
TREE-BASED DECOMPOSITIONS OF GRAPHS ON
SURFACES AND APPLICATIONS TO THE TRAVELING

SALESMAN PROBLEM

A Thesis
Presented to

The Academic Faculty

by

Torsten Inkmann

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Algorithms, Combinatorics, and Optimization

School of Mathematics
Georgia Institute of Technology

April 2008

TREE-BASED DECOMPOSITIONS OF GRAPHS ON
SURFACES AND APPLICATIONS TO THE TRAVELING

SALESMAN PROBLEM

Approved by:

Professor William J. Cook, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Robert G. Parker
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Robin Thomas, Advisor
School of Mathematics
Georgia Institute of Technology

Professor Xingxing Yu
School of Mathematics
Georgia Institute of Technology

Professor Zdeněk Dvořák
School of Mathematics
Georgia Institute of Technology

Date Approved: December 4th, 2007

ACKNOWLEDGEMENTS

I would like to thank both of my advisors, Professors William Cook and Robin

Thomas, for their support and guidance. Apart from stating the obvious, namely

that having two leading researchers in their respective fields to work with and learn

from has been invaluable for my academic work, I would like to thank them in partic-

ular for everything else besides thinking about math problems with me. While it may

seem self-evident for some to expect dependability, availability, fairness and most of

all patience from an advisor, this is not always the case and I would like to express

my gratitude to Bill and Robin for excelling also in these disciplines.

On the academic side, I would furthermore like to thank Professors Zdeněk Dvořák,

Gary Parker and Xingxing Yu for serving on my thesis committee, and Professors Ilya

Hicks and Hisao Tamaki for discussions on my research.

The past five years at Georgia Tech have been a truly unique experience, and

I would like to thank everyone who has been part of that in one way or another.

In particular I would like to thank all my friends that I have met in Atlanta and

elsewhere, and all my friends from Germany who managed to stay in my life despite

my extended period of absence.

Doing research in Mathematics can be challenging at times (both Mathematicians

and others will easily recognize this as a slight understatement), and there has been

no other single more important factor than my family in helping me overcome these

challenges. The unconditional support of my sister and my parents is the backbone

of my life and this thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . viii

I INTRODUCTION . 1

1.1 Tree-based decomposition methods and graphs embedded on surfaces 1

1.1.1 Contributions of this thesis 2

1.2 The Traveling Salesman Problem 3

1.2.1 Contributions of this thesis 5

II PRELIMINARIES . 6

2.1 General graph theory . 6

2.2 Graphs on surfaces . 7

2.3 Tree-based decompositions . 12

2.3.1 Branch-width . 12

2.3.2 Tree-width . 13

2.3.3 Carving-width . 15

2.4 The Traveling Salesman Problem 17

2.4.1 Comb inequalities . 19

2.4.2 Domino parity inequalities 20

III BRANCH-WIDTH OF EMBEDDED GRAPHS 23

3.1 Introduction . 23

3.2 Spots, borders and generalized slopes 25

3.3 Small sets . 36

3.4 Tangles and slopes . 49

3.5 Restraints and the capturing theorem 52

3.6 Carvings and branch-decompositions 59

iv

3.7 Conclusion . 67

IV MINOR-MINIMAL PLANAR GRAPHS OF FIXED BRANCH-WIDTH 71

4.1 Introduction . 71

4.2 Proof of Theorem 4.1.1 . 73

4.2.1 Lower bound on branch-width 75

4.2.2 Upper bound on branch-width 77

4.3 Other minor-minimal planar graphs of fixed branch-width 91

V APPLICATIONS OF TREE-DECOMPOSITIONS TO THE TSP 94

5.1 Separation of comb inequalities using tree-decompositions 94

5.1.1 The algorithm . 100

5.2 Separating simple DP inequalities using tree-decompo- sitions . . . 104

5.2.1 The algorithm . 105

5.2.2 Computational results . 113

5.3 Conclusion . 123

APPENDIX A COMPUTATIONAL RESULTS FOR SOLVING STANDARD
PROBLEMS ON GRAPHS OF BOUNDED TREE-WIDTH 126

REFERENCES . 135

v

LIST OF TABLES

1 Results of tests ‘standard’, ‘simpleDP’ and ‘planarDP’ 118

2 Results of tests ‘planarDP’, ‘planarDP again’ and ‘simpleDP+planarDP’120

3 Overall performance of tree-decomposition based methods 130

4 Computational results for solving standard problems 132

vi

LIST OF FIGURES

1 Borders on the torus . 27

2 The natural embedding of the 5 × 5 toroidal grid G5×5 on the torus . 38

3 Decomposing the 2 × 3 grid . 39

4 Construction of the structure graph SB 41

5 An example of a cluster C with its structure graph SC on the torus . 43

6 Capturing points x(f1), x(f2) from x(e) for the k × k grid with k = 8 57

7 An embedding of the Petersen graph in P and its planar double cover,
the Dodecahedron . 72

8 Configuration in proof of Lemma 4.2.16 83

9 Configuration in proof of Corollary 4.2.17 85

10 Minor-minimal graphs of branch-width 6 which are not double covers 92

11 The graph G2k+1 for k = 3 . 93

12 Vertex sets and subgraphs at a node t in a tree-decomposition 95

13 The graph G1/2 (odd edges are black, even edges are red) 107

14 The graph G′ (for k = 3) from Example 5.2.1 112

vii

SUMMARY

The tree-width and branch-width of a graph are two well-studied examples

of parameters that measure how well a given graph can be decomposed into a tree

structure. In this thesis we give several results and applications concerning these

concepts, in particular if the graph is embedded on a surface.

In the first part of this thesis we develop a geometric description of tangles in

graphs embedded on a fixed surface (tangles are the obstructions for low branch-

width), generalizing a result of Robertson and Seymour. We use this result to establish

a relationship between the branch-width of an embedded graph and the carving-width

of an associated graph, generalizing a result for the plane of Seymour and Thomas. We

also discuss how these results relate to the polynomial-time algorithm to determine

the branch-width of planar graphs of Seymour and Thomas, and explain why their

method does not generalize to surfaces other than the sphere.

We also prove a result concerning the class C2k of minor-minimal graphs of branch-

width 2k in the plane, for an integer k ≥ 2. We show that applying a certain

construction to a class of graphs in the projective plane yields a subclass of C2k, but

also show that not all members of C2k arise in this way if k ≥ 3.

The last part of the thesis is concerned with applications of graphs of bounded

tree-width to the Traveling Salesman Problem (TSP). We first show how one can solve

the separation problem for comb inequalities (with an arbitrary number of teeth) in

linear time if the tree-width is bounded. In the second part, we modify an algorithm of

Letchford et al. using tree-decompositions to obtain a practical method for separating

a different class of TSP inequalities, called simple DP constraints, and study their

effectiveness for solving TSP instances.

viii

CHAPTER I

INTRODUCTION

1.1 Tree-based decomposition methods and graphs embed-

ded on surfaces

In their seminal series of papers resulting in the proof of the Graph Minor Theorem

[64], Robertson and Seymour introduced several new ways of decomposing graphs into

a tree-like structure. Two of these techniques are tree-decompositions and branch-

decompositions, together with the corresponding parameters tree-width and branch-

width, measuring how well a graph can be decomposed (for definitions, see Chapter

2.3). These closely related decompositions not only play a major role throughout

the proof of the Graph Minor Theorem, but also have applications elsewhere and

consequently became the subject of intense research in their own right.

Apart from their relevance in graph minor theory, tree- and branch-decompositions

also are interesting from an algorithmic point of view: A large class of NP-hard

optimization problems on graphs can be solved in polynomial time (or often linear

time) provided the width of the input graph is bounded by a constant (for references

of results of this type, see 2.3). Although these algorithms are very appealing from

a theoretical point of view, especially since they are usually based on a conceptually

simple dynamic programming approach, the large constants typically involved present

challenges for the practicability of these methods.

In the proof of the Graph Minor Theorem, Robertson and Seymour also make

heavy use of the concept of embedding graphs on surfaces. Although tree- and branch-

decompositions are defined for arbitrary graphs, it turns out that there are close

connections between graphs of bounded tree- or branch-width and graphs embedded

1

on surfaces:

For example, Robertson and Seymour show that for any fixed planar graph H,

a class of graphs G has bounded tree-width if and only if none of the graphs in G

contains H as a minor [60].

In [63], Robertson and Seymour establish a characterization of the representativity

(for a definition, see 2.2) of a graph embedded in a surface other than the sphere, in

terms of ‘respectful tangles’. A tangle (for a definition see 2.3.2) is an obstruction to

low branch-width, i.e. a graph has a tangle of order k (for some integer k ≥ 2) if and

only if its branch-width is at least k. In particular, their result implies that if a graph

G has an embedding of representativity k on some surface Σ, then its branch-width

is at least k.

The proof of the above-mentioned result is based on a geometric description for

respectful tangles, called slopes. In the case where Σ is the sphere, all tangles are triv-

ially respectful, and the results about slopes from [63] form the basis of a polynomial-

time algorithm by Seymour and Thomas [67] to compute the branch-width of planar

graphs.

1.1.1 Contributions of this thesis

In Chapters 3 and 4 of this thesis we establish some further results concerning tree-

based decompositions of graphs embedded on a surface.

In Chapter 3, we present a framework for a natural generalization of some of

the results from Graph Minors XI [63]. Our first main result (Theorem 3.4.2) uses

this framework to show that arbitrary tangles can be described in a geometric way,

thus generalizing the geometric description for respectful tangles from [63]. We also

show that the second main result of [63] no longer holds in this generalized setting

(Theorem 3.5.4), and provide an infinite family of counterexamples.

2

For a planar graph G, the branch-width of G is equal to half of the carving-

width of the medial graph (for definitions, see 2.3), as was established in [67]. We

give examples showing that this equality no longer holds on surfaces other than the

sphere, and use the above geometric description of arbitrary tangles to prove that

the two quantities are within a factor of 2 in general, up to an additive error term

depending on the surface (Theorem 3.6.1).

In Chapter 4, we study minor-minimal planar graphs of fixed branch-width. We

show that if H is a minor-minimal graph embedded in the projective plane with

face-width k, and G is a planar double cover of H, then G is minor-minimal of

branch-width 2k (Theorem 4.1.1). We also disprove the tempting conjecture that all

minor-minimal planar graphs of even branch-width arise in this way, and construct

minor-minimal planar graphs of branch-width 2k + 1, for each integer k ≥ 2, which

are not double covers of any graphs.

Chapter 5 contains some results using tree-decompositions in the context of the

Traveling Salesman Problem, which we introduce in the next section.

1.2 The Traveling Salesman Problem

The (symmetric) traveling salesman problem, or TSP, is one of the most studied

problems in combinatorial optimization: Given a complete (undirected) graph Gn on

n vertices, with non-negative edge-costs ce for every edge, the objective is to find a

cycle of minimum total cost, containing all vertices of Gn. In the context of the TSP,

the vertices of Gn are referred to as ‘cities’, and a cycle of length n is called a ‘tour’.

The significance of the TSP stems from the fact that it has been used as a vehicle

for developing and testing a large number of techniques which have been successful

both in the theory and practice of combinatorial optimization (for a comprehensive

treatment of the subject, see for example [3]).

One particular technique arises from the close connection to linear programming.

3

If we introduce a 0-1 variable xe for each edge e ∈ E(Gn), then the TSP can easily

be modelled as an integer programming problem. Since it is NP-hard to solve this

problem, one can first solve the linear programming problem (LP) obtained from

relaxing the constraints xe ∈ {0, 1} to 0 ≤ xe ≤ 1. Suppose we find an optimal

solution x̂ to this LP. If x̂ is integer, it corresponds to an optimal tour and we have

solved the TSP. In the seminal paper by Dantzig, Fulkerson and Johnson in 1954

[27], the authors propose the following approach, called the cutting plane method, for

the case that x̂ is fractional: Find a linear inequality, called a cutting plane, which

is satisfied by any integer vector corresponding to a tour, but is violated by the

fractional solution x̂. Then add this inequality to the LP formulation, resolve the LP

and repeat the process.

It is usually desirable to restrict the type of the inequality added to the LP to

belonging to a pre-specified class of inequalities I valid for all tours. Hence one

arrives at what is called the separation problem: Given a (fractional) solution x̂, find

an inequality in I which is violated by x̂ (or decide that none exists).

Many of the interesting classes of inequalities can be viewed as arising from

(weighted) hypergraphs defined on the support graph Ĝ, i.e. the subgraph of G

consisting only of edges with x̂e > 0. In particular, two of the most important classes

of inequalities, the subtour constraints and the comb inequalities arise in this way

(for definitions, see Section 2.4). While the separation problem for the subtour con-

straints can be solved efficiently both in theory and practice ([42], [56]), it is a major

open problem whether there exists a polynomial-time algorithm for the general comb

separation problem.

For certain special cases efficient methods for the comb separation problem exist.

Padberg and Rao [57] showed how to separate ‘blossom inequalities’, i.e. combs where

each tooth consists of exactly two vertices. Carr [18] showed how to solve the comb

separation problem restricted to combs with a fixed number of teeth in polynomial

4

time, but the method is impractical even for combs with only three teeth.

Another class of inequalities that has received a considerable attention recently

are the domino-parity inequalities (or DP inequalities) defined by Letchford in [50].

The DP inequalities are a generalization of comb inequalities, and have proven to be

very helpful in solving some of the largest TSP instances (see [21]). In [50], it is shown

how to separate DP inequalities in polynomial time in the case where Ĝ is planar,

and in [34], the authors give an algorithm to separate so-called simple DP-inequalities.

However, although the latter algorithm runs in polynomial time, the runtime bound

of O(n2m2 log n2/m) makes it unclear whether or not this method can be used for

larger TSP instances.

1.2.1 Contributions of this thesis

In Chapter 5 of this thesis, we describe some separation routines for the case that the

support graph Ĝ has bounded tree-width.

We first show how the comb separation problem (for an arbitrary number of teeth)

can be solved in linear time if Ĝ has bounded tree-width (Theorem 5.1.2), using some

facts about the structure of violated combs. Although the assumption of bounded

tree-width is natural for the support graph Ĝ, it appears that the method is primarily

of theoretical interest due to the high constants involved in the algorithm.

In the second part we discuss how to modify and extend the above-mentioned

algorithm of [34] using tree-decompositions in order to generate all violated simple

DP inequalities (5.2.1), and provide some computational results on the effectiveness of

simple DP inequalities for solving the TSP. The method also demonstrates that tree-

or branch-decomposition based methods may present valid alternatives in practice not

only for NP-hard problems, but also for problems which are solvable by an algorithm

whose runtime is bounded by a polynomial of large degree.

5

CHAPTER II

PRELIMINARIES

In this chapter we review the basic concepts and results relevant for this thesis.

2.1 General graph theory

A graph G = (V,E) consists of a finite set V = V (G) and a finite collection E = E(G)

of unordered pairs of (not necessarily distinct) elements of V . The elements of V are

called vertices, and the elements of E are called edges. If e = {u, v} is an edge, then

the vertices u, v are called the ends of e, and we use the notation e = uv. In that

case, we say that u and v are adjacent, that e is incident with its ends u, v and we

use the notation u ∼ v and v ∼ e. An edge with identical ends is called a loop, and

two edges e, e′ ∈ E(G) are called parallel if they have the same ends. A simple graph

is a graph with no loops or parallel edges. A graph that is not simple is sometimes

called a multigraph.

For a subset X of a fixed ground-set Y , we use X c to denote the set Y \X, and

11X(·) to denote its indicator function, i.e. 11X(x) = 1 if x ∈ X and 0 otherwise. If

X,X ′ ⊆ V (G) are two sets of vertices, we use the notation E(X,X ′) to denote the set

of X-X ′ edges, i.e. the edges with one end in X and the other in X ′. A set F ⊆ E(G)

is a cut if F = E(X,Xc) for some ∅ 6= X (V (G), and we write δ(X) = E(X,X c),

and δ(v) if X consists of a single vertex v. A bond is a cut δ(X) so that X, X c are

connected in G. It is an easy fact that in a connected graph, bonds are precisely the

minimal cuts.

The degree of a vertex v is given by |δ(v)|, plus twice the number of loops at v

(if any). We denote the degree of v ∈ V (G) by dG(v) or simply d(v). The set of

neighbors of v is defined as N(v) = {w ∈ V (G) \ {v} | v ∼ w}. For a set of edges

6

F ⊆ E(G), we let ∂(F) denote the set of all vertices of G which are incident with an

edge in F and an edge in F c.

For X ⊆ V (G), we write G[X] for the subgraph of G induced by X, i.e. the

subgraph of G with vertex-set X and all edges of G with both ends in X. Similarly

for F ⊆ E(G), we denote by G[F] the subgraph induced by F , i.e. the subgraph of G

consisting of the edges of F and their ends. For graphs G,G′, the graph G ∪G′ has

vertices V (G) ∪ V (G′) and edge-set E(G) ∪ E(G′), and the graph G ∩ G′ is defined

similarly.

A separation in a graph G consists of two subgraphs A,B ⊆ G such that E(A ∩

B) = ∅ and A ∪ B = G. Hence we can think of a separation as a partition of E(G)

into two parts. The order of the separation (A,B) is |V (A ∩ B)|.

A graph is called eulerian if all vertices have even degree. It is well-known that a

graph is eulerian if and only if it can be written as a union of edge-disjoint cycles.

For further basic definitions such as connected graphs, walks, cycles, (internally

disjoint) paths, trees, bipartite graphs, contraction of edges, minors and other stan-

dard concepts we refer the reader to the book by Diestel [30].

2.2 Graphs on surfaces

We will only mention the most important concepts related to graphs embedded on

surfaces. For more details, we refer the reader to the book by Mohar and Thomassen

[53], and to the introduction of [63].

A surface is a connected, compact Haussdorff space which is locally homeomorphic

to an open disc in R2. Throughout this thesis, Σ will denote a surface. For an integer

g ≥ 0 we denote by Sg the orientable surface of genus g (i.e. with g handles), and for

an integer k ≥ 1 we denote by Nk the non-orientable surface of genus k (i.e. with k

crosscaps). A proof of the following well-known theorem can be found in [53].

Theorem 2.2.1 (Classification of surfaces, theorem 3.1.3. in [53]). Every

7

surface is homeomorphic to precisely one of the surfaces Sg for g ≥ 0, or Nk for

k ≥ 1.

In particular, the surface S0 is the sphere, S1 is the torus and N1 is the projective

plane.

A curve in Σ is a continuous function φ : [0, 1] → Σ. We usually do not distinguish

between the function φ and its image {φ(x)|0 ≤ x ≤ 1} in Σ. A curve φ is simple if φ

is injective, it is closed if φ(0) = φ(1) and constant if φ(x) = φ(y) for all x, y ∈ [0, 1].

A simple closed curve φ is a closed curve where φ is injective on (0, 1). Two closed

curves φ0, φ1 are (freely) homotopic (in Z ⊆ Σ) if there is a continuous function

ψ : [0, 1] × [0, 1] → Z such that:

ψ(x, 0) = φ0(x) for x ∈ [0, 1],

ψ(x, 1) = φ1(x) for x ∈ [0, 1].

ψ(0, t) = ψ(1, t) for t ∈ [0, 1].

A closed curve is null-homotopic or contractible (in Z) if it is homotopic to a constant

curve in Z, and non-contractible otherwise. A closed (open) disc in Σ is a closed

(open) subset D ⊆ Σ that is homeomorphic to the closed (open) unit disc in R2. It

is a well known fact that a simple closed curve is contractible if and only if it bounds

a disc ([32], theorem (1.7)).

We denote the closure of a set Z ⊆ Σ by Z̄ or cl(Z), and the boundary of a closed

set Z by ∂(Z).

A set Z ⊆ Σ is simply-connected if Z is (arc-wise) connected and every simple

closed curve is null-homotopic in Z.

We say a graph G = (V,E) is embedded in Σ if the elements of V are distinct

points in Σ, and every edge e = uv of G corresponds to a simple curve with ends

u, v (or simple closed if u = v), such that any two such curves are disjoint except

possibly their ends. (For a more detailed definition, see [53]). A collection of such

8

points and curves corresponding to a graph G = (V,E) is called an embedding of G

in Σ, and we write G ↪→ Σ to mean that G is embedded in Σ. We usually do not

distinguish between a graph and its embedding. In particular, for a graph G = (V,E)

embeddable in Σ, we use e ∈ E both for a pair of elements of V as well as for the

open set given by the curve corresponding to e, without its endpoints. If we want

to make the distinction explicit, we use the notation u(e) to denote the open set

in Σ corresponding to e, and U(G) to denote the union of the points and curves

corresponding to G in Σ.

A face or region of G in Σ is an arcwise connected component of Σ \ U(G). The

set of regions of a Σ-embedded graph G will be denoted by R(G). It is easy to see

that every edge is incident with exactly two (possibly equal) regions.

If G = (V,E) is a connected graph embedded in Σ, its dual is the (multi-)graph

G∗ embedded in Σ where V (G∗) = R(G), and the edges of G∗ correspond to those

of G in the usual way, i.e. if r1, r2 ∈ R(G) are the two regions incident with an edge

e ∈ E, then there is an edge e∗ ∈ E(G∗) with ends r1, r2. For a vertex, edge or region

x in G, we use x∗ to denote the corresponding region, edge or vertex in the dual G∗,

respectively. We will assume that u(e) ∩ u(e∗) consists of a single point, called the

midpoint and denoted by x(e) or x(e∗), and we require that the point r∗ in the dual

embedding corresponding to the region r ∈ R(G) to be contained in the (open) set r.

Hence G and its dual embedding G∗ intersect only in the points x(e), for e ∈ E(G).

For a set of regions Z ⊆ R(G), we denote by ∂(Z) the subgraph of G induced by

the edges of G which are incident with a region in Z and a region not in Z.

A graph is 2-cell embedded if every region is an open disc. In a 2-cell embedded

graph, every face is bounded by a (single) closed walk. The following well-known

theorem can be found on page 85 of [53]:

Theorem 2.2.2 (Euler’s formula). Let G be a connected (multi-)graph which is

9

2-cell embedded in a surface Σ. If G has n vertices, m edges and f faces in Σ, then

n−m+ f = χ(Σ), (2.2.1)

where χ(Σ) = 2 − 2g if Σ = Sg, and χ(Σ) = 1 − k if Σ = Nk.

A cycle C in an embedded graph G is non-contractible if the simple closed curve

U(C) is non-contractible. For formal definitions of two-sided and one-sided cycles, as

well as cutting along a cycle we refer the reader to Chapter 4 of [53].

Suppose P, P ′ are two paths with ends u, v ∈ V (G), which are internally disjoint

(i.e. P ∩P ′ = {u, v}). Then P and P ′ are homotopic if the cycle P ∪P ′ is contractible,

and we write P ∼ P ′ in this case.

We frequently make use of the following simple fact, called the ‘3-path condition’

(for a proof see [69] or [53], proposition 4.3.1):

Proposition 2.2.3. Let G be embedded in Σ. Let v, v ′ ∈ V (G), let P1, P2, P3 be

internally disjoint v-v′ paths, and let Ci,j = Pi ∪ Pj for 1 ≤ i < j ≤ 3. Then if two of

the cycles Ci,j are contractible, so is the third.

Let G ↪→ Σ where Σ 6= S0. The minimum number of points that any non-

contractible closed curve intersects U(G) in is called the face-width or representativity

of the embedded graph G, and is denoted by fw(G). (If G ↪→ S0, fw(G) is defined

to be ∞). The notion of face-width was introduced in [61].

In particular we have fw(G) ≥ 1 if and only if G is 2-cell embedded. A non-

contractible simple closed curve intersecting U(G) in exactly fw(G) points is called

a noose. It is easy to see that there is a noose which intersects G only in vertices.

Let G be a 2-cell embedded graph in Σ. A very useful auxiliary graph when dealing

with face-width is the radial graph (or sometimes called the vertex-face multigraph),

denoted by RG. Its vertex-set V (RG) is the union of R(G) and V (G), and for

every region r ∈ R(G), we insert (possibly parallel) edges vir for i = 1, ..., k if

10

W = v1e1v2...vkekv1 is the facial walk bounding r. Note that by definition, the radial

graph of G and its dual G∗ are the same, and all three can be embedded in Σ.

The dual of the radial graph RG is called the medial graph of G, denoted by MG.

Hence the vertices of MG correspond to edges of G, and regions of MG correspond

to vertices or regions of G. Again we have that the medial graph of G and G∗ are the

same by definition.

The edge-width of G is defined to be the length of a shortest non-contractible cycle

in G, and is denoted by ew(G). The face-width of an embedding can be expressed in

terms of edge-width of the radial graph (see e.g. 5.5.4 in [53]):

Proposition 2.2.4. Let G be a 2-cell embedded graph in Σ and a R be its radial

graph. Then

2 · fw(G) = ew(R). (2.2.2)

If G has high face-width, then every vertex of v has a large ‘planar neighborhood’

[61], and for this reason many properties from planar graphs carry over to embeddings

with high face-width. As an example, we state the following useful fact (see e.g. 5.5.11

in [53]):

Proposition 2.2.5. Let G ↪→ Σ and its dual G∗ be 2-cell embedded, and let R denote

their radial graph. Then the following statements are equivalent:

(1) All facial walks of G are cycles.

(2) All facial walks of G∗ are cycles.

(3) fw(G) ≥ 2 and G is 2-connected.

(4) fw(G∗) ≥ 2 and G∗ is 2-connected.

(5) R has no parallel edges.

11

2.3 Tree-based decompositions

In this section we review some definitions and results related to tree-based decom-

positions such as tree-decompositions, branch-decompositions and carvings. Tree-

and branch-decompositions were introduced in the graph minors series by Robertson

and Seymour, and carvings were defined by Seymour and Thomas in [67].

2.3.1 Branch-width

The notion of a branch-decomposition was first defined in [62] (in fact their definition

is for hypergraphs, but we only state it for graphs).

Definition 2.3.1. A branch-decomposition of a graph G is pair (T, η), where T is a

tree whose internal vertices have degree exactly three, and η is a bijection from L,

the set of leaves of T , to E(G).

For an edge e ∈ E(T), let T1, T2 be the two components of T \ e. For i = 1, 2, let

Ei = η(L∩V (Ti)) ⊆ E(G) and let τe be the order of the separation (G[E1], G[E2]) in

G (separations were defined in Section 2.1). The width of a branch-decomposition is

defined as maxe∈E(T)τe. The branch-width of G, denoted by bw(G), is defined to be

the minimum width over all branch-decompositions of G. A branch-decomposition of

G is optimal if it has width bw(G).

In [62], Robertson and Seymour derive a duality theorem for branch-width using

the notion of a tangle.

Definition 2.3.2. Let k ≥ 1 be an integer. A tangle of order k in a graph G is a

family T of separations of order < k satisfying the following axioms:

(TD1) For every separation (A,B) of order < k, T contains exactly one of (A,B) and

(B,A).

(TD2) If (Ai, Bi) ∈ T for i = 1, 2, 3, then A1 ∪ A2 ∪ A3 6= G.

12

(TD3) If (A,B) ∈ T then V (A) 6= V (G).

Theorem 2.3.3 ([62], page 166). Let k ≥ 2 be an integer. Then bw(G) ≤ k if and

only if G has no tangle of order k + 1.

It is NP-hard to compute bw(G) in general ([67]), however Seymour and Thomas

showed how to compute bw(G) in polynomial-time for planar graphs by an algorithm

called the ‘ratcatcher method’ ([67]). Based on these ideas, Tamaki and Gu [38]

improved the runtime of finding an optimal branch-decomposition of a planar graph

to O(n3), and Hicks discussed how to implement the method in practice ([41], [40]).

2.3.2 Tree-width

The notions of tree-decompositions and tree-width were introduced in [59].

Definition 2.3.4. A tree decomposition T of a graphG = (V,E) is a pair (T, (Xt)t∈V (T)),

where T is a tree and the sets Xt (called bags) associated to the vertices of T are sub-

sets of V (G) satisfying the following axioms:

(T1) For every v ∈ V (G) there is a t ∈ V (T) so that v ∈ Xt.

(T2) For every edge uv ∈ E(G) there is a t ∈ V (T) so that {u, v} ⊆ Xt.

(T3) For every v ∈ V (G), the nodes t such that v ∈ Xt induce a subtree Tv of T .

The width of T is defined to be maxt∈V (T)|Xt| − 1. The tree-width of G, denoted by

tw(G), is the minimum width over all tree-decompositions ofG. A tree-decomposition

of G is called optimal if it has width tw(G) .

An (infinite) class of graphs G is said to have bounded tree-width [branch-width] if

there is some integer k so that tw(G) ≤ k [bw(G) ≤ k] for all G ∈ G. The following

result shows that a class of graphs has bounded branch-width if and only if it has

bounded tree-width. A proof can be found in [62].

13

Lemma 2.3.5. For any graph G, we have

bw(G) ≤ tw(G) + 1 ≤
3

2
bw(G). (2.3.1)

While it is NP-hard to compute tw(G) (or bw(G)) in general, Bodlaender [13] has

shown that tw(G) ≤ k can be decided in linear time if k is fixed (i.e. not part of the

input). It is an open problem in the area of tree-decompositions whether tw(G) can

be computed exactly for planar graphs.

Graphs of bounded tree-width not only play a major role in the proof of the graph

minor theorem, but are also highly interesting in terms of algorithms. In particular,

a great variety of problems which are NP-hard in general can be solved in polynomial

or often even linear time if the input graph is restricted to have bounded tree-width

for some fixed integer k. For example every graph problem that can be expressed in

terms of certain types of logical formulae can be solved in polynomial time ([25], [26],

[23], [24], [4], [16]). For a survey on the algorithmic importance of tree-width, see for

example [11].

The standard approach to exploit bounded tree-width is to use dynamic pro-

gramming on the tree-decomposition. For both designing and implementing such

algorithms, it is often helpful to assume that the tree-decomposition at hand is of a

particularly simple form, which we introduce next (see e.g. [14] for a similar defini-

tion). If T is a rooted tree and v, w ∈ V (T), then w is a descendent of v if w 6= v and

w belongs to the subtree rooted at v, and w is a child of v if w is a descendent of v

which is adjacent to v.

Definition 2.3.6. A tree-decomposition (T, (Xt)t∈V (T)) of a graph G is called nice if

T is a rooted tree in which every node t ∈ V (T) has at most 2 children, and is of one

of the following types:

(1) A LEAF node t is a leaf of T .

(2) An INTRO node t has a unique child node t′ and satisfies Xt′ (Xt.

14

(3) A FORGET node t has a unique child node t′ and satisfies Xt = Xt′ \ {v} for

some v ∈ Xt′ .

(4) A JOIN node t has two children t1, t2 and satisfies Xt = Xt1 = Xt2 .

It is not hard to see how to convert any tree-decomposition into a nice tree-

decomposition of the same width in linear time, so that the number of nodes in the

new tree is at most O(|V (G)|) - a detailed description (for a slightly stronger version

of being ‘nice’) can be found e.g. in [65].

2.3.3 Carving-width

The notions of a carving and carving-width were introduced by Seymour and Thomas

in [67] in order to provide a polynomial-time algorithm for computing the branch-

width of planar graphs. In fact their notions are slightly more general, but we will

not need those here.

Definition 2.3.7. Let G be a graph with |V (G)| ≥ 2. A carving of G is pair (T, η),

where T is a tree whose internal vertices have degree three, and η is a bijection from

L, the set of leaves of T , to V (G).

For an edge e ∈ E(T), let T1, T2 be the two components of T \ e, let Xi =

η(L ∩ V (Ti)) ⊆ V (G) and let τe denote |δ(Xi)| for i = 1, 2. The width of the carving

(T, η) is defined as maxe∈E(T) τe, and the carving-width of G, denoted by cw(G), is

defined as the minimum width over all carvings of G. A carving of G is optimal if it

has width cw(G).

Notice that if we replace V (G) by E(G) in the above definition (so that leaves of

T correspond to edges of G), and let τe denote the number of vertices of G incident

with edges in η(L ∩ V (Ti)) for i = 1, 2, then we recover the definitions for branch-

decompositions and branch-width.

If a graph has high carving-width, then either there is some vertex of high degree,

or a tilt of high order in G:

15

Definition 2.3.8. Let G be a graph with |V (G)| ≥ 2, and k ≥ 1 be an integer. A

tilt in G of order k is a collection B of subsets X ⊆ V (G) with |δ(X)| < k such that

(B1) B contains exactly one of X,Xc for every X ⊆ V (G) of order < k.

(B2) If Xi ∈ B for i = 1, 2, 3, then X1 ∪X2 ∪X3 6= V (G).

(B3) {v} ∈ B for all v ∈ V (G).

Theorem 2.3.9 ((4.3) in [67]). Let G be a graph with |V (G)| ≥ 2 and let k ≥ 1 be

an integer such that |δ(v)| < k for all v ∈ V (G). Then G has carving-width ≥ k if

and only if G has a tilt of order k.

For planar graphs, we have an additional useful relationship:

Theorem 2.3.10 ((7.2) in [67]). Let G be a connected planar graph with |E(G)| ≥ 2,

and M be its medial graph. Then

cw(M) = 2 · bw(G). (2.3.2)

The ‘ratcatcher method’ from [67] in fact computes the carving-width of a planar

graph. This is possible since for planar graphs, we have a computationally tractable

obstruction to high carving-width, called an antipodality:

Definition 2.3.11. Let G be a non-null connected planar graph with planar dual

G∗. An antipodality in G of range ≥ k is a function α with domain E(G) ∪ R(G),

such that for all e ∈ E(G), α(e) is a non-null subgraph of G and for all r ∈ R(G),

α(r) is a non-empty subset of V (G), satisfying:

(A1) If e ∈ E(G), then no end of e belongs to V (α(e)).

(A2) If e ∈ E(G), r ∈ R(G), and e is incident with r, then α(r) ⊆ V (α(e)), and

every component of α(e) has a vertex in α(r).

16

(A3) If e ∈ E(G) and f ∈ E(α(e)) then every closed walk of G∗ using e∗ and f ∗ has

length ≥ k.

Theorem 2.3.12 ((4.1) in [67]). Let G be a connected planar graph with |V (G)| ≥ 2

and let k ≥ 0 be an integer. Then G has carving-width at least k if and only if either

|δ(v)| ≥ k for some vertex v, or G has an antipodality of range ≥ k.

Hence in order to compute bw(G) for a planar graph, by Theorem 2.3.12 it suffices

to compute the maximum order of an antipodality in the medial graph of G, which is

what the ‘ratcatcher method’ accomplishes. In Chapter 3, we explore which of these

relationships hold for general surfaces.

2.4 The Traveling Salesman Problem

Let Gn = (V,E) denote the complete graph on n vertices and m = n(n− 1)/2 edges

with non-negative costs ce ∈ [0,∞) for every edge e ∈ E. The vertices of Gn are

referred to as cities, and a hamiltonian cycle in Gn (i.e. a cycle passing through all

cities) is called a tour. The (symmetric) traveling salesman problem or TSP is to find

a minimum cost hamiltonian cycle in Gn. The problem is known to be NP-hard (as

shown in [45]).

The following integer programming formulation of the TSP was first introduced

by Dantzig, Fulkerson and Johnson in [27]. If x is a vector with m entries xe cor-

responding to the edges of E, we use the notation x(F) =
∑

e∈F xe for F ⊆ E and

x(A,B) = x(E(A,B)) for A,B ⊆ V .

min
∑

e∈E
cexe (2.4.1)

subject to x(δ(v)) = 2 ∀v ∈ V (2.4.2)

x(δ(U)) ≥ 2 ∀U (V, |U | ≥ 3 (2.4.3)

x ∈ {0, 1}m. (2.4.4)

17

The convex hull of the integer points satisfying all of the above constraints is called

the (symmetric) traveling salesman polytope, and will be denoted by TSP (n). If we

relax condition 2.4.4 to x ∈ [0, 1]m, we obtain a linear programming problem (LP)

called the subtour relaxation:

min
∑

e∈E
cexe (2.4.5)

subject to x(δ(v)) = 2 ∀v ∈ V (2.4.6)

x(δ(U)) ≥ 2 ∀U (V, |U | ≥ 3 (2.4.7)

x ∈ [0, 1]m. (2.4.8)

The polytope defined by the constraints 2.4.6 - 2.4.8 is called the subtour polytope,

and is denoted by SP (n). The constraints 2.4.6 are called degree-constraints, and

the constraints 2.4.7 are called subtour elimination constraints or simply subtour con-

straints.

Let I be a class of inequalities (such as the subtour constraints) that are satisfied

for every tour, and hence by every point in TSP (n). The separation problem for I

is the following problem: Given a vector x ∈ Rm, find an inequality from I which

is violated by x, or decide that no such inequality exists. An algorithm solving this

problem is called an (exact) separation algorithm. In light of the cutting plane method

(introduced in [27]) it is desirable to have polynomial-time algorithms to solve the

separation problem for given classes I of inequalities. More generally, a fundamental

theorem of Grötschel, Lovász and Schrijver [35] closely relates the separation problems

to optimization problems.

Although the subtour relaxation is defined by exponentially many constraints, the

afore-mentioned theorem of [35] implies that this LP can be solved in polynomial time,

since we can solve the separation problem for the subtour constraints in polynomial

time ([42], [56]). Hence one usually assumes x ∈ SP (n) when solving the separation

18

problem for a class of valid inequalities for the TSP. Unfortunately exact polynomial-

time separation algorithms are only known to exist in special cases for most of the

other interesting classes of inequalities for the TSP.

2.4.1 Comb inequalities

Since TSP (n) is a proper subset of SP (n) for n ≥ 6, it is of great interest to find

inequalities satisfied by every tour which are not of the type (2.4.6) - (2.4.8), in order

to get a better approximation of TSP (n). Many different classes of such inequalities

for the TSP have been defined and studied. Arguably the most important one is the

class of comb inequalities, first defined in [36] and [20]:

Definition 2.4.1. Let d ≥ 3 be an odd integer and let C = {H, T1, ..., Td} be a

collection of nonempty subsets of V satisfying the following conditions:

(1) Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ d.

(2) Ti ∩H 6= ∅ for 1 ≤ i ≤ d.

(3) Ti \H 6= ∅ for 1 ≤ i ≤ d.

Then the inequality

x(δ(H)) +

d
∑

i=1

x(δ(Ti)) ≥ 3d+ 1 (2.4.9)

is called a comb inequality, and C is called a comb. The sets T1, ..., Tt are called the

teeth and the set H is called the handle of the comb.

All comb inequalities define facets of TSP (n), as shown in [37]. If |Ti| = 2 for each

tooth, the associated inequality is called a 2-matching inequality or blossom inequality

[31]. Blossom inequalities can be separated in polynomial time [57]. If d is fixed, the

separation problem for combs with d teeth can be solved in time O(n2d), as shown

by Carr in [18].

19

2.4.2 Domino parity inequalities

A generalization of comb inequalities are the domino-parity inequalities, introduced

by Letchford in [50]. In order to define them, we first need to introduce some auxiliary

concepts.

Definition 2.4.2. Let A,B ⊂ V be two non-empty subsets such that A∩B = ∅ and

A ∪ B 6= V . Then the pair (A,B) is called a domino, and

x(δ(A ∪ B)) + x(A,B) ≥ 3 (2.4.10)

is called a domino inequality.

It is easy to see that the domino inequalities are valid for SP (n): just add the

subtour constraints 2.4.7 for A,B and A ∪B and divide by two.

Definition 2.4.3. Let {E1, ..., Ek} ⊆ E(Gn) be a collection of edge-sets. Then

{E1, ..., Ek} supports a cut δ(H) if there is a set H ⊆ V (Gn) so that e ∈ δ(H) if

and only if e ∈ E14...4Ek, i.e. if and only if e belongs to an odd number of the sets

E1, ..., Ek.

Definition 2.4.4. Let d ≥ 3 be an odd integer, let (Ai, Bi) for i = 1, ..., d be dominoes

and let F ⊆ E(Gn) so that D = {E(A1, B1), ..., E(Ad, Bd), F} supports a cut δ(H)

for some H ⊆ V (Gn). Then the corresponding domino-parity inequality (or DP

inequality) is given by

d
∑

i=1

(x(δ(Ai ∪Bi)) + x(Ai, Bi)) + x(F) ≥ 3d+ 1. (2.4.11)

The set H is called the handle of the inequality.

Note that a comb inequality with teeth T1, ..., Td and handle H can be viewed as

a DP inequality if we set Ai = Ti ∩H, Bi = Ti \H and F = δ(H) −
⋃d
i=1E(Ai, Bi).

We will also refer to the domino (Ti ∩H, Ti \H) as a tooth. In fact in the literature,

20

dominos in general DP inequalities are occasionally referred to as teeth as well, but

we will only use the term ‘teeth’ in the context of comb inequalities.

We next provide a proof (following [50]) that the DP inequalities are valid for the

TSP (and hence so are comb inequalities).

Theorem 2.4.5 ([50]). Let d ≥ 3 be an odd integer, let (Ai, Bi) for i = 1, ..., d be

dominoes and let F ⊆ E(Gn) so that D = {E(A1, B1), ..., E(Ad, Bd), F} supports a

cut δ(H) for some H ⊆ V (Gn). Then every x ∈ TSP (n) satisfies inequality 2.4.11.

Proof. It suffices to show this if x is the incidence vector of a tour in Gn. Adding all

domino inequalities for the dominoes (Ai, Bi) and the inequality x(F) ≥ 0 yields

d
∑

i=1

(x(δ(Ai ∪Bi)) + x(Ai, Bi)) + x(F) ≥ 3d. (2.4.12)

For an edge e ∈ E(Gn), let µe denote the number of sets in D containing e. Using

this notation, we can rearrange the terms in the above equation to get:

d
∑

i=1

x(δ(Ai ∪Bi)) +
∑

e∈E(Gn)

µexe ≥ 3d. (2.4.13)

If we split the edges in the second sum with respect to membership in δ(H), we

obtain:

d
∑

i=1

x(δ(Ai ∪Bi)) + x(δ(H)) +
∑

e∈δ(H)

(µe − 1)xe +
∑

e/∈δ(H)

µexe ≥ 3d. (2.4.14)

Since x(δ(X)) is even for every X ⊆ V (Gn), and µe is odd if and only if e ∈ δ(H)

since D supports the cut δ(H), we have that the left hand side is an even integer.

Hence the inequality remains valid if we add one to the right hand side.

The surplus (with respect to a vector x̂) of a linear inequality a · x ≥ b is defined

as a · x̂− b, and the inequality is violated by x̂ if the surplus is negative.

The following simple observation is important in the design of separation routines

for DP (and comb) inequalities.

21

Proposition 2.4.6. If D = {(A1, B1), ..., (Ad, Bd), F} defines a DP inequality, and

x̂ ∈ SP (n), then the following statements hold:

(1) The DP inequality is violated by at most one.

(2) The surplus of the DP inequality is given by the sum of the surplus values of its

domino inequalities, plus x̂(F) − 1.

(3) If the DP inequality is violated, then for each domino (Ai, Bi), i = 1, . . . , d, the

associated domino inequality has surplus < 1.

Proof. The first two statements follow immediately from the derivation of the DP

inequality in the proof of Theorem 2.4.5: The fact that he DP inequality is obtained

by adding 1 to the right-hand side of a sum of valid inequalities for x̂ ∈ SP (n) (namely

the domino inequalities and x(F) ≥ 0) implies (1) and (2). Since a DP inequality is

violated if and only if its surplus is negative, and all inequalities used in its derivation

have non-negative surplus as x̂ ∈ SP (n), statement (2) implies (3).

22

CHAPTER III

BRANCH-WIDTH OF EMBEDDED GRAPHS

3.1 Introduction

In this chapter we develop a geometric description of tangles in an embedded graph

(Theorem 3.4.2), and prove a result on the relationship of the branch-width of an

embedded graph and the carving-width of the medial graph (Theorem 3.6.1). We also

discuss how these results relate to the polynomial-time algorithm of [67] to compute

the branch-width of a planar graph, and explain why the method used there does not

seem to generalize to arbitrary surfaces (Section 3.7).

In their Graph Minors XI paper [63], Robertson and Seymour introduced several

new concepts with the goal of establishing a distance function for graphs embedded

on a surface with high face-width. In particular, they showed that a special type

of tangles (see Definition 2.3.2), called respectful tangles, are the dual obstructions

for the face-width of an embedding. A tangle T of order θ in a graph G ↪→ Σ is

called respectful if for every simple closed curve F in Σ with F ∩ U(G) ⊆ V (G) and

|F ∩ V (G)| < θ, there is a closed disc 4 ⊆ Σ bounded by F so that the separation

(G∩4, G∩ cl(Σ \4)) belongs to T . One of the main results of [63] is the following:

Theorem 3.1.1 ((4.1) in [63]). Let G be a graph that is 2-cell embedded in a surface

Σ other than the sphere, and let θ ≥ 1 be an integer. Then G has face-width ≥ θ if

and only if there is a respectful tangle in G of order θ.

Recall that general tangles (see 2.3.2) are the obstructions to low branch-width:

The branch-width of a graph G is given by the maximum order of a tangle in G

(Theorem 2.3.3). Since respectful tangles are a special kind of tangle, Theorem 3.1.1

23

implies that the face-width of a Σ-embedded graph G is a lower bound on its branch-

width, if Σ 6= S0. However this lower bound can be arbitrarily bad: it is easy to

construct embedded graphs of low face-width, but arbitrarily high branch-width -

for example just take a large planar grid and add a few edges to achieve the desired

face-width.

In order to prove Theorem 3.1.1, Robertson and Seymour arrive at what could be

viewed as a ‘geometric’ description of respectful tangles, called slopes. These slopes

and the results in [63] based on them turn out to be a key step in the ‘ratcatcher

method’ for computing the branch-width of a planar graph [67]. While computing

the branch-width and thus a tangle of maximum order is NP-hard for general graphs,

Seymour and Thomas show that this difficulty disappears on planar graphs. Their

method essentially computes the maximum order of a slope (in an appropriate graph),

which gives the maximum order of a respectful tangle. But since the graph is planar,

the extra condition of being ‘respectful’ is vacuous, and so by Theorem 2.3.3, we

obtain the branch-width of the graph.

A natural question to ask is whether the ‘ratcatcher method’ can be extended to

compute the branch-width of a graph G embedded in a surface other than the sphere.

In particular, can one obtain a similar ‘geometric’ description of arbitrary tangles in

G (not just respectful ones)?

In Sections 3.2, 3.3, 3.6, we generalize some of the concepts and results from

[63]. In particular, we introduce a generalized version of slopes and prove that they

characterize tangles in embedded graphs (Theorem 3.4.2), thus answering the above

question in the positive. As an application, we prove a result relating the branch-

width of an embedded graph to the carving-width of its medial graph (Theorem 3.6.1),

generalizing a result from [67].

We also show that the second main theorem of [63] no longer holds in this gen-

eralized setting (Theorem 3.5.4), and in Section 3.7, we explain why this, together

24

with the other results from this chapter, implies that the ‘ratcatcher method’ does

not seem to generalize to higher surfaces.

3.2 Spots, borders and generalized slopes

Robertson and Seymour defined their notion of a slope as follows, which we will refer

to as a ‘traditional slope’ (in contrast to the generalized slopes we define later):

Definition 3.2.1. Let θ ≥ 1 be a half integer, and let G ↪→ Σ be 2-cell embedded.

A (traditional) slope in G of order θ is a function ins which assigns to every cycle C

of G of length < 2θ a closed disc ins(C) ⊆ Σ, bounded by U(C), such that

S1) if C1, C2 are cycles of G, both of length < 2θ, and U(C1) ⊆ ins(C2), then

ins(C1) ⊆ ins(C2),

S2) if P0, P1, P2 are three paths ofG of positive length, with the same ends, mutually

internally disjoint, and the cycles P1 ∪P2, P0 ∪P2, P0 ∪P1 all have length < 2θ,

then one of ins(P1 ∪ P2), ins(P0 ∪ P2), ins(P0 ∪ P1) includes the other two.

Remark 3.2.2. If G has a slope of order θ, then in particular every cycle of length

< 2θ must be contractible, i.e. fw(G) ≥ 2θ.

Remark 3.2.3. If we aim to define a slope in a graph G (where every cycle C of length

< 2θ is contractible), then we only have a choice how to define ins(C) if Σ is the

sphere, because otherwise C bounds exactly one disc (which would have to be chosen

as ins(C)).

Similarly to a tangle, a slope is used to define the notion of a ‘small’ side. Each

contractible cycle (of length < 2θ) separates the surface into two components, and

suppose we call the side ins(C) the ‘small’ side. Suppose a graph G ↪→ Σ has a

slope of order θ. Then the slope axioms will imply that Σ is not the union of three

‘small’ sides. To get the correspondence to respectful tangles, Robertson and Seymour

extend the notion of a ‘small’ side from insides of cycles to arbitrary sets of regions,

25

and show that R(G) (the set of regions of G) is not the union of three ‘small’ sets of

regions. In our generalization, we use the same strategy: First define a ‘small side’ for

‘simple’ separations, and then extend the notion of a ‘small side’ to prove the latter

result for our generalized version of slopes.

The reason that cycles show up in the definition of a traditional slope is that a

circle is the only way to separate the surface into precisely two connected components

(so that their boundary is ‘short’) if there are no short non-contractible curves. How-

ever if the condition of high face-width is dropped, there are other ways to separate

the surface into exactly two parts, and we have to extend our definition of the slope

function ins to those as well. This motivates the following definition:

Definition 3.2.4. A graph B with no isolated vertices and embedded in Σ (not

necessarily 2-cell) is called a border if B has exactly two regions, and every edge of

B is incident with both of them. A (closed) set S ⊆ Σ is called a spot if there is a

border B embeddable in Σ so that S is the closure of exactly one of the regions of B.

If a border B is a subgraph of a graph G, we say B is a border in G.

Example 3.2.5. In the projective plane N1, one can show that there are exactly two

types of borders: Contractible cycles, and two non-contractible cycles intersecting in

a single vertex.

On the torus S1, a border B is of one of the following types (see also Figure 1):

• B is a contractible cycle.

• B = C1 ∪C2, where C1, C2 are two disjoint non-contractible, homotopic cycles.

• B = C1 ∪ C2, where C1, C2 are two non-contractible homotopic cycles, inter-

secting in exactly one vertex.

• B = C1∪C2∪C3, where C1, C2, C3 are non-contractible, pairwise non-homotopic

cycles intersecting in a single common vertex (and are disjoint otherwise).

26

Note that there are two types of borders for the second and third case, depending

on the homotopy type of the two cycles involved (either C1 and C2 are both

meridians or both equators on the torus).

Figure 1: Borders on the torus

We next list some easy facts about borders which we will need later.

Proposition 3.2.6. Every border B is either a separating cycle, or the edge-disjoint

union of at least two non-separating cycles.

Proof. At a vertex v ∈ V (B), every edge adjacent to v in B is incident with both

regions r1 and r2 of B. It follows that v has even degree, so B is eulerian and hence

the edge-disjoint union of cycles C1, ..., Ck. If say C1 is separating, then the graph C1

has two distinct regions, and since the regions of B are contained in the regions of

C1, we have that k = 1 and B = C1.

It will sometimes be helpful to construct a ‘dual’ of an embedded graph, even if

that graph is not connected (typically one does not define a dual of a disconnected

27

graph, since many standard theorems would no longer hold, but we won’t need any of

those here). Let G ↪→ Σ be an embedded graph, not necessarily connected. Then we

define a new embedded (multi-)graph G?, with vertex-set V (G?) = R(G), and edges

E(G?) as follows: For every e ∈ E(G), if e is incident with regions r1, r2 ∈ R(G),

then we add an edge e? = r1r2 to E(G?). Note that G? is always connected, and if G

is connected, then G? is simply the dual of G in the standard graph-theoretic sense,

denoted by G∗. For X ⊆ E(G), we denote by X? the corresponding set of edges in

E(G?).

Proposition 3.2.7. Let G be Σ-embedded, and let G? be as above. If B is a border

in G, then E(B)? is a bond in G?, and conversely, if δ(X) is a bond in G?, then

δ(X) = E(B)? for some border B in G?.

Proof. Suppose B is a border in G. The two regions of B partition the regions of G

into (two non-empty) classes, corresponding to a partition X ∪ X c = V (G?) where

G?[X], G?[Xc] are connected, i.e δ(X) is a bond in G?. Since every edge in E(B) is

incident with both regions of B, it follows that δ(X) = E(B)?.

Conversely, if δ(X) is a bond inG?, then the subgraph B of G induced by the edges

corresponding to δ(X) has exactly two regions (since G?[X], G?[Xc] are connected

and non-empty), and each edge e ∈ E(B) is incident with both of them, since e? is

an X - Xc edge in G?.

Recall that for Z ⊆ R(G), ∂(Z) denotes the subgraph of G induced by all edges

of G which are incident with a region in Z, and one not in Z.

Proposition 3.2.8. Let G be Σ-embedded, and let r ∈ R(G). Let r1, . . . , rk be the

regions of the graph ∂(r) other than r. Then ∂(ri) is a border Bi for i = 1, . . . k, and

∂(r) is the edge-disjoint union of B1 ∪ . . . ∪ Bk.

Proof. Both statements follow immediately from the fact that ∂(ri) ⊆ ∂(r), i.e. every

edge in ∂(ri) is incident with r and ri, for i = 1, . . . , k.

28

Lemma 3.2.9. For every surface Σ there is a non-negative constant c(Σ), depending

only on Σ, so that if B ↪→ Σ is a border, then

|E(B)| ≤ |V (B)| + c(Σ), (3.2.1)

where c(Σ) = (2 − χ(Σ)) · max{2,−3χ(Σ)/2} if Σ is orientable, and c(Σ) = (2 −

χ(Σ)) · max{2,−3χ(Σ)} otherwise.

Proof. Note that for any connected graph H embedded in Σ, we have |E(H)| ≤

|V (H)| + |R(H)| − χ(Σ), where χ(Σ) denotes the Euler characteristic of Σ: If the

embedding is 2-cell, equality holds by Theorem 2.2.2, and if not, we can obtain a

2-cell embedding of H in some surface Σ′ with χ(Σ′) > χ(Σ) and hence applying

Theorem 2.2.2 there yields the result. Let B1, B2, ..., Bk be the components of B.

Applying the above to each Bi and summing all k inequalities yields

|E(B)| ≤ |V (B)| + k(2 − χ(Σ)) (3.2.2)

since |R(Bi)| ≤ 2 as B has exactly two regions (in fact we have |R(Bi)| = 1 unless B

is connected). If k ≤ 2 we are done, so assume B has at least 3 components. Pick

a non-contractible cycle Ci in each Bi for i = 1 . . . k (this is possible by Proposition

3.2.6). Then any two of them are non-homotopic: If say C1 was homotopic to C2,

then C1 ∪C2 separates the surface into exactly two connected parts (since C1 and C2

are disjoint), and hence it follows that B = C1 ∪ C2, contradicting our assumption

that k ≥ 3. As shown in [52] (see also p. 107 of [53]), we have that k ≤ c′′ for some

constant c′′ depending only on Σ (in fact c′′ ≤ g if g ≤ 1, and c′′ ≤ 3g− 3 otherwise).

Hence combining this with inequality 3.2.2 yields the result (recall that χ(Σ) = 2−2g

if Σ is orientable, and χ(Σ) = 1 − g if it is not).

The basic idea for generalized slopes is to replace cycles by borders. However care

has to be taken with respect to the following two aspects.

29

First, in order to prove an exact correspondence to tangles, it is not sufficient

to set the length of a border to be the total number of vertices (or edges): In fact,

we need to define the ’length’ of a border with respect to a weight function on the

vertices. Such a weight function is also needed in [63], but can be avoided at the

level of slopes because in the application, the weight of a cycle in a traditional slope

is always exactly half of the number of vertices in the cycle, a fact which no longer

holds for general borders.

More specifically, a border B in the radial graph R(G) of G (where the slope will

be defined in the application for tangles) induces a separation in the original graph

G, and hence we should define the weight of a border to be exactly |V (B) ∩ V (G)|,

the order of the corresponding separation in G. If B is a cycle, then its weight will

always be exactly half its length, as R(G) is bipartite (with bipartition V (G)∪R(G)).

However for a general border B in R(G), |V (B)∩V (G)| need not be a fixed fraction of

either |V (B)| or |E(B)|: For example if B consists of two homotopic, noncontractible

cycles on the torus intersecting in a single vertex x (so that |V (B)| is odd), then

|V (B) ∩ V (G)| ∈
{⌊ |V (B)|

2

⌋

,
⌊ |V (B)|

2

⌋

+ 1
}

, depending on whether or not x ∈ V (G).

Hence the correct notion of length or weight to consider is the following:

Definition 3.2.10. For a fixed set Ω ⊆ V (G) and an integer θ ≥ 1, we define the

Ω-weight or simply the weight of a subgraph G′ ⊆ G to be w(G′) = |V (G′) ∩ Ω| and

say that G′ is θ-light or simply light if w(G′) < θ. Similarly if X ⊆ V (G), then its

weight w(X) is defined as |X ∩ Ω|.

Second, what may seem to be the most natural definition of a generalized slope

(in light of the above comments) will only be called a pre-slope. We will define the

new (stronger) notion of a slope later when we need it, and point out why such a

stronger notion is necessary.

Three sets of Z1, Z2, Z3 ⊆ R(G) form a partition (Z1, Z2, Z3) of R(G) if they are

pairwise disjoint and have union R(G).

30

Definition 3.2.11. Let θ ≥ 1 be an integer, let G be a Σ-embedded graph and

Ω ⊆ V (G). A pre-slope in G of order θ (with respect to Ω) is a function ins which

assigns to every light border B in G a spot ins(B), bounded by B, such that

S1) if B1, B2 are light borders in G, and U(B1) ⊆ ins(B2), then ins(B1) ⊆ ins(B2),

S2) if (Z1, Z2, Z3) is a partition of R(G) so that ∂(Zi) = Bi for some light border

Bi for i = 1, 2, 3, then ins(B1) ∪ ins(B2) ∪ ins(B3) 6= Σ.

The following terms were defined in [63], and we now redefine them in our more

general setting. Let G be embedded in Σ, and let ins be a pre-slope of order θ in G.

We say a subgraph G′ ⊆ G is confined if every border in G′ is light. In that case we

define ins(G′) to be the union of U(G′) and ins(B) for all borders B in G′. Clearly

ins(G′) is the union of vertices, edges and regions of G′. A set X ⊆ Σ is captured

by G if X ⊆ ins(B) for some light border B in G. Finally, a set Z ⊆ R(G) is called

small if ∂(Z) is a confined graph and Z ⊆ ins(∂(Z)).

With the new definitions, we now follow the steps from [63] in order to establish

the relationship with general tangles. The majority of those intermediate steps and

their proofs are essentially identical to the ones presented in [63]. The only change

is often to replace the original concepts by the generalized ones introduced in this

thesis (i.e. cycles by borders, traditional slopes by (pre-)slopes etc.), and observe that

the statements remain true. In such cases, we still provide the proofs here for better

readability, but clearly point out if they are essentially the same as in [63].

For the remainder of this section, we assume G is a Σ-embedded graph with a

pre-slope of order θ ≥ 1 (with respect to some set Ω ⊆ V (G)).

For later reference, we state the following obvious fact:

Proposition 3.2.12 ((4.2) from [63]). Let G′ ⊆ G. Then the restriction of ins to

the set of light borders of G′ is a pre-slope of order θ in G′.

31

Proposition 3.2.13. If B1, B2 are two light borders in a graph G, then ins(B1) ∪

ins(B2) 6= Σ.

Proof. Suppose not, i.e. ins(B1) ∪ ins(B2) = Σ. Let e ∈ E(B1), with regions

r1, r2 ∈ R(G) incident at e. Then exactly one of them is contained in ins(B1) (since

B1 is a border), say r1. Hence by our assumption we must have r2 ⊆ ins(B2), and

therefore u(e) ⊆ ins(B2). Since e ∈ E(B1) was arbitrary and B1 has no isolated

vertices, it follows that U(B1) ⊆ ins(B2), and so by S1), ins(B1) ⊆ ins(B2), contrary

to our initial assumption (clearly ins(B2) 6= Σ).

The first main step is to prove a result analogous to (4.3)(ii) from [63]. However

the proof here is very different from (and somewhat more complicated than) the

original one in [63] - in particular statement (4.3)(i), which is used in the proof of

(4.3)(ii) in [63], no longer holds.

Lemma 3.2.14 ((4.3)(ii) in [63]). Let G′ ⊆ G be confined, B be a border in G′

with ins(B) maximal. Then for every edge e ∈ E(B), G′ does not capture the region

of G′ incident with e not included in ins(B).

Proof. Let e ∈ E(B). Since B is a border in G′, e is adjacent to two distinct regions

of G′. Let r be the region incident with e and r * ins(B). Suppose r is captured by

G′, i.e. there is a border B ′ in G′ with r ⊆ ins(B′), and hence also e ⊆ ins(B ′).

Claim 3.2.14.1. ins(B) and ins(B ′) cross, i.e. ins(B′)∩ins(B) 6= ∅, ins(B ′)\ins(B) 6=

∅, ins(B) \ ins(B′) 6= ∅ and ins(B) ∪ ins(B ′) 6= Σ.

Proof of claim. The first inequality holds since e ⊆ ins(B ′)∩ ins(B), and the second

holds because of the region r. If ins(B) ⊆ ins(B ′), then equality would hold by

maximality of ins(B), contrary to the second inequality, and so the third inequality

holds as well. The last inequality is Lemma 3.2.13.

Now consider the graph B ∪ B ′.

32

Claim 3.2.14.2. For every region r′ ∈ R(B ∪ B′) with r′ ⊆ (ins(B))c, ∂(r′) contains

an edge of B.

Proof of claim. Suppose not, i.e. E(∂(r′)) ⊆ E(B′) \ E(B) and in particular r′ is a

region of B′. Since B′ is a border, we either have ins(B ′) = cl(r′) or ins(B′) = (r′)c.

Now the first case cannot happen, since e ⊆ ins(B ′), but ∂(r′) and hence cl(r′)

contains no edge of B by assumption. Hence we have ins(B ′) = (r′)c. But since

r′ ⊆ (ins(B))c, we have ins(B′) = (r′)c ⊇ ins(B), contrary to Claim 3.2.14.1.

Now let H be the graph (B ∪B ′)?, as defined before Proposition 3.2.7. Since B is

a subgraph of B ∪B′, every region of B ∪B ′ is either contained in ins(B), or disjoint

from it. Let X1 ⊆ V (H) consist of the regions of B ∪ B ′ contained in ins(B), and

X2 = V (H) \X1 be the regions in (ins(B))c. In particular δ(X1) = δ(X2) = E(B)?,

so since B is a border in B ∪ B ′, we have that H[Xi] is connected for i = 1, 2 by

Proposition 3.2.7. Note that |X2| ≥ 2: If |X2| = 1, i.e. (ins(B))c is a region of B∪B ′,

we would have U(B′) ⊆ ins(B), and so by S1) ins(B ′) ⊆ ins(B), contrary to Claim

3.2.14.1.

Since H[X2] is a connected graph on at least two vertices, we can choose r′ ∈ X2

so that H[X2] \ r
′ is connected. Let B′′ = ∂(r′) and B′′′ = ∂(X2 \ r

′) be subgraphs of

B ∪ B′.

Claim 3.2.14.3. B ′′ and B′′′ are light borders in B ∪B ′.

Proof of Claim. B ′′ partitions V (H) into r′ and X1 ∪ (X2 \ r
′). By Claim 3.2.14.2,

there is an X1 - (X2 \ r
′) edge in H , and since H[X1] and H[X2 \ r

′] are connected,

we have that δH(r′) is a bond in H, and so by Proposition 3.2.7, B ′′ is a border since

δH(r′) = E(B′′)?. Similarly B′′′ partitions V (H) into X2 \ r
′ and X1 ∪ r

′, and since r′

is incident with an element of X1 in H by Claim 3.2.14.2, applying Proposition 3.2.7

establishes that B′′′ is a border in B ∪ B′. Clearly B′′, B′′′ are light since B ∪ B′ is

confined.

33

Note that ins(B′′) 6= (r′)c: If ins(B′′) = (r′)c, then since r′ ∈ X2 means r′ ⊆

(ins(B))c, this would imply ins(B′′) ⊇ ins(B). From the maximality of B, equality

holds, and so (ins(B))c consists only of r′, contrary to |X2| ≥ 2. Similarly if ins(B′′′)

consists of the closure of the regions ofX2\r
′ = X1∪r

′, this contradicts the maximality

of B since r′ ⊆ (ins(B))c. Hence ins(B′′) = cl(r′), ins(B′′′) is the closure of the union

of the regions in X2\r
′, and therefore we would have ins(B)∪ins(B ′′)∪ins(B′′′) = Σ,

contrary to S2) (note that (X1, X2\{r
′}, {r′}) is a partition of R(G)). This completes

the proof of Lemma 3.2.14.

Lemma 3.2.15 ((4.4) in [63]). If G′ is confined, then Σ \ ins(G′) is a region of G′.

Proof. The proof is essentially the same as in [63], and we only include it for com-

pleteness. We first claim that some region of G′ is not captured by G′. If G′ contains

no border then G′ captures no region at all. If G′ has a border, we can choose a

border B with ins(B) maximal, and so the claim follows from Lemma 3.2.14.

It remains to show that there is (at most) one region of G′ not captured by G′.

We will show by induction on |E(G′)| that if r′1, r
′
2 are distinct regions of G′, then at

least one of them is captured by G′.

First consider the case that G′ contains no border. Then G′ has only one region,

for otherwise if r ∈ R(G′) is not the only region of G′, then the graph ∂(r) has a

region other than r, which is bounded by some border in ∂(r) ⊆ G′ by Proposition

3.2.8, contradiction. Hence there is nothing to prove for this case.

Now assume that G′ contains a border B. Let r′ ∈ R(G′) be a region captured

by B, and let e be an edge of G′ incident with r′. Let G′′ = G′ \ e, and let r′′1 , r
′′
2 be

regions of G′′ with r′i ⊆ r′′i , for i = 1, 2. Since G′ captures r′, we may assume that

r′1, r
′
2 6= r′, for otherwise our claim holds. Hence at least one of r′1, r

′
2 is not incident

with e (since e is incident with r′), say r′1. Therefore we have r′1 = r′′1 , and so r′′1 6= r′′2

since r′2 * r′1 = r′′1 . By induction, G′′ captures at least one of the two distinct regions

r′′1 , r
′′
2 , and hence at least one of r′1, r

′
2, and so the the claim follows since G′′ ⊆ G′.

34

Lemma 3.2.16 ((4.5) in [63]). Let G′ ⊆ G be confined, and let r′ ∈ R(G′). Suppose

G captures r′. Then so does G′.

Proof. The statement is the same as in [63], but the proof is somewhat different. Let

B be a border in G capturing r′, i.e. r′ ⊆ ins(B). Let r1, . . . , rk be the regions of the

graph ∂(r′) other than r′. By Proposition 3.2.8, Bi = ∂(ri) is a border in ∂(r′) ⊆ G′,

for i = 1, . . . , k. Note that all Bi are light since G′ is confined. Let r be a region of G

that is not captured by B. Then r 6= r′ implies r ⊆ ri0 , for some i0 ∈ {1, . . . , k}. Now

Bi0 ⊆ ∂(r′) implies U(Bi0) ⊆ ins(B), and so S1) implies that ins(Bi0) ⊆ ins(B).

If ins(Bi0) = cl(ri0), then r ⊆ ri0 ⊆ ins(Bi0) ⊆ ins(B), contrary to r not being

captured by B. Hence ins(Bi0) = (ri0)
c. But then r′ ⊆ (ri0)

c = ins(Bi0), and so r′ is

captured by Bi0 , and hence by G′.

Since the proof of the following fact from [63] is easy and does not use (pre-)slopes,

we will not repeat it here.

Proposition 3.2.17 ((5.1) in [63]). Let Z ⊆ R(G), let G′ ⊆ G and let r′ ∈ R(G′).

If there are regions r1 ∈ Z, r2 ∈ R(G) \Z with r1, r2 ⊆ r′, then there are such regions

r1, r2 which in addition are incident with some edge e of G with e /∈ E(G′).

We conclude this section by a result on maximal borders, which will be useful

later.

Lemma 3.2.18. Let B be a border in a confined graph G′ with ins(B) maximal,

and let B′ be a border in G′ with ins(B′) * ins(B). Then ins(B) ∩ ins(B ′) ⊆

V (B) ∩ V (B′). In particular, no edge or region of G′ is captured by both B and B ′.

Proof. Clearly ins(B) ∩ ins(B ′) is the union of vertices, edges and regions of G′.

First suppose there is some region r1 ∈ R(G′) with r1 ⊆ ins(B) ∩ ins(B′). Let r2

be a region captured by B ′ but not by B (such a region exists by our assumption

ins(B′) * ins(B)). By Proposition 3.2.17 (applied to the graph B ′, where we chose

35

r′ to be the unique region of B ′ captured by B′, and Z to consist of the regions of

G′ captured by B), we may assume there is an edge e incident with r1 and r2, in

particular e ∈ E(B). But r2 is captured by G′ (through B′), contrary to Lemma

3.2.14. So ins(B) ∩ ins(B ′) does not contain any regions.

Suppose there is an edge e captured by B and B ′. Let r1, r2 be the two regions

incident at e. Since e is captured, each of B,B ′ captures at least one of r1, r2. Since

ins(B) ∩ ins(B′) contains no region, we may assume r1 ⊆ ins(B) \ ins(B′) and

r2 ⊆ ins(B′) \ ins(B). But then in particular e ∈ E(B) and r2 is contrary to Lemma

3.2.14.

Finally if v ∈ ins(B) ∩ ins(B ′), then for some edge e ∈ δ(v), e ⊆ ins(B), and for

some e′ ∈ δ(v), e′ ⊆ ins(B′), so by the above, v belongs to ∂(ins(B)) ∩ ∂(ins(B ′)) =

B ∩ B′, as claimed.

3.3 Small sets

As in the previous section, let G be a Σ-embedded graph with a pre-slope of order θ,

with respect to some Ω ⊆ V (G). Recall that Z ⊆ R(G) is small if ∂(Z) is confined

(i.e. every border in ∂(Z) has weight < θ), and Z ⊆ ins(∂(Z)).

The next two steps are identical to [63], and their proofs are obtained from the

original ones by replacing cycles with borders, and traditional slopes with pre-slopes.

Lemma 3.3.1 ((5.2) in [63]). If Z ⊆ R(G) and ∂(Z) is light, then exactly one of

Z, R(G) \ Z is small.

Proof. Note that ∂(Z) is confined since it is light, and so by Lemma 3.2.15 there is a

unique region r0 of ∂(Z) not captured by ∂(Z). Hence a region r ∈ R(G) is captured

by ∂(Z) if and only if r * r0. In particular not every region of R(G) is contained in

r0, and so at most one of Z,R(G) \ Z is small.

Suppose for a contradiction that neither is small, i.e. there exist r1 ∈ Z, r2 ∈

R(G) \ Z with r1, r2 ⊆ r0. By Proposition 3.2.17, we may choose r1, r2 both incident

36

with some edge of G not in E(∂(Z)), contrary to the fact that r1 ∈ Z and r2 /∈ Z.

Lemma 3.3.2 ((5.3) in [63]). If Z ⊆ R(G) is small, Z ′ ⊆ Z and ∂(Z ′) is light,

then Z ′ is also small.

Proof. Suppose r ∈ Z ′. We have to show that r is captured by ∂(Z ′). Since Z ′ ⊆ Z

and Z is small, there is a light border B in ∂(Z) capturing r. Let r′ be the region of

∂(Z ′) ⊆ G containing r.

Claim 3.3.2.1. r′ is captured by B.

Proof of claim. Suppose not, and let X be the regions of G captured by B. Since X∩

Z ′ contains some (namely r) but not every region of G included in r′, by Proposition

3.2.17 we may pick regions r1, r2 ∈ R(G) with r1, r2 ⊆ r′ so that r1 ∈ X ∩ Z ′, r2 /∈

X ∩ Z ′, and both are incident with some edge e /∈ ∂(Z ′). But r1 ∈ Z ′ and e /∈ ∂(Z ′)

implies r2 ∈ Z ′, and so r2 /∈ X. But r1 ∈ X implies e ∈ E(∂(X)) = E(B) ⊆ E(∂(Z)),

a contradiction since both of r1, r2 belong to Z ′ and hence to Z.

Hence by the claim, r′ is captured by G, and by Lemma 3.2.16, the subgraph

∂(Z ′) of G captures r′ ∈ R(∂(Z ′)) since it is light and hence confined by assumption.

Therefore r ⊆ r′ is captured by ∂(Z ′), as required. This proves Lemma 3.3.2.

We now come to discussing the key lemma in this context. In [63], it is shown

that if G contains a traditional slope, then no three small sets Z1, Z2, Z3 make up all

of R(G). If G is the radial graph of an embedded graph H, then a separation in H

corresponds to a partition of R(G) into two sets Z,Zc, so clearly this result is needed

to establish the second (and most important) axiom for a tangle in H.

Unfortunately, the existence of a pre-slope is not enough to obtain such a result:

Below we give a simple example of a graph that has a pre-slope of order four, and yet

its set of regions is the union of three small sets.

For k, l ≥ 2, the k × l toroidal grid Gk×l is the graph embedded in the torus S1

with vertices V (G) = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ l}, and an edge (i, j)(i′, j ′) for

37

1 ≤ i, i′ ≤ k, 1 ≤ j, j ′ ≤ l whenever |i− i′|+ |j− j ′| = 1, or i = i′ and {j, j ′} = {1, l},

or {i, i′} = {1, k} and j = j ′ (if k = 2 or l = 2, this creates parallel edges). We say

that Gk×l has k rows and l columns, and we assume that Gk×l is embedded in S1

in the natural way where every face is bounded by a disc whose boundary contains

exactly 4 edges (see Figure 2).

Figure 2: The natural embedding of the 5 × 5 toroidal grid G5×5 on the torus

Example 3.3.3. Let G be the 2 × 3 toroidal grid embedded in S1, and let R be the

radial graph of G (also embedded in S1). We first construct a pre-slope of order 4

in R (with respect to Ω = V (G)), by defining ins(B) for each border of weight ≤ 3.

It is not hard to see that there are only three types of such borders: Either B is a

contractible four-cycle bounding some region of R (and hence has weight two), or B

is a contractible 6-cycle bounding two regions (and hence has weight 3), or B = ∂(Z)

for some Z ⊆ R(R) with |Z| = 4, and the common intersection of the boundaries

of the 4 regions in Z contains a unique vertex v ∈ V (G). In the latter case, such

a border B has weight 3, and the 4 regions of Z correspond to δ(v) in G, for the

common vertex v (and hence there are exactly 6 such borders B).

If B is a border of the first or second type, we let ins(B) be the (closure of the)

one or two regions of R bounded by B, and if B is of the third type, we define ins(B)

38

to be the (closure of the) 4 regions in Z.

We claim that this defines a pre-slope in R: Clearly the first axiom holds. Suppose

that Σ = ins(B1) ∪ ins(B2) ∪ ins(B3) for three borders B1, B2, B3 of weight at most

three. Since |R(R)| = |E(G)| = 12, it follows that all Bi must be of the third

type. Hence there are vertices v1, v2, v3 in G with δ(vi) corresponding to ins(Bi),

for i = 1, 2, 3. But E(G) 6= δ(v1) ∪ δ(v2) ∪ δ(v3) for any choice of v1, v2, v3, so

Σ = ins(B1) ∪ ins(B2) ∪ ins(B3) cannot hold. Hence ins is a pre-slope of order 3 in

R.

However there are three small sets Z1, Z2, Z3 ⊆ R(R) (with respect to ins) forming

a partition (Z1, Z2, Z3) of R(R): Let A1, A2 ⊆ E(G) be the edges of the two disjoint

non-contractible cycles of length three in G, and B1, B2, B3 ⊆ E(G) be the edges of

the three disjoint non-contractible 2-cycles. Let Z1 be the regions corresponding to

A1∪B1, Z2 the regions corresponding to A2∪B2 and Z3 be the regions corresponding

to B3 (see Figure 3).

PSfrag replacements

A1

A2

B1 B2 B3

Figure 3: Decomposing the 2 × 3 grid

It is straightforward to check that Z1, Z2, Z3 are small (in particular ∂(Zi) has

weight ≤ 3 for i = 1, 2, 3), and that Z1 ∪ Z2 ∪ Z3 = R(R).

What goes ‘wrong’ in the above example is the following: If we have a graph G

39

embedded with high face-width (or in particular, a planar graph embedded in the

sphere), then the optimal branch-decompositions have a simple structure: there is

always some optimal branch-decomposition where every separation induced by the

decomposition is such that (at least) one side forms a disc in the radial graph R.

This implies that it is enough to require that no three small sets bounded by single

(contractible) cycles make up all of R(R): If it is possible at all to have that R(R)

is the union of three small sets, then such a configuration indicates that G has a

branch-decomposition B of order < θ, and hence there is some branch-decomposition

B∗ of order < θ with the above property, which in turn would give a way to write

R(R) as the union of three small sets bounded by cycles.

However if we are not on the sphere, and the graph G embedded in Σ has face-

width lower than bw(G), then there need not be an optimal branch-decomposition

with the above mentioned property. In the above example, one can check that any

optimal branch-decomposition (of width 3) will contain some vertex in the tree where

the three separations in G induced by it each contain a non-contractible cycle of

length at least two in their ‘small’ side (for example, the partition (A1 ∪B1) ∪ (A2 ∪

B2)∪(A3∪B3) of E(G) can be extended to an optimal branch-decomposition of order

3 of G).

More generally, in the radial graph R, a non-contractible cycle of length k ≥ 2 in

an embedded graph G corresponds to a set Z (of k regions of the radial graph R)

which is bounded by a ‘chain’ of k edge-disjoint 4-cycles. In particular, the graph

∂(Z) would have k + 1 regions in this case, and so ∂(Z) is not a border.

What all of this shows is that in general, we can not expect to have optimal

branch-decompositions whose separations correspond just to single borders in the

radial graph, and so in order to get the exact relationship with tangles (and hence

branch-width), we need to strengthen the second axiom of a pre-slope to deal with

structures like those arising from non-contractible cycles in G.

40

With this motivation in mind, we now define the notion of a cluster, which leads

to the definition of a (generalized) slope.

Suppose B is a confined subgraph of G such that B = B0 ∪ . . . ∪ Bk−1, where

B0, . . . , Bk−1 are the borders in B with ins(Bi) maximal, for i = 0, . . . , k − 1. By

Lemma 3.2.18, the union is edge-disjoint, and hence B is eulerian by Proposition

3.2.6.

Remark 3.3.4. Note that B has exactly k + 1 regions: By Lemma 3.2.15, there is a

unique region r0 of B which is not a subset of ins(B) (in fact r0 = Σ\ins(B)), and the

other k regions are given by ins(Bi) \Bi for i = 0, . . . , k− 1, since ins(Bi) ∩ ins(Bj)

contains no region for i 6= j, by Lemma 3.2.18.

We now define a bipartite multigraph SB, capturing the structure of B. Let

B = {B0, . . . , Bk−1}, and let V2+ = {v ∈ V (B) : dB(v) > 2}. For v ∈ V2+, let

e0, e1, . . . , e2d−1 be the edges of B incident at v (in cyclic order). By the above

remark, every ei is incident with the region r0, and some region corresponding to a

maximal border Bi of B. Hence there are exactly d (not necessarily distinct) regions

Bv
0 , . . . , B

v
d−1 incident at v which are distinct from r0, say with {e2j , e2j+1} ∈ E(Bv

j)

for j = 0, . . . , d− 1 (see Figure 4).PSfrag replacements

v

r0

r0

r0

r0

Bv
0

Bv
1

Bv
2

Bv
d−1

e0

e1

e2

e3

e4

e5

e2d−2

e2d−1

Figure 4: Construction of the structure graph SB

41

Definition 3.3.5. Suppose B is a confined subgraph of G such that B is the (edge-

disjoint) union of the maximal borders B1, . . . , Bk in B. Then the structure graph SB

of B is the (embedded) bipartite multigraph with bipartition V (SB) = V2+ ∪ B, and

E(SB) defined as follows: For a vertex v ∈ V2+, if δB(v) = {e0, e1, . . . , e2d−1} are the

edges incident at v in B, and Bv
0 , . . . B

v
d−1 ⊆ B are as above, then E(SB) contains

edges vBv
j for j = 0, . . . , d− 1.

Remark 3.3.6. Note that V2+ is allowed to be empty (for example if B consists of a

single contractible cycle), in which case V (SB) is an independent set.

Remark 3.3.7. If v ∈ V2+, then dB(v) = 2 · dSB
(v).

Definition 3.3.8. Suppose C is a confined subgraph of G so that C is the (edge-

disjoint) union of the maximal borders in C. Then C is called a cluster if the structure

graph SC is connected, and if |V (SC)| > 1, then SC \v is connected for every v ∈ V2+.

Note in particular that any border C is a cluster (in this case, V (SC) has exactly

one vertex in the class B).

The structure graph was essentially defined in the proof of (5.4) in [63]. However

in that setting, it turns out that SB can not have cycles, i.e. SB is a forest. This is

no longer true in our setting, as the following example shows: Suppose C is the union

of k light contractible cycles C1, . . . Ck (where ins(Ci) is a closed disc for each i), so

that for i = 1, . . . , k, Ci ∩ Ci+1 (mod k) consists of a single vertex vi (with vi 6= vj

for i 6= j), and C contains a non-contractible cycle. Then C is (typical example of)

a cluster, and the structure graph SC is a non-contractible cycle of length 2k. For a

slightly more general example, see Figure 5.

The following fact about maximal clusters will be useful later:

Lemma 3.3.9. Let G be a confined graph, let C1, C2 be distinct clusters in G so that

ins(C1) is maximal. Then ins(C1) ∩ ins(C2) = ∅, or ins(C1) ∩ ins(C2) = {v} for

some v ∈ C1 ∩ C2.

42

PSfrag replacements SC

Figure 5: An example of a cluster C with its structure graph SC on the torus

Proof. Let Ci be the edge-disjoint union of maximal borders B1
i , . . . , B

ki

i in G, let Si

be the structure graph of B1
i ∪ . . . ∪ Bki

i , and let Bi = {B1
i , . . . , B

ki

i } for i = 1, 2.

Let S be the structure graph of C1 ∪ C2. Then either S is not connected (i.e. has

components S1, S2), or there is a unique cutvertex v in S which belongs to V (C1∪C2)

and has degree > 2 in C1∪C2 (for otherwise C1∪C2 would be a cluster contrary to the

maximality of C1). Clearly v ∈ V (C1)∩V (C2), since v is not a cutvertex for S1 or S2.

Hence S1∩S2 = ∅ or S1∩S2 = {v}. In either case, B1∩B2 = ∅, i.e. no border belongs to

C1 and C2, and so by Lemma 3.2.18, it follows that ins(C1)∩ins(C2) ⊆ V (C1)∩V (C2)

(since ins(Ci) = ins(B1
i)∪ . . .∪ins(B

ki

i for i = 1, 2). But any vertex in V (C1)∩V (C2)

must have degree > 2 in C1∪C2, and so V (C1)∩V (C2) ⊆ V (S1)∩V (S2). Consequently

ins(C1) ∩ ins(C2) is either empty or consists of v ∈ V (C1) ∩ V (C2), as claimed.

With the notion of a cluster, we can finally define the notion of a (generalized)

slope.

Definition 3.3.10. Let θ ≥ 1 be an integer, and let G ↪→ Σ. A (generalized) slope

in G of order θ is a function ins which assigns to every light border B of G a spot

ins(B), bounded by B, such that

43

S1) if B1, B2 are light borders in G, and U(B1) ⊆ ins(B2), then ins(B1) ⊆ ins(B2),

S2) if (Z1, Z2, Z3) is a partition of R(G) so that ∂(Zi) = Ci for some light cluster

Ci, for i = 1, 2, 3, then ins(C1) ∪ ins(C2) ∪ ins(C3) 6= Σ.

Remark 3.3.11. Any slope is a pre-slope (of the same order).

It is easy to see that the second axiom is equivalent to requiring that in a partition

(Z1, Z2, Z3) where each Zi is bounded by a light cluster, at least one of Z1, Z2, Z3 is not

small. Note that this fixes the problem in the previous example, since the partition

into three small sets we constructed showed that there did not exist a generalized

slope of order 4.

We are now ready to prove the key lemma for this section. The overall structure

of the proof is the same as the one in [63], but some of the individual steps require

modifications.

Lemma 3.3.12 ((5.4) in [63]). If ins is a generalized slope and (Z1, Z2, Z3) is a

partition of R(G), then at least one of Z1, Z2, Z3 is not small.

Proof. Suppose Z1, Z2, Z3 form a counterexample with ∂(Z1, Z2, Z3) minimal, where

∂(Z1, Z2, Z3) = ∂(Z1)∪ ∂(Z2)∪ ∂(Z3). Then all Zi are small and moreover Zi 6= ∅ for

i = 1, 2, 3 by Lemma 3.3.1. We aim to show that ∂(Z1) is a cluster.

Claim 3.3.12.1. There is a cluster C1 ⊆ ∂(Z1) such that at most one vertex of C1 is

incident with an edge of ∂(Z1) not in ins(C1).

Proof of claim. Let C = {C1, . . . Ck} be the set of all maximal clusters in ∂(Z1), i.e.

the clusters with ins(Ci) maximal. Note that every edge e of ∂(Z1) is contained in

ins(B) for some border B in ∂(Z1), since the region at e belonging to Z1 is captured

by ∂(Z1) as Z1 is small. Hence every edge of ∂(Z1) is contained in ins(Ci) for some

cluster Ci ∈ C.

44

Let C = C1 ∪ . . .∪Ck. Then C is the edge-disjoint union of the maximal borders

in ∂(Z1), by Lemma 3.3.9.

Let SC be the structure graph of C, and let W be the set of cutvertices of SC

that belong to V2+. Then Lemma 3.3.9 implies that W consists exactly of all vertices

belonging to at least two distinct maximal clusters in C. If W is empty, then C is

a cluster, i.e. k = 1, and so by the above remarks ∂(Z1) ⊆ ins(C1). Hence we may

assume W 6= ∅.

Construct a new bipartite graph F with bipartition classes C and W, where we

put an edge between a maximal cluster Ci ∈ C and a cutvertex v ∈ W whenever

v ∈ V (Ci). Then the maximality of the clusters in C implies that F has no cycles (if

F had a cycle D, then the clusters in D ∩ C would form a single larger cluster), and

so F is a forest. As noted above, every v ∈ W has degree at least two in F .

Without loss of generality suppose that the cluster C1 is a leaf of F . If e = uv ∈

E(∂(Z1)) is not in ins(C1), then e belongs to ins(C ′) for some maximal cluster C ′ 6=

C1 in C by the initial remark. Suppose that v ∈ V (C1). Then ins(C1)∩ins(C
′) = {v}

and v ∈ V (C1)∩V (C ′) by Lemma 3.3.9, and so v ∈ W as noted above. Hence v must

be the unique neighbor of C1 in F , and so C1 is as stated in the claim.

The remaining steps are now analogous to the ones from [63] (again using clusters

and borders instead of cycles), but we include them for the sake of readability.

Let C1 be as in Claim 3.3.12.1, and pick a vertex v1 ∈ V (C1) such that no other

v ∈ V (C1) is incident with an edge of ∂(Z1) that is not in ins(C1). Let

A = {r ∈ R(G) : r ⊆ ins(C1))} (3.3.1)

be the set of all regions captured by C1, and let Ac = R(G) \ A be all other regions.

The strategy is to first show that A includes only regions of Z1 (since otherwise we

will be able to add all of A to either Z2 or Z3, while maintaining a partition into

small sets), and later that that A = Z1, i.e. Z1 is captured by a single cluster.

45

Claim 3.3.12.2. If e ∈ E(C1), then one region incident with e belongs to A∩Z1, and

the other one belongs to Ac ∩ (Z2 ∪ Z3).

Proof of claim. Let e ∈ E(C1). Then e is incident with a region r in A, and a region

s in Ac (since ins(C1) is bounded by C1). Let B be the (unique) border in C1 which

contains e (and hence captures r, but not s). Since B ⊆ C1 is a maximal border in

the confined graph ∂(Z1), Lemma 3.2.14 implies that s is not captured by ∂(Z1), and

so s ∈ R(G) \ Z1 = Z2 ∪ Z3. Hence e ∈ E(C1) ⊆ E(∂(Z1)) means that r ∈ Z1.

For v ∈ V (C1), let R(v) denote the regions incident with v which are not in A.

Note that by Claim 3.3.12.2, R(v) ⊆ Z2 ∪ Z3 for all v 6= v1.

For i = 2, 3, let Wi = {v ∈ V (C1) : v 6= v1, R(v) ⊆ Zi} (i.e. vertices in Wi are

only incident with regions of Zi, and regions captured by ins(C1)).

Fix an edge f ∈ E(C1) which is incident at v1. By Claim 3.3.12.2, f ∈ E(∂(Z1)∩

∂(Z2)) or f ∈ E(∂(Z1) ∩ ∂(Z3)). Since so far we had symmetry between Z2 and Z3,

we may assume that w(W2) ≥ w(W3), and if equality holds, we may assume that

f ∈ ∂(Z2).

Claim 3.3.12.3. E(C1 ∩ ∂(Z2)) 6= ∅.

Proof of claim. Either W2 6= ∅, or |W2| = 0 and so |W3| = |W2| = 0, in which case

the above edge f is as desired.

For i = 1, 2, 3, let Z ′
i = Zi ∩ A

c be the regions of Zi not captured by C1.

Claim 3.3.12.4. For i = 1, 2, 3, ∂(Z ′
i) ⊆ ∂(Zi), and Z ′

i is small.

Proof of claim. Let e ∈ ∂(Z ′
i) be incident with regions r ∈ Z ′

i and s /∈ Z ′
i. Then

r ∈ Zi and r is not captured by C1, and s is either captured by C1, or belongs to Zc
i

(or both). Suppose for a contradiction that e /∈ ∂(Zi), i.e. by the previous statement

s belongs to Zi and is captured by C1. Then e ∈ C1, and by Claim 3.3.12.2 s ∈ Z1,

46

and so r /∈ Z1. In particular, i 6= 1 since r ∈ Zi, and so s /∈ Zi (since s ∈ Z1),

implying that e ∈ ∂(Zi) after all.

To see that Z ′
i is small, note that Z ′

i ⊆ Zi, Zi is small, and that w(∂(Z ′
i)) ≤

w(∂(Zi)) by the inclusion we just proved, and so Z ′
i is small by Lemma 3.3.2.

The next step is to show that moving the regions of A to Z2 does not increase the

weight of the boundary.

Claim 3.3.12.5. w(∂(Z2 ∪ A)) ≤ w(∂(Z2)).

Proof of claim. Define

X = V (∂(Z2)),

Y = V (∂(Z2 ∪ A)),

D = {v1} \X.

In particular |D| ∈ {0, 1}. We have to show w(X)− w(Y) ≥ 0, i.e. that w(X \ Y) −

w(Y \X) ≥ 0.

Note that if v ∈ W2, then v ∈ V (C1) is incident only with regions in A and Z2

(and in particular with a region in Z1 and one in Z2), and so W2 ⊆ X \ Y .

Similarly let v ∈ Y \ X. Since ∂(Z2 ∪ A) ⊆ ∂(Z2) ∪ ∂(A), we have that v ∈

V (∂(A)) = V (C1). Since v /∈ X, but v ∈ V (C1) we must have that no regions at v

are in Z2, by Claim 3.3.12.2. It follows that v ∈ W3∪D, i.e. we have Y \X ⊆ W3∪D.

Hence we obtain that w(X \ Y) − w(Y \ X) ≥ w(W2) − w(W3) − |D|. But if

w(W2) = w(W3), then the special edge f at v1 belongs to E(∂(Z2)) (as assumed

before Claim 3.3.12.3), and so |D| = 0. So in either case, w(X \ Y) − w(Y \X) ≥ 0,

as desired.

For a partition (X, Y, Z) of R(G), let ∂(X, Y, Z) denote the graph ∂(X)∪ ∂(Y)∪

∂(Z). (The proof of the second part of the following claim is slightly different from

[63]).

47

Claim 3.3.12.6. E(∂(Z1)) ∩ E(∂(Z3)) ⊆ E(C1), and A ⊆ Z1.

Proof of claim. (Z ′
1, Z2∪A,Z

′
3) is a partition ofR(G), and Z ′

1, Z
′
3 are small as shown in

Claim 3.3.12.4. Note that ∂(Z ′
1, Z2 ∪A,Z

′
3) ⊆ ∂(Z1, Z2, Z3), and in fact the inclusion

is proper because by Claim 3.3.12.3, there is an edge e on C1 in ∂(Z2), and by

Claim 3.3.12.2, e is incident with a region in A ∩ Z1 and one in Ac ∩ Z2, so e is

not in ∂(Z ′
1, Z2 ∪A,Z

′
3). Hence the minimality of ∂(Z1, Z2, Z3) (together with Claim

3.3.12.4) implies that Z2 ∪ A is not small. But ∂(Z2 ∪ A) is light by Claim 3.3.12.5,

and so (Z2 ∪ A)c = Z ′
1 ∪ Z

′
3 is small by Lemma 3.3.1.

Hence (A,Z ′
2, Z

′
1 ∪ Z ′

3) is a partition into small sets. It is easily checked that

∂(A,Z ′
2, Z

′
1 ∪ Z ′

3) is a subgraph of ∂(Z1, Z2, Z3) (using Claim 3.3.12.2), and so by

minimality we have equality. Now let e ∈ E(∂(Z1)) ∩ E(∂(Z3)) be a Z1 − Z3 edge.

Then the previous statement implies that e must be an A − (Z ′
1 ∪ Z ′

3) edge, so in

particular e belongs to ∂(A) = C1, as desired.

For the second part of the claim, suppose there is a region r ∈ A \ Z1, i.e. r is

captured by some border B ⊆ C1, but r ∈ Z2 ∪ Z3. Clearly ins(B) contains a region

in r′ ∈ Z1 ∩ A by Claim 3.3.12.2, and since ins(B) \ U(B) is a region of C1 (C1 is

the edge-disjoint union of its maximal borders), Proposition 3.2.17 implies we may

assume that there is an edge e /∈ E(C1) which is incident with r and r′. Hence e

belongs to ∂(Z1) ⊆ ∂(Z1, Z2, Z3), but the fact that both regions at e belong to A

means that e is not an edge of ∂(A,Z ′
2, Z

′
1∪Z

′
3), a contradiction since we showed that

these two boundary graphs are identical.

Claim 3.3.12.7. Z1 = A.

Proof of claim. Suppose not. By Claim 3.3.12.6, ∂(Z1) consists not just of the cluster

C1, i.e. it has at least two clusters. Hence we can pick a cluster C ′
1 6= C1 of ∂(Z1)

which is also a leaf in the forest F defined in the proof of Claim 3.3.12.1. By Claim

3.3.12.6 applied to C ′
1, there exists j ∈ {2, 3} such that E(∂(Z1))∩E(∂(Zj)) ⊆ E(C ′

1)

48

(note that we broke the symmetry between Z2 and Z3 with respect to Z1 to get Claim

3.3.12.6).

But by Claim 3.3.12.3 and Claim 3.3.12.2, C1 already contains an edge in E(∂(Z1))∩

E(∂(Z2)), so j 6= 2 since C1 and C ′
1 are edge-disjoint by Lemma 3.3.9.

Therefore j = 3, and so Claim 3.3.12.6 implies that in fact E(∂(Z1))∩E(∂(Z3)) =

∅. Hence there are no Z1 − Z3 edges in ∂(Z1, Z2, Z3), i.e. ∂(Z1, Z2, Z3) = ∂(Z2), and

so every region of R(G) is captured by ∂(Z2), contrary to Lemma 3.2.15.

By Claim 3.3.12.7, ∂(Z1) = ∂(A) = C1, i.e. Z1 is bounded by a single cluster.

Similarly Z2 and Z3 are bounded by single clusters, and since (Z1, Z2, Z3) is a partition

of R(G), this contradicts the second slope axiom and completes the proof of the

lemma.

The final step is to extend the previous result to the case where the Zi may have

nonempty intersection- this is done by a simple uncrossing argument which is identical

to the one in [63], so we will not repeat it here.

Theorem 3.3.13 ((5.5) in [63]). Let G ↪→ Σ, let ins be a slope of order θ in G

with respect to Ω ⊆ V (G). If Z1, Z2, Z3 ⊆ R(G) are small, then Z1 ∪Z2 ∪Z3 6= R(G).

3.4 Tangles and slopes

We are now ready to prove the aforementioned result about the correspondence of

tangles and slopes. For this we will also use the following easy fact from [63]:

Proposition 3.4.1. Let G be a graph, and T be a tangle of order θ ≥ 1. If (A,B) ∈

T , (A′, B′) ∈ T and (A ∪ A′, B ∩ B′) has order < θ, then (A ∪ A′, B ∩ B′) ∈ T .

Given a tangle it is always possible to construct a slope of the same order in the

radial graph, but for the reverse direction we need to impose a mild extra condition to

avoid the ‘trivial’ slopes that are mentioned in the introduction of [63]. For a region

r bounded by a closed walk W = v1e1v2 . . . ek−1vk, define the perimeter weight of r

49

to be
∑k

i=1 11Ω(vi). A slope is called even if for every region r ∈ R(G) of perimeter

weight < θ, there is a border B in G of weight < θ with r ⊆ ins(B).

Theorem 3.4.2. Let G ↪→ Σ be 2-cell embedded and R be its radial graph. Let θ ≥ 1

be an integer. Then there is a tangle of order θ in G if and only if there is an even

slope in R of order θ and with respect to Ω = V (G).

Proof. Suppose there is a tangle T of order θ in G. Set Ω ⊆ V (R) to be V (G), and

let B be a border in R of weight k < θ. Then the two spots bounded by B partition

the regions of R into two sets ZC and ZD, corresponding to two complementary

separations (C,D) and (D,C) in G. A vertex v ∈ V (G) is incident with edges of

both C and D if and only if, in R, it is incident with a region from both ZC and ZD,

i.e. if and only if v ∈ V (B) ∩ V (G). Hence the order of (C,D) is equal to k, and by

T1), exactly one of (C,D), (D,C) belongs to T , say (C,D). In that case, we define

ins(B) to be the spot corresponding to ZC , and we claim that this defines a slope in

R.

It is easy to see that S1) holds: Suppose U(B ′) ⊆ ins(B) for some light borders

B,B′. If ins(B′) * ins(B) then ins(B) ∪ ins(B ′) = Σ and so every region of R is

contained in at least one of ins(B), ins(B ′). But by our definition of ins, we get two

separations (CB, DB) and (CB′ , DB′) in T with CB∪CB′ = G, a contradiction to T2).

It is easy to check from our definition of ins(B) that ins defines a pre-slope. We

now show that in fact ins defines an even slope.

For a small set Z ⊆ R(R) of weight k < θ, and the separation (CZ, DZ) in G

associated to it is the separation of order k with E(C) corresponding to Z.

Claim 3.4.2.1. Let Z be a small set. Then (CZ, DZ) ∈ T .

Proof of claim. Let B1, . . . , Bk be the maximal borders in ∂(Z), and let Zi be the

regions in ins(Bi), for i = 1, . . . k. Since Z is small, we have Z ⊆ Z1 ∪ . . . ∪ Zk.

50

Now suppose Z is a counterexample with k minimum, and subject to that, choose

|Z| maximum. Then it follows that Z = Z1 ∪ . . . ∪ Zk, and Lemma 3.2.18 implies

that ∂(Z) = B1∪ . . .∪Bk. Since Z is a counterexample, we have k ≥ 2 (for otherwise

k = 1, i.e. ∂(Z) = B1 is a single border and the claim holds by construction of the

function ins). Now Z1 and Z ′ = Z2 ∪ . . . ∪ Zk are small by Lemma 3.3.2 (note that

∂(Z ′) = B2 ∪ . . . ∪ Bk), and so (CZ1
, DZ1

) ∈ T and (CZ′, DZ′) ∈ T by minimality of

Z. Since Z = Z1 ∪ Z ′ and ∂(Z) has weight < θ, applying Proposition 3.4.1 yields

that (CZ , DZ) ∈ T , so Z was not a counterexample after all.

