 %
Subject 12 323.7 0.061 305.89 5.50% 0.04 34.43% 0.04 34.43 %
Subject 13 330.2 0.063 315.57 4.43% 0.08 26.98% 0.10 58.73 %
Subject 14 332.1 0.063 315.09 5.12% 0.10 58.73% 0.03 52.38 %
Subject 15 311.6 0.059 304.53 2.27% 0.07 18.64% 0.09 52.54 %

Avg. err 4.08% Avg. err 37.63% Avg. err 44.37%

Table 2.4: Traveled Distance Results Part-2

In table 2.5 and 2.6, we compared method without camera geometry to accelerom-

eter based cell-phone app, in case objects stop and start walk again several times during

experiments.

In table 2.7 and 2.8, we compared method with camera geometry while objects wearing

a cell-phone holder to accelerometer based cell-phone app.

In fig. 2.9, we prepared the case multiple feet appear in camera while walking. The

results show that due to local template matching, the extra foot does not have influence on

29

Subjects Ground Truth Method Front pocket-accelerometer Backpack-accelerometer
Steps Counted Error Counted Error Counted Error

Subject 1 275 297 8.00% 340 23.64% 326 18.55%
Subject 2 254 242 4.72% 207 18.50% 299 17.72%
Subject 3 203 191 5.91% 204 0.49% 261 28.57%
Subject 4 220 213 3.18% 217 1.36% 67 69.55%
Subject 5 233 225 3.43% 76 67.38% 236 1.29%
Subject 6 216 206 4.63% 180 16.67% 253 17.13%
Subject 7 289 283 2.08% 209 27.68% 164 43.25%
Subject 8 240 238 0.83% 91 62.08% 157 34.58%
Subject 9 277 269 2.89% 243 12.27% 260 6.14%
Subject 10 232 220 5.17% 205 11.64% 199 14.22%

Avg. err 4.09% Avg. err 24.17% Avg. err 25.10%

Table 2.5: Step count results for the experiment involving stopping and starting during
walks.

Subjects Ground Truth Method Front pocket-accelerometer Backpack-accelerometer
Distance(feet) Distance (mile) Distance (feet) Error Distance (mi) Error Distance (mi) Error

Subject 1 325.5 0.062 344.7 5.90% 0.14 125.81% 0.13 109.68%
Subject 2 323.9 0.061 318.7 1.61% 0.08 31.15% 0.12 96.72 %
Subject 3 318.9 0.060 303.6 4.80% 0.08 33.33% 0.12 100.00 %
Subject 4 320.2 0.061 311.2 2.81% 0.09 47.54% 0.03 50.82 %
Subject 5 330.7 0.063 314.8 4.81% 0.03 52.38% 0.09 42.86 %
Subject 6 319.4 0.060 373.3 16.88% 0.07 16.67% 0.10 66.67 %
Subject 7 334.1 0.063 316.1 5.39% 0.09 42.86% 0.07 11.11 %
Subject 8 324.5 0.061 313.8 3.30% 0.04 34.43% 0.06 1.64 %
Subject 9 328.3 0.062 312.2 4.90% 0.10 61.29% 0.11 77.42 %

Subject 10 311.6 0.059 295.4 5.20% 0.08 35.59% 0.08 35.59 %
Avg. err 5.56% Avg. err 48.10% Avg. err 59.25%

Table 2.6: Traveled distance results for the experiment involving stopping and starting
during walks.

the algorithm.

2.3 Conclusion

Most of the available devices and approaches for step counting rely only on accelerometer

data, and thus are prone to over-counting. We have presented an autonomous and robust

method for counting footsteps, and tracking and calculating stride length by using both

accelerometer and camera data from smart phones or a GoogleTMglass. To provide higher

precision, instead of using a preset step and/or stride length, the presented method calcu-

lates the distance traveled with each step by using the camera data. The presented method

has been compared with the commonly-used accelerometer-based step counter applications

(apps). The results show that the presented method provides a significant increase in accu-

30

Subjects Ground Truth Method Front pocket-accelerometer Backpack-accelerometer
No. of Steps Counted Error Counted Error Counted Error

Subject 1 1830 1749 4.43 % 1165 36.34% 1373 24.97 %
Subject 2 2023 1987 1.78 % 1349 33.32% 996 50.77 %
Subject 3 1996 1916 4.01 % 1433 28.21% 1505 24.60 %
Subject 4 2011 1936 3.73 % 2679 33.22% 916 54.45 %
Subject 5 1759 1707 2.96% 778 55.77% 1327 24.56 %
Subject 6 1700 1635 3.82% 1521 10.53% 1299 23.59 %
Subject 7 1861 1809 2.79 % 2300 23.59% 1090 41.43 %
Subject 8 1728 1631 5.61 % 1517 12.21% 1444 16.44 %
Subject 9 1838 1778 3.26% 996 45.81% 1919 4.41 %
Subject 10 1830 1764 3.61% 1209 33.93% 1363 25.52 %
Subject 11 1949 1880 3.54 % 2596 33.20% 860 55.87 %
Subject 12 2067 1953 5.52 % 1247 39.67% 695 66.38 %
Subject 13 1899 1807 4.84 % 886 53.34% 2308 21.54 %
Subject 14 1818 1734 4.62 % 1541 15.24% 1404 22.77 %
Subject 15 1800 1760 2.22% 1398 22.33% 2137 18.72 %
Subject 16 2044 1959 4.16% 692 66.14% 1002 50.98 %
Subject 17 1703 1608 5.58 % 1416 16.85% 1923 12.92 %
Subject 18 1895 1803 4.85 % 1478 22.01% 1384 26.97 %
Subject 19 1767 1700 3.79% 1503 14.94% 1993 12.79 %
Subject 20 1906 1866 2.10% 2640 38.51% 2670 40.08 %

Avg. err 3.86% Avg. err 31.76% Avg. err 30.98%

Table 2.7: Step Counting Results From holder

Subjects Ground Truth Method with camera geometry Method without camera geometry Front pocket-accelerometer Backpack-accelerometer
Distance (feet) Distance (mile) Distance (feet) Error Distance (feet) Error Distance (mi) Error Distance (mi) Error

Subject 1 2000 0.38 1942.6 2.87% 328.1 4.62% 0.48 25.13 % 0.56 47.48 %
Subject 2 2000 0.38 1978.0 1.10% 296.8 3.95% 0.55 44.74 % 0.41 7.89 %
Subject 3 2000 0.38 1930.2 3.49% 297.4 11.22% 0.58 53.92 % 0.61 61.65 %
Subject 4 2000 0.38 1986.8 0.66% 269.1 4.57% 1.09 187.76 % 0.37 1.61 %
Subject 5 2000 0.38 1926.0 3.70% 281.6 4.22% 0.32 16.43 % 0.54 42.53 %
Subject 6 2000 0.38 1894.1 5.30% 297.9 6.03% 0.62 63.37 % 0.53 39.53 %
Subject 7 2000 0.38 1912.2 4.39% 297.0 1.66% 0.94 147.05 % 0.44 17.08 %
Subject 8 2000 0.38 1862.5 6.88% 270.3 6.79% 0.62 62.94 % 0.59 55.10 %
Subject 9 2000 0.38 1936.0 3.20% 298.2 5.63% 0.41 6.98 % 0.78 106.12%
Subject 10 2000 0.38 1940.3 2.99% 306.4 5.14% 0.49 29.86 % 0.56 46.40 %
Subject 11 2000 0.38 1932.0 3.40% 328.1 4.62% 1.06 178.84 % 0.35 7.63 %
Subject 12 2000 0.38 1910.7 4.47% 296.8 3.95% 0.51 33.94 % 0.28 25.35 %
Subject 13 2000 0.38 1932.1 3.40% 297.4 11.22% 0.36 4.83 % 0.94 147.91%
Subject 14 2000 0.38 1927.9 3.61% 269.1 4.57% 0.63 65.52 % 0.57 50.81 %
Subject 15 2000 0.38 1922.6 3.87% 281.6 4.22% 0.57 50.16 % 0.87 128.54%
Subject 16 2000 0.38 1948.2 2.59% 297.9 6.03% 0.28 25.67 % 0.41 7.63 %
Subject 17 2000 0.38 1847.9 7.61% 297.0 1.66% 0.58 52.09 % 0.78 106.55%
Subject 18 2000 0.38 1887.8 5.61% 270.3 6.79% 0.60 58.75 % 0.56 48.66 %
Subject 19 2000 0.38 1874.1 6.30% 298.2 5.63% 0.61 61.44 % 0.81 114.07%
Subject 20 2000 0.38 1939.4 3.03% 306.4 5.14% 1.08 183.57 % 1.09 186.79%

Avg. err 3.92% Avg. err 4.98% Avg. err 67.65% Avg. err 62.47%

Table 2.8: Traveled Distance Results from holder

racy, and has the lowest average error rate both in number of steps taken and the distance

traveled compared to commercially available, accelerometer-based step counters and apps.

31

(a) (b) (c)

(d) (e)

Figure 2.9: (a) Gray scale image, (b) detected edges, (c) correlation coefficient values, (d,e) feet
subimages, (f,g) shape context.

32

Chapter 3

Human Activity Classification from

Wearable Devices with Cameras

In this chapter, we use accelerometer and camera data from a smart phone, and focus on

the type of activities, which cannot be classified by just accelerometer data, and require

detection of objects in the environment from camera data. Without loss of generality, we

present experiments on differentiating between sitting on a sofa, sitting on a chair, and

walking through doorways. Only accelerometer data can be enough to detect walking, but

it is not enough to detect that the person is walking through a doorway, and thus changing

rooms. Similarly, camera data becomes necessary to detect whether the person sat on a sofa

or a chair. In our proposed approach, objects in images are detected by using an Aggregate

Channel Features (ACF)-based detector. Multi-class SVMs are trained to classify motion-

related activities, and detect approaching different objects. Overall precision and recall

rates of 95% and 89% are achieved, respectively.

The rest of this chapter is organized as follows: The proposed approach is described

in Section 3.1. Experimental results are presented in Section 3.2, and the chapter is

concluded in Section 3.3.

33

3.1 Methodology

Our proposed method employs both camera and accelerometer data obtained from a smart

phone. A flow diagram of the proposed approach is provided in Fig. 3.1. Images from

camera are used to (i) compute optical flow vectors, and (ii) perform object detection via an

ACF-based detector [121]. Different features are extracted from the accelerometer data to

obtain a 14D vector. Then, a 3D vector is obtained based on the y component of the optical

flow vectors, and concatenated to the 14D vector to obtain a 17D feature vector. A multi-

class SVM is trained and employed to differentiate between motion-related activities of

walking, sitting from standing position, standing from sitting position, and being immobile.

The ACF-based detector is trained to detect chairs, sofas and doors/doorways. It pro-

vides bounding boxes around the detected objects. The features obtained from these bound-

ing boxes together with the label describing the detected object type are saved as a vector.

These vectors are used to train another multi-class SVM to detect approaching a sofa, chair

or door. Then, a Hidden Markov Model (HMM) is built to be used in the final stage to

detect whether the person carrying the smart phone is sitting on a chair, sitting on a sofa

or walking through a door. More details about these steps are described in the following

subsections.

3.1.1 Feature extraction

Accelerometer data

A segment length of 10 frames is used for accelerometer data. Mean and mean of the

absolute values are used to measure the average acceleration. In addition, variance and

movement intensity are obtained from the accelerometer data. Movement intensity at time

t is
√
ax(t)2 + ay(t)2 + az(t)2, where ax(t), ay(t) and az(t) are the accelerations along the

x, y and z axes, respectively, at time t. Accelerometer data is transformed to the frequency

domain by using FFT, and main frequency and energy are obtained as described in [53].

34

Figure 3.1: The flow diagram of the proposed approach.

As seen in detail in Table 3.1, a 14D vector is obtained from the features obtained from the

accelerometer data.

Camera data

As for camera data, dense optical flow vectors are extracted from each frame. In our ap-

proach, rather than using both components of optical flow vectors, we only use the vertical

component for robustness. When both components are used, other people, passing in front

of the person wearing the camera, cause distractions.

First, an image is divided into nine regions. In each region, the average of vertical

components of flow vectors is computed, and the maximum valueMof among the 9 average

values is obtained. The mean, mean of absolute value and variance of Mof are calculated

as features, in a segment length of 5 frames, to get a 3D vector. This vector is concatenated

with the 14D vector from the accelerometer data to obtain a 17D feature vector to be used

in the classification of the activities of walking, sitting from standing position, standing

from sitting position, and being immobile.

35

In addition to the vertical optical flow components, other features are also extracted

from camera data. More specifically, an ACF-based detector is trained to detect sofas,

chairs and doors/doorways in images. The output is a bounding box around the detected

object. Areas and the y-coordinates of the centroid of the bounding boxes are extracted for

5 consecutive frames. A linear model is used to fit a line to these values over five frames,

and the parameters of these lines are saved to obtain a 4D vector. The label describing the

detected object type is added to this to obtain a 5D vector to be used in the classification of

approaching a sofa, chair or door.

Table 3.1: Description of different extracted features.

3.1.2 Classification

The 17D feature vector obtained from accelerometer data, and vertical components of op-

tical flow vectors is used to train a multi-class SVM to classify activities of walking, sitting

from standing position, standing from sitting position, and being immobile.

The 5D vector obtained from the outputs of ACF-based detector is used to train another

multi-class SVM to classify activities of approaching a chair, a sofa or a door. In addition,

an HMM is built involving four states, and 10 observations as seen in Fig. 3.2. The states

are (1) sitting on chair, (2) sitting on sofa, (3) walking through door, and (4) none. Both

classification results from the multi-class SVMs are combined to be used as the observation

in the HMM.

36

Figure 3.2: The built HMM.

3.1.3 Training

For training the two multi-class SVMs and the HMM, a 30min video is captured from a

subject wearing the smart phone as seen in Fig. 3.3. The subject performs a total of 193

activities consisting of sitting on a chair, sitting on a sofa, and walking through doors.

Figure 3.3: Experimental setup.

3.2 Experimental Results

Experiments have been performed with seven different subjects in an indoor environment.

During a period of about 10 min, each subject sits on a chair, sits on a sofa, and walks

through doors several times. More specifically, there are 100, 90, 80, 101, 88, 89 and 120

activities performed by the seven subjects. The smart phone is carried on a belt around

37

the waist, and the camera faces forward as seen in Fig. 3.3. The captured image size is

640× 480 pixels. The precision and recall rates are calculated by using the following defi-

nitions:

Precision =
tp

tp+ fp
, Recall =

tp

tp+ fn
,

where tp, fp and fn refer to the number of true positives, false positives and false negatives,

respectively.

The overall precision and recall values, across all seven subjects, for all three activity

types are plotted in Fig. 3.4. The precision and recall values for each subject can be seen

in Fig. 3.5. The variation of the precision and recall values can be seen in Fig. 3.6(a) and

3.6(b), respectively. Example images from different test videos showing the detection of

chairs, sofas and doorways by the ACF-based detector are shown in Figures 3.7 and 3.8.

Figure 3.4: The overall precision and recall values across all subjects.

Figure 3.5: The precision and recall values for each subject.

38

(a) (b)

Figure 3.6: Variation of the (a) precision, and (b) recall values.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Example images from a test video showing the detection of chairs (a-c), sofas (d-f) and
doorways (g-i).

3.3 Conclusion

In this chapter, we have presented a new approach, using accelerometer and ego-vision

data from a smart phone, for activity classification. We have focused on types of activities

that cannot be differentiated by just accelerometer data, since they are more complex, and

require context and detection of objects in the environment from camera data. Without loss

39

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Example images from another test video showing the detection of chairs (a-c) and
doorways (d-f).

of generality, we have presented results on differentiating between sitting on a sofa, sitting

on a chair, and walking through a door. The activity types can be increased by detecting

different types of objects in the scene, and modifying the HMM. The proposed method

achieves overall precision and recall rates of 95% and 89%, respectively.

40

Chapter 4

Human Activity Classification

Incorporating Egocentric Video And

Inertial Measurement Unit Data

This chapter studies a robust and autonomous activity classification method that leverages

data from multiple wearable sensor modalities to differentiate between activities, which

are similar in nature, with a level of accuracy that would be impossible by each sensor

alone. We employ egocentric camera data together with the data from four IMU sensors

on body, provided in the CMU Multi-Modal Activity (CMU-MMAC) Database [56]. In

this chapter, we propose a new model architecture, which incorporates Capsule Networks

(CapsNets) [122] for feature extraction. Our method, instead of using a single CapsNet,

employs multiple CapsNets for consecutive images, and then uses a convolutional LSTM to

build a recurrent CapsNet (RecCapsNet). The LSTM framework is employed both on IMU

data and egocentric camera data to capture the temporal aspect of actions. Without loss of

generality, the following classes have been extracted from the videos in the CMU-MMAC

dataset: cracking eggs, beating eggs, pouring oil, pouring cake mix/flour, stirring in a bowl

and using fridge. Example images from the ego-vision camera can be seen in Fig. 4.2. The

41

method resulted in very promising results, achieving overall recall and precision rates of

86.19% and 85.75%, respectively. We also present results of using each sensor modality

by itself, which show that the approach provides 19.47% and 39.34% increase in accuracy

compared to using only egocentric camera data and only IMU data, respectively. Since this

is an example of fine-grained classification, using multiple modalities provides a signifi-

cant increase in performance compared to single-modality results. We also performed a

comparison of using CapsNets versus VGG16 features, and detailed results are provided in

Sec.r̃efsec:exp. This approach can readily be extended to classify more activity types, by

detecting different types of objects in the scene.

4.1 Methodology

Figure 4.1: Details of the architecture.

We propose a new model architecture, shown in Fig. 4.1, which is based on CapsNets

42

and LSTM. The inputs to the network are egocentric camera images and IMU data. Cap-

sule Network has been introduced by Sabour et al. [122] to explore spatial relationships

between features, and it achieved state-of-the-art performance on the MNIST database. A

capsule is a group of neurons, and capsule outputs are in vector form. The length of the

vector corresponds to the detection probability of a feature, and the direction of the vector

corresponds to the state of the feature. Dynamic routing is used to determine the destina-

tion of a capsule’s output. In this chapter, instead of using a single image with the original

CapsNet, we propose a Recurrent CapsNet (RecCapsNet), which takes a sequence of im-

ages as input, and then implement a 2D Convolutional LSTM (convLSTM) [123] layer to

capture the temporal aspect.

(a) (b) (c) (d) (e) (f)

Figure 4.2: Example images of CMU-MMAC dataset. Columns (a) cracking egg, (b) beating eggs,
(c) pouring oil, (d) pouring a bag of cake mix, (e) stirring in a bowl, (f) using fridge.

First an image is sent to a ReLU convolutional layer containing 256 convolution kernels

with a stride of 1 and ReLU activation. Then, the output (20×20×256) is sent to 32 primary

capsules. This is done for 16 consecutive images in a video clip with 50% overlap. Each

primary capsule has 8 convolutional units. The next layer DigitCaps is 6× 16, having one

16 dimensional capsule for each of the six classes that we have. Since we are processing 16

consecutive frames, the output after DigitCaps layer is 6×16×16 (Fig. 4.1). We then apply

a ConvLSTM layer, followed by a fully connected (FC) layer for the analysis of video data.

On the other hand, IMU data (for again 16 consecutive time frames) is fed into a two-

layer LSTM model followed by a FC layer to extract feature vectors.

43

For the decoder part, we apply 16 sub-decoders to each image frame. Each sub-decoder

has the same structure with the decoder of the original CapsNet except the sigmoid output

is 1296 (36× 36). Given the ground truth label, the decoder regenerates a 16 frame image

sequence which has the same size with the image input. The description of different input

types, and details of the network architecture will be provided below.

4.1.1 Input Data

The network architecture takes an image sequence of F consecutive frames and IMU data

with the same length of F . In our experiments, F is 16. The image frame is 36 × 36,

and the IMU data vector has 36 components concatenated from the four IMU sensors in

the CMU-MMAC dataset. Each IMU sensor contributes nine entries from accelerometer,

gyroscope and magnetometer measurements.

4.1.2 Processing of IMU Data Sequence

As mentioned above, the IMU data features are extracted by a 2-layer LSTM. The first

layer has 512 units with return sequence, and the second layer has 128 units. For the first

layer LSTM for the IMU data, D = 512, N = 36, and t ∈ [1, 16]. The output of this layer

is [Ot=1, Ot=2, ..., Ot=16]. For the second layer LSTM, D = 128, N = 512, and t ∈ [1, 16].

The output of this layer is Ot=16. The LSTM layers are followed by a fully connected layer

having 512 neurons. The fully connected layer is added at this point in order to make the

IMU feature vector length the same as the length of image feature vectors, and also to let

both vectors have equal weights after concatenation.

4.1.3 Processing of Egocentric Video Data

Recurrent neural networks have been successfully used with time series data, and for human

activity detection using IMU sensors. In our approach, we use CapsNets on consecutive

44

image frames, and apply ConvLSTM to capsule vectors to propose a new RecCapsNet.

The Digit Capsule outputs are fed into a ConvLSTM to extract temporal features. This is

followed by a FC layer to have the features equally weighted as IMU data features. The

output of each of the ConvLSTM is of length 6× 16. The FC layer has 512 neurons.

4.1.4 Classification

Feature vector outputs for IMU and video data are concatenated to form a vector of size

1024, which is then fed to a FC layer with 256 neurons. This is followed by a softmax

classifier. The output of the model is the confidence score for each class proposal.

4.2 Experimental Results

For the experiments, we used the CMU-MMAC dataset, which contains data from multi-

modal sensors, including camera and IMU data, monitoring activity of subjects performing

cooking and food preparation tasks. In our experiments, we used the video data from the

egocentric camera view, and the wired IMU data. We down-sampled the IMU data to make

the measuring frequency the same with that of egocentric camera (30 Hz). Images are

resized to a size of 36 × 36, and processed in groups of 16 frames with 50% overlapping.

Then, we aligned/synchronized the IMU with camera data. Without loss of generality, the

following classes were extracted from the videos: cracking eggs, beating eggs, pouring oil,

pouring a bag of cake mix/flour, stirring in a bowl and using fridge. Example images from

the ego-vision camera can be seen in Fig. 4.2. The system was trained on 8 videos, and

tested on activities extracted from one long video.

We also performed a comparison of our method of using RecCapsNets versus using

VGG16 features. In other words, we still used both camera and IMU data, but instead of

employing RecCapsNet, we extracted image features from 16 consecutive image frames,

via convolutional layers of CNN-based VGG16 [124] without the top layers. The results

45

are presented in Table 4.1. As can be seen, using our RecCapsNet achieves an average

accuracy of 84.4%, and increases accuracy by 18.8% compared to using VGG16 features.

Moreover, to provide comparison and show the improvement obtained by using mul-

tiple sensor modalities, we also obtained results by using each sensor modality by itself,

namely by using only IMU data and only camera data. As can be seen in Table 4.1, the ap-

proach provides 39.34%, 25.62% and 19.47% increase in accuracy compared to using only

IMU data, only egocentric camera data with VGG16 features and only egocentric camera

data with CapsNet features, respectively. Since this is an example of fine-grained classifi-

cation, using multiple modalities provides a significant increase in performance compared

to single-modality results.

Spriggs et al. [54] and Soran et al. [125] also used the CMU-MMAC dataset, and re-

ported accuracies of 57.8% and 54.62%, respectively. However, a direct comparison would

not be commensurate, since they either employ hand-crafted features and different sets of

sensor modalities, including static cameras [125], or the frame and class annotations are

different.

Sensor Modality Method Accuracy
IMU only LSTM 45.06%

Camera only
VGG16 58.78%
CapsNet 64.93%

Camera and IMU
VGG16 & LSTM 65.60%

RecCapsNet & LSTM 84.40%

Table 4.1: Accuracy rates for different modalities and methods

The confusion matrix obtained with the method is provided in Fig. 4.3, which also

includes the number of instances of each action. For instance, in the test video, there were

121 instances of 16-frame video clips of using the fridge, and 387 instances of 16-frame

video clips of stirring in a bowl. The recall and precision values for each of the six activity

classes are shown in Fig. 4.4 and 4.5, respectively. It is not surprising that “using the

fridge” class has the highest precision and recall among the others, since it is the furthest in

46

the activity space from the other activities of dealing with ingredients and bowls. “Stirring

in a bowl” is sometimes confused by “pouring a bag of cake mix/flour”, since stirring comes

after pouring, and images seen by the camera are similar for these actions.

