248 research outputs found

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Tree-based decompositions of graphs on surfaces and applications to the traveling salesman problem

    Get PDF
    The tree-width and branch-width of a graph are two well-studied examples of parameters that measure how well a given graph can be decomposed into a tree structure. In this thesis we give several results and applications concerning these concepts, in particular if the graph is embedded on a surface. In the first part of this thesis we develop a geometric description of tangles in graphs embedded on a fixed surface (tangles are the obstructions for low branch-width), generalizing a result of Robertson and Seymour. We use this result to establish a relationship between the branch-width of an embedded graph and the carving-width of an associated graph, generalizing a result for the plane of Seymour and Thomas. We also discuss how these results relate to the polynomial-time algorithm to determine the branch-width of planar graphs of Seymour and Thomas, and explain why their method does not generalize to surfaces other than the sphere. We also prove a result concerning the class C_2k of minor-minimal graphs of branch-width 2k in the plane, for an integer k at least 2. We show that applying a certain construction to a class of graphs in the projective plane yields a subclass of C_2k, but also show that not all members of C_2k arise in this way if k is at least 3. The last part of the thesis is concerned with applications of graphs of bounded tree-width to the Traveling Salesman Problem (TSP). We first show how one can solve the separation problem for comb inequalities (with an arbitrary number of teeth) in linear time if the tree-width is bounded. In the second part, we modify an algorithm of Letchford et al. using tree-decompositions to obtain a practical method for separating a different class of TSP inequalities, called simple DP constraints, and study their effectiveness for solving TSP instances.Ph.D.Committee Chair: Thomas, Robin; Committee Co-Chair: Cook, William J.; Committee Member: Dvorak, Zdenek; Committee Member: Parker, Robert G.; Committee Member: Yu, Xingxin

    Casting Light on the Hidden Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem

    Get PDF
    Given an undirected graph, we study the capacitated vertex separator problem that asks to find a subset of vertices of minimum cardinality, the removal of which induces a graph having a bounded number of pairwise disconnected shores (subsets of vertices) of limited cardinality. The problem is of great importance in the analysis and protection of communication or social networks against possible viral attacks and for matrix decomposition algorithms. In this article, we provide a new bilevel interpretation of the problem and model it as a two-player Stackelberg game in which the leader interdicts the vertices (i.e., decides on the subset of vertices to remove), and the follower solves a combinatorial optimization problem on the resulting graph. This approach allows us to develop a computational framework based on an integer programming formulation in the natural space of the variables. Thanks to this bilevel interpretation, we derive three different families of strengthening inequalities and show that they can be separated in polynomial time. We also show how to extend these results to a min-max version of the problem. Our extensive computational study conducted on available benchmark instances from the literature reveals that our new exact method is competitive against the state-of-the-art algorithms for the capacitated vertex separator problem and is able to improve the best-known results for several difficult classes of instances. The ideas exploited in our framework can also be extended to other vertex/edge deletion/ insertion problems or graph partitioning problems by modeling them as two-player Stackel- berg games and solving them through bilevel optimization

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore