
Dipartimento di Scienze Statistiche

Dottorato in Ricerca Operativa - XXV Ciclo

Solving hard instances of maximum
stable set problem by equitable

partitions

Author:

Gianmaria Leo

Supervisor:

Prof. Gianpaolo Oriolo

March 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74323553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ai miei Nonni,

ai miei genitori Giovanni e Marilena,

a Ubi.

“When a man is born... there are nets flung at it to hold it back from flight.

You talk to me of nationality, language, religion.

I shall try to fly by those nets.”

James Joyce, A Portrait of the Artist as a Young Man

iv

Acknowledgements

I owe my sincere gratitude to my Advisor Professor Gianpaolo Oriolo for his pre-

cious and stimulating guidance, assistance and encouragements. His consistent and

enlightening instruction, deepened knowledge and advices have gone a long way to

this thesis and have also augmented my love for research.

I would also like to thank Professor Fabrizio Rossi and Professor Stefano Smriglio

for their help in writing of this thesis. Their interesting starting points about

computational topic and their observations have contributed to the development of

my work, also have increased my interest.

I am very grateful to Professor Andrea Pacifici and Professor Veronica Piccialli

for their contribution to my scientific training.

Finally, I thank my parents Giovanni and Marilena, my girlfriend Sara and my

colleague, and friend, Marco, for the great support they have shown me.

v

vi

Contents

Acknowledgements v

List of Tables ix

List of Figures xi

Listings xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Linear and Integer Linear Programming 7

1.3 Graphs: basic notions . 9

1.4 The Maximum Stable Set Problem (MSSP) 10

1.5 A few more notations . 13

2 Symmetry in Graphs 15

2.1 Isomorphism and Automorphism of graphs 15

2.2 The orbit partition of a graph . 16

2.3 Equitable partitions of a graph . 17

2.4 Orbit partitions vs equitable partitions 19

2.4.1 Computing the coarsest equitable partition in polynomial time 21

2.5 EP-graph . 23

3 Symmetry in Maximum Stable Set Problem 25

3.1 Orbital Branching . 25

3.2 Equitable partition inequalities . 28

3.2.1 Aggregate equitable partition formulation 29

4 Computational Experiments 33

4.1 Our main integer linear program . 33

4.2 Implementation . 36

4.3 Computational results . 37

vii

CONTENTS viii

4.4 1zc-instances . 37

4.4.1 Origin of the 1zc-instances . 39

4.4.2 The 1zc-graphs . 41

4.4.3 The maximum stable set problem on 1zc-graphs 42

4.5 Solving 1zc1024 to optimality . 43

4.6 Mann-graphs . 46

4.6.1 Origin of mann-instances . 46

4.6.2 Equitable partitions of on mann-graphs 48

4.6.3 Equitable partition parameters of mann-graphs 51

4.7 Solving mann a81 to optimality . 52

4.8 Keller-instances . 54

4.8.1 Origin of Keller-graphs . 54

4.8.2 Experiments on Keller-graphs 55

4.8.3 Equitable partition parameters of Keller-graphs 57

5 Conclusions and future work 59

A Computing equitable partition inequalities 61

B Source Code 77

Bibliography 101

List of Tables

4.1 Main procedures of equitable partition inequalities generation scheme 38

4.2 Improving upper bound for some 1zc-graphs 44

4.3 Optimal solutions for mann-graphs 48

4.4 Generating equitable partition formulations associated to Fig. 4.4 . . 49

4.5 Comparing upper bounds for mann-graphs 50

4.6 Comparing equitable partition formulation with orbital branching on

mann-graphs . 51

4.7 Optimal solutions for keller-graphs 55

4.8 Comparing upper bounds for keller-graphs 56

4.9 Comparing CPLEX with orbital branching for generating equitable

partition formulation on keller-graphs 56

4.10 Comparing equitable partition formulation with orbital branching on

keller-graphs . 57

A.1 Computing right-hand sides for mann-graphs. 61

A.2 Computing right-hand sides for Keller-graphs. 63

A.3 Computing right-hand sides for 1zc-graphs. 74

ix

LIST OF TABLES x

List of Figures

1.1 A graph with many symmetric maximum stable sets 2

1.2 EP-graph associated to graph in Fig. 1.1 4

2.1 Example of equitable partition of a graph 18

2.2 The orbit partition is equitable . 20

2.3 Equitable partition is not an orbit partition 20

2.4 Example of EP-graph . 24

4.1 EP-graphs associated to coarsest equitable partitions of 1zc512 (a),

1zc1024 (b) and 1zc2048 (c) . 41

4.2 EP-graphs associated to non-coarsest equitable partitions of 1zc512

(a), 1zc1024 (b), 1zc2048 (c) . 42

4.3 EP-graphs of mann-graphs. 49

4.4 EP-graphs associated to a non-coarsest equitable partition of all

mann-graphs . 49

4.5 A non-coarsest equitable partition of mann a81 50

4.6 EP-graphs associated to coarsest equitable partitions of keller4 (a)

and keller5 (b) . 55

xi

LIST OF FIGURES xii

Listings

B.1 Function cep . 77

B.2 Functions printEQP, printEQPpar, EPgraphDOTForm 78

B.3 Function refineEQP . 81

B.4 Function genEQP . 83

B.5 Function printEQP v rhs . 83

B.6 Function verifyISO . 85

B.7 Function cpxRHS . 88

B.8 Functions orbRHS and usersetbranch 91

xiii

LISTINGS xiv

Chapter 1

Introduction

1.1 Motivation

The Maximum Stable Set Problem (MSSP) is one of the most widely studied prob-

lems in Operations Research, as it has important applications in many different

scientific areas. It is well-known that the problem is NP-hard and it is as well ex-

tremely hard to approximate [H̊as96]. While MSSP is solvable in polynomial time

for certain classes of graphs (e.g. line graphs), it is in practice very challenging, since

even instances with a few hundred of vertices could be hard to solve. Moreover, it

requires quite advanced techniques, mainly from integer programming.

In practice, the most effective algorithms for solving challenging instances of

MSSP are based on the branch&bound paradigm, which is a basic standard method

for solving integer programs. The solution space of an integer program is represented

as a search tree, whose node are all possible solutions of the problem. Then, finding

an optimal solution require exploring the search tree. A general branch&bound

method basically performs two subsequent operations: it partitions the set of fea-

sible solutions to obtain a set of more easily-solved subproblems; then solutions

are bounded in order to prune subproblems that cannot contain optimal solution.

Essentially, the bounding procedure computes relaxation of subproblems, or it is

based on combinatorial algorithms. In practice, bounds from relaxations of integer

programs are often either too weak and reasonably tractable (this is often the case

with linear programs) or very strong, but requiring an unacceptable computational

effort (this is often the case with semidefinite programs). Combinatorial bounding

procedures are often successful in practice, even though they provide weak bound.

In particular, MSSP instances with properties of symmetry or, more in general,

integer programs with symmetric feasible regions, often turn out to be challenging.

The motivation is that branch&bond wastes a lot of computation time generating

subproblems which contain symmetric solutions.

1

CHAPTER 1. INTRODUCTION 2

Consider for instance the graph G in Fig. 1.1: the violet vertex belongs to a

clique of size four and it is adjacent to one vertex for each of the triangles (therefore,

|V (G)| = 4 + 3k, |E(G)| = 6 + 4k). We can immediately see that α(G) = 1 + k.

However, there many equivalent maximum stable sets, in particular we have 2k

equivalent maximum stable sets which intersect the violet vertex and 3k+1 maximum

stable sets that do not intersect it. The existence of an exponential number of

optimal solutions amplifies the grow of brach&bound enumeration tree, since many

subproblems containing equivalent solution are eventually explored.

Figure 1.1: A graph with many symmetric maximum stable sets

One can observe that for the graph in Fig.1.1, there exist several mapping of

the vertex set into itself that preserve adjacencies. This leads to the definition of

the orbits of the graph, that are the class of vertices that are equivalent under such

mappings (more formal definitions will be given later). If we look again at the graph

in Fig.1.1, we can check that vertices within the same orbit have the same color.

We point out that the orbits of a graph are uniquely defined, and they provide a

partition of the vertices.

If we move to integer programs, we say that an integer program is symmetric if

its variables can be permuted without changing the structure of the problem. Sym-

metric integer programs are popular in combinatorial optimization: they appear

when classical problems are formulated, e.g. graph coloring, or they “naturally”

arise from application. In the case of MSSP, several symmetric instances are re-

formulations of well-studied problems of coding theory, e.g. error correcting-code

problems.

In literature, we find three classes of approaches dealing with symmetry in in-

teger linear programming. The first two pursue an off-line strategy that removes

symmetry in formulations of (ILP). The last one develops on-line techniques that

exploit symmetry information during the branch&bound algorithm. Basic ideas are

1.1. MOTIVATION 3

discussed below.

The first category of symmetry-breaking methods attempts to remove symme-

try by reformulating the problem. In [MDZ08], the authors propose a reformula-

tion of the graph coloring problem which aims to remove some equivalent solutions

obtained by color permutations. The authors investigate symmetry properties of

coloring formulations and provide a method for generating valid inequalities that

is implemented in a cutting plane algorithm. In general, reformulation techniques

provide an effective way to avoid symmetry, but they show the disadvantage to be

applicable only to certain classes of problem, with specific structure and property

of symmetry.

A second class of approaches deal with general polyhedral properties which im-

pact symmetry. In [KP08], the authors investigates orbitopes. Given a set of

binary matricesMp×q and a symmetry group G acting on the columns of a matrix,

a full orbitopes Op×q(G) is a set of matrices that are lexicographically maximal

within their orbits. The work focuses on partitioning and packing orbitopes, which

correspond to feasible solutions respectively of set-partitioning problems and set-

packing problems. The authors provide a full polyhedral description of partitioning

and packing orbitopes and a polynomial separation algorithm for all inequalities.

Oribitopes allow to avoid the symmetry in formulations of partitioning and packing

problem simply requiring that feasible solutions have to be an element of the corre-

sponding orbitope. This kind of approach efficiently succeeds in removing symmetry

from integer linear formulations, but it has the disadvantage that many constraints

could be added and the choice of a fundamental set of variables may conflict with

branching strategies.

A last class of approaches exploit symmetry information during the branch&bound

algorithm. In [Mar03], the author introduces isomorphism pruning, one of the most

effective symmetry-breaking method: the basic idea follows. Given a subproblem P

in the branch&bound enumeration tree, we can find a set G(P) of subproblems of

the enumeration tree that are equivalent to a P by automorphisms of the feasible

region of (ILP). Thus, solutions of subproblems in G(P) are symmetric to solutions

of P : during the branch&bound, the method identifies all equivalent nodes to an

incumbent subproblem P , then subproblems in G(P) are pruned by isomorphism.

Essentially, the method has two cons: a significant computational effort is required

either to compute automorphism groups of all current subproplems in the enumer-

ation tree, either to compare them to each other; moreover, algebraic tools needed

for the computation of automorphism group complicate the implementation.

A powerful symmetry-breaking method that exploits symmetry information dur-

ing branch&bound is orbital branching [OLRS11a]. Orbital branching turn out to

be one of the most effective method in practice [Ost09]. In this thesis we will exploit

CHAPTER 1. INTRODUCTION 4

orbital branching (see Section 4.2) for solving MSSP instances, and we therefore give

a more detailed overview of this method in Section 3.1.

We can summarize the above discussion, by pointing out that the most part of

state-of-art symmetry-breaking approaches exploits symmetry group information in

order to avoid bad effects of symmetry during the optimization process. However,

the complexity of computing generators of symmetry group and orbits, is not known

to be polynomial. A consequence is that a significant computational effort could be

required, even though there exist efficient algorithms that often perform efficiently

in practice. Furthermore, removing completely the symmetry implies that useful

information gets lost.

In the thesis, we aim at showing that, in some cases, symmetry produces regular

structure that can be exploited by branch-and-bound algorithms. We explain our

main idea by considering again the graph in Fig. 1.1. Recall that vertices within

the same orbit have the same color. Interestingly, observe that the “grey” vertices

are not adjacent to the “cyan” vertices, as well as the “purple” vertices are not

adjacent to the “green” vertices. Such observations can be encoded in an auxiliary

graphs that we depict in the Figure 1.2.

Figure 1.2: EP-graph associated to graph in Fig. 1.1

The rationale is the following: the vertices of this auxiliary graph correspond to

the orbits, and two orbits are adjacent if there are edges joining some vertices of the

two classes. It is somehow surprising that, as we show in the thesis, this auxiliary

graph is simple for several hard instances of the stable set problem: in many cases

it is even a tree!

However, there are two drawbacks. As we already pointed out, the complexity

of computing the orbits of a graph is not known to be polynomial. Moreover, there

is a single orbit partition of the graph, and so it might be easily the case that the

auxiliary graph is not simple as above (even though this does not seem to be often

the case with symmetric instances).

In order to deal with these problems, in the thesis, we consider some partitions of

the vertices of a graph which arise from a relaxation of the orbit partition: equitable

partition. An equitable partition of a graph is a partition of the vertices such that

every two vertices belonging to a same class are adjacent to the same number of

vertices of each cell. Loosely speaking, one can say that the orbit partition gives a

description of the symmetry of a graph showing more informations than equitable

partitions, since the vertices that share a same orbit are related by automorphisms.

1.1. MOTIVATION 5

In fact, while the orbit partition of a graph is an equitable partition, the converse

does not hold.

Equitable partitions allow indeed to deal with the previous drawbacks. On

the one hand the so-called coarsest equitable partition, that can be computed very

efficiently. And in general, given any partition, we can compute in polynomial

time its coarsest refinement. Therefore, we can easily compute several different

partitions.

We may then associate to each equitable partition P of a graph an auxiliary

graph, that we call the EP-graph associated with P, along the same same lines as we

did above for the orbit partition. As we show in the thesis, EP-graphs are a powerful

tool, that allow to capture the structure of a symmetric graphs. Interestingly, in

some cases. we detected equitable partitions that are not orbit partitions, but have

a very simple EP-graph: that would not have been recognized dealing only with

orbits.

We believe that EP-graphs introduce a new approaches to exploit symmetry

information, for instance it can be used in combinatorial branch&bound schemes.

In this thesis, we however focus on how to derive valid inequalities from the topology

of EP-graph, in order to strengthen integer linear programming formulations of the

maximum stable set problem.

The rational is the following. Suppose we are given an equitable partition P of a

graph G. We consider subgraphs of G induced by some relevant structure of the EP-

graph associated with P, e.g. the subgraph induced by two classes Vi and Vj that

are adjacent in EP-graph. Trivially, the rank inequality
∑

v∈Vi∪Vj
xv ≤ α(Vi ∪ Vj)

is valid for the stable set polytope of G and can be added to any integer linear

programming formulation of the maximum stable set problem. The very good news

is that, in many cases, G[Vi ∪ Vj] has a “small” size and a “simple” symmetry

structure. For this reason, the computation of the right-hand side α(Vi∪Vj) can be

carried out efficiently. In particular it is often the case that, for this computation,

orbital branching is effective, even if it is not effective for the entire graph. Moreover,

each inequality derived from an equitable partition can be generated independently

from other (e.g. because they involve different edges of the EP-graph), thus a

remarkable advantage is the potentiality of performing the generation of equitable

partition inequalities in parallel computing.

In the thesis, we then consider inequalities that are induced by vertices, edges,

triangles and closed neighborhood of the EP graph associated with an equitable

partition P of a graph G, that we call equitable partition inequalities. We add this

inequalities to the standard clique relaxation of the stable set polytope, and this

defines what we call the equitable partition formulation.

CHAPTER 1. INTRODUCTION 6

Given an equitable partition P, we also present an aggregate equitable partition

formulation. The idea is the following: we associate to each class P ∈ P an integer

variable yP , that is equal to the number of vertices that a stable set will pick in

the class P . Then we consider edge or clique etc. constraints arising from the EP-

graphs, e.g., if we refer again to the above example, we would write yVi
+ yVj

≤

α(Vi ∪ Vj).

In order to formalize our method, one major issue to be addressed is the gener-

ation of a families of equitable partitions, as well the corresponding inequalities. A

first set of inequalities can be easily obtained from the coarsest equitable partition,

since it can be computed in polynomial time. However, our computational experi-

ments have proved that the potentiality of the method is restricted if we limit our

choice uniquely to coarsest equitable partition, as they sometimes provide inequal-

ities that either are weak, or require an unacceptable computational effort to be

computed. Therefore we show how to break the coarsest equitable partition so as

to produce new, finer, equitable partitions yielding more effective inequalities.

We have experienced that there is a trade-off between quality and fragmenta-

tion of equitable partitions. Usually, equitable partitions with few classes give rise

to strong inequalities, while equitable partitions with many classes often lead to

weak inequalities. Then, we have build up a set of empirical rules that attempt to

generate, but limit, the fragmentation of any equitable partition into many classes.

Computational experience focuses on hard and symmetric instances of the max-

imum stable set problem, that we believe promising for our method. We have

performed computational experiments on three classes of symmetric instances: 1zc,

mann and keller. We have compared the performance of ILOG CPLEX 12.4 (with

standard settings) solving the equitable partition formulation in the original space,

with orbital branching, one of the most effective symmetry-breaking methods in

practice, that we have suitably implemented using CPLEX callbacks.

The 1zc-instances are a class of instances from the Sloane Independent Set Chal-

lenge [Slo00] known to be among the hardest instances for the maximum stable set

problem. In fact, for most instances of this class the optimal solutions is still

unknown and even estimating upper bounds for them turns out to be challenging.

1zc-graphs arise from an application of coding theory, in particular they are a maxi-

mum stable set reformulation of the problem of finding a largest binary asymmetric

1-error-correcting code. For the instance 1zc512, both CPLEX solving equitable

partition formulation and orbital branching can achieve an optimal solution. In

this case, we obtain a better performance than orbital branching. Unfortunately,

both method are not able to solve 1zc1024 and 1zc2048. However, for these in-

stances, aggregate equitable partition formulations have allowed us to improve best

1.2. LINEAR AND INTEGER LINEAR PROGRAMMING 7

upper bound known so far. Moreover, we have certified the optimality for 1zc1024,

a graph of the class whose stability number has been unknown so far.

The second class of instances on which we have tested our method is given by

mann-graphs. Mann-graphs belong to the Dimacs [Dim92] benchmark and have

been representing a challenge for a long time. They correspond to stable set formu-

lations of the Steiner Triple Problem, translated from the set covering formulations

by Mannino code [MS95]. Consequently, all their optimal solutions are known,

since the corresponding set covering instances have been solved. However, exact

methods known in literature are able to solve only the graphs of the class that are

strictly smaller than mann a81. For all mann-graphs considered, the aggregate eq-

uitable partition formulation allows to obtain excellent upper bound: for mann a9,

mann a27 and mann a45 we reach an absolute gap of one unit from the optimal

solution, while, for mann a81, we obtain a relative gap of 0.64% from the optimal

solution. For mann a27 and mann a45, CPLEX solving equitable partition formu-

lations shows impressive results, outperforming orbital branching. Unfortunately,

the equitable partition is not able to certify the optimality for mann a81 within a

time limit of one hour. However, the aggregate formulation associated to a “pretty”

equitable partition allows us to prove the optimality for mann a81.

The last class of instances of our experience refers to Keller-graphs. This class

belongs to Dimacs benchmark set and arises from the Keller’s cube-tiling conjec-

tures. In 1990,the author of [CS90] stated that there is a counterexample for this

conjecture if and only if the n-dimensional Keller-graph, properly defined, has a

clique of size 2n. All keller-graphs have been solved to optimality by exploiting

their theoretical properties in suitable enumeration schemes. In our experiments,

we focus on keller4 and keller5. For both graphs, we obtain excellent upper bounds:

for keller4 the upper bound is tight and for keller5 we obtain an absolute gap of one

unit from the optimal solution. In these cases, both CPLEX solving the equitable

partition formulation and orbital branching achieve optimal solution. For this class

of graph, we observe that the performance of our method drastically improve if we

use orbital branching for generating inequalities.

1.2 Linear and Integer Linear Programming

In this section we briefly recall notations and basic notions of linear and integer

linear programming. For an exhaustive exposition, the reader may refer to [Sch86].

A halfspace in Rn is a set of points of Rn which satisfies a linear inequality

ax ≤ b0, where a ∈ Rn, b0 ∈ R. A polyhedron P is the intersection of finitely many

halfspaces: P = {x ∈ Rn : Ax ≤ b}, where A ∈ Rm×n, b ∈ Rn; moreover, a bounded

polyhedron is called polytope. An inequality a′x ≤ b′0 is valid for a polyhedron P

CHAPTER 1. INTRODUCTION 8

if {x ∈ Rn : a′x ≤ b′0} ⊇ P . Given a finite set of points X = {x1, . . . , xp} and

non-negative coefficients λ1, . . . , λp such that
∑p

i=1 λi = 1, point y =
∑p

i=1 λixi is

a convex combination of points in X. The convex hull of X, denoted by conv(X),

is the set of all convex combinations of points in X. An alternative definition

characterizes a polytope as the convex hull of finite set of points.

A linear program (LP) is the problem of maximizing (or minimizing) a linear

function over a polyhedron:

(LP) := max
x∈Rn

{cx : Ax ≤ b}

where c ∈ Rn. The function cx is called objective function and the inequalities of

system Ax ≤ b are known as constraints. The polyhedron {x ∈ Rn : Ax ≤ b} is

called feasible region of (LP) and a point is feasible if it is in the feasible region.