Figure 4.3: The confusion matrix showing the actual versus predicted classes together with the
number of instances of each action.

Figure 4.4: The recall values for the activity classes.

Figure 4.5: The precision values for the activity classes.

47

4.3 Conclusion

We have presented a robust and autonomous activity classification method that leverages

data from multiple sensor modalities to differentiate between activities, which are similar in

nature, with a level of accuracy that would be impossible by each sensor alone. The differ-

ent modalities are egocentric video and IMU sensor data from wearable devices. We have

a new model architecture, which incorporates Capsule Networks (CapsNets) for feature

extraction. Instead of using a single CapsNet, multiple CapsNets are employed for consec-

utive images, and then a convolutional LSTM is used to build a recurrent CapsNet. The

LSTM framework is employed both on IMU data and egocentric camera data to capture the

temporal aspect of actions. Without loss of generality, results have been presented for clas-

sifying activities of cracking eggs, beating eggs, pouring oil, pour bag of cake mix/flour,

stirring in a bowl and using fridge. The method have provided promising results achieving

overall recall and precision rates of 86.19% and 85.75%, respectively. This approach can

be readily extended to classify more activity types, by detecting different types of objects

in the scene.

48

Chapter 5

Autonomous Human Activity

Classification from Wearable

Multi-Modal Sensors

This chapter studies the usage of egocentric video, IMU data and recurrent Capsule Net-

works for activity classification. The work proposed in this chapter is different and im-

proved compared to our previous work [126] in multiple ways including the following: (i)

for the work in [126], we used manually set values for all the network parameters. In con-

trast, in this chapter, we propose a GA-based approach to autonomously and systematically

set various network parameters, rather than using manual and empirical settings; (ii) the

experiments in [126] were performed for only 6-label classification. In this chapter, we

provide a much more comprehensive evaluation by performing classification for 9 as well

as 26 activities; (iii) in this chapter, we provide a more detailed description of The method

and a comparison between the performances obtained with the manually preset network

parameters, and the parameters determined by our proposed GA-based approach.

Experiments have been performed on the CMU-MMAC dataset to perform 9- and 26-

label classification, and The method, using autonomously set network parameters, has pro-

49

vided very promising results, achieving overall accuracies of 86.6% and 77.2%, respec-

tively. We also used each sensor modality alone, and obtained their individual accuracies,

showing that The approach, combining both modalities, provides increased accuracy com-

pared to using only egovision data and only IMU data.

The rest of this chapter is organized as follows: The approach is described in detail in

Section 5.1. Experimental results are presented in Section 5.2, and the chapter is concluded

in Section 5.3.

5.1 Methodology

We present a new model architecture to process first-person, also known as egocentric,

images and IMU data. The architecture can be seen in Fig. 5.1. It is composed of our

proposed recurrent CapsNet (for processing images), an LSTM network (for processing

IMU data), and fully connected layers. In addition, we also propose and apply a GA-

based approach to autonomously and simultaneously optimize multiple parameters of our

network architecture. These parameters are shown in parentheses with red color in Fig. 5.1.

For instance, the parameters for the fully connected layers and the primary capsules are

examples of the parameters autonomously set by our proposed approach. More details

about these parameters will be provided in Sec. 5.1.1.

Sabour et al. [122] introduced the Capsule Networks (CapsNets) to explore spatial

relationships between features, and reported state-of-the-art performance on the MNIST

database. CapsNets [122] were used for image classification on individual images, whereas

our goal is to perform fine-grained activity classification from video data. Thus, in this

chapter, instead of using a single image with the original CapsNet, we propose a Recurrent

CapsNet (RecCapsNet), which takes a sequence of images as input. We implement a 2D

Convolutional LSTM (convLSTM) [123] layer to extract features and capture the temporal

aspect. For robustness, we use multiple digit/class layers instead of using only a single digit

50

layer as was done in [122]. In order to prevent gradient vanishing, we remove the squash

function for digit layers and implement ReLu activation function instead.

As seen in Fig. 5.1, 16 consecutive images are passed through a 2D convolutional layer

separately. The size of each input image is 36×36. Then, the output for each image is

sent to multiple primary capsules, the number of which is determined by our GA. When 16

consecutive images are formed, 50% overlap is used throughout the video. The number of

convolutional units for each primary capsule is also determined by the GA. The output from

the primary capsule layer is then sent through two digit/class layers, whose parameters are

set by the GA. We then apply a Convolutional LSTM layer, followed by a fully connected

(FC) layer, for the analysis of the egocentric video data.

For the decoder part, we apply 16 sub-decoders to each image frame. Each sub-decoder

has the same structure with the decoder of the original CapsNet except the sigmoid output

is 1296 (36× 36). In other words, the decoders are implemented to generate the same size

as the input images. Given the ground truth label, the decoder regenerates a 16 frame image

sequence which has the same size as the image input.

As for the IMU data, similar to the images, data from 16 consecutive time frames are

used. Each of the 16 IMU data vectors has 36 components obtained by concatenating data

from the four IMU sensors. Each IMU sensor contributes nine entries from accelerometer,

gyroscope and magnetometer measurements. The time stamps are provided for camera and

IMU data in the CMU-MMAC dataset. To align the camera and IMU data, for a given

camera image, the IMU time stamp that is closest to the camera time stamp is found. The

IMU data is fed into an LSTM model to extract feature vectors, which are then sent to the

FC layer(s). The outputs of the fully connected layer for video data and the fully connected

layer for the IMU data are concatenated, and the concatenated features are then fed into

another FC layer for classification. The number of neurons for this FC layer is also set by

the GA, and it is denoted by Para FC merge and shown in red in Fig. 5.1. This FC layer

is followed by a softmax classifier. The output of the model is the confidence scores for

51

each class proposal.

Next, in Sec. 5.1.1, we will describe the details of the algorithm that we propose to

refine the various parameters of this architecture by using a Genetic Algorithm.

Figure 5.1: Details of The architecture.

5.1.1 Autonomously and Simultaneously Refining the Network Param-

eters

The overall structure of The method to refine the network parameters is shown in Fig. 5.2.

In this approach, a GA is used to make a decision from a set of discrete choices. The

decisions by the GA include the choice of the activation function and the optimizer; whether

or not to use batch normalization, dropout and max-pooling; the number of convolutional

layers and dense layers; the kernel size and stride, the number of LSTM units, etc. The

52

Table 5.1: Parameters Autonomously Chosen by the GA

optimizers {“adam”, “rmsprop”, “adagrad”, “adadelta”}
activation functions {“relu”, “leaky relu”, “sigmoid”, “tanh”}
batch normalization {True, False}
dropout {True, False}
max pooling {True, False}
kernel size {3, 6, 9}
kernel stride {1, 2, 3}
number of conv filters {32, 64, 128 ... 512}
number of dense neurons {32, 64, 128, 256}
number of lstm units {16, 32, 64 ... 256}
dimension of capsules {2, 4, 8, 16}
number of primary channels {16, 32, 64}
number of conv layers {3,6}
number of dense layers {1,3}
number of LSTM layers {1,3}

complete set of parameters together with the discrete set of values that they can take are

shown in Table 5.1.

Figure 5.2: The structure of The Genetic Algorithm

The parameter set of the network i for the GA has the following form:

pGAi =[prmconv
i , prmPC

i , prm
LSTMimg

i , prm
FCimg

i ,

prmLSTMIMU
i , prm

FC0
IMU

i , prm
FC1

IMU
i ,

prm
FCmerge

i , prmO
i]

i ∈ {1, 2, ..., nm}

(5.1)

where PC and FC denote primary capsule and fully connected layer, respectively, nm is

53

the number of network models in the population and

prmconv
i =[1/0 (conv. lyr exists or not), no. of filters,

kernel size, stride, activation func.,

1/0 (for batch norm.)],

i ∈ {1, 2, ..., nm},

(5.2)

prmPC
i =[capsule dim., num of chan.,

kernel size, stride]

i ∈ {1, 2, ..., nm},

(5.3)

prm
LSTMimg

i =[1/0 (LSTM lyr exists or not), no. of units,

activation func.]

i ∈ {1, 2, ..., nm},

(5.4)

prm
FCimg

i =[1/0 (dense lyr exists or not), no. of neurons,

activation func., 1/0(for dropout)]

i ∈ {1, 2, ..., nm},

(5.5)

prmLSTMIMU
i =[1/0 (LSTM lyr exists or not), no. of units,

activation func.]

i ∈ {1, 2, ..., nm},

(5.6)

54

prm
FC

IMU0/1

i =[1/0 (dense lyr exists or not), no. of neurons,

activation func., 1/0(for dropout)]

i ∈ {1, 2, ..., nm},

(5.7)

prm
FCmerge

i =[1/0(dense lyr exists or not), no. of neurons,

activation func., 1/0(for dropout)]

i ∈ {1, 2, ..., nm},

(5.8)

prmO
i =[type of optimizer]

i ∈ {1, 2, ..., nm}.
(5.9)

Initial Population

The first generation of the networks,N1, is generated randomly such thatN1 = {N1, N2, ..., Nnm},

where nm is the number of models. This is done by choosing the values of parameters, in

(5.2) through (5.9), randomly, from the possible choices. The value of nm was set to be 10

in our experiments.

Evaluation

Each generated network model Ni (i ∈ {1, ..., nm}) is evaluated by the fitness function

f(Ni), which is a measure of the accuracy of each model. Models with better performance

will return higher values. Thus, E = {E1, E2, ..., Enm}, will hold the fitness scores Ei =

f(Ni), where i ∈ {1, 2, ..., nm}.

55

Selection

In the selection part, t-many top-ranked models are selected from the sorted(E), and r-

many models are selected randomly from the rest of the network models. Then, d-many

models are dropped in order to prevent over-fitting and getting stuck at a local optimum.

The remaining selected models are the parent models (P), which will be used to create new

models for the next generation.

Crossover and Mutation

Crossover is applied to generate nm-many child network models from the parents. As

opposed to always choosing two parents randomly from the parent pool, we associate a

counter CP with each parent P , and initialize it to zero. This counter is incremented by one

each time a parent is used for crossover. First, two parents are selected randomly from the

t+ r− d many parents. A new ‘child’ network is generated from the parents via crossover,

and the counters of the parents are incremented by one. Then, two parents, whose counter

is still zero, are selected randomly from the parent pool. Another network is generated

from them via crossover, and the counters of the parents are incremented. If there is only

one network model left with counter equal to zero, and the number of children is still less

than nm, then this model is chosen as one of the parents, and the other parent is chosen

randomly from the rest of the models who have a counter value of one. If there are no more

parents left with counter equal to zero, and the number of children is still less than nm, then

two parents, whose counter is one, are picked randomly, and their counter is incremented

to two after crossover. This process is repeated until the number of children models reaches

nm.

The crossover between parent models a and b is performed, as illustrated in Fig. 5.3, by

using a single-point crossover. As seen from equations (5.1) through (5.9), there are a total

of 33 parameters in each parent vector. An index number ind is picked randomly between

1 and 33. Parameters to the left of ind from the parent a vector and to the right of ind from

56

the parent b vector are selected to compose the child vector. In other words, parameters 1

through ind, and ind+1 through 33 are selected from parents a and b, respectively, to form

the child vector.

After all the nm-many child networks are obtained via crossover, the mutation is per-

formed. From each vector, k-many indices are chosen randomly to perform mutation. The

values of the parameters corresponding to the chosen indices are randomly changed to one

of the possible choices shown in Table 5.1. For instance, if the random number corresponds

to the dimension of the capsules, then its value is chosen randomly from {2, 4, 8, 16}. The

value of k was chosen to be 3 in our experiments.

Figure 5.3: Crossover process for the GA

Then, the entire process is repeated by using this new population. The pseudo code

for GA-based parameter setting is provided in Algorithm 1. After the parameters are set

autonomously by the GA-based approach, the network model is generated as described in

the pseudo code in Algorithm 2.

Algorithm 1 The Genetic Algorithm
Randomly initialize nm models for population N1.
while ith iteration do

Train and evaluate N i
1, N

i
2, ..., N

i
nm

by fitness function f(N i
j) and obtain scores E.

Select t top scored networks Ntop = N i(argmax(E))
Randomly choose r networks Nrand from the rest of population N i

Merge Ntop and Nrand and then drop d networks (Ndrop)
Form Nparent = (Ntop

⋃
Nrand)−Ndrop

Choose parents fromNparent for crossover and generate nm new networks and add them
to N i+1

Perform mutation on k-many elements of vectors in N i+1.
end

57

Algorithm 2 Network model generation from the GA-set parameters
Input: Genetic representative vector L; vector prototype pGA =
[prmvideo, prmIMU , prmmerge] shown in eq.(1);
prmvideo = [prmconv

i , prmPC
i , prm

LSTMimg

i , prm
FCimg

i]

prmIMU = [prmLSTMIMU
i , prm

FC0
IMU

i , prm
FC1

IMU
i]

prmmerge = [prm
FCmerge

i]
Input: video input shape Sv; IMU input shape SIMU ;
Output: output model M

inputvideo ← Placeholder(shape = Sv)
for i = 0 to length(inputvideo)− 1 do

offset← 0
Mi ← Sequential(inputvideo[i])
for idx = 0 to length(prmvideo) do

Build layer Lidx from L[offset : offset+ len(prmvideo[idx])]

Mi
+←− Lidx

offset+ = length(prmvideo[idx])

end
outputivideo = Mi(input

i
video)

end
inputIMU ← Placeholder(shape = SIMU)
MIMU ← Sequential(inputIMU)
for idx = 0 to len(prmIMU) do

Build layer Loffset from L[offset : offset+ length(prmIMU [idx])]

MIMU
+←− Lidx

offset+ = length(prmIMU [idx])

end
outputIMU = MIMU(inputIMU)
obtain concatenate layer Lconcat from outputvideo and outputIMU

Mmerge ← Sequential(Lconcat)
for idx = 0 to length(prmmerge) do

Build layer Lidx from L[offset : offset+ len(prmmerge[idx])]

Mmerge
+←− Lidx

offset+ = len(prmmerge[idx])

end
outputmerge = Mmerge(Lconcat)
return Model([inputvideo, inputIMU], outputmerge)

58

5.2 Experimental Results

5.2.1 Experimental Setup

We have used the CMU-MMAC dataset [56] for the experiments. This dataset contains

data from multi-modal sensors monitoring human subjects preparing food. A kitchen was

built and 25 subjects were recorded cooking five different recipes, namely brownies, pizza,

sandwich, salad, and scrambled eggs. The sensor modalities used for data collection in-

clude three high-resolution static cameras, two low-resolution static cameras, one wearable

camera, five microphones, and IMUs. In our experiments, we used the egocentric (egov-

ision) camera data (from the wearable camera) and the wired IMU data. We resized the

image frames from the camera to 36×36 pixels, and processed 16 consecutive frames each

time with 50% overlapping. We down-sampled the IMU data to make the measuring fre-

quency the same with the egocentric camera (30 Hz). Then, we synchronized/aligned the

IMU data with camera data.

We performed two sets of experiments with different number of classes. More specif-

ically, we performed 9-class labeling and 26-class labeling by using 9 and 26 different

activity classes, respectively. The activities used for the 9-label classification are:

A9= {‘fridge(open or close)’, ‘taking/beating eggs’, ‘pouring into big bowl’, ‘pouring into

cup’, ‘stirring in a bowl’, ‘taking bowl’, ‘taking baking pan’, ‘taking measuring cup’,

‘twisting cap (on or off)’}.

Example images for these nine classes can be seen in Fig. 5.9.

The activities used for the 26-label classification are:

A26 = {‘closing fridge’, ‘cracking egg’, ‘opening brownie bag’, ‘opening fridge’, ‘pouring

big bowl into a pan’, ‘pouring brownie bag into a bowl’, ‘pouring oil into a cup’, ‘pouring

water into a bowl’, ‘pouring water into a cup’, ‘putting pan into oven’, ‘putting cooking

spray/pam into cupboard’, ‘spraying cooking oil’, ‘stirring in a bowl’, ‘switching on’, ‘tak-

ing baking pan’, ‘taking bowl’, ‘taking brownie box’, ‘taking eggs’, ‘taking fork’, ‘taking

59

big cup’, ‘taking small cup’, ‘taking cooking spray’, ‘twisting cap off’, ‘twisting cap on’,

‘walking to the counter’, ‘walking to the fridge’}.

As can be seen, especially for the 26-class case, the activities involved are very close in

the ‘activity space’, and this fine-grain classification is a very challenging problem.

A total of 10 videos from subjects 07, 08, 09, 12 and 13 (2 videos per subject) have been

used for training and testing. Videos from each subject were randomly divided so that 70%,

20%, 10% of the samples were allocated for training, validation and testing, respectively.

We also compared our results with two other works [54][125], which also use the same

CMU-MMAC dataset. All the results are presented below in Section 5.2.2.

5.2.2 Results and Discussion

As mentioned above, we performed 9-class and 26-class labeling in our experiments. In

each scenario, we first performed classification with manually preset network parameters,

and then with the parameters determined autonomously by our GA-based approach de-

scribed above. Preset parameters were obtained by choosing the parameter configuration

that resulted in the best performance after multiple trials. For both 9-class and 26-class

labeling, the preset parameters (corresponding to equations (1) through (9)) are:

[1, 256, 9, 1, 0, 0, 8, 32, 9, 2, 1, 256, 0, 1, 128, 0, 0, 1, 128, 0, 1,

128, 0, 0, 1, 32, 0, 0, 0, 128, 0, 0, 0]

(5.10)

The parameters determined autonomously by our proposed GA-based approach are:

[1, 32, 6, 3, 0, 1, 16, 32, 3, 1, 0, 32, 0, 0, 128, 1, 0, 0, 64, 1, 1,

64, 0, 0, 0, 256, 1, 0, 0, 32, 0, 0, 0]

(5.11)

60

and

[1, 64, 9, 3, 0, 1, 8, 64, 6, 2, 0, 256, 1, 0, 64, 1, 0, 0, 64, 1, 1,

256, 0, 0, 0, 128, 1, 0, 0, 64, 0, 0, 0]

(5.12)

for 9-class and 26-class classification, respectively. For instance, in both cases, the GA-

based approach results in less number of filters for the convolutional layers (32 and 64

instead of 256), and less number of neurons for the fully connected merge layer. The overall

accuracies from these experiments are summarized in Table 5.2, wherein the accuracy is the

ratio of all correctly classified instances to the total number of instances. As can be seen,

when we use our proposed GA-based approach to autonomously set the various parameters

of the network, this provides higher accuracy for both 9-class and 26-class labeling. Thus,

the remainder of the results are presented for when the parameters are set with our GA-

based approach.

Table 5.2: Overall accuracies for the 9- and 26-class labeling with and without using The GA-based
parameter setting

9-class 26-class
Preset GA-based Preset GA-based

parameters parameters parameters parameters
Accuracy 84.2% 86.6% 75.7% 77.2%

Figure 5.4: The recall values for each of the 9 classes.

The recall and precision values for each class, for the 9-class case, are shown in Figures

5.4 and 5.5, respectively. For the 26-class case, the recall and precision values for each

61

Figure 5.5: The precision values for each of the 9 classes.

Figure 5.6: The recall values for each of the 26 classes.

Figure 5.7: The precision values for each of the 26 classes.

class are shown in Figures 5.6 and 5.7, respectively. The confusion matrices for the 9-class

and 26-class activity classification are shown in Figures 5.8(a) and 5.8(b), respectively. As

can be seen from the precision-recall graphs and the confusion matrices, when subjects

interact with larger objects, and subject movements are faster, higher accuracy is achieved

compared to the slower movements and interacting with smaller objects. For instance, it

is harder to detect ‘twisting cap on’ and ‘twisting cap off’ actions, since the cap is always

occluded by hand in the camera view. As another example, actions such as ‘cracking egg’

62

(a) 9-class labeling

(b) 26-class labeling

Figure 5.8: Confusion matrices showing the correct versus predicted classes together with the
number of instances of each activity for (a) 9-class and (b) 26-class activity classification.

are also harder to classify, since the egg is much smaller than the bowl.

In addition, as expected, higher overall precision and recall rates are achieved for 9-

class labeling, since activities are much closer to each other and harder to differentiate for

the 26-class labeling case. In Fig. 5.10, we show example images for the activities that

are confused with each other in the 26-class labeling case (based on the confusion matrix

in Fig. 5.8(b)). These images illustrate once more the difficulty of performing very fine-

grained activity classification. The first row shows taking a small cup (on the left) vs. big

cup (on the right). The second row shows walking to the fridge (on the left) vs. closing

the fridge (on the right), and finally the third row shows pouring into pan (on the left) vs.

putting the pan into the oven (on the right). As can be seen, these are very similar looking

activities, and The approach still provides very promising results for the 26-class labeling.

More discussion and comparison will be provided below.

After setting the various network parameters by our GA-based approach, we then per-

formed a comparison of our proposed Rec-CapsNets method with using VGG16 features.

63

For this comparison, instead of employing The RecCapsNet, we extracted image features

from 16 consecutive image frames by using the convolutional layers of the CNN-based

VGG16 [124] without the top layers. We also used CapsNet on individual frames. We

used the same dataset splitting, described above, for all compared methods. The results are

summarized in Table 5.3 for 9-label classification. As can be seen, using our proposed Rec-

CapsNet provides a higher accuracy than using the VGG16 features. Moreover, to show

the improvement provided by using multiple sensor modalities, we also obtained results by

using each sensor modality by itself, namely by using only IMU data and only camera data.

As can be seen in Table 5.3, The approach provides 29.07%, 20.29% and 19.16% increase

in accuracy compared to using only IMU data, only egocentric camera data with VGG16

features and only egocentric camera data with CapsNet features, respectively.

The above comparison was performed for 26-label classification as well, and the results

are summarized in Table 5.4. Similar to the 9-class case, using our proposed RecCapsNet

together with LSTM on IMU data provides a higher accuracy than using the VGG16 fea-

tures. In addition, The approach provides 28%, 19.5% and 25.2% increase in accuracy

compared to using only IMU data, only egocentric camera data with VGG16 features and

only egocentric camera data with CapsNet features, respectively. For Tables 5.3 and 5.4,

the parameters used for each approach are as follows:

LSTM (for IMU data): LSTM (128)→ LSTM(64)→

FC(128)→ FC(64)

VGG16: parameters from [124]

CapsNet: parameters from [122]

For The method (in Tables 5.3 and 5.4), we used the parameters in equations (5.11) and

(5.12), respectively, which were autonomously set by our GA-based approach.

Since this is fine-grained classification, using multiple modalities provides a significant

increase in performance compared to single-modality results.

64

We also compared our results with two other works [54][125], which also use the same

CMU-MMAC dataset. Soran et al. [125] does not use IMU data, and either employ ego-

centric camera data or combine egocentric camera data with static camera data. From only

the egocentric camera data, Soran et al. [125] report an accuracy of 37.92% for 28 classes.

With our approach, when we exclude the IMU data, we obtain an accuracy of 67.48% and

52% for 9-class and 26-class labeling, respectively. Thus, The approach provides much

higher performance.

Spriggs et al. [54], on the other hand, report an accuracy of 57.8% over 29 classes when

using IMU data and egocentric camera data together. Our accuracy over 26 classes listed

in 5.8(b) is 77.2%. In order to make the comparison more commensurate, we performed an

additional experiment. More specifically, we have trained and tested our proposed method

with the same 29 classes used in [54]. The accuracy we obtained is 83.03% for the 29-class

labeling. These results are summarized in Table 5.5.

Overall, our proposed method provides a significant improvement without relying on

the static cameras watching the targets, which could also be important to alleviate the pri-

Table 5.3: Accuracy rates from different modalities and approaches for 9-label classifica-
tion

Sensor Modality Method Accuracy
IMU only LSTM 57.57%

Camera only
VGG16 66.35%
CapsNet 67.48%

Camera and IMU
VGG16 & LSTM 82.97%

RecCapsNet & LSTM (Proposed) 86.64%

Table 5.4: Accuracy rates from different modalities and approaches for 26-label classifica-
tion

Sensor Modality Method Accuracy
IMU only LSTM 49.2%

Camera only
VGG16 57.7%
CapsNet 52%

Camera and IMU
VGG16 & LSTM 74.6%

RecCapsNet & LSTM (Proposed) 77.2%

65

vacy concerns. In addition, using The GA-based approach not only provides a way to

systematically set the network parameters, but also improves the performance further com-

pared to using the manually set parameters.

Table 5.5: Comparison of different approaches

Method Sensor Modality No. of classes Accuracy
Soran et al. [125] ego. cam. 28 37.92%

Ours ego. cam 26 52%
Ours ego. cam & IMU 26 77.2%

Spriggs et al. [54] ego. cam & IMU 29 57.8%
Ours ego. cam & IMU 29 83.03%

5.3 Conclusion

We have presented a robust and autonomous method to perform fine-grain activity classi-

fication by leveraging data from multiple sensor modalities, more specifically egocentric

video and IMU sensor data from wearable devices. In contrast to many CNN-based ap-

proaches, we have proposed to use a capsule network to obtain features from egocentric

video data. Instead of using a single CapsNet, multiple CapsNets are employed for con-

secutive images, and then a convolutional LSTM is used to build a recurrent CapsNet. The

LSTM framework is employed both on IMU data and egocentric camera data to capture the

temporal aspect of actions, which span a time window. Moreover, we proposed a GA-based

approach to autonomously and systematically set the various parameters of our network ar-

chitecture. It has been shown that using The GA-based approach increases the accuracy

compared to using the manually set parameters. Results have been presented for 9-label,

26-label and 29-label classification. The method has provided promising results, achieving

an overall accuracy of 86.6% 77.2%, and 83.03% for 9-label, 26-label and 29-label classifi-

cation, respectively. This approach can be readily extended to classify more activity types.

As future work, we will incorporate a generative adversarial network-based approach to

increase the range of parameters that can be chosen autonomously.
66

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
(a) (b) (c)

Figure 5.9: Example images of the 9 activity classes from the CMU-MMAC dataset. Rows: (1)
using fridge, (2) taking eggs, (3) pouring into big bowl, (4) pouring into a measuring cup, (5) stirring
in a big bowl, (6) taking bowl, (7) taking baking pan, (8) taking measuring cup, (9) twisting cap (on
or off). Columns (a), (b) and (c) show images from the beginning, middle and end of each activity.

67

(1)

(2)

(3)

Figure 5.10: Examples images of challenging cases causing confusion. Rows: (1) taking a small
cup (on the left) vs. big cup (on the right), (2) walking to fridge (on the left) vs. closing fridge (on
the right), (3) pouring into pan (on the left) vs. putting the pan into oven (on the right).

68

Chapter 6

Efficient Human Activity Classification

From Egocentric Videos Incorporating

Actor-Critic Reinforcement Learning

This chapter studies a novel approach to significantly reduce the computational cost of

human activity classification from egocentric videos while maintaining the accuracy at the

same level. We leverage the actor-critic model of RL, and apply it to optical flow data

to determine how to move a bounding box in x and y directions to maximize the reward,

and find an optimal region of interest. The bounding box is used for clipping a portion

of the image. We also propose to use one shallow and one deeper convolutional neural

network to process the original image and the clipped image region, respectively. This

overall proposed architecture will henceforth be referred to as the Deep-Shallow Network.

We compared our method with another approach, using 3D convolutional networks for

activity recognition, on the recently released Dataset of Multimodal Semantic Egocentric

Video. The results will be presented in Sec. 6.2.

69

6.1 Methodology

The overall Deep-Shallow Network, shown in Fig. 6.1, is composed of a shallow network,

a deeper network and an image clipper. Both shallow and deep feature extractors are 3D

convolutional neural networks (CNNs). The shallow feature extractor takes the original

images as input, and uses relatively larger kernels and fewer layers to extract environment

features from the larger original image. On the other hand, the deep feature extractor takes

the clipped image regions as input, and uses smaller kernels to extract activity features. The

details of the shallow and deep network models can be seen in Fig. 6.2.

Figure 6.1: Overall structure of the proposed Deep-Shallow Network.

The image clipper is trained based on the actor-critic model of RL. The input of the

actor-critic model is the optical flow data extracted from the original images. Extracted

features from the shallow and deep networks are concatenated, and followed by fully con-

nected layers to obtain classification results.

As a result of reducing the complexity of the network structure, and only processing the

regions of interest with a deep network, the proposed Deep-Shallow Network can signifi-

70

Figure 6.2: Deep and shallow network model details.

cantly increase the processing speed, while maintaining the same level of accuracy with a

state-of-the-art 3D CNN network.

6.1.1 Clipper Model Trained with Deep Reinforcement Learning

The main goal of the proposed approach is to reduce the computational complexity without

sacrificing accuracy. A deep reinforcement learning (DRL)-based approach is adopted in

this work to train the image clipper, which determines the location of the region of interest

by moving a fixed-size bounding box. The height and width of the bounding box is half

of the original image size. We build a standard reinforcement learning [83] setup up to

derive the correlation between each state-action pair (s, a) of the system under control and

its value function Q(s, a) in discrete decision epochs. At each decision epoch tk of the

processing, the agent, i.e. the video frame at tk, is at state sk, and performs inference using

deep neural network to select action ak according to the policy π. We define the control

71

actions as (∆x,∆y) with real values, which represent offsets of the bounding box in x and

y directions, respectively. Since our problem has continuous output space, an actor-critic-

based DRL [81] is adopted. Under a certain policy π, the value of Q(s, a) estimates the

accumulated discounted reward of each state-action pair:

Q(s, a) = E(Σ∞k=0λ
krk(sk, ak)|s0 = s, a0 = a)) (6.1)

where rk is the total reward observed at decision epoch tk. To accelerate learning, and

avoid oscillations or divergence in the parameters, we employ an experience replay and

target network [84]. The experience replay updates the weights of the target network θ′

based on learned network weights θ by:

θ′ = τθ + (1− τ)θ′, τ � 1 (6.2)

The actor model is a feed-forward neural network composed of three fully-connected

hidden layers with rectified linear units (ReLU) as the activation function. It is used to

predict the optimal action based on the current state St. The number of neurons in fully

connected hidden layers are 64, 128 and 128, respectively. The output layer size is 2 pro-

viding the horizontal and vertical offsets for the bounding box.

The critic model is another feed-forward neural network that evaluates the state and

action pair, and the evaluation is used by the actor model to update its control policy in par-

ticular gradient direction. The critic model has two hidden layers. The first layer contains

two separate fully-connected structures and the number of hidden neurons in each is 32.

The addition of outputs from the first hidden layer is fed into the second layer which has

64 hidden neurons. The inputs of the critic model are St and At, and the output is a single

value Q(St,At). The actor-critic framework is shown in Fig. 6.3.

During training, the actor model is trained using pair data (St,At) to predict the optimal

action At based on current agent state St. Next agent state St+1 is calculated through

72

environment based on At and is used to predict optimal At+1 by actor model. The critic

model evaluates the resulting {St+1,At+1} pair by predicting a Q-value to fine-tune action

prediction. Therefore, the weights in actor model are updated by the gradient between actor

and critic model, using chain rule dQ/dWactor = dQ/dWcritic × dWcritic/dWactor. Wactor

and Wcritic indicate the weights of actor and critic models, respectively.

Figure 6.3: Actor-critic based clipper model.

Example images from four different egocentric videos are shown in Fig. 6.4 together

with the bounding boxes placed via the actor critic model. The first, second and third rows

show frames (t − 10), t and (t + 10), respectively. As can be seen, the box placed by the

actor-critic model moves inside the image to determine a focus region of interest.

Figure 6.4: Examples showing the autonomously placed bounding boxes. 1st and 2nd rows show
frames (t-10) and t, respectively.

73

6.2 Experimental Results

We compared our proposed Deep-Shallow network with a commonly used 3D CNN [74],

which will be referred to as C3D. We have used a recently released dataset called Dataset of

Multimodal Semantic Egocentric Video (DoMSEV) [127]. DoMSEV contains 80 hours of

egocentric video covering a wide range of activities. The videos were recorded using either

a GoPro Hero camera or a built setup composed of a 3D Inertial Movement Unit (IMU) at-

tached to the Intel Realsense R200 RGB-D camera. The activities performed while record-

ing include walking, running, standing, browsing, driving, biking, eating, cooking, eating,

observing, in conversation, playing, and shopping. We selected 11 videos (8 Tourism and 3

Daliy life videos), and five activities (walking, running, standing, in conversation, browsing)

as labels. We segment the videos into video clips of 60 frames with 50% overlapping. Then,

we randomly separate 80% of data for training and 20% for testing. 20% of the training

data is used for validation. The curves of training and validation loss of our Deep-Shallow

model are shown in Fig. 6.5. The loss and reward curves of the actor-critic-based clipper

model are shown in Fig. 6.6 and Fig. 6.7, respectively.

Figure 6.5: Deep-Shallow network training loss.

As mentioned above, we compared the performances of the method and the traditional

C3D in terms of speed and accuracy. For all the video clips (60 frame duration) in one
74

Figure 6.6: Actor model training loss.

Figure 6.7: Actor model training reward.

video, we measured how long it takes to process them, and took the average. As shown

in Table 6.1, the average processing time per clip is 906 ms for C3D, while the average

processing time per clip is 576 ms for the proposed Deep-Shallow model. In other words,

our proposed model is 36.4% faster than the C3D as seen in Fig. 6.8.

The precision and recall values for each class are shown in Fig. 6.9 and Fig. 6.10,

respectively. The average precision of the C3D and the proposed Deep-Shallow network

are 0.72 and 0.71, respectively. The average recall of the C3D and the method are 0.75 and

0.74, respectively. As seen in Table 6.1, the C3D and the proposed approach achieves 74%

and 72.9% overall accuracy, respectively. In summary, the proposed approach provides a

significant increase in processing speed with only 1.1% decrease in the accuracy.

75

C3D Deep-Shallow
Avg. process. time/clip 906 ms 576 ms
Overall accuracy 0.740 0.729

Table 6.1: Comparison table

Figure 6.8: Processing speed comparison

Figure 6.9: Precision values for each activity class

Figure 6.10: Recall values for each activity class

6.3 Conclusion

We have presented a novel method to efficiently perform human activity classification from

egocentric videos by incorporating actor-critic model of reinforcement learning. Actor-

critic reinforcement learning allows placing a bounding box on a region of interest, and

clipping that region. Then, only the clipped region is processed through a deeper network,

76

while the entire image is processed by a shallow one. This strategically reduced complex-

ity of the network structure provides significant increase in the processing speed, while

maintaining the same level of accuracy with a state-of-the-art 3D CNN network.

77

Chapter 7

Autonomously and Simultaneously

Refining Deep Neural Network

Parameters by a Bi-Generative

Adversarial Network Aided Genetic

Algorithm

This chapter focuses on optimizing the network architecture and its different parameters

for any neural network model. We propose a novel and systematic way, which employs

a revised generative adversarial networks, referred to as Bi-GAN, together with a Genetic

Algorithm (GA). The method can autonomously refine the number of convolutional layers,

the number and size of filters, number of dense layers, and number of neurons; decide

whether to use batch normalization and max pooling; choose the type of the activation

function; and decide whether to use dropout or not.

In this chapter, to move from exploration to exploitation, we propose a novel and sys-

tematic method that autonomously and simultaneously optimizes multiple parameters of

78

any deep neural network by using a GA aided by our proposed bi-generative adversarial

network (Bi-GAN). In contrast to traditional GANs, our proposed Bi-GAN involves two

generators, and two different models compete and improve each other progressively with a

GAN-based strategy to optimize the networks during GA evolutions. The Bi-GAN allows

the autonomous exploitation and choice of the number of filters and number of neurons

from a large range of values. Our proposed approach can be used to autonomously refine

the number of convolutional layers, the number and size of filters, number of dense lay-

ers, and number of neurons; decide whether to use batch normalization and max pooling;

choose the type of the activation function; and decide whether to use dropout or not, to

improve the accuracy of different deep neural network architectures.

For this work, without loss of generality, we tested the performance of our approach by

using the ModelNet database, and compared it with the 3D Shapenets and two GA-only

methods. The results show that the presented approach can simultaneously and success-

fully optimize multiple neural network parameters, and achieve increased accuracy even

with shallower networks. The rest of this chapter is organized as follows: The method is

described in Sec. 7.1. The experimental results are presented in Sec. 7.2, and the chapter is

concluded in Sec. 7.3.

7.1 Methodology

Figure 7.1: Proposed Bi-GAN aided GA network for refining deep neural network param-
eters.

The overall structure of the method is shown in Fig. 7.1. It involves a GA aided by a
79

Bi-GAN. While Bi-GAN is used to set/optimize the parameters from a large set covering

a large range, GA is applied to make discrete decision from a small set of choices. The

decisions the GA makes include the choice of the activation function; whether or not to use

batch normalization, dropout and max pooling; number of convolutional layers and dense

layers; and the kernel size of convolutional layers. Table 4.1 shows the set of parameters,

and the discrete set of values that they can take.

Table 7.1: Parameter Choices

Activation function {“relu”, “leaky relu”, “sigm.”, “tanh”}
Batch norm. {True, False}
Dropout {True, False}
Max pooling {True, False}
Num. of conv layers {1,2,3}
Num. of dense layers {1,2,3}
Kernel size {3,5}

The parameter set of the network i for the GA has the following form:

pGAi =[prmconv1

i , prmconv2

i ..., prmconvC

i ,

prmdense1

i , prmdense2

i ..., prmdenseD

i],

i ∈ {1, 2, ..., nm}

(7.1)

where C andD are the maximum number of possible convolutional layers and dense layers,

respectively, nm is the number of network models in the population and

prmconvj

i =[1/0 (conv. layer exists or not), kernel size,

activation func., 1/0 (for batch norm.),

1/0 (for max pooling)],

i ∈ {1, 2, ..., nm}

j ∈ {1, 2, ..., C}

(7.2)

80

prmdensek

i =[1/0 (dense layer exists or not),

activation func., 1/0 (for batch norm.),

1/0(for dropout)],

i ∈ {1, 2, ..., nm}

k ∈ {1, 2, ..., D}.

(7.3)

For the discrete set of parameters given in Table 4.1, the values of C and D are 3.

First, nm-many models are randomly initialized for the first network population N1.

This is done by choosing the values of convolutional and dense parameters, in (7.2) and

(7.3), randomly, from the possible choices. Then, the number of filters for the convolutional

layers, and the number of neurons for the fully connected layers are determined by the Bi-

GAN as will be described in Section 7.1.1.

Then, the nm models are trained, and evaluated to obtain their accuracy scores. Based

on the accuracy scores, the GA is applied as detailed in Section 7.1.2.

7.1.1 Bi-GAN network

We propose a novel and modified generative adversarial network (GAN), referred to as

Bi-GAN, to find the optimal network parameters, that have a large range of values. The

proposed Bi-GAN network for refining different neural network parameters is shown in

Fig. 7.2. It is composed of a generative part, an evaluation part and a discriminator. In

contrast to traditional GANs, there are two generators (G1 and G2), two evaluators (E1 and

E2), and one discriminator (D). The input to the two generators is Gaussian noise z ∼

pnoise(z). On the other hand, the input to the evaluators is the training data x ∼ pdata(x).

As will be discussed in more detail below, the generators G1 and G2 have the same

network structure. From input noise pnoise(z), G1 and G2 generate the input network pa-

rameters G1(z) and G2(z) to be used and evaluated by E1 and E2, respectively. E1 and E2

have the structure of the neural network whose parameters are being optimized or refined.

81

Figure 7.2: Proposed Bi-GAN incorporating two generators and one discriminator.

They calculate the classification accuracy on the training data x. Ei(x,Gi(z)), iε{1, 2} rep-

resents the classification accuracy obtained by the evaluator Ei when the parameters Gi(z)

are used. The generator resulting in higher accuracy is marked as more accurate generator

Ga, and the other generator is marked as Gb, where a ∈ 1, 2, b =!a.

We define the discriminator D as a network, which is used for binary classification

between better and worse generator. G1(z) and G2(z) are fed into the discriminator D, and

the ground truth label about which is the better generator comes from the evaluators. The

discriminator D provides the gradients to train the worse performing generator.

Generative part

The two generators G1 and G2 have the same neural network structure shown in Fig. 7.3.

Their input is a Gaussian noise vector z, and their outputs are G1(z) and G2(z). As

seen in Fig. 7.3, generators are composed of fully connected layers with leaky relu ac-

tivations. At the output layer, tanh is employed so that Gj
i (z) ∈ (−1, 1), where j ∈

{1, 2, ..., length(Gi(z))} and i ∈ {1, 2}. Then, the range of Gi(z) is changed from (−1, 1)

to (pmj
min, pm

j
max) by using

Gi(z)′ = [Gi(z)× pmmax − pmmin

2
+
pmmax + pmmin

2
]. (7.4)

82

In (7.4), pmmax and pmmin are preset maxima and minima values, which are defined em-

pirically based on values that a certain parameter can take, so that the value of the refined

parameters can only change between pmmax and pmmin. For instance, in the case of the

number of neurons for a fully connected layer, pmmax and pmmin are 4000 and 10, respec-

tively. The re-scaled values G1(z)′ and G2(z)′ are then used as the parameters of evaluator

networks. The length of Gi(z) is determined by the number of network parameters that are

refined, and is set at the generator network’s last fully connected layer.

Figure 7.3: Generator network

Generators are trained/improved by the discriminator, which is a binary classifier used

to differentiate the results from generator outputs G1(z) and G2(z). Labels “a” and “b”

represent the generators with higher accuracy and lower accuracy results, respectively. The

generator, which has the worse performance and is labeled by “b”, is trained by stochastic

gradient descent (SGD) from the discriminator to minimize log(1−D(Gb(z)) by using

5Gb

1

m

m∑
j=1

log(1−D(Gb(z
(j)))), (7.5)

where m is the number of epochs.

When G′a(z) becomes equal to G′b(z) for two consecutive iterations, the weights of

Gb will be re-initialized to default random values. The purpose of this step is to prevent

the optimization stopping at a local maxima and also prevent the vanishing tanh gradient

problem.

83

Evaluation part

As mentioned above, one of the strengths of the proposed approach is that it can be used

to refine/optimize parameters of different deep neural network structures. In other words,

the evaluator networks have the same structure as the neural network whose parameters are

being optimized or refined.

Evaluator networks are built by using the parameters G1(z)′ and G2(z)′ provided by

the generators. The training data x ∼ pdata(x) is used to evaluate these network models.

We employ an early stopping criteria. More specifically, if no improvement is observed in

c epoches, the training is stopped.

We then obtain the accuracies acci = Ex∼pdata(x)Ei(x), i = {1, 2}. Let a be the value

of i resulting in higher accuracy, and b =!a. Then “a” is used as the ground truth label for

the discriminator, which marks the generator with better parameters, and trains the worse

generator Gb.

Discriminator

We define the discriminator D as a network (seen in Fig. 7.4, whose output is a scalar

softmax output, which is used for binary classification between better generator and worse

generator. G1(z) and G2(z) are fed into the discriminator D, and the ground truth label

about which is better generator comes from the evaluators. Let D(G(z)) represent the

probability that G(z) came from the more accurate generator Ga rather than Gb. We train

D to maximize the probability of assigning the correct label to the outputsG1(z) andG2(z)

of both generators. Moreover, we simultaneously train the worse generator Gb to minimize

log(1−D(Gb(z)). The whole process can be expressed by:

minGamaxDEz∼pz(z)(log(D(Ga(z))) + log(1−D(Gb(z)))), (7.6)

where, a = argmaxi={1,2}(Ex∼pdata(x)Ei(x)), b =!a.

84

Figure 7.4: Discriminator network

The pseudo code for the proposed Bi-GAN is provided in Algorithm 1.

Algorithm 3 Bi-GAN Algorithm.
while in the iterations do

Generate m × 2 noise samples {Z(1)
1 , Z

(2)
1 , ..., Z

(m)
1 } and {Z(1)

2 , Z
(2)
2 , ..., Z

(m)
2 } from

Gaussian white noise
while j in range(m) do

Build evaluators E(j)
1 and E(j)

2 based on parameters from G1(Z
(j)
1) and G2(Z

(j)
2)

Calculate accj1 and accj2 from Ex∼pdata(x)Ei(x)
End if no acc. impr. after c epoches

end
Calculate mean value acci = (1/m)

∑m
j=1 acc

j
i , i = {1, 2}

Find Ga as Gargmax(acc1,acc2) and Gb as the other one.

Update Discriminator by SGD:5D
1
m

m∑
j=1

(log(D(Ga(z
(j)))) + log(1−D(Gb(z

(j)))))

Update Generator Gb by SGD:5Gb

1
m

m∑
j=1

log(1−D(Gb(z
(j))))

end

7.1.2 Genetic Algorithm

As mentioned above, we use a GA to make discrete decisions from a set of choices shown

in Table 4.1. Within each GA evolution, our proposed Bi-GAN is used to set/optimize

the values of the number of filters for the convolutional layers and the number of neurons

for the dense layers. Then, the network models are trained and evaluated to obtain their

accuracy scores. Based on the accuracy scores, the GA is applied.
85

Initial Population

The first generation of the networks,N1, is generated randomly such thatN1 = {N1, N2, ..., Nnm},

where nm is the number of models. This is done by choosing the values of convolutional

and dense parameters, in (7.2) and (7.3), randomly, from the possible choices.

Bi-GAN optimization

Our proposed Bi-GAN is used, as described in Sec. 7.1.1, to update the number of neurons

for the fully connected layers, and the number of filters for the convolutional layers, of the

nm network models.

Evaluation

After the number of neurons for the fully connected layers, and the number of filters

for convolutional layers are determined by Bi-GAN, each generated network model Ni

(i ∈ {1, ..., nm}) will be evaluated by the fitness function fitness = f(Ni), which is a

measure of the accuracy of each model. Models with better performance will have higher

values. Thus, E = {E1, E2, ..., Enm}, will hold the fitness scores Ei = f(Ni), where

i ∈ {1, 2, ..., nm}.

Selection

In the selection part, t-many top ranked models are selected from the sorted(E) and r-

many models are selected randomly from the rest of the network models. Then, d-many

models are dropped in order to prevent over-fitting and getting stuck at a local optimum.

The remaining selected models are the parent models (P), which will be used to create new

models for the next generation.

86

Crossover and Mutation

Crossover is applied to generate nm-many child network models from the parents. The

choice of parents is performed as follows: Instead of always choosing two parents randomly

from the parent pool, we associate a counter CP with each parent P , and initialize it to

zero. This counter is incremented by one each time a parent is used for crossover. First,

two parents are selected randomly from the t+ r− d many parents. A new ‘child’ network

is generated from the parents via crossover, and the counters of the parents are incremented

by one. Then, two parents, whose counter is still zero, are selected randomly from the

parent pool. Another network is generated from them via crossover, and the counters of

the parents are incremented. If there is only one network model left with counter equal to

zero, and the number of children is still less than nm, then this model is chosen as one of

the parents, and the other parent is chosen randomly from the rest of the models who have

a counter value of one. If there are no more parents left with counter equal to zero, and the

number of children is still less than nm, then two parents, whose counter is one, are picked

randomly, and their counter is incremented to two after crossover. This process is repeated

until the number of children models reaches nm.

The crossover between parent models a and b is performed as illustrated in Fig. 7.5.

First two integers (ID1 and ID2) are picked randomly between 1 and C and 1 and D, re-

spectively. Then, the parameters of the child network is set so that

pGAchild =[prmconv1

a , prmconv2

a , ..., prmconvID1

a ,

prmconvID1+1

b , ..., prmconvC

b ,

prmdense1

a , prmdense2

a , ..., prmdenseID2

a ,

prmdenseID2+1

b , ..., prmdenseD

b].

(7.7)

After all the nm-many child networks are obtained via crossover, 20% of the population

is chosen randomly to perform mutation. As seen in (7.2) and (7.3), there are five different

87

Figure 7.5: Crossover.

convolutional layer parameters, and four different dense layer parameters. Thus, there are

5∗C+4∗D-many possible parameters that can be mutated. An integer is picked randomly

between 1 and 5 ∗ C + 4 ∗ D, and the corresponding parameter type is chosen randomly

from the possible choices in Table 4.1. For instance, if the random number corresponds to

the filter size parameter, then its value is chosen randomly from {3, 5}.

Then, the entire process is repeated by using this new population, updating the number

of neurons and the number of filters for each network model in the population by using

our propose Bi-GAN, and so on. The pseudo code for the entire process is provided in

Algorithm 4.

Algorithm 4 GA-BiGAN algorithm.
Randomly initialize nm models for population N1.
while ith iteration do

Update hyper parameters by Bi-GAN (Alg. 3).
Train and evaluate N i

1, N
i
2, ..., N

i
nm

by fitness function f(N i
j) and obtain scores E.

Select t top scored networks Ntop = N i(argmax(E))
Randomly choose r networks Nrand from the rest of population N i

Merge Ntop and Nrand and then drop d networks (Ndrop)
Form Nparent = (Ntop

⋃
Nrand)−Ndrop

Choose parents fromNparent for crossover and generate nm new networks and add them
to N i+1

Choose 20% of the networks in N i+1, and perform mutation on them.
end

88

7.2 Experimental Results

Without loss of generality, we have applied the proposed approach on a 3D convolutional

neural network by using the voxelized version of ModelNet40 dataset, which contains 3D

CAD models of 40 object classes. Wu et al. [128] voxelized each object from the ModelNet

at 12 different orientations (around gravity axis) for data augmentation. Voxel grids are

30× 30× 30, and every object is fitted into this range. We used this pre-voxelized version

of the dataset in our experiments. The dataset contains 40 subfolders for different objects.

Each of these 40 subfolders contains 2 subfolders for training and testing. Train:test ratio

differs for each object, but overall train:test ratio is around 3:1. Some example voxelized

objects from the ModelNet40 dataset are shown in Fig. 7.6.

Figure 7.6: Sample voxelized objects from ModelNet40 dataset.

We have compared our proposed approach with two other approaches, which are based

only on GAs and referred to as small-set GA, and large-set GA. The small-set GA is a basic

genetic algorithm with limited number of choices. Large-set GA is given a larger set of

choices for the number of neurons, and the number of filters. As for the activation function,

batch normalization, dropout and max pooling decisions, the number of convolutional and

dense layers, and the kernel size, the parameter choices are the same as in Table 4.1 for both

small- and large-set GA. The difference between small- and large-set GA is the parameter

choices for the number of neurons and the number of filters. For the small-set GA these

choices are as follows:

Num. of neurons: {16,32,64,128,256,512,1024,2048,4096}
Num. of kernels: {1,4,16,64,256}

For the large-set GA, the number of neurons can be any integer between 16 and 4096,

and the number of filters can be any integer between 1 and 256. In our proposed approach,
89

the number of neurons and the number of filters are determined by our proposed Bi-GAN

method from this continuous range.

These three approaches were run by using the same data, for the same amount of time

to compare their performances. The parameters used in Algorithm 1 and 2 are as follows:

For the Bi-GAN part, m = 100, and c = 5. For the GA part, the parameters used are

nm = 25, t = 4, r = 2 and d = 1. The results are summarized in Table 7.2. Same

population size was used for all the GAs. As can be seen, our proposed approach provides

the highest accuracy, and performs better compared to only GA-based approaches. Figure

7.7 shows the accuracy of each method over time. The method determines the number of

neurons and the number of filters without requiring a discrete set of choices.

Table 7.2: Accuracy values obtained with different networks

Accuracy
ShapeNet model 0.8417

Small-set GA 0.8294
Large-set GA 0.3641

method 0.8520

Figure 7.7: Accuracy of different network refinement approaches over time.

Another important point is the performance comparison with respect to Shapenets [128],

which is a hand-crafted network with four convolutional layers, and two dense layers. Table

90

7.2 also includes the accuracy obtained when the Shapenet [128] model is used. As can be

seen, by autonomously refining the network parameters, our proposed approach provides

higher accuracy than the manually designed model by using a shallower network. The pa-

rameter values that each of the three approaches (method, small-set GA and large-set GA)

ends up choosing/using are provided in Table 7.4 (the first entry is the filter size). As can be

seen, the method achieves this higher accuracy of 85.2% by using only three convolutional

layers as opposed to the four-convolutional-layer Shapenet model.

Iterations 5-pops 10-pops 20-pops
Small-set GA Proposed Small-set GA Proposed Small-set GA Proposed

10 0.5813 0.6077 0.5945 0.6563 0.6409 0.7945
20 0.6969 0.7601 0.6183 0.7798 0.7689 0.7984
50 0.7626 0.8124 0.8069 0.8197 0.8113 0.8429

Table 7.3: Comparison of the method with the Small-set GA for different population sizes.

Table 7.4: Final Parameter Values

Approach Final Parameter Values
Sm-set GA [C1: 5,‘Relu’, NO Batch norm,Maxpool,64],

[C2: 5,‘Relu’,No Batch,Max pool,64],
[C3: 3,‘Relu’,0,1,256],
[D1: Relu, No Batch, Dropout, 256],
[D2: Leaky relu, no batch, no dropout, 64]

Lrg-set GA [C1: 5,’Leaky Relu’,No Batch n., max pool,30],
[C2: 3,‘Relu’,No Batch, Max pool, 31],
[C3: 5,‘Relu’,No batch, No max pool, 9],
[D1: Leaky Relu, Batch norm, Dropout, 31]

Prop.Meth. [C1: 5,’Relu’,No Batch n,max pool,80],
[C2: 3,‘Relu’,No Batch,Max pool, 105],
[C3: 3,‘Leaky Relu’,No batch n.,Max pool,202],
[D1: relu, no batch, no dropout, 601],
[D2:leaky relu, no batch, dropout, 240]

Since small-set GA performs better than the large-set GA, in the remainder of the ex-

periments, we compared our method with the small-set GA. We have tried three more

population sizes while keeping the other parameter choices same as before. The results are

summarized in Table 7.3. As can be seen, the method provides the higher accuracy rates
91

for all different population sizes. Figures 7.8 and 7.9 show the change in accuracy and loss

of these approaches, respectively, with each evolution (when population size is 20). As can

be seen, the method performs better during its evolutions.

Figure 7.8: Accuracy with every evolution of the method and the Small-set GA.

Figure 7.9: Loss with every evolution of the method and the Small-set GA.

We also performed one more experiment, where we let the maximum number of con-

92

volutional layers to be 5. In this experiment, the method achieved an accuracy of 86.62%.

7.3 Conclusion

In this chapter, we have presented a novel and systematic method that autonomously and

simultaneously optimizes multiple parameters of any given deep neural network by using a

genetic algorithm (GA) aided by a novel Bi-Generative Adversarial Network (GAN) with

two generators, which is referred to as Bi-GAN. The proposed Bi-GAN allows the au-

tonomous exploitation and choice of the number of neurons, for the fully-connected layers,

and number of filters for the convolutional layers, from a large range of values. Our pro-

posed approach can be used to autonomously refine the number of convolutional layers and

dense layers, number and size of kernels, and the number of neurons; choose the type of

the activation function; and decide whether to use dropout and batch normalization or not,

to improve the accuracy of different deep neural network architectures. Without loss of

generality, the method has been tested with the ModelNet database, and compared with the

3D Shapenets and two GA-only methods. The results show that the presented approach can

simultaneously and successfully optimize multiple neural network parameters, and achieve

increased accuracy even with shallower networks.

93

Chapter 8

Enhancing Cross-task Transferability of

Adversarial Examples with Dispersion

Reduction

To provide a strong baseline attack to evaluate the robustness of DNN models under the

aforementioned threat model, we propose a new succinct method to generate adversarial

examples, which transfer across a broad class of CV tasks, including classification, ob-

ject detection, semantic segmentation, explicit content detection, and text detection and

recognition. Our approach, called Dispersion Reduction (DR) and illustrated in Fig. 8.1,

is inspired by the impact of “contrast” on an image’s perceptibility. As lowering the con-

trast of an image would make the objects indistinguishable, we presume that reducing the

“contrast” of an internal feature map would also degrade the recognizability of objects in

the image, and thus could evade CV-based detections.

We use dispersion as a measure of “contrast” in feature space, which describes how

scattered the feature map of an internal layer is. We empirically validate the impact of dis-

persion on model predictions, and find that reducing the dispersion of internal feature map

would largely affect the activation of subsequent layers. Based on additional observation

94

that lower layers detect simple features [129], we hypothesize that the low level features

extracted by early convolution layers share many similarities across CV models. By reduc-

ing the dispersion of an internal feature map, the information that is in the feature output

becomes indistinguishable or useless, and thus the following layers are not able to obtain

any useful information no matter what kind of CV task is at hand. Thus, the distortions

caused by dispersion reduction in feature space, are ideally suited to fool any CV model,

whether designed for classification, object detection, semantic segmentation, text detection,

or other vision tasks.

Based on these observations, we present and build the DR as a strong baseline attack to

evaluate model robustness against black box attacks, which generate adversarial examples

using simple and readily-available image classification models (e.g., VGG-16, Inception-

V3 and ResNet-152), whose effects extend to a wide range of CV tasks. We evaluate

DR attack on both popular open source detection and segmentation models, as well as

commercially deployed detection models on four Google Cloud Vision APIs: classification,

object detection, SafeSearch, and Text Detection (see §8.2). ImageNet, PASCAL VOC2012

and MS COCO2017 datasets are used for evaluations. The results show that DR attack

causes larger drops on the model performance compared to the state-of-the-art attacks (

MI-FGSM [88], DIM [89] and TI [130]) across different tasks. We hope our finding to

raise alarms for real-world CV deployment in security-critical applications, and our simple

yet effective attack to be used as a benchmark to evaluate model robustness.

8.1 Methodology

To construct AEs against a target model, we first establish a source model as the surro-

gate, to which we have access. Conventionally, the source model is established by training

with examples labeled by the target model. That is, the inputs are paired with the labels

generated from the target model, instead of the ground truth. In this way, the source model

95

conv2.3

original adversarial

Adversarial
generated by

reducing
dispersion of
conv3.3

VGG-16
model

 Activation of
subsequent layers

are distorted

conv3.3

conv5.3

Transfer to Google Cloud Vision image_label API

Figure 8.1: DR attack targets on the dispersion of feature map at a specific layer of feature extrac-
tors. The adversarial example generated by minimizing dispersion at conv3.3 of VGG-16 model
also distorts feature space of subsequent layers (e.g., conv5.3), and its effectiveness transfers to
commercially deployed GCV APIs.

96

mimics the behavior of the target model. When we construct AEs against the source model,

they are likely to transfer to the target model due to such connection.

In our framework, although a source model is still required, there is no need for train-

ing new models or querying the target model for labels. Instead, a pretrained public model

could simply serve as the source model due to the strong transferability of the AEs gen-

erated via our approach. For example, in our experiments, we use pretrained VGG-16,

Inception-v3 and Resnet-152, which are publicly available, as the source model f . With

Algorithm 5 Dispersion reduction attack
Input: A classifier f , original sample x, feature map at layer k; perturbation budget ε
Input: Attack iterations T , learning rate `.
Output: An adversarial example x′ with ‖ x′ − x ‖∞ 6 ε

1: procedure DISPERSION REDUCTION

2: x′0 ← x for t = 0 to T − 1 do
3:

end
Forward x′t and obtain feature map at layer k:

Fk = f(x′t)|k (8.1)

4: Compute standard deviation of Fk: g(Fk)
5: Compute its gradient w.r.t the input: 5xg(Fk)
6: Update x′t by applying Adam optimization:

x′t = x′t − Adam(5xg(Fk), `) (8.2)

7: Project x′t to the vicinity of x:

x′t = clip(x′t, x− ε, x+ ε) (8.3)

8: return x′t

f as the source model, we construct AEs against it. Existing attacks perturb input im-

ages along gradient directions 5xJ that depend on the definition of the task-specific loss

function J , which not only limits their cross-task transferability but also requires ground-

truth labels that are not always available. To mitigate these issues, we present dispersion

reduction (DR) attack that formally defines the problem of finding an AE as an optimization

97

problem:

min
x′

g(f(x′, θ))

s.t. ‖ x′ − x ‖∞ 6 ε

(8.4)

where f(·) is a DNN classifier with output of intermediate feature map, and g(·) calculates

the dispersion. The DR attack, detailed in Algorithm 5, takes a multi-step approach that

creates an AE by iteratively reducing the dispersion of an intermediate feature map at layer

k. Dispersion describes the extent to which a distribution is stretched or squeezed, and

there can be different measures of dispersion, such as the standard deviation, and gini

coefficient [131]. In this work, we choose standard deviation as the dispersion metric due

to its simplicity, and denote it by g(·).

To explain why reducing dispersion could lead to valid attacks, we present a similar

argument used in [132]. Consider a simplified model where f(x) = a = (a1, . . . , an)

is the intermediate feature, and y = Wa is an affine transformation of the feature (we

omit the constant b for simplicity), resulting the final output logits y = (y1, . . . , yk). In

other words, we decompose a DNN classifier into a feature extractor f(·) and an affine

transformation. Suppose the correct class is c, the logit yc of a correctly classified example

should be the largest, that is w>c a >> w>i a for i 6= c, where wi is the ith row of W. This

indicates wc and a are highly aligned.

On the other hand, suppose our attack aims to reduce the standard deviation of the

feature a. The corresponding adversarial examples x′ leads to a perturbed feature

f(x′) = a′ ≈ a− α ∂

∂a
Std(a)

= a− 2α(a− ā1)/(
√
n− 1Std(a))

(8.5)

Where α depicts the magnitude of the perturbation on a, ā is the average of the entries of

a, and 1 is a column vector with 1 in each entry. Therefore, the change of the logit yc due

98

to adversarial perturbation is essentially

∆yc = −2α(w>c a−w>c 1ā)/(
√
n− 1Std(a))

= −2α(w>c a− nw̄cā)/(
√
n− 1Std(a))

= −2α
√
n− 1Cov(wc, a)/Std(a) < 0

(8.6)

If we think each entry of a and wc as samples, the Cov(wc, a) corresponds to the empirical

covariance of these samples. This suggests that as long as wc and a are aligned, our attack

can always reduce the logit of the correct class. Note that α is approximately the product of

the magnitude of the perturbation on x and the sensitivity of f(·), therefore the reduction

of the logit could be large if f(·) is sensitive, which is often the case in practice.

In general, yc could be any activation that is useful for the task, which may not be

classification. As long as yc is large for natural examples, indicating a certain feature is

detected, it is always reduced by our attacks according to the analysis above. Thus, our

attack is agnostic to tasks and the choice of loss functions.

8.2 Experimental Results

 5

 10

 15

 20

 25

 30

20 100
500

m
A
P

steps N

PGD
MI-FGSM

DIM
TI-DIM
DR-12
DR-14

(a) SSD-Res50

 0

 5

 10

 15

 20

20 100
500

m
A
P

steps N

PGD
MI-FGSM

DIM
TI-DIM
DR-12
DR-14

(b) RetinaNet-Res50

 0

 5

 10

 15

 20

20 100
500

m
A
P

steps N

PGD
MI-FGSM

DIM
TI-DIM
DR-12
DR-14

(c) SSD-MobileNet

 0

 5

 10

 15

 20

20 100
500

m
A
P

steps N

PGD
MI-FGSM

DIM
TI-DIM
DR-12
DR-14

(d) FasterRCNN-Res50

Figure 8.2: Results of DR attack with different steps N . We can see that our DR attack outper-
forms all baselines even starting from small steps (e.g. N = 20).

We compare the DR attack with the state-of-the-art black-box adversarial attacks on

object detection and semantic segmentation tasks (using publicly available models), and

commercially deployed Google Cloud Vision (GCV) tasks.

99

 0

 10

 20

 30

 40

 50

conv2-1

conv2-2

conv3-1

conv3-2

conv3-3

conv4-1

conv4-2

conv4-3

conv5-1

conv5-2

conv5-3

m
A
P
/
m
I
o
U

Yolo-v3 (mAP)
DeepLabv3 (mIoU)
Faster-RCNN (mAP)

(a) mAP/mIoU results.

 0

 0.5

 1

 1.5

 2

conv2-1

conv2-2

conv3-1

conv3-2

conv3-3

conv4-1

conv4-2

conv4-3

conv5-1

conv5-2

conv5-3

S
t
d
.

Std Origin
Std Adversary

Std Delta

(b) Std. before and after attack

Figure 8.3: Results of DR attack with different attack layers of VGG16. We see that attacking
the middle layers results in higher drop in the performance compared to attacking top or bottom
layers. At the same time, in the attacking process, the drop in std of middle layers is also larger than
the top and bottom layers. This motivates us that we can find a good attack layer by looking at the
std drop during the attack.

8.2.1 Experimental Settings

Network Types: We consider Yolov3-DarkNet53 [133], RetinaNet-ResNet50 [134], SSD-

MobileNetv2 [135], Faster R-CNN-ResNet50 [136], Mask R-CNN-ResNet50 [137] as the

target object detection models and DeepLabv3Plus-ResNet101 [138], DeepLabv3-ResNet101 [139],

FCN-ResNet101 [140] as the target semantic segmentation models. All network models are

publicly available, and details are provided in the Appendix. The source networks for gen-

erating adversarial examples are VGG16, Inception-v3 and Resnet152 with output image

sizes of (224 × 224), (299 × 299) and (224 × 224), respectively. For the evaluation on

COCO2017 and PASCAL VOC2012 datasets, the mAP and mIoU are calculated as the

evaluation metrics for detection and semantic segmentation, respectively. Due to the mis-

match of different models being trained with different labeling systems (COCO / VOC),

only 20 classes that correspond to VOC labels are chosen from COCO labels if a COCO

pretrained model is tested on the PASCAL VOC dataset or a VOC pretrained model is

tested on the COCO dataset. For the evaluation on ImageNet, since not all test images have

the ground truth bounding boxes and pixelwise labels, the mAP and mIoU are calculated

as the difference between the outputs of benign / clean images and adversarial images.

Implementation details: We compare the DR method with projected gradient descent

100

(PGD) [141], momentum iterative fast gradient sign method (MI-FGSM) [142], diverse

inputs method (DIM) [143] and translation-invariant attacks (TI) [144]. As for the hyper-

parameters, the maximum perturbation is set to be ε = 16 for all the experiments with pixel

values in [0, 255]. For the DR attacks, the step size α = 4, and the number of training steps

N = 100. For the baseline methods, we first follow the default settings in [143] and [144]

with α = 1 and N = 20 for PGD, MI-FGSM and DIM, α = 1.6 and N = 20 for TI-DIM.

Then, we apply the same hyper-parameters (α = 4, N = 100) used with the DR method to

all the baseline methods. For MI-FGSM, we adopt the default decay factor µ = 1.0. For

DIM and TI-DIM, the transformation probability is set to p = 0.5.

8.2.2 Diagnostics

The effect of training steps N

We show the results of attacking SSD-ResNet50, RetinaNet-ResNet50, SSD-MobileNet

and Faster RCNN-ResNet50 with different number of training steps (N = {20, 100, 500})

based on MS COCO2017 validation set. We also compare the DR attack with multiple

baselines, namely PGD, MI-FGSM, DIM, TI-DIM. The results are shown in Fig. 8.2. In

contrast to the classification-based transfer attacks [88, 89, 130], we do not observe over-

fitting in cross-task transfer attacks for all the tested methods. Therefore, instead of using

N = 20, which is the value used by the baseline attacks we compare with, we can employ

larger training steps (N=100), and achieve better attacking performance at the same time.

In addition, we can see that our DR attack outperforms all the state-of-the-art baselines for

all the step size settings. It should be noticed that DR attack is able to achieve promising

results at N = 20, and the results from the DR attack, using 20 steps, are better than those

of baseline methods using 500 steps. This shows that the DR attack has higher efficiency

than the baselines.

101

Yolov3
DrkNet

RetinaNet
ResNet50

SSD
MobileNet

Faster-RCNN
ResNet50

Mask-RCNN
ResNet50

mAP mAP mAP mAP mAP
COCO/VOC COCO/VOC COCO/VOC COCO/VOC COCO/VOC

VGG16 PGD (α=1, N=20) 33.5 / 54.8 14.7 / 31.8 16.8 / 35.9 9.7 / 14.2 10.3 / 15.9
PGD (α=4, N=100) 21.6 / 38.7 7.2 / 14.6 7.9 / 18.2 4.9 / 6.4 5.7 / 9.7
MI-FGSM (α=1, N=20) 28.4 / 48.9 12.0 / 23.6 13.6 / 29.6 7.8 / 10.9 8.2 / 12.0
MI-FGSM (α=4, N=100) 19.0 / 35.0 5.8 / 10.6 7.0 / 19.1 4.4 / 5.0 4.8 / 7.1
DIM (α=1, N=20) 26.7 / 46.9 11.0 / 21.9 11.0 / 22.9 6.4 / 8.2 7.2 / 11.6
DIM (α=4, N=100) 20.0 / 37.6 6.2 / 13.0 6.5 / 14.9 4.1 / 5.0 4.6 / 6.7
TI-DIM (α=1.6, N=20) 25.8 / 41.4 9.6 / 17.4 10.4 / 19.9 6.5 / 7.5 7.4 / 9.2
TI-DIM (α=4, N=100) 19.5 / 33.4 7.7 / 13.1 7.5 / 16.7 4.0 / 5.2 4.8 / 6.6
DR (α=4, N=100)(ours) 19.8 / 38.2 5.3 / 8.7 3.9 / 8.2 2.5 / 2.8 3.2 / 5.1

Inc3 PGD (α=1, N=20) 46.8 / 67.5 23.9 / 51.8 25.2 / 47.4 27.0 / 45.7 27.5 / 48.7
PGD (α=4, N=100) 35.3 / 57.1 15.0 / 33.0 14.0 / 31.6 18.2 / 31.7 19.4 / 34.8
MI-FGSM (α=1, N=20) 42.0 / 63.9 20.0 / 44.3 20.9 / 43.5 22.8 / 39.3 23.7 / 42.9
MI-FGSM (α=4, N=100) 32.4 / 54.0 12.5 / 27.1 13.1 / 29.2 16.3 / 26.9 17.9 / 30.5
DIM (α=1, N=20) 32.5 / 54.5 12.9 / 27.5 13.9 / 29.7 14.2 / 24.0 16.3 / 27.7
DIM (α=4, N=100) 29.1 / 48.3 10.4 / 20.5 10.4 / 22.0 12.2 / 18.2 13.8 / 44.6
TI-DIM (α=1.6, N=20) 32.1 / 50.2 12.8 / 25.8 13.5 / 28.0 12.5 / 20.4 14.4 / 23.0
TI-DIM (α=4, N=100) 27.1 / 42.2 11.0 / 19.8 10.4 / 22.1 9.9 / 14.6 11.1 / 17.5
DR (α=4, N=100)(ours) 24.2 / 45.1 8.5 / 18.9 9.0 / 19.5 8.3 / 14.3 9.8 / 17.0

Res152 PGD (α=1, N=20) 39.4 / 62.0 19.1 / 42.9 19.9 / 41.6 13.8 / 19.4 15.0 / 22.0
PGD (α=4, N=100) 28.8 / 51.5 12.2 / 25.9 11.2 / 24.4 8.2 / 11.3 8.8 / 13.9
MI-FGSM (α=1, N=20) 35.1 / 58.1 15.8 / 36.2 16.7 / 35.8 11.1 / 16.3 12.2 / 18.1
MI-FGSM (α=4, N=100) 26.4 / 48.2 11.2 / 23.5 9.9 / 21.3 7.0 / 9.5 8.2 / 11.4
DIM (α=1, N=20) 28.1 / 50.3 12.2 / 26.3 11.0 / 23.9 7.0 / 10.6 7.9 / 12.6
DIM (α=4, N=100) 24.7 / 43.2 8.8 / 19.4 7.8 / 16.1 5.1 / 7.1 6.2 / 10.3
TI-DIM (α=1.6, N=20) 27.9 / 45.6 11.7 / 21.7 11.3 / 22.5 6.8 / 8.7 7.5 / 9.9
TI-DIM (α=4, N=100) 22.3 / 36.7 9.0 / 15.8 8.7 / 19.1 5.0 / 6.6 5.7 / 8.2
DR (α=4, N=100)(ours) 22.7 / 43.8 6.8 / 12.4 4.7 / 7.6 2.3 / 2.8 3.0 / 4.5

Table 8.1: Detection results using validation images of COCO2017 and VOC2012 datasets. The
DR attack performs best on 25 out of 30 different cases and achieves 12.8 mAP on average over all the
experiments. It creates 3.9 more drop in mAP compared to the best of the baselines (TI-DIM: 16.7 mAP).