The above claim readily implies that S2) holds: If (Z1, Z2, Z3) is a partition of

R(R) (so that each ∂(Zi) is a cluster), then not all three can be small by the above

claim and tangle axiom T2).

It remains to show that the slope ins is even: Let re be a region of R(R) (corre-

sponding to an edge e ∈ E(G)) with perimeter weight < θ, so that in particular ∂(re)

has weight < θ. Let e have ends v1, v2 in G, and be incident with regions r1, r2. Then

in R, re is bounded by the contractible walk W = v1r1v2r2. Then W is a 4-cycle, or

the (edge-disjoint) union of two (contractible) cycles of length 2, i.e. W = ∂(re) is

the union of two light borders B1 and B2 (not necessarily distinct).

If re ⊆ ins(Bi) for i = 1 or i = 2, we are done, so assume not. It follows that

Σ = ins(B1)∪ins(B2)∪re. Let Zi be the regions of R(R) captured by Bi, for i = 1, 2.

Then the associated separations (CZ1
, DZ1

), (CZ2
, DZ2

) belong to T by definition of

ins, and by result (2.7) from [62], the separation (e, G \ e) ∈ T since T is a tangle

and e has < θ ends by assumption. But E(CZ1
∪ CZ2

) = G \ e, contrary to axiom

T2). Hence re is captured by some light border in R, and ins is even as desired.

Conversely, suppose ins is an even slope of order θ in R. Let (C,D) be a separation

of order k < θ in G, and let ZC , ZD be the induced (complementary) sets of regions of

R. As above, we have that ∂(ZC) has weight k, and so by Lemma 3.3.1, exactly one

of ZC , ZD is small, say ZC . In that case we put (C,D) ∈ T (as opposed to (D,C)),

51

and we claim that T is a tangle.

Clearly T1) holds, and T2) holds by Theorem 3.3.13. It remains to verify T3). By

result (2.7) of [62], it suffices to check that (e, G\ e) ∈ T for every e ∈ E(G) with < θ

ends. Let re be the region of R corresponding to such an edge e. Let W = ∂(re) as

above. In particular, the perimeter weight of W equals the number of ends of e, which

is < θ by assumption. As ins is even, there is a light border B with re ⊆ ins(B). Let

Z be the set of regions captured by B. Then {re} ⊆ Z, Z is small and w(∂(re)) < θ,

so {re} is small by Lemma 3.3.2. But by construction of T we have (e, G \ e) ∈ T ,

so T3) holds and T is a tangle. This completes the proof of Theorem 3.4.2.

3.5 Restraints and the capturing theorem

The second main result of [63] employs the concept of a restraint. Given an embedded

graph G and a traditional slope of order θ, a restraint (of length k < 2θ) in [63] is

a set X ⊆ Σ which is bounded by a closed contractible walk W of length k < 2θ so

that ins(W) = X (the original definition is slightly more topological).

Now suppose that the graph G is bipartite, let Ω be one of the bipartition classes

and suppose ins is a (generalized) slope of order θ, i.e. ins assigns an inside to every

border of Ω-weight < θ. Then we can define the notion of a restraint as before, i.e.

X ⊆ Σ is a restraint if X is bounded by a closed contractible walk W of length

|W | < 2θ and ins(W) = X. Note that since G is bipartite, |W | < 2θ implies that

W has Ω-weight at most |W |/2 < θ (multiple vertices are only counted once for the

Ω-weight) and so W is confined, ensuring that ins(W) is defined.

For a fixed point x ∈ Σ and an integer k ≤ 2θ, let Ckx be the set of points y ∈ Σ

which are captured from x, i.e. all points y for which there is a restraint X of length

< k containing x and y. The following theorem is a reformulation of (8.12) from [63]:

Theorem 3.5.1. Let G be a 2-cell embedded graph in Σ with a traditional slope of

order θ. Then for every x ∈ Σ and every integer k ≤ 2θ, Σ \ Ckx contains a region of

52

G.

We call this result the ‘capturing theorem’: It says that in a graph with a tra-

ditional slope of order 2θ, we can not ‘capture’ all of Σ (with restraints) from any

fixed point x ∈ Σ. This theorem turns out to be the foundation of the ‘ratcatcher’

method for computing the branch-width of a planar graph in polynomial time [67].

Very roughly speaking, in the ratcatcher game, if the ratcatcher is at a point x in a

graph with branch-width at least θ, then the ‘noisy’ areas of the sphere correspond

to the areas captured by restraints containing x , and the above theorem guarantees

that there is always some ‘quiet’ area for the rat to avoid capture.

However it turns out that if we replace traditional by generalized slopes, the

analogous statement of the above theorem no longer holds, as we show in Theorem

3.5.4, the main result of this section.

We start by a lemma about the k× k toroidal grid G = Gk×k, with rows i1, . . . , ik

and columns j1, . . . , jk (we will use the the symbols i and j to denote both the index

and the subgraph given by a row i or column j). Let Row(G) be the set of rows, and

Col(G) be the set of columns of G. Let (A1, A2) be a separation in G. We say a row

i is full if all edges in i belong to E(A1), or all belong to E(A2). A row is mixed if it

is not full. Full and mixed columns are defined similarly.

Remark 3.5.2. A mixed row or column contains at least two elements of V (A1 ∩A2).

A full cross in Ad is a subgraph of G consisting of a full row and a full column

contained in Ad, for d = 1, 2. We denote by rd the number of full rows in Ad, and by

cd the number of full columns in Ad, for d = 1, 2.

Lemma 3.5.3. Let G ↪→ S1 be the k× k toroidal grid, for k ≥ 2, and let (A1, A2) be

a separation of order at most 2k− 3 in G. Then there is a unique d0 ∈ {1, 2} so that

rd0 + cd0 ≤ 1, i.e. Ad0 contains at most one full row or column, but not both.

Proof. We first show that there is at least one side Ad0 as described. The following

53

claim shows that not all of r1, r2, c1, c2 can be positive.

Claim 3.5.3.1. One of A1, A2 does not contain a full cross.

Proof of claim. Suppose not, i.e. Ad contains a full row id and a full column jd, for

d = 1, 2. For a row or column l, let x(l) = |V (A1∩A2)∩V (l)| denote the contribution

of l to V (A1 ∩ A2). Define

I = {i ∈ Row(G) | i 6= i1, i2 and x(i) = 1},

J = {j ∈ Col(G) | j 6= j1, j2 and x(j) = 1}.

Without loss of generality assume that |J | ≥ |I|. Note that if j ∈ J (in particular

j 6= j1, j2), then the unique vertex in V (A1 ∩ A2) on j is either (i1, j) or (i2, j), i.e.

belongs to i1 or i2, depending on whether column j is contained in A1 or A2. In

particular, this implies that |J | + 2 ≤ x(i1) + x(i2), and so we have

|V (A1 ∩ A2)| =
∑

i/∈I
i6=i1,i2

x(i) +
∑

i∈I
x(i) + x(i1) + x(i2)

≥ 2(k − |I| − 2) + |I| + x(i1) + x(i2)

≥ 2(k − |I| − 2) + |I| + 2 + |J |

= 2k − 2 − |I| + |J |.

Hence by our assumption that |J | ≥ |I|, we have |V (A1∩A2)| ≥ 2k−2, a contradiction.

By the above claim, there exists a side Ad0 with no full rows or no full columns, for

some d0 ∈ {1, 2}. Without loss of generality assume Ad0 has no full rows. Therefore

we may assume that Ad0 has at least two full columns, since otherwise rAd0
+cAd0

≤ 1

as desired. But any full row of the other side of the separation induced by Ad0

contains at least two vertices of V (A1 ∩ A2), so since Ad0 contains no full rows, each

row in Row(G) contributes at least two to |V (A1 ∩ A2)|, i.e. |V (A1 ∩ A2)| ≥ 2k, a

contradiction. Hence there exists a side Ad0 with rAd0
+ cAd0

≤ 1.

54

It is easy to see that such a side Ad0 is unique: If (A1, A2) has order ≤ 2k − 3,

then there are at most (2k − 3)/2 < k − 1 mixed rows (by Remark 3.5.2), i.e. at

least two rows are full, and similarly there are at least two full columns. Hence

rA1
+ rA2

+ cA1
+ cA2

is always at least 4, and so not both A1, A2 can be as in the

lemma.

Note that Lemma 3.5.3 is tight: A separation in Gk×k where one side consists of

a single cross has order 2k − 2, and both sides contain a full row and a full column.

Also clearly Lemma 3.5.3 is false for the planar k×k grid, since for example there are

separations of order k where both sides contain bk/2c full rows, or bk/2c full columns

(take ‘half’ of the grid).

Theorem 3.5.4. For every 0 < ε < 2√
3
− 1, there is an integer θ0 ≥ 0 so that the

following holds: For every integer θ ≥ θ0 there is a graph G = G(θ) 2-cell embedded

in Σ = S1 so that G has a slope of order (1 + ε)θ, but C2θ
x = Σ for every x ∈ Σ.

Proof. The graph in question will be the radial graph of a toroidal grid of appropriate

size. Let Gk be the k × k toroidal grid for k ≥ 2, and let 1 < ρ < 2√
3

be irrational.

Claim 3.5.4.1. There is an integer k0 so that for every k ≥ k0, Gk contains a tangle

of order dρke.

Proof of claim. We will construct such a tangle T as follows: Let (A,B) be a sep-

aration of order ≤ ρk, i.e. of order ≤ dρke − 1 since ρ is irrational. In particular

ρk < 2k − 2, for k ≥ 3, and so exactly one of A,B satisfies the condition of Lemma

3.5.3. If rA + cA ≤ 1 we put (A,B) ∈ T , and (B,A) ∈ T otherwise. Then axiom T1)

holds, and it clearly T3) holds.

We now verify that T2) holds as well. Let (Ai, Bi) ∈ T for i = 1, 2, 3. We have to

show that A1 ∪A2 ∪A3 6= Gk. Let A = Ai, for a fixed i ∈ {1, 2, 3}, and let Ac be the

55

complementary side of the separation (A,Ac). Define

mr = |{i | row i is mixed }|,

ar = |{i | row i contains at least one edge of A }|,

fr = |{i | row i is full }|,

so that ar = mr + fr, and we define mc, ac analogously for columns. We have

ac = mr + fr. Note that mr, mc ≤
ρk
2

, since every mixed row or column contributes

at least two to |V (A∩B)|, and that fr+fc ≤ 1 by construction of the tangle T . Also

if v = (i, j) ∈ V (Gk) is only incident with edges in A (i.e. δ(v) ⊆ E(A)), then row i

and column j contain an edge in A (in fact at least two), and so the number of such

vertices is bounded by ar · ac. Hence we obtain:

|{v ∈ V (Gk) | δ(v) ∩ E(A) 6= ∅}| = |V (A ∩ B)| + |{v ∈ V (Gk) | δ(v) ⊆ E(A)}|

≤ ρk + (mr + fr)(mc + fc)

≤
ρ2

4
k2 +

(fr + fc
2

+ 1
)

ρk + frfc

≤
ρ2

4
k2 +

3ρ

2
k + 1.

Since ρ < 2√
3
, we can choose an integer kA0 so that for all k ≥ kA0 ,

|{v ∈ V (Gk) | δ(v) ∩ A 6= ∅}| <
k2

3
=
n

3
,

where n = |V (Gk)|. If we choose such integers for each of A1, A2, A3 and let k0 denote

their maximum, then we get that some v0 ∈ V (Gk) is not incident with any edge in

E(A1)∪E(A2)∪E(A3), i.e. v0 /∈ V (A1∪A2∪A3). Hence T2) holds and T is a tangle

of order dρke, as claimed.

Hence by Theorem 3.4.2, the radial graph Rk = R(Gk) of Gk has a slope of order

dρke, for k ≥ k0.

Conversely, we claim that if x ∈ Σ, and y /∈ Σ, then in Rk there is a restraint of

length ≤ 2k+ 4 = 2(k+ 2) capturing x and y (note that k+ 2 < ρk for k sufficiently

56

large): It suffices to consider the case when x and y are midpoints of edges of Gk,

i.e. x and y are in the interior of regions of Rk (if x is in the interior of a region re

in Rk, then any restraint capturing x also captures cl(re)). Fixing arbitrary edges

e, f ∈ E(Gk), it is easy to check that their midpoints x(e) and x(f) are captured by a

common restraint of length ≤ 2k+4 in Rk: Given a fixed e, for most choices of f one

can pick a contractible walk (in Rk) consisting of the two four-cycles bounding the

regions re, rf , together with a shortest path of length ≤ k− 1 joining them (the path

is traversed twice in the walk), and if that walk has length 2k + 6 (i.e. the shortest

path has length exactly k − 1), then one can take two such shortest paths which are

disjoint and whose endpoints on each of the two four-cycles are incident, and thus we

obtain a restraint consisting of a contractible cycle of length 2k + 4 (see Figure 6).

2k+4

2k+2

PSfrag replacements

x(e)

x(f1)

x(f1)
x(f2)

Figure 6: Capturing points x(f1), x(f2) from x(e) for the k × k grid with k = 8

Hence any x, y ∈ Σ are captured by a restraint of length ≤ 2(k+2), implying that

C
2(k+3)
x = Σ, for any k ≥ 2.

Let k ≥ 2, let θ = k+ 3, and let ε′ = ρ− 1, so that 0 < ε′ < 2√
3
− 1. Then Gk has

57

a slope of order at least ρk = ρθ − 3ρ = (1 + ε′)θ − 3(1 + ε′) for all θ ≥ 5.

Now suppose 0 < ε < 2√
3
− 1 is fixed. Choose ε′ so that ε < ε′ < 2√

3
− 1. Then for

some integer θ′0, (1 + ε)θ ≤ (1 + ε′)θ − 3(1 + ε′) for all θ ≥ θ′0 , and it follows that for

θ0 = max(θ′0, 5), the radial graph of the (θ − 3) × (θ − 3) toroidal grid is as desired,

for every θ ≥ θ0. This proves Theorem 3.5.4.

In the proof of Theorem 3.5.4 we show that if k is sufficiently large, then bw(Gk×k) ≥

ck, for some constant c ≈ 1.15. In fact one can verify that already for small values of

k, bw(Gk×k) > k, in contrast to the fact that the planar k× k grid has branch-width

exactly k. For instance, the following example shows that bw(G3×3) = 4:

Example 3.5.5. It is easy to see that G = bw(G3×3) ≤ 4, for example by noting that

G can not have a tangle of order 5: Define a cross X(i, j) in G to be the subgraph

consisting of row i and column j, for 1 ≤ i, j ≤ 3. Let (X(i, j), Y) be the separation

induced by a cross (i.e. Y has edges E(G) \E(X(i, j))). Then (X(i, j), Y) has order

4, and it is easy to see that in a tangle of order at least 5, the small side must be the

cross (i.e. (X(i, j), Y) is in the tangle). But X(1, 1) ∪X(2, 2) ∪X(3, 3) = E(G), so

we can not construct a tangle of order 5 or higher in G, i.e. bw(G) ≤ 4.

Conversely, for every separation of order (A,B) of order ≤ 3 = 2k − 3, there is a

unique side which contains at most one full row or column, but not both, by Lemma

3.5.3. We then construct a tangle T of order 4 by putting (A,B) into T if rA+cA ≤ 1,

and (B,A) ∈ T otherwise. Clearly T1) and T3) hold. If (A,B) has order ≤ 3 and A

satisfies rA + cA ≤ 1, then it is not hard to check that |E(A)| ≤ 4 (consider the cases

rA = cA = 0 and say rA = 1, cA = 0), and since |E(G)| = 18 3 · 4, T3) holds as well.

Hence bw(G3×3) = 4, as claimed.

It is also not hard to see that bw(Gk×k) < 2k (for k ≥ 2), and it would be

interesting to determine bw(Gk×k) exactly for any k (clearly the argument in Theorem

3.5.4 is not tight).

58

Another interesting family of graphs in this context is given by the k × l toroidal

grids for l ≥ 2k: It is not too hard to see that bw(Gk×l) = 2k for those graphs, but

one would need restraints of order approximately 2l (in the radial graph) to capture

all of Σ from a fixed point x. Hence if l � 2k, then we need restraints much higher

than 2bw(Gk×l) to capture all of Σ.

3.6 Carvings and branch-decompositions

Recall that for a planar graph G, Seymour and Thomas proved that 2bw(G) =

cw(M(G)) (for the precise result see Theorem 2.3.10), where M(G) denotes the

medial graph of G (on the sphere).

In this section we prove a result similar to Theorem 2.3.10, for graphs embedded

on arbitrary surfaces:

Theorem 3.6.1. For every surface Σ there is a non-negative constant c(Σ), so that

if G is a Σ-embedded graph with |E(G)| ≥ 2 and M is its medial graph, then

2bw(G) ≤ cw(M) ≤ 4bw(G) + c(Σ). (3.6.1)

The constant c(Σ) can be chosen as c(Σ) = 4c, where c is the constant from Lemma

3.6.6.

We start by proving an easy fact about embedded graphs. Note that the statement

below is vacuous if Σ is the sphere, since graphs as described can not be planar.

Proposition 3.6.2. Let G ↪→ Σ be connected. Suppose that G has minimum degree

at least two, and that G has exactly one region. Let D3 be the vertices of G of degree

at least three. Then
∑

v∈D3

d(v) ≤ 6(1 − χ(Σ)),

where χ(Σ) denotes the Euler characteristic of Σ.

59

Proof. We may assume that G is 2-cell embedded in Σ; if not, there is a 2-cell embed-

ding of G into a surface Σ′ (with exactly one region) with χ(Σ′) ≥ χ(Σ), and hence

the inequality holds for Σ if it holds for Σ′.

Using m = |E(G)| and n = |V (G)|, we have

m =
∑

v∈V (G)

(d(v)/2) = n +
∑

v∈V (G)

(d(v)/2 − 1) = n+
∑

v∈D3

(d(v)/2 − 1).

Hence by Euler’s formula Theorem 2.2.2, we get

2(1 − χ(Σ)) =
∑

v∈D3

(d(v) − 2).

Since d(v) − 2 ≥ 1 for v ∈ D3, we have that |D3| ≤ 2(1 − χ(Σ)), and so

∑

v∈D3

d(v) = 2(1 − χ(Σ)) +
∑

v∈D3

2

= 2(1 − χ(Σ)) + 2|D3|

≤ 6(1 − χ(Σ)).

The following lemma turns out to be the key fact for the approximate upper bound

in Theorem 3.6.1.

Lemma 3.6.3. For any surface Σ, there is a non-negative constant c(Σ), so that the

following holds: Suppose G is a bipartite graph embedded in Σ, where Ω ⊆ V (G) is

one bipartition class, and let ins be a pre-slope of order θ in G, with respect to Ω.

Suppose C is a cluster in G. Then we have

mC ≤ 4w(C) + c(Σ),

where mC = |E(C)|, and w(C) = |V (C) ∩ Ω| is the weight of C. The constant c(Σ)

can be chosen as c(Σ) = max{2c, 12(1−χ(Σ))}, where c is the constant from Lemma

3.2.9.

60

Proof. Let SC be the structure graph of C (as defined in 3.3.5, i.e. the bipartite graph

with bipartition classes V2+ = {v ∈ V (C) | dC(v) > 2} and B = {B1, . . . , Bk} (where

B1, . . . , Bk are the maximal borders in C), as defined in 3.3.5.

First suppose |V (SC)| = 1, i.e. C is a (single) border. Since C is bipartite, we

have

mC =
∑

v∈Ω∩V (C)

d(v)

=
∑

v∈Ω∩V (C)

2 +
∑

v∈Ω∩V (C)

(d(v) − 2)

≤ 2w(C) +
∑

v∈V (C)

(d(v) − 2)

= 2w(C) + 2(mC − nC)

and so by applying Lemma 3.2.9 to the border C, we get mC ≤ 2w(C) + c, for a

constant c depending only on Σ, as desired.

Hence we may assume that |V (SC)| ≥ 2, so that in particular, C contains at least

two distinct maximal borders.

Claim 3.6.3.1. SC has minimum degree at least two.

Proof of claim. Clearly SC has minimum degree at least one, since SC is connected

(by the definition of a cluster) and |V (SC)| ≥ 2. Suppose that w ∈ V (SC) has degree

one, say v ∼ w. Note that w /∈ V2+, because w ∈ V2+ would imply dSC
(w) =

1/2 · dC(w) > 1. Hence w ∈ B, and v ∈ V2+. But then SC \ v is not connected (since

|B| ≥ 2 by assumption), contrary to the fact that C is a cluster.

We assume that SC is embedded in Σ in its ‘natural’ embedding, described as

follows:

The graph C is confined, and hence by Lemma 3.2.15, Σ \ ins(C) is one region of

C, say r0. Since C = B1 ∪ . . . Bk, we have that C has precisely k regions r1, . . . , rk

other than r0, where ri = ins(Bi)\U(Bi) (note that ins(Bi)∩ins(Bj) contains neither

61

edges nor regions, by Lemma 3.2.18). Now the natural embedding of SC is obtained

by placing a vertex bi for each maximal border Bi ∈ B contained in ri, and connecting

it to all v ∈ V2+ ∩ V (Bi) so that u(vbi) \ v is contained in ri (see Figure 5 for an

example).

Claim 3.6.3.2. The natural embedding of SC has exactly one region.

Proof of claim. Let e = vbi ∈ E(SC), and s1, s2 be the regions of SC incident at e.

We show that s1 = s2. Let D be a disk (of small positive radius) centered at the

midpoint x(e) of e, such that D ∩ U(SC) ⊆ u(e), and let xi be a point in D ∩ sj, for

j = 1, 2 (in particular xj /∈ U(SC)). Let f1, f2 be the two edges of E(Bi) (where Bi

is the border represented by bi) forming an angle at v, so that e appears between f1

and f2 (i.e. in the cyclic order of the edges at v in E(Bi) ∪ E(SC), the edges appear

in the order f1, e, f2). If yj is the midpoint of fj, then there is a path Pj with ends xj

and yj, contained in (sj ∩ ri) ∪ {yj}, for j = 1, 2, where ri is the region bounded by

Bi as above. But since fj is a r0-rj edge (as fj ∈ E(Bi)) for j = 1, 2, there is a path

P with ends y1, y2 whose interior is contained in r0. Hence P ∪ P1 ∪ P2 is a x1, x2

path contained in s1 ∪ s2 ∪ {y1} ∪ {y2} ∪ r0. But yj /∈ U(SC) and r0 ∩ U(SC) = ∅

(since U(SC) ⊆ ins(C) = rc0) by construction of the embedding of SC , implying that

P ∪ P1 ∪ P2 is disjoint from U(SC) but connects x1 ∈ s1 to x2 ∈ s2, and so s1 = s2,

as desired.

By the above two claims, we can apply Proposition 3.6.2 to the graph SC , and

62

hence the following computation yields the desired result:

mC =
∑

v∈Ω∩V (C)

dC(v) (Ω ∩ V (C) is one bipartition class of C)

=
∑

v∈Ω∩V (C)
dC(v)≤4

dC(v) +
∑

v∈Ω∩V (C)
dC(v)≥6

dC(v) (C is eulerian)

≤ 4w(C) + 2 ·
∑

v∈V (SC)
dSC

(v)≥3

dSC
(v) (since dC(v) = 2dSC

(v))

≤ 4w(C) + 2 · 6(1 − χ(Σ)) (by Proposition 3.6.2).

Note that 6(1− χ(Σ)) ≥ 0, since otherwise Σ is the sphere, and it is easy to see that

in that case, any cluster is a single contractible cycle (and so |V (SC)| = 1, a case we

discussed above). This proves Lemma 3.6.3.

Remark 3.6.4. From the first part of the above proof, we see that the multiplicative

constant in Lemma 3.6.3 can be improved from 4 to 2 if every cluster consists only of

a single border. The constant of 4 is tight for clusters which are a non-contractible

chain of contractible 4-cycles (i.e. the cluster C consists of (edge-disjoint) contractible

four-cycles C1, . . . , Ck so that any two consecutive ones intersect in a unique vertex

(in Ω), and C is the union of two (edge-disjoint) non-contractible cycles).

Remark 3.6.5. If Σ is the projective plane (so that χ(Σ) = 1), then the above proof

gives that for any cluster C, mC ≤ max{2w(C) + c, 4w(C)}, where c is the constant

from Lemma 3.2.9. However the additive constant is needed, because if C is a border

consisting of two non-contractible cycles intersecting in a single vertex v (belonging

to Ω), then mC = 2w(C) + 1. In fact, c can be chosen to be one in the projective

plane, but the example in the previous remark also applies to the projective plane,

so in general the multiplicative constant of 4 is needed.

In order to prove Theorem 3.6.1, we first need to show how to construct an even

slope from a tilt of appropriate order (in [67], this was done for traditional slopes in

result (4.4)). Tilts were defined in 2.3.8.

63

Theorem 3.6.6. Let G be a connected graph embedded in Σ, and let G∗ denote its

dual graph. Assume that G∗ is bipartite, where Ω ⊆ V (G∗) is one bipartition class.

If G has a tilt of order k for some integer k ≥ 1, then G∗ has an even slope (with

respect to Ω) of order at least k/4 − c, with c = c(Σ)/4, where c(Σ) is the constant

from Lemma 3.6.3.

Proof. Let T be a tilt in G of order k. In order to construct an even slope of order

k/4 − c in G∗, we need to define ins(B) for every border B in G∗ of weight w(B) <

k/4− c. Let B be such a border, let 41,42 be the two spots bounded by it (i.e. the

closures of the two components of Σ\B), and let Xi = V (G)∩4i, for i = 1, 2 (so that

X1∪X2 = V (G) and X1∩X2 = ∅). Then δ(X1) = δ(X2) = E(B)∗, and so by Lemma

3.6.3, we have |δ(X1)| = |E(B)| ≤ 4w(B) + c(Σ) < k − 4c + c(Σ) = k. Therefore

exactly one of X1, X2 belongs to T , say X1, in which case we set ins(B) = 41.

We claim that ins defines an even slope in G∗, of order k/4 − c.

Clearly S1) holds: If U(B1) ⊆ ins(B2) but ins(B1) * ins(B2) for two borders

B1, B2 of weight < k/4−c, then ins(B1)∪ ins(B2) = Σ and hence (V (G)∩ ins(B1))∪

(V (G) ∩ ins(B2)) = V (G), contradicting the second tilt axiom. We next verify that

axiom S2) holds. Let Z1, Z2, Z3 ⊆ R(G∗) be bounded by clusters C1, C2, C3 with

w(Ci) < k/4 − c for i = 1, 2, 3. Let Xi ⊆ V (G) be the vertices corresponding to

the elements of Zi. Then δ(Xi) = E(Ci)
∗, and so as before, Lemma 3.6.3 implies

|δ(Xi)| = |E(Ci)| ≤ 4w(C) + c(Σ) < k for i = 1, 2, 3. Therefore exactly one of

Xi, V (G) \ Xi belongs to the tilt T , and by our definition of ins, we have Xi ∈ T

for i = 1, 2, 3. But if ins(C1) ∪ ins(C2) ∪ ins(C3) = Σ, then X1 ∪X2 ∪X3 = V (G),

contrary to the second tilt axiom, and so S2) holds.

It remains to check that ins is even. Let rv be a region of G∗, corresponding to a

vertex v ∈ V (G). We will show that rv ⊆ ins(B) for some light border B. The proof

is analogous to the corresponding part of the proof of (4.4) in [67]:

Choose a set X ∈ T maximal with respect to v ∈ X and G[X] connected - this

64

is possible since {v} ∈ T by the third tilt axiom. It is then shown in (4.4) of [67]

that δ(X) is a bond in G, and so by Proposition 3.2.7, δ(X)∗ forms the edge-set of

a border B in G∗. Since X ∈ T implies in particular that |δ(X)| < k, we deduce as

before that B is light, and X ∈ T together with v ∈ X implies that rv ⊆ ins(B), as

desired.

We are now ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. Let β = bw(G) and κ = cw(M). The first part of the proof

of Theorem 2.3.10 in [67] shows that a carving-decomposition of order 2k in M yields

a branch-decomposition of order k for G. This proof works on any surface and hence

we have 2β ≤ κ.

The proof of the second inequality κ ≤ 4β + c(Σ) is similar (but slightly simpler

since we are dealing with graphs only) to the corresponding part from [67]. Since M

is 4-regular, we either have |δ(ve)| < κ for all ve ∈ V (M), or κ ≤ 4. In the latter case,

the desired inequality holds, unless β = 0, which is not the case since we assumed

|E(G)| ≥ 2. Hence by Theorem 2.3.9, there is a tilt of order κ in M (since M has

carving-width κ), and so by Theorem 3.6.6, the radial graph M∗ = R(G) contains an

even slope of order at least κ/4 − c, for some non-negative constant c. By Theorem

3.4.2, G contains a tangle of order at least κ/4− c, and so by Theorem 2.3.3, we have

β ≥ κ/4 − c, yielding the desired inequality if we choose c(Σ) = 4c.

The existence of a difference between cw(M(G)) and 2bw(G) for surfaces other

than the sphere, suggested by Theorem 3.6.1, already shows up in very small exam-

ples:

Example 3.6.7. Let G be the 2 × 2 toroidal grid, embedded in the natural way

on S1 with face-width two. Then G has 4 vertices and 4 pairs of parallel edges

(in fact we can make the graph simple by subdividing each edge, which will not

65

change its branch-width or the carving-width). We will show that bw(G) = 2, while

cw(M(G)) = 8.

Note that G has no tangle of order three: Let v1, v2 be two non-adjacent vertices

of G, and let Ai = G[δ(vi) ∪ vi], for i = 1, 2. Then the separation (A1, A2) has

order two, and it is easy to see that we can have neither (A1, A2) nor (A2, A1) in a

tangle (both A1 and A2 can be built by adding one edge at a time while maintaining

that the corresponding separations have order at most two, so both (A1, A2) and

(A2, A1) should belong to the tangle, but this would violate the second tangle axiom

since A1 ∪ A2 = G). In fact it is easy to use the separation (A1, A2) to construct a

branch-decomposition of with two. Since clearly bw(G) ≥ 2, we have bw(G) = 2.

On the other hand, M(G) has carving-width at least 8: If T is the tree of a

carving-decomposition of M(G), then there is an edge of T so that both sides of

the corresponding partition X,Xc of V (M(G)) have size at least three (note that

|V (M(G))| = 8). Suppose |X| ≤ |Xc|, so that |X| ∈ {3, 4}. Since M(G) is

triangle-free and M(G) is 4-regular, it follows that |δ(X)| ≥ 8, and so any carving-

decomposition will have width at least 8. Conversely, it is easy to give a carving-

decomposition of width 8 for M(G) (e.g. by starting with the analogue of the above

separation (A1, A2) in M(G)), and so cw(M(G)) = 8.

In Example 3.5.5 we showed that the branch-width of the 3× 3 toroidal grid is 4,

and using somewhat similar arguments to those in Lemma 3.5.3, one can show that

the carving-width of its medial graph (on the torus) is 10, hence providing another

example where 2bw(G) < cw(M(G)).

In fact it would be interesting to determine the branch-width of the k×k toroidal

grid for any k exactly, as well as the carving-width of the corresponding medial

graphs. In Theorem 3.5.4, we have seen that if G is the k × k toroidal grid, then

bw(G) ≥ (1 + ε)k (at least for k sufficiently large), and it is also not hard to see that

bw(G) ≤ 2k− 2 for k ≥ 2 (in fact is seems to be the case that bw(G) < (1− δ)2k for

66

some 0 < δ < 1).

We believe that cw(M(G)) > 2bw(G) for all k for these graphs, although it

may not be the case that these examples are tight for the bounds in Theorem 3.6.1.

Nevertheless, based on the remark following Lemma 3.6.3, we conjecture that the

multiplicative constant of 4 in Theorem 3.6.1 is best possible, in fact for all surfaces

other than the sphere.

3.7 Conclusion

The main motivation for the results of this chapter was to investigate whether the

‘ratcatcher method’ of [67] can be generalized to compute the branch-width of a graph

embedded in a surface other than the sphere.

The three main results from this chapter (Theorem 3.4.2, Theorem 3.5.4, Theorem

3.6.1) combined show that this is not the case. This is because of the following:

Combining various results from [63] and [67], we have that in the plane, the following

statements are equivalent for any planar graph G, its associated medial graph M(G)

and radial graph R(G) = M(G)∗:

(1) G has has branch-width at least θ.

(2) G has a tangle of order θ.

(3) R(G) has a (traditional) even slope of order θ (defining ins(C) for every cycle

of length < 2θ, or equivalently of weight < θ).

(4) M(G) has an antipodality of order 2θ, or a vertex v with δ(v) ≥ 2θ.

(5) M(G) has carving-width at least 2θ.

The ratcatcher method actually computes the maximum order of an antipodality,

and hence by the above equivalences the branch-width of a planar graph G.

67

Now ‘(1) ⇔ (2)’ holds for arbitrary graphs, and we have shown (Theorem 3.4.2)

that ‘(2) ⇔ (3)’ generalizes to arbitrary surfaces with our extended notion of slopes.

However result Theorem 3.6.1 and the examples given in the previous section indi-

cate that (1) ⇔ (5) no longer holds, so any exact algorithm to determine cw(M(G))

would only yield an approximation algorithm for bw(G), unlike in the plane.