If the feasible region is an empty set, (LP) is infeasible. If the objective function

value can be made arbitrarily large, we say that (LP) is unbounded, otherwise it is

bounded.

The simplex method is one of the most effective algorithms for solving linear

programs. Whereas the simplex method has exponential time complexity, it is

well-known that linear programs can be solved in polynomial time by the ellipsoid

method [Kha79]. However, the ellipsoid method does not allow any practical im-

plementation, but it gave rise to the development of interior points methods which

have been successful in applications. Implementations of simplex and interior points

method show good efficiency in practice, then linear programming solvers are based

on both these methods.

An integer linear program (ILP) is the problem of maximizing a linear function

subject to a set of linear constraints with the restriction that values of all variables

should be integral:

(ILP) := max
x∈Zn

{cx : Ax ≤ b}

Let us observe that removing the integrality constraints of (ILP), we obtain a linear

program which is called linear relaxation of (ILP). Whereas the linear relaxation of

(ILP) can be computed in polynomial time, integer linear programming problems

are well-known to be NP-hard. Most popular methods for solving (ILP) are based

on Branch&bound algorithm. Basically, the branch&bound first partitions (branch-

ing) the feasible region of (ILP) by fixing the value of one or more variables, in

order to subdivide the (ILP) into smaller subproblems: essentially, it build up an

enumeration tree whose nodes are subproblems of (ILP). Then, it estimates an up-

per bound (bounding) on the optimal value of each generated subproblem, in order

to prune nodes of the enumeration tree that cannot contain any optimal solution of

1.3. GRAPHS: BASIC NOTIONS 9

(ILP). The general branch&bound paradigm performs the bounding of subprob-

lems by computing the optimal solution of relaxation of each subproblem, that can

be a linear or a semidefinite relaxation. A branch&bound which implements the

bounding procedure by combinatorial heuristic algorithms is called combinatorial

branch&bound. In practice, it usually happens that relaxations of subproblems

are either too weak at reasonable computational effort, either very strong but un-

acceptably time-consuming. On the other hand, combinatorial heuristics are very

fast, but they provide weak bounds. However, combinatorial branch&bound are

more successful in applications.

1.3 Graphs: basic notions

An undirected graph is an ordered pair G := (V,E), where V is a set of vertices and

E is a set of unordered pairs of vertices each of which is called edge. Alternatively,

we denote respectively by V (G) and E(G) the vertex set and the edge set of G.

With a slight abuse of notation, we denote by (u, v) or uv the edge corresponding

to the unordered pair {u, v}. If (u, v) ∈ E, we say that u, v are the extremes of

edge (u, v), and that u, v are adjacent or connected by an edge in G. For each

vertex u ∈ V , the neighborhood of u, denoted by N(u), is the subset of V which

contains the vertices adjacent to u, i.e N(u) := {vinV : (u, v) ∈ E}. The degree

of a vertex u ∈ V , denoted by d(u) is the number of vertices connected to u by an

edge, i.e. |N(u)|. Given U ⊂ V , let N(U) =
⋃

v∈U N(u). For a vertex v, we let

N [v] denote the closed neighborhood of v, that is N [v] = {v} ∪N(v). Analogously,

we let N [Q] = Q ∪ N(Q). A pair {u, v} occurring more than once in E is called

a multiple edge. A loop is an edge of G which connect a vertex u ∈ V to itself. A

simple graph is an undirected graph without multiple edges or loops. For the sake

of convenience, we use the term graph to refer to simple graph through the thesis.

A subgraph of a graph G(V,E) is a graph G′(V ′, E′) of G with E′ ⊆ E and

V ′ ⊆ V and u, v ∈ V ′ for each (u, v) ∈ E′ . G′ is an induced subgraph of G if

(u, v) ∈ E if and only if u, v ∈ V and (u, v) ∈ E. Thus an induced subgraph is

uniquely identified by a set V ′ ⊆ V , and we denote it by G[V ′]. Given a graph G

and an integer k ∈ N, an ordered set of vertices v1, . . . , vk is a walk (of length k−1)

if (vi, vi+1) ∈ E for each i ∈ [k − 1]. If v1, . . . , vk are all distinct, the walk is called

a path. If P = v1, . . . , vk is a path, the vertex v1 is called the starting vertex or

first vertex of P and the vertex vk the end vertex or last vertex of P . Sometimes,

both v1 and vk are called the end vertices or extremes or ends of P . A graph is

connected if there exists a walk between any two vertices of G.

The complement of a graph G is the graph Ḡ(V, Ē) where Ē is the set of edges

(u, v) with u 6= v such that (u, v) /∈ E. A graph G is complete (or a complete graph)

CHAPTER 1. INTRODUCTION 10

if its complement has no edge. Given a graph G(V,E), we say that a set U ⊆ V is

a stable set of G if no two elements of its are joined by an edge in G, whereas it is a

clique if each two elements of it are joined by an edge in G. We denote by α(G) the

size of the maximum stable set in G, and we often refer to α(G) as to the stability

number of G. We denote by ω(G) the size of the maximum clique in G, and we

often refer to ω(G) as to the clique number of G. A coloring is a function f : V → C

that assigns to each vertex u ∈ V a color c ∈ C such that two adjacent vertices of G

are not given the same color. The chromatic number of G is the cardinality of the

smallest set C of colors such that there exists a coloring of G that uses only colors

from C.

A graph G(V,E) is k-partite if V can be partitioned in k sets V1, . . . , Vk and

each edge of G has an endpoint in Vi and one in Vj with i 6= j (i.e. Vi is a stable set

for every i = 1, . . . , k). In the special case k = 2, the graph is said to be bipartite.

Given a graph G = (V,E), a stable set S of G is a subset of V such that the

vertices of S are pairwise non-adjacent. In the literature, all terms: independent

set, vertex packing, co-clique or anticlique refer to stable set.

The maximum stable set problem (MSSP) is the problem of finding a stable set

of maximum cardinality in G. The stability number of G, denoted by α(G), is the

cardinality of the maximum stable set in G. Given a weighted graph G = (V,E,w)

where function w : V → R assigns a weight wi to each vertex ui ∈ V , the maximum

weighted stable set problem looks for a stable set S which maximises w(S). Clearly,

MSSP corresponds to the maximum weighted stable set problem with wi = 1 for all

ui ∈ V . In this thesis, we focus on MSSP, also simply called “stable set problem”,

omitting the weighted case.

It is well-known that MSSP is NP-hard and, as well, extremely hard to approx-

imate [H̊as96].

1.4 The Maximum Stable Set Problem (MSSP)

This section discusses polyhedral descriptions of MSSP. Given a graph G = (V,E)

and a stable set S of G, we define incidence vector of S, denoted by χS, the binary

vector of size |V | whose i-th entry has value 1 if and only if vertex i ∈ V belongs

to S. An implicit polyhedral description of stable sets of G is given by:

STAB(G) := conv
{

χS : S ⊆ V is a stable set of G
}

(1.1)

STAB(G) is called stable set polytope. Explicit descriptions of STAB(G) are pro-

vided by integer linear formulation of the problem.

For each node i ∈ V , we introduce a binary variable xi ∈ {0, 1} that has value

1.4. THE MAXIMUM STABLE SET PROBLEM (MSSP) 11

1 if vertex i ∈ S, 0 otherwise. Since every two vertices i, j ∈ S are not joined by an

edge of V , the following inequalities, called edge-inequalities are valid for STAB(G):

xi + xj ≤ 1 ∀{i, j} ∈ E (1.2)

We can easily observe that each x ∈ {0, 1}|V | that satisfies edge-inequalities is an

incidence vector of some stable set S. Hence, edge-inequalities give an explicit

representation of STAB(G):

STAB(G) =
{

x ∈ {0, 1}|V | : xi + xj ≤ 1∀{i, j} ∈ E
}

(1.3)

This formulation of STAB(G) has O(|V |) variables and O(|E|) constraints, so it is

compact. Now, let focus on the following linear relaxation of the previous integer

program, called edge polytope of the stable set:

FRAC(G) :=
{

x ∈ R|V | : xi + xj ≤ 1∀{i, j} ∈ E, 0 ≤ xi ≤ 1∀i ∈ V
}

(1.4)

In general, STAB(G) ⊆ FRAC(G) holds: given a complete graphK with |V (K)| ≥

3, the vector whose components are all equal to 1/2 is feasible for FRAC(K), but

not for STAB(K). On the other hand, if G is a connected bipartite graph, we get

STAB(G) = FRAC(G) [GLS88]. This result has the immediate consequence that

a maximum stable set of a bipartite graph can be computed in polynomial time.

In view of previous consideration, we are interested in finding other inequalities

which strengthen FRAC(G) when G is not a bipartite graph. Let C = (V ′, E′)

be an odd cycle of G, i.e. a connected subgraph of G with an odd number of

vertices, such that each vertex is adjacent to exactly two other vertices. Let us

observe that each variable xi with i ∈ V
′ appears in exactly two edge inequalities

of STAB(C). By summing all these inequalities and dividing both sides by 2, we

obtain
∑

i∈V ′ xi ≤ |V
′|/2. As all variables are integer, the previous inequality is still

valid if we round down its right-hand-side. Thus, the following inequalities, called

odd-cycle inequalities, are valid for STAB(G):

∑

i∈V ′

xi ≤
|V ′| − 1

2
∀ odd cycle C = (V ′, E′) ⊆ G (1.5)

The suitable polytope, called odd-cycle stable set polytope, is a relaxation of STAB(G),

stronger than FRAC(G):

CSTAB(G) :=

{

x ∈ FRAC(G) :
∑

i∈V ′

xi ≤
|V ′| − 1

2
∀ odd cycle C ⊆ G

}

(1.6)

CHAPTER 1. INTRODUCTION 12

We can easily check that CSTAB(G) ⊆ STAB(G) holds in general. Although the

number of odd-cycles of a graph grows exponentially in the number of vertices, the

separation problem for odd-cycle inequalities is solvable in polynomial time [GLS81]:

equivalently, a linear function over CSTAB(G) can be optimized in polynomial

time. A graph G such that CSTAB(G) = STAB(G) is called t-perfect, so MSSP

in t-perfect graphs can be solved in polynomial time.

Given a graph G, a clique Q is a subgraph of G whose vertices are pairwise

adjacent, i.e. Q is a complete subgraph of G. Since a stable set S intersects at most

one vertex of Q, the following inequalities, called clique inequalities, are valid for

STAB(G):
∑

i∈Q

xi ≤ 1 ∀ clique Q ⊆ G (1.7)

The following polytope, called clique stable set polytope, is a relaxation of STAB(G),

stronger than FRAC(G):

QSTAB(G) :=







x ∈ FRAC(G) :
∑

i∈Q

xi ≤ 1∀ clique Q ⊆ G







(1.8)

In contrast to odd-cycle inequalities, separating clique inequalities of G is NP-hard,

since it is equivalent to finding a maximum clique in G, i.e. a maximum stable set in

the complement of G. Hence, it is NP-hard optimizing over QSTAB(G). However,

a remarkable fact follows. A graph G is called perfect if QSTAB(G) = STAB(G)

and the MSSP in perfect graphs can be solved in polynomial time [GLS88]: the

result is based on the Lovász ϑ-number, a semidefinite relaxation of STAB(G).

Finally, let us consider the following class of inequalities, called rank inequalities:

∑

i∈U

xi ≤ α(G[U]) U ⊂ V (1.9)

Rank inequalities are obviously valid for STAB(G), in particular they are a gen-

eralization of all other inequalities presented above. In general, generating strong

rank inequalities is hard.

In practice, computational experiments show that clique inequalities are sig-

nificant for integer linear programming approaches to MSSP [RS01]. Often, it is

successful considering more general classes of inequalities, e.g. rank inequalities,

which also contain clique inequalities.

1.5. A FEW MORE NOTATIONS 13

1.5 A few more notations

Throughout the thesis we denote N, Z, Q and R respectively the set of natural,

integer, rational and real numbers. By Z+ and R+ we denote respectively the set

of non-negative integer and non-negative real numbers. Given n ∈ N, we denote by

[n] the finite set {1, 2, . . . , n}. Let f, g : N→ R be functions from the set of natural

numbers to set of real numbers. We say that f = O(g) if there exist constants C

and n0 such that f(n) ≤ Cg(n) for all integers n ≥ n0. Given a set S and a function

x : S → R, for each S̄ ⊆ S we define x(S̄) :=
∑

s∈S̄ x(s).

CHAPTER 1. INTRODUCTION 14

Chapter 2

Symmetry in Graphs

In this chapter we deal with several tools that allow to grasp symmetries in graphs.

We first revise the definitions of isomorphism and automorphism of graphs, leading

to the crucial notions of orbit and orbit partitions of graphs. We then move to

the definition of equitable partition of graphs, show that this is a relaxation of the

orbit partition, and introduce the crucial definition of coarsest equitable partitions.

We deal with algorithmic issues and discuss the complexity of finding the orbit

partition of a graph, and the complexity of finding the coarsest equitable partition.

Eventually we present our first original contribution, the EP-graph associated with

some equitable partition.

2.1 Isomorphism and Automorphism of graphs

The problem of deciding whether two graphs have the same structure is one of

the most studied problems in Graph Theory, since it has several applications in

different scientific fields as well as it is fascinating from a theoretic point of view.

Another problem, related to the previous one, consists of finding the vertices of a

given graph that are symmetric or indistinguishable under the entire structure of

the graph. These informal notions, which concern the idea of symmetry in graphs,

are formalized with the concepts of isomorphism and automorphism of graphs.

Definition 2.1.1. An isomorphism between graphs G and H is a bijection φ :

V (G)→ V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H).

Substantially, an isomorphism is a mapping between V (G) and V (H) which pre-

serves the adjacencies of the corresponding graphs. If there exists an isomorphism

φ between G and H, it is denoted by G ∼= H and we can say that that G and H

are isomorphic. This problem is theoretically fascinating since it is unknown either

to be solvable in polynomial time or to be NP-complete. However, it is solvable

15

CHAPTER 2. SYMMETRY IN GRAPHS 16

in polynomial time for certain classes of graphs, like trees, planar graphs, inter-

val graphs, permutation graphs, partial k-trees, and, also for graphs with certain

bounded parameters (degree, eigenvalue multiplicity and genus).

Now, let us focus on the properties of symmetry of a given graph G.

Definition 2.1.2. An automorphism of a graph G is a permutation π : V → V of

vertices such that uv ∈ E if and only if π(u)π(v) ∈ E.

An automorphism is essentially a mapping of a graph onto itself which preserves

the adjacencies of the vertices. Clearly, every graph admits a trivial automorphism

given by the identity permutation. Nevertheless, it is well-known that the problem

of finding a non-trivial automorphism is at least as difficult as the problem of finding

an isomorphism between graphs.

2.2 The orbit partition of a graph

In order to formalize the definition of orbit partition and how orbits are related to

automorphisms, some definitions of Group Theory are recalled.

Definition 2.2.1. A non-empty, finite, set of elements G together with a binary

operation ◦ is called group if the following axioms hold:

• for all a, b ∈ G, a ◦ b ∈ G (closure);

• for all a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity);

• there exists e ∈ G such that a◦e = e◦a = a for every a ∈ G (identity element);

• for every a ∈ G, there exists a−1 ∈ G such that a ◦ a−1 = e (inverse element).

Given a set of indices In = {1, . . . , n}, the set of all permutations of elements

of In together with the binary operation of composition of permutations form a

group Sn, called symmetric group. The term permutation group usually refers to a

subgroup of Sn, i.e. a subset of Sn which satisfies the group axioms.

Definition 2.2.2. An action of a group G on a set X is a function G ×X → X,

mapping (g, x) in g(x), which satisfies the following conditions:

• for all x ∈ X and g, h ∈ G, g ◦ h(x) = g(h(x)) (associativity);

• if e is the identity of G, then e(x) = x for all x ∈ X (identity).

Then, the definition of orbit follows:

2.3. EQUITABLE PARTITIONS OF A GRAPH 17

Definition 2.2.3. Let G a group acting on a set X. The orbit of x ∈ X is the

subset of elements of X onto which x can be mapped by the elements of G:

orb(x,G) :=
{

x′ ∈ X : ∃g ∈ G such that x′ = g(x)
}

(2.1)

From the previous definition, we can observe that two different elements x, y ∈ X

share a same orbit, denoted by x ∼ y, if and only if there exists g ∈ G with

g(x) = y. The properties of a group guarantee that the binary relation ∼ is an

equivalence relation, thus the action of G on X partitions X in equivalence classes

which correspond to the orbits of X. Finally, the orbit partition of X is:

O(G) :=
⋃

x∈X

orb(x,G) (2.2)

Now, let Aut(G) be the set of all automorphisms of a graph G. It easy to

check that Aut(G) is permutation group under the operation of composition of

two automorphisms, which corresponds to the composition of the corresponding

permutations of the vertices. Thus, the action of Aut(G) on the vertex set V (G)

gives rise to the orbit partition O = {O1, . . . , Ot} of G.

2.3 Equitable partitions of a graph

In this section we report definitions and results about equitable partitions of graph.

Let U be a subset of V and let d(v, U) denote the degree of v in U , that is d(v, U) =

|N(v) ∩ U |.

Definition 2.3.1. A partition P = {V1, . . . , Vp} of the vertices of G is equitable

provided that d(x, Vj) = d(y, Vj) for all x, y ∈ Vi and all i, j ∈ {1, . . . , p}.

Equitable partitions decompose a graph in more manageable pieces which are

characterized by regular adjacencies. In particular, an equitable partition P =

{V1, . . . , Vp} is such that:

• for all i = 1, . . . , p, induced subgraphs G[Vi] are regular;

• for all i, j ∈ {1, . . . , p} (i 6= j), bipartite graphs G[Vi, Vj] = G[Vi ∪ Vj] \

(E(G[Vi]) ∪ E(G[Vj])) are bi-regular, i.e. all vertices belonging to a same

class of the bipartition have the same degree.

Let us observe that every graph has an equitable partition, called trivial, whose

cells contain exactly one vertex. Moreover, it is easy to check that all regular

graphs admit an equitable partition formed by a unique cell.

CHAPTER 2. SYMMETRY IN GRAPHS 18

c =









1
4
2
2









D =









0 4 2 2
1 2 1 1
1 2 0 0
1 2 0 0









Figure 2.1: Example of equitable partition of a graph

Each equitable partition P = {V1, . . . , Vp} can be described by a pair of parame-

ters (c,D), where c is a vector of size p such that ci = |Vi| for all i ∈ {1, . . . , p} andD

is a matrix of size p× p such that Dij = d(u, Vj) with u ∈ Vi for all i, j ∈ {1, . . . , p}.

The coloring of the graph showed in Figure 2.3 is an equitable partition, described

by parameters (c,D).

As we will discuss in the following, there is one crucial equitable partition, since

it can be computed in polynomial time: the coarsest equitable partition. We devote

the rest of this section to its definition, which requires some other definitions and

results from the literature.

Definition 2.3.2. Given two partitions P1 and P2 of a set V , we say that P1 is

finer then P2 (or P1 is coarser than P2), denoted P1 � P2, if every cell of P1 is a

subset of some cell of P2.

The relation � introduces the concept of join of partition.

Definition 2.3.3. A join of partitions P1 and P2, denoted P1 ∨ P2, is the finest

partition coarser then P1 and P2.

The set of all partitions of C with the relation � form a partially ordered set

whose extrema are the partition with a unique cell, as maximal element, and the

trivial partition, as minimal element. This property of partitions can be extended

to equitable partitions.

Let ξ(G) the set of all equitable partitions of a graph G. As we have already

observed, ξ(G) is nonempty since every graph admits a trivial equitable partition.

One can easily observe that the joining operation preserves the property of equitable

partitions:

Lemma 2.3.4 ([SU97]). Let P and Q equitable partition of a graph G. Then P∨Q

is equitable.

2.4. ORBIT PARTITIONS VS EQUITABLE PARTITIONS 19

Proof. Let J = P ∨ Q = {J1, . . . , Jp}. Let us note that each Ji can be partitioned

into sets from P or into sets from Q. Given u, v ∈ Ji, we must show that d(u, Jj) =

d(v, Jj) for all j = 1, . . . , p. Since J is coarser than P and Q, we have that u, v

belong to a same cell of P, or they belong to a same cell of Q. W.l.o.g., let us

suppose u, v ∈ Pk, where Pk ∈ P. Hence, we get Jj partitioned into sets from P, so

let Jj = P1 ∪ . . . ,∪Ph with P1, . . . Ph ∈ P. Thus, we have

d(u, Jj) = d(u, P1) + · · · + d(u, Ph)

d(v, Jj) = d(v, P1) + · · ·+ d(v, Ph)

Since u, v ∈ Pk, d(u, Pt) = d(v, Pt) holds for all Pt ∈ P. It follows that d(u, Jj) =

d(v, Jj) for all j = 1, . . . , p.

Thus, the previous lemma implies that:

Theorem 2.3.5 ([SU97]). Every graph has a unique coarsest equitable partition.

Proof. We can show the theorem by contradiction. Since ξ(G) is a non-empty set,

let P and Q be two coarsest equitable partitions of G. Then, the partition P ∨ Q

is coarser than both partitions P and Q, a contradiction.