The effect of attack layer

We show the results of attacking different convolutional layers of the VGG16 network with

the DR attack based on PASCAL VOC2012 validation set. Fig. 8.3a, shows the mAP for

Yolov3 and faster RCNN, and mIoU for Deeplabv3 and FCN. In Fig. 8.3b, we plot the

standard deviation (std) values before and after the DR attack together with the change. As

can be seen, attacking the middle layers of VGG16 results in higher drop in the performance

compared to attacking top or bottom layers. At the same time, the change in std for middle

layers is larger compared to the top and bottom layers. We can infer that for initial layers,

102

the budget ε constrains the loss function to reduce the std, while for the layers near the

output, the std is already relatively small, and cannot be reduced too much further. Based

on this observation, we choose one of the middle layers as the target of the DR attack. More

specifically, we attack conv3-3 for VGG16, the last layer of group − A for inception-v3

and the last layer of 2nd group of bottlenecks(conv3-8-3) for ResNet152 in the following

experiments.

8.2.3 Open Source Model Experiments

We compare the DR attack with the state-of-the-art adversarial techniques to demonstrate

the transferability of our method on public object detection and semantic segmentation

models. We use validation sets of ImageNet, VOC2012 and COCO2017 for testing ob-

ject detection and semantic segmentation tasks. For ImageNet, 5000 correctly classified

images from the validation set are chosen. For VOC and COCO, 1000 images from

the validation set are chosen. The test images are shared in github repository: disper-

sion reduction test images [145].

The results for detection and segmentation on COCO and VOC datasets are shown in

Table 8.1 and Table 8.2, respectively. The results for detection and segmentation on the

ImageNet dataset are provided in the Appendix. We also include the table for average

results over all the datasets, including the ImageNet, in the Appendix.

As can be seen from Tables 8.1 and 8.2, (DR) achieves the best results on 36 out of 42

set of experiments by degrading the performance of the target model by a larger margin.

For detection experiments, the DR attack performs best on 25 out of 30 different cases and

for semantic segmentation 11 out of 12 different cases. For detection, DR attack achieves

12.8 mAP on average over all the experiments. It creates 3.9 more drop in mAP compared

to the best of the baselines (TI-DIM: 16.7 mAP). For semantic segmentation, DR attack

achieves 20.0 mIoU on average over all the experiments. It achieves 5.9 more drop in

mIoU compared to the best of the baselines (DIM: 25.9 mIoU).

103

https://github.com/anonymous0120/dispersion_reduction_test_images
https://github.com/anonymous0120/dispersion_reduction_test_images

To summarize the results on the ImageNet dataset provided in the Appendix, (DR)

achieves the best results in 17 out of 21 sets of experiments. For detection, DR attack

achieves 7.4 relative-mAP on average over all the experiments. It creates 3.8 more drop

in relative-mAP compared to the best of the baselines (TI-DIM: 11.2). For semantic seg-

mentation, DR attack achieves 16.9 relative-mIoU on average over all the experiments. It

achieves 4.8 more drop in relative-mIoU compared to the best of the baselines (TI-DIM:

21.7).

Seg. Results Using Val. Images of
DeepLabv3
ResNet-101

FCN
ResNet-101

COCO and VOC Datasets mIoU mIoU
COCO/VOC COCO/VOC

VGG16 PGD (α=1, N=20) 37.8 / 42.6 26.7 / 29.1
PGD (α=4, N=100) 22.3 / 24.0 17.1 / 18.1
MI-FGSM (α=1, N=20) 32.8 / 36.2 22.7 / 25.0
MI-FGSM (α=4, N=100) 19.9 / 21.6 22.0 / 16.5
DIM (α=1, N=20) 30.3 / 33.2 15.5 / 22.4
DIM (α=4, N=100) 21.2 / 23.7 16.2 / 16.9
TI-DIM (α=1.6, N=20) 29.9 / 31.1 21.9 / 23.0
TI-DIM (α=4, N=100) 23.8 / 24.7 18.9 / 19.2
DR (α=4, N=100)(ours) 17.2 / 21.8 12.9 / 14.4

IncV3 PGD (α=1, N=20) 49.4 / 56.0 36.8 / 40.1
PGD (α=4, N=100) 37.1 / 41.3 26.1 / 28.3
MI-FGSM (α=1, N=20) 44.2 / 51.1 32.4 / 35.4
MI-FGSM (α=4, N=100) 33.7 / 39.1 24.0 / 35.4
DIM (α=1, N=20) 35.7 / 40.4 24.9 / 27.2
DIM (α=4, N=100) 30.4 / 33.9 21.3 / 22.3
TI-DIM (α=1.6, N=20) 35.3 / 37.0 26.4 / 27.7
TI-DIM (α=4, N=100) 29.0 / 29.8 22.5 / 23.5
DR (α=4, N=100)(ours) 23.2 / 29.2 17.1 / 20.9

Res152 PGD (α=1, N=20) 45.2 / 50.2 30.7 / 34.6
PGD (α=4, N=100) 31.5 / 35.1 21.6 / 24.0
MI-FGSM (α=1, N=20) 39.9 / 43.9 26.4 / 29.9
MI-FGSM (α=4, N=100) 28.2 / 32.2 19.9 / 22.1
DIM (α=1, N=20) 31.3 / 35.5 22.3 / 23.9
DIM (α=4, N=100) 25.9 / 28.8 19.0 / 19.9
TI-DIM (α=1.6, N=20) 31.8 / 33.9 23.7 / 25.2
TI-DIM (α=4, N=100) 26.6 / 26.6 20.3 / 21.4
DR (α=4, N=100)(ours) 22.7 / 27.0 16.4 / 17.6

Table 8.2: Semantic Segmentation results using validation images of COCO2017 and
VOC2012 datasets. DR attack performs best on 11 out of 12 different cases and achieves 20.0
mIoU on average over all the experiments. It achieves 5.9 more drop in mIoU compared to the best
of the baselines (DIM: 25.9 mIoU).

104

Barn Owl:

99%

Turtle : 84%

bbox : […]

Adult: Likely

Racy: Likely

“STOP” : […]

“HAWMER” : […]

“TIME” : […]

“STO)” : […]

“HAWWER” : […]

“TWC” : […]

Vertebrate:

99%

Adult: Unlikely

Racy: Unlikely

Animal : 77%

bbox : […]

Labels Objects SafeSearch Texts

Original

Adversarial

GCV
APIs

Figure 8.4: Visualization of images chosen from testing set and their corresponding AEs generated
by DR. All the AEs are generated on VGG-16 conv3.3 layer, with perturbations clipped by l∞ ≤
16, and they effectively fool the four GCV APIs as indicated by their outputs.

8.2.4 Cloud API Experiments

We compare DR attack with the state-of-the-art adversarial techniques to enhance transfer-

ability on commercially deployed Google Cloud Vision (GCV) tasks 1:

• Image Label Detection (Labels) classifies image into broad sets of categories.

• Object Detection (Objects) detects multiple objects with their labels and bounding

boxes in an image.

• Image Texts Recognition (Texts) detects and recognize text within an image, which

returns their bounding boxes and transcript texts.

• Explicit Content Detection (SafeSearch) detects explicit content such as adult or

violent content within an image, and returns the likelihood.

Datasets. We use ImageNet validation set for testing Labels and Objects, and the

NSFW Data Scraper [146] and COCO-Text [147] dataset for evaluating against SafeSearch

and Texts, respectively. We randomly choose 100 images from each dataset for our eval-

1https://cloud.google.com/vision/docs

105

uation, and Fig. 8.4 shows sample images in our test set. Please note that due to the API

query fees, larger scale experiments could not be performed for this part.

Model Attack
Labels Objects SafeSearch Texts

acc. mAP (IoU=0.5) acc. AP (IoU=0.5) C.R.W2

baseline (SOTA)1 82.5% 73.2 100% 69.2 76.1%

VGG-16
MI-FGSM 41% 42.6 62% 38.2 15.9%

DIM 39% 36.5 57% 29.9 16.1%
DR (Ours) 23% 32.9 35% 20.9 4.1%

Resnet-152
MI-FGSM 37% 41.0 61% 40.4 17.4%

DIM 49% 46.7 60% 34.2 15.1%
DR (Ours) 25% 33.3 31% 34.6 9.5%

1 The baseline performance of GCV models cannot be measured due to the mismatch between orig-
inal labels and labels used by Google. We use the GCV prediction results on original images as
ground truth, thus the baseline performance should be 100% for all accuracy and 100.0 for mAP
and AP. Here we provide state-of-the-art performance [148, 149, 147, 146] for reference.

2 Correctly recognized words (C.R.W) [147].

Table 8.3: The degraded performance of four Google Cloud Vision models, where we attack a
single model from the left column. DR attack degrades the accuracy of Lables and SafeSearch
to 23% and 35%, the mAP of Objects and Texts to 32.9 and 20.9, the word recognition accuracy
of Texts to only 4.1%, which outperform existing attacks.

Experiment setup. To generate the AEs, We use normally trained VGG-16 and Resnet-

152 as our source models, since Resnet-152 is commonly used by MI-FGSM and DIM

for generation [89, 88]. Since DR attack targets a specific layer, we choose conv3.3

for VGG-16 and conv3.8.3 for Resnet-152 as per the profiling result in Table 8.3 and

discussion in Sec. 8.2.2.

Attack parameters. We follow the default settings in [88] with the momentum decay

factor µ = 1 when implementing the MI-FGSM attack. For the DIM attack, we set proba-

bility p = 0.5 for the stochastic transformation function T (x; p) as in [89], and use the same

decay factor µ = 1 and total iteration number N = 20 as in the vanilla MI-FGSM. For DR

attack, we do not rely on FGSM method, and instead use Adam optimizer (β1 = 0.98,

β2 = 0.99) with learning rate of 5e−2 to reduce the dispersion of target feature map. The

maximum perturbation of all attacks in the experiments are limited by clipping at l∞ = 16,

which is still considered less perceptible for human observers [150].

106

Evaluation metrics. We perform adversarial attacks only on single network and test

them on the four black-box GCV models. The effectiveness of attacks is measured by the

model performance under attacks. As the labels from original datasets are different from

labels used by GCV, we use the prediction results of GCV APIs on the original data as

the ground truth, which gives a baseline performance of 100% relative accuracy or 100.0

relative mAP and AP respectively.

Results. We provide the state-of-the-art results on each CV task as reference in Ta-

ble 8.3. As shown in Table 8.3, DR outperforms other baseline attacks by degrading

the target model performance by a larger margin. For example, the adversarial examples

crafted by DR on VGG-16 model brings down the accuracy of Labels to only 23%, and

SafeSearch to 35%. Adversarial examples created with the DR, also degrade mAP of

Objects to 32.9% and AP of text localization to 20.9%, and with barely 4.1% accuracy

in recognizing words. Strong baselines like MI-FGSM and DIM, on the other hand, only

cause 38% and 43% success rate, respectively, when attacking SafeSearch, and are less

effective compared with DR when attacking all other GCV models. The results demon-

strate the better cross-task transferability of the dispersion reduction attack.

Figure 8.4 shows example of each GCV model’s output for original and adversarial

examples. The performance of Labels and SafeSearch are measured by the accuracy

of classification. More specifically, we use top1 accuracy for Labels, and use the ac-

curacy for detecting the given porn images as LIKELY or VERY LIKELY being adult

for SafeSearch. The performance of Objects is given by the mean average preci-

sion (mAP) at IoU=0.5. For Texts, we follow the bi-fold evaluation method of ICDAR

2017 Challenge [147]. We measure text localization accuracy using average precision (AP)

of bounding boxes at IoU=0.5, and evaluate the word recognition accuracy with correctly

recognized words (C.R.W) that are case insensitive.

When comparing the effectiveness of attacks on different generation models, the results

that DR generates adversarial examples that transfer better across these four commercial

107

APIs still hold. The visualization in Fig. 8.4 shows that the perturbed images with l∞ ≤ 16

well maintain their visual similarities with original images, but fool the real-world com-

puter vision systems.

8.3 Discussion and Conclusion

In this chapter, we present a Dispersion Reduction (DR) attack to improve the cross-task

transferability of adversarial examples. Specifically, our method reduces the dispersion of

intermediate feature maps by iterations. Compared to existing black-box attacks, the re-

sults on MS COCO, PASCAL VOC and ImageNet show that DR method performs better

on attacking black-box cross-CV-task models. One intuition behind the DR attack is that

by minimizing the dispersion of feature maps, images become ”featureless”. This is be-

cause few features can be detected if neuron activations are suppressed by perturbing the

input (Fig. 8.1). Moreover, with the observation that low-level features bear more simi-

larities across CV models, we hypothesize that the DR attack would produce transferable

adversarial examples when one of the middle convolution layers is targeted. Evaluation on

different CV tasks shows that this enhanced attack greatly degrades model performance by

a large margin compared to the state-of-the-art attacks, and thus would facilitate evasion

attacks against a different task model or even an ensemble of CV-based detection mecha-

nisms. We hope that DR attack can serve as benchmark for evaluating robustness of future

defense mechanisms.

8.4 Appendix

8.4.1 Target models

The backbones and datasets of pretrained weights for target models are shown in Table 8.4.

108

Models Backbone Pretrained Dataset
Yolov3[133][151] DarkNet53 COCO
RetineNet[134][152] ResNet50 COCO
SSD[135][153] MobileNet COCO
Faster R-CNN[136][154] ResNet50 COCO
Mask R-CNN[137][154] ResNet50 COCO
DeepLabv3[139][154] ResNet101 sub COCO in VOC labels
FCN [140][154] ResNet101 sub COCO in VOC labels

Table 8.4: Backbone and pretrained dataset for target models.

8.4.2 Experiments on ImageNet

We have performed adversarial attacks on randomly chosen 5000 correctly classified im-

ages from the ImageNet validation set. The accuracies for detection and segmentation are

shown in Table 8.6 and Table 8.7, respectively. Since there are no ground truth annota-

tions and masks for the test images, the performance metrics are selected as the relative

mAP/mIoU for detection and semantic segmentation respectively. In other words, the pre-

dictions from benign samples are regarded as the ground truth and predictions from adver-

sarial examples are regarded as inference results.

DR achieves the best results in 17 out of 21 sets of experiments (81.0%) by degrading

the performance of the target model by a larger margin. For detection, DR attack reduces

the mAP, on average, to 7.41 over all the experiments. It creates 3.8 more drop in mAP

compared to the best of the baselines (TI-DIM: 11.2 mAP). For semantic segmentation,

DR attack achieves 16.93 mIoU on average over all the experiments. It achieves 4.76 more

drop in mIoU compared to the best of the baselines (DIM: 21.69 mIoU).

Avg. Res. Det. Seg.
mAP mIoU

COCO&VOC/ImageNet
PGD 26.1 / 19.1 33.6 / 28.8
MI-FGSM 22.8 / 15.6 30.6 / 25.2
DIM 18.6 / 11.5 25.9 / 21.8
TI-DIM 16.7 / 11.2 26.4 / 21.7
DR (Ours) 12.8 / 7.4 20.0 / 16.9

Table 8.5: Average results for detection and segmentation using COCO, VOC and Ima-
geNet validation images.

109

Yolov3
DrkNet

RetinaNet
ResNet50

SSD
MobileNet

Faster-RCNN
ResNet50

Mask-RCNN
ResNet50

mAP mAP mAP mAP mAP

VGG16

PGD(α=1,N=20) 31.6 19.1 19.5 6.4 7.1
PGD(α=4,N=100) 18.7 7.0 7.7 2.8 3.3
MI-FGSM(α=1,N=20) 25.9 13.4 15.2 4.7 5.0
MI-FGSM(α=4,N=100) 16.4 5.0 6.6 1.8 2.2
DIM(α=1,N=20) 23.4 11.3 11.5 3.7 4.5
DIM(α=4,N=100) 17.2 5.8 6.3 2.2 2.7
TI-DIM(α=1.6,N=20) 21.5 10.2 11.6 3.5 4.0
TI-DIM(α=4,N=100) 16.3 7.8 8.6 2.3 2.7
DR(α=4,N=100)(ours) 17.0 3.6 4.1 1.2 1.5

InceptionV3

PGD(α=1,N=20) 51.3 36.6 33.9 25.9 25.1
PGD(α=4,N=100) 33.3 16.4 16.2 14.1 14.7
MI-FGSM(α=1,N=20) 44.6 27.4 27.5 19.8 20.1
MI-FGSM(α=4,N=100) 30.3 14.1 15.3 11.9 12.5
DIM(α=1,N=20) 30.6 15.2 16.4 11.0 11.7
DIM(α=4,N=100) 25.3 10.2 10.6 6.9 8.2
TI-DIM(α=1.6,N=20) 30.6 15.4 16.1 9.4 10.3
TI-DIM(α=4,N=100) 23.7 11.2 12.2 6.8 7.0
DR(α=4,N=100)(ours) 21.1 8.6 9.4 4.5 5.3

Resnet152

PGD(α=1,N=20) 40.8 27.6 27.0 10.4 10.8
PGD(α=4,N=100) 27.2 13.4 13.0 5.0 6.1
MI-FGSM(α=1,N=20) 33.9 20.3 21.2 7.6 8.0
MI-FGSM(α=4,N=100) 24.6 11.4 11.8 3.9 4.7
DIM(α=1,N=20) 26.9 13.2 13.0 4.4 5.3
DIM(α=4,N=100) 22.2 9.3 8.7 2.9 3.7
TI-DIM(α=1.6,N=20) 25.3 13.0 13.3 4.2 5.0
TI-DIM(α=4,N=100) 19.5 9.4 9.8 2.7 2.9
DR(α=4,N=100)(ours) 21.0 6.2 4.8 1.3 1.6

Table 8.6: Detection results for ImageNet.

110

DeepLabv3
ResNet101

FCN
ResNet101

mIoU mIoU

VGG16

PGD(α=1,N=20) 30.3 24.6
PGD(α=4,N=100) 17.5 15.1
MI-FGSM(α=1,N=20) 25.4 20.8
MI-FGSM(α=4,N=100) 15.5 13.9
DIM(α=1,N=20) 24.7 19.0
DIM(α=4,N=100) 17.1 14.5
TI-DIM(α=1.6,N=20) 23.8 20.0
TI-DIM(α=4,N=100) 18.3 16.5
DR(α=4,N=100)(ours) 16.5 12.4

InceptionV3

PGD(α=1,N=20) 47.3 37.5
PGD(α=4,N=100) 31.0 24.4
MI-FGSM(α=1,N=20) 40.5 31.8
MI-FGSM(α=4,N=100) 28.3 22.8
DIM(α=1,N=20) 30.4 24.4
DIM(α=4,N=100) 25.0 20.0
TI-DIM(α=1.6,N=20) 28.1 24.4
TI-DIM(α=4,N=100) 22.1 20.6
DR(α=4,N=100)(ours) 19.7 17.2

Resnet152

PGD(α=1,N=20) 39.5 31.1
PGD(α=4,N=100) 26.4 20.9
MI-FGSM(α=1,N=20) 33.5 26.3
MI-FGSM(α=4,N=100) 24.5 19.3
DIM(α=1,N=20) 26.8 21.0
DIM(α=4,N=100) 21.7 17.3
TI-DIM(α=1.6,N=20) 26.2 21.9
TI-DIM(α=4,N=100) 20.1 18.3
DR(α=4,N=100)(ours) 20.5 15.3

Table 8.7: Segmentation Results for ImageNet.

111

(a) Clean (b) Benign (c) DR (d) PGD (e) MIFGSM (f) DIM (g) TI-DIM

Figure 8.5: Samples of Detection and Segmentation Results

8.4.3 Average Results

We have compared DR attack with the state-of-the-art adversarial techniques to demon-

strate the transferability of our method on public object detection and semantic segmen-

tation models. We have used the validation sets of ImageNet, VOC2012 and COCO for

testing object detection and semantic segmentation tasks. The average results can be seen

in Table 8.5,

For COCO and VOC datasets, DR achieves the best results by degrading the perfor-

mance of the target model by a larger margin. For detection, DR drops the mAP to 12.8

on average over all the experiments. It creates 3.9 more drop in mAP compared to the best

of the baselines (TI-DIM: 16.7 mAP). For semantic segmentation, DR attack causes the

mIoU to drop to 20.0 on average over all the experiments. It achieves 5.9 more drop in

mIoU compared to the best of the baselines (DIM: 25.9 mIoU).

The diagnostic of average results for ImageNet can be seen in 8.4.2.

112

8.4.4 Visualization

Figure 8.5 shows the visualization samples for the DR method and baselines attacks. Ex-

amples of detection and segmentation results for clean images, results for benign images,

DR images, PGD images, MI-FGSM images, DIM images and TI-DIM images are shown

in each column (starting from left), respectively. First two rows are the detection results,

and the last two rows are the segmentation results. We can see that the DR attack is able

to effectively perform vanishing attack to both segmentation and detection tasks. It is also

noted that the DR attack is more successful and effective, compared to the baselines, when

attacking and degrading the performance for smaller objects.

113

Chapter 9

Robust Analysis of Multiple Object

Tracking for Autonomous Driving

This chapter studies the adversarial machine learning attacks considering the complete vi-

sual perception pipeline in autonomous driving, i.e., both object detection and object track-

ing, and discover a novel attack technique, called tracker hijacking, that can effectively

fool the MOT process using AEs on object detection. Our key insight is that although it is

highly difficult to directly create a tracker for fake objects or delete a tracker for existing

objects, we can carefully design AEs to attack the tracking error reduction process in MOT

to deviate the tracking results of existing objects towards an attacker-desired moving direc-

tion. Such process is designed for increasing the robustness and accuracy of the tracking

results, but ironically, we find that it can be exploited by attackers to substantially alter the

tracking results. Leveraging such attack technique, successful AEs on as few as one single

frame is enough to move an existing object in to or out of the headway of an autonomous

vehicle and thus may cause potential safety hazards.

We select 20 out of 100 randomly sampled video clips from the Berkeley Deep Drive

dataset to evaluate our attack technique. Under recommended MOT algorithm configura-

tions in practice [109] and normal measurement noise levels, we find that our attack can

114

Object

Detection

Images captured

in time sequence

Detection results Tracking results

id:1

id:1

id:1

id:0

id:0

id:0

Multiple-

Object

Tracking

Data

Association

State

Prediction

bbox, class bbox, class, track_id, velocity

Existing trackers

Fusion

Planning

Control

……

Figure 9.1: The complete visual perception pipeline in autonomous driving, i.e., both object
detection and Multiple Object Tracking (MOT) [1, 2, 3, 4, 5, 6, 7].

succeed with successful AEs on as few as one frame, and 2 to 3 consecutive frames on

average. We also reproduce and compare with previous attacks that blindly target object

detection, and find that when attacking 3 consecutive frames, our attack has a nearly 100%

success rate while attacks that blindly target object detection only have up to 25%.

9.1 Method

Overview. Fig. 9.2a illustrates the tracker hijacking attack discovered in this chapter, in

which an AE for object detection (e.g., in the form of adversarial patches on the front car)

that can fool the detection result for as few as one frame can largely deviate the tracker of

a target object (e.g., a front car) in MOT. As shown, the target car is originally tracked with

a predicted velocity to the left at t0. The attack starts at time t1 by applying an adversarial

patch onto the back of the car. The patch is carefully generated to fool the object detector

with two adversarial goals: (1) erase the bounding box of target object from detection

result, and (2) fabricate a bounding box with similar shape that is shifted a little bit towards

an attacker-specified direction. The fabricated bounding box (red one in detection result

at t1) will be associated with the original tracker of target object in the tracking result,

which we call a hijacking of the tracker, and thus would give a fake velocity towards the

115

car car car

car car car

car

car

t = 0 t = 2 t = 3

Fabricated

adversarial bbox

Erased

original bbox

Track hijacked with

adversarial velocity

Original object will

not be tracked until H

Detection

Tracking

Original bbox

recovered

Frames

Adversarial tracker will

not be deleted until R

Attack

duration

t = 1

Adversarial

patch

id:0 id:0 id:0 id:0

(a) Tracker hijacking attack overview

car

(b) Object move-in

car

(c) Object move-out

Figure 9.2: Description of the tracker hijacking attack flow (a), and two different attack
scenarios: object move-in (b) and move-out (c), where tracker hijacking may lead to severe
safety consequences including emergency stop and rear-end crashes.

attacker-desired direction to the tracker. The tracker hijacking shown in Fig. 9.2a lasts for

only one frame, but its adversarial effects could last tens of frames, depending on the MOT

parameter R and H . For example, at time t2 after the attack, all detection bounding boxes

are back to normal, however, two adversarial effects persist: (1) the tracker that has been

hijacked with attacker-induced velocity will not be deleted until a reserved age (R) has

passed, and (2) the target object, though is recovered in the detection result, will not be

tracked until a hit count (H) has reached, and before that the object remains missing in

the tracking result. However, it’s important to note that our attack may not always succeed

with one frame in practice, as the recovered object may still be associated with its original

tracker, if the tracker is not deviated far enough from the object’s true position during a

short attack duration. Our empirical results show that our attack usually achieves a nearly

100% success rate when 3 consecutive frames are successfully attacked using AE (§9.2).