Moreover, the concept of antipodalities, as defined in [67], no longer corresponds

to either bw(G) or cw(M(G)): Consider for example the k × l toroidal grid Gk×l,

for l � 2k: It is easy to see that bw(Gk×l) ≤ 2k (in fact equality holds), and that

cw(M(Gk×l)) ≤ 4k. However it is also not hard to see that the maximum order of an

antipodality in M(Gk×l) is proportional to l, i.e. on surfaces other than the sphere,

the maximum order of an antipodality is unrelated to branch-width or carving-width

in general.

This is actually not surprising: The reason that the medial graphs of Gk×l allow

such high order antipodalities is that from a fixed point on the surface, we cannot

capture all other points on the surface by contractible walks unless we use walks of

order proportional to l. In fact, in order to try to save (4) ⇔ (5), it would be natural

to define a more powerful notion of antipodalities which do not only allow ‘capturing’

by contractible walks, but other simple non-contractible configurations (e.g. two

disjoint, homotopic non-contractible cycles with an ‘inside’ defined for them). In

other words, one could try to define a generalized version of antipodalities in order to

get an obstruction for carving-width in embedded graphs, similar to how we defined

our generalized slopes to get exact obstructions for the branch-width of embedded

graphs.

However more powerful antipodalities will save neither (4) ⇔ (5), nor (3) ⇔ (4)

exactly, as implied by the main result of Section 3.5: If G is a graph so that R(G) is as

in Theorem 3.5.4, i.e. R(G) has a slope of order (1 + ε)θ, but we can capture all of Σ

by restraints of length < 2θ, for ε, θ chosen appropriately, then clearly (3) ⇔ (4) can

68

not be saved since introducing more powerful antipodalities only worsens Theorem

3.5.4. Moreover, the fact that we can capture all of Σ with short restraints in R(G)

means in particular that the dual of R(G), namely M(G), allows no antipodality of

order 2θ or higher, and so the same will hold true if we make the antipodalities more

powerful. But since such a G has branch-width ≥ (1 + ε)θ by Theorem 3.4.2, we

have cw(M(G)) ≥ 2(1 + ε)θ by the first inequality of Theorem 3.6.1, i.e. cw(M(G))

exceeds the maximum order of a traditional or more powerful antipodality.

In conclusion, we have shown that the equivalences between (1), (2), (3) still hold

exactly with the appropriate generalizations, that (1) ⇔ (5) only holds as an approx-

imate version in general, and we argued that neither (4) ⇔ (5) nor (3) ⇔ (4) can

be saved in an exact version. However while traditional antipodalities are unrelated

to carving-width or slopes in general (as the above example Gk×l shows), it may in

principle be possible to obtain an approximate version (within a constant factor) of

(3) ⇔ (4) or (4) ⇔ (5) by using more general antipodalities.

In terms of polynomial-time computability, recall that the ratcatcher method ac-

tually computes the carving-width (of a planar graph), by computing the maximum

order of an antipodality. Hence the above arguments imply that even if one de-

fined more general antipodalities (corresponding (approximately) to carving-width

on higher surfaces), this would at best yield a constant factor approximation algo-

rithm for branch-width by Theorem 3.6.1, for a fixed surface.

Another approach would be to try to compute the maximum order of a (gener-

alized) slope directly, although it is not clear whether this is possible in polynomial

time. For example, a first very simple algorithmic challenge (which would probably

also appear if one would try to compute some version of a generalized antipodality)

would be to compute a border of minimum weight of fixed homotopy type, e.g. among

all borders consisting of two non-contractible, homotopic, disjoint cycles, compute one

of minimum weight (it is not known in general whether it is NP-hard to compute a

69

shortest non-contractible cycle on an arbitrary surface [69]).

Since it is unclear whether there is a polynomial-time algorithm for computing the

branch-width of embedded graphs exactly in general, we mention two other possible

approaches: Since it is known that bw(G) ≤ O(
√

|V (G)|) for graphs embedded on

a surface (implied by results from [1]), it is possible to determine bw(G) exactly in

sub-exponential time (see e.g. [28]).

On the other hand, if G is embedded on Σ with genus g, the following simple

recursive algorithm (suggested by Thomas, private communication) gives a 2g ap-

proximation algorithm which runs in polynomial time if g is bounded by a constant:

(1) Find a shortest noncontractible closed curve φ intersecting G in a set X of r

vertices.

(2) Remove X from G to obtain a graph G′ embedded in a surface Σ′ of lower genus,

and let β ′ = bw(G′). Run the algorithm recursively to get an approximation β̂ ′

for β ′.

(3) Output β̂ = max{r, β̂ ′}.

The proof of correctness is simple: Letting β = bw(G), we have that β ≥ r by

results from [63], β ≥ β ′ since G′ is a subgraph of G, and β ≤ β ′ + r, since deleting r

vertices from G decreases the branch-width by at most r, implying that

max{r, β ′} ≤ β ≤ β ′ + r ≤ 2 max{r, β ′}. (3.7.1)

Hence in each iteration (i.e. each time we move from G to G′, decreasing the genus)

we lose a factor of 2, each of the g iterations can be implemented in polynomial time,

and so the algorithm is as claimed.

70

CHAPTER IV

MINOR-MINIMAL PLANAR GRAPHS OF FIXED

BRANCH-WIDTH

t

4.1 Introduction

Given a graph H embeddable in the projective plane, one can apply the following

construction to obtain a planar graph G, called a planar double cover of H: Fix a

circle γ in R2 and let θ, θ′ be the closures of the two components of R2 \ γ. Draw

one copy of H in θ and one in θ′, so that diagonally opposite points on γ are either

disjoint from both copies of H, or correspond to the same vertex of H or the midpoint

of the same edge e ∈ E(H) in both copies. In this way, we obtain an embedding of a

planar graph G where every vertex, edge and region of H is represented twice in the

drawing of G. See Figure 7 for an example where H is the Petersen graph, and G is

the Dodecahedron.

The above construction shows that every projective planar graph has a planar

cover (a graph G is a cover of a graph H if there is a surjective map f : V (G) → V (H)

such that for every v, w ∈ V (G), vw ∈ E(G) if and only if f(v)f(w) ∈ E(H)). The

question of when a graph has a planar cover is the subject of a conjecture by Negami

[55]:

Conjecture 4.1.1 (Negami). If a connected graph H is covered by a planar graph

G, then H is planar or projective planar.

In this chapter, we show that this construction relates minor-minimal embeddings

71

3
4

5

10

6

2
1

7

8
9

3
4

5

10

6

2
1

7

8
9

9

6

10

8

7

1

3 4

52

Figure 7: An embedding of the Petersen graph in P and its planar double cover, the
Dodecahedron

in the projective plane with face-width k to minor-minimal planar graphs of branch-

width 2k.

More precisely, for an integer l ≥ 2, let Cl be the minor-minimal planar graphs

of branch-width exactly l. Since this is the obstruction set for minor-minimal planar

graphs of branch-width l−1, the Graph Minor Theorem [64] implies that |Cl| is finite

for every l.

It would be interesting to determine the structure of the classes Cl. For small

values of l, a complete description is known [62]: C1 = {K2} (where K2 denotes the

complete graph on 2 vertices), C2 = {P2} (where P2 denotes a path of length 2), and

C3 = {K4} (in fact the planarity condition is not needed here). For k = 4, C4 consists

of exactly two graphs, namely the cube and its dual, the octahedron (there are two

other non-planar, minor-minimal graphs of branch-width 4, see [44], [29], [15]). It

easy to see that each of these two graphs is a planar double cover of one of the two

minor-minimal embeddings of face-width 2 in the projective plane. The main result

of this chapter shows that this is not a coincidence:

72

Theorem 4.1.1. Let k ≥ 2 be an integer, and let G be a double cover of a projective-

planar minor-minimal graph of face-width k. Then G is minor-minimal of branch-

width 2k.

Of course a tempting conjecture would be that all graphs in C2k arise in this way

for k ≥ 2, i.e. every G ∈ C2k is a planar double cover of a minor-minimal graph

embedded in P of face-width k. In particular, the structure of the minor-minimal

graphs of face-width k in the projective plane is completely understood, and all such

graphs have been determined explicitly for k = 2 and k = 3 ([71], [8]).

Unfortunately that conjecture is false, as we show in 4.3.

4.2 Proof of Theorem 4.1.1

We first give a more rigorous definition of a planar double cover. Let H be a graph

embeddable in the projective plane, let γ be a circle in R2, and let θ1, θ2 be the closures

of the two components of R2 \ γ. Draw two copies Hi of H in θi for i = 1, 2 (with

the usual convention that diagonally opposite points on γ are identified) so that the

conditions below are satisfied. We denote the two copies corresponding to a vertex

v ∈ V (H) by vi ∈ V (Hi), for i = 1, 2.

(1) γ intersects Hi for i = 1, 2 either only in vertices, or only in midpoints of edges.

(2) v1 ∈ V (H1) is on γ if and only if v2 ∈ V (H2) is on γ.

(3) p ∈ γ is the midpoint of an edge e1 = v1w1 ∈ E(H1) if and only if it is the

midpoint of an edge e2 = v2w2 ∈ E(H2).

If we do not identify opposite points on γ, we naturally obtain a plane graph G from

the two copies of H where every vertex and every edge of H is represented exactly

twice in G. We say a planar graph G is a planar double cover of a projective planar

graph H if an embedding of G can be constructed from H as described above.

73

Let H ↪→ P be minor-minimal of face-width k, and G be a planar double cover

of H. We first establish bw(G) ≥ 2k by constructing an antipodality in 4.2.1, and

then show how a certain way of ‘sweeping’ through G can be used to prove that G is

minor-minimal of branch-width 2k.

For both parts, we often need to consider corresponding structures of a projective

planar graph H and its planar double cover G. If xH is a vertex, edge or region of

H, and H is not planar, then there are exactly two elements x, x̄ (vertices, edges or

regions) in G corresponding to x. For an element x in G, we call x̄ the complementary

element in G. If G′ is a subgraph of G which contains no complementary vertices,

the complementary subgraph of G′ is the subgraph consisting of the complementary

vertices and edges of G (in particular, this applies to facial cycles).

We say x, x̄ are lifts of xH into G, and xH is the projection of x and x̄ into H. If

P is a path in G with complementary ends v, v̄, but no other pair of complementary

vertices on P , then the cycle C in H whose edges are the projections of E(P) is called

the projection of P , and P is called a lift of C. Hence the edges of the cycle C in H

and those of the lift P are in 1-1 correspondence, and in particular |C| = |P |.

Remark 4.2.1. If H is connected, and neither H nor its dual H∗ contain any loops,

then complementary elements in G are never adjacent to each other: If a vertex v

is incident with v̄, in G, this would correspond to a loop of H, and regions r, r̄ of G

being adjacent corresponds to a loop in H∗. Hence complementary edges e, ē cannot

share an endpoint either.

Remark 4.2.2. There is an easy way to check whether a cycle C is contractible in H:

Suppose that H is drawn in a closed disc bounded by a circle γ (where diagonally

opposite points are identified) so that γ intersects H only in midpoints of edges.

Assign a negative sign to edges which ‘cross’ γ (i.e. whose midpoints are on γ), and

a positive sign to all other edges. Then it is easy to see that C is contractible if and

only if it contains an even number of negative edges.

74

4.2.1 Lower bound on branch-width

Let H,G be as in the beginning of 4.2. We now construct an antipodality of appro-

priate range in the medial graph of G , which in light of Theorem 2.3.12 and Theorem

2.3.10 will give a lower bound of 2k on the branch-width of G.

It is easy to see that the radial graph RG of G is in fact a planar double cover of

RH , and similarly, MG is a double cover of MH .

Recall that vertices of M = MG correspond to edges of RG, each edge of M

corresponds to two edges in G forming an angle at vertex v ∈ V (G) with a region

r ∈ R(G), and faces of M correspond to vertices and regions of V (G).

Lemma 4.2.3. Let H ↪→ P be minor-minimal of face-width k ≥ 2, and let G be

a planar double cover of H. Let M be the medial graph of G. Then M has an

antipodality of range 4k.

Proof. We need to assign a subgraph of M to each edge in M, and a set of vertices

of M to each face of M. Let av,r be an edge in M, whose two adjacent regions in M

are v ∈ V (G) and r ∈ R(G). Let e1, e2 denote the ends of av,r in M. Then in G, the

edges e1, e2 form an angle at v ∈ V (G) and are consecutive in the boundary of the

face r ∈ R(G). For an edge av,r of M, an edge e of E(G), a region π of M let av̄,r̄, ē,

π̄ be the complementary edge or region, respectively. Finally for a region π of M, let

Cπ denote the cycle bounding that region (Note that π corresponds either to a vertex

or a region of G, and that every face of the medial graph M is indeed bounded by a

cycle: It is easy to see that the G has no loops or cutedges, and this implies that M

is a 2-connected plane graph). We now define the function α as follows:

α(av,r) = Cv̄ ∪ Cr̄ for every av,r ∈ E(M),

α(π) = V (Cπ̄) for every π ∈ R(M).

We claim that α defines an antipodality of range 4k in M.

75

It is easy to check that α1) holds: The ends of the edge av,r are e1 and e2. Suppose

for a contradiction that say e1 ∈ V (α(av,r)). If e1 ∈ V (Cv̄), then in G, we have that

e1 has ends v and v̄, a contradiction as pointed out in Remark 4.2.1. Similarly if

e1 ∈ V (Cr̄), we get that r and r̄ are adjacent in G∗, again yielding a contradiction.

Hence α1) holds.

Clearly α2) holds, since α(av,r) is connected (both Cv̄ and Cr̄ contain the edge

av̄,r̄), and by definition, α(v) and α(r) are subsets of V (α(av,r)).

We now verify that α3) holds. Suppose for a contradiction that for some edge

l1 = av,r of M and some edge l2 of α(av,r), there exists a closed walk W in M∗ = RG

of length less than 4k, containing both l∗1 and l∗2. By definition of α(av,r), at least

one of v̄, r̄ is an end of l∗2, say v̄. Hence W can be divided into two subwalks W1,W2

with endpoints v and v̄, and assume W1 is a shortest v − v̄ subwalk of W . Then W1

is actually a path: By definition, all the internal vertices of W1 are distinct from v, v̄,

and so if l∗1 or l∗2 are on W1, then they must be one of the ending edges of W1. Hence

if W1 contained a cycle, then the cycle would contain neither l∗1 nor l∗2, and we could

remove it to obtain a shorter walk, contrary to the choice of W1. Therefore W1 is a

v − v̄ path, and since |W1| ≤ |W2|, we have |W1| < 2k.

Let P be a subpath of W1 with complementary ends w, w̄, but no other pair of

complementary vertices on P . Without loss of generality our embedding of RG is a

double cover of RH such that both copies of RH are of the type described in Remark

4.2.2. Since the endpoints of P are complementary, it follows that there are an odd

number of edges on P of negative sign. Hence the projection of P into RH is a

noncontractible cycle of length less than 2k, contrary to the fact that ew(RH) =

2fw(H) = 2k. We deduce that any walk W as described must have length at least

4k, and so α3) holds.

76

4.2.2 Upper bound on branch-width

Let H,G be as before (i.e. H is a minor-minimal embedding of face-width k in the

projective plane, and G is a planar double cover of H), and RH ,RG be their radial

graphs. The goal of this section is to show that the branch-width of G becomes

strictly less than 2k if we delete or contract an edge.

The idea is roughly as follows: Start with an arbitrary noncontractible cycle C0 of

minimum length in the radial graph RH , and find a region r1 of RH whose boundary

cycle intersects C0 in exactly two adjacent edges. Now move C0 ‘across’ r1 to obtain

a new noncontractible cycle C1. If we are careful with the selection of regions to move

across, we can continue this process until we have covered every region of RH exactly

once, and are back to the initial cycle C0.

In H, this defines an ordering of the edges so that at each step, the boundary of the

set of covered edges will have at most 2k vertices, and it follows that H has a branch-

decomposition of order at most 2k. In fact, we can use the same order of regions of RH

to cover all regions of RG, by first covering m pairwise non-complementary regions,

and then in a second phase covering all the complementary regions. Again this will

define a branch-decomposition of G of order at most 2k, and in fact the method

can be extended to show that the branch-width decreases below 2k if we delete or

contract an edge (actually this last step is all we need to show G is minor-minimal of

branch-width 2k, since we have already shown bw(G) ≥ 2k).

The crucial part in the above method is to ensure that we can always make a

next step, i.e. find a suitable region to move across. To show that this is always

possible, we use the following concept of a straight decomposition, which is helpful to

characterize minor-minimal embeddings of fixed face-width:

Definition 4.2.4. Let v be a vertex of degree four in an embedded graph G. Then

for an edge e incident with v, define the opposite edge of e to be the edge incident

with v at distance two from e in the cyclic ordering at v.

77

Definition 4.2.5. Let G be a four-regular, Σ-embedded graph. A closed walk S in G

with the property that any two consecutive edges on S are opposite for some vertex

v is called a straight walk in G. We say S crosses the edge e∗ ∈ E(G∗) if e ∈ E(S).

The straight decomposition of G is the collection of all straight walks in G.

The following result is implicitly proved in [51], and is explicitly stated and gen-

eralized in [66].

Theorem 4.2.6. Let H ↪→ P, let M be its medial graph and let k ≥ 2 be an integer.

Then H is minor-minimal of face-width k if and only if the straight decomposition of

M is a collection of noncontractible cycles any two of which intersect in exactly one

vertex.

Remark 4.2.7. Since there are only two homotopy classes in P, any two non-contractible

closed curves are homotopic, and intersect in at least one point.

As a first application (Corollary 4.2.10) which will be useful later, we show that

noncontractible cycles of length 2k in the radial graph of a minor-minimal projective

planar graph of face-width k can only intersect facial cycles in a restricted way.

Definition 4.2.8. If C is a cycle in an embedded graph G, a region r ∈ R(G) is

C-nice if ∂(r) ∩ C is a path of length at most two (the intersection is allowed to be

empty).

Lemma 4.2.9. Let G ↪→ P be simple of edge-width ew(G) = 2k for k ≥ 2, such that

every face is bounded by a four-cycle, and G has no separating four-cycles. Let C be

a noncontractible cycle of length 2k in G. Then every r ∈ R(G) is C-nice.

Proof. Let Cr denote the four-cycle bounding r. First suppose that Cr contains an

edge vv′ with v, v′ ∈ V (C) but vv′ /∈ E(C).

Then C can be written as the union of two v − v′ paths P, P ′ not containing vv′.

Let C ′ = P ∪ vv′ and C ′′ = P ′ ∪ vv′ be two cycles whose union is C ∪ vv′. Since C is

78

noncontractible, it follows from Proposition 2.2.3 applied to the three paths P, P ′, vv′

that at least one of C ′, C ′′ is noncontractible, say C ′. Since |C ′| ≤ |C| = ew(G), we

have |C ′| = |C| and so |P ′| = 1, a contradiction since the edge vv′ was not in C by

assumption (and G has no parallel edges).

Hence there is no such edge vv′, which implies that |E(Cr) ∩ E(C)| ≤ 2. If

|E(Cr)∩E(C)| is two or one, then the intersection must consist of a path, for otherwise

there would be an edge vv′ as above. Therefore we may assume |E(Cr) ∩ E(C)| =

0, and furthermore |V (Cr) ∩ V (C)| ≥ 2, since otherwise we are done. In fact we

may assume that the intersection of Cr and C consists of precisely two non-adjacent

vertices v, w on Cr, since otherwise we again get an edge vv′ as above.

Let P, P ′ denote the two paths with ends v, w whose union is C, and let P ′′ be

one of the two v − w paths whose union is Cr. Note that |P ′′| = 2 as |Cr| = 4, and

|P |, |P ′| ≥ 2: If say P consists only of a single edge, then P ∪P ′′ forms a contractible

triangle (since ew(G) ≥ 4) which is non-facial, a contradiction since it is easy to see

that G can not have separating odd cycles. Since C is noncontractible, we have that

P is not homotopic to P ′. Since there are only two homotopy classes in P, we have

that P ′′ ∼ P or P ′′ ∼ P ′. Without loss of generality P ′′ ∼ P . Since replacing P by

P ′′ in C yields again a noncontractible cycle, it follows that |P | ≤ |P ′′| = 2 and so

|P | = 2. But then P ′′ ∪ P is a contractible four-cycle, and hence bounds a face r′ by

assumption. However then the boundaries of the two faces r, r′ intersect in a path of

length two (namely P), and such a configuration would yield a separating four-cycle

(G is not the union of the boundaries of r and r′, since P ′ is disjoint from them),

contradiction.

Corollary 4.2.10. Let H ↪→ P be minor-minimal of face-width k for k ≥ 2, and let

C be a noncontractible cycle of length 2k in the radial graph R of H. Then every

region r of R is C-nice.

Proof. We show that Lemma 4.2.9 applies: Since k ≥ 2, the radial graph R is a

79

simple graph of edge-width 2k by Proposition 2.2.4, in which every region is bounded

by a four-cycle. Suppose R has a separating four-cycle C ′. Then C ′ bounds a disc θ

containing at least two distinct regions r, r′ ∈ R(R). Let S1, S2 be the two straight

walks containing r, and let S3, S4 be the two straight walks containing r′. Each of

S1, S2 must cross C ′ in two distinct edges, since S1, S2 are noncontractible. However

at least one of S3, S4 is distinct from both S1 and S2 (otherwise S1 and S2 meet in r

and r′, contrary to Theorem 4.2.6), say S3. But then S3 cannot cross C ′ since every

edge of C ′ is either already crossed by S1 or S2, and so S3 is contained in the disc

bounded by C ′, a contradiction since S3 is non-contractible.

In order to show that we can ‘sweep’ the projective plane by moving a non-

contractible cycle C0 of length 2k across faces, we first need to prove some preliminary

results about plane graphs, which will be applied to the plane graph obtained from

cutting open along C0.

A plane near-quadrangulation is a plane graph G where every region apart from

possibly the infinite region r∞ is bounded by a four-cycle.

Definition 4.2.11. Let S = {Si}i≥1 be a collection of cycles in the dual G∗ (which

may have parallel edges or loops) of a plane near-quadrangulation G, satisfying the

following conditions:

(1) Any two consecutive edges on Si incident with a common vertex r 6= r∞ of G∗

are opposite.

(2) All cycles in S are edge-disjoint.

(3) Every edge e∗ ∈ E(G∗) is in a (unique) cycle Si.

The cycles Si are called the straight cycles (for G). The collection S of straight cycles

is non-degenerate if any two distinct straight cycles intersect in r∞ and exactly one

other region r ∈ V (G∗) \ r∞.

80

Proposition 4.2.12. Let S be a non-degenerate collection of straight cycles for a

plane near-quadrangulation G, let C be a cycle in G bounding a disc θ and let r be a

region of G in θ. Then every straight cycle S ∈ S containing r crosses C in at least

two edges.

Proof. It suffices to show that S crosses C in at least one edge, i.e. that there is

an edge e ∈ E(C) with e∗ ∈ E(S). Suppose not, so that U(S) ⊆ θ. Let S ′ be the

unique straight cycle in S containing r which is different from S. Since U(S), U(S ′)

are circles in R2 which cross in the point representing the region r, we have that there

must be a second point r′ ∈ V (S ∩ S ′) where they cross. In particular r′ ∈ V (S)

implies r′ ⊆ θ, so r′ 6= r∞, contrary to the assumption that S was non-degenerate.

In order to solve our original problem (construct a ‘sweep’ in P), we will solve the

following problem in the plane: Suppose G′ is a near-quadrangulation whose infinite

face is bounded by a cycle P ∪Q, where P and Q are paths with certain properties.

Then we show how to transform Q onto P by moving across faces in G′.

We now define more formally what we mean by ‘moving across faces’.

Definition 4.2.13. Let C be a cycle (or path) in an embedded graph, and let r be

a region bounded by a 4-cycle Cr so that C ∩Cr is a path P of length two. Then r is

called a 2-face for C. Let P ′ be the path of length two with edge-set E(Cr) \ E(C).

We denote by C4r the cycle (or path) obtained from replacing P by P ′ in C, and

we say C4r is obtained from C by moving across r.

Remark 4.2.14. Note that C,C4r have the same length, and that if C is a cycle, one

of them is contractible if and only if the other one is by Proposition 2.2.3.

The following concept of a matching pair will be used to locate a face to move

across in each step.

Definition 4.2.15. Let G be a plane near-quadrangulation with a non-degenerate

collection of straight cycles S. Let C be a cycle in G bounding a disc θ, let e ∈ E(C)

81

and r the unique region of G in θ incident with e. Let S ∈ S be a straight cycle

containing r which does not cross e. Follow S in both directions starting in r, and let

τ1(e) and τ2(e) be the two (distinct) edges where S first crosses C (note that these

edges exist by Proposition 4.2.12). For i = 1, 2, let τi(r) be the region of G in θ

incident with τi(e). Then (e, τi(e)) is called a matching pair for i = 1, 2.

For a matching pair (e, τ(e)), let T be the r − τ(r) sub-path of S contained in θ,

and let T̃ be a sub-path of C with ending edges e and τ(e) (note that e and τ(e) are

distinct edges, since S crosses through τ(e), but not through e). Then T̃ is called a

matching path for the pair (e, τ(e)).

Lemma 4.2.16. Let G be a plane near-quadrangulation with a non-degenerate col-

lection of straight cycles S. Let C be a cycle bounding a disc θ so that every region

contained in θ is C-nice. For an edge e ∈ E(C), let (e, τ(e)) be a matching pair with

matching path T̃ . Then there is a face r0 ⊆ θ so that ∂(r0) ∩ T̃ contains a path of

length two.

Proof. Suppose the statement is false for some edge e ∈ E(C) and a corresponding

path T̃ , and consider a counterexample with t̃ = |T̃ | minimum. Clearly t̃ ≥ 2 since

e, τ(e) are distinct by definition. Let r, S, T, T̃ be as in Definition 4.2.15, and let

r′ = τ(r). Then r 6= r′, since otherwise r is as desired because in that case the edges

e, τ(e) ⊆ E(∂(r)) share an end.

Let S ′ be the straight cycle containing r′ which does not cross through τ(e).

Let e = x1x2 and τ(e) = xt̃xt̃+1, where x1 and xt̃+1 are the end-vertices of T̃ . Let

e1, e2, . . . , et̃ be the edges of T̃ , with e1 = e and et̃ = τ(e) (see Figure 8).

Let [x2, r] be a line segment between x2 and the point r∗ so that [x2, r] ⊆ cl(r),

and let [r′, xt̃] be a line segment between the point r′ and xt̃ so that [r′, xt̃] ⊆ cl(r′).

Note that if T is the r− r′ subpath of S in θ, then the closed curve given by [x2, r]∪

T ∪ [r′, xt̃] ∪ T̃ is simple since r 6= r′, and hence bounds an open disc θ′ ⊆ θ. Since

the circle U(S ′) crosses the boundary of cl(θ′) at the point r′, there exists a second

82

point ρ different from r′ where U(S ′) intersects the boundary of cl(θ′). Pick such a

point ρ so that the interior of the segment between r′ and ρ of S ′ is contained in θ′.
PSfrag replacements

e

τ(e)

x1

x2

xt̃

xt̃+1

θ

θ′

S

S ′

T

T̃

T ′
T̃ ′

r

r′

rj ej

Figure 8: Configuration in proof of Lemma 4.2.16

Suppose ρ ∈ [x2, r]. We claim that we have ρ = r in this case. Clearly ρ 6= x2,

since x2 is a vertex of R, and S ′ is a subgraph of the dual of R. If ρ ∈ (x2, r], then

U(S ′)∩r 6= ∅, and so r ∈ V (S ′). Hence S ′ intersects S in two distinct points r and r′,

contrary to the assumption that the collection of straight cycles was non-degenerate.

Similarly one shows that ρ ∈ [r′, xt̃] implies ρ = r′.

But then by the definition of θ′ and the fact that S ′ is a subgraph of the dual of

R, ρ is either a vertex of T , or the midpoint of an edge ej of T̃ . However the first

case is impossible since ρ is distinct from r′, and yet both belong to S ∩ S ′.

Hence we may assume that ρ is the midpoint of an edge ej on T̃ . Note that j 6= 1,

since the midpoint of e is not contained in θ′. But then (τ(e), ej) form a matching

pair: The straight cycle S ′ contains r′ but does not cross τ(e). If we define T̃ ′ to

be the subpath of C with ending edges τ(e) and ej which does not contain the edge

83

e = e1, then T̃ ′ is a subpath of T̃ , and is strictly shorter since it does not contain e1.

Hence (τ(e), ej) contradicts the minimality of (e, τ(e)).

Corollary 4.2.17. Let G and C be as in Lemma 4.2.16, and assume C = P ∪Q for

two paths P,Q with ends v, v′ ∈ V (C). Then there is a face r ⊆ θ such that at least

one of ∂(r) ∩ P and ∂(r) ∩Q contains a path of length two.

Proof. By applying Lemma 4.2.16 for an arbitrary edge on C, we obtain a face r ⊆ θ

with ∂(r)∩C containing a path of length at least two. If r is not as desired, then this

path contains at least one of v, v′ as an internal vertex. Without loss of generality

assume the former, i.e. there are edges e, f ∈ E(∂(r)) incident at v with e ∈ E(P)

and f ∈ E(Q).

Let S1, S2 ∈ S be the two straight cycles containing r, where S1 crosses through

f and S2 crosses through e. We have two possible choices for each of τ(e) and τ(f),

and we choose them so that τ(e) 6= f and τ(f) 6= e. Clearly τ(e) 6= τ(f) since the

cycles in S are edge-disjoint. Let re and rf be the regions in θ incident with τ(e) and

τ(f), let T̃e be the matching path on C with ending edges e, τ(e) not containing f ,

and let T̃f be the matching path on C with ending edges f, τ(f) not containing e (see

Figure 9).

Note that the edges e, f, τ(e), τ(f) must appear in the cyclic order e, τ(e), τ(f), f

on C: If they do not, then the order is e, τ(f), τ(e), f and it is easy to see that S1∩S2

contains a second point besides r in θ, contradicting the non-degeneracy of S. In

particular, this implies that T̃e and T̃f intersect in v and at most one other vertex of

C. Hence v′ is an internal vertex for at most one of them, say T̃f . But in that case

T̃e contains neither v nor v′ as an internal vertex, implying T̃e ⊆ P , and applying

Lemma 4.2.16 to (e, τ(e)) and T̃e yields a face as desired. Similarly if v′ is not internal

for T̃f , then T̃f ⊆ Q and applying Lemma 4.2.16 to (f, τ(f)) and T̃f gives the desired

face.

84

r

PSfrag replacements

e

τ(e)

τ(f)

f

r∗

re

rf

v v′

P

Q

S1

S2

Te
Tf

T̃e

T̃f

Figure 9: Configuration in proof of Corollary 4.2.17

Definition 4.2.18. A path P in a plane graph G is good if the following holds: Every

r ∈ R(G) is P ′-nice for any path P ′ that can be obtained from P by moving across

2-faces (i.e. P ′ = P4r1 . . .4rk, where ri is a 2-face for the path P4r1 . . .4ri−1 for

all i ≥ 1).

Lemma 4.2.19. Let G be a plane near-quadrangulation with a non-degenerate col-

lection of straight cycles S, and suppose that the infinite face is bounded by a cycle

P ∪Q, where P,Q are two good paths with ends v, v ′. Then there is an order r1, . . . , rp

of the elements of R(G) \ r∞, and paths Q0, . . . , Qp in G so that:

(1) Qj is a v − v′ path for j = 1, 2, . . . , p,

(2) Q0 = Q,

(3) Qp = P ,

(4) Qj = Qj−14rj where rj is a 2-face for Qj−1, for j = 1, 2, . . . , p.

Proof. Notice that the lemma is symmetric in P and Q: If there is a sequence of

regions and paths as stated moving Q onto P , then reversing the order of this sequence

moves P onto Q.

85

We prove the lemma by induction on |R(G)|. If |R(G)| = 2, then P ∪ Q bounds

a unique region r and so |P ∪ Q| = 4. Since P,Q are both good, it follows that

|∂(r) ∩ P | = |∂(r) ∩Q| = 2 and hence P = Q4r, as desired.

Hence assume |R(G)| ≥ 3. Let r be the face obtained from applying Corollary

4.2.17 to the cycle P ∪Q. By the introductory remark, we may assume that ∂(r)∩Q

contains a path of length two (for otherwise ∂(r) ∩ P does, and we reverse the roles

of P and Q).

Since Q is good by assumption, r is a 2-face for Q. Let Q1 = Q4r, and let

w1, e1, w2, e2, w3, e3, w4, e4 be the 4-cycle ∂(r) so that e1, e2 ∈ E(Q) ∩ ∂(r). Con-

sider the subgraph G′ = G \ {w2}. Then R(G′) = R(G) \ {r} and G′ is a near-

quadrangulation whose infinite face is bounded by the closed walk P ∪Q1.

Note that E(∂(r)) ∩ E(P) = ∅: If say e3 ∈ E(P), then the straight cycle S

containing r and crossing e1 and e3 has length two (since in that case e1, e3 are on

the boundary of the infinite face), and since S is non-degenerate, it would follow that

|S| = 2, contrary to our assumption that |R(G)| ≥ 3.

We now distinguish two cases depending on whether or not w4 ∈ V (P) (or equiv-

alently whether or not P ∪Q1 is a cycle).