We close this section by recalling a very interesting result from [RSU94]. There

the authors investigate the interrelation between equitable partitions and the frac-

tional isomorphism of graphs. Their main result is the following:

Theorem 2.3.6 ([RSU94]). Let G and H be graphs.The following are equivalent:

1. G ∼=f H;

2. G and H have a common coarsest equitable partition;

3. G and H have some common equitable partition.

In particular they show that each feasible matrix S of (FRAC) is in bijection

with an equitable partition common to G and H, i.e. S corresponds to an equitable

partition of G and an equitable partition of H which are described by the same

parameters (n,D).

2.4 Orbit partitions vs equitable partitions

In this section, discuss the analogies and the differences between orbit partitions and

equitable partitions. Loosely speaking, one can say that the orbit partition gives a

description of the symmetry of a graph showing more informations than equitable

CHAPTER 2. SYMMETRY IN GRAPHS 20

partitions, since the vertices that share a same orbit are related by automorphisms.

In fact, while the orbit partition of a graph is an equitable partition, the converse

does not hold. We first show that:

Proposition 2.4.1. The orbit partition of a graph is an equitable partition.

Proof. Let O = {O1, . . . , Ok} the orbit partition of a graph G. Since there exists

an automorphism π ∈ Aut(G) such that π(Oj) = Oj for all j = 1, . . . , k, d(u,Oi) =

d(v,Oi) holds for all u, v ∈ Oj i ∈ {1, . . . , k}.

In Fig. 2.2, the coloring of the graph represents the orbit partition. We can

easily check that the orbit partition is also equitable, since each class (corresponding

to a color) has exactly the same number of neighbors in every class of the graph.

However, in general, an equitable partition is not orbit partition: in Fig. 2.3, the

coloring of the graph represents an equitable partition, namely the coarsest equitable

partition. Let us observe that vertex a belongs to a cycle, but vertex d does not,

hence a and b cannot share the same orbit, i.e. an automorphism which map a onto

d does not exist.

Figure 2.2: The orbit partition is equitable

Figure 2.3: Equitable partition is not an orbit partition

From a computational point of view, the complexity of finding the orbit parti-

tion of graph is open, and it is one of the fundamental open questions in complexity

theory. To the contrary, the computation of the coarsest equitable partition of a

graph can be carried out in polynomial time (see the following section for the the

definition of coarsest partition). In the following, we first shortly recap a combi-

natorial algorithm that was proposed by McKay to compute the orbit partition of

2.4. ORBIT PARTITIONS VS EQUITABLE PARTITIONS 21

a graph, and then discuss in detail how to find the coarsest equitable partition in

polynomial time.

In literature we can find several algorithms which are related to the computa-

tion of the orbit partition O(G) of a graph G. We can distinguish two approaches:

one of them exploits algebraic tools and the other develops combinatorial algo-

rithms. In the thesis, we focus on a combinatorial algorithm proposed by McKay,

that computes the orbits of a graph through the computation of all automorphism

generators of the graph. This algorithm is one of the powerful and best-known

algorithms in literature: it has exponential time complexity, but performs excep-

tionally well in most circumstances. The McKay algorithm is implemented in the

software Nauty [Mck90], which have been used in computational experiments de-

scribed in Chapter 4. In the following, the main idea of the algorithm is reported;

for a complete description we refer to [McK81] and [HR09].

McKay’s algorithm computes the automorphisms of G, thus the orbits of G, by

using degree informations of vertices and building a search tree with the property

that the leaves return isomorphisms of G. In particular, the nodes of the search

tree are equitable partitions: the root is the coarsest equitable partition P∗(G) and

the leaves are trivial partitions. Given a node P(G) = {V1, . . . , Vp} and a subscript

i ∈ {1, ..., p}, let Aj be the partition finer than P(G) obtained by choosing vertex

uj ∈ Vi and splitting Vi in two cells such that one of them contains only uj , i.e.

Aj := {V1, . . . , Vi−1, {uj}, Vi\{uj}, Vi+1, . . . , Vp}. Every non-leaf node P(G) has |Vi|

children which are the coarsest equitable refinements {R(Aj)}uj∈Vi
for a fixed cell

Vi ∈ P(G). The algorithm starts computing the coarsest equitable partition P∗(G)

and initializes the search tree. The main procedure generates recursively the nodes

of the search tree until all relevant automorphisms are found. The exploration of

the tree follows a depth-first strategy according to a back-tracking scheme and some

criteria of pruning which allow to detect implied automorphisms.

2.4.1 Computing the coarsest equitable partition in polynomial

time

Let us observe that the set of all equitable partitions ξ(G) with the binary relation

“finer than” � give rise to a partially ordered set: the maximal element of ξ(G) is

the coarsest equitable partition P∗(G); the minima element of ξ(G) is the trivial

partition; all other equitable partitions are finer than the coarsest and coarser than

the trivial.

In the following, we will see that finding the coarsest equitable partition finer

than a given partition can be done in polynomial time.

Definition 2.4.2. Given a partition A of V (G), the coarsest equitable refinement

CHAPTER 2. SYMMETRY IN GRAPHS 22

of A, denoted R(A), is the coarsest equitable partition finer the A.

With similar arguments to Theorem 2.3.5, one may show that the coarsest equi-

table refinement R(A) of a given partition A is unique. Now, we report an algorithm

that exhibits how to compute such unique equitable partition R(A) from A.

Given a graph G and a partition A = {V1, . . . , Vs} of the vertex set V (G), we

say that Vi shatters Vj if there exist vertices u, v ∈ Vj such that d(u, Vi) 6= d(v, Vi).

Then, the shattering of Vj by Vi is a partition of Vj, namely {Vj1 , . . . , Vjt}, such

that d(u, Vi) = d(v, Vi) for all u, v ∈ Vjk and all k ∈ {1, . . . , t}. Given a partition A,

Algorithm 2.1, called coarsest equitable refinement, allows to compute R(A) from

A.

Algorithm 2.1 Coarsest equitable refinement [McK81]

Input: a graph G, a partition A = {V1, . . . , Vs} of V (G)
Output: R(A)
P ← A
find a pair of subscripts (i, j) such that Vi shatters Vj
while (i, j) does exist do

let {Vj1 , . . . , Vjt} be the shattering of Vj by Vi
P ← {V1, . . . , Vj−1, Vj1 , . . . , Vjt , Vj+1, . . . , Vs}
find a pair of subscripts (i, j) such that Vi shatters Vj

end while

R(A)← P
return R(A)

The coarsest equitable refinement algorithm iteratively splits the cells of A until

the resulting partition is not equitable. Next two propositions states the correctness

and the efficiency of the algorithm.

Proposition 2.4.3. The coarsest equitable refinement algorithm returns the coars-

est equitable partition finer than A.

Proof. If every cell of an incumbent partition cannot shatter any other cell, it means

that the partition is equitable; therefore, the algorithm terminates after a bounded

number of iterations since every graph has at least one equitable partition, i.e.

the trivial partition. Moreover, the partition computed by the algorithm R(A)

is obviously finer than A, as it is obtained by splitting cells of A. Finally, we

can conclude that R(A) is the coarsest equitable partition finer than A, since all

partitions P computed by the algorithm are coarser than R(A), but not equitable.

Proposition 2.4.4. The coarsest equitable refinement algorithm has a computa-

tional complexity of O(nm), where n = |V | and m = |E|.

2.5. EP-GRAPH 23

Proof. In the worst case, the algorithm visits on each iteration all the the edges

of the graph to verify whether the current partition is equitable. Moreover, if the

the graph has the trivial partition as unique equitable partition, the number of

iterations is bounded by the number of vertices in V . Therefore, the computational

complexity of the algorithm is O(nm).

Let us observe that Algorithm 2.1 allows to compute the coarsest equitable

partition P∗(G) by setting as input A = {V (G)}. Therefore, we can conclude that

the computation of P∗(G) can be done in polynomial time.

2.5 EP-graph

In this section, we present our first original contribution. As we discussed in

the introduction, exact methods for solving MSSP are based on branch&bbound

paradigm. Therefore, instances of MSSP with property of symmetry are often

challenging since branch&bound wastes computational time exploring equivalent

subproblems.

One is then tempted of removing symmetries, e.g. with some symmetry-breaking

methods. However, there are two drawbacks. The first is that avoiding symmetry

requires a significant computational effort, even when orbits can be computed very

fast in practice. The second, and more relevant, is that a complete removal of

symmetry can have bad effects since information about the structure of instances

gets lost. In fact symmetric instances have often a quite regular structure that

one should try to exploit, while avoiding the combinatorial explosion due to the

symmetry.

Equitable partitions, and, in particular, the orbit partition, decomposes a graph

in more manageable classes that often have a “small” size and a simple symme-

try structure. It is often the case, that in symmetric instances, these classes are

connected not just in a regular way (this follows from the definition of equitable

partition) but also in a simple way, e.g. tree like. In order to be more precise we

need the following definition

Definition 2.5.1. Given a graph G and an equitable partition P = {V1, . . . , Vp} of

G, the EP-graph of G associated to P, denoted by GP , is a simple graph that has

a vertex i ∈ V (GP) for each cell Vi ∈ P and an edge {i, j} ∈ E(P) if there exist

vertices u ∈ Vi, v ∈ Vj such that {u, v} ∈ E(G).

Fig. 2.4 exhibits an example of EP-graph: on the left-hand side, we show a graph

and an equitable partition given by the coloring of vertices; on the right-hand side,

the corresponding EP-graph is displayed.

CHAPTER 2. SYMMETRY IN GRAPHS 24

As we will show in the following chapters, the EP-graph is often a powerful tool

for capturing the regular structure of a graph due to properties of symmetry. Note

also that, when we deal with equitable partitions, the EP graphs might show some

symmetries that would be missed by just looking at orbit partitions.

We close by pointing out that, in some cases, the computation of the EP-graph

associated to some equitable partition of a graph G allows us to preprocess G and

therefore reduce its size. This is summarized in the following lemmas, whose simple

proofs we skip. Given a subset U ⊆ V , let α(U) denote the stability number of

G[U].

Lemma 2.5.2. Let P = {V1, . . . , Vp} be an equitable partition of a graph G. For

each Vi ∈ P, the following holds: if α(Vi) = α(N [Vi]), then α(G) = α(G \N [Vi]) +

α(Vi).

An homogeneous set is a set of vertices Q ⊂ V such that each vertex v /∈ Q is

either complete or anti-complete to Q. We point out that checking whether a cell

Vi is an homogeneous set is straightforward, given the parameters (c,D) (see Sec.

2.3) of the equitable partition. Namely, Vi is an homogeneous set if and only if, for

each j 6= i, either Dji = 0 or Dji = |Vi|.

Lemma 2.5.3. Let P = {V1, . . . , Vp} be an equitable partition of a graph G. For

each Vi ∈ P, the following holds: if Vi is an homogeneous set, then α(G) =

max{α(G \N [Vi]) + α(Vi), α(G \ Vi)}.

Figure 2.4: Example of EP-graph

Chapter 3

Symmetry in Maximum Stable

Set Problem

The maximum stable set problem (MSSP) is known to be NP-hard and, as well, ex-

tremely hard to approximate [H̊as96]. Exact methods for MSSP are mainly based

on the branch&bound paradigm. Although branch&bound is the most suitable

method for solving MSSP, it could fail to solve instances with a few hundred ver-

tices. Furthermore, instances with property of symmetry (or, more in general, inte-

ger programs with symmetric feasible regions) are challenging since branch&bound

algorithms waste computational time exploring equivalent subproblems.

In this chapter we deal with exact methods for solving symmetric instances of

MSSP. We recall in Section 1.2 some standard integer linear programming formu-

lation for the maximum stable set problem. In Section 3.1, we give an overview

of Orbital Branching, one of the most effective symmetry-breaking method for ap-

plications. Finally, in Section 3.2, we introduce some more (new) tools: equitable

partition inequalities, equitable partition formulations and aggregate equitable par-

tition formulations.

3.1 Orbital Branching

In this section, we discuss basic concepts of the orbital branching method [OLRS11a]:

for an exhaustive exposition the reader may refers also to [Ost09]. A suitable ap-

plication of orbital branching to MSSP is discussed in 4.2.

We start introducing some notations. Let A ∈ {0, 1}m×n be a binary matrix

with m rows and n columns. Given sets of indices Im = {1, . . . ,m} of the rows and

In = {1, . . . , n} of the columns of A, let Πm and Πn be respectively the symmetry

group of Im and In (for definition of group, symmetry group and permutation

group, see Sec. 2.2). For each σ ∈ Πm, π ∈ Πn, let A(σ, π) ∈ {0, 1}m×n be the

25

CHAPTER 3. SYMMETRY IN MAXIMUM STABLE SET PROBLEM 26

matrix obtained by permuting rows of A by σ and columns of A by π.

The permutation group G(A) of the matrix A is the subset of permutations

π ∈ Πn such that there exist permutation σ ∈ Πm which map A(σ, π) onto A.

G(A) = {π ∈ Πn : ∃σ ∈ Πm such that A(σ, π) = A}

Given a subset S ⊆ In, the orbit of S under the action of G(A), denoted by

orb(S,G(A)), is the set of all subsets S′ ⊆ In such that there exists a permutation

π ∈ G(A) which maps elements of S onto elements of S′:

orb(S,G(A)) = {S′ ⊆ In : ∃π ∈ G(A) such that S′ = π(S)}

Thus, the orbit partition of the columns of A, denoted by O(A), is the union of

the orbits of each column with index j ∈ In:

O(G(A)) =
n
⋃

j=1

orb ({j},G(A))

Now, we introduce the basic idea behind orbital branching. Let us suppose we

want to solve the following binary integer program:

(ILP) = max
x∈{0,1}n

{

cTx : Ax ≤ b
}

where b, c are w.l.o.g. integer vectors, by using a general branch&bound scheme.

Let F be the feasible region of (ILP). Branch&bound partitions F building up

an enumeration tree whose nodes are subproblems obtained by fixing the values of

some variables. We define a node of the enumeration tree, denoted by a, with the

pair of subsets (F a
1 , F

a
0) such that F a

1 ⊆ I
n, F a

0 ⊆ I
n contain respectively indices of

variables fixed to 1 and indices of variables fixed to 0. The set of free variables of

node a is Na = In \ (F a
1 ∪F

a
0). The feasible region of a, say Fa, is described by the

submatrix A(F a
1 , F

a
0) that is obtained by removing from A all columns with indices

in F a
1 ∪ F

a
0 and all rows intersecting columns with indices in F a

1 .

Given S = {j1, . . . , j|S|} ⊆ N
a, a standard branching rule partitions Fa by fixing

to 1 in turn each variable with index in S, implementing the following disjunction:

xj1 = 1 ∨ (xj2 = 1 ∧ xj1 = 0) ∨ · · · ∨ (xjk = 1 ∧
k−1
∑

h=1

xjh = 0) ∨ · · · ∨

|S|
∑

h=1

xjh = 0

Thus, a general branch&bound scheme generates a child subproblem a(k) for

each k ∈ S, leaving aside the effects of G(A(F a
1 , F

a
0)) onto feasible regions of children

of a. On the other hand, orbital branching exploits symmetry information by avoid-

3.1. ORBITAL BRANCHING 27

ing the generation of equivalent subproblems. Given an orbit O = {j1, . . . , j|O|} ⊆

Na under the action of G(A(F a
1 , F

a
0)), the authors of [OLRS11a] show that for

each pair {ju, jv} ⊆ O, subproblems a(u) and a(v) are equivalent since they are

characterized by symmetric solutions. In particular, orbital branching implements

the following branching dichotomy based on the orbit partition O(G(A(F a
1 , F

a
0))):

xju = 1 ∨

|O|
∑

h=1

xjh = 0 ju ∈ O

The basic orbital branching method is formalized in Algorithm 3.1.

Algorithm 3.1 Orbital branching

Input: subproblem a = (F a
1 , F

a
0)

Output: two child subproblems l, r
compute orbit partition O(G(A(F a

1 , F
a
0))) = {O1, . . . , Op}

Select orbit Oj∗ , j∗ ∈ {1, . . . , p}
Choose arbitrary k ∈ Oj∗

return l = (F 1 ∪ {k}, F 0) and r = (F 1, F 0 ∪Oj∗)

The choice of the orbit may influence the performance of the method: the au-

thors compare several rules for deciding the orbit on which to base the branching.

In practice, orbital branching is one of the most effective symmetry-breaking

methods. Computational results on symmetric instances show that orbital branch-

ing performs much better than CPLEX with symmetry-reduction setting and it is

also comparable to isomorphism pruning. However, orbital branching has two dis-

advantages. In terms of efficiency, computing orbits at each node of the enumeration

could require such a computational effort as the purpose of removing symmetry is

defeated, even though the orbit partition can be efficiently computed in practice.

The authors propose a way around this first disadvantage by deriving local per-

mutation groups of subproblems from the global permutation group of the entire

problem. This approach decreases the orbits computation overhead, but it is not

completely conclusive since it weakens the orbital branching dichotomy.

A more significant disadvantage is implied by the fact that the performance of

orbital branching is closely related to the structure of permutation group of the prob-

lem. After few fixing of variables, it may happen that the symmetry is completely

removed from the problem, thus, orbital branching could perform much worse than

standard branch&bound methods. Some feasible regions with a wide permutation

group are such that if we remove exactly one column from the corresponding orbit,

i.e. we artificially distinguish a column from all its symmetric columns, the size of

the corresponding permutation subgroup considerably decreases with respect to the

size of the original permutation group. On the contrary, it may occur that the size

CHAPTER 3. SYMMETRY IN MAXIMUM STABLE SET PROBLEM 28

of permutation group of the same feasible region will not be subject to substantial

variations if we partition a certain orbit in more subsets of columns.

3.2 Equitable partition inequalities

The performances of orbital branching suggests that there is a trade-off between

removing and maintaining symmetry in integer problems: on one hand it is useful

avoiding symmetry in order to reduce the search space of solutions, on the other

hand it is advantageous preserving some symmetry information.

The main contribution of this thesis, we believe, is that of showing that the EP

graphs are a powerful tool to find equilibria in removing and maintaining symmetry.

In many cases, we realized that hard instances have, for some suitable equitable

partition, a very nice and simple EP graph (often a tree!). In such cases, it is often

possible to efficiently compute the stability number of subgraphs that are suggested

by the EP graph, that have a “small” size and a simple symmetry structure. In

fact, these “local” lower bounds provide quite valuable additional informations that

might reduce the search space of solutions.

While we believe that there are several methods for exploiting these informa-

tions (e.g. via combinatorial branch&bound algorithms), in the thesis we focus on

how to derive from EP graphs valid inequalities that strengthen the linear program-

ming relaxations of the maximum stable set problem. That is, indeed quite simple.

Suppose that we are given a graph G and an equitable partition P of G. We derive

from the topology of EP-graph GP the following rank inequalities, called equitable

partition inequalities:

x(Vi) ≤ α (Vi) ∀i ∈ V (GP) (3.1)

x(Vi) + x(Vj) ≤ α (Vi ∪ Vj) ∀{i, j} ∈ E(GP) (3.2)

∑

j∈N
GP [i]

x(Vj) ≤ α





⋃

j∈N
GP [i]

Vj



 ∀i ∈ V (GP) (3.3)

x(Vi) + x(Vj) + x(Vk) ≤ α (Vi ∪ Vj ∪ Vk) ∀{i, j, k} triangle of GP (3.4)

A few remarks are necessary and important:

• We remark that other inequalities than the one above could be derived from

the topology of EP-graph (e.g. one might be tempted to look at inequalities

associated to odd cycles in the EP graph). However, our computational obser-

vations show that the subgraphs induced by the classes involved in the above

3.2. EQUITABLE PARTITION INEQUALITIES 29

EP inequalities have often a small size and a simple symmetry structure. And

this takes us to our second remark:

• Computing right-hand sides of the above inequalities requires to find the sta-

bility numbers of some subgraphs of G, hence an additional computational

effort is necessary. However, if these subgraphs have a small size and a simple

symmetry structure, then the computation of right-hand sides can be often

effectively carried out by eventually using symmetry-breaking method like

orbital branching.

• Trivially, we might restrict to orbit partitions, instead than equitable partition.

But, on the other hand, why? We are not planning to use these partitions to

fix the values of some variables (in that case we would need not just equitable

partitions, but orbit partitions). So we better use equitable partitions, as they

are more (and so it is more likely that we find one with a nice EP graph), and

are easy to find (recall that it is easy to find the coarsest one, and it is easy

to find the coarsest equitable refinement of any other partition, see Section

2.4.1).

Given an equitable partition P of a graph G, we add the equitable partition

inequalities associated to P to QSTAB(G) and get a new formulation of the max-

imum stable set problem, that we call equitable-partition formulation (associated

with P):

(EQP) := max
∑

i∈V (G)

xi (3.5)

subject to

x satisfies (3.1)-(3.3) ∀P ∈ P⋆(G)

x ∈ QSTAB(G) ∩ Z
|V |
+

Trivially, if we are given a family of equitable partition of G we may simul-

taneously add all the equitable partition inequalities associated to each equitable

partition in the family

3.2.1 Aggregate equitable partition formulation

Program 4.1 could be unsolvable in practice, even when a considerable computation

capacity is employed. In this regard, we present a reformulation of MSSP in a lower

dimension than of the original space, which provides upper bound on the optimal

solution. Given a graph G and equitable partition P of G, let yi the number of

CHAPTER 3. SYMMETRY IN MAXIMUM STABLE SET PROBLEM 30

vertices that a stable set S intersects Vi ∈ P. Since |S ∩ U | ≤ α(U) trivially holds

for each U ⊆ V (G), the optimal solution of the following linear program, called

aggregate equitable partition formulation, is an upper bound on α(G):

(AEP) := max
∑

i∈V (GP)

yi (3.6)

subject to

yi ≤ α (Vi) ∀i ∈ V
(

GP
)

(3.7)

yi + yj ≤ α (Vi ∪ Vj) ∀{i, j} ∈ E
(

GP
)

(3.8)

yi + yj + yk ≤ α (Vi ∪ Vj ∪ Vk) ∀{i, j, k} triangle of GP

(3.9)

∑

j∈N
GP [i]

yj ≤ α





⋃

j∈N
GP [i]

Vj



 ∀i ∈ V
(

GP
)

(3.10)

y ∈ Z+ ∀i ∈ V
(

GP
)

(3.11)

Constraints (3.7)-(3.10) are equitable partition inequalities in the aggregate

space. Let us observe that (AEP) becomes a linear integer formulation of MSSP

in the original space when P is a trivial equitable partition, i.e. each class of P

contains exactly one vertex of G. However, if we consider equitable partitions with

a small number of classes, the optimal solution of (AEP) can be found very fast in

practice.

Let us consider the example shown in Fig. 2.4. The corresponding aggregate

3.2. EQUITABLE PARTITION INEQUALITIES 31

equitable partition formulation is given by the following integer program:

max y1 + y2 + y3 + y4

subject to

y1 ≤ 1

y2 ≤ 1

y3 ≤ 1

y4 ≤ 1

y1 + y2 ≤ 1

y2 + y3 ≤ 2

y3 + y4 ≤ 1

y1 + y2 + y3 ≤ 2

y2 + y3 + y4 ≤ 2

yi ∈ Z+ ∀i = 1, . . . , 4

In the following chapter, computational results show that equitable partition

inequalities can be efficiently generated, even without using symmetry breaking

methods for the computation of right-hand sides. Moreover, we will see that equi-

table partition formulations often provide strong relaxation of MSSP and allow to

efficiently solve some hard symmetric instances.

CHAPTER 3. SYMMETRY IN MAXIMUM STABLE SET PROBLEM 32

Chapter 4

Computational Experiments

In this chapter we summarize our computational experiments on some hard in-

stances of the maximum stable set problem. In Section 4.1 we present our main

formulation and discuss strategies for generating equitable partition inequalities and

designing orbital branching for maximum stable set problem. In Section 4.2 we give

a few technical details about our implementations. In Section 4.3, we illustrate a

few symmetric instances of the stable set instances that we focused on, and report

our computational experiments.

4.1 Our main integer linear program

Our standard integer linear program formulation for the maximum stable set prob-

lem is the equitable partition formulation we discussed in the previous chapter.

Namely, given a family of equitable partition P∗ of G, we consider:

(EQP) := max
∑

i∈V (G)

xi (4.1)

subject to

x satisfies (3.1)-(3.3) ∀P ∈ P∗

x ∈ QSTAB(G) ∩ Z
|V |
+

The generation of this formulation, requires the following tasks:

(1) computing a P∗ of equitable partitions;

(2) computing for each P ∈ P∗, and for each equitable partition inequality derived

from that partition, the corresponding right-hand sides.

33

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 34

As we have discussed in Section 2.4.1, the coarsest equitable partition C can be

computed in polynomial time by the coarsest equitable refinement procedure, start-

ing from the unit partition {V (G)} (see Algorithm 2.1). However, our experiments

have shown that the potentiality of equitable partition formulation turns out to be

restricted if (EQP) contains only inequalities uniquely derived from C. In many

cases, using inequalities derived from equitable partitions finer than C has been

successful. Thus, a first crucial question is how to derive other equitable partitions

than the coarsest.

That is easy, however, as the coarsest equitable refinement procedure is able to

produce the coarsest equitable partition that is a refinement of any given partition.

In particular, we suggest the possible simple procedure to produce a different eq-

uitable partition P ′ from an equitable partition P. Given an equitable partition

P = {V1, . . . , Vp} (possibly P = C) and one vertex u,∈ Vi, let P
′ be the coarsest

refinements of {V1, . . . , Vi−1, {u}, Vi \ {u}, Vi+1, . . . , Vp}. We point out that we can

choose v ∈ Vi into |Vi| possible different ways. However, in many symmetric in-

stances, the equitable partitions we get isolating u and v are often characterized

by the same parameters, and therefore produce inequalities whose right-hand sides

require almost the same computational time. That means that such a breadth-first

strategy does not pay off when we are simply looking for some partition for which

computing the right-hand sides of the equitable partition inequalities is doable, see

the following.

So the question is: when other equitable partition should we generate? This is,

we believe a fascinating question, we attempt here a preliminary answer, based on

computational analysis and empirical observations.

First of all, we have empirically observed that there is a trade-off between using

equitable partitions with a small number of classes and equitable partitions with

many classes. Usually, equitable partitions with few classes give rise to strong

inequalities, however the computation of the corresponding right-hand sides could

require a considerable computational effort. On the other hand, equitable partitions

with many classes often lead to weak inequalities whereas their generation is very

fast.

Our final procedure is again simple. We start with the coarsest equitable par-

tition. We then generate a new equitable partition P ′ from the current equitable

partition P (as discussed above) when: either we are not able to compute the right-

hand sides for some inequality associated to P, or the the upper bound associated

to the current equitable partition formulation (which takes into account P and pos-

sibly other equitable partitions generated in the past) is too weak. Algorithm 4.1

formalizes such considerations.

Conditional expression at row 9 of Algorithm 4.1 refers to cases when the com-

4.1. OUR MAIN INTEGER LINEAR PROGRAM 35

Algorithm 4.1 Equitable partition inequalities generation scheme

Input: a graph G = (V,E), clique formulation QSTAB(G)
Output: equitable partition inequalities I for G
1: I ← ∅
2: compute coarsest equitable partition C = {V1, . . . , V|C|} of G
3: Q ← C
4: flag ←false

5: while flag =false do

6: flag ←true

7: compute equitable partition inequalities IQ associated to Q
8: I ← I ∪ IQ

9: if rhs of some inequality in IQ is hard to compute then

10: flag←false

11: end if

12: if QSTAB(G) ∩ I is weak then

13: flag←false

14: end if

15: if flag =falseand |Q| < |V | then
16: i← argminj=1,...,|Q|{|Vj | : |Vj | ≥ 2}
17: select u ∈ Vi
18: Q ← R({V1, . . . , Vi−1, {u}, Vi \ {u}, Vi+1, . . . , Vp}) {see Section 2.4.1}
19: end if

20: end while

21: return I

putation of inequalities right-hand sides requires an effort in terms of computational

time or memory needed for storing branch&bound search tree: we assume that the

performance of the method is acceptable within fixed limits of time and size of the

tree. In the same way, conditional expression at row 12 typifies situations in which

equitable partition formulations do not allow to efficiently solve instances in terms

of computational time or growing of the branch&bound tree.

We point out two positive sides of Algorithm 4.1. Given an equitable partition

Q, let IQ be the set of equitable partition inequalities (3.1)-(3.4) associated to

Q. The generation of each inequality in IQ requires to solve a certain instance

of maximum stable set problem that corresponds to a subgraph of G. Thus, the

generation of each inequality in IQ can be carried out independently from other

inequalities in IQ. It follows that parallel computing is possible.

Moreover, let us observe that subgraphs associated to equitable partition in-

equalities contain local symmetry information of G. This feature could allow orbital

branching to effectively compute right-hand sides of inequalities. We have discussed

basic ideas and an essential functioning of the method in Section 3.1. A natural

implementation of orbital branching is based on the following simple observation.

Given a graph G, let M ∈ {0, 1}|V |×|E| be the incidence matrix of G and, given

a clique Ki in G, let χ(Ki) ∈ {0, 1}
|V | the incidence vector of Ki. Now, let us

consider the following integer formulation of the maximum stable set problem for

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 36

G:

max
x∈{0,1}|V |







|V |
∑

i=1

: Ax ≤ 1|V |







where 1|V | is a vector of all ones with size |V | and A =













MT

χ(K1)
T

...

χ(Kq)
T













. Since

each column of A is in bijection with a vertex of G, the symmetry group G(A)

corresponds to Aut(G) (see Sec. 2.2 for definitions), hence the orbit partition of

columns of A is given by the orbit partition of vertices of G. For this reason, the

orbit partition at each subproblem in the search tree corresponds to orbit partition

of the suitable subgraph obtained by removing vertices referring to fixed variables.

Since Nauty is very effective for computing orbits of graphs, we have implemented

orbital branching to perform the computation of orbits for each explored subproblem

of the enumeration tree. Furthermore, we have adopted the rule of branching on the

largest orbit since it is one of the most effective rule to perform orbital branching

(as described in [OLRS11a]) and, it allows to exploits the previous implementation

choice in the best way possible.

4.2 Implementation

The entire implementation has been developed in C language and consists of over

5000 lines of code (see Appendix B). The generation scheme of equitable partition

inequalities (discussed in the previous section) has been implemented by several

functions of our source code. Table 4.1 summarizes main procedure of Algorithm

4.1, whose code is reported in Appendix B. The computation of coarsest equitable

partition is implemented in function cep, while the process of finding finer equi-

table partitions is due to the interaction of functions refineEQP and genEQP. The

generation of equitable partition inequalities refers to functions printEQP v rhs,

printEQP e rhs, printEQP t rhs and printEQP n rhs. These procedures exploit

subroutine verifyISO that allows to avoid the computation of equivalent right-hand

sides by invoking Nauty. Finally, the computation of right-hand side have been car-

ried out by IBM ILOG CPLEX 12.4 [IBM11] using callable library, the C pro-

gramming interface of CPLEX. In our code, function cpxRHS implements a usage of

CPLEX with standard features, while function orbRHS exploits CPLEX callbacks

to implement orbital branching. Finally, procedures printEQP, printEQPpar and

EPgraphDOTform are important tools to analyze the structure of instances: for each

4.3. COMPUTATIONAL RESULTS 37

equitable partition considered, these routines provide equitable partition parame-

ters (see Sec. 2.3) and a file for visualizing EP-graphs by Graphviz [Res88], an

open source graph visualization software.

4.3 Computational results

This section is devoted to the discussion of computational results. Experiments have

been carried on a workstation with 4 processors at 2.0 GHz and 8GB of RAM under

Linux operating system. The source code has been compiled by gcc with optimiza-

tion flag. Computational experiments concern symmetric stable set instances, thus

we have focused our attention on classes of symmetric graphs from Dimacs clique

benchmark set [Dim92], that are Mann and Keller. Mann and Keller graphs have

been artificially generated in order to test algorithms for maximum stable set prob-

lem and, more in general, integer linear programming methods. They are widely

considered hard instances of benchmark set Dimacs. Our first purpose is testing

the performance of our method comparing it with orbital branching, which is one

of the most effective symmetry-breaking method in practice.

We have also considered instances arising from applications: 1zc-graphs. The

maximum stable set problem in 1zc-graphs corresponds to a reformulation of a well-

studied problem in coding theory. This class of graphs turns out to be challenging

since no optimal solutions are known for largest instances of the class. In Section

4.4, we will see that equitable partition formulations allows to certify the optimality

for 1zc1024, a 1zc-graph whose stability number is not known so far, also defined

most wanted by N. Sloane [Slo00].

4.4 1zc-instances

The 1zc-instances are a class of instances from the Sloane Independent Set Chal-

lenge [Slo00] known to be among the hardest instances for the maximum stable

set problem. In fact, for most instances of this class the optimal solutions is still

unknown.

As we will show in this section, the graphs arising in these instances admit a

quite natural equitable partition whose EP-graph is a path. The corresponding

equitable partition formulations, in the original and the aggregate space, are quite

effective. We have in fact been able to solve to optimality the 1zc1024-instance,

defined as “the most wanted instance” by Sloane. We also substantially improved

the best upper bound on the value of the optimal solution to the 1zc2048-instance.

More details about the 1zc-instances are available on the Sloane’s independent

set challenge web page [Slo00].

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 38

Function Description

(B.1) cep
The function computes the coarsest equitable
partition.

(B.3) refineEQP

Given equitable partition P, procedure com-
putes an equitable partition Q finer than
P guaranteeing minimal fragmentation of the
classes of P.

(B.4) genEQP
The function explores the space of equitable par-
titions according to desired parameters.

(B.5) printEQP rhs

Given an equitable partition P, the function
initializes the generation of equitable partition
inequalities by extracting corresponding sub-
graphs of G.

(B.6) verifyISO

The function invokes Nauty to test isomorphism
among subgraphs extracted by printEQP rhs,
in order to avoid the computation of equivalent
right-hand sides.

(B.7) cpxRHS

The function computes the right-hand side of
equitable partition inequality by using callable
library of CPLEX.

(B.8)
orbRHS

usersetbranch

orbRHS computes the right-hand side of equi-
table partition inequality by implementing or-
bital branching under CPLEX. usersetbranch
modifies the generation of subproblems in
CPLEX enumeration tree: at each node node
of tree, Nauty is invoked to compute orbits,
then two children are generated by branching
largest orbit, according to the orbital branching
dichotomy.

(B.2)
printEQP

printEQPpar

EPgraphDOTForm

Functions extract information from equitable
partition: they generate equitable partition pa-
rameters and a file to visualize the correspond-
ing EP-graph by Graphviz

Table 4.1: Main procedures of equitable partition inequalities generation scheme

4.4. 1ZC-INSTANCES 39

4.4.1 Origin of the 1zc-instances

In this subsection we describe the context from which the 1zc-instances arise. This

requires that a few basic definitions from information and coding theory. In the

following, it is convenient to think of the following (practical) problem: a sender

needs to communicate some message to a receiver, and we may assume that the

message is from some finite set of messages M .

In order to communicate his/her message, the sender will make use of some

(noisy) channel. A channel is a theoretical model with certain error characteristics

that describes the process of conveying information signals from one sender to one

receiver. In a binary communication channel, the sender wishes to send bits, and

the receiver receives bits. In a binary communication channel, an error, in general,

refers to a crossover 1 → 0 or 0 → 1 from the input to the output of the channel.

We are here interested in a particular binary communication channel:

Definition 4.4.1. The Z-channel (or binary completely asymmetric channel) is

the channel with {0, 1} as input and output, where the crossover 1→ 0 occurs with

positive probability p, whereas the crossover 0→ 1 never occurs.

For example, in the Z-channel the error given by the crossover (1110010) →

(1110011) cannot occur since the last entry of the message changes value from 0 to

1 during transmission.

As the sender uses a binary communication channel, he needs to associate a

binary code to each message in M . A binary code is a way of representing text or

computer processor instructions by the use of bits. Formally, a binary code of length

n, denoted by C, is a subset of binary vectors in {0, 1}n. We may therefore think

that our problem is that of choosing C ⊆ {0, 1}n and defining a bijection between

C and the set M of messages.

Trivially, this requires that n ≥ ⌈log2 |M |⌉; however it might be convenient

to choose a number n of bits larger than ⌈n log2 |M |⌉, so that we may use an

error-correcting code. The central idea behind error-correcting codes is that sender

encodes their message in a redundant way: the redundancy allows the receiver to

detect a limited number of errors that may occur anywhere in the message, and

often to correct these errors without retransmission. The following error-correcting

code is designed for Z-channels:

Definition 4.4.2. Given x ∈ C ⊆ {0, 1}n, let y ∈ {0, 1}n be a binary vector of

length n that is obtained from x by changing at most t “1”s into “0”s (and keeping

unchanged the other bits of x). Then, C is a t asymmetric error correcting code

(or simply t-code) if there exists a function ψ : {0, 1}n → C, called decoder, which

recovers x from y, i.e. ψ univocally maps y onto x.

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 40

Let us consider the following binary vectors, and suppose that t = 1:

x1 = (01011) x2 = (10101) x3 = (11000) x4 = (10011) (4.2)

Let us check that C1 = {x1, x3, x4} is not a 1-code since a rule that decodes y =

(00011) onto any xi ∈ C1 does not exist: there is no way to tell if y is obtained from

x1 or from x4. At contrary, C2 = {x1, x2, x3} is a 1-code since we can map each y,

that is obtained from some x ∈ C1 by changing at most one “1” into “0”, into a

unique vector xi ∈ C2.

Given the set of all binary vectors {0, 1}n, the problem of finding a t-code

C ⊆ {0, 1}n of maximum cardinality is a well-known problem of coding theory.

This problem can be easily reformulated as a maximum stable set problem, as we

show in the following.

Definition 4.4.3. Given x, y ∈ {0, 1}n, the asymmetric distance between xand y,

denoted ∆(x, y), is:

∆(x, y) := max {|{i : xi > yi, i = 1, . . . , n}|, |{i : yi > xi, i = 1, . . . , n}|} (4.3)

The proof of following theorem is essentially taken from [Klø81].

Theorem 4.4.4. A code C ∈ {0, 1}n is a t-code if and only if ∆(x, y) > t holds for

all x, y ∈ C, x 6= y.

Proof. For each x, y ∈ {0, 1}n, let N(v, x) := |{i : xi > vi, i = 1, . . . , n}|. It follows

that ∆(x, y) = max{N(v, x), N(x, v)}. Also, for each x ∈ {0, 1}n, let St(x) = {v ∈

{0, 1}n : v ≤ x and N(v, x) ≤ t}.

It follows from Definition 4.4.1 that C is a t-code if and only if St(x)∩St(y) = ∅

for each x, y ∈ C, x 6= y. We now show that, for each x, y ∈ {0, 1}n, St(x)∩St(y) 6= ∅

if and only if ∆(x, y) ≤ t.

First, consider x and y ∈ {0, 1}n such that ∆(x, y) ≤ t. Define a third vector

v ∈ {0, 1}n such that vi = 1 if and only if xi = yi = 1. By construction, v ≤ x and

v ≤ y. Moreover, vi = 0 and xi = 1 (resp. yi = 1) if and only if xi = 1 and yi = 0

(resp. xi = 0 and yi = 1). Since ∆(x, y) ≤ t, it follows that v ∈ St(x) ∩ St(y).

Now consider x and y ∈ {0, 1}n such that St(x) ∩ St(y) 6= ∅, and let v ∈

St(x) ∩ St(y). By definition, N(v, x) ≤ t and N(v, y) ≤ t. Moreover, it is easy

to check that N(x, y) ≤ N(v, y) and N(y, x) ≤ N(v, x). But then ∆(x, y) =

max{N(v, x), N(x, v)} ≤ t.

Let Gn be a graph such that its vertices are in bijection with the binary vectors

in {0, 1}n and {x, y} ∈ E(Gn) if and only if ∆(x, y) ≤ t (for simplification, we use

4.4. 1ZC-INSTANCES 41

the same notation for a vertex and its corresponding vector). It follows from the

previous theorem that finding a largest t-code of length n is equivalent to finding a

maximum stable set problem in Gn.

4.4.2 The 1zc-graphs

When t = 1, graphs Gn (see previous section) are known as 1zc-graphs. In the

thesis, we focused in particular on G9, G10 and G11.

Our first remark is that the EP-graphs associated to the coarsest equitable

partitions of G9, G10 and G11 have an interesting path structure, that is shown in

Fig. 4.1.

Figure 4.1: EP-graphs associated to coarsest equitable partitions of 1zc512 (a),
1zc1024 (b) and 1zc2048 (c)

However, for each of those graphs, the subgraphs induced by each of the coars-

est partition (but for the rightmost one, see Fig. 4.1) is made of two connected

components. Actually, if we split each non-connected cell into its two “connected”

classes, we get another partition of the vertex set that is still equitable and whose

EP-graph still holds a path structure, see Fig. 4.2.

Inspired by these observations, we could prove the following theorem showing

that this structure is indeed common to each 1zc instance. We point out that, while

the proof of the theorem is simple, its statement was suggested by the observation

of the EP-graph.

Theorem 4.4.5. Each graph Gn has an equitable partition with classes V0, V1, . . . , Vn

such that the EP-graph is a path. Moreover, the parameters are the following

• for each 0 ≤ i ≤ n, d(i, i) = i(n − i);

• for each 1 ≤ i ≤ n, d(i, i − 1) = i

• for each 0 ≤ i ≤ n− 1, d(i, i + 1) = n− i

• for each 0 ≤ i < j ≤ n, with j − i ≥ 2, d(i, j) = 0.

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 42

Figure 4.2: EP-graphs associated to non-coarsest equitable partitions of 1zc512 (a),
1zc1024 (b), 1zc2048 (c)

Proof. Each vertex v ∈ Gn corresponds to a binary vectors in {0, 1}n and in the

proof we use the same notation for a vertex and its corresponding vector.

For each i = 0..n let Vi be the set of vertices with exactly i bits of value 1. (We

point out, and apologize for that, that this numeration is not consistent with the

one that is given in Fig. 4.2). Now observe that the asymmetric distance between

two vertices u ∈ Vi and v ∈ Vj is at least |j − i|. Moreover, each u ∈ Vi, 1 ≤ i ≤ n,

is adjacent to some vertex v ∈ Vi−1 (build v from u by just changing one “1” bit of

u into “0”). Therefore the EP-graph associated to the partition V0, V1, . . . , Vn is a

path.

However, we are a bit abusing terminology, because we still have to prove that

V0, V1, . . . , Vn is an equitable partition! But again this is easy. Each vertex u ∈ Vi

is adjacent to i(n − i) vertices of its class, i vertices of Vi−1 and n − i vertices of

Vi+1.

4.4.3 The maximum stable set problem on 1zc-graphs

The 1zc-graphs Gn provide hard instances for the maximum stable set problem,

the so-called 1zc-instances (for each n, the 1zc2n-instance corresponds to the graph

Gn). In fact, no optimal solution is known for n ≥ 10 and even estimating upper

bounds on stability numbers turns out to be quite challenging. A first bound on

the stability number of these graphs follows from [Var65], where the author gives

a formula to obtain upper bound on the size of a maximum cardinality t-code of

4.5. SOLVING 1ZC1024 TO OPTIMALITY 43

length n. For the case t = 1, this corresponds to the following bound on α(Gn):

Theorem 4.4.6 ([Var65]).

α(Gn) ≤
2n+1

n+ 2

A different line of attack to those instances was carried out in [Klø81]. The

author provides a linear integer formulation that allows to estimate upper bounds

on the maximum cardinality t-code of length n (and therefore on the value of α(Gn)).

Unfortunately, the generation of some inequalities that are required for this integer

program is in practice prohibitive. This was however improved in [EO98], where

the authors are able to compute, in some cases, these upper bounds. They also

are able to provide an heuristic algorithm to produce lower bounds, and eventually

improve the best upper bounds known for many instance and solve to optimality

the 1zc512-instance.

We here discuss (a part of) our computational experience with the maximum

stable set problem on 1zc-graphs. Again, we focus in particular on 1zc512, 1zc1024

and 1zc2048 (i.e. n = 9, 10, 11). We built upon the equitable partitions returned

by Theorem 4.4.5. We considered both the equitable partition formulations in

the original space and in the aggregated space. We point out that in some cases

CPLEX could not compute the right-hand sides of some of our equitable partition

inequalities, even with symmetry reduction settings. On the other hand, orbital

branching turned out to be effective for the computation of those right-hand sides,

and in Table A.3, we report the computational performance for generating our

equitable partition inequalities.

We were always able to solve our the aggregate equitable partition formulations

(interestingly there was never integrality gap for these formulations). As for the

equitable partition formulation in the original space, we were able to solve it only

for 1zc512. However, for 1zc1024 and 1zc2048, on the one hand, the aggregate

formulations provide upper bounds stronger than the best upper bounds known so

far; on the other, the best integer solutions found by CPLEX are often the best lower

bounds known so far. This is summarized in Table 4.2, where we compare: our upper

bounds, denoted by “EQP” with other bounds known in literature and the bound

provided by a semidefinite relaxation, denoted by“ϑ”; our upper bounds, denoted

by“EQP AS”, with other upper from another upper bound from the literature.

4.5 Solving 1zc1024 to optimality

Table 4.2 shows that aggregate equitable partition formulations provide upper bounds

stronger than the best upper bounds known so far: in particular, for 1zc1024, the

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 44

1zc-graphs
Upper Bounds Lower Bounds

ϑ [Klø81] [EO98] EQP [EO98] EQP AS

1zc512 68.7500 64 62 62 62 62
1zc1024 128.6667 118 117 113 112 112
1zc2048 237.4000 210 210 202 198 196

Table 4.2: Improving upper bound for some 1zc-graphs

gap between the upper bound provided by the aggregate formulation and the lower

bound provided by the best known solution is equal to 1.

However, a closer look to the EP-graph associated to the equitable partition

returned by Theorem 4.4.5 (see Fig. 4.2(b)) and some more computation allowed

us to prove the following:

Theorem 4.5.1. The stability number of 1zc1024 is 112.

Proof. Let us consider the equitable partition P = {V0, . . . , V10} of 1zc1024 whose

EP-graph is shown in Fig. 4.2(b). The corresponding aggregate equitable partition

formulation has the following inequalities:

y4 ≤ 5 (4.4)

y5 ≤ 5 (4.5)

y0 + y3 ≤ 1 (4.6)

y1 + y2 ≤ 1 (4.7)

y7 + y8 ≤ 35 (4.8)

y6 + y9 ≤ 35 (4.9)

y7 + y8 + y10 ≤ 66 (4.10)

y6 + y9 + y10 ≤ 66 (4.11)

By summing inequalities (4.4)-(4.7), we obtain:

y0 + y1 + y2 + y3 + y4 + y5 ≤ 12

Analogously, we get:

y6 + y7 + y8 + y9 + y10 ≤ 101

by summing (4.8) and (4.11) or (4.9) and (4.10). Thus, we can easily see that if

there exists a stable set of cardinality 113, then inequalities (4.4)-(4.11) must hold

tight.

Moreover, we observed two other facts. First, the cell V0 (resp. V1) contains

4.5. SOLVING 1ZC1024 TO OPTIMALITY 45

exactly one vertex that is complete respectively to the vertices in cells V3 (resp. V2).

Since the subgraphs induced by V2 (resp. V3) is a clique, that means that the single

vertex in V0 (resp. V1) is a simplicial vertex and therefore we may assume without

loss of generality that a maximum stable set of 1zc1024 picks the single vertex in

V0 (resp. V1). (This fact can alternatively be proven by Lemma 2.5.2). It follows

that y0 = y1 = 0 and y2 = y3 = 0. Therefore, the inequality

y0 + y1 + y2 + y3 + y4 + y5 ≤ 12

that has to hold tight now reads

y4 + y5 ≤ 10

and, given inequalities (4.4)-(4.5), the following inequalities have to hold tight:

y4 ≤ 5; y5 ≤ 5

Our second remarks exploits the structure of V4. The vertices of V4 correspond

to binary strings of length 10 with exactly 2 “1”. It is easy to see that each maximum

stable set of V4 has size 5, and that, for each pair of maximum stable sets of V4,

there is an automorphism mapping one into the other. Therefore, we may arbitrarily

choose a stable set of V4, call it S4, to satisfy y4 ≤ 5 tight.

Now let N(S4) be the neighborhood of S4 in V7, and let G̃ be the subgraph of

1zc1024 induced by:

V7 ∪ V8 ∪ V10 \N(S4).

Following the previous discussion, if there exists a stable set S of cardinality 113,

then:

|S ∩ (V7 ∪ V8) \N(S4)| = 35 (4.12)

|S ∩ (V7 ∪ V8 ∪A10) \N(S4)| = 66 (4.13)

Finally, let w : V (G̃)→ {1, 2} be a weight function such that:

w(u) :=







1 ∀u ∈ V7 ∪ V8 \N(S4)

2 ∀u ∈ V10.

Following (4.12) and (4.13), w(S) = 101. However, solving by CPLEX the maxi-

mum weighted stable set problem for (G̃, w) (using the equitable partition formu-

lation, in the original space, corresponding to the partition {V7 \N(S4), V8, V10} of

V (G̃)), we obtain an optimal solution of value 100. Then, we can conclude that

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 46

1zc1024 does not contain any stable set of cardinality 113.

4.6 Mann-graphs

Mann-graphs belong to the Dimacs [Dim92] benchmark set and correspond to stable

set formulations of the Steiner Triple Problem, translated from the set covering

formulations by Mannino [MS95]. In this section we compare our method to orbital

branching on this class of graphs.

4.6.1 Origin of mann-instances

The Steiner triple instances are set covering formulations of Steiner Triple Systems,

that are well-known as sts-instances. sts9, sts15, sts27 and sts45 have respec-

tively 9, 15, 27 and 45 variables, and they were introduced in [FNT74]. The same

authors were able to solve sts9, sts15 and sts27. Five years later, the optimality

of sts45 was proved by Ratliff [FR89]. New instances sts81, sts135 and sts243,

of respectively 81, 135 and 243 variables, were introduced in [FR89, MS95]. The

optimality of sts81 was proved in [MS95], while biggest instances remained un-

solved. Recently, optimal solutions for sts135 and sts243 have been published in

[OLRS11b].

Before introducing mann-graphs, we need more details about sts-instances. Given

a set X of cardinality n, a Steiner Triple System on X is a collection B of m sets

Ti with 3 elements (triples) such that for any pair of distinct elements x, y ∈ X,

x and y belong to exactly one triple Tk ∈ B. A Steiner Triple System for a set X

can be represented by a binary matrix An ∈ {0, 1}n×m that has a column for every

element in X and a row for every triple in B. Each entry aijn of An is equal to 1 if

and only if element j ∈ X belongs to triple Ti ∈ B. The following matrix A9 is the

4.6. MANN-GRAPHS 47

set covering matrix of the Steiner triple system on 9 elements, well-known as sts9:

A9 =





















































1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 1 0

0 1 0 1 0 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 0 1 0 1 0 1 0 0





















































All other sts-matrices are generated by a tripling procedure on Steiner triple system

on n elements, for instance sts27 is obtained by tripling sts9. Given a matrix An ∈

{0, 1}m×n which corresponds to a Steiner triple system, this procedure generates the

following matrix:

A3n =

















An

An

An

I I I

D1 D2 D3

















where I is the identity matrix and Dk ∈ {0, 1}
3m×n has exactly an element equal

to 1 for each row.

Now, we report the transformation from set covering problem to stable set prob-

lem, introduced in [MS95], that allows to obtain stable set instances, i.e. mann-

graphs, from corresponding sts-instances. Given a sts-matrix An ∈ {0, 1}m×n, let

Gn = (V,E) be the graph such that:

• Gn has a vertex {uj} ∈ V for each j ∈ {1, . . . , n};

• Gn has a vertex uij ∈ V for each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} such that

anij = 1;

• Gn has an edge {vij , vik} ∈ E for each i ∈ {1, . . . ,m} and j, k ∈ {1, . . . , n}

such that anij = anik = 1;

• G has an edge {uj , vhj} ∈ E for each h ∈ {1, . . . ,m}, j ∈ {1, . . . , n} such that

anhj = 1.

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 48

G |V | |E| α(G)

mann a9 45 72 16
mann a27 378 302 126
mann a45 1035 1980 345
mann a81 3321 6480 1100

Table 4.3: Optimal solutions for mann-graphs

From the structure of Gn, we get |V | = n + 3 ∗ m. Each triple of vertices

Ti = {vix, viy, viz} ⊂ V , that respectively correspond to entries anix = aniy = aniz = 1

of each row i of An, forms clique in Gn, i.e. a triangle. Moreover, each vertex

aij ∈ Ti is adjacent to uj . Then, if follows that |E| = 6∗m. For instance, graph G9,

well-known as mann a9, has 45 vertices such that 72 edges. The authors of [MS95]

show that the transformation from Steiner triples to stable set instances guarantees

the following relation:

α(Gn) + z∗(An) = n+m

where z∗An denotes the cardinality of a minimum cover of matrix An. Then, the

stability numbers of all mann-graphs are determined by optimal solutions found for

corresponding sts-instances. Table 4.3 shows optimal solution for each mann-graph

considered in this work.

Mann-graphs are hard instances of the maximum stable set problem, even

though their optimal solutions are known. In literature, they are frequently used for

testing quality of heuristic algorithms, since it is even difficult to find good feasible

solutions in practice. Moreover, state-of-art exact methods are able to solve only

the graphs of the class which are strictly smaller than mann a81. In the following,

we will see that the equitable partition formulation is one of the main ingredient to

solve mann a81 via maximum stable set problem.

4.6.2 Equitable partitions of on mann-graphs

In the following experiments, we have generated inequalities from equitable parti-

tions finer than the coarsest equitable partitions. The structures of coarsest equi-

table partitions are very simple and associated EP-graphs, shown in Fig. 4.3, are

the same for all mann-graphs. However, coarsest equitable partitions do not help

to obtain strengthening formulations. For this reason, we have looked for finer eq-

uitable partitions. For each coarsest equitable partition, we have split the cell with

minimum cardinality in two subcells such that one of them contains exactly one

vertex. Then, we have obtained finer equitable partitions by executing the coars-

est equitable refinement procedure. Again, these finer equitable partitions admit a

common EP-graph, shown in Fig. 4.4.

4.6. MANN-GRAPHS 49

Figure 4.3: EP-graphs associated to coarsest equitable partition of all mann-graphs

Figure 4.4: EP-graphs associated to a non-coarsest equitable partition of all mann-
graphs

For mann a9, mann a27 and mann a45, equitable partition formulations derived

from EP-graph shown in Fig. 4.4 can be computed very efficiently by using CPLEX

with standard settings. However, this fact does not happen for mann a81, whose

equitable partition inequalities require a remarkable computational effort. Table 4.4

reports the number of nodes (“#Nodes”) and the computational time for computing

the equitable partition formulations discussed, within a time-limit of 3600 seconds.

Moreover, we observed that orbital branching does not allow to improve the per-

formance of CPLEX shown in Table 4.4. For this reason, we investigated further

non-coarsest equitable partitions of mann a81. Our first attempt was that of find-

ing equitable partitions finer than the equitable partition associated to EP-graph

shown in Fig. 4.4. This strategy turned out to be unsuccessful since new equitable

partitions did not allow to obtain good formulation for mann a81. Subsequently,

we tried to derive equitable partitions finer than the coarsest, by splitting its cell

of minimum cardinality into more than two cells. After several attempts, we found

an equitable partition with a regular structure, whose EP-graph is depicted in Fig.

4.5.

Using CPLEX with standard setting, the equitable partition formulation associ-

ated to EP-graph in Fig. 4.5 is computed in 8.12 seconds and requires 5956 nodes.

Moreover, we will see that it allows to obtain a strong upper bound and certify the

optimality for mann a81.

#Nodes tot time

mann a9 0 0.03
mann a27 1062 1.55
mann a45 113003 111.76
mann a81 647112 t-limit

Table 4.4: Generating equitable partition formulations associated to Fig. 4.4

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 50

Figure 4.5: A non-coarsest equitable partition of mann a81

α(G) QSTAB ϑ EQP AS

mann a9 16 18 17.47 17
mann a27 126 135 132.76 127
mann a45 345 360 356.04 346
mann a81 1100 1134 1129.43 1107

Table 4.5: Comparing upper bounds for mann-graphs

Computational experiments on mann-graphs

In experiments, we have computed right-hand sides of inequalities by using CPLEX

with standard settings. Parameters of equitable partition used for each graph are

reported in Subsection 4.6.3.

Moreover, we have imposed an overall time-limit of 3600 seconds for generating

inequalities and solving equitable partition formulations. Table A.1 shows compu-

tational performance for generating inequalities.

Table 4.5 compares upper bounds given by the aggregate equitable partition for-

mulation (column “EQP AS”) with upper bounds obtained by the clique relaxation

(column “QSTAB”) and the semidefinite relaxation (column “ϑ”). Aggregate equi-

table partition formulations provide excellent upper bounds: we obtain an absolute

gap of 1 unit for mann a9, mann a27 and mann a45, while the gap for mann a81 is

drastically reduced.

Table 4.6 compares the computational performance of CPLEX (with standard

settings) solving the equitable partition formulation in the original space (column

“CPLEX+EQP OS”) with the performance of orbital branching. Fields “gap%”,

“#Nodes”, “tot time” and “Nauty time” corresponds respectively to relative gap

between upper bound and lower bound at the end of optimization, the number of

4.6. MANN-GRAPHS 51

Orbital Branching CPLEX + EQP OS
gap% #Nodes tot time Nauty time gap% #Nodes tot time

mann a9 0 0 0.05 0 0 0.05
mann a27 2.91 961965 t-limit 2597.24 0 1062 2.67
mann a45 3.29 115157 t-limit 2753.42 0 126901 130.1
mann a81 2.84 15686 t-limit 2475.53 0.64 478989 t-limit

Table 4.6: Comparing equitable partition formulation with orbital branching on
mann-graphs

node generated during the branch&bound process, the total time in seconds of op-

timization, the overall time in seconds that Nauty have used for computing orbits.

Let us observe that equitable partition formulations for mann a27 and mann a45

allow CPLEX to outperform orbital branching: the computation of optimal solu-

tions is carried out very efficiently. On the contrary, orbital branching does not

obtain optimal solutions within the time-limit for mann a27, mann a45. The bad

performance of orbital branching is mostly due to the computation of the orbits,

that takes about 70% of total time. We also see that both methods are not able

to solve mann a81 within the time limit. However, equitable partition formulation

achieves the best relative gap at the end of the optimization for this graph, founding

an incumbent solution of value 1100 after less than 6 seconds from the start.

4.6.3 Equitable partition parameters of mann-graphs

mann a9

















0 0 2 0 1

0 2 0 1 0

1 0 1 1 0

0 3 1 0 0

4 0 0 0 0

































4

24

8

8

1

















mann a27

















0 0 2 0 1

0 2 0 1 0

1 0 1 1 0

0 12 1 0 0

13 0 0 0 0

































13

312

26

26

1

















mann a45

















0 0 2 0 1

0 2 0 1 0

1 0 1 1 0

0 21 1 0 0

22 0 0 0 0

































22

924

44

44

1

















CHAPTER 4. COMPUTATIONAL EXPERIMENTS 52

mann a81





































0 1 0 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 0 2 0 0 0 0 0 1

0 0 0 2 0 0 0 1 0

0 0 0 0 2 0 1 0 0

1 1 0 0 0 0 1 0 0

0 0 0 0 13 27 0 0 0

0 27 0 13 0 0 0 0 0

27 0 13 0 0 0 0 0 0









































































729

729

351

351

351

729

27

27

27





































4.7 Solving mann a81 to optimality

Table 4.5 shows that aggregate equitable partition formulations provide upper bounds

stronger than the best upper bounds known so far: in particular, for mann a81, the

gap between the upper bound provided by the aggregate formulation and the opti-

mal solution is equal to 7.

However, a closer look to the EP-graph associated to the equitable partition P

shown in Fig. 4.5 and some more computation allowed us to enhance the equitable

partition formulation associated to P and close the gap so that CPLEX could solve

the problem to optimality. We sketch our approach in the following.

Let us consider the equitable partition P = {V0, . . . , V8} of mann a81 whose

EP-graph is shown in Fig. 4.5.

The corresponding aggregate equitable partition formulation has the following

4.7. SOLVING MANN A81 TO OPTIMALITY 53

inequalities:

max
8

∑

i=0

yi (4.14)

subject to (4.15)

y0 ≤ 729 (4.16)

y1 ≤ 729 (4.17)

y2 ≤ 117 (4.18)

y3 ≤ 117 (4.19)

y4 ≤ 117 (4.20)

y5 ≤ 729 (4.21)

y6 ≤ 27 (4.22)

y7 ≤ 27 (4.23)

y8 ≤ 27 (4.24)

y0 + y1 ≤ 729 (4.25)

y0 + y5 ≤ 729 (4.26)

y0 + y8 ≤ 729 (4.27)

y1 + y5 ≤ 729 (4.28)

y1 + y7 ≤ 729 (4.29)

y2 + y8 ≤ 126 (4.30)

y3 + y7 ≤ 126 (4.31)

y4 + y6 ≤ 126 (4.32)

y5 + y6 ≤ 729 (4.33)

y0 + y1 + y5 + y8 ≤ 756 (4.34)

y0 + y1 + y5 + y7 ≤ 756 (4.35)

y0 + y1 + y5 + y6 ≤ 756 (4.36)

y4 + y5 + y6 ≤ 846 (4.37)

y1 + y3 + y7 ≤ 846 (4.38)

y0 + y2 + y8 ≤ 846 (4.39)

y0 + y1 + y5 ≤ 729 (4.40)

Note that α(G[V0 ∪ V1 ∪ V5 ∪ V4 ∪ V6]) ≤ α(G[V0 ∪ V1 ∪ V5]) + α(G[V4 ∪ V6]) =

729 + 126 = 855.

Now let S be a maximum stable set. Now first suppose that |S ∩ (V0 ∪V1 ∪V5 ∪

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 54

V4∪V6)| ≤ 846. In this case, |S| ≤ |S∩(V0∪V1∪V5∪V4∪V6)|+ |S∩(V2∪V8)|+ |S∩

(V3 ∪ V7)| ≤ 846 + 126 + 126 = 1098. By the same argument, one may show that,

if either |S ∩ (V0 ∪ V1 ∪ V5 ∪ V2 ∪ V8)| ≤ 846 or |S ∩ (V0 ∪ V1 ∪ V5 ∪ V3 ∪ V7)| ≤ 846,

then |S| ≤ 1100.

We may therefore assume add to the equitable formulation corresponding to

P (in the original space) the following inequalities:
∑

v∈V0∪V1∪V4∪V5∪V6
xv ≥ 847;

∑

v∈V0∪V1∪V3∪V5∪V7
xv ≥ 847;

∑

v∈V0∪V1∪V2∪V5∪V8
xv ≥ 847. In this case, CPLEX

is able to close the computation finding, again, an optimal solution of value 1100.

Then, we can conclude that the for mann a81 the maximum stable set has cardi-

nality 1100.

4.8 Keller-instances

In this section we compare our method to orbital branching on Keller-graphs.

4.8.1 Origin of Keller-graphs

The origin of Keller-graphs is related to Keller’s cube-tiling conjectures. A tiling of

Rn by unit cubes is a set of unit cubes such that every point in Rn is covered by

one of the cubes, and such that the interiors of no two cubes overlap. The Keller’s

conjecture was introduced in 1930 as a generalization of Minkowski’s conjecture.

Conjecture 4.8.1 (Keller). Every tiling of Rn by unit cubes contains two cubes

that meet in an n− 1 dimensional face.

Ten years later, Perron proved that the Keller’s conjecture is true in six and

fewer dimensions [Per40]. In the subsequent years, interest in Keller’s conjecture

decreased since Minkoski’s conjecture was proved by Hajós. However, in 1990 new

motivations arose for the reformulation of Keller’s conjecture as a combinatorial

problem. The author of [CS90] stated that there is a counterexample for this con-

jecture if and only if the n-dimensional Keller-graph has a clique of size 2n. Given

the set of all strings {0, 1, 2, 3}n , the n-dimensional Keller-graph Gn = (V,E) is

such that:

• each vertex u ∈ V is in bijection with a string u ∈ {0, 1, 2, 3}n ;

• u, v ∈ E if there exist two distinct indices i, j ∈ {1, . . . , n} such that |ui−vi| =

1 and uj 6= vj.

In 1992, the author of [GLS92] state that the keller’s conjecture is false in dimen-

sions greater or equal than ten. In 2002, this result was extended to dimension

greater or equal than eight [Mac02]. Finally, in 2011, the result published in

4.8. KELLER-INSTANCES 55

G |V | |E| α(G)

keller4 171 5100 11
keller5 776 74710 27

Table 4.7: Optimal solutions for keller-graphs

[DEL+11] shows that the Keller’s conjecture is true in seven dimension. All these

recent results are based on counterexamples that have been found by exploiting the-

oretical property of Keller-graphs in order to build up suitable enumeration schemes.

Table 4.7 shows optimal solution for keller-graphs considered in this work.

4.8.2 Experiments on Keller-graphs

In this section, we discuss computational experiments on Keller-graphs. In the fol-

lowing experiments, we have generated equitable partition inequalities from coarsest

equitable partitions of keller-graphs. We have observed that structures of coarsest

equitable partitions are quite complicated. Moreover, for each of these graphs, gen-

erating finer equitable partitions than the coarsest does not help to obtain improving

upper bounds or higher computational efficiency. In Fig. 4.6 we show EP-graphs on

which we have based the computation of equitable partition inequalities. In Section

4.8.3 we report parameters of equitable partitions used.

For this class of graphs, orbital branching allows to compute right-hand sides

more efficiently than CPLEX with symmetry reduction settings. Moreover, we have

imposed an overall time-limit of 10800 seconds for generating inequalities and solv-

ing equitable partition formulations. Table A.2 shows computational performance

for generating inequalities.

Figure 4.6: EP-graphs associated to coarsest equitable partitions of keller4 (a) and
keller5 (b)

CHAPTER 4. COMPUTATIONAL EXPERIMENTS 56

α(G) QSTAB ϑ EQP AS

keller4 11 14.82 14.01 11
keller5 27 31 31 28

Table 4.8: Comparing upper bounds for keller-graphs

OB CPLEX
gap% #Nodes tot time gap% #Nodes tot time

keller4 0 339 23.05 0 710 27.52
keller5 0 191180 4233.52 0 1465598 8145.91

Table 4.9: Comparing CPLEX with orbital branching for generating equitable par-
tition formulation on keller-graphs

Table 4.8 compares upper bounds given by the aggregate equitable partition for-

mulation (column “EQP AS”) with upper bounds obtained by the clique relaxation

(column “QSTAB”) and the semidefinite relaxation (column “ϑ”). Let us note

that aggregate equitable partition formulations provide excellent upper bounds for

keller graphs. In particular, the upper bound is tight for keller4 and it forms a 1

unit gap for keller5.

We report a remarkable fact. Table 4.9 shows computational results that confirm

the potentiality of our inequalities generator to exploit symmetry-braking methods

for the computation of right-hand sides. Performance obtained for computing and

solving equitable partition formulation by orbital branching (column “OB”) is not

comparable to performance achieved by CPLEX with symmetry reduction settings

(column “CPLEX”): the number of nodes generated by CPLEX and orbital branch-

ing differs by one order of magnitude and the total time required by CPLEX is

almost the double of time needed by orbital branching.

Table 4.10 compares the computational performance of generating and solving

the equitable partition formulation in the original space by orbital branching (col-

umn “OB+EQP OS”) with the performance of orbital branching. Fields “gap%”,

“#Nodes”, “tot time” and “Nauty time” correspond respectively to relative gap

between upper bound and lower bound at the end of optimization, the number of

node generated during the branch&bound process, the total time in seconds of op-

timization, the overall time in seconds that Nauty have used for computing orbits.

We observe that both equitable partition formulation and orbital branching allow

to obtain optimal solutions within the time limit. However, orbital branching turn

out to be very efficient for keller-graphs.

4.8. KELLER-INSTANCES 57

Orbital Branching OB + EQP OS
gap% #Nodes tot time Nauty time gap% #Nodes tot time

keller4 0 35 2.7 0 0 339 23.05
keller5 0 12670 919.3 52.99 0 191180 4233.52

Table 4.10: Comparing equitable partition formulation with orbital branching on
keller-graphs

4.8.3 Equitable partition parameters of Keller-graphs

keller4





































0 4 16 4 2 16 0 0 4

1 7 16 6 0 12 0 0 4

2 8 18 8 1 10 0 2 9

1 6 16 7 1 16 0 3 10

3 0 12 6 0 24 1 2 12

3 9 15 12 3 9 1 5 9

0 0 0 0 4 32 0 8 24

0 0 12 9 1 20 1 7 18

1 4 18 10 2 12 1 6 14









































































6

24

48

24

4

32

1

8

24





































keller5































































0 4 24 6 3 48 0 0 12 32 0 0 0 8

1 9 30 9 0 44 0 0 12 24 0 0 0 8

2 10 34 12 1 44 0 4 26 20 0 0 4 16

1 6 24 9 1 48 0 6 24 32 0 0 4 20

3 0 12 6 0 48 2 4 24 48 0 0 4 24

3 11 33 18 3 39 1 11 33 14 0 2 10 19

0 0 0 0 4 32 0 8 24 64 1 2 16 48

0 0 12 9 1 44 1 9 30 40 0 3 14 36

1 4 26 12 2 44 1 10 34 24 0 2 13 26

4 12 30 24 6 28 4 20 36 12 1 6 14 16

0 0 0 0 0 0 5 0 0 80 0 10 40 80

0 0 0 0 0 32 1 12 24 48 1 9 32 56

0 0 12 6 1 40 2 14 39 28 1 8 26 38

1 4 24 15 3 38 3 18 39 16 1 7 19 27





























































































































10

40

120

60

10

160

5

40

120

80

1

10

40

80































































CHAPTER 4. COMPUTATIONAL EXPERIMENTS 58

Chapter 5

Conclusions and future work

Hard problems represent a significant challenge since they cannot be simply solved

by using a huge quantity of computational resources. In the case of maximum

stable set problem, even small instances with a few hundred of vertices could be

intractable (to optimality) for state-of-art solvers. Sometimes, hard instances con-

tain symmetry, which is not just artificially generated in order to test methods,

but also it naturally arises from important problems and applications. Most part

of literature uses powerful tools, but sometimes computationally prohibitive, that

exploit information of symmetry with the purpose of avoiding its bad effects on

optimization methods. However, properties of symmetry imply regular structures

that, sometimes, could be very simple. EP-graphs might be crucial to deal with

hard instances. In some cases, it allows to detect “local symmetries” and therefore

interesting subproblems to solve.

We have exploited potentiality of the EP-graph to strengthen formulations of

the maximum stable set problem for hard and highly symmetric instances. Our

method derives from its structure, that is often simple in this case, equitable par-

tition inequalities that are derived from subgraphs, sometimes very tractable. In

particular, we have also seen that their stability numbers can be computed in a

very effective way by orbital branching. Moreover, EP-graph allows to perform a

parallel computing of inequalities.

Equitable partition formulations constitute an effective tool for solving some

hard instances. In same cases, they are generated very fast and allow an impressive

performance, as we have observed for mann-graphs. Aggregate equitable partition

formulations often provide excellent bounds. They have also been the key to im-

prove best known upper bounds for some 1zc-graphs, and certify the optimality for

1zc1024, whose stability number has been unknown so far. Furthermore, equitable

partition inequalities have allowed us to solve to optimality a stable set formulation

of mann a81.

59

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 60

This work highlights three important open questions. The first is based on

the potentiality of EP-graph. Throughout the thesis, we have used EP-graph to

strengthen formulation of the maximum stable set problem. Clearly, this is not

the unique way to exploit it: EP-graph contains information that we have not

considered in our work, for instance the regularity of degrees among classes of

equitable partition. In future research we will investigate approaches that could

exploit EP-graph in branching or fixing strategies.

The second open question concerns combinatorial approaches based on the struc-

ture of EP-graph. We have seen that some hard instances are characterized by a

tree-structure. This feature suggests to design combinatorial algorithms, e.g. dy-

namic programming, which can exploit the simple structure of EP-graph and the

properties arising from equitable partition, in order to build up an enumeration

scheme, possibly effective in practice.

The third open question refers to the generation of equitable partitions. Inequal-

ities derived from non-coarsest equitable partitions are often stronger than inequal-

ities associated to coarsest equitable partition. We have proposed some rules, based

on computational experience, that allows to generate finer equitable partitions with

few classes, in some cases. Then, it would be helpful to investigate how to obtain

improving equitable partitions that, for instance, provide simple EP-graphs.

Appendix A

Computing equitable partition

inequalities

The following tables show a performance profile of the generated equitable partitions

inequalities for each class of graphs discussed in Section 4.3. Inequalities are labelled

with respect of syntax <graph> EQP <type> <id>, where:

graph refers to the name of the considered graph;

type denotes the category of the equitable partition inequality. Possible values are

v,e, t, n that respectively identify vertex, edge, triangle, closed neighborhood

equitable partition inequalities;

id is the identifier of the inequality, according to the representation of EP-graphs

showed in Sections 4.4, 4.6, 4.8. Possible values are a single indices, pair and

triple of indices which respectively refer to vertices, edges and triangles of the

corresponding EP-graph.

For each inequality, fields “B&B Nodes” and “Total time” respectively show the

number of nodes generated during branch&bound and the total time in seconds for

computing equitable partitions inequalities. Field “Nauty time” appears when have

used orbital branching for generating inequalities, then it shows the total time in

second required by Nauty to compute orbits.