Such persistent adversarial effects may cause severe safety consequences in self-driving

scenarios. We highlight two attack scenarios that can cause emergency stop or even a rear-

end crashes:

116

Attack scenario 1: Target object move-in. Shown in Fig. 9.2b, an adversarial patch

can be placed on roadside objects, e.g., a parked vehicle to deceive visual perception of

autonomous vehicles passing by. The adversarial patch is generated to cause a translation

of the target bounding box towards the center of the road in the detection result, and the

hijacked tracker will appear as a moving vehicle cutting in front in the perception of the

victim vehicle. This tracker would last for 2 seconds if R is configured as 2· fps as sug-

gested in [109], and tracker hijacking in this scenario could cause an emergency stop and

potentially a rear-end crash.

Attack scenario 2: Target object move-out. Similarly, tracker hijacking attack can

also deviate objects in front of the victim autonomous vehicle away from the road to cause

a crash as shown in Fig. 9.2c. Adversarial patch applied on the back of front car could

deceive MOT of autonomous vehicle behind into believing that the object is moving out of

its way, and the front car will be missing from the tracking result for a duration of 200ms,

if H uses the recommended configuration of 0.2· fps [109]. This may cause the victim

autonomous vehicle to crash into the front car.

9.1.1 Attack Methodology

Targeted MOT design. Our attack targets the most common MOT pipeline described in

background. Specifically, we target first-order Kalman filter which predicts a state vector

containing position and velocity of detected objects over time. For the data association, we

adopt the mostly widely used Intersection over Union (IoU) as the similarity metric, and

the IoU between bounding boxes are calculated by Hungarian matching algorithm [155] to

solve the bipartite matching problem that associates bounding boxes detected in consecu-

tive frames with existing trackers. Such combination of algorithms in the MOT is the most

common in previous work [107, 108, 106] and real-world systems [1].

We now describe our methodology of generating an adversarial patch that manipulates

detection results to hijack a tracker. As detailed in Alg.9.1, given a targeted video image

117

sequence, the attack iteratively finds the minimum required frames to perturb for a suc-

cessful track hijack, and generates the adversarial patches for these frames. In each attack

iteration, an image frame in the original video clip is processed, and given the index of

target objects K, the algorithm finds an optimal position to place the adversarial bound-

ing box pos in order to hijack the tracker of target object by solving Eq. 9.1. The attack

then constructs adversarial frame against object detection model with an adversarial patch,

using Eq. 9.2 as the loss function to erase the original bounding box of target object and

fabricate the adversarial bounding box at the given location. The tracker is then updated

with the adversarial frame that deviates the tracker from its original direction. If the target

object in the next frame is not associate with its original tracker by the MOT algorithm,

attack has succeeded; otherwise, this process is repeated for the next frame. We discuss

two critical steps in this algorithm below, and please refer to our supplementary material

for the complete implementation of the algorithm.

Finding optimal position for adversarial bounding box. To deviate the tracker of a

target objectK, besides removing its original bounding box detc|t[K], the attack also needs

to fabricate an adversarial box with a shift δ towards a specified direction. This turns into an

118

optimization problem (Eq. 9.1) of finding the translation vector δ that maximizes the cost

of Hungarian matching (M(·)) between the detection box and the existing tracker so that

the bounding box is still associated with its original tracker (M≤ λ), but the shift is large

enough to give an adversarial velocity to the tracker. Note that we also limit the shifted

bounding box to be overlapped with the patch to facilitate adversarial example generation ,

as it’s often easier for adversarial perturbations to affect prediction results in its proximity,

especially in physical settings [99].

max
δ
M(detc|t[K] + δ, track|t−1[K])

s.t.M≤ λ, IoU(detc|t[K] + δ, patch) > γ

(9.1)

Generating adversarial patch against object detection. Similar to the existing adversar-

ial attacks against object detection models [99, 93, 98], we also formulate the adversarial

patch generation as an optimization problem shown in Eq. 9.2. Existing attacks without

considering MOT directly minimize the probability of target class (e.g., a stop sign) to

erase the target from detection result. However, as shown in Fig. 9.3b, such AEs are highly

ineffective in fooling MOT as the tracker will still track for R frames even after the de-

tection bounding box is erased. Instead, the loss function of our tracker hijacking attack

incorporates two loss terms: L1 minimizes the target class probability at given location to

erase the target bounding box, where
∑B

i=0 1
obj
i identifies all bounding boxes (B) before

non-max suppression [156], who contain the center location (cxt, cyt) of pos, while Ci is

the confidence score of bounding boxes; L2 controls the fabrication of adversarial bound-

ing box at given center location (cxt, cyt) with given shape (wt, ht) to hijack the tracker. In

the implementation, we use Adam optimizer to minimize the loss by iteratively perturbing

the pixels along the gradient directions within the patch area, and the generation process

stops when an adversarial patch that satisfies the requirements is generated. Note that the

fabrication loss L2 needs only to be used when generating the first adversarial frame in

a sequence to give the tracker an attacker-desired velocity #�v , and then λ can be set to 0

119

Data association range

with original bbox

Optimal position for adv

bbox given a velocity

car

(a) Finding position to fabricate
adversarial bounding box

car

Detection Tracking

id:0

(b) Existing object detection attack

Detection Tracking

id:0

car

(c) Our tracker hijacking attack

Figure 9.3: Comparison between previous object detection attack and our tracker hijacking
attack. Previous attack that simply erase the bbox has no impact on the tracking output (b),
while tracker hijacking attack that fabricates bbox with carefully chosen position success-
fully redirects the tracker towards attacker-specified direction (c).

to only focus on erasing target bounding box similar to previous work. Thus, our attack

wouldn’t add much difficulty to the optimization. Details of our algorithm can be found in

the supplementary material, and the implementation can be found at [157].

min
∆∈patch

L1(xt + ∆) + λ · L2(xt + ∆)

L1 =
B∑
i=0

1
obj
i ·[C2

i − CrossEntropy(pi, classt)]

L2 =
B∑
i=0

1
obj
i ·{[(cxi − cxt)2 + (cyi − cyt)2] + [(

√
wi −

√
wt)

2 + (
√
hi −

√
ht)

2]

+ (1− Ci)2 + CrossEntropy(pi, classt)}

(9.2)

9.2 Evaluation

In this section, we describe our experiment settings for evaluating the effectiveness of our

tracker hijacking attack, and comparing it with previous attacks that blindly attack object

120

detection in detail.

9.2.1 Experiment Methodology

Evaluation metrics. We define a successful attack as that the detected bounding box of

target object can no longer be associated with any of the existing trackers when attack has

stopped. We measure the effectiveness of our track hijacking attack using the minimum

number of frames that the AEs on object detection need to succeed. The attack effectiveness

highly depends on the difference between the direction vector of the original tracker and

adversary’s objective. For example, attacker can cause a large shift on tracker with only

one frame if choosing the adversarial direction to be opposite to its original direction, while

it would be much harder to deviate the tracker from its established track, if the adversarial

direction happens to be the same as the target’s original direction. To control the variable,

we measure the number of frames required for our attack in two previous defined attack

scenarios: target object move-in and move-out. Specifically, in all move-in scenarios, we

choose the vehicle parked along the road as target, and the attack objective is to move the

tracker to the center, while in all move-out scenarios, we choose vehicles that are moving

forward, and the attack objective is to move the target tracker off the road.

Dataset selection. We randomly sampled 100 video clips from Berkeley Deep Drive

dataset [158], and then manually selected 10 suitable for the object move-in scenario, and

another 10 for the object move-out scenario. For each clip, we manually label a target

vehicle and annotate the patch region to be a small area at the back of it as shown in

Fig. 9.3c. All videos have the same frame rate of 30 fps.

Implementation details. We implement our targeted visual perception pipeline using

Python, with YOLOv3 [159] as the object detection model since it is among the most pop-

ular detectors used by real-time systems. For the MOT implementation, we use the Hun-

garian matching implementation called linear assignment in the sklearn package

for the data association, and we provide a reference implementation of Kalman filter based

121

Normal

configuration

range

(a) Frames required to be fooled
for a successful tracker hijack

R=60, H=6 R=5, H=2

(b) Attack success rate at R = 60 H = 6, and R = 5, H = 2

Figure 9.4: In normal measurement noise covariance range (a), our tracker hijacking attack
would require the adversarial example to fool only 2˜3 consecutive frames on average to
successfully deviate the target tracker despite the (R,H) settings. Moreover we compare
the success rate of tracker hijacking with previous adversarial attack against object detec-
tors only under different attacker capabilities, i.e., the number of consecutive frames the
adversarial example can reliably fool the object detector (b). Tracker hijacking achieves
superior attack success rate (100%) even by fooling as few as 3 frames, while previous at-
tack is only effective when the adversarial example can reliably fools at leastR consecutive
frames.

on the one used in OpenCV [160].

The effectiveness of attack depends on a configuration parameter of Kalman filter,

called measurement noise covariance (cov). cov is an estimation about how much noise

is in the system, a low cov value would give Kalman filter more confidence on the detec-

tion result at time t when updating the tracker, while a high cov value would make Kalman

filter to place trust more on its own previous prediction at time t − 1 than that at time t.

We give a detailed introduction of configurable parameters in Kalman filter in §2 of our

supplementary material. This measurement noise covariance is often tuned based on the

performance of detection models in practice. We evaluate our approach under different

cov configurations ranging from very small (10−3) to very large (10) as shown in Fig. 9.4a,

while cov is usually set between 0.01 and 10 in practice [1, 2].

9.2.2 Evaluation Results

Effectiveness of tracker hijacking attack. Fig. 9.4a shows the average number of frames

that the AEs on object detection need to fool for a successful track hijacking over the

122

20 video clips in the evaluation. Although a configuration with R = 60 and H = 6 is

recommended when fps is 30 [109], we still test different reserved age (R) and hit count

(H) combinations as real-world deployment are usually more conservative and use smaller

R and H [1, 2]. The results show that tracker hijacking attack only requires successful AEs

on object detection in 2 to 3 consecutive frames on average to succeed despite the (R, H)

configurations. We also find that even with a successful AE on only one frame, our attack

still has 50% and 30% success rates when cov is 0.1 and 0.01 respectively.

Interestingly, we find that object move-in generally requires less frames compared with

object move-out. The reason is that the parked vehicles in move-in scenarios (Fig. 9.2b)

naturally have a moving-away velocity relative to the autonomous vehicle. Thus, compared

to move-out attack, move-in attack triggers a larger difference between the attacker-desired

velocity and the original velocity. This makes the original object, once recovered, harder

to associate correctly, making hijacking easier.

Comparison with attacks that blindly target object detection. Fig. 9.4b shows the

success rate of our attack and previous attacks that blindly target object detection, which

we denote as detection attack. We reproduced the recent adversarial patch attack on object

detection from Jia et al. [161] in 2018, which targets the autonomous driving context and

has validated attack effectiveness using real-world car testing. In this attack, the objective is

to erase the target class from the detection result of each frame. Evaluated under two (R,H)

settings, we find that tracker hijacking attack achieves superior attack success rate (100%)

even by attacking as few as 3 frames, while the detection attack needs to reliably fool at

leastR consecutive frames to guarantee success. WhenR is set to 60 according to the frame

rate of 30 fps, the detection attack needs to have an adversarial patch that can constantly

succeed at least 60 frames while the victim autonomous vehicle is driving. It translates to

an over 98.3% (59
60

) AE success rate, which has never been achieved or even got close to

in previous work [98, 94, 99, 96]. Note that the detection attack still can have up to ˜25%

success rate before R. This is because the detection attack causes the object to disappear

123

for some frames, and when the vehicle heading changes during such disappearing period,

it is still possible to cause the original object, when recovered, to misalign with the tracker

predication in the original tracker. However, since our attack is designed to intentionally

mislead the tracker predication in MOT, our success rate is substantially higher (3-4×) and

can reach 100% with as few as 3 frames attacked.

9.3 Discussion

Implications for future research in this area. Today, adversarial machine learning re-

search targeting the visual perception in autonomous driving, no matter on attack or de-

fense, uses the accuracy of objection detection as the de facto evaluation metric [102].

However, as concretely shown in our work, without considering MOT, successful attacks

on the detection results alone do not have direct implication on equally or even closely

successful attacks on the MOT results, the final output of the visual perception task in real-

world autonomous driving [1, 2]. Thus, we argue that future research in this area should

consider: (1) using the MOT accuracy as the evaluation metric, and (2) instead of solely

focusing on object detection, also studying weaknesses specific to MOT or interactions be-

tween MOT and object detection, which is a highly under-explored research space today.

This chapter marks the first research effort towards both directions.

Practicality improvement. Our evaluation currently are all conducted digitally with

captured video frames, while our method should still be effective when applied to gener-

ate physical patches. For example, the adversarial patch generation method can be nat-

urally combined with different techniques proposed by previous work to enhance relia-

bility of AEs in the physical world (e.g., non-printable loss [91] and expectation-over-

transformation [162]). We leave this as future work.

Generality improvement. Though in this work we focused on MOT algorithm that

uses IoU based data association, our approach of finding location to place adversarial

124

bounding box is generally applicable to other association mechanisms (e.g., appearance-

based matching). Our AE generation algorithm against YOLOv3 should also be applicable

to other object detection models with modest adaptations. We plan to provide reference im-

plementations of more real-world end-to-end visual perception pipelines to pave the way

for future adversarial learning research in self-driving scenarios.

9.4 Conclusion

In this work, We are the first to study adversarial machine learning attacks against the

complete visual perception pipeline in autonomous driving, i.e., both object detection and

MOT. We discover a novel attack technique, tracker hijacking, that exploits the tracking

error reduction process in MOT and can enable successful AEs on as few as one frame to

move an existing object in to or out of the headway of an autonomous vehicle to cause

potential safety hazards. The evaluation results show that on average when 3 frames are

attacked, our attack can have a nearly 100% success rate while attacks that blindly target

object detection only have up to 25%. The source code and data is all available at [157].

Our discovery and results strongly suggest that MOT should be systematically consid-

ered and incorporated into future adversarial machine learning research targeting the visual

perception in autonomous driving. Our work initiates the first research effort along this

direction, and we hope that it can inspire more future research into this largely overlooked

research perspective.

125

Chapter 10

Boosting Ticket: Towards Practical

Pruning for Adversarial Training with

Lottery Ticket Hypothesis

We observe the standard technique introduced in [118] for identifying winning tickets does

not always find boosting tickets. In fact, the requirements are more restrictive. We ex-

tensively investigate underlining factors that affect such boosting effect, considering three

state-of-the-art large model architectures: VGG-16 [163], ResNet-18 [164], and WideRes-

Net [165]. We conclude that the boosting effect depends principally on three factors: (i)

learning rate, (ii) pruning ratio, and (iii) network capacity; we also demonstrate how these

factors affect the boosting effect. By controlling these factors, after only one training epoch

on CIFAR-10, we are able to obtain 90.88%/90.28% validation/test accuracy (regularly re-

quires >30 training epochs) on WideResNet-34-10 when 80% parameters are pruned.

We further show that the boosting tickets have a practical application in accelerating

adversarial training, an effective but expensive defensive training method for obtaining

robust models against adversarial examples. Adversarial examples are carefully perturbed

inputs that are indistinguishable from natural inputs but can easily fool a classifier [86, 132].

126

We first show our observations on winning and boosting tickets extend to the adversarial

training scheme. Furthermore, we observe that the boosting tickets pruned from a weakly

robust model can be used to accelerate the adversarial training process for obtaining a

strongly robust model. On CIFAR-10 trained with WideResNet-34-10, we manage to save

up to 49% of the total training time (including both pruning and training) compared to the

regular adversarial training process.

10.1 Empirical Study of Boosting tickets

We first investigate boosting tickets on the standard setting without considering adversarial

robustness. In this section, we show that with properly chosen hyperparameters, we are

managed to find boosting tickets on VGG-16 and ResNet that can be trained much faster

than the original dense network. Detailed model architectures and the setup can be found

in Supplementary Section A.

10.1.1 Existence of Boosting Tickets

To find the boosting tickets, we use a similar algorithm for finding winning tickets, which is

briefly described in the previous section and will be detailed here. First, a neural network is

randomly initialized and saved in advance. Then the network is trained until convergence,

and a given proportion of weights with the smallest magnitudes are pruned, resulting in a

mask where the pruned weights indicate 0 and remained weights indicate 1. We call this

train-and-prune step pruning. This mask is then applied to the saved initialization to obtain

a sub-network, which are the boosting tickets. All of the weights that are pruned (where

zeros in the mask) will remain to be 0 during the whole training process. Finally, we can

retrain the sub-networks.

The key differences between our algorithm and the one proposed in [118] to find win-

ning tickets are (i) we use a small learning rate for pruning and retrain the sub-network

127

(tickets) with learning rate warm-up from this small learning rate. In particular, for VGG-

16 we choose 0.01 for pruning and warmup from 0.01 to 0.1 for retraining; for ResNet-18

we choose 0.05 for pruning and warmup from 0.05 to 0.1 for retraining; (ii) we find it is

sufficient to prune and retrain the model only once instead of iterative pruning for multi-

ple times. In Supplementary Section B, we show the difference of boosting effects brought

from the tickets found by iterative pruning and one-shot pruning is negligible. Note warmup

is also used in [118]. However, they propose to use warmup from small learning rate to a

large one during pruning as well, which hinders the boosting effect as shown in the follow-

ing experiments.

First, we show the existence of boosting tickets for VGG-16 and ResNet-18 on CIFAR-

10 in Figure 10.1 and compare to the winning tickets. In particular, we show the boosting

tickets are winning tickets, in the sense that they outperform the randomly initialized mod-

els. When compared to the winning tickets, boosting tickets demonstrate equally good

performance with a higher convergence rate. Similar results on MNIST can be found in

Supplementary Section C.

0 25 50 75 100
Training epochs

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (a)

50 60 70 80 90 100
Training epochs

90

91

92

93

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (b)

0 25 50 75 100
Training epochs

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (c)

50 60 70 80 90 100
Training epochs

90

91

92

93

94

95

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (d)
boosting winning rand_init

Figure 10.1: Validation accuracy during the training process on VGG-16 (a, b) and ResNet-
18 (c, d) for winning tickets, boosting tickets, and randomly initialized weights. In both
models, the boosting tickets show faster convergence rate and equally good performance as
the winning tickets.

To measure the overall convergence rate, early stopping seems to be a good fit in the

literature. It is commonly used to prevent overfitting and the final number of steps are used

to measure convergence rates. However, early stopping is not compatible with learning

rate scheduling we used in our case where the total number of steps is determined before

training.

128

This causes two issues in our evaluation in Figure 10.1: (i) Although the boosting

tickets reach a relatively high validation accuracy much earlier than the winning ticket, the

training procedure is then hindered by the large learning rate. After the learning rate drops,

the performance gap between boosting tickets and winning tickets becomes negligible. As

a result, the learning rate scheduling obscures the improvement on convergence rates of

boosting tickets; (ii) Due to fast convergence, boosting tickets tend to overfit, as observed

in ResNet-18 after 50 epochs.

To mitigate these two issues without excluding learning rate scheduling, we conduct

another experiment where we mimic the early stopping procedure by gradually increasing

the total number of epochs from 20 to 100. The learning rate is still dropped at the 50%

and 75% stage. In this way, we can better understand the speed of convergence without

worrying about overfitting even with learning rate scheduling involved. In figure 10.2, we

compare the boosting tickets and winning tickets in this manner on VGG-16.

0 20 40 60 80 100
Training epochs

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (a)

0 20 40 60 80 100
Training epochs

90

92

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (b)

0 20 40 60 80 100
Training epochs

90

92

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (c)

0 20 40 60 80 100
Training epochs

90

92

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (d)

0 20 40 60 80 100
Training epochs

90

92

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (e)

0 20 40 60 80 100
Training epochs

90

92

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (f)

boost20
win20

boost40
win40

boost60
win60

boost80
win80

boost100
win100

Figure 10.2: Validation accuracy when the total number of epochs are 20, 40, 60, 80, 100
for both the boosting tickets (straight lines) and winning tickets (dash lines) on VGG-16.
Plot (a) and (b) contains the validation accuracy for all the training epochs in different
scales. Plot (c,d,e,f) compare the validation accuracy between models trained for fewer
epochs and the one for 100 epochs.

While the first two plots in Figure 10.2 show the general trend of convergence, the

improvement of convergence rates is much clearer in the last four plots. In particular,

the validation accuracy of boosting tickets after 40 epochs is already on pair with the one

trained for 100 epochs. Meanwhile, the winning tickets fall much behind the boosting
129

20 40 60 80 100
Training epochs

88

89

90

91

92

Te
st

 A
cc

ur
ac

y
(%

)

(a)

20 40 60 80 100
Training epochs

90

91

92

93

Te
st

 A
cc

ur
ac

y
(%

)

(b)
0.005 0.01 0.05 0.1

Figure 10.3: The final test accuracy achieved when total number of epochs vary from 20 to
100 on four different tickets. Each line denotes one winning ticket found by learning rate
0.005, 0.01, 0.05, and 0.1 for VGG-16 (a) and ResNet-18 (b).

tickets until 100 epochs where two finally match.

We further investigate the test accuracy at the end of training for boosting and winning

tickets in Table 10.1. We find the test accuracy of winning tickets gradually increase as we

allow for more training steps, while the boosting tickets achieve the highest test accuracy

after 60 epochs and start to overfit at 100 epochs.

Table 10.1: Final test accuracy of winning tickets and boosting tickets trained in various
numbers of epochs on VGG-16.

of Epochs 20 40 60 80 100
Test Accuracy on Winning Tickets (%) 88.10 90.03 90.96 91.79 92.00
Test Accuracy on Boosting Tickets (%) 91.25 91.84 92.13 92.14 92.05

Summarizing the observations above, we confirm the existence of boosting tickets and

state the boosting ticket hypothesis: A randomly initialized dense neural network contains

a sub-network that is initialized such that, when trained in isolation, converges faster than

the original network and other winning tickets while matches their performance.

In the following sections, we investigate three major components that affect the boost-

ing effects.

130

10.1.2 Learning Rate

As finding boosting tickets requires alternating learning rates, it is natural to assume the

performance of boosting tickets relies on the choice of learning rate. Thus, we extensively

investigate the influence of various learning rates.

We use similar experimental settings in the previous section, where we increase the total

number of epochs gradually and use the test accuracy as a measure of convergence rates.

We choose four different learning rates 0.005, 0.01, 0.05 and 0.1 for pruning to get the

tickets. All of the tickets found by those learning rates obtain the accuracy improvement

over randomly reinitialized sub-model and thus satisfy the definition of winning tickets

(i.e., they are all winning tickets).

As shown in the first two plots of Figure 10.3, tickets found by smaller learning rates

tend to have stronger boosting effects. For both VGG-16 and ResNet-18, the models trained

with learning rate 0.1 show the least boosting effects, measured by the test accuracy after 20

epochs of training. On the other hand, training with too small learning rate will compromise

the eventual test accuracy at a certain extent. Therefore, we treat the tickets found by

learning rate 0.01 as our boosting tickets for VGG-16, and the one found by learning rate

0.05 as for ResNet-18, which converge much faster than all of the rest while achieving the

highest final test accuracy.

10.1.3 Pruning Ratio

Pruning ratio has been an important component for winning tickets [118], and thus we in-

vestigate its effect on boosting tickets. Since we are only interested in the boosting effect,

we use the validation accuracy at early stages as a measure of the strength of boosting to

avoid drawing too many lines in the plots. In Figure 10.4, we show the validation accu-

racy after the first and fifth epochs of models for different pruning ratios for VGG-16 and

ResNet-18.

For both VGG-16 and ResNet-18, boosting tickets always reach much higher accu-
131

0 20 40 60 80 100
Pruning Ratio

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (a)

0 20 40 60 80 100
Pruning Ratio

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (b)
epoch1 epoch1_rand epoch5 epoch5_rand

Figure 10.4: Under various pruning ratios, the changes of validation accuracy after the first
and fifth training epoch, trained from the original initialized weights of boosting tickets and
randomly reinitialized ones for VGG-16 (a) and ResNet-18 (b).

racy than randomly reinitialized sub-models, demonstrating their boosting effects. When

the pruning ratio falls into the range from 60% to 90%, boosting tickets can provide the

strongest boosting effects which obtain around 80% and 83% validation accuracy after the

first and the fifth training epochs for VGG-16 and obtain 76% and 85% validation accuracy

for ResNet-18. On the other hand, the increase of validation accuracy between the first

training epoch and the fifth training epoch become smaller when boosting effects appear.

It indicates their convergence starts to saturate due to the large learning rate at the initial

stage and is ready for dropping the learning rate.

10.1.4 Model Capacity

We finally investigate how model capacity, including the depth and width of models, affects

the boosting tickets. We use WideResNet [165] either with its depth or width fixed and vary

the other factor. In particular, we keep the depth as 34 and increases the width from 1 to

10, comparing their boosting effect. Then we keep the width as 10 and increase the depth

from 10 to 34. The changes of validation accuracy of the models are shown in Figure 10.5.

Overall, Figure 10.5 shows models with larger capacity have a more significant boosting

effect, though the boosting effects keep the same when the depth is larger than 22. Notably,

we find the largest model WideResNet-34-10 achieves 90.88% validation accuracy after

only one training epoch.

132

0 20 40 60 80 100
Training epochs

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (a)

50 60 70 80 90 100
Training epochs

86

88

90

92

94

96

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (b)
34-1 34-2 34-5 34-10

0 20 40 60 80 100
Training epochs

60

70

80

90

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (c)

50 60 70 80 90 100
Training epochs

86

88

90

92

94

96

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (d)
10-10 16-10 22-10 28-10 34-10

Figure 10.5: Plot (a) and (b) correspond to boosting tickets for various of model widths.
Plot (c) and (d) correspond to boosting tickets for various of model depths. While a wider
model always boosts faster, deep models have similar boosting effect when the depth is
large enough.

0 20 40 60 80 100
Training epochs

40

50

60

70

80

Cl
ea

n
Ac

cu
ra

cy
 (%

)

(a)

0 20 40 60 80 100
Training epochs

20

25

30

35

40

45

50

Ro
bu

st
 A

cc
ur

ac
y

(%
)

(b)
nat fgsm pgd rand

Figure 10.6: The clean accuracy (a) and robust accuracy (b) of pruned models on the val-
idation set. The models are pruned based on different training methods (natural train-
ing, FGSM-based adversarial training, and PGD-based adversarial training). For each ob-
tained boosting ticket, it is retrained with PGD-based adversarial training with 100 training
epochs.

10.2 Boosting Tickets in Adversarial Settings

Although the lottery ticket hypothesis is extensively studied in [118] and [166], the same

phenomenon in adversarial training setting lacks thorough understanding.

In this section, we show two important facts that make boosting tickets suitable for

the adversarial scheme: (1) the lottery ticket hypothesis and boosting ticket hypothesis are

applicable to the adversarial training scheme; (2) pruning on a weakly robust model allows

to find the boosting ticket for a strongly robust model and save training cost.

10.2.1 Applicability for Adversarial Training

In the following experiment, we use a naturally trained model, that is trained in the standard

manner, and two adversarially trained models using FGSM and PGD respectively to obtain

133

the tickets by pruning these models. Then we retrain these pruned models with the same

PGD-based adversarial training from the same initialization. In Figure 10.6, we report the

corresponding accuracy on the original validation sets and on the adversarially perturbed

validation examples, noted as clean accuracy and robust accuracy. We further train the

pruned model from random reinitialization to validate lottery ticket hypothesis.

Unless otherwise stated, in all the PGD-based adversarial training, we keep the same

setting as [167]. The PGD attacks are performed in 10 steps with step size 2/255 (PGD-10).

The PGD attacks are bounded by 8/255 in its `∞ norm. For the FGSM-based adversarial

training, the FGSM attacks are bounded by 8/255.

Both models trained from the boosting tickets obtained with FGSM- and PGD-based

adversarial training demonstrate superior performance and faster convergence than the

model trained from random reinitialization. This confirms the lottery ticket hypothesis

and boosting ticket hypothesis are applicable to adversarial training scheme on both clean

accuracy and robust accuracy. More interestingly, the performance of the models pruned

with FGSM- and PGD-based adversarial training are almost the same. This observation

suggests it is sufficient to train a weakly robust model with FGSM-based adversarial train-

ing for obtaining the boosting tickets and retrain it with stronger attacks such as PGD.

This finding is interesting because FGSM-based adversarial trained models will suffer

from label leaking problems as learning weak robustness [168]. In fact, the FGSM-based

adversarially trained model from which we obtain our boosting tickets has 89% robust

accuracy against FGSM but with only 0.4% robust accuracy against PGD performed in

20 steps (PGD-20). However, Figure 10.6 shows the following PGD-based adversarial

retraining on the boosting tickets obtained from that FGSM-based trained model is indeed

robust.

In [169], the authors argued that the lottery ticket hypothesis fails to hold in adversarial

training via experiments on MNIST. We show they fail to observe winning tickets because

the models they used have limited capacity. In the adversarial setting bounded by L∞ ≤

134

0.3, small models such as a CNN with two convolutional layers used in [169] can not

yield even winning tickets when pruning ratio is large. In Figure 10.7, plot (a) and (b)

are the clean and robust accuracy of the pruned models when the pruning ratio is 80%.

The pruned model degrades into a trivial classifier where all example are classified into

the same class with 11.42%/11.42% valid/test accuracy. However, when we use VGG-16,

as shown in plot (c) and (d), the winning tickets are found again. This can be explained

as adversarial training requires much larger model capacity than standard training [167],

thus pruning small models could undermine their performance. Since MNIST is a simple

dataset, adversarial training converges quickly at the first few epochs for both the tickets

and randomly initialized models. Therefore, there is no winning tickets performing obvious

boosting effect which we can identify as a boosting ticket on MNIST.

0 10 20
Training epochs

0

20

40

60

Ro
bu

st
 A

cc
ur

ac
y

(%
) (a)

0 10 20
Training epochs

0

5

10

15

Ro
bu

st
 A

cc
ur

ac
y

(%
) (b)

0 10 20
Training epochs

96

98

100 (c)

0 10 20
Training epochs

80

85

90

95
(d)

winning ticket rand init

Figure 10.7: We show clean (a,c) and robust accuracy (b,d) for both winning tickets and
randomly initialized weights on LeNet (a,b) and Vgg-16 (c,d) on MNIST with adversarial
training.

10.2.2 Convergence Speedup

We then conduct the same experiment as in Figure 10.2 but in the adversarial training

setting to better show the improved convergence rates. The results for validation accuracy

and test accuracy are presented in Figure 10.8 and Table 10.2 respectively. It suggests it is

sufficient to train 60 epochs to achieve similar robust accuracy as the full model trained for

100 epochs.

135

0 20 40 60 80 100
Training epochs

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (a)

0 20 40 60 80 100
Training epochs

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (b)

0 20 40 60 80 100
Training epochs

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (c)

0 20 40 60 80 100
Training epochs

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (d)

0 20 40 60 80 100
Training epochs

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (e)

0 20 40 60 80 100
Training epochs

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) (f)

20 40 60 80 100 baseline

Figure 10.8: Validation robust accuracy of pruned models with PGD-based adversarial
training on VGG-16 where the total number of epochs are 20, 40, 60, 80, 100 respectively.
Plot (a) and (b) show all the results while plot (c), (d), (e), (f) compare each model with
the baseline model. The baseline model is obtained by 100-epoch PGD-based adversarial
training on the original full model.

Table 10.2: Best test clean and robust accuracy for PGD-based adversarial training on
boosting tickets obtained by FGSM-based adversarial training in various numbers of
epochs on VGG-16. Baseline model is obtained by 100-epoch PGD-based adversarial
training on original full model.

of Epochs 20 40 60 80 100 Baseline
Robust Test Accuracy 44.49 45.27 45.73 45.20 44.53 44.78
Clean Test Accuracy 75.15 76.28 76.48 77.60 78.07 77.21

10.2.3 Boosting Ticket Applications on adversarially trained WideResNet-

34-10

Until now, we have confirmed that boosting tickets exist consistently across different mod-

els and training schemes and convey important insights on the behavior of pruned models.

However, in the natural training setting, although boosting tickets provide faster conver-

gence, it is not suitable for accelerating the standard training procedure as pruning to find

the boosting tickets requires training full models beforehand. On the other hand, the two

observations mentioned in Section 10.2 enable boosting tickets to accelerate adversarial

training. In particular, we can find boosting tickets with FGSM-based adversarial training

that and they can significantly accelerate the PGD-based adversarial training. Note that the

136

cost of FGSM-based training is only 1/10 times of the standard 10-step PGD-based one

and thus is almost negligible compared to the time saved due to the boosting effect.

In Table 10.3, we apply adversarial training to WideResNet-34-10, which has the same

structure used in [167], with the presented approach for 40, 70 and 100 epochs and report

the best accuracy/robust accuracy under various attacks among the whole training process.

In particular, we perform 20-step PGD, 100-step PGD as white-box attacks where the at-

tackers have the access to the model parameters. More experimental results are included in

the Appendix.

Table 10.3: Best test clean accuracy, robust accuracy, and training time for PGD-based
adversarial training on boosting tickets obtained by FGSM-based one in various numbers
of epochs on WideResNet-34-10. Overall, our training strategy based on boosting tickets
can save up to 49% of the total training time while performing better compared to regular
adversarial training on the full model.

Test Accuracy(%) Consumed Time(s)
Models Clean PGD-20 PGD-100 Pruning Training Total Ratio
Madry’s 86.21 50.07 49.32 - 134,764 134,764 -
Ours-40 87.72 50.37 49.28 15,462 54,090 69,552 0.51
Ours-70 87.85 50.48 49.58 15,462 94,796 110,258 0.82
Ours-100 87.35 49.92 49.11 15,462 137,105 152,567 1.13

We report the time consumption for training each model to measure how much time

is saved by boosting tickets. We run all the experiments on a workstation with 2 V100

GPUs in parallel. From Table 10.3 we observe that while our approach requires pruning

before training, it is overall faster as it uses FGSM-based adversarial training. In particular,

to achieve its best robust accuracy, original Madry et al.’s training method [167] requires

134,764 seconds on WideResNet-34-10. To achieve that, our boosting ticket only requires

69,552 seconds, including 15,462 seconds to find the boosting ticket and 54,090 seconds

to retrain the ticket, saving 49% of the total training time.

137

10.3 Conclusion

In this chapter, we investigate boosting tickets, sub-networks coupled with certain initial-

ization that can be trained with significantly faster convergence rate. As a practical applica-

tion, in the adversarial training scheme, we show pruning a weakly robust model allows to

find boosting tickets that can save up to 49% of the total training time to obtain a strongly

robust model that matches the state-of-the-art robustness. Finally, it is an interesting direc-

tion to investigate whether there is a way to find boosting tickets without training the full

model beforehand, as it is technically not necessary.

138

Chapter 11

Conclusion

Most of the available devices and approaches for step counting rely only on accelerometer

data, and thus are prone to over-counting. We have presented an autonomous and robust

method for counting footsteps, and tracking and calculating stride length by using both

accelerometer and camera data from smart phones or a GoogleTMglass. To provide higher

precision, instead of using a preset step and/or stride length, the presented method calcu-

lates the distance traveled with each step by using the camera data. The presented method

has been compared with the commonly-used accelerometer-based step counter applications

(apps). The results show that the presented method provides a significant increase in accu-

racy, and has the lowest average error rate both in number of steps taken and the distance

traveled compared to commercially available, accelerometer-based step counters and apps.

Then, we have presented a robust and autonomous method to perform fine-grain ac-

tivity classification by leveraging data from multiple sensor modalities, more specifically

egocentric video and IMU sensor data from wearable devices. In contrast to many CNN-

based approaches, we have proposed to use a capsule network to obtain features from

egocentric video data. Instead of using a single CapsNet, multiple CapsNets are employed

for consecutive images, and then a convolutional LSTM is used to build a recurrent Cap-

sNet. The LSTM framework is employed both on IMU data and egocentric camera data to

139

capture the temporal aspect of actions, which span a time window. Moreover, we proposed

a GA-based approach to autonomously and systematically set the various parameters of our

network architecture.

In order to optimize the performance of the ego-centric neural networks. We have pre-

sented a method to efficiently perform human activity classification from egocentric videos

by incorporating actor-critic model of reinforcement learning. Actor-critic reinforcement

learning allows placing a bounding box on a region of interest, and clipping that region.

Then, only the clipped region is processed through a deeper network, while the entire im-

age is processed by a shallow one. This strategically reduced complexity of the network

structure provides significant increase in the processing speed, while maintaining the same

level of accuracy.

Moreover, we have presented a novel and systematic method that autonomously and

simultaneously optimizes multiple parameters of any given deep neural network by using a

genetic algorithm (GA) aided by a novel Bi-Generative Adversarial Network (GAN) with

two generators, which is referred to as Bi-GAN. The proposed Bi-GAN allows the au-

tonomous exploitation and choice of the number of neurons, for the fully-connected layers,

and number of filters for the convolutional layers, from a large range of values. The ap-

proach can be used to autonomously refine the number of convolutional layers and dense

layers, number and size of kernels, and the number of neurons; choose the type of the

activation function; and decide whether to use dropout and batch normalization or not, to

improve the accuracy of different deep neural network architectures.

In order to study robustness of neural networks, we present a Dispersion Reduction

(DR) attack to improve the cross-task transferability of adversarial examples. Specifically,

our method reduces the dispersion of intermediate feature maps by iterations. Compared to

existing black-box attacks, the results show that DR method performs better on attacking

black-box cross-CV-task models. One intuition behind the DR attack is that by minimizing

the dispersion of feature maps, images become ”featureless”. This is because few features

140

can be detected if neuron activations are suppressed by perturbing the input (Fig. 8.1).

Moreover, with the observation that low-level features bear more similarities across CV

models, we hypothesize that the DR attack would produce transferable adversarial ex-

amples when one of the middle convolution layers is targeted. Evaluation on different

CV tasks shows that this enhanced attack greatly degrades model performance by a large

margin compared to the state-of-the-art attacks, and thus would facilitate evasion attacks

against a different task model or even an ensemble of CV-based detection mechanisms. We

hope that DR attack can serve as benchmark for evaluating robustness of future defense

mechanisms.

For the aspect of tracking part in perception system, we are the first to study adversarial

machine learning attacks against the complete visual perception pipeline in autonomous

driving, i.e., both object detection and MOT. We discover a novel attack technique, tracker

hijacking, that exploits the tracking error reduction process in MOT and can enable suc-

cessful AEs on as few as one frame to move an existing object in to or out of the headway

of an autonomous vehicle to cause potential safety hazards. Our discovery and results

strongly suggest that MOT should be systematically considered and incorporated into fu-

ture adversarial machine learning research targeting the visual perception in autonomous

driving. Our work initiates the first research effort along this direction, and we hope that it

can inspire more future research into this largely overlooked research perspective.

At last, towards higher neural network efficiency, we investigate boosting tickets, sub-

networks coupled with certain initialization that can be trained with significantly faster

convergence rate. As a practical application, in the adversarial training scheme, we show

pruning a weakly robust model allows to find boosting tickets that can save training time to

obtain a strongly robust model that matches the state-of-the-art robustness.

141

Bibliography

[1] Baidu, “Baidu Apollo,” https://github.com/ApolloAuto/apollo.

[2] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,

A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on board: enabling au-

tonomous vehicles with embedded systems,” in ICCPS’18. IEEE Press, 2018, pp.

287–296.

[3] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An open

approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68, 2015.

[4] D. Zhao, H. Fu, L. Xiao, T. Wu, and B. Dai, “Multi-object tracking with correlation

filter for autonomous vehicle,” Sensors, vol. 18, no. 7, p. 2004, 2018.

[5] A. Ess, K. Schindler, B. Leibe, and L. Van Gool, “Object detection and tracking

for autonomous navigation in dynamic environments,” The International Journal of

Robotics Research, vol. 29, no. 14, pp. 1707–1725, 2010.

[6] MathWorks, “Automated driving toolbox,” https://www.mathworks.com/products/

automated-driving.html.

[7] Udacity, “Self-driving car engineer nanodegree program,” https://www.udacity.com/

course/self-driving-car-engineer-nanodegree--nd013.

[8] S. Zhang, P. McCullagh, C. Nugent, and H. Zheng, “Activity monitoring us-

ing a smart phone’s accelerometer with hierarchical classification,” in Intelligent
142

https://github.com/ApolloAuto/apollo
https://www.mathworks.com/products/automated-driving.html
https://www.mathworks.com/products/automated-driving.html
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013

Environments (IE), 2010 Sixth International Conference on, July 2010, pp. 158–

163.

[9] K. Ozcan and S. Velipasalar, “Wearable camera- and accelerometer-based fall detec-

tion on portable devices,” in IEEE Embedded Systems Letters, 2015.

[10] L. Song, Y. Wang, J.-J. Yang, and J. Li, “Health sensing by wearable sensors and

mobile phones: A survey,” in e-Health Networking, Applications and Services

(Healthcom), 2014 IEEE Int’l Conf. on, Oct 2014, pp. 453–459.

[11] F. Guo, Y. Li, M. S. Kankanhalli, and M. S. Brown, “An evaluation

of wearable activity monitoring devices,” in Proceedings of the 1st ACM

International Workshop on Personal Data Meets Distributed Multimedia, ser.

PDM ’13. New York, NY, USA: ACM, 2013, pp. 31–34. [Online]. Available:

http://doi.acm.org/10.1145/2509352.2512882

[12] K. Park, H. Shin, and H. Cha, “Smartphone-based pedestrian tracking in indoor

corridor environments,” Personal and Ubiquitous Computing, vol. 17, no. 2, pp.

359–370, 2013. [Online]. Available: http://dx.doi.org/10.1007/s00779-011-0499-5

[13] N. Capela, E. Lemaire, and N. Baddour, “A smartphone approach for the 2 and 6-

minute walk test,” in Engineering in Medicine and Biology Society (EMBC), 2014

36th Annual International Conference of the IEEE, Aug 2014, pp. 958–961.

[14] H.-J. Jang, J. Kim, and D. Hwang, “Robust step detection method for pedestrian

navigation systems,” Electronics Letters, vol. 43, no. 14, July 2007.

[15] D. Alvarez, R. Gonzalez, A. Lopez, and J. Alvarez, “Comparison of step length

estimators from weareable accelerometer devices,” in Engineering in Medicine and

Biology Society, 2006. EMBS ’06. 28th Annual International Conference of the

IEEE, Aug 2006, pp. 5964–5967.

143

http://doi.acm.org/10.1145/2509352.2512882
http://dx.doi.org/10.1007/s00779-011-0499-5

[16] M.-S. Pan and H.-W. Lin, “A step counting algorithm for smartphone users: Design

and implementation,” Sensors Journal, IEEE, vol. 15, no. 4, pp. 2296–2305, April

2015.

[17] A. Brajdic and R. Harle, “Walk detection and step counting on unconstrained

smartphones,” in Proceedings of the 2013 ACM International Joint Conference

on Pervasive and Ubiquitous Computing, ser. UbiComp ’13. New York, NY,

USA: ACM, 2013, pp. 225–234. [Online]. Available: http://doi.acm.org/10.1145/

2493432.2493449

[18] M. Marschollek, M. Goevercin, K.-H. Wolf, B. Song, M. Gietzelt, R. Haux, and

E. Steinhagen-Thiessen, “A performance comparison of accelerometry-based step

detection algorithms on a large, non-laboratory sample of healthy and mobility-

impaired persons,” in Engineering in Medicine and Biology Society, 2008. EMBS

2008. 30th Annual International Conference of the IEEE, Aug 2008, pp. 1319–1322.

[19] F. Aubeck, C. Isert, and D. Gusenbauer, “Camera based step detection on mobile

phones,” in Indoor Positioning and Indoor Navigation (IPIN), 2011 International

Conference on, Sept 2011, pp. 1–7.

[20] K. Ozcan and S. Velipasalar, “Robust and reliable step counting by mobile phone

cameras,” in Proceedings of the 9th International Conference on Distributed Smart

Cameras, ser. ICDSC ’15. New York, NY, USA: ACM, 2015, pp. 164–169.

[Online]. Available: http://doi.acm.org/10.1145/2789116.2789120

[21] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based

navigation for autonomous micro helicopters in gps-denied environments,” J.

Field Robot., vol. 28, no. 6, pp. 854–874, Nov. 2011. [Online]. Available:

http://dx.doi.org/10.1002/rob.20412

144

http://doi.acm.org/10.1145/2493432.2493449
http://doi.acm.org/10.1145/2493432.2493449
http://doi.acm.org/10.1145/2789116.2789120
http://dx.doi.org/10.1002/rob.20412

[22] A. Bachrach, A. de Winter, R. He, G. Hemann, S. Prentice, and N. Roy, “Range

- robust autonomous navigation in gps-denied environments,” in Robotics and

Automation (ICRA), 2010 IEEE International Conference on, May 2010, pp. 1096–

1097.

[23] L. Ojeda and J. Borenstein, “Personal dead-reckoning system for gps-denied en-

vironments,” in Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE

International Workshop on, Sept 2007, pp. 1–6.

[24] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human

physical activity from on-body accelerometers,” Sensors, vol. 10, no. 2, pp.

1154–1175, 2010. [Online]. Available: http://www.mdpi.com/1424-8220/10/2/1154

[25] ——, “Accelerometry-based classification of human activities using markov

modeling,” Intell. Neuroscience, vol. 2011, pp. 4:1–4:10, Jan. 2011. [Online].

Available: http://dx.doi.org/10.1155/2011/647858

[26] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou,

and Y. Amirat, “Physical human activity recognition using wearable sensors,”

Sensors, vol. 15, no. 12, pp. 31 314–31 338, 2015. [Online]. Available:

http://www.mdpi.com/1424-8220/15/12/29858

[27] N. Abhayasinghe and I. Murray, “Human activity recognition using thigh angle de-

rived from single thigh mounted imu data,” in 2014 International Conference on

Indoor Positioning and Indoor Navigation (IPIN), Oct 2014, pp. 111–115.

[28] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition

using body-worn inertial sensors,” ACM Comput. Surv., vol. 46, no. 3, pp.

33:1–33:33, Jan. 2014. [Online]. Available: http://doi.acm.org/10.1145/2499621

[29] M. Zhang and A. A. Sawchuk, “Motion primitive-based human activity

recognition using a bag-of-features approach,” in Proceedings of the 2Nd
145

http://www.mdpi.com/1424-8220/10/2/1154
http://dx.doi.org/10.1155/2011/647858
http://www.mdpi.com/1424-8220/15/12/29858
http://doi.acm.org/10.1145/2499621

ACM SIGHIT International Health Informatics Symposium, ser. IHI ’12.

New York, NY, USA: ACM, 2012, pp. 631–640. [Online]. Available: http:

//doi.acm.org/10.1145/2110363.2110433

[30] A. Bayat, M. Pomplun, and D. A. Tran, “A study on human activity recognition

using accelerometer data from smartphones,” Procedia Computer Science, vol. 34,

pp. 450 – 457, 2014, the 9th International Conference on Future Networks

and Communications (FNC’14)/The 11th International Conference on Mobile

Systems and Pervasive Computing (MobiSPC’14)/Affiliated Workshops. [Online].