First suppose w4 /∈ V (P). Then P ∪Q1 is a cycle, and contracting the (parallel)

edges with ends r, r∞ in the two straight cycles from S which contain r yields a non-

degenerate collection of straight cycles S ′ for G′. Since |R(G′)| = |R(G)| − 1, we can

apply induction to the subgraph G′ and the paths P,Q1 (which are good in G′ by

definition) to obtain an order r2, . . . , rp for the faces of R(G)\r∞\r, and corresponding

paths Qj for j = 2, . . . , p. Then setting Q0 = Q, the sequence Q0, Q1, . . . , Qp is as

desired for G.

Now suppose w4 ∈ V (P). Let P 1, P 2 be the two subpaths of P with ends w4

and v, v′ respectively, and let Q1, Q2 be the subpaths of Q1 with ends w4 and v, v′,

respectively. Then P ∪ Q1 is the (edge-disjoint) union of the two cycles P i ∪ Qi for

86

i = 1, 2. Let Gi be the subgraph of G′ bounded by P i∪Qi, for i = 1, 2. Then each Gi

is a near-quadrangulation bounded by a cycle, and the non-degenerate collection S i

of straight cycles for Gi is naturally obtained from S, so we can apply induction to

each Gi. Let ri1, r
i
2, . . . , r

i
pi be the order of the interior regions of R(Gi) ⊆ R(G)\r∞\r

which moves Qi onto P i in Gi, for i = 1, 2 (note that R(G) \ r∞ consists of r and

the interior regions of G1, G2). But then if we let Q0 = Q, Qj+1 = Qj4r
1
j for

j = 1, 2, . . . , p1 and Qj+1+p1 = Qj+p14r
2
j for j = 1, 2, . . . , p2, then it is easily checked

that the sequence Q0, Q1, . . . , Qp is as desired.

Corollary 4.2.20. Let H ↪→ P be minor-minimal of face-width k ≥ 2, let C0 be

a non-contractible cycle of length 2k in the radial graph R of H, and fix a vertex

v0 ∈ V (C0) ∩ V (G). Then there exist an order of the regions of R, say re1, . . . , rem
,

and cycles C1, . . . , Cm in R so that

(1) Each Cj is noncontractible and has length 2k, for j = 1, 2, . . . , m,

(2) Cm = C0,

(3) v0 ∈ V (Cj) for j = 0, 1, . . . , m,

(4) Cj = Cj−14rej
for j = 1, 2, . . . , m,

(5) ∂(Fj) = (C0 \ Cj) ∪ (Cj \ C0) with Fj = {re1, . . . , rej
} for j = 1, 2, . . . , m.

Proof. Let R′ be the graph obtained from R by cutting open along C0. Then R′ is a

near-quadrangulation (since the regions of R′ other than the infinite region correspond

to the regions of R), and the cycle C ′
0 bounding the infinite face of R′ is the union

of two paths P,Q, each of which corresponds to C0 in R. In particular, P,Q have

ends v, v′ corresponding to the vertex v0. Moreover, P and Q are good, since every

path P ′ in R′ obtained from either P or Q by moving across 2-faces corresponds to a

non-contractible cycle of length 2k in R (see Remark 4.2.14), and so Corollary 4.2.10

implies that every region r ∈ R(R′) \ r∞ is P ′-nice. Let re1 , re2, . . . , rem
be the order

87

of R(R′) and let Q0, Q1, . . . Qm be the paths obtained from applying Lemma 4.2.19.

Then in R, each of the v-v′ paths Qj corresponds to a cycle Cj containing v0, and

since Cj is obtained from C0 by moving across 2-faces, each has length 2k and is

non-contractible (Remark 4.2.14). Condition (5) is easily seen to hold by induction,

so the sequence C0, C1, . . . , Cm is as desired.

We now extend the ‘sweep’ from the previous result to a planar double cover of

H.

Corollary 4.2.21. Let H ↪→ P be minor-minimal of face-width k ≥ 2, and let G

be a planar double cover of H. Let R be the radial graph of H, and let RG be the

radial graph of G. Let C0 be a noncontractible cycle of length 2k in R, v0 be a vertex

on C0, and let P0 be a path of length 2k in RG which is a lift of C0. Let v, v̄ be the

complementary ends of P0, corresponding to v0.

Then there exist an order of the regions of RG, say r(e1), r(e2), . . . , r(e2m), and paths

P1, P2, . . . , P2m in RG so that

(1) Each Pi is a v − v̄ path of length 2k for i = 1, 2, . . . , 2m,

(2) P2m = P0,

(3) Pi = Pi−14r(ei) for i = 1, 2, . . . , 2m,

(4) ∂(Fi) = (P0\Pi)∪(Pi\P0) with Fi = {r(e1), r(e2,) . . . , r(ei)} for i = 1, 2, . . . , 2m.

Proof. Let re1 , . . . , rem
be the order of R(R) and C1, C2, . . . , Cm be the cycles obtained

from Corollary 4.2.20. We now use this to construct the order of the 2m faces of RG

and the paths Pi, for 1 ≤ i ≤ 2m.

Suppose we have constructed the paths up to Pi−1 with properties (1), (3), (4), for

i ≤ m, and so that Pj is a lift of Cj, for j ≤ i−1. In R, let f 1
R, f

2
R be the two edges in

E(Ci−1) the boundary of the 2-face rei
for Ci−1 which satisfies Ci = Ci−14rei

. Since

Pi−1 is a lift of the noncontractible cycle Ci−1, we have that Pi−1 contains at most one

88

edge of every pair of complementary edges. In particular, Pi−1 contains exactly one

of the two complementary copies of each of f 1
R, f 2

R in RG, say fh, for h = 1, 2. Let

r(ei) ∈ R(RG) be the unique copy of rei
∈ R(R) which contains fh in its boundary

in RG, for h = 1, 2. Then r(ei) is a 2-face for Pi−1, and if we let Pi = Pi−14r(ei),

then (1), (3), (4) hold for all j ≤ i, and Pi is a lift of Ci into RG.

In particular, Pm is a lift of Cm = C0, so Pm is either equal to P0 or its com-

plementary path P̄0. Note that by (4), Fm contains exactly one of each of the two

complementary faces of RG, so by the formula for ∂(Fm), Pm 6= P0 and hence Pm = P̄0.

We now again use the sequence re1, re2, . . . , rem
to define Pm+1, Pm+2, . . . , P2m, by let-

ting Pi+m = Pi−1+m4r(ei) for i = 1, 2, . . . , m: It is easy to check that for a 2-face

rei
with edges f 1

R, f
2
R in Pi−1, we have that in RG, the corresponding edges on Pi+m

(which is a lift of Ci) are f̄ 1, f̄ 2, and therefore r(ei) is a 2-face for Pi+m. Hence (1),

(3), (4) hold by construction, and we have F2m = R(RG), implying that P2m = P0,

as desired for (2).

It is easy to see that Corollary 4.2.21 and Corollary 4.2.20 can be used to define a

linear branch-decomposition (i.e. a branch-decomposition where every internal vertex

is adjacent to at least one leaf) of order 2k for G and H, respectively. In fact, we

can use the ordering of E(G) implied by Corollary 4.2.21 to construct a branch-

decomposition of G/e and G \ e for any edge e ∈ E(G), as we show in the following

lemma (we actually construct a carving-decomposition of the medial graph MG,

which in turn gives a branch-decomposition of G).

Lemma 4.2.22. Let H ↪→ P be minor-minimal of face-width k ≥ 2, and let G be a

planar double cover of H. Then G/e and G \ e have branch-width at most 2k− 1 for

any edge e ∈ E(G).

Proof. Let R be the radial graph of G, and RH be the radial graph of H. Fix an

edge e ∈ E(G). Let re be the region of R corresponding to e, and let C be the cycle

89

bounding re in R. Let f1, f2, f3, f4 be the consecutive edges of C. Let G′ be obtained

from G by either deleting or contracting e, and let R′, M′ be its radial and medial

graph, respectively. Notice that the radial graph R′ of G/e and G \ e is obtained

from R by identifying either f1 with f2 and f3 with f4, or f1 with f4 and f2 with f3.

In particular, the faces of R′ correspond to the faces of R different from re. Without

loss of generality suppose that R′ is obtained from R by identifying edges f1 with f2

and f3 with f4.

By Theorem 2.3.10, it suffices to show that cw(M′) < 4k. Since H is minor-

minimal of face-width k, it follows that there is a noncontractible cycle C0 of length

2k in RH such that E(C∩C0) = {f1, f2} (we can draw RH and R so neither f1 nor f2

are edges crossing the circle γ separating the two copies of RH , and hence we can also

think of f1, f2 as being edges in (one copy of) RH). Fix a vertex v0 ∈ V (C0) other

than the one which is incident with both f1 and f2, and let P0 be a path of length 2k

in R which is a lift of C0, with end-vertices v, v̄ corresponding to v0, and containing

both f1 and f2 (or more precisely, one of each of the two copies of f1, f2 which are

incident in R). Let P1, P2, . . . , P2m be the v − v̄ paths in R obtained from Corollary

4.2.21 for P0, let e1, e2, . . . , e2m be the induced ordering of E(G) = R(R) = V (M),

and let Fi be as in Corollary 4.2.21 for i = 1, 2, . . . , m.

We have to show that the induced carving of V (M′) (obtained from the sequence

e1, e2, . . . , e2m with e removed) has width strictly less than 4k. Since a partition of

V (M′) corresponds to a partition of R(R′), it suffices to show that |∂(F ′
i)| < 4k in

R′, where F ′
i = {re1 , re2, . . . , rei

} \ {re} for all i = 1, 2, . . . , 2m.

We first claim that |∂(F ′
i)| ≤ |∂(Fi)|: Suppose f is an edge in ∂(F ′

i) \ ∂(Fi), and

is incident with faces r1, r2 in R′. Since f ∈ ∂(F ′
i) \ ∂(Fi), it follows that f is one

of the two edges obtained from identifying f1 with f2, or f3 with f4, say the former.

But now depending on whether or not r(e) ∈ Fi (i.e. whether e = ej for some j ≤ i),

we have that exactly one of f1 and f2 belongs to ∂(Fi) in R, so f is accounted for

90

and the claim follows .

We now show that |∂(F ′
i)| < 4k. If |∂(Fi)| < 4k we are done by the above claim,

hence we may assume that |∂(Fi)| = 4k. In this case since |P0| = |Pi| = 2k for all i

and ∂(Fi) ⊆ P0 ∪ Pi by (4) of Corollary 4.2.21, we must have that ∂(Fi) = P0 ∪ Pi.

However by our choice of v0, it is easy to see that |∂(F ′
i)| decreases (in fact by two),

since we identify two edges on P0, namely f1 with f2. Hence |∂(F ′
i)| < 4k for all

1 ≤ i ≤ 2m, as desired.

The proof of the main result now follows easily from the previous results:

Proof of theorem Theorem 4.1.1.

By Lemma 4.2.3 and Theorem 2.3.12, G has branch-width at least 2k. Since

deletion or contraction of a single edge decreases the branch-width by at most one,

Lemma 4.2.22 then implies that G has branch-width exactly 2k, and moreover that

G is minor-minimal.

4.3 Other minor-minimal planar graphs of fixed branch-

width

As before, let Cl be the minor-minimal planar graphs of branch-width (exactly) l, for

l ≥ 0. We now give some examples showing that in general, the class C2k does not

consist only of double covers of minor-minimal projective planar graphs.

For k = 3, there are 7 non-isomorphic minor-minimal planar graphs of branch-

width 6 which arise as planar double covers of the 7 minor-minimal embeddings of

face-width 3 in the projective plane (the latter were determined in [8] and [71]).

However there are more graphs in C6:

Figure 10 shows some graphs in C6 (these graphs were found and checked to be

minimal by a computer), but none of them can be a double cover of another graph,

since they all have either an odd number of vertices or edges (or both).

None of these graphs is self-dual, so we get 4 more members of C6 by taking the

91

PSfrag replacements

n = 15

n = 15 n = 15

n = 14

m = 33

m = 32 m = 31

m = 31

r = 18

r = 19 r = 19

r = 20

Figure 10: Minor-minimal graphs of branch-width 6 which are not double covers

planar dual of each. Hence |C6| ≥ 15 (in fact there are probably more minor-minimal

planar graphs of branch-width 6, since our computer search was not designed to be

exhaustive). The graphs in Figure 10 appear not to have too much structure, and

so we expect that the class C2k will not allow an easy complete characterization in

general, in particular it is not generated by taking double covers of other graphs.

Although the double cover construction discussed in this chapter always yields a

graph of even branch-width, it is also interesting to look at the classes C2k+1: For

every k ≥ 2, C2k+1 contains a graph that is not the double cover of any other graph:

Let Ck×(2k+1) be the planar k× (2k+ 1) circular grid with k circular rows and 2k+ 1

columns. Now add a new vertex that is connected to all 2k + 1 vertices on the

innermost cycle, to obtain a graph G2k+1 (see Figure 11).

It is easy to see that bw(Ck×(2k+1)) ≤ 2k (in fact equality holds), and so bw(G2k+1) ≤

92

Figure 11: The graph G2k+1 for k = 3

2k+1. In fact one can show that G2k+1 has branch-width exactly 2k+1 and is minor-

minimal, i.e. G2k+1 ∈ C2k+1 for every k ≥ 2 (G2k+1 is self-dual, so we do not get a

second graph this way). But clearly G2k+1 is not a double cover of any graph, since

it has a unique vertex of degree 2k + 1 for k ≥ 2.

93

CHAPTER V

APPLICATIONS OF TREE-DECOMPOSITIONS TO THE

TSP

In this chapter we discuss some applications of tree-decompositions to the problem

of finding violated comb and DP-inequalities (for definitions, see Section 2.4). In

particular, we show how to solve the comb separation problem for an arbitrary number

of teeth if the input graph has bounded tree-width, and we modify an algorithm by

Letchford to produce all violated simple DP-inequalities using tree-decompositions.

5.1 Separation of comb inequalities using tree-decompositions

The separation problem for comb inequalities is the following:

Problem 5.1.1 (Separation problem for comb inequalities). Given a vector

x̂ ∈ SP (n), find a comb inequality that is violated by x̂, or decide that no such

inequality exists.

In this section we prove the following result:

Theorem 5.1.2. The comb separation problem can be solved in time O(n) if the

support graph Ĝ satisfies tw(Ĝ) ≤ θ for some fixed integer θ.

Remark 5.1.3. It is straightforward to design a linear time algorithm (for bounded

tree-width) if the number of teeth is fixed to be at most some constant d: Roughly

speaking, what we need to keep track of in a partial solution at a node t is to which

one of the d teeth every vertex v ∈ Xt belongs (or if it belongs to the handle or the

‘outside’ of the comb), and whether each of the d teeth candidates already represents

a full tooth (i.e. it crosses the handle) or not. Hence the amount of information to be

94

stored at any node t is roughly O(dθ · 2d), where θ is the width of the decomposition

used. Therefore this only yields a polynomial-time algorithm if the number of teeth

is bounded by a constant. Hence to prove Theorem 5.1.2, we have to make use of

structural properties of violated combs.

For a tree T of a tree-decomposition of a graph G, we define the the following

vertex sets and subgraphs for each node t ∈ V (T) (see Figure 12):

Yt =
⋃

s is a descendent of t

Xs. (5.1.1)

Zt = V (G) \ Yt \Xt, (5.1.2)

Gt = G[Yt ∪Xt], (5.1.3)

G′
t = G[Zt ∪Xt]. (5.1.4)

PSfrag replacements

Gt

Gt′

Xt

Yt

Zt

Figure 12: Vertex sets and subgraphs at a node t in a tree-decomposition

In the following, we will use G to denote the support graph Ĝ for a solution

x̂ ∈ SP (n).

Before we describe the algorithm and its proof of correctness in full detail, we

give a sketch of the method to illustrate the overall idea. Suppose that we have a

nice tree decomposition (T, (Xt)t∈V (T)) (see Definition 2.3.6) of G available, i.e. in

95

particular T is a rooted tree and each node has at most two children and is of one of

the four types LEAF, INTRO, JOIN, FORGET. The algorithm we describe follows

the standard dynamic programming principle typically used in algorithms based on

tree-decompositions: At each node t, we will store a table of characteristics of partial

solutions which can potentially be extended to a full solution. After computing all

these tables in a bottom-up manner for T , the information computed at the root

indicates whether there is a full solution or not. This technique was first used for

tree-decompositions in [5] and [9].

In our case, a partial solution for a node t will be a ‘partial comb’, i.e. a partition

of V (Gt) (into a handle, teeth, and vertices outside of the comb), together with

an associated value computed analogous to the violation of a comb inequality (for

rigorous definitions, see below). In particular, a ‘partial comb’ can have ‘partial

teeth’ (A,B) with A = ∅ or B = ∅ on Gt. For a given node t ∈ V (T), we can

partition the partial solutions into equivalence classes, where two partial solutions in

Gt are equivalent if they ‘agree’ on Xt with respect to the above mentioned partition.

Each partial solution is then represented by a characteristic, which is identical for

equivalent partial solutions. In order for this framework to give the desired linear

time algorithm, we need to show it suffices for each equivalence class at node t to

store a characteristic of minimum value (‘violation’) - this is done in Lemma 5.1.6.

The key to this is that at a node t, if a characteristic corresponds to a partial solution

which extends to a proper violated comb in G, then every ‘partial tooth’ must have a

non-empty intersection with the bagXt - this will follow from an observation about the

structure of violated combs (Lemma 5.1.4). Therefore it suffices to keep track only

of characteristics corresponding to partial solutions with this intersection property

(such partial solutions will be called ‘promising’), and it follows that there are only

a constant number of characteristics to store at each node, leading to a linear time

algorithm.

96

We now proceed to carefully define the above-mentioned notions, and prove that

the characteristics we define are indeed sufficient to solve the comb separation prob-

lem. In our presentation, we use the terminology from [14], which contains a descrip-

tion of the general technique of using dynamic programming on a tree-decomposition.

A solution to Problem 5.1.1 is a collection of sets C = {H, T1, ..., Td} (for some odd

integer d ≥ 3) representing a comb, together with a (negative) value λ representing

the surplus of the violated comb inequality, with respect to the given vector x̂ (recall

that a comb inequality is violated if and only if its surplus is negative).

A labelled partition of a setX ⊆ V (G) is a partition ofX into setsH,R,A1, B1, ..., Ak, Bk

(for some k ≥ 0), where some of the sets may be empty, except not both Ai and Bi

for a given i ≤ k. The set R is called the rest and H ∪ A1 ∪ ... ∪ Ak is called the

handle. A pair (Ai, Bi) is called a partial tooth if exactly one of Ai, Bi is empty, and

a full tooth if both Ai, Bi are non-empty. We write Ti for Ai ∪ Bi. The contribution

of an edge e ∈ E(G[X]) (for the labelled partition of X) is defined as

xe · (11δ(H∪A1∪...∪Ak)(e) +

k
∑

i=1

11δ(Ti)(e)),

where 11A(·) denotes the indicator function of a set A, and all cuts in the definition

are in G[X]. The value λ of the labelled partition is the sum of the contributions of

all edges in E(G[X]), minus 3k + 1. Notice that if X = V (G), k ≥ 3 is odd, and all

sets Ai, Bi are non-empty, then the labelled partition defines a comb of surplus λ.

A partial solution φ (at a node t) is a labelled partition of V (Gt), together with

its value λ and the integer k, the number of (full or partial) teeth. We assume that

the teeth (Ai, Bi) of φ are ordered in some canonical way (for a fixed node t), so that

partial solutions which are identical up to renumbering of the teeth receive the same

labels.

A partial solution is extendible if there is a violated comb C ′ = {H ′, T ′
1, ..., T

′
d},

97

(d ≥ k) so that

H ⊆ H ′, (5.1.5)

R ⊆ V (G) \ (H ′ ∪ T ′
1 ∪ ... ∪ T

′
d), (5.1.6)

Bi ⊆ T ′
i \H

′ 1 ≤ i ≤ k, (5.1.7)

Ai ⊆ T ′
i ∩H

′ 1 ≤ i ≤ k. (5.1.8)

We now define a notion of equivalence between partial solutions. Given a partial

solution φ, its characteristics ξ consists of

(1) the labelled partition induced by φ on Xt,

(2) an additional boolean label partial for each tooth of φ intersecting Xt, indicating

whether it is full or partial in φ,

(3) a boolean label β = k mod 2, indicating whether the number of teeth is odd

or even.

Two partial solutions φ, φ′ are equivalent if their characteristics are identical.

Suppose φ = ({H,R,A1, B1, ..., Ak, Bk}, λ) is a partial solution at t, and ψ =

{H ′, R′, A′
1, B

′
1, ..., A

′
k′, B

′
k′} is a labelled partition of a set X ⊆ V (Gt′) which satisfies

X ∩ V (Gt) = Xt. If ψ agrees with φ on Xt we write φ ⊕ ψ to denote the partial

solution induced by the labelled partition φ and ψ on V (Gt) ∪ X, together with its

value λ and the number of teeth.

The following lemma, observed by Letchford in [50], is crucial to the correctness of

our approach. Recall that that comb inequalities form a special case of DP inequali-

ties, where the dominos are called teeth. Following Letchford, we say a set A ⊆ V (G)

is connected if G[A] is connected.

Lemma 5.1.4. Suppose (A,B) is a domino of a DP inequality violated by x̂ ∈ SP (n).

Then the sets A,B,A ∪B and their complements in V (Ĝ) are connected in Ĝ.

98

Proof. We only prove this for A, since the proof for the other sets is analogous.

Suppose A is not connected, i.e. A is the disjoint union of two non-empty sets A1, A2

with E(A1, A2) = ∅. Then x(E(A1, A2)) = 0 and since x ∈ SP (n), we have

x̂(δA) = x̂(δA1) + x̂(δA2) ≥ 4 (5.1.9)

i.e. the subtour constraint for δ(A) has surplus at least two. Hence the domino in-

equality (2.4.10) for (A,B) has surplus at least one, which is impossible by Proposition

2.4.6 if (A,B) is used in a violated DP inequality.

Corollary 5.1.5. Suppose (A,B) is a partial tooth in an extendible partial solution

φ at t. Then Xt ∩ (A ∪ B) 6= ∅.

Proof. Without loss of generality B = ∅, and A 6= ∅. Consider a violated comb

extending φ and let (A′, B′) be the tooth which satisfies A ⊆ A′. Now A′ ∩ V (Gt) =

A 6= ∅ and B′ ∩ V (Gt) = B = ∅ since the comb is an extension of φ. Hence B ′ ⊆ Zt.

Since A′ ∪B′ is connected by Lemma 5.1.4, there is an A′−B′ edge in G. Since Xt is

a cutset separating Yt from Zt, and A′ is connected by Lemma 5.1.4, it follows that

A′ ∩Xt 6= ∅, and hence A ∩Xt 6= ∅, as desired.

A partial solution φ at t is called promising (at t) if every partial tooth of φ has

non-empty intersection with Xt. Hence Corollary 5.1.5 says that every extendible

partial solution at t is promising at t.

The following lemma will be the key to showing that it suffices to keep only one

representative per equivalence class of characteristics at any node t, namely one with

minimum value λ.

Lemma 5.1.6. Suppose φ, φ′ are two equivalent partial solutions at t with λφ ≤ λφ′.

Then if φ′ is extendible and φ is promising, then φ is extendible.

Proof. Suppose φ′⊕ψ is a partial solution (at the root) extending φ′ which corresponds

to a violated comb, so that λφ′⊕ψ < 0. We claim that φ ⊕ ψ induces a comb with

λφ⊕ψ ≤ λφ′⊕ψ, i.e. of greater or equal violation.

99

Claim 5.1.6.1. φ⊕ ψ has no partial teeth.

Proof of claim. Suppose Ti = (A, ∅) is a partial tooth of φ⊕ψ. Then A∩V (Gt) 6= ∅:

If A ⊆ Zt, then there is a full tooth (A′, B) of φ′ ⊕ ψ with A′ ∩ (Xt ∪ Zt) = A and

B ⊆ Yt, and so A′ ∪ B would be disconnected, contrary to Lemma 5.1.4. But if

A ∩ V (Gt) 6= ∅ then there is a partial tooth (A ∩ V (Gt), ∅) in φ (since φ and φ⊕ ψ

agree on V (Gt)). Since φ is promising, (A∩V (Gt))∩Xt 6= ∅, i.e. we have A∩Xt 6= ∅.

Since the labelled partitions (on Xt) of φ and φ′ are identical, we have that φ′ ⊕ ψ

contains a (full) tooth T ′
i = (A′, B′) with A ⊆ A′ and B′ ∩Xt = ∅. Since the partial

labels of φ and φ′ are identical on Xt, we have that (A′∩V (Gt), B
′∩V (Gt)) is partial

for φ′, i.e. B′ ∩ V (Gt) = ∅, and so B′ ⊆ Zt. But then A and B′ form the tooth Ti of

φ⊕ ψ and hence B′ = ∅, contrary to the fact that T ′
i = (A′, B′) was full.

To compute λφ′⊕ψ from λφ′, we have to add the contribution of the edges of E(Zt)

plus those from E(Xt, Zt), and subtract the number of teeth Ti of φ′ ⊕ ψ entirely

contained in Zt. Since φ and φ′ agree on Xt, and since φ′ ⊕ ψ agrees with φ ⊕ ψ on

Zt ∪ Xt, we have λφ⊕ψ − λφ = λφ′⊕ψ − λφ′, and so λφ⊕ψ ≤ λφ′⊕ψ since λφ ≤ λφ′. In

particular we have λφ⊕ψ < 0. It is easy to check that the parity of the number of teeth

of φ⊕ψ and φ′⊕ψ is identical, and hence odd. Notice that k 6= 1 since λφ⊕ψ < 0 and

it is easy to see that a ’comb’ with a single tooth would violate a subtour constraint

(and we assumed x̂ ∈ SP (n)). It follows that φ⊕ψ corresponds to a (proper) violated

comb as well, and so φ is extendible, as desired.

5.1.1 The algorithm

We only focus on deciding whether there exists a violated comb inequality in G or

not. It is straightforward to extend the algorithm so that it actually computes a

violated comb if one exists.

The algorithm can be described as follows:

100

INPUT: The support graph G = Ĝ for a vector x̂ ∈ SP (n), satisfying tw(G) = θ

for some constant θ.

OUTPUT: YES if there is a comb inequality violated by x̂, and NO otherwise.

ALGORITHM:

(1) Compute a nice tree-decomposition (T, (Xt)t∈V (T)) of width tw(G) for G.

(2) For each t ∈ V (T) compute a table of characteristics, using the characteris-

tics stored at its child node(s). For each distinct characteristic ξ computed

at t we store a triple (ξ, λ, k), as described in the following four cases:

(2a) At a LEAF node t, generate all possible labelled partitions of Xt, compute

k and λ for each and store a triple (ξ, λ, k) of minimum value λ for each

characteristic ξ.

(2b) At a FORGET node t, the characteristics stored at the child node t′ induce

characteristics for t, and we store a triple (ξ, λ, k) of minimum value λ for

those ξ in which every partial tooth intersecting Xt′ also intersects Xt.

(2c) At an INTRO node t, for every characteristic stored at the child node t′

compute all possible extensions of the labelled partition into Xt, and again

store a triple (ξ, λ, k) of minimum value for the characteristics at t obtained

in this way.

(2d) At a JOIN node t with children t1 and t2, we pair each characteristic from

t1 with those characteristics from t2 whose labelled partitions are identical

on Xt = Xt1 = Xt2 (note that in particular the partial labels are not

required to be identical). We compute the characteristics at t arising this

way and again we store a triple (ξ, λ, k) of minimum value λ.

(3) Output YES if and only if there is a characteristic ξ at the root node λ < 0,

β = 1 (i.e. k = 1 mod 2) and all partial labels set to FALSE.

101

We now prove that Algorithm 5.1.1 works correctly and can be implemented to

run in linear time. This will imply Theorem 5.1.2.

Proof of Theorem 5.1.2. It suffices to show that algorithm Algorithm 5.1.1 correctly

decides (in linear time) whether there is a violated comb or not: If the output is YES,

then it is straightforward to actually construct a violated comb in linear time using

the characteristics stored at the nodes (using the standard approach for constructing

solutions in a tree-decomposition based algorithm).

Clearly if the algorithm outputs YES, then there is a comb with λ < 0, i.e. a

violated comb (note that k 6= 1 if λ < 0 and x̂ ∈ SP (n), as discussed earlier).

Conversely, we will show that if there is a violated comb, then the algorithm will

output Y ES. This will follow from the next two claims.

Claim 5.1.6.2. If the algorithm stores (ξ, λ, k) at t, then there exists a promising

partial solution φ at t with k teeth, value λ and characteristic ξ.

Proof of claim. Clearly this holds for LEAF nodes. Suppose the statement holds at

the children ti at a node t. Then if t is an INTRO or JOIN node, the statement holds

since Xti ⊆ Xt in those cases. Hence suppose t is a FORGET node. If the algorithm

stores (ξ, λ, k) at t, then by (2b) there is a triple (ξ1, λ, k) at the child t1 in which

every partial tooth of ξ1 also intersects Xt. Hence there is a promising φ1 at t1 for ξ1,

and since ξ is the restriction of ξ1 to Xt, the claim follows.

Claim 5.1.6.3. If there is a violated comb in G, then for every t ∈ V (T), the algorithm

stores some triple (ξ, λ, k) at t for which there exists an extendible partial solution φ

at t with k teeth, value λ and characteristic ξ.

Proof of claim. Clearly the statement holds if t is a LEAF node, so suppose that

the algorithm stores a triple (ξi, λi, ki) at for each child ti of t corresponding to an

extendible partial solution φi.

102

If t is an INTRO node, then some extension of the labelled partition of ξ1 to Xt

will correspond to an extension of φ1, and hence the characteristic ξ stored by the

algorithm will be as desired.

If t is a JOIN node, the algorithm stores the characteristic ξ of the partial solution

(φ1 ⊕ φ2) at t, say with values λ∗ and k∗. We claim that (ξ, λ∗, k∗) is as desired. Let

(ξ∗1 , λ
∗
1, k

∗
1), (ξ∗2 , λ

∗
2, k

∗
2) be the triples from t1, t2 which caused the algorithm to store

the triple (ξ, λ∗, k∗) at t. By Claim 5.1.6.2, there are promising partial solutions

φ∗
1, φ

∗
2 at t1, t2 for those two triples. Their union φ∗

1 ⊕ φ∗
2 is a partial solution which is

promising at t, equivalent to φ1 ⊕ φ2 and satisfies λφ∗
1
⊕φ∗

2
≤ λφ1⊕φ2

. Hence by Lemma

5.1.6, φ∗
1 ⊕ φ∗

2 is extendible (since it is easy to check that φ1 ⊕ φ2 is extendible), as

desired.

Finally if t is a FORGET node, let φ be the restriction of φ1 to Xt, and ξ its

characteristic at t. Now φ is extendible since φ1 is extendible, and by Corollary 5.1.5,

φ is promising at t. Hence the algorithm stores some triple (ξ, λ∗, k∗) at t in step

(2b). Hence there is some triple (ξ∗1 , λ
∗, k∗) stored at t1 (with the restriction of ξ∗1 to

Xt being ξ), and by Claim 5.1.6.2 we get a promising partial solution φ∗
1. Then ξ and

the restriction φ∗ of φ∗
1 to Xt are as desired: Since φ∗ is equivalent to φ and promising

for t (as its characteristic ξ was selected in step (2c)), φ is extendible and λφ∗ ≤ λφ,

Lemma 5.1.6 implies that φ∗ is extendible as well.

Since Claim 5.1.6.3 holds in particular for the root node t0, the partial solution

φ obtained from the claim (whose characteristic ξ is stored at t0) will be a proper

violated comb, causing the algorithm to output YES since the three conditions of (3)

are satisfied.

For the runtime of Algorithm 5.1.1, notice that all steps can be implemented to

run in time O(n):

For step (1), we can use an algorithm of Bodlaender [13] to find a tree-decomposition

of optimal width since G has bounded tree-width. This tree-decomposition can then

103

easily be converted to a nice tree-decomposition in linear time - see e.g. [65].

For the four cases (2a)-(2d), notice that the number of equivalence classes of

characteristics possible at each node t is bounded by ((2θ+4)·2·2)θ+1, since |Xt| ≤ θ+1

and there at most 2(θ + 1) + 2 possible labels H,R,A1, B1, ..., Ak, Bk for any vertex

of Xt. Also note that the characteristics at t together with their values λ and k can

be computed from the information stores at its child nodes and the graph G[Xt] in

constant time.

Since T has O(n) nodes, it follows that the algorithm can be implemented in time

O(n).

Since we always store characteristics of minimum value, the method will actually

produce a comb that has maximal violation (i.e. minimum surplus) among all combs

in G. However the violation need not be one, unlike the method of [33] which finds

maximally violated combs in planar support graphs.

Unfortunately it does not appear to be the case that Algorithm 5.1.1 can be turned

into a practical algorithm, even for small values of tw(G). In fact even restricting

the method to searching for violated combs with exactly three teeth (and using some

straight-forward techniques to reduce the amount of characteristics considered) does

not seem to be practical without further ideas on how to dramatically reduce the

number of characteristics stored.

5.2 Separating simple DP inequalities using tree-decompo-

sitions

Recall that a DP inequality (defined in 2.4.4) is given by dominos {(Ai, Bi)} with

Ai, Bi ⊆ V (Ĝ) for i = 1, . . . , d with d ≥ 3 odd, and a set F ⊆ E(Ĝ), where Ĝ denotes

the support graph of a given x̂ ∈ SP (n). In analogy to the more specific class of

comb inequalities, a domino is also sometimes called a tooth.

It is not known in general if the separation problem for DP inequalities can be

104

solved in polynomial time, or whether it is NP-hard. A polynomial-time separation

routine for the case that Ĝ is planar was developed in [50].