Table A.1: Computing right-hand sides for mann-graphs

Inequality B&B Nodes Total time Nauty time

mann a9 EQP v 0 0 0

mann a9 EQP v 1 0 0

Table A.1: Continued on next page

61

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 62

Table A.1: Continued from previous page

Inequality B&B Nodes Total time Nauty time

mann a9 EQP v 2 0 0

mann a9 EQP v 3 0 0

mann a9 EQP v 4 0 0

mann a9 EQP e (0,2) 0 0

mann a9 EQP e (0,4) 0 0

mann a9 EQP e (1,3) 0 0.01

mann a9 EQP e (2,3) 0 0

mann a9 EQP n 0 0 0

mann a9 EQP n 2 0 0

mann a9 EQP n 3 0 0.02

mann a27 EQP v 0 0 0

mann a27 EQP v 1 0 0

mann a27 EQP v 2 0 0

mann a27 EQP v 3 0 0

mann a27 EQP v 4 0 0

mann a27 EQP e (0,4) 0 0

mann a27 EQP e (1,3) 753 1.25

mann a27 EQP e (2,3) 0 0

mann a27 EQP n 0 0 0

mann a27 EQP n 2 0 0

mann a27 EQP n 3 309 0.3

mann a45 EQP v 0 0 0

mann a45 EQP v 1 0 0

mann a45 EQP v 2 0 0

mann a45 EQP v 3 0 0

mann a45 EQP v 4 0 0

mann a45 EQP e (0,2) 0 0

mann a45 EQP e (0,4) 0 0

mann a45 EQP e (1,3) 91725 79.33

mann a45 EQP e (2,3) 0 0

mann a45 EQP n 0 0 0

mann a45 EQP n 2 0 0

mann a45 EQP n 3 21278 32.43

MANN a81 EQP v 0 0 0

Table A.1: Continued on next page

63

Table A.1: Continued from previous page

Inequality B&B Nodes Total time Nauty time

MANN a81 EQP v 1 0 0

MANN a81 EQP v 2 0 0

MANN a81 EQP v 3 0 0

MANN a81 EQP v 4 0 0

MANN a81 EQP v 5 0 0

MANN a81 EQP v 6 0 0

MANN a81 EQP v 7 0 0

MANN a81 EQP v 8 0 0

MANN a81 EQP e (0,1) 0 0

MANN a81 EQP e (0,5) 0 0

MANN a81 EQP e (0,8) 0 0

MANN a81 EQP e (1,5) 0 0

MANN a81 EQP e (1,7) 0 0

MANN a81 EQP e (2,8) 376 3.26

MANN a81 EQP e (3,7) 2790 2.59

MANN a81 EQP e (4,6) 2790 2.27

MANN a81 EQP e (5,6) 0 0

MANN a81 EQP n 0 0 0

MANN a81 EQP n 1 0 0

MANN a81 EQP n 5 0 0

MANN a81 EQP n 6 0 0

MANN a81 EQP n 7 0 0

MANN a81 EQP n 8 0 0

MANN a81 EQP t (0,1,5) 0 0

Table A.2: Computing right-hand sides for Keller-graphs

Inequality B&B Nodes Total time

keller4 EQP v 0 0 0

keller4 EQP v 1 0 0

keller4 EQP v 2 0 0.23

keller4 EQP v 3 0 0.01

keller4 EQP v 4 0 0

keller4 EQP v 5 0 0

Table A.2: Continued on next page

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 64

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller4 EQP v 6 0 0

keller4 EQP v 7 0 0

keller4 EQP v 8 0 0.01

keller4 EQP e (0,1) 0 0

keller4 EQP e (0,2) 0 0.76

keller4 EQP e (0,3) 0 0

keller4 EQP e (0,4) 0 0

keller4 EQP e (0,5) 0 0

keller4 EQP e (0,8) 0 0.01

keller4 EQP e (1,2) 15 0.45

keller4 EQP e (1,3) 0 0

keller4 EQP e (1,5) 0 0.23

keller4 EQP e (1,8) 0 0.02

keller4 EQP e (2,3) 3 0.53

keller4 EQP e (2,4) 3 0.05

keller4 EQP e (2,5) 33 1.04

keller4 EQP e (2,7) 0 0.01

keller4 EQP e (2,8) 7 0.43

keller4 EQP e (3,4) 0 0

keller4 EQP e (3,5) 0 0.1

keller4 EQP e (3,7) 0 0

keller4 EQP e (3,8) 0 0.28

keller4 EQP e (4,5) 0 0

keller4 EQP e (4,6) 0 0

keller4 EQP e (4,7) 0 0

keller4 EQP e (4,8) 0 0

keller4 EQP e (5,6) 0 0

keller4 EQP e (5,7) 0 0

keller4 EQP e (5,8) 0 0

keller4 EQP e (6,7) 0 0

keller4 EQP e (6,8) 0 0

keller4 EQP e (7,8) 0 0.01

keller4 EQP n 0 59 2.61

keller4 EQP n 1 39 3.08

keller4 EQP n 2 49 3.8

Table A.2: Continued on next page

65

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller4 EQP n 3 49 3.95

keller4 EQP n 4 99 3.25

keller4 EQP n 6 0 0.02

keller4 EQP n 7 43 2.17

keller4 EQP t (0,1,2) 5 0.34

keller4 EQP t (0,1,3) 0 0

keller4 EQP t (0,1,5) 0 0.58

keller4 EQP t (0,1,8) 0 0.01

keller4 EQP t (0,2,3) 3 0.87

keller4 EQP t (0,2,4) 0 0.01

keller4 EQP t (0,2,5) 0 1.47

keller4 EQP t (0,2,8) 27 0.48

keller4 EQP t (0,3,4) 0 0

keller4 EQP t (0,3,5) 0 0.25

keller4 EQP t (0,3,8) 5 0.05

keller4 EQP t (0,4,5) 0 0

keller4 EQP t (0,4,8) 0 0

keller4 EQP t (0,5,8) 0 0.03

keller4 EQP t (1,2,3) 17 0.95

keller4 EQP t (1,2,5) 5 0.5

keller4 EQP t (1,2,8) 59 0.82

keller4 EQP t (1,3,5) 3 1.15

keller4 EQP t (1,3,8) 0 0.03

keller4 EQP t (1,5,8) 15 0.42

keller4 EQP t (2,3,4) 0 0.46

keller4 EQP t (2,3,5) 15 1.13

keller4 EQP t (2,3,7) 13 0.11

keller4 EQP t (2,3,8) 41 0.68

keller4 EQP t (2,4,5) 0 1

keller4 EQP t (2,4,7) 5 0.13

keller4 EQP t (2,4,8) 11 0.83

keller4 EQP t (2,5,7) 7 0.39

keller4 EQP t (2,5,8) 9 1.09

keller4 EQP t (2,7,8) 17 0.27

keller4 EQP t (3,4,5) 0 0.19

Table A.2: Continued on next page

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 66

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller4 EQP t (3,4,7) 0 0

keller4 EQP t (3,4,8) 7 0.1

keller4 EQP t (3,5,7) 0 0.09

keller4 EQP t (3,5,8) 0 0.62

keller4 EQP t (3,7,8) 0 0.07

keller4 EQP t (4,5,6) 0 0

keller4 EQP t (4,5,7) 0 0.01

keller4 EQP t (4,5,8) 0 0.01

keller4 EQP t (4,6,7) 0 0

keller4 EQP t (4,6,8) 0 0

keller4 EQP t (4,7,8) 0 0

keller4 EQP t (5,6,7) 0 0

keller4 EQP t (5,6,8) 0 0

keller4 EQP t (5,7,8) 0 0

keller4 EQP t (6,7,8) 0 0

keller5 EQP v 0 0 0

keller5 EQP v 1 0 0

keller5 EQP v 10 0 0

keller5 EQP v 11 0 0

keller5 EQP v 12 0 0.02

keller5 EQP v 13 0 0

keller5 EQP v 2 27 6.12

keller5 EQP v 3 0 0

keller5 EQP v 4 0 0

keller5 EQP v 5 59 5.98

keller5 EQP v 6 0 0

keller5 EQP v 7 0 0

keller5 EQP v 8 49 5.35

keller5 EQP v 9 0 0

keller5 EQP e (0,1) 0 0

keller5 EQP e (0,13) 0 0.53

keller5 EQP e (0,2) 79 3.91

keller5 EQP e (0,3) 0 0

keller5 EQP e (0,4) 0 0

keller5 EQP e (0,5) 92 4.25

Table A.2: Continued on next page

67

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP e (0,8) 22 0.87

keller5 EQP e (0,9) 0 0.28

keller5 EQP e (1,13) 5 0.1

keller5 EQP e (1,2) 123 3.02

keller5 EQP e (1,3) 0 0

keller5 EQP e (1,5) 471 5.96

keller5 EQP e (1,8) 37 0.43

keller5 EQP e (1,9) 39 2.76

keller5 EQP e (10,11) 0 0

keller5 EQP e (10,12) 0 0.01

keller5 EQP e (10,13) 0 0.01

keller5 EQP e (11,12) 0 0

keller5 EQP e (11,13) 0 0.01

keller5 EQP e (12,13) 0 0.01

keller5 EQP e (2,12) 247 0.8

keller5 EQP e (2,13) 3327 5.37

keller5 EQP e (2,3) 105 5.18

keller5 EQP e (2,4) 18 0.74

keller5 EQP e (2,5) 1177 10.71

keller5 EQP e (2,7) 11 0.4

keller5 EQP e (2,8) 16363 24.82

keller5 EQP e (2,9) 1017 8

keller5 EQP e (3,12) 0 0.02

keller5 EQP e (3,13) 17 4.18

keller5 EQP e (3,4) 0 0

keller5 EQP e (3,5) 338 6.99

keller5 EQP e (3,7) 0 0

keller5 EQP e (3,8) 325 3.81

keller5 EQP e (3,9) 5 3.64

keller5 EQP e (4,12) 0 0.01

keller5 EQP e (4,13) 0 0.01

keller5 EQP e (4,5) 92 4.95

keller5 EQP e (4,6) 0 0

keller5 EQP e (4,7) 0 0

keller5 EQP e (4,8) 103 4.17

Table A.2: Continued on next page

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 68

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP e (4,9) 0 1.25

keller5 EQP e (5,11) 113 2.09

keller5 EQP e (5,12) 1095 6.38

keller5 EQP e (5,13) 645 9.99

keller5 EQP e (5,6) 187 3.76

keller5 EQP e (5,7) 671 8.38

keller5 EQP e (5,8) 1215 10.95

keller5 EQP e (5,9) 522 7.53

keller5 EQP e (6,10) 0 0

keller5 EQP e (6,11) 0 0

keller5 EQP e (6,12) 0 0

keller5 EQP e (6,13) 0 0.22

keller5 EQP e (6,7) 0 0

keller5 EQP e (6,8) 33 0.6

keller5 EQP e (6,9) 0 0.07

keller5 EQP e (7,11) 0 0

keller5 EQP e (7,12) 45 0.34

keller5 EQP e (7,13) 5 1.66

keller5 EQP e (7,8) 213 2.5

keller5 EQP e (7,9) 3 0.81

keller5 EQP e (8,11) 0 0.01

keller5 EQP e (8,12) 121 2.85

keller5 EQP e (8,13) 339 4.47

keller5 EQP e (8,9) 7 3.26

keller5 EQP e (9,10) 0 0

keller5 EQP e (9,11) 0 0.02

keller5 EQP e (9,12) 0 0.03

keller5 EQP e (9,13) 0 0.01

keller5 EQP n 0 3619 188.71

keller5 EQP n 1 3856 176.72

keller5 EQP n 10 0 0.36

keller5 EQP n 11 5205 73.35

keller5 EQP n 12 22506 588.01

keller5 EQP n 2 16830 397.32

keller5 EQP n 3 16830 403.39

Table A.2: Continued on next page

69

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP n 4 23196 615.36

keller5 EQP n 5 20723 458.89

keller5 EQP n 6 5391 64.25

keller5 EQP n 7 22939 614.3

keller5 EQP n 8 20723 462.26

keller5 EQP t (0,1,13) 2517 2.26

keller5 EQP t (0,1,2) 39 2.03

keller5 EQP t (0,1,3) 0 0

keller5 EQP t (0,1,5) 350 6.43

keller5 EQP t (0,1,8) 22 0.75

keller5 EQP t (0,1,9) 111 4.08

keller5 EQP t (0,2,13) 5581 10.84

keller5 EQP t (0,2,3) 99 5.4

keller5 EQP t (0,2,4) 13 0.85

keller5 EQP t (0,2,5) 529 7.87

keller5 EQP t (0,2,8) 3962 13.2

keller5 EQP t (0,2,9) 356 7.22

keller5 EQP t (0,3,13) 235 0.69

keller5 EQP t (0,3,4) 0 0

keller5 EQP t (0,3,5) 252 6.83

keller5 EQP t (0,3,8) 1389 1.68

keller5 EQP t (0,3,9) 22 2

keller5 EQP t (0,4,13) 0 1.01

keller5 EQP t (0,4,5) 33 5.58

keller5 EQP t (0,4,8) 13 0.72

keller5 EQP t (0,4,9) 0 0.99

keller5 EQP t (0,5,13) 355 9.81

keller5 EQP t (0,5,8) 2730 10.67

keller5 EQP t (0,5,9) 195 8.39

keller5 EQP t (0,8,13) 45 1.35

keller5 EQP t (0,8,9) 127 5.27

keller5 EQP t (0,9,13) 5 1.05

keller5 EQP t (1,2,13) 18951 23.06

keller5 EQP t (1,2,3) 6519 12.26

keller5 EQP t (1,2,5) 708 12.61

Table A.2: Continued on next page

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 70

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP t (1,2,8) 119713 181.22

keller5 EQP t (1,2,9) 1475 9.13

keller5 EQP t (1,3,13) 55 1.44

keller5 EQP t (1,3,5) 1514 10.91

keller5 EQP t (1,3,8) 8513 8.57

keller5 EQP t (1,3,9) 213 6.9

keller5 EQP t (1,5,13) 40829 88.43

keller5 EQP t (1,5,8) 17441 48.87

keller5 EQP t (1,5,9) 437 9.77

keller5 EQP t (1,8,13) 28 1.27

keller5 EQP t (1,8,9) 6370 14.49

keller5 EQP t (1,9,13) 79 2.49

keller5 EQP t (10,11,12) 0 0.01

keller5 EQP t (10,11,13) 0 0.01

keller5 EQP t (10,12,13) 0 0.01

keller5 EQP t (11,12,13) 0 0.01

keller5 EQP t (2,12,13) 6129 9.5

keller5 EQP t (2,3,12) 773 3.22

keller5 EQP t (2,3,13) 10229 21.25

keller5 EQP t (2,3,4) 773 3.17

keller5 EQP t (2,3,5) 4008 19.55

keller5 EQP t (2,3,7) 2191 6.88

keller5 EQP t (2,3,8) 37227 69.69

keller5 EQP t (2,3,9) 2176 14

keller5 EQP t (2,4,12) 59 2.46

keller5 EQP t (2,4,13) 2091 10.68

keller5 EQP t (2,4,5) 2137 16.35

keller5 EQP t (2,4,7) 16 1.27

keller5 EQP t (2,4,8) 11666 31.21

keller5 EQP t (2,4,9) 400 8.44

keller5 EQP t (2,5,12) 13272 39.96

keller5 EQP t (2,5,13) 304102 623.23

keller5 EQP t (2,5,7) 12297 35.74

keller5 EQP t (2,5,8) 24881 76.43

keller5 EQP t (2,5,9) 250 14.39

Table A.2: Continued on next page

71

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP t (2,7,12) 0 0.44

keller5 EQP t (2,7,13) 5203 14.93

keller5 EQP t (2,7,8) 167566 270.88

keller5 EQP t (2,7,9) 7236 18.81

keller5 EQP t (2,8,12) 154291 295.77

keller5 EQP t (2,8,13) 78073 122.39

keller5 EQP t (2,8,9) 62708 118.66

keller5 EQP t (2,9,12) 2814 13.13

keller5 EQP t (2,9,13) 12509 32.9

keller5 EQP t (3,12,13) 31 1.1

keller5 EQP t (3,4,12) 0 0.01

keller5 EQP t (3,4,13) 39 4.75

keller5 EQP t (3,4,5) 268 7.11

keller5 EQP t (3,4,7) 0 0

keller5 EQP t (3,4,8) 143 5.53

keller5 EQP t (3,4,9) 9 4.84

keller5 EQP t (3,5,12) 3773 12.5

keller5 EQP t (3,5,13) 11426 31.32

keller5 EQP t (3,5,7) 1754 12.18

keller5 EQP t (3,5,8) 4629 21.72

keller5 EQP t (3,5,9) 839 14.04

keller5 EQP t (3,7,12) 5 0.25

keller5 EQP t (3,7,13) 88 3.11

keller5 EQP t (3,7,8) 6603 8.75

keller5 EQP t (3,7,9) 11 4.46

keller5 EQP t (3,8,12) 6007 9.07

keller5 EQP t (3,8,13) 279 4.33

keller5 EQP t (3,8,9) 272 7.95

keller5 EQP t (3,9,12) 18 3.64

keller5 EQP t (3,9,13) 13 3.22

keller5 EQP t (4,12,13) 0 0.17

keller5 EQP t (4,5,12) 575 7.73

keller5 EQP t (4,5,13) 87 8.63

keller5 EQP t (4,5,6) 106 6.35

keller5 EQP t (4,5,7) 255 6.03

Table A.2: Continued on next page

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 72

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP t (4,5,8) 457 7.7

keller5 EQP t (4,5,9) 604 8.07

keller5 EQP t (4,6,12) 0 0.01

keller5 EQP t (4,6,13) 0 0.02

keller5 EQP t (4,6,7) 0 0

keller5 EQP t (4,6,8) 27 0.64

keller5 EQP t (4,6,9) 0 0.67

keller5 EQP t (4,7,12) 9 0.19

keller5 EQP t (4,7,13) 4 0.56

keller5 EQP t (4,7,8) 53 1.58

keller5 EQP t (4,7,9) 0 2.59

keller5 EQP t (4,8,12) 515 2.8

keller5 EQP t (4,8,13) 116 5.23

keller5 EQP t (4,8,9) 19 5.54

keller5 EQP t (4,9,12) 0 0.35

keller5 EQP t (4,9,13) 0 2.8

keller5 EQP t (5,11,12) 1155 5.91

keller5 EQP t (5,11,13) 1227 8.58

keller5 EQP t (5,12,13) 7681 20.3

keller5 EQP t (5,6,11) 103 2.82

keller5 EQP t (5,6,12) 517 6.62

keller5 EQP t (5,6,13) 79 5.39

keller5 EQP t (5,6,7) 877 6.21

keller5 EQP t (5,6,8) 213 3.93

keller5 EQP t (5,6,9) 484 8.99

keller5 EQP t (5,7,11) 801 5.04

keller5 EQP t (5,7,12) 2923 10.35

keller5 EQP t (5,7,13) 5549 21.69

keller5 EQP t (5,7,8) 227 8.71

keller5 EQP t (5,7,9) 655 11.31

keller5 EQP t (5,8,11) 0 0.8

keller5 EQP t (5,8,12) 18947 42.49

keller5 EQP t (5,8,13) 6621 37.83

keller5 EQP t (5,8,9) 217 13.39

keller5 EQP t (5,9,11) 229 7.1

Table A.2: Continued on next page

73

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP t (5,9,12) 359 7.3

keller5 EQP t (5,9,13) 1675 18.4

keller5 EQP t (6,10,11) 0 0

keller5 EQP t (6,10,12) 0 0

keller5 EQP t (6,10,13) 0 0.06

keller5 EQP t (6,11,12) 0 0.01

keller5 EQP t (6,11,13) 0 0.18

keller5 EQP t (6,12,13) 0 0.28

keller5 EQP t (6,7,11) 0 0

keller5 EQP t (6,7,12) 9 1.23

keller5 EQP t (6,7,13) 0 1.04

keller5 EQP t (6,7,8) 209 0.97

keller5 EQP t (6,7,9) 0 0.97

keller5 EQP t (6,8,11) 13 0.51

keller5 EQP t (6,8,12) 127 2.72

keller5 EQP t (6,8,13) 132 3.2

keller5 EQP t (6,8,9) 4 3.79

keller5 EQP t (6,9,10) 0 0.03

keller5 EQP t (6,9,11) 0 0.2

keller5 EQP t (6,9,12) 0 0.37

keller5 EQP t (6,9,13) 0 0.41

keller5 EQP t (7,11,12) 91 0.47

keller5 EQP t (7,11,13) 0 0.92

keller5 EQP t (7,12,13) 11 1.43

keller5 EQP t (7,8,11) 171 0.84

keller5 EQP t (7,8,12) 975 5.25

keller5 EQP t (7,8,13) 581 5.54

keller5 EQP t (7,8,9) 7 4.74

keller5 EQP t (7,9,11) 0 0.39

keller5 EQP t (7,9,12) 0 0.44

keller5 EQP t (7,9,13) 3 0.7

keller5 EQP t (8,11,12) 365 1.18

keller5 EQP t (8,11,13) 398 2.43

keller5 EQP t (8,12,13) 771 4.97

keller5 EQP t (8,9,11) 11 3.32

Table A.2: Continued on next page

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 74

Table A.2: Continued from previous page

Inequality B&B Nodes Total time

keller5 EQP t (8,9,12) 9 4.53

keller5 EQP t (8,9,13) 41 4.23

keller5 EQP t (9,10,11) 0 0.03

keller5 EQP t (9,10,12) 0 0.03

keller5 EQP t (9,10,13) 0 0.04

keller5 EQP t (9,11,12) 0 0.02

keller5 EQP t (9,11,13) 0 0.04

keller5 EQP t (9,12,13) 0 0.05

Table A.3: Computing right-hand sides for 1zc-graphs

Inequality B&B Nodes Total time Nauty time

1zc512 EQP v 0 0 0 0

1zc512 EQP v 2 0 0 0

1zc512 EQP v 4 0 0 0

1zc512 EQP v 6 0 0 0

1zc512 EQP v 8 0 0.17 0

1zc512 EQP e (0,3) 0 0 0

1zc512 EQP e (2,5) 0 0 0

1zc512 EQP e (4,7) 0 0.06 0

1zc512 EQP e (6,9) 0 0.12 0

1zc512 EQP e (8,9) 0 0.5 0

1zc512 EQP n 2 0 0 0

1zc512 EQP n 4 0 0.02 0

1zc512 EQP n 6 15 0.87 0.02

1zc512 EQP n 8 0 0.48 0

1zc1024 EQP v 0 0 0 0

1zc1024 EQP v 10 0 0.99 0

1zc1024 EQP v 2 0 0 0

1zc1024 EQP v 4 0 0 0

1zc1024 EQP v 6 0 0.08 0

1zc1024 EQP v 8 0 0.03 0

1zc1024 EQP e (0,3) 0 0 0

1zc1024 EQP e (2,5) 0 0 0

Table A.3: Continued on next page

75

Table A.3: Continued from previous page

Inequality B&B Nodes Total time Nauty time

1zc1024 EQP e (4,7) 23 0.4 0.02

1zc1024 EQP e (6,9) 19609 30.81 18.92

1zc1024 EQP e (8,10) 0 0.22 0

1zc1024 EQP n 10 0 2.11 0

1zc1024 EQP n 2 0 0 0

1zc1024 EQP n 4 0 0.05 0

1zc1024 EQP n 6 1313 5.76 1.6

1zc1024 EQP n 8 4632099 35633.77 0

1zc2048 EQP v 0 0 0 0

1zc2048 EQP v 10 0 0.22 0

1zc2048 EQP v 2 0 0 0

1zc2048 EQP v 4 0 0 0

1zc2048 EQP v 6 23 0.4 0.02

1zc2048 EQP v 8 19609 30.81 18.92

1zc2048 EQP e (0,3) 0 0 0

1zc2048 EQP e (2,5) 0 0 0

1zc2048 EQP n (4,7) - - -

APPENDIX A. COMPUTING EQUITABLE PARTITION INEQUALITIES 76

Appendix B

Source Code

In this Appendix, we show the source code of main functions described in Sec. 4.2.

Listing B.1: Function cep

1 NodePtr ∗ cep(int ∗∗a, int n, int ∗dim ep)

{

3 void partition(int ∗∗adj, NodePtr ∗part, int ∗p, int i, int j, int ∗eq);

NodePtr ∗ eqPart;

5 NodePtr newNode, current;

int i, j, k;

7 int p, eqp;

int ∗ const pPtr = &p;

9 int ∗ const equi = &eqp;

11 eqPart = (NodePtr∗) malloc(n ∗ sizeof(NodePtr));

eqPart[0] = (NodePtr) malloc(sizeof(Node));

13 eqPart[0]−>id = 0;

eqPart[0]−>next = NULL;

15 p = 1;

for(i=1; i<n; i++){

17 eqPart[i] = NULL;

}

19 current = eqPart[0];

for(i=0; i<n; i++){

21 newNode = (NodePtr) malloc(sizeof(Node));

newNode−>id = i;

23 newNode−>next = NULL;

current−>next = newNode;

25 current = current−>next;

}

27 /∗main procedure∗/

i = 0;

77

APPENDIX B. SOURCE CODE 78

29 while(i<p){

j = 0;

31 k = p;

if((eqPart[i]−>next)−>next!=NULL){

33 while(j<p){

eqp = 1;

35 partition(a, eqPart, pPtr, i, j, equi);

if(eqp==1){

37 j++;

}

39 else{

j = p;

41 }

}

43 }

if(k==p){

45 i++;

}

47 else{

i = 0;

49 }

}

51 ∗dim ep = p;

return eqPart;

53 }

Listing B.2: Functions printEQP, printEQPpar, EPgraphDOTForm

1 void printEQP(char ∗filename, NodePtr ∗eqPart, int p, int classLP, int∗∗a)

{

3 FILE ∗file;

char fileN[500];

5 int i, j, k;

int ∗v;

7 NodePtr current;

9 strcpy(fileN, filename);

strcat(fileN, ”.eqp”);

11 file = fopen(fileN, ”w”);

printf(”\nEquitable partition:\n\n”);

13 for(i=0; i<p; i++){

printf(”V[%3d]= ”, i);

15 fprintf(file, ”V[%3d]= ”, i);

current = eqPart[i]−>next;

17 k = 0;

79

while(current!=NULL){

19 k++;

current = current−>next;

21 }

if(classLP==1){

23 v = (int∗) malloc(k∗sizeof(int));

j = 0;

25 }

current = eqPart[i]−>next;

27 while(current!=NULL){

printf(”%d ”, current−>id+1);

29 fprintf(file, ”%d ”, current−>id+1);

if(classLP==1){

31 v[j] = current−>id;

j++;

33 }

current = current−>next;

35 }

if(classLP==1){

37 extractSUBgrf(i, v, k, a);

free(v);

39 }

printf(”\n”);

41 fprintf(file, ”\n”);

}

43 fclose(file);

}

45

void printEQPpar(char ∗filename, NodePtr ∗eqPart, int ∗∗ a, int p)

47 {

FILE ∗eqpP;

49 char fileN[500];

int i, j, k, flag;

51 NodePtr current;

53 strcpy(fileN, filename);

strcat(fileN, ”.par”);

55 eqpP = fopen(fileN, ”w”);

fprintf(eqpP, ”Matrix:”);

57 for(i=0; i<p; i++){

flag = eqPart[i]−>next−>id;

59 fprintf(eqpP, ”\n”);

for(j=0; j<p; j++){

61 k = 0;

APPENDIX B. SOURCE CODE 80

current = eqPart[j]−>next;

63 while(current!=NULL){

if(a[flag][current−>id]==1){

65 k++;

}

67 current = current−>next;

}

69 fprintf(eqpP, ”%2d ”, k);

}

71

}

73 fprintf(eqpP, ”\n\nVector:”);

for(j=0; j<p; j++){

75 k = 0;

current = eqPart[j]−>next;

77 while(current!=NULL){

k++;

79 current = current−>next;

}

81 fprintf(eqpP, ”\n%3d ”, k);

}

83 fclose(eqpP);

}

85

void EPgraphDOTform(char ∗filename, NodePtr ∗eqPart, int ∗∗ a, int p)

87 {

FILE ∗eqpP;

89 char fileN[100];

int i, j, k, flag;

91 NodePtr current;

93 strcpy(fileN, filename);

strcat(fileN, ” EPgraph.dot”);

95 eqpP = fopen(fileN, ”w”);

fprintf(eqpP, ”graph G {\n\toverlap=scale;\n\tnode[shape=circle];\n\tedge[len=8];”);

97 for(i=0; i<p−1; i++){

flag = eqPart[i]−>next−>id;

99 for(j=i+1; j<p; j++){

k = −1;

101 current = eqPart[j]−>next;

while(current!=NULL && k==−1){

103 if(a[flag][current−>id]==1){

k = current−>id;

105 }

81

current = current−>next;

107 }

if(k!=−1){

109 fprintf(eqpP, ”\n\t%d −− %d;”, i, j);

}

111 }

}

113 fprintf(eqpP, ”\n}”);

fclose(eqpP);

115 }

Listing B.3: Function refineEQP

1 void refineEQP(NodePtr ∗eqPart, int dim p, int ∗∗a, int n, int ∗dim ep, int ∗param)

{

3 void partition(int ∗∗adj, NodePtr ∗part, int ∗p, int i, int j, int ∗eq);

5 NodePtr newNode, current, prev, curr;

int i, j, k, l, x, y;

7 int p, eqp;

int ∗ const pPtr = &p;

9 int ∗ const equi = &eqp;

11 p = dim p;

k = n+1;

13 l = −1;

if(param==NULL){

15 for(i=0; i<p; i++){

j = 0;

17 current = eqPart[i]−>next;

while(current!=NULL){

19 j++;

current = current−>next;

21 }

if(k>j && j>1){

23 k = j;

l = i;

25 }

}

27 }

else{

29 for(i=1; i<=param[0]; i++){

j = 0;

31 current = eqPart[param[i]]−>next;

while(current!=NULL){

APPENDIX B. SOURCE CODE 82

33 j++;

current = current−>next;

35 }

if(k>j && j>1){

37 k = j;

l = param[i];

39 }

}

41 }

p += 1;

43 eqPart[p−1] = malloc(sizeof(Node));

eqPart[p−1]−>id = p−1;

45 eqPart[p−1]−>next = NULL;

for(i=p−1; i>=l+2; i−−){

47 eqPart[i]−>next = eqPart[i−1]−>next;

}

49 current = eqPart[l]−>next;

eqPart[l+1]−>next = current;

51 eqPart[l]−>next = current−>next;

current−>next = NULL;

53 i = 0;

while(i<p){

55 j = 0;

k = p;

57 if((eqPart[i]−>next)−>next!=NULL){

while(j<p){

59 eqp = 1;

partition(a, eqPart, pPtr, i, j, equi);

61 if(eqp==1){

j++;

63 }

else{

65 j = p;

}

67 }

}

69 if(k==p){

i++;

71 }

else{

73 i = 0;

}

75 }

∗dim ep = p;

83

77 }

Listing B.4: Function genEQP

1 void genEQP(NodePtr ∗eqPart, int dim p, int ∗∗a, int n, int ∗dim ep, int ∗∗param)

{

3 int i;

refineEQP(eqPart, dim p, a, n, dim ep, NULL);

5 if(param!=NULL){

for(i=1; i<=param[0][0]; i++){

7 refineEQP(eqPart, ∗dim ep, a, n, dim ep, param[i]);

}

9 }

}

Listing B.5: Function printEQP v rhs

void printEQP v rhs(char ∗filename, char ∗dir, char ∗clq, NodePtr ∗eqPart, int p, int n, int ∗∗a)

2 {

int i, j, k, l, q, x, ∗v, ∗∗sg, rhs, ∗cns;

4 int status;

NodePtr current;

6 char fileLP[500];

CPXENVptr env = NULL;

8 CPXLPptr lp = NULL;

FILE ∗file;

10

if(n>p){

12 env = CPXopenCPLEX(&status);

for(x=0; x<p; x++){

14 v = malloc(n∗sizeof(int));

l = 0;

16 current = eqPart[x]−>next;

while(current!=NULL){

18 v[l] = current−>id;

l++;

20 current = current−>next;

}

22 sortV(v, l);

sg = malloc(l∗sizeof(int∗));

24 for(i=0; i<l; i++){

sg[i] = malloc(l∗sizeof(int));

26 }

for(i=0; i<l; i++){

28 for(j=0; j<l; j++){

sg[i][j] = a[v[i]][v[j]];