Available: //www.sciencedirect.com/science/article/pii/S1877050914008643

[31] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural

networks for multimodal wearable activity recognition,” Sensors, vol. 16, no. 1,

2016. [Online]. Available: http://www.mdpi.com/1424-8220/16/1/115

[32] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li, “Large-

scale video classification with convolutional neural networks,” in Computer Vision

and Pattern Recognition, 2014, pp. 1725–1732.

[33] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, T. Dar-

rell, and K. Saenko, “Long-term recurrent convolutional networks for visual recog-

nition and description,” in Comp. Vision and Pattern Recogn., 2015, pp. 677–691.

[34] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotem-

poral features with 3d convolutional networks,” in Proceedings of the 2015 IEEE

International Conference on Computer Vision (ICCV), ser. ICCV ’15. Washing-

ton, DC, USA: IEEE Computer Society, 2015, pp. 4489–4497.

[35] A. Montes, A. Salvador, S. Pascual, and X. Giroinieto, “Temporal activity detection

in untrimmed videos with recurrent neural networks,” arXiv:1608.08128, 2017.

146

http://doi.acm.org/10.1145/2110363.2110433
http://doi.acm.org/10.1145/2110363.2110433
//www.sciencedirect.com/science/article/pii/S1877050914008643
http://www.mdpi.com/1424-8220/16/1/115

[36] S. Buch, V. Escorcia, C. Shen, B. Ghanem, and J. C. Niebles, “Sst: Single-stream

temporal action proposals,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July 2017, pp. 6373–6382.

[37] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions

classes from videos in the wild,” 12 2012.

[38] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “Activitynet: A large-

scale video benchmark for human activity understanding,” in Computer Vision and

Pattern Recognition, 2015, pp. 961–970.

[39] M. Cornacchia, K. Ozcan, Y. Zheng, and S. Velipasalar, “A survey on activity detec-

tion and classification using wearable sensors,” IEEE Sensors Journal, vol. 17, no. 2,

pp. 386–403, Jan 2017.

[40] C. Li and K. M. Kitani, “Pixel-level hand detection in ego-centric videos,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2013, pp. 3570–3577.

[41] Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important people and objects

for egocentric video summarization,” in Computer Vision and Pattern Recognition,

2012, pp. 1346–1353.

[42] M. S. Ryoo and L. Matthies, “First-person activity recognition: What are they doing

to me?” in IEEE Conf. on CVPR, 2013, pp. 2730–2737.

[43] A. Fathi, X. Ren, and J. M. Rehg, “Learning to recognize objects in egocentric activ-

ities,” in IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp.

3281–3288.

[44] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto, “Fast unsupervised ego-action

learning for first-person sports videos,” in Computer Vision and Pattern Recognition,

2011, pp. 3241–3248.

147

[45] H. Pirsiavash and D. Ramanan, “Detecting activities of daily living in first-

person camera views,” in 2012 IEEE Conference on Computer Vision and Pattern

Recognition, June 2012, pp. 2847–2854.

[46] T. McCandless and K. Grauman, “Object-centric spatio-temporal pyramids for ego-

centric activity recognition,” in BMVC, 2013, pp. 30.1–30.11.

[47] Y. Li, A. Fathi, and J. M. Rehg, “Learning to predict gaze in egocentric video,” in

IEEE International Conference on Computer Vision, 2014, pp. 3216–3223.

[48] M. Moghimi, P. Azagra, L. Montesano, and A. C. Murillo, “Experiments on an rgb-d

wearable vision system for egocentric activity recognition,” in Computer Vision and

Pattern Recognition Workshops, 2014, pp. 611–617.

[49] Z. Lu and K. Grauman, “Story-driven summarization for egocentric video,” in

Computer Vision and Pattern Recognition, 2013, pp. 2714–2721.

[50] T. H. Nguyen, J. C. Nebel, and F. Florezrevuelta, “Recognition of activities of daily

living with egocentric vision: A review,” Sensors, vol. 16, no. 1, p. 72, 2016.

[51] F. Conti, D. Palossi, R. Andri, M. Magno, and L. Benini, “Accelerated visual context

classification on a low-power smartwatch,” IEEE Transactions on Human-Machine

Systems, vol. 48, no. 1, pp. 19–30, 2017.

[52] K. Zhan, S. Faux, and F. Ramos, “Multi-scale conditional random fields for first-

person activity recognition on elders and disabled patients,” Pervasive and Mobile

Computing, vol. 16, Part B, pp. 251–267, 2015, selected Papers from the 12th An-

nual {IEEE} Int’l Conf. on Pervasive Computing and Communications (PerCom

2014).

148

[53] J. Windau and L. Itti, “Situation awareness via sensor-equipped eyeglasses,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov 2013,

pp. 5674–5679.

[54] E. H. Spriggs, F. D. L. Torre, and M. Hebert, “Temporal segmentation and activity

classification from first-person sensing,” in Computer Vision and Pattern Recogn.

Workshops. IEEE Computer Society Conf. on, 2009, pp. 17–24.

[55] Y. Lu and S. Velipasalar, “Human activity classification from wearable devices with

cameras,” in Signals, Systems, and Computers, Asilomar Conf. on, Oct 2017.

[56] A. B. X. M. J. M. A. C. F. Torre, J. Hodgins and P. Beltran, “Guide to the

carnegie mellon university multimodal activity (cmu-mmac) database,” in Tech.

report CMU-RI-TR-08-22, Robotics Institute, Carnegie Mellon University, April

2008.

[57] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation,

vol. 6, no. 2, pp. 182–197, April 2002.

[58] P. Benardos and G.-C. Vosniakos, “Optimizing feedforward artificial neural network

architecture,” Engineering Applications of Artificial Intelligence, vol. 20, no. 3, pp.

365–382, 2007.

[59] L. Magnier and F. Haghighat, “Multiobjective optimization of building design using

trnsys simulations, genetic algorithm, and artificial neural network,” vol. 45, pp.

739–746, 03 2010.

[60] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning of the structure

and parameters of a neural network using an improved genetic algorithm,” IEEE

Transactions on Neural Networks, vol. 14, no. 1, pp. 79–88, Jan 2003.

149

[61] M. D. Ritchie, B. C. White, J. S. Parker, L. W. Hahn, and J. H. Moore, “Opti-

mizationof neural network architecture using genetic programming improvesdetec-

tion and modeling of gene-gene interactions in studies of humandiseases,” BMC

bioinformatics, vol. 4, no. 1, p. 28, 2003.

[62] B. U. Islam, Z. Baharudin, M. Q. Raza, and P. Nallagownden, “Optimization of neu-

ral network architecture using genetic algorithm for load forecasting,” in Intelligent

and Advanced Systems (ICIAS), 2014 5th International Conference on. IEEE,

2014, pp. 1–6.

[63] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting

topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[64] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving deep neural networks,” arXiv

preprint arXiv:1703.00548, 2017.

[65] B. I. Rylander, “Computational complexity and the genetic algorithm,” Ph.D. disser-

tation, Moscow, ID, USA, 2001, aAI3022336.

[66] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”

Journal of Machine Learning Research, vol. 13, no. Feb, pp. 281–305, 2012.

[67] J. Jin, Z. Yan, K. Fu, N. Jiang, and C. Zhang, “Neural network architecture optimiza-

tion through submodularity and supermodularity,” arXiv preprint arXiv:1609.00074,

2016.

[68] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

150

[69] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv

preprint arXiv:1508.06576, 2015.

[70] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[71] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer

and super-resolution,” in European Conference on Computer Vision, 2016.

[72] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with con-

ditional adversarial networks,” arXiv preprint, 2017.

[73] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image transla-

tion using cycle-consistent adversarial networks,” arXiv preprint arXiv:1703.10593,

2017.

[74] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning

spatiotemporal features with 3d convolutional networks,” in Proceedings of the

2015 IEEE International Conference on Computer Vision (ICCV), ser. ICCV ’15.

Washington, DC, USA: IEEE Computer Society, 2015, pp. 4489–4497. [Online].

Available: http://dx.doi.org/10.1109/ICCV.2015.510

[75] M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli, “Perforatedcnns: Acceleration

through elimination of redundant convolutions,” in NIPS, 2016.

[76] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, “Efficient and accurate approxima-

tions of nonlinear convolutional networks,” 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1984–1992, 2015.

[77] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear

structure within convolutional networks for efficient evaluation,” in Proceedings

151

http://dx.doi.org/10.1109/ICCV.2015.510

of the 27th International Conference on Neural Information Processing Systems -

Volume 1, ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 1269–1277.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2968826.2968968

[78] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep

convolutional neural networks for fast and low power mobile applications,” CoRR,

vol. abs/1511.06530, 2015.

[79] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models

of visual attention,” in Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2, ser. NIPS’14. Cambridge,

MA, USA: MIT Press, 2014, pp. 2204–2212. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2969033.2969073

[80] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[81] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control

through deep reinforcement learning,” Nature, 2015.

[82] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering

the game of go with deep neural networks and tree search,” nature, 2016.

[83] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[84] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015.
152

http://dl.acm.org/citation.cfm?id=2968826.2968968
http://dl.acm.org/citation.cfm?id=2969033.2969073
http://dl.acm.org/citation.cfm?id=2969033.2969073

[85] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”

in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 39–57.

[86] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-

gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,

2013.

[87] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial exam-

ples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[88] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial at-

tacks with momentum,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 9185–9193.

[89] C. Xie, Z. Zhang, J. Wang, Y. Zhou, Z. Ren, and A. Yuille, “Improving transferabil-

ity of adversarial examples with input diversity,” arXiv preprint arXiv:1803.06978,

2018.

[90] “Google Cloud Vision,” Link.

[91] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime: Real

and stealthy attacks on state-of-the-art face recognition,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. ACM,

2016, pp. 1528–1540.

[92] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan, and Y. Yang, “Transferable

adversarial perturbations,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 452–467.

[93] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,

T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual clas-

153

https://cloud.google.com/vision/

sification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 1625–1634.

[94] ——, “Robust physical-world attacks on deep learning models,” arXiv preprint

arXiv:1707.08945, 2017.

[95] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial exam-

ples for semantic segmentation and object detection,” in Proceedings of the IEEE

International Conference on Computer Vision, 2017, pp. 1369–1378.

[96] J. Lu, H. Sibai, and E. Fabry, “Adversarial examples that fool detectors,” arXiv

preprint arXiv:1712.02494, 2017.

[97] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “Standard detectors aren’t (currently)

fooled by physical adversarial stop signs,” arXiv preprint arXiv:1710.03337, 2017.

[98] Y. Zhao, H. Zhu, Q. Shen, R. Liang, K. Chen, and S. Zhang, “Practical adversarial

attack against object detector,” arXiv preprint arXiv:1812.10217, 2018.

[99] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter: Robust phys-

ical adversarial attack on faster r-cnn object detector,” in Joint European Conference

on Machine Learning and Knowledge Discovery in Databases. Springer, 2018, pp.

52–68.

[100] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-

tion with region proposal networks,” in Advances in neural information processing

systems, 2015, pp. 91–99.

[101] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[102] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim, “Multiple

object tracking: A literature review,” arXiv preprint arXiv:1409.7618, 2014.
154

[103] W. Feng, Z. Hu, W. Wu, J. Yan, and W. Ouyang, “Multi-object tracking with multiple

cues and switcher-aware classification,” arXiv preprint arXiv:1901.06129, 2019.

[104] S. Murray, “Real-time multiple object tracking-a study on the importance of speed,”

arXiv preprint arXiv:1709.03572, 2017.

[105] J. H. Yoon, C. Lee, M. Yang, and K. Yoon, “Online multi-object tracking via struc-

tural constraint event aggregation,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016.

[106] S. Sharma, J. A. Ansari, J. K. Murthy, and K. M. Krishna, “Beyond pixels: Lever-

aging geometry and shape cues for online multi-object tracking,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.

3508–3515.

[107] C. Long, A. Haizhou, Z. Zijie, and S. Chong, “Real-time multiple people track-

ing with deeply learned candidate selection and person re-identification,” in ICME,

2018.

[108] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-object tracking

by decision making,” in 2015 IEEE International Conference on Computer Vision

(ICCV), Dec 2015, pp. 4705–4713.

[109] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H. Yang, “Online multi-object

tracking with dual matching attention networks,” in Computer Vision – ECCV 2018.

Cham: Springer International Publishing, 2018, pp. 379–396.

[110] P. Bergmann, T. Meinhardt, and L. Leal-Taixé, “Tracking without bells

and whistles,” CoRR, vol. abs/1903.05625, 2019. [Online]. Available: http:

//arxiv.org/abs/1903.05625

155

http://arxiv.org/abs/1903.05625
http://arxiv.org/abs/1903.05625

[111] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and real-

time tracking,” in 2016 IEEE International Conference on Image Processing (ICIP).

IEEE, 2016, pp. 3464–3468.

[112] W. Choi, “Near-online multi-target tracking with aggregated local flow descriptor,”

in Proceedings of the IEEE international conference on computer vision, 2015, pp.

3029–3037.

[113] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm computing

surveys (CSUR), vol. 38, no. 4, p. 13, 2006.

[114] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for

efficient neural network,” in Advances in neural information processing systems,

2015, pp. 1135–1143.

[115] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.

[116] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for effi-

cient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[117] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural net-

works,” in Proceedings of the IEEE International Conference on Computer Vision,

2017, pp. 1389–1397.

[118] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable

neural networks,” in International Conference on Learning Representations, 2019.

[Online]. Available: https://openreview.net/forum?id=rJl-b3RcF7

156

https://openreview.net/forum?id=rJl-b3RcF7

[119] N. Yoder, “Peakfinder: Quickly finds local maxima (peaks) or minima (valleys) in a

noisy signal,” 2014. [Online]. Available: http://www.mathworks.com/matlabcentral/

fileexchange/25500peakfinder

[120] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using

shape contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 4, pp. 509–522, April 2002.

[121] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for object

detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,

no. 8, pp. 1532–1545, Aug 2014.

[122] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”

in Advances in Neural Information Processing Systems 30: Annual Conf.

on NIPS, 4-9 Dec. 2017,, 2017, pp. 3859–3869. [Online]. Available: http:

//papers.nips.cc/paper/6975-dynamic-routing-between-capsules

[123] X. Shi, Z. Gao, L. Lausen, H. Wang, D. Yeung, W. Wong, and W. Woo,

“Deep learning for precipitation nowcasting: A benchmark and A new model,”

in Advances in Neural Information Processing Systems 30: Annual Conf. on

NIPS, 2017, pp. 5622–5632. [Online]. Available: http://papers.nips.cc/paper/

7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model

[124] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:

http://arxiv.org/abs/1409.1556

[125] S. L. Soran B., Farhadi A., “Action recognition in the presence of one egocentric

and multiple static cameras,” in ACCV 2014. Lecture Notes in Computer Science,,

2014, pp. 17–24.

157

http://www.mathworks.com/matlabcentral/fileexchange/25500peakfinder
http://www.mathworks.com/matlabcentral/fileexchange/25500peakfinder
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules
http://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model
http://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model
http://arxiv.org/abs/1409.1556

[126] Y. Lu and S. Velipasalar, “Human activity classification incorporating egocentric

video and inertial measurement unit data,” in Signal and Information Processing

(GlobalSIP), IEEE Global Conf. on, Nov. 2018.

[127] M. M. Silva, W. L. S. Ramos, J. P. K. Ferreira, F. C. Chamone, M. F. M. Campos,

and E. R. Nascimento, “A weighted sparse sampling and smoothing frame transition

approach for semantic fast-forward first-person videos,” in 2018 IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp.

2383–2392.

[128] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A

deep representation for volumetric shapes,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, pp. 1912–1920.

[129] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations,” in Proceedings

of the 26th annual international conference on machine learning. ACM, 2009, pp.

609–616.

[130] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial

examples by translation-invariant attacks,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2019.

[131] C. A. Mack, NIST,SEMATECH e-Handbook of Statistical Methods, 2007.

[132] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” arXiv preprint arXiv:1412.6572, 2014.

[133] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

158

[134] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object

detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct

2017, pp. 2999–3007.

[135] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,

“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015. [Online].

Available: http://arxiv.org/abs/1512.02325

[136] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards

real-time object detection with region proposal networks,” in Advances in

Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Asso-

ciates, Inc., 2015, pp. 91–99. [Online]. Available: http://papers.nips.cc/paper/

5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.

pdf

[137] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask r-cnn,” 2017 IEEE

International Conference on Computer Vision (ICCV), pp. 2980–2988, 2017.

[138] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmentation,”

arXiv:1802.02611, 2018.

[139] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution

for semantic image segmentation,” CoRR, vol. abs/1706.05587, 2017. [Online].

Available: http://arxiv.org/abs/1706.05587

[140] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” CoRR, vol. abs/1411.4038, 2014. [Online]. Available:

http://arxiv.org/abs/1411.4038

159

http://arxiv.org/abs/1512.02325
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1411.4038

[141] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-

ing models resistant to adversarial attacks,” 2017.

[142] Y. Dong, F. Liao, T. Pang, X. Hu, and J. Zhu, “Discovering adversarial

examples with momentum,” CoRR, vol. abs/1710.06081, 2017. [Online]. Available:

http://arxiv.org/abs/1710.06081

[143] C. Xie, Z. Zhang, J. Wang, Y. Zhou, Z. Ren, and A. L. Yuille, “Improving

transferability of adversarial examples with input diversity,” CoRR, vol.

abs/1803.06978, 2018. [Online]. Available: http://arxiv.org/abs/1803.06978

[144] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial

examples by translation-invariant attacks,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2019.

[145] Anonymized, “Anonymized github repository for our evaluation data,” https://

github.com/anonymous0120/dr images.

[146] “NSFW Data Scraper,” Link.

[147] “ICDAR2017 Robust reading challenge on COCO-Text,” Link.

[148] “ImageNet Challenge 2017,” Link.

[149] “Keras Applications,” Link.

[150] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao, “Foveation-based mechanisms

alleviate adversarial examples,” arXiv preprint arXiv:1511.06292, 2015.

[151] qqwweee, “keras yolo3,” https://github.com/qqwweee/keras-yolo3.

[152] fizyr, “keras retinanet,” https://github.com/fizyr/keras-retinanet.

[153] pierluigiferrari, “ssd keras,” https://github.com/pierluigiferrari/ssd keras.

160

http://arxiv.org/abs/1710.06081
http://arxiv.org/abs/1803.06978
https://github.com/anonymous0120/dr_images
https://github.com/anonymous0120/dr_images
https://github.com/alexkimxyz/nsfw_data_scraper
http://rrc.cvc.uab.es/?ch=5&com=evaluation&task=1
http://image-net.org/challenges/LSVRC/2017/results
https://keras.io/applications/
https://github.com/qqwweee/keras-yolo3
https://github.com/fizyr/keras-retinanet
https://github.com/pierluigiferrari/ssd_keras

[154] Pytorch, “Torchvision models,” https://pytorch.org/docs/master/torchvision/models.

html.

[155] F. Luetteke, X. Zhang, and J. Franke, “Implementation of the hungarian method for

object tracking on a camera monitored transportation system,” in ROBOTIK 2012;

7th German Conference on Robotics, May 2012, pp. 1–6.

[156] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 18th

International Conference on Pattern Recognition (ICPR’06), vol. 3, Aug 2006, pp.

850–855.

[157] Anonymized, “Anonymized github repository for the source code of our attack and

evaluation data,” https://github.com/anonymousjack/hijacking.

[158] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell, “Bdd100k:

A diverse driving video database with scalable annotation tooling,” arXiv preprint

arXiv:1805.04687, 2018.

[159] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[160] OpenCV, “Kalman Filter Class Reference,” https://docs.opencv.org/3.4.1/dd/d6a/

classcv 1 1KalmanFilter.html.

[161] Z. Zhong, W. Xu, Y. Jia, and T. Wei, “Perception Deception: Physical Adversar-

ial Attack Challenges and Tactics for DNN-Based Object Detection,” in Black Hat

Europe, 2018.

[162] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial

examples,” arXiv preprint arXiv:1707.07397, 2017.

[163] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.
161

https://pytorch.org/docs/master/torchvision/models.html
https://pytorch.org/docs/master/torchvision/models.html
https://github.com/anonymousjack/hijacking
https://docs.opencv.org/3.4.1/dd/d6a/classcv_1_1KalmanFilter.html
https://docs.opencv.org/3.4.1/dd/d6a/classcv_1_1KalmanFilter.html

[164] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[165] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint

arXiv:1605.07146, 2016.

[166] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “The lottery ticket hypothesis

at scale,” arXiv preprint arXiv:1903.01611, 2019.

[167] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-

ing models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[168] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”

arXiv preprint arXiv:1611.01236, 2016.

[169] S. Ye, K. Xu, S. Liu, H. Cheng, J.-H. Lambrechts, H. Zhang, A. Zhou, K. Ma,

Y. Wang, and X. Lin, “Second rethinking of network pruning in the adversarial set-

ting,” arXiv preprint arXiv:1903.12561, 2019.

162

Yantao Lu received his B.S. degree in Electrical Engineering in

2013 from Xian Jiaotong University, Xi’an, China and M.S. de-

gree in Electrical Engineering in 2013 from Syracuse University,

Syracuse, US. He has completed the Ph.D. degree in the Depart-

ment of Electrical Engineering and Computer Science, Syracuse

University, in 2020. During his Ph.D. study, he has authored two

journal publications and seven conference publications. His re-

search interests are in the automatic driving perception, egocentric

video processing, and adversarial examples for neural networks.

163

	HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS AND ROBUSTNESS ANALYSIS OF DEEP NEURAL NETWORKS
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Research Impact
	Publications
	Literature Review
	Footstep Counting and Traveled Distance Calculation by Mobile Devices
	Autonomous Human Activity Classification from Wearable Multi-Modal Sensors
	Autonomously and Simultaneously Refining Deep Neural Network Parameters by a Bi-Generative Adversarial Network Aided Genetic Algorithm
	Efficient Human Activity Classification From Egocentric Videos Incorporating Actor-Critic Reinforcement Learning
	Cross-task Transferability of Adversarial Examples with Dispersion Reduction
	Robust Analysis of Multiple Object Tracking Based on Automatic Driving
	Practical Pruning for Adversarial Training

	Footstep Counting and Traveled Distance Calculation by Mobile Devices
	Methodology
	Step Counting
	Computing the Total Traveled Distance

	Experimental Results
	Conclusion

	Human Activity Classification from Wearable Devices with Cameras
	Methodology
	Feature extraction
	Classification
	Training

	Experimental Results
	Conclusion

	Human Activity Classification Incorporating Egocentric Video And Inertial Measurement Unit Data
	Methodology
	Input Data
	Processing of IMU Data Sequence
	Processing of Egocentric Video Data
	Classification

	Experimental Results
	Conclusion

	Autonomous Human Activity Classification from Wearable Multi-Modal Sensors
	Methodology
	Autonomously and Simultaneously Refining the Network Parameters

	Experimental Results
	Experimental Setup
	Results and Discussion

	Conclusion

	Efficient Human Activity Classification From Egocentric Videos Incorporating Actor-Critic Reinforcement Learning
	Methodology
	Clipper Model Trained with Deep Reinforcement Learning

	Experimental Results
	Conclusion

	Autonomously and Simultaneously Refining Deep Neural Network Parameters by a Bi-Generative Adversarial Network Aided Genetic Algorithm
	Methodology
	Bi-GAN network
	Genetic Algorithm

	Experimental Results
	Conclusion

	Enhancing Cross-task Transferability of Adversarial Examples with Dispersion Reduction
	Methodology
	Experimental Results
	Experimental Settings
	Diagnostics
	Open Source Model Experiments
	Cloud API Experiments

	Discussion and Conclusion
	Appendix
	Target models
	Experiments on ImageNet
	Average Results
	Visualization

	Robust Analysis of Multiple Object Tracking for Autonomous Driving
	Method
	Attack Methodology

	Evaluation
	Experiment Methodology
	Evaluation Results

	Discussion
	Conclusion

	Boosting Ticket: Towards Practical Pruning for Adversarial Training with Lottery Ticket Hypothesis
	Empirical Study of Boosting tickets
	Existence of Boosting Tickets
	Learning Rate
	Pruning Ratio
	Model Capacity

	Boosting Tickets in Adversarial Settings
	Applicability for Adversarial Training
	Convergence Speedup
	Boosting Ticket Applications on adversarially trained WideResNet-34-10

	Conclusion

	Conclusion