In [34], the authors give a polynomial-time separation method for so-called simple

DP inequalities.

A domino (A,B) is called simple if |A| = 1 or |B| = 1, or both. A simple DP

inequality is a DP inequality in which all of its dominos are simple. Hence simple

DP inequalities are a natural generalization of the 2-matching inequalities from [31].

The algorithm of [34] is fairly involved, both conceptually and computationally,

and as described it only produces a single violated simple DP inequality, if one exists.

In this section we show how one can use tree-decompositions to overcome some of

these difficulties if the tree-width of the involved graphs is bounded. In Section 5.2.1

we explain how to separate all (or if desired a large selection of) simple DP inequalities

using tree-decompositions (assuming low tree-width for the graphs involved), and in

Section 5.2.2 we provide some computational results on the effectiveness of (a subclass

of) simple DP inequalities for the TSP. To our knowledge, no implementation of the

algorithm of [34] is available and no computational studies on its effectiveness have

been conducted.

5.2.1 The algorithm

We first give an overview of the separation algorithm from [34], and then show how

to modify it using tree-decompositions. For a detailed description of the original

algorithm and in particular a full proof of correctness, we refer the reader to [34].

If (i, S) = ({i}, S) is a simple domino (where S ⊆ V (Ĝ), and i ∈ V (Ĝ) \ S, the

vertex i is called the root of the domino (i, S), and S the body of (i, S) (if S = {j}

for some j 6= i, then both i and j can serve as body or root). The associated simple

domino inequality is inequality 2.4.10 for (A,B) = (i, S) and can be rewritten as

x(δ(S)) − x(E({i}, S)) ≥ 1, (5.2.1)

105

since x(δ(i)) = 2. Note that in their description, the authors of [34] use the ‘≤’

form of DP inequalities rather than the equivalent ‘≥’ form used in this thesis, and

also use the term ‘tooth’ instead of ‘domino’, in analogy to the more specific comb

inequalities. By Theorem 2.4.6 a (simple) DP inequality is violated if and only if the

sum of the surplus on each inequality used in the derivation (both domino inequalities

and non-negativity constraints) is < 1.

In Theorem 2.4.5, we derived DP inequalities by adding domino inequalities,

degree-constraints and non-negativity constraints xe ≥ 0, and then adding one to

the (odd) right-hand side. Equivalently, we could have added those inequalities with

factors 1/2, and in the end rounded the right-hand side. An inequality obtained by

adding valid inequalities with coefficient 1/2 and rounding is called a {0, 1/2}-cut (see

[17]). The main idea of [34] is the following: If a subclass of {0, 1/2}-cuts satisfies

certain conditions, then one can construct an auxiliary graph in which a violated

inequality corresponds to an odd cut of value equal to one minus its violation, and

hence the separation problem can be solved by computing a minimum odd cut in that

graph.

Since the class of simple DP inequalities does not quite satisfy those conditions

in general, the authors first focus on simple DP inequalities where every domino

inequality has surplus < 1/2. For a fixed vertex i, define the weight w(S) of the body

S (with respect to i) to be the surplus of the domino inequality given by i and S,

and for an edge e = ij ∈ V (Ĝ), define its weight w(e) to be x̂e. Hence a simple DP

inequality is violated if and only if the sum of the weights of the used bodies and non-

negativity constraints from e ∈ F is < 1. Say a domino (i, S) is light if w(S) < 1/2,

and in that case the body S is called i-light. It turns out that if one only allows light

dominos, then the conditions mentioned above hold and one can construct an auxiliary

graph as follows: As shown in [34], for a fixed i ∈ V (Ĝ), the i-light bodies form a

laminar family (after eliminating bodies yielding equivalent domino inequalities). Let

106

Fi be the rooted forest representing the laminar decomposition of the family of i-light

bodies, where the body S is a child of S ′ if and only is S ⊆ S ′.

Then one can construct a new weighted graph G1/2 as follows: For each i, connect

the roots of each subtree of Fi to a new vertex vi to get a tree Ti rooted at vi, and

connect all vertices v1, ..., vn (where n = |V (Ĝ)|) to a new vertex v∗. For each body

S of a root i, set the weight of the unique edge to its parent in Ti to be w(S), and

label those edges as odd. Define the weight of the edges v∗vi to be 0, and label them

as even. Finally, for each e = ij ∈ E(Ĝ), let wi
j be the unique highest vertex in the

rooted tree Ti so that no body S in the subtree rooted at wi
j contains the vertex j

(notice that wi
j exists and is unique because the bodies are laminar sets, and possibly

wij = vi). Then we add a new (even) edge wi
jw

j
i of weight w(e) to E(G1/2). This

completes the construction of G1/2 (see Figure 13).

PSfrag replacements

v∗

vi vj

Ti
Tj

wji

wij

Figure 13: The graph G1/2 (odd edges are black, even edges are red)

Then it can be shown that every simple light DP inequality of violation 1 − θ

corresponds to an odd cut (defined as containing an odd number of edges) in G1/2 of

107

weight θ, and vice versa. This is a special case of a more general result on {0, 1/2}-

cuts from [17]. Hence to solve the separation problem for simple light DP inequalities,

one needs to construct G1/2 and compute a minimum odd cut, which is exactly what

is done in the basic version of the algorithm of [34].

If one also wants to include heavy dominos (i.e. dominos with surplus in [1/2, 1)),

then the authors show that this can be done by a similar construction. For a fixed

heavy domino (i, S), remove the forest Fi from G1/2 and instead add a new odd edge

at vi of weight w(S), to obtain a new graph G(i,S). Again one can show that the

odd cuts of G(i,S) correspond to either a simple light DP inequality, or a simple DP

inequality using the unique heavy domino (i, S).

Hence to get a complete separation algorithm for the set of simple DP inequalities,

one first computes a minimum odd cut in G1,2, and then a minimum odd cut in Gi,S

for each heavy domino (i, S).

In fact this leads to the following template to compute all (non-equivalent) violated

simple DP inequalities (two DP inequalities are equivalent if one can be obtained from

the other by replacing one or more dominos (A,B) by A, V (Ĝ) \ (A ∪ B)):

INPUT: The support graph Ĝ for a vector x̂ ∈ SP (n)

OUTPUT: All (or one) non-equivalent violated simple DP inequalities in Ĝ

(1) Compute the graph G1/2.

(2) Compute all (or one) odd cut(s) of value < 1 in G1/2.

(3) For each heavy domino (i, S):

(4) Compute the graph Gi,S.

(5) Find all (or one) odd cut(s) of value < 1 in Gi,S.

(6) Return all (or one) non-equivalent simple DP inequalities ob-

tained from the cuts in (2) and (5).

In order to analyze the runtime, we need to specify how to find the set of bodies

108

needed to construct the graphs G1,2 and Gi,S, and how to find odd cuts of small value

in those graphs. In [34], the authors only aim at finding one violated inequality, so

they simply need to compute a minimum odd cut in each of the graphs, e.g. using

the algorithm from [57] which runs in time O(n2m log(n2/m)) on a graph with n

vertices and m edges. In order to construct the graphs G1/2, one needs to generate all

dominos of weight < 1, the ‘candidate dominos’. For this part it suffices to generate

all X ⊆ V (Ĝ) with x(δ(X)) < 3, which can be done in time O(nm(m + n log n))

(where n = |V (Ĝ)| and m = |E(Ĝ)|) using the standard algorithm of [54] (there are

only O(n2) of such sets by [39]). It follows that the number of possible dominos is at

most O(n3), as shown in [34] (each X can be a body S or X = S ∪ {i}).

In this basic form, the authors give a total runtime bound of O(n9 logn), based

on the fact that loop (3) is executed O(n3) times, and the fact that the graphs G1/2

and Gi,S have O(n2) edges and vertices. Since this version is impractical, the authors

present several ways how to reduce the amount of computation needed. In particular,

they show that one can reduce the number of light and heavy dominos that need to

be considered, and they show one can modify G1/2 to handle several (but not all)

heavy dominos rooted at the same vertex i simultaneously. In particular only a total

of O(m) graphs similar to Gi,S are needed in this version to deal with heavy dominos

(as opposed to O(n3) before), and the modified versions of both G1/2 and Gi,S have

only O(n) vertices and O(m) edges, leading to a total runtime of O(n2m2 log(n2/m))

to find a violated simple DP inequality.

Now suppose we want to generate all violated simple DP inequalities. From the

discussions, the two critical points in any implementation of scheme 5.2.1 are to find

all cuts of weight < 3 in Ĝ, and to generate all odd cuts of value < 1 in certain

auxiliary graphs.

Both of these problems can easily be solved using tree-decompositions (assuming

the tree-width of the respective input graph is bounded). Computing a minimum

109

(or maximum) in linear time is straightforward if a tree-decomposition (of bounded

width) is given: Simply traverse the tree in bottom-up fashion, and each node t

generate a full set of characteristics (corresponding to cuts in the graph Gt = G[Xt],

where as before Xt is the bag at t) from the characteristics stored at the children of

t. We omit further details since this is exactly the standard dynamic programming

approach used for tree-decomposition based algorithms (see e.g. [11], or the exposition

in the previous section for an example). Computing a minimum odd cut is just as easy,

the only change being that we keep two otherwise equivalent copies of characteristics

at t, corresponding to the best even and odd cut on Gt with the given characteristic

on Xt. Notice that in this standard approach it makes no difference whether we are

looking for a cut of minimum value, or a cut bounded above by a certain value, as in

the application here.

Having traversed the tree in bottom-up fashion, it is also straightforward to gen-

erate all cuts of value < 3 (or any other value). Let C3 be the set of minimum

cuts δ(X) of value < 3 in a graph G, let c3 = |C3| and let T be the tree of a tree-

decomposition of bounded width. Then one can generate all members of C3 in time

O(n · c3), where n = |V (G)| (note that |E(G)| = O(n) since G has bounded tree-

width). To do so, simply traverse T top-down and use all characteristics stored at a

node t with value < 3 to assemble cuts. More precisely, suppose φ is a partial solution

on G \ (V (Gt) \ Xt)) (i.e. the graph G′
t with the notation of the previous section)

that corresponds to a characteristic ξ at t. Then we extend φ with all characteristics

ξ′ stored at a child t′ of t which are compatible with ξ on Xt (i.e. with all ancestors

ξ′ of ξ at t′), and where ξ′.val+ ξ.val, minus the weight of the edges in Xt ∩Xt′ that

are cut-edges for φ, is < 3. If this quantity is < 3, then there is at least one extension

of φ to a cut in all of G of precisely this quantity, and so any partial solution we are

building in this top-down process will eventually be extended to a cut of value < 3 in

G. Hence it follows that we can build all of these cuts in time O(n · c3), i.e. in time

110

O(n3) since c3 = O(n2) by [39].

The method to compute all odd cuts of value < 1 is analogous. In fact, this

approach of generating all solutions within a factor of the optimal solution works for

any problem which can be solved with the standard dynamic programming method

for using tree-decompositions.

Hence if we assume that the tree-width of the graphs G1/2 and Gi,S is bounded,

using tree-decompositions reduces the runtime of the basic version of the algorithm

of [34] from O(n9 logn) to O(n5 log n), and if we only consider light dominos, we

have a reduction from O(n6 log n) to O(n3). Moreover, generating all violated simple

DP inequalities (i.e. all odd cuts of value < 1 in the appropriate graphs) only adds

a factor equal to the number of violated DP inequalities to the respective runtimes

using tree-decompositions.

In the improved version of Algorithm 5.2.1 discussed in the second part of [50],

the time to find a violated simple light DP inequality is now dominated by the time it

takes to reduce the set of candidate dominos to O(n), namely O(n4) (see analysis in

the proof of (5.3) of [34]), and if one also includes heavy dominos, the total runtime

is bounded by O(n4 log n) (which also includes the additional reduction of the set of

heavy dominos that are considered). Performing the odd cut and near min-cut com-

putations using tree-decompositions would only save a factor of log n asymptotically

in the total runtime since the reduction of the light and heavy dominos still takes

time O(n4), but the time spent in odd-cut computations would still be reduced from

O(n4 log n) to O(n2).

The assumption that tw(Ĝ) ≤ c for some not too large constant c is realistic. If

Ĝ is optimal, Ĝ will simply be a cycle (and hence have tree-width 2), and even if x̂ is

only a solution of good quality, one would expect that Ĝ is still similar to a cycle and

hence its tree-width is not too high. In practice, this indeed seems to be the case, as

indicated by the test results in 5.2.2.

111

However in general, tw(Ĝ) ≤ c does not necessarily imply that tw(G1/2) (or

tw(Gi,S)) is bounded, as we show in the following example.

Example 5.2.1. Notice that if in G1/2 we contract all edges in each tree Ti, for

i = 1, . . . n (where n = |V (Ĝ)|), and delete the vertex v∗, then the remaining graph

is precisely Ĝ (or conversely, we can think of G1/2 as arising from Ĝ by first adding

a new vertex v∗ connected to all of V (Ĝ), then replacing each i ∈ V (Ĝ) by a tree

Ti, and rerouting edges ij of Ĝ so that they are now connecting some vertex in Ti to

some vertex in Tj).

Now suppose G is the (2k + 1)× (2k + 1) planar grid (for k ≥ 1) on 4k2 + 4k + 1

vertices, with columns 1, . . . , 2k + 1, and contract the k even numbered columns to

obtain a graph G′ on k + (2k + 1)(k + 1) = 2k2 + 4k + 1 vertices (see Figure 14).

PSfrag replacements

Figure 14: The graph G′ (for k = 3) from Example 5.2.1

We have tw(G) = 2k + 1 (shown in [62]), and it is easy to see that tw(G′) = 3:

Clearly tw(G′) ≥ 3 since it has a K4 minor, and tw(G′) ≤ 3 since e.g. G′ does not

contain any of the 5 obstruction graphs for tree-width 3 as a minor (see e.g. [6]) (it

is also easy to construct a tree-decomposition of width 3).

Hence if Ĝ is isomorphic to G′, and G1/2 is isomorphic to G plus the vertex v∗

connected to the 2k+ 1 vertices in the first row of G (i.e. G1/2 is obtained from Ĝ by

replacing each vertex by a path of length 2k + 1 as described above, and adding v∗

with its neighbors), then tw(Ĝ) = 3, |V (G1/2)| = O(|V (Ĝ)|), |E(G1/2)| = O(|E(Ĝ)|),

112

and yet tw(G1/2) = Ω
(

√

|V (Ĝ)|
)

.

However in practice this complication does not seem to happen, as observed in

the next section.

5.2.2 Computational results

We now present some computational results on the effectiveness of simple DP inequal-

ities for TSP computations. For that purpose we implemented a reduced version of

Algorithm 5.2.1 using tree-decompositions (available upon request from the author

of this thesis), and integrated it into the TSP solver Concorde by Applegate, Bixby,

Chvátal and Cook (Concorde is available at www.tsp.gatech.edu). More specifically,

Concorde works in iterations where in each iteration or round, it starts with an LP

solution x̂ and uses various methods to find violated inequalities from a given class,

and we added an option so that Concorde can use our implementation to find simple

DP inequalities in each round.

In practice, a separation routine which finds only one violated inequality in Ĝ is

essentially useless, since the pool of cutting planes maintained by Concorde typically

contains hundreds or more violated inequalities, so adding a single inequality will

typically not cause a significant change in the LP solution. On the other hand, trying

to generate all violated simple DP inequalities is typically not practical either, since

Concorde also limits the number of inequalities to be used for solving the next LP.

Hence in general, the goal is to provide a cutting plane algorithm which produces a

moderate number (no more than a few hundred) of violated inequalities from a given

class. Once one has an algorithm to generate more than one violated inequality from

a given class, typically a selection problem arises, i.e. one must decide on a strategy

which inequalities to look for and add to the cut pool, since adding all is usually not

an option. Some possible selection strategies were suggested for example in [2].

For our implementation, we focus only on simple light DP inequalities (for reasons

113

explained below). We first use a tree-decomposition of Ĝ to generate all candidate

light dominos and build G1/2, as described above. In our tests, G1/2 typically had

more then 20, 000 vertices, up to more than 200, 000 in the largest examples. Since

we can not generate all odd cuts of value < 1 in G1/2 (this would take too long and

produce too many inequalities), we use the tree-decomposition of G1/2 to repeatedly

find minimum odd cuts, as we describe now. Initially fix some v0 ∈ V (G1/2) and find

a minimum odd cut δ(X1) in G1/2 with v0 ∈ X1. Then pick a vertex v1 /∈ X1, and use

the tree-decomposition of G1/2 to find an odd cut δ(X2) of minimum value subject to

the constraint that {v0, v1} ⊆ X2. Then repeat this procedure as long as the returned

cuts have value < 1 (clearly this will happen eventually, since no previously produced

cut can be found again). It is very easy to modify the standard tree-decomposition

method to find minimum odd cuts so that it only considers cuts where a subset of

vertices is forced to be on a particular side. Obviously other methods for generating

a selection of odd cuts using the tree-decomposition are possible, but besides being

very simple to implement this method has the advantage of forcing the generated

cuts to ‘cover’ different parts of the graph, so that the returned DP inequalities differ

substantially.

In this way, we obtain a conceptually simple and fast routine for generating a

moderate sample of violated simple light DP inequalities (for discussions on the per-

formance, see below).

We did not include ‘heavy’ simple DP inequalities (i.e. DP inequalities where

one domino has surplus ≥ 1/2) in our implementation, for the following reasons (for

our arguments, we assume that m = O(n), as is the case for graphs of bounded

tree-width). In Algorithm 5.1.1, separating heavy inequalities is quite expensive.

Certainly the runtime of O(n5 log n) for the basic version of the algorithm (using

tree-decompositions) leaves little hope for a practical implementation. But even in

the faster (and more complicated) version of the simple DP separation algorithm of

114

[34], computing heavy inequalities is still very expensive and inefficient: Instead of

computing odd cuts only in G1/2, one would have to compute odd cuts in O(|E(Ĝ|)

graphs (which are modified versions of G1/2). In fact in their analysis the authors show

that for every vertex i ∈ V (Ĝ), one needs up to |δ(i)| such graphs to model heavy

domino inequalities as odd cuts, yielding a total of 2m graphs for which we would

have to find odd cuts in, as opposed to just 1 for detecting violated light inequalities.

Moreover, the techniques for reducing the number of light and heavy domino inequal-

ities in the improved version of the algorithm already take time O(n4) by themselves.

Apart from the computation difficulties, there is an even more important reason why

implementing an exact separation routine for DP inequalities seems of little practi-

cal value. While there may be a lot of heavy domino inequalities (up to O(mn) in

total, as shown in [34]), it is likely that there are not too many violated heavy DP

inequalities in practice. A single heavy domino already contributes at least 1/2 to the

surplus of the DP inequality, and so the other dominos (at least 2) have to have very

small surplus in order to keep the surplus total below one. In particular, any violated

simple DP inequality has at most one heavy domino, and no maximally violated (i.e.

surplus total 0) simple DP inequality can be heavy. Finally, our implementation usu-

ally already returns a sufficient number of cuts (unless the tree-width is very large,

see below), so additionally using a much slower method to look for a few extra cuts

which have small violation does not seem worthwhile.

Like any tree-decomposition based algorithm, the performance of our implementa-

tion depends on the width of the tree-decomposition used. All our tree-decompositions

were computed using a simple Min-Degree heuristic (discussed e.g. in [7]). In the

following tests results, when we speak of the tree-width of a problem instance, we

mean the width of the tree-decomposition computed by the Min-Degree heuristic, for

a graph G1/2 in that instance.

As it turned out, the tree-width computed for G1/2 increased only marginally over

115

that of its minor Ĝ (usually by at most one or two), in contrast to the theoretical

worst case described in Example 5.2.1.

In our application, as long as the tree-width was below 20 then our simple DP

implementation performed well and was usually able to generate a sufficient number

of inequalities. If the tree-width was between 20 and 23, the algorithm typically

becomes quite slow, and sometimes even runs out of memory altogether before a

single inequality is found (we also set a maximum time bound of 180 seconds per

round). Therefore if we detected that the tree-width of G1/2 was 24 or higher in a

given round, we aborted the algorithm and did not try to compute an odd cut for

that round.

All of our tests were run on 2.66 GHz Intel Xeon machines with 2 GB of memory.

We initially chose two sets of instances for our tests: all TSP instances from TSPLIB

[58] between 1,000 and 2,000 cities, and all TSPLIB instances between 3,000 and

10,000 cities. Each of tests described in the following was conducted for 10 different

input seeds for Concorde, and all tests results reported here are averages of those

runs.

For each problem, we first generated a ‘good’ LP solution by running the standard

version of Concorde (with options -B -mC32) to the point where it would usually start

branching. Then starting off that solution, we ran the following first set of tests:

‘standard’: run Concorde again (for reference)

‘simpleDP‘: run Concorde with our simple DP implementation turned on

‘planarDP‘: run Concorde with the planar DP separator turned on

The last test uses a heuristic for finding (general) violated DP inequalities, which

was described and shown to be highly effective computationally in [21]. This heuristic

first ‘approximates’ Ĝ by a planar graph, and then generates violated (general) DP

inequalities, adopting the exact method from [50].

116

The results of this first set of tests are shown in Table 1. Notice that a few

problems from TSPLIB between 1,000 and 2,000 cities are not listed here, since the

standard version of Concorde was already able to solve all or most instances of them

to optimality. The table contains the following data: Columns ‘gap’ and ‘gap %’

list the absolute value and the percentage of the initial gap (in terms of the optimal

solution), obtained from running Concorde once with -B and -mC32 (the gap of an

LP solution x̂ is defined as the value of the optimal solution, minus the value of x̂).

Columns ‘std’, ‘sDP’, ‘pDP’ list the improvement in the gap over the initial solution

from the tests ‘standard’, ‘simpleDP’ and ‘planarDP’, respectively. More precisely,

if ∆0 is the gap of the initial solution, and ∆ is the gap of the new solution, then

the column lists the quantity ((∆0 − ∆)/∆0) · 100. The remaining three columns

contain statistics pertaining to the width of the tree-decompositions used. We say a

round (as defined above) was successful if our implementation was able to generate

more than one violated simple DP inequality in that round. The column ‘success’

displays the percentage of successful rounds for a given test instance. The column ‘tw’

contains the average tree-width over all rounds (successful or not) for that instance,

and the column ‘aborted’ contains the percentage of runs which were aborted due to

the tree-width being higher than 23 or the algorithm running out of memory.

The three columns on tree-width data give an indication to what extent our im-

plementation was actually able to generate cutting planes. If ‘success’ was low, then

this was due either to the fact that the tree-width was too high, or there were simply

no violated inequalities to be detected (e.g. if the solution was getting very close to

being optimal). Which one of the two cases appeared can be inferred from looking

at the other two columns, ‘aborted’ and ‘tw’. In particular, if ‘success’ was very low

(below 10%) due to high tree-width, we did not perform any further tests on that in-

stance since our implementation can not consistently contribute violated inequalities

in such cases.

117

Table 1: Results of tests ‘standard’, ‘simpleDP’ and ‘planarDP’

Problem gap gap % std sDP pDP success tw aborted
dsj1000 4822.77 0.0258% 3.7% 59.9% 89.4% 79.4% 10.4 0.0%
u1060 66.59 0.0297% 1.7% 25.2% 30.7% 76.1% 11.2 0.0%
vm1084 61.25 0.0256% 6.0% 77.6% 97.5% 77.4% 12.0 0.0%
pcb1173 9.09 0.0160% 5.2% 17.3% 37.6% 32.4% 9.4 0.0%
d1291 87.78 0.1728% 5.7% 17.7% 51.9% 84.8% 18.4 4.1%
rl1323 186.97 0.0692% 3.5% 22.2% 42.2% 64.6% 13.1 0.0%
fl1400 273.17 1.3572% 1.2% 19.9% 49.8% 100.0% 9.9 0.0%
fl1577 31.05 0.1396% 9.6% 22.1% 85.7% 95.3% 17.7 3.1%
vm1748 101.84 0.0303% 2.4% 62.6% 96.8% 92.9% 15.4 0.0%
u1817 130.03 0.2273% 2.3% 8.8% 75.9% 61.0% 21.3 22.9%
rl1889 263.63 0.0833% 5.5% 12.3% 18.3% 92.6% 15.1 0.0%
pcb3038 46.33 0.0336% 1.3% 7.1% — 4.0% 25.4 86.2%
fl3795 85.24 0.2963% 8.1% 20.6% 77.2% 98.9% 13.2 0.0%
fnl4461 21.48 0.0118% 4.2% 10.7% — 8.4% 24.9 82.4%
rl5915 227.88 0.0403% 9.0% 26.1% — 5.0% 23.5 63.9%
rl5934 169.25 0.0304% 12.3% 15.5% — 2.7% 24.2 74.9%
pla7397 8531.04 0.0367% 13.5% 35.7% 36.1 % 100.0% 15.2 0.0%

There are two main observations one can make looking at the Table 1. Our im-

plementation was able to handle all instances of the first class (1,000-2,000 cities)

without problems (i.e. most rounds were successful), but on all but two of the larger

instances, the tree-width was too high in order for our implementation to work prop-

erly. We also ran some tests on some larger instances (namely rl11849 and usa13509),

and also found that the tree-width was too large (roughly 30) to be handled by our

implementation. There are several ways to get around this problem that may be

worthwhile investigating: For example one could try to use other methods than the

Min-Degree heuristic to try to obtain better tree-decompositions (although compared

to other methods, the Min-Degree heuristic offers a good trade-off between runtime

and quality of the decomposition), and one could also try to develop methods to ap-

proximate the input graph (in our case G1/2) by a graph of lower tree-width (e.g. by

deleting or contracting specific edges), similar to what was done for approximating

118

non-planar by planar graphs in [21].

Second, adding the simple DP separation routine brought significant improve-

ments over just running Concorde a second time in essentially all cases where the

‘success’ rate was high (and even in some cases where only a small percentage of the

rounds was successful). Nevertheless, it is just as clear from the data that the planar

DP separation routine from [21] is even more effective in improving the LP bound.

We also performed a second round of tests, in order to see whether our exact

simple DP separation routine finds some cuts that the heuristic planar DP separation

routine misses. For that purpose, we compared the outcomes of the following two

tests:

‘planarDP again’: run Concorde with the planar DP separator turned

on, starting from the solution of test ‘planarDP’

‘simpleDP+planarDP’: run Concorde with both the planar and simple DP

separator turned on, starting from the solution of

test ‘planarDP’

The results of these tests are given in Table 2. We only ran this second set of

tests on those examples where our implementation was not hindered by high tree-

width, and we also did not run additional tests on vm1084 and vm1748, since the

solutions resulting from the first ‘planarDP’ test were already very close to being

optimal (in each case, at least half of the seeds were solved to optimality). Columns

‘pDP again’ and ‘sDP + pDP’ indicate the improvement of the gap by ‘planarDP

again‘ and ‘simpleDP+planarDP’ (respectively) over the gap from the test ‘planar

DP’ of the first set. The remaining three columns are measuring the performance of

the tree-width part, as above.

The results in 2 are more mixed than those in 1. The first thing to notice is that

the percentage of successful rounds is quite low for a lot of instances, although the

119

Table 2: Results of tests ‘planarDP’, ‘planarDP again’ and ‘simpleDP+planarDP’

Problem pDP gap pDP again sDP + pDP success tw aborted
dsj1000 509.48 2.2% 2.6% 12.8% 12.0 0.0%
u1060 46.16 0.2% 1.4% 26.2% 11.2 0.0%
pcb1173 5.66 0.0% 0.3% 12.6% 12.1 0.0%
d1291 42.25 3.4% 11.4% 11.5% 23.0 57.8%
rl1323 108.13 1.3% 1.4% 29.6% 13.5 0.0%
fl1400 137.18 26.3% 56.6% 100.0% 11.3 0.0%
fl1577 4.45 13.2% 20.1% 85.9% 15.1 0.0%
u1817 31.27 5.9% 6.2% 6.2% 24.2 70.9%
rl1889 215.54 3.7% 3.1% 50.0% 14.8 1.1%
fl3795 19.45 25.9% 21.2% 86.0% 13.8 0.0%
pla7397 5449.79 11.0% 16.7% 90.8% 15.7 0.0%

tree-width is not problematic (except d1291 and u1817). This is due to the fact that

on those examples, it frequently happens that in a given round, no simple (light) DP

inequality is violated. However looking at the individual log-files, it is usually the

case that the planar DP separator does not find any violated general DP inequalities

either. For those examples, the results of ‘planarDP again’ and ‘simpleDP+planarDP’

were essentially identical, and neither brought significant improvements.

On the other hand, for examples where the success rate was high (fl1400, fl1577,

fl3795 and pla7397), both runs brought significant improvements (11% to 56%), and in

3 of those 4 examples adding the simple DP inequalities to the mix made a noticeable

positive contribution over just using the planar DP separator.

However on fl3795, somewhat surprisingly, the ‘simpleDP+planarDP‘ tests ac-

tually performed worse (on average over 10 runs) than the ‘planarDP’ tests. The

same phenomenon occurs on rl1889 (where about 50% of the rounds were success-

ful). In both cases, the actual difference was relatively small (the average gap in

absolute values was worse by 0.9 and 1.1, respectively). We ran additional tests (100

additional seeds) for ‘rl1889’, and here the problem disappeared: While the average

gap for ‘planarDP again’ was 210.06, the average gap for ‘simpleDP+planarDP’ was

120

207.20, which meant an improvement of 1.4% and 2.8% respectively over the average

gap from ‘planarDP’ of 213.09. Hence while it can happen for single seeds that the

‘planarDP again’ version produces a slightly better gap because different inequalities

are actually used in the cutpool, this seems to be the exception. In fact looking at

the log files for the original 10 runs of rl1889, there was only one instance where

‘simpleDP+planarDP’ performed significantly worse, and the other 9 produced es-

sentially no change of the gap in either direction. Similarly for fl3795, only 2 runs

had a decrease in gap improvement, one had a significant improvement and the other

7 produced about the same gap for both tests.

In summary, our computational results imply the following conclusions:

1. Using a separation method for simple DP inequalities gives considerable im-

provements in the gap over running Concorde in standard mode.

2. If compared individually, simple DP inequalities do not seem to be as effective as

the more general DP inequalities returned by the planar DP separation heuristic.

3. If the planar DP heuristic is unable to provide a decent amount of cuts, then the

exact separation routine typically finds no violated cuts either, and conversely

if the exact separation routine is unable to produce cuts despite the fact that

the tree-width is low, then the planar DP heuristic usually finds no (or very

few) violated general DP inequalities as well.

4. If there are enough violated simple DP inequalities left in Ĝ, then enabling the

simple DP separator in addition to the DP heuristic improves the gap noticeably

(although not dramatic) in most cases, although there may be individual cases

where the performance actually decreases slightly.

5. Simple tree-decomposition heuristics find tree-decompositions of width 10 to 25

121

(on average) for the graphs Ĝ tested here (in fact for the larger graphs G1/2),

making them accessible for tree-decomposition based methods.

Our implementation of a separation routine for simple (light) DP inequalities is

relatively basic, and leaves room for improvement. As discussed earlier, we only focus

on generating light simple DP inequalities, so one obvious improvement would be

to try to get a fast practical method for generating heavy simple DP inequalities

as well. However as we noted earlier, even apart from the practical challenges of

obtaining a fast method for this, it appears unlikely that this would lead to significant

progress in improving the gap, since for one heavy simple DP inequalities can never

be violated by much, and moreover (as mentioned in (5)), once there are no more

violated light simple DP inequalities, even the more general planar DP heuristic has

trouble providing cuts, suggesting that there are in particular essentially no violated

heavy simple DP inequalities left either in such cases.

Second, we chose a very simple approach to generating a selection of violated in-

equalities each round, namely to simply keep forcing vertices to one side of the cut, and

finding single odd cuts by repeatedly traversing the tree-decomposition. Clearly one

can try other methods of getting a good selection of cuts from the tree-decomposition

of G1/2, e.g. by building all partial solutions stored in the tree up to a certain depth,

and then completing them to distinct odd cuts in G1/2. In particular one could try to

generate more inequalities per round in this way- while our implementation typically

returns about 50-150 violated inequalities per round (when it was not hindered by

high tree-width or too few violated inequalities left in x̂) before fixing vertices leads

to increasing the value of the best odd cut to 1, the heuristic for planar general DP

inequalities usually passes 500 inequalities per round to Concorde, about half of which

typically make it to the cut-pool.

Third, in terms of the tree-decomposition part, one can try to obtain better tree-

decompositions by using more sophisticated methods, or try to actively decrease the

122

tree-width of Ĝ (and G1/2) without destroying too many violated inequalities, in order

to be able to deal with larger problems.

5.3 Conclusion

The idea of using tree-based decompositions in the context of the TSP first originated

in the paper by Cook and Seymour [22], where the authors use branch-decompositions

to find an optimal tour in a graph which is the union of a small number of ‘good’ tours.

In this chapter we have demonstrated two possible ways of exploiting low tree-width

in the context of the TSP. As we have seen, the support graph of (reasonably good)

LP solutions x̂ tends to have relatively low tree-width. This is to be expected, as

the support graph of a good LP solution should look similar to a single cycle, which

has tree-width two. What is equally important is that even the simplest heuristics

actually find tree-decompositions for these graphs whose width is in a range where

optimization methods can be applied in practice. Of course the idea of using tree-

based decomposition methods on the support graph can also be applied to other

classes of inequalities.

The results of this chapter also give further evidence (after e.g. [22], [48], [70],

[47], [46], [49], [43], [19]) that algorithms working on tree-decompositions (or branch-

decompositions) of bounded width are not only of theoretical interest, but may in

practice sometimes represent an alternative to traditional methods such as integer

programming or complex polynomial-time algorithms. Some of the potential advan-

tages in particular compared to complex polynomial-time algorithms are listed below:

1. Many polynomial-time methods only generate a single optimal solution (in the

case of [34] one violated DP inequality), and it is usually not easy to generate all

(or a even a large number of) optimal solutions for an instance. In the dynamic

programming approach typically used for tree-decomposition based methods,

constructing all (near-) optimal solutions instead of a single one requires only

123

small changes to the algorithm, in contrast to standard polynomial-time algo-

rithms. Even if generating all solutions is not an option, the tree-decomposition

is a good starting point for getting a selection of optimal or near-optimal so-

lutions. In the case of finding violated inequalities for the TSP, this is crucial:

Finding only a single violated inequality will usually not help to increase the

LP bound on larger problems.

2. Even standard polynomial-time techniques such as max-flow based techniques

may become infeasible to use on very large graphs, while the only critical lim-

itation for tree-decomposition based algorithms is usually the width of the de-

composition used. For example in 5.2 we compute all cuts within a factor of

1.5 of the minimum cut on graphs with more than 5000 edges, and compute

a minimum odd cut in graphs of up to 200,000 vertices within a few seconds,

which is at the very least a challenge for implementations of the corresponding

standard methods ([54], [57]).

3. Once an implementation for the general dynamic programming framework of the

tree-decomposition based methods is available, it is relatively easy to adapt it to

solve different problems such as minimum (or maximum) (odd) cut, max clique,

chromatic number and many others, or introduce additional side constraints

(like we did when searching for minimum odd cuts with some vertices fixed).

4. Although the constant factors in the theoretical analysis of many problems

solvable in linear time on graphs of bounded tree-width may seem large, in

practice these methods often still work well if the width of the decomposition

used is reasonably high, as illustrated e.g. in Section 5.2.2. Further evidence

of the practicability of tree-decomposition based methods is given Chapter A

of the appendix of this thesis, where we report computational results for such

algorithms on a large collection of graphs from various practical applications.

124

Apart from problem specific techniques, using better methods to find good

tree-decompositions and other generally applicable methods to reduce memory

requirements (see e.g. [10]) would likely increase the number of instances that

can be handled.

125

APPENDIX A

COMPUTATIONAL RESULTS FOR SOLVING

STANDARD PROBLEMS ON GRAPHS OF BOUNDED

TREE-WIDTH

In 5.2.1 and 5.2.2, we demonstrated that tree-decompositions can actually be useful

in practice, even if the width of the decomposition used is moderately high. In fact

the tree-decomposition part of the algorithm in 5.2.1 was implemented as a module of

a more general framework. In this appendix we briefly describe this framework, and

give some computational results for solving different NP-hard problems on a large

variety of problem instances from practical applications.

In order to test the practicability of tree-decomposition based methods for several

NP-hard problems, we implemented a version of the standard dynamic programming

approach for tree-decomposition based algorithms. The implementation was done in

the Java programming language (version 1.5), and is available upon request from the

author of this thesis. The key component of the package is a template class which

contains the basic mechanisms to store information in a (nice) tree-decomposition tree

and traverse it bottom-up in order to compute information at the root node. The

package also contains classes representing the abstract notions of partial solutions

characteristics and full solutions, as described in [14] or in section 5.1. In order to

add an algorithm for a specific problem, such as computing the chromatic number,

all that has to be done is to create a subclass of the above template classes (using

Java’s inheritance framework) and override methods which are problem-specific , such

as generating all characteristics at a LEAF node, or extending characteristics at an

INTRO node. The present version of the package contains implementations for

126

• finding a minimum (odd) cut,

• finding a maximum (odd) cut,

• finding all (odd) cuts below a certain value,

• computing an optimal coloring, and computing the chromatic number,

• computing a maximum independent set,

• computing a maximum clique.

The above classes are straightforward implementations of the standard dynamic pro-

gramming approach, and contain no sophisticated data structures or algorithms. The

only exception is the class for computing an optimal coloring of a graph. Apart from

first running a first-fit heuristic to get an upper bound on the chromatic number

(which can be used to prune solutions during the tree-decomposition part), we use

a non-trivial scheme for encoding characteristics of partial solutions in order to save

memory. For coloring, the characteristic of a partial solution at a node t mainly

consists of a partition of the bag Xt into (independent) sets. If Xt = {0, . . . , k − 1},

then a standard way to encode a partition of Xt is a vector a = (a0, a1, . . . , ak−1) of

length k, satisfying the following property:

a0 = 0, ai ≤ 1 + max(a0, a1, . . . , ai−1) ∀ 0 ≤ i ≤ k − 1. (A.0.1)

It is easy to see that such vectors are in 1-1 correspondence with partitions of

{0, 1, . . . , k − 1}. For example the partition {{0, 1, 4}, {2, 3}} of the set {0, 1, 2, 3, 4}

could be encoded as a = (0, 0, 1, 1, 0). In our implementation, we exploit the fact that

ai ≤ i to store a partition of a set of up to 19 elements in a single 64 bit variable. This

yields significant memory savings over the straightforward approach of representing

each ai by a separate integer, but limits this approach to sets Xt of size at most 19 (of

course one could use e.g. a second 64 bit variable to deal with larger sets). Therefore

127

the coloring algorithm can only handle tree-decompositions of width at most 18, but

our test examples in fact indicate that this is already on the border of what is doable

in practice with the standard dynamic programming approach.

In order to estimate up to what tree-width the standard dynamic programming

approach works in practice, we created a test collection of 95 instances of graphs of

low tree-width, from a wide spectrum of practical applications. Most of these graphs

can be found in the online library ‘TreewidthLIB’ created by Bodlaender and van

den Broek [12], which contains a large collection of graphs of low tree-width. Our

particular focus was on graphs where the minimum degree heuristic (see e.g. [7]) finds

a tree-decomposition of width at most 20, since it seems that in practice, one would

need rather specific conditions to be met in order to handle instances of width much

higher than that. Our test collection consists of the following instances (for more

specific information about the practical applications that the specific instances arise

in, we refer the reader to the references given below).

• All 16 graphs from frequency assignment problems discussed in [48]: celar06,

celar06pp, celar07, celar07pp, celar08, celar08pp, celar09, celar09pp, graph05,

graph06, graph06pp, graph11, graph12, graph12pp, graph13, graph13pp. All of

these graphs are contained in the online library TreewidthLIB [12].

• Several groups of graphs used for testing in [48] which arise from coloring

problems: The Mycielsky group (myciel3, myciel4, myciel5, myciel6, myciel7),

the ’miles’ group (miles250, miles500, miles500, miles1000, miles1500) and the

’queen’ group (queen5 5, queen6 6, queen7 7, queen8 8, queen9 9, queen10 10,

queen11 11). All of these 17 graphs are contained in the online library Treewidth-

LIB [12].

• Graphs from a website maintained by N.J.A. Sloane of some difficult instances

for computing a maximum independent set [68]. Our test collection consists

128

of the 7 graphs of the ’dc’ family with at most 512 vertices, namely 1dc.64,

1dc.128, 1dc256, 1dc512, 2dc.128 and 2dc.512.

• 4 large instances arising during the execution of the algorithm described in 5.2.1:

G S 1, G S 2, G S 3, G S 4. The instances are available upon request from the

author of this thesis.

• Graphs stored in TreewidthLIB [12] with the following property: The minimum

degree heuristic (as implemented by the authors of TreewidthLIB) computes a

tree-decomposition of width at least 10 and at most 20. For our test compilation

we have included all of these graphs, with the exception that if TreewidthLIB

contains different (pre-processed) versions of the same graph, we only chose

the original one. All graphs not mentioned in one of the above four categories

belong to this group, and some graphs in the first category also satisfy this prop-

erty. Among others, this group contains several graphs arising from Delauney

triangulations of TSP instances.

For each of the above 95 instances, we used the above-described modules to com-

pute the maximum clique number ω(G), the size of a maximum independent set α(G),

the chromatic number χ(G) and the maximum cut in the given graph G. All tests

were carried out on AMD Athlon workstations with a dual-core 1.8 GHz processor

and 2GB of memory. A detailed list of all results is given in Table 4 at the end of

this chapter. The runtimes given there do not contain the time for executing the

minimum degree heuristic to find a tree-decomposition (which was typically less than

a second). An entry of ’-’ indicates that the algorithm failed, which was either due

to insufficient memory, or in the case of the coloring the width of the decomposition

used being 19 or higher. The results are ordered first by increasing tree-width, and

then by increasing number of vertices (hence roughly increasing in the difficulty of

the instance for a tree-decomposition based approach).

129

Table 3 contains a short summary of the results of Table 4: For each problem we

list the minimum width for which at least one instance failed (‘min tw unsolved’),

the maximum width for which at least one instance completed (‘max tw solved’), and

the number of instances that were solved successfully in between these two bounds

(‘solved in between’).

Table 3: Overall performance of tree-decomposition based methods

Problem min tw unsolved max tw solved solved in between
ω(G) 43 313 12 / 16
α(G) 57 188 3 / 12
χ(G) 14 18 5 / 22

max cut in G 19 21 4 / 4

We next list a few observations one can make from Tables 3 and 4. Despite the

fact that our test collection of is rather large and diverse, there are some restrictions

to keep in mind, which we list as well.

• Each of the 4 problems (max clique, max independent set, chromatic number,

max cut) are typically solvable for much higher tree-width in practice than what

one can expect from the theoretical worst case analysis.

• The problems ‘chromatic number’ and ‘max cut’ exhibit a relatively tight thresh-

old behavior in practice with respect to the width of the decomposition, in the

following sense. Most problems below a certain width can be solved very effi-

ciently, and essentially no problems above the threshold can be solved. Only if

the width is in a small range around that threshold does the solvability depend

on the possible additional structure or the size of the actual problem instance.

• It appears that computing ω(G) and α(G) is easier in practice than solving the

other two problems. Part of this can be explained by the fact that the size of the

optimal set (clique or independent set) in the successfully solved instances of

130

our test collection with very high width (> 30) is usually much smaller than the

width of the decomposition. In that case, the dynamic programming approach

is exponential only in the size of the optimal set. Also, there are only relatively

few instances in our test collection of width higher than 20, so the data in

the summary Table 3 should be interpreted in the sense that one can typically

expect to compute ω(G) and α(G) without problems if the tree-width is at most

20, and sometimes also for much higher values.

In fact the special structure of the maximum clique problem makes it in principle

possible to use tree-decompositions in an even simpler way: Since any maximum

clique is contained in one of the bags of a tree-decomposition, one could use the

best performing exact method to compute a maximum clique in each bag, so

that ω(G) is simply the maximum of those clique sizes. This could potentially

improve the scope of exact methods for the maximum clique problem for those

cases where the tree-width is much smaller than the size (i.e. number of vertices)

of the input graph.

The focus of our implementation of the dynamic programming framework for

tree-decomposition based methods was to show that already a straightforward imple-

mentation of this algorithmic template can be useful for solving non-trivial instances

of hard problems. For example, for the graph G S 2 with more than 150,000 vertices

(and a tree-decomposition of width 14), it takes 22 seconds to compute α(G), under

7 seconds to compute ω(G) and 1 minute to compute a maximum cut. Apart from

the above mentioned methods for computing χ(G), little effort has been made to

optimize memory consumption or running time of our implementation. Hence the

running times reported here can certainly be improved significantly, e.g. by mak-

ing use of further pruning techniques at each node of the tree-decomposition, or by

using more efficient data structures. Given the fact that the computational results

in Table 4 are already promising, it would be of interest to develop more optimized

131

versions of the concepts presented here, and investigate how they compare to other

exact methods for solving NP-hard problems in practice.

Table 4: Computational results for solving standard problems

Problem n m tw ω sec α sec χ sec max cut sec
myciel3 11 20 5 2 <0.1 5 <0.1 4 <0.1 16 <0.1
graph12pp 61 122 5 5 <0.1 17 <0.1 5 0.2 86 <0.1
celar09pp 67 165 7 8 0.2 18 <0.1 8 <0.1 112 0.1
miles250 128 387 9 8 0.2 44 <0.1 8 <0.1 263 0.4
eil51.tsp 51 140 10 3 <0.1 16 0.2 4 3.1 95 0.1
huck 74 602 10 11 0.5 27 <0.1 11 <0.1 191 0.4
celar02 100 311 10 8 0.1 34 <0.1 8 0.1 213 0.3
att532 532 729 10 4 <0.1 239 0.2 4 8.3 37149 0.2
myciel4 23 71 11 2 <0.1 11 <0.1 5 6.4 55 0.5
water 32 123 11 6 0.1 12 0.1 6 0.6 84 0.3
BN 16-pp-014 34 156 11 7 0.1 12 <0.1 7 0.6 124 0.8
oesoca+ 67 208 11 10 0.2 35 <0.1 10 0.5 141 0.7
celar06pp 82 327 11 11 0.2 21 <0.1 11 <0.1 214 0.9
rat99.tsp 99 279 11 4 0.1 32 0.1 4 12.9 188 0.3
celar06 100 350 11 11 0.4 31 <0.1 11 <0.1 233 0.9
munin1 189 466 11 4 0.1 87 0.6 4 9.0 282 0.3
1bx7 41 195 12 7 0.1 10 <0.1 7 1.2 127 0.7
kroC100.tsp 100 286 12 4 0.1 32 0.1 4 88.8 192 0.6
lin105.tsp 105 292 12 4 <0.1 34 0.1 4 108.7 198 0.5
pr124.tsp 124 318 12 3 <0.1 47 0.3 4 59.1 220 0.4
anna 138 423 12 7 0.4 85 0.1 7 1.2 307 2.1
pr152.tsp 152 428 12 4 0.1 51 0.3 4 26.7 289 0.5
fl417.tsp 417 1179 12 4 0.1 132 0.1 4 409.2 797 1.0
pigs 441 806 12 3 0.1 225 0.4 3 107.3 591 1.4
1ubq 74 211 13 5 0.1 30 <0.1 5 7.7 153 1.9
pr76.tsp 76 218 13 4 0.1 24 0.1 4 177.9 146 0.9
david 87 406 13 11 0.4 36 <0.1 11 0.4 267 3.3
G S 3 39559 45109 13 4 2.6 19630 5.6 4 648.3 43306 9.7
kroE100.tsp 100 283 14 4 0.1 32 0.1 4 1081.8 191 0.7
kroB150.tsp 150 436 14 4 0.1 48 0.2 - - 292 5.0
fl3795 2103 3973 14 4 0.2 950 1.6 - - 3394 7.5
G S 4 62791 69330 14 4 3.1 31203 11.7 - - 67180 23.9
G S 2 153410 160239 14 5 6.6 76517 22.0 - - 157985 60.6
eil76.tsp 76 215 15 3 0.2 24 0.6 - - 145 3.2
rd100.tsp 100 286 15 4 0.1 31 0.4 - - 192 4.0
pr136.tsp 136 377 15 3 0.1 44 0.2 - - 256 3.2
kroA150.tsp 150 432 15 4 0.1 48 0.7 - - 290 9.3

132

Table 4: continued

Problem n m tw ω sec α sec χ sec max cut sec
celar05 200 681 15 8 0.3 66 0.2 8 187.2 458 6.3
G S 1 71351 78536 15 4 1.5 35476 19.1 - - 76192 39.2
a280.tsp-pp-002 92 257 16 3 0.1 29 0.5 - - 174 4.9
kroB100.tsp 100 284 16 3 0.1 31 0.7 - - 191 7.8
kroA100.tsp 100 285 16 4 <0.1 32 0.1 - - 192 1.9
eil101.tsp 101 290 16 3 <0.1 32 0.2 - - 195 7.9
u159.tsp 159 431 16 4 0.1 55 0.8 - - 294 6.2
kroB200.tps 200 580 16 4 0.1 63 0.6 - - 389 39.4
celar03 200 721 16 9 0.2 64 0.2 9 266.6 482 10.0
celar11 340 975 16 9 0.2 125 0.4 9 541.2 682 8.2
kroA200.tsp 200 586 17 4 0.1 62 1.7 - - 392 37.6
pr299.tsp 299 864 17 4 0.2 97 1.7 - - 581 50.3
celar01 458 1449 17 8 0.3 159 0.6 - - 988 166.2
queen5 5 25 160 18 5 0.1 5 0.2 5 35.2 100 12.7
celar07pp 162 764 18 11 0.1 42 0.1 11 146.6 497 25.2
celar07 200 817 18 11 0.3 60 <0.1 11 142.0 538 25.4
tsp225.tsp 225 622 18 3 0.1 73 1.2 - - 423 168.7
celar04 340 1009 18 10 0.3 117 1.4 - - 696 53.3
celar09 340 1130 18 11 0.2 112 1.7 - - 764 38.6
celar10 340 1130 18 11 0.1 112 0.1 - - 764 27.6
celar08pp 365 1539 18 11 0.8 98 1.3 - - 1013 164.6
celar08 458 1655 18 11 0.9 148 1.1 - - 1106 292.9
p654.tsp 654 1806 18 4 0.3 219 1.0 - - 1229 29.6
1i07 59 397 19 8 0.1 12 0.1 - - 245 24.6
1b67 68 559 19 9 0.3 12 0.1 - - 340 69.4
rat195.tsp 195 562 19 4 0.1 61 1.2 - - 378 81.9
link 724 1738 19 4 0.3 301 270.2 - - - -
d2103 2103 2737 19 4 0.4 1010 39.0 - - 127901 151.4
myciel5 47 236 20 2 0.1 23 0.4 - - 180 330.4
knights8 8 64 168 20 2 <0.1 32 6.1 - - 168 536.3
ch150.tsp 150 432 20 4 0.2 48 2.4 - - 290 251.4
d198.tsp 198 571 20 4 0.1 63 4.8 - - 384 238.8
pr264.tsp 264 772 21 3 0.2 84 4.7 - - 517 538.7
graph06pp 119 348 22 6 <0.1 43 25.0 - - - -
miles500 128 1170 27 20 140.1 18 0.5 - - - -
queen6 6 36 290 28 6 0.3 6 0.6 - - - -
graph05 100 416 28 9 0.2 25 43.6 - - - -
1dc.64 64 543 32 7 0.8 10 0.5 - - - -
myciel6 95 755 35 2 1.2 47 310.3 - - - -
queen7 7 49 476 38 7 1.2 7 1.3 - - - -
miles750 128 2113 43 - - 12 0.4 - - - -

133

Table 4: continued

Problem n m tw ω sec α sec χ sec max cut sec
queen8 8 64 728 49 8 0.9 8 27.5 - - - -
miles1000 128 3216 54 - - 8 0.7 - - - -
graph06 200 843 57 9 1.3 - - - - - -
queen9 9 81 1056 66 9 6.4 9 34.1 - - - -
1dc.128 128 1471 67 8 2.7 - - - - - -
myciel7 191 2360 78 2 2.4 - - - - - -
queen10 10 100 1470 80 10 5.5 - - - - - -
miles1500 128 5198 83 - - 5 1.1 - - - -
2dc.128 128 5173 89 - - 5 1.6 - - - -
graph12 340 1256 98 6 1.0 - - - - - -
queen11 11 121 1980 101 11 29.0 - - - - - -
graph11 340 1425 103 8 0.2 - - - - - -
1dc.256 256 3839 138 9 83.0 - - - - - -
graph13pp 456 1874 138 7 0.3 - - - - - -
graph13 458 1877 138 7 0.3 - - - - - -
2dc.256 256 17183 188 - - 7 273.2 - - - -
1dc.512 512 9727 313 10 2240 - - - - - -
2dc.512 512 54895 416 - - - - - - - -

134

REFERENCES

[1] Alon, N., Seymour, P., and Thomas, R., “A separator theorem for nonpla-
nar graphs,” J. Amer. Math. Soc., vol. 3, no. 4, pp. 801–808, 1990.

[2] Andreello, G., Caprara, A., and Fischetti, M., “Embedding {0, 1
2
}-cuts

in a branch-and-cut framework: a computational study,” INFORMS J. Comput.,
vol. 19, no. 2, pp. 229–238, 2007.

[3] Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J., The
traveling salesman problem. Princeton Series in Applied Mathematics, Princeton,
NJ: Princeton University Press, 2006. A computational study.

[4] Arnborg, S., Lagergren, J., and Seese, D., “Easy problems for tree-
decomposable graphs,” J. Algorithms, vol. 12, no. 2, pp. 308–340, 1991.

[5] Arnborg, S. and Proskurowski, A., “Linear time algorithms for NP-hard
problems restricted to partial k-trees,” Discrete Appl. Math., vol. 23, no. 1,
pp. 11–24, 1989.

[6] Arnborg, S., Proskurowski, A., and Corneil, D. G., “Forbidden minors
characterization of partial 3-trees,” Discrete Math., vol. 80, no. 1, pp. 1–19, 1990.

[7] Bachoore, E. H. and Bodlaender, H. L., “New upper bound heuristics
for treewidth,” Tech. Rep. UU-CS-2004-036, Department of Information and
Computing Sciences, Utrecht University, 2004.

[8] Barnette, D. W., “Generating projective plane polyhedral maps,” J. Combin.
Theory Ser. B, vol. 51, no. 2, pp. 277–291, 1991.

[9] Bern, M. W., Lawler, E. L., and Wong, A. L., “Linear-time computation
of optimal subgraphs of decomposable graphs,” J. Algorithms, vol. 8, no. 2,
pp. 216–235, 1987.

[10] Betzler, N., Niedermeier, R., and Uhlmann, J., “Tree decompositions
of graphs: saving memory in dynamic programming,” Discrete Optim., vol. 3,
no. 3, pp. 220–229, 2006.

[11] Bodlaender, H. L., “A tourist guide through treewidth,” Acta Cybernet.,
vol. 11, no. 1-2, pp. 1–21, 1993.

[12] Bodlaender, H. and van den Broek, J.-W., “TreewidthLIB,”
http://people.cs.uu.nl/hansb/treewidthlib/index.php.

[13] Bodlaender, H. L., “A linear time algorithm for finding tree-decompositions
of small treewidth,” SIAM Journal on Computing, vol. 25, pp. 1305–1317, 1996.

135

[14] Bodlaender, H. L., “Treewidth: algorithmic techniques and results,” in Math-
ematical foundations of computer science 1997 (Bratislava), vol. 1295 of Lecture
Notes in Comput. Sci., pp. 19–36, Berlin: Springer, 1997.

[15] Bodlaender, H. L. and Thilikos, D. M., “Graphs with branchwidth at most
three,” J. Algorithms, vol. 32, no. 2, pp. 167–194, 1999.

[16] Borie, R. B., Parker, R. G., and Tovey, C. A., “Automatic generation
of linear-time algorithms from predicate calculus descriptions of problems on
recursively constructed graph families,” Algorithmica, vol. 7, no. 5-6, pp. 555–
581, 1992.

[17] Caprara, A. and Fischetti, M., “{0, 1
2
}-Chvátal-Gomory cuts,” Math. Pro-

gramming, vol. 74, no. 3, Ser. A, pp. 221–235, 1996.

[18] Carr, R., “Separating clique trees and bipartition inequalities having a fixed
number of handles and teeth in polynomial time,” Math. Oper. Res., vol. 22,
no. 2, pp. 257–265, 1997.

[19] Christian Jr., W. A., Linear-time algorithms for graphs of bounded branch-
width. PhD thesis, Rice University, Texas, United States, 2003.

[20] Chvátal, V., “Edmonds polytopes and weakly Hamiltonian graphs,” Math.
Programming, vol. 5, pp. 29–40, 1973.

[21] Cook, W., Espinoza, D., and Goycoolea, M., “A study of domino-parity
and k-parity constraints for the TSP,” in Integer programming and combinatorial
optimization, vol. 3509 of Lecture Notes in Comput. Sci., pp. 452–467, Berlin:
Springer, 2005.

[22] Cook, W. and Seymour, P., “Tour merging via branch-decomposition,” IN-
FORMS J. Comput., vol. 15, no. 3, pp. 233–248, 2003.

[23] Courcelle, B., “The monadic second-order logic of graphs. III. Tree-
decompositions, minors and complexity issues,” RAIRO Inform. Théor. Appl.,
vol. 26, no. 3, pp. 257–286, 1992.

[24] Courcelle, B. and Mosbah, M., “Monadic second-order evaluations on tree-
decomposable graphs,” in Graph-theoretic concepts in computer science (Fis-
chbachau, 1991), vol. 570 of Lecture Notes in Comput. Sci., pp. 13–24, Berlin:
Springer, 1992.

[25] Courcelle, B., “Graph rewriting: an algebraic and logic approach,” in Hand-
book of theoretical computer science, Vol. B, pp. 193–242, Amsterdam: Elsevier,
1990.

[26] Courcelle, B., “The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs,” Inform. and Comput., vol. 85, no. 1, pp. 12–75, 1990.

136

[27] Dantzig, G., Fulkerson, R., and Johnson, S., “Solution of a large-scale
traveling-salesman problem,” J. Operations Res. Soc. Amer., vol. 2, pp. 393–410,
1954.

[28] Demaine, E. D., Fomin, F. V., Hajiaghayi, M., and Thilikos, D. M.,
“Subexponential parameterized algorithms on bounded-genus graphs and H-
minor-free graphs,” J. ACM, vol. 52, no. 6, pp. 866–893 (electronic), 2005.

[29] Dharmatilake, J., Binary Matroids With Branch-Width Three. PhD thesis,
Ohio State University, 1994.

[30] Diestel, R., Graph theory, vol. 173 of Graduate Texts in Mathematics. Berlin:
Springer-Verlag, third ed., 2005.

[31] Edmonds, J., “Maximum matching and a polyhedron with 0, 1-vertices,” J.
Res. Nat. Bur. Standards Sect. B, vol. 69B, pp. 125–130, 1965.

[32] Epstein, D. B. A., “Curves on 2-manifolds and isotopies,” Acta Math., vol. 115,
pp. 83–107, 1966.

[33] Fleischer, L. and Tardos, É., “Separating maximally violated comb inequal-
ities in planar graphs,” Math. Oper. Res., vol. 24, no. 1, pp. 130–148, 1999.

[34] Fleischer, L. K., Letchford, A. N., and Lodi, A., “Polynomial-time sep-
aration of a superclass of simple comb inequalities,” Math. Oper. Res., vol. 31,
no. 4, pp. 696–713, 2006.

[35] Grötschel, M., Lovász, L., and Schrijver, A., Geometric algorithms and
combinatorial optimization, vol. 2 of Algorithms and Combinatorics: Study and
Research Texts. Berlin: Springer-Verlag, 1988.

[36] Grötschel, M. and Padberg, M. W., “On the symmetric travelling salesman
problem. I. Inequalities,” Math. Programming, vol. 16, no. 3, pp. 265–280, 1979.

[37] Grötschel, M. and Padberg, M. W., “On the symmetric travelling salesman
problem. II. Lifting theorems and facets,” Math. Programming, vol. 16, no. 3,
pp. 281–302, 1979.

[38] Gu, Q.-P. and Tamaki, H., “Optimal branch-decomposition of planar graphs
in O(n3) time,” in Automata, languages and programming, vol. 3580 of Lecture
Notes in Comput. Sci., pp. 373–384, Berlin: Springer, 2005.

[39] Henzinger, M. and Williamson, D. P., “On the number of small cuts in a
graph,” Inform. Process. Lett., vol. 59, no. 1, pp. 41–44, 1996.

[40] Hicks, I. V., “Planar branch decompositions. I. The ratcatcher,” INFORMS J.
Comput., vol. 17, no. 4, pp. 402–412, 2005.

[41] Hicks, I. V., “Planar branch decompositions. II. The cycle method,” INFORMS
J. Comput., vol. 17, no. 4, pp. 413–421, 2005.

137

[42] Hong, S., A Linear Programming Approach for the Traveling Salesman Problem.
PhD thesis, 1972.

[43] Jensen, F. V., Lauritzen, S. L., and Olesen, K. G., “Bayesian updating
in causal probabilistic networks by local computations,” CSQ—Comput. Statist.
Quart., vol. 5, no. 4, pp. 269–282, 1990.

[44] Johnson, E. and Robertson, N. Private communication.

[45] Karp, R. M., “Reducibility among combinatorial problems,” in Complexity of
computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), pp. 85–103, New York: Plenum, 1972.

[46] Koster, A. M. C. A., van Hoesel, C. P. M., and Kolen, A. W. J.,
“Optimal solutions for a frequency assignment problem via tree-decomposition,”
in Graph-Theoretic Concepts in Computer Science (WG ’99) (Widmayer, P.,
Neyer, G., and Eidenbenz, S., eds.), vol. 1665 of Lecture Notes in Computer
Science, pp. 338–349, Springer-Verlag, 1999.

[47] Koster, A. M. C. A., van Hoesel, C. P. M., and Kolen, A. W. J., “Solv-
ing frequency assignment problems via tree-decomposition,” Electronic Notes in
Discrete Mathematics, vol. 3, 1999.

[48] Koster, A. M. C. A., Bodlaender, H. L., and van Hoesel, S. P. M.,
“Treewidth: computational experiments,” in 1st Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, vol. 8 of Electron. Notes Discrete
Math., p. 4 pp. (electronic), Amsterdam: Elsevier, 2001.

[49] Lauritzen, S. L. and Spiegelhalter, D. J., “Local computations with prob-
abilities on graphical structures and their application to expert systems,” J. Roy.
Statist. Soc. Ser. B, vol. 50, no. 2, pp. 157–224, 1988. With discussion.

[50] Letchford, A. N., “Separating a superclass of comb inequalities in planar
graphs,” Math. Oper. Res., vol. 25, no. 3, pp. 443–454, 2000.

[51] Lins, S., “A minimax theorem on circuits in projective graphs,” J. Combin.
Theory Ser. B, vol. 30, no. 3, pp. 253–262, 1981.

[52] Malnič, A. and Mohar, B., “Generating locally cyclic triangulations of sur-
faces,” J. Comb. Theory Ser. B, vol. 56, no. 2, pp. 147–164, 1992.

[53] Mohar, B. and Thomassen, C., Graphs on surfaces. Johns Hopkins Studies
in the Mathematical Sciences, Baltimore, MD: Johns Hopkins University Press,
2001.

[54] Nagamochi, H., Nishimura, K., and Ibaraki, T., “Computing all small
cuts in undirected networks,” in Algorithms and computation (Beijing, 1994),
vol. 834 of Lecture Notes in Comput. Sci., pp. 190–198, Berlin: Springer, 1994.

138

[55] Negami, S., “Re-embedding of projective-planar graphs,” J. Combin. Theory
Ser. B, vol. 44, no. 3, pp. 276–299, 1988.

[56] Padberg, M. and Rinaldi, G., “An efficient algorithm for the minimum ca-
pacity cut problem,” Math. Programming, vol. 47, no. 1, (Ser. A), pp. 19–36,
1990.

[57] Padberg, M. W. and Rao, M. R., “Odd minimum cut-sets and b-matchings,”
Math. Oper. Res., vol. 7, no. 1, pp. 67–80, 1982.

[58] Reinelt, G., “Tsplib - a traveling salesman library,” ORSA Journal of Com-
puting, vol. 3, pp. 376–384, 1991.

[59] Robertson, N. and Seymour, P. D., “Graph minors. II. Algorithmic aspects
of tree-width,” J. Algorithms, vol. 7, no. 3, pp. 309–322, 1986.

[60] Robertson, N. and Seymour, P. D., “Graph minors. V. Excluding a planar
graph,” J. Combin. Theory Ser. B, vol. 41, no. 1, pp. 92–114, 1986.

[61] Robertson, N. and Seymour, P. D., “Graph minors. VII. Disjoint paths on
a surface,” J. Combin. Theory Ser. B, vol. 45, no. 2, pp. 212–254, 1988.

[62] Robertson, N. and Seymour, P. D., “Graph minors. X. Obstructions to
tree-decomposition,” J. Combin. Theory Ser. B, vol. 52, no. 2, pp. 153–190,
1991.

[63] Robertson, N. and Seymour, P. D., “Graph minors. XI. Circuits on a sur-
face,” J. Combin. Theory Ser. B, vol. 60, no. 1, pp. 72–106, 1994.

[64] Robertson, N. and Seymour, P. D., “Graph minors. XX. Wagner’s conjec-
ture,” J. Combin. Theory Ser. B, vol. 92, no. 2, pp. 325–357, 2004.

[65] Scheffler, P., “A practical linear time algorithm for disjoint paths in graphs
with bounded tree-width,” Tech. Rep. 396/1994, TU Berlin, FB Mathematik,
1994.

[66] Schrijver, A., “Decomposition of graphs on surfaces and a homotopic circu-
lation theorem,” J. Combin. Theory Ser. B, vol. 51, no. 2, pp. 161–210, 1991.

[67] Seymour, P. D. and Thomas, R., “Call routing and the ratcatcher,” Combi-
natorica, vol. 14, no. 2, pp. 217–241, 1994.

[68] Sloane, N., “Challenge problems: Independent sets in graphs,”
http://www.research.att.com/ njas/doc/graphs.html.

[69] Thomassen, C., “Embeddings of graphs with no short noncontractible cycles,”
J. Combin. Theory Ser. B, vol. 48, no. 2, pp. 155–177, 1990.

[70] Verweij, B., Selected Applications of Integer Programming: A Computational
Study. PhD thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2000.

139

[71] Vitray, R., “The 2- and 3-representative projective planar embeddings,” J.
Combin. Theory Ser. B, vol. 54, no. 1, pp. 1–12, 1992.

140