APPENDIX B. SOURCE CODE 84

30 }

}

32 if(verifyISO(sg, l, dir, filename, &rhs)==0){

sprintf(fileLP, ”data/%s/results/%s EQP v %d.”, dir, filename, x);

34 printDimacs(fileLP, sg, l);

lp = CPXcreateprob(env, &status, ”rhs”);

36 status = CPXreadcopyprob(env, lp, clq, NULL);

j = l−1;

38 q = 0;

for(i=n−1; i>=0; i−−){

40 if(i!=v[j]){

if(q==0){

42 k = i;

q = 1;

44 }

}

46 else{

if(q==1){

48 status = CPXdelcols(env, lp, i+1, k);

q = 0;

50 }

if(j>=1){

52 j−−;

}

54 }

}

56 if(q==1){

status = CPXdelcols(env, lp, 0, k);

58 q = 0;

}

60 strcat(fileLP, ”lp”);

status = CPXwriteprob(env, lp, fileLP, NULL);

62 status = CPXfreeprob(env, &lp);

}

64 else{

sprintf(fileLP, ”data/%s/results/%s EQP vertices.txt”, dir, filename);

66 file = fopen(fileLP, ”a”);

fprintf(file, ”v %d %d\n”, x, rhs);

68 fclose(file);

sprintf(fileLP, ”data/%s/results/%s EQP.cns”, dir, filename);

70 file = fopen(fileLP, ”ab”);

cns = malloc((l+2)∗sizeof(int));

72 cns[0] = l;

cns[l+1] = rhs;

85

74 for(i=0; i<l; i++){

cns[i+1] = v[i]+1;

76 }

fwrite(cns, (l+2)∗sizeof(int), 1, file);

78 fclose(file);

free(cns);

80 }

freeMatrix(sg, l);

82 free(v);

}

84 status = CPXcloseCPLEX(&env);

}

86 else if(n==p){

FILE ∗file;

88 v = malloc(n∗sizeof(int));

int ∗∗b;

90 b = malloc(n∗sizeof(int∗));

for(i=0; i<n; i++){

92 v[i] = eqPart[i]−>next−>id;

b[i] = malloc(n∗sizeof(int));

94 }

for(i=0; i<n; i++){

96 for(j=0; j<n; j++){

b[i][j] = a[v[i]][v[j]];

98 }

}

100 free(v);

sprintf(fileLP, ”data/%s/results/%s.epg”, dir, filename);

102 file = fopen(fileLP, ”wb”);

for(i=0; i<n; i++){

104 b[i][i] = 1;

fwrite(b[i], n∗sizeof(int), 1, file);

106 free(b[i]);

}

108 free(b);

fclose(file);

110 }

}

Listing B.6: Function verifyISO

1 int verifyISO(int ∗∗a, int n, char ∗dir, char ∗filename, int ∗rhs)

{

3 int i, j, m, e, l;

char path[500];

APPENDIX B. SOURCE CODE 86

5 FILE ∗file;

SubpPtr sp;

7

sprintf(path, ”data/%s/EQPform/%s.rhs”, dir, filename);

9 sp = malloc(sizeof(Subp));

e = 0;

11 for(i=0; i<n−1; i++){

for(j=i+1; j<n; j++){

13 e += a[i][j];

}

15 }

file = fopen(path, ”rb”);

17 if(file!=NULL){

j = 0;

19 while(feof(file)==0 && j==0){

fread(sp, sizeof(Subp), 1, file);

21 if(sp−>n==n && sp−>m==e && sp−>opt==1){

j = 1;

23 }

}

25 fclose(file);

if(j==1){

27 int ∗∗b;

b = dimacs2adjM(sp−>id, &n);

29 DYNALLSTAT(int, lab1, lab1 sz);

DYNALLSTAT(int, lab2, lab2 sz);

31 DYNALLSTAT(int, ptn, ptn sz);

DYNALLSTAT(int, orbits, orbits sz);

33 DYNALLSTAT(setword, workspace, workspace sz);

statsblk stats;

35 static DEFAULTOPTIONS SPARSEGRAPH(options);

options.getcanon = TRUE;

37 sparsegraph sg1, sg2, cg1, cg2;

m = (n+WORDSIZE−1)/WORDSIZE;

39 SG INIT(sg1);

SG INIT(sg2);

41 SG INIT(cg1);

SG INIT(cg2);

43 DYNALLOC1(setword, workspace, workspace sz, 2∗m, ”malloc”);

DYNALLOC1(int, lab1, lab1 sz, n, ”malloc”);

45 DYNALLOC1(int, lab2, lab2 sz, n, ”malloc”);

DYNALLOC1(int, ptn, ptn sz, n, ”malloc”);

47 DYNALLOC1(int, orbits, orbits sz, n, ”malloc”);

SG ALLOC(sg1, n, 2∗e, ”malloc”);

87

49 SG ALLOC(sg2, n, 2∗e, ”malloc”);

sg1.nv = n;

51 sg1.nde = 2∗e;

sg2.nv = n;

53 sg2.nde = 2∗e;

l = 0;

55 for(i=0; i<n; i++){

sg1.v[i] = l;

57 sg1.d[i] = 0;

for(j=0; j<n; j++){

59 if(a[i][j]==1){

sg1.d[i]++;

61 sg1.e[l] = j;

l++;

63 }

}

65 }

l = 0;

67 for(i=0; i<n; i++){

sg2.v[i] = l;

69 sg2.d[i] = 0;

for(j=0; j<n; j++){

71 if(b[i][j]==1){

sg2.d[i]++;

73 sg2.e[l] = j;

l++;

75 }

}

77 }

nauty((graph∗)&sg1, lab1, ptn, NULL, orbits, &options, &stats,

79 workspace, 2∗m, m, n, (graph∗)&cg1);

nauty((graph∗)&sg2, lab2, ptn, NULL, orbits, &options, &stats,

81 workspace, 2∗m, m, n, (graph∗)&cg2);

if(aresame sg(&cg1, &cg2)==TRUE){

83 ∗rhs = (int) sp−>sol;

DYNFREE(workspace, workspace sz);

85 DYNFREE(lab1,lab1 sz);

DYNFREE(lab2,lab2 sz);

87 DYNFREE(ptn, ptn sz);

DYNFREE(orbits, orbits sz);

89 SG FREE(sg1);

SG FREE(sg2);

91 free(sp);

freeMatrix(b, n);

APPENDIX B. SOURCE CODE 88

93 return 1;

}

95 else{

DYNFREE(workspace, workspace sz);

97 DYNFREE(lab1,lab1 sz);

DYNFREE(lab2,lab2 sz);

99 DYNFREE(ptn, ptn sz);

DYNFREE(orbits, orbits sz);

101 SG FREE(sg1);

SG FREE(sg2);

103 free(sp);

freeMatrix(b, n);

105 return 0;

}

107 }

else{

109 free(sp);

return 0;

111 }

}

113 else{

free(sp);

115 return 0;

}

117 }

Listing B.7: Function cpxRHS

1 double cpxRHS(int ∗∗a, int n, char ∗filename, char ∗dir, int f,

int ∗nodecount, double ∗setup t)

3 {

void handler(int sig);

5 int i, j, k, status, mipstat;

double objval;

7 char string[100], path[100], ∗s;

clock t start, end;

9 CPXENVptr env = NULL;

CPXLPptr lp = NULL;

11 CPXFILEptr file;

FILE ∗fl;

13 SubpPtr sp;

int colnamespace, surplus, numcols, ∗cns;

15 char ∗colnamestore, ∗∗colname;

17 signal(SIGINT, handler);

89

start = clock();

19 env = CPXopenCPLEX(&status);

lp = CPXcreateprob(env, &status, ”rhs”);

21 i = 0;

while(filename[i]!=’ ’ || filename[i+1]!=’E’ || filename[i+2]!=’Q’ || filename[i+3]!=’P’){

23 i++;

}

25 strncpy(path, filename, i);

path[i] = ’\0’;

27 sprintf(string, ”data/%s/results/%s.log”, dir, filename);

file = CPXfopen(string, ”w”);

29 status = CPXsetlogfile(env, file);

status = CPXsetintparam(env, CPX PARAM SCRIND, CPX ON);

31 status = CPXsetterminate(env, &terminator);

status = CPXsetintparam(env, CPX PARAM THREADS, 0);

33 sprintf(string, ”data/%s/results/%s.lp”, dir, filename);

status = CPXreadcopyprob(env, lp, string, NULL);

35 end = clock();

status = CPXmipopt(env, lp);

37 status = CPXgetbestobjval(env, lp, &objval);

mipstat = CPXgetstat(env, lp);

39 strcpy(string, filename);

s = strtok(string, ” ”);

41 while(s!=NULL){

if(strncmp(s, ”v”, 1)==0){

43 s = strtok(NULL, ” ”);

sscanf(s, ”%d”, &j);

45 sprintf(string, ”data/%s/results/%s EQP vertices.txt”, dir, path);

fl = fopen(string, ”a”);

47 fprintf(fl, ”v %d %.0lf\n”, j, floor(objval+1e−9));

fclose(fl);

49 s = NULL;

}

51 else if(strncmp(s, ”e”, 1)==0){

s = strtok(NULL, ” (,”);

53 sscanf(s, ”%d”, &i);

s = strtok(NULL, ”)”);

55 sscanf(s, ”%d”, &j);

sprintf(string, ”data/%s/results/%s EQP edges.txt”, dir, path);

57 fl = fopen(string, ”a”);

fprintf(fl, ”e %d %d %.0lf\n”, i, j, floor(objval+1e−9));

59 fclose(fl);

s = NULL;

61 }

APPENDIX B. SOURCE CODE 90

else{

63 s = strtok(NULL, ” ”);

}

65 }

k = 0;

67 for(i=0; i<n−1; i++){

for(j=i+1; j<n; j++){

69 k += a[i][j];

}

71 }

if(k>0){

73 sp = malloc(sizeof(Subp));

sprintf(sp−>id, ”data/%s/EQPform/%s.stb”, dir, filename);

75 sp−>sol = objval;

sp−>n = n;

77 sp−>m = k;

if(mipstat==CPXMIP OPTIMAL){

79 sp−>opt = 1;

}

81 else{

sp−>opt = 0;

83 }

sprintf(string, ”data/%s/EQPform/%s.rhs”, dir, path);

85 fl = fopen(string, ”ab”);

fwrite(sp, sizeof(Subp), 1, fl);

87 fclose(fl);

free(sp);

89 }

numcols = CPXgetnumcols(env, lp);

91 status = CPXgetcolname(env, lp, NULL, NULL, 0, &surplus, 0, numcols−1);

colnamespace = −surplus;

93 colname = malloc(numcols∗sizeof(char∗));

colnamestore = malloc(colnamespace∗sizeof(char));

95 status = CPXgetcolname(env, lp, colname, colnamestore, colnamespace,

&surplus, 0, numcols−1);

97 sprintf(string, ”data/%s/results/%s EQP.cns”, dir, path);

fl = fopen(string, ”ab”);

99 cns = malloc((n+2)∗sizeof(int));

cns[n+1] = (int) (objval + 1e−9);

101 cns[0] = n;

for(i=0; i<numcols; i++){

103 s = strtok(colname[i], ”x”);

sscanf(s, ”%d”, &j);

105 cns[i+1] = j;

91

}

107 fwrite(cns, (n+2)∗sizeof(int), 1, fl);

fclose(fl);

109 free(cns);

free(colnamestore);

111 free(colname);

∗nodecount += CPXgetnodecnt(env, lp);

113 ∗setup t = ((double) (end − start))/CLOCKS PER SEC;

CPXfclose(file);

115 status = CPXfreeprob(env, &lp);

status = CPXcloseCPLEX(&env);

117 return objval;

}

Listing B.8: Functions orbRHS and usersetbranch

double orbRHS(int ∗∗a, int n, char ∗filename, char ∗dir, int f, int ∗nodecount,

2 double ∗nty t, double ∗setup t)

{

4 void handler(int sig);

DataPtr usrData;

6 int i, j, k, ∗av, status, mipstat;

double objval;

8 char string[100], ∗s, path[100];

clock t start, end;

10 CPXENVptr env = NULL;

CPXLPptr lp = NULL;

12 CPXFILEptr file;

FILE ∗fl;

14 SubpPtr sp;

int colnamespace, surplus, numcols, ∗cns;

16 char ∗colnamestore, ∗∗colname;

18 signal(SIGINT, handler);

start = clock();

20 env = CPXopenCPLEX(&status);

lp = CPXcreateprob(env, &status, ”rhs”);

22 i = 0;

while(filename[i]!=’ ’ || filename[i+1]!=’E’ || filename[i+2]!=’Q’ || filename[i+3]!=’P’){

24 i++;

}

26 strncpy(path, filename, i);

path[i] = ’\0’;

28 sprintf(string, ”data/%s/results/%s.log”, dir, filename);

file = CPXfopen(string, ”w”);

APPENDIX B. SOURCE CODE 92

30 status = CPXsetlogfile(env, file);

32 status = CPXsetintparam(env, CPX PARAM SCRIND, CPX ON);

status = CPXsetterminate(env, &terminator);

34 status = CPXsetintparam(env, CPX PARAM THREADS, 0);

status = CPXsetintparam(env, CPX PARAM MIPCBREDLP, CPX OFF);

36 status = CPXsetintparam(env, CPX PARAM MIPEMPHASIS, 4);

sprintf(string, ”data/%s/results/%s.lp”, dir, filename);

38 status = CPXreadcopyprob(env, lp, string, NULL);

usrData = malloc(sizeof(Data));

40 usrData−>av = malloc((n∗n+2)∗sizeof(int));

usrData−>av[0] = n;

42 usrData−>av[1] = f;

for(i=0; i<n; i++){

44 for(j=0; j<n; j++){

usrData−>av[2+i∗n+j] = a[i][j];

46 }

}

48 usrData−>ntyTime = 0.0;

end = clock();

50 status = CPXsetbranchcallbackfunc(env, usersetbranch, usrData);

status = CPXmipopt(env, lp);

52 status = CPXgetbestobjval(env, lp, &objval);

mipstat = CPXgetstat(env, lp);

54 strcpy(string, filename);

s = strtok(string, ” ”);

56 while(s!=NULL){

if(strncmp(s, ”v”, 1)==0){

58 s = strtok(NULL, ” ”);

sscanf(s, ”%d”, &j);

60 sprintf(string, ”data/%s/results/%s EQP vertices.txt”, dir, path);

fl = fopen(string, ”a”);

62 fprintf(fl, ”v %d %.0lf\n”, j, floor(objval+1e−9));

fclose(fl);

64 s = NULL;

}

66 else if(strncmp(s, ”e”, 1)==0){

s = strtok(NULL, ” (,”);

68 sscanf(s, ”%d”, &i);

s = strtok(NULL, ”)”);

70 sscanf(s, ”%d”, &j);

sprintf(string, ”data/%s/results/%s EQP edges.txt”, dir, path);

72 fl = fopen(string, ”a”);

fprintf(fl, ”e %d %d %.0lf\n”, i, j, floor(objval+1e−9));

93

74 fclose(fl);

s = NULL;

76 }

else{

78 s = strtok(NULL, ” ”);

}

80 }

k = 0;

82 for(i=0; i<n−1; i++){

for(j=i+1; j<n; j++){

84 k += a[i][j];

}

86 }

if(k>0){

88 sp = malloc(sizeof(Subp));

sprintf(sp−>id, ”data/%s/EQPform/%s.stb”, dir, filename);

90 sp−>sol = objval;

sp−>n = n;

92 sp−>m = k;

if(mipstat==CPXMIP OPTIMAL){

94 sp−>opt = 1;

}

96 else{

sp−>opt = 0;

98 }

sprintf(string, ”data/%s/EQPform/%s.rhs”, dir, path);

100 fl = fopen(string, ”ab”);

fwrite(sp, sizeof(Subp), 1, fl);

102 fclose(fl);

free(sp);

104 }

numcols = CPXgetnumcols(env, lp);

106 status = CPXgetcolname(env, lp, NULL, NULL, 0, &surplus, 0, numcols−1);

colnamespace = −surplus;

108 colname = malloc(numcols∗sizeof(char∗));

colnamestore = malloc(colnamespace∗sizeof(char));

110 status = CPXgetcolname(env, lp, colname, colnamestore, colnamespace,

&surplus, 0, numcols−1);

112 sprintf(string, ”data/%s/results/%s EQP.cns”, dir, path);

fl = fopen(string, ”ab”);

114 cns = malloc((n+2)∗sizeof(int));

cns[n+1] = (int) (objval + 1e−9);

116 cns[0] = n;

for(i=0; i<numcols; i++){

APPENDIX B. SOURCE CODE 94

118 s = strtok(colname[i], ”x”);

sscanf(s, ”%d”, &j);

120 cns[i+1] = j;

}

122 fwrite(cns, (n+2)∗sizeof(int), 1, fl);

fclose(fl);

124 free(cns);

free(colnamestore);

126 free(colname);

∗nodecount += CPXgetnodecnt(env, lp);

128 ∗setup t = ((double) (end − start))/CLOCKS PER SEC;

CPXfclose(file);

130 status = CPXfreeprob(env, &lp);

status = CPXcloseCPLEX(&env);

132 return objval;

}

134

static int CPXPUBLIC

136 usersetbranch(CPXCENVptr env, void ∗cbdata, int wherefrom, void ∗cbhandle,

int brtype, int sos, int nodecnt, int bdcnt, const double ∗nodeest,

138 const int ∗nodebeg, const int ∗indices,

const char ∗lu, const int ∗bd, int ∗useraction p)

140 {

int status = 0;

142 int cols, n;

double ∗lb, ∗ub;

144 double objval;

int ∗varindices;

146 char ∗varlu;

int ∗varbd;

148 int seqnum0, seqnum1;

CPXLPptr lp;

150

DYNALLSTAT(graph,g,g sz);

152 DYNALLSTAT(int,lab,lab sz);

DYNALLSTAT(int,ptn,ptn sz);

154 DYNALLSTAT(int,orbits,orbits sz);

DYNALLSTAT(setword, workspace, workspace sz);

156 static DEFAULTOPTIONS GRAPH(options);

statsblk stats;

158 set ∗gv;

int m;

160

int i, j, k, h, t, q, p, l;

95

162 int ∗v, ∗map, ∗o;

int ∗∗Padj;

164 DataPtr usrData;

clock t start, end;

166

∗useraction p = CPX CALLBACK DEFAULT;

168 status = CPXgetcallbacknodelp(env, cbdata, wherefrom, &lp);

170 /∗ORBITAL BRANCHING∗/

usrData = (DataPtr) cbhandle;

172 n = usrData−>av[0];

lb = malloc(n∗sizeof(double));

174 ub = malloc(n∗sizeof(double));

status = CPXgetcallbacknodelb(env, cbdata, wherefrom, lb, 0, n−1);

176 status = CPXgetcallbacknodeub(env, cbdata, wherefrom, ub, 0, n−1);

status = CPXgetcallbacknodeobjval(env, cbdata, wherefrom, &objval);

178 v = malloc(n∗sizeof(int));

k = 0;

180 for(i=0; i<n; i++){

if(lb[i]==1){

182 v[k] = i;

k++;

184 }

}

186 t = k;

for(i=0; i<n; i++){

188 if(ub[i]==0){

h = 0;

190 for(j=0; j<k; j++){

h += usrData−>av[2+i∗n+v[j]];

192 }

if(h==0){

194 v[t] = i;

t++;

196 }

}

198 }

start = clock();

200 if(usrData−>av[1]==1){

//fixing

202 sortV(v, t);

map = malloc(n∗sizeof(int));

204 j = 0;

l = 0;

APPENDIX B. SOURCE CODE 96

206 for(i=0; i<n; i++){

if(i<v[l]){

208 map[j] = i;

j++;

210 }

else if(l<t−1){

212 l++;

}

214 }

free(v);

216 t = j;

Padj = malloc(t∗sizeof(int∗));

218 for(i=0; i<t; i++){

Padj[i] = malloc(t∗sizeof(int));

220 for(j=0; j<t; j++){

Padj[i][j] = usrData−>av[2+map[i]∗n+map[j]];

222 }

}

224 m = (t+WORDSIZE−1)/WORDSIZE;

DYNALLOC2(graph, g, g sz, m, t, ”malloc”);

226 DYNALLOC1(setword, workspace, workspace sz, 5∗m, ”malloc”);

DYNALLOC1(int, lab, lab sz, t, ”malloc”);

228 DYNALLOC1(int, ptn, ptn sz, t, ”malloc”);

DYNALLOC1(int, orbits, orbits sz, t, ”malloc”);

230 for(i=0; i<t; i++){

gv = GRAPHROW(g, i, m);

232 EMPTYSET(gv, m);

for(j=0; j<t; j++){

234 if(Padj[i][j]==1){

ADDELEMENT(gv, j);

236 }

}

238 }

nauty(g, lab, ptn, NULL, orbits, &options, &stats, workspace,

240 5∗m, m, t, NULL);

v = malloc(n∗sizeof(int));

242 q = 0;

for(i=0; i<t; i++){

244 if(ub[map[i]]==0){

for(j=0; j<t; j++){

246 if(j!=i && orbits[j]==orbits[i]

&& lb[map[j]]==0 && ub[map[j]]==1){

248 h = 0;

while(h<q && v[h]!=map[j]){

97

250 h++;

}

252 if(h==q){

v[q] = map[j];

254 q++;

}

256 }

}

258 }

}

260 sortV(v, q);

freeMatrix(Padj, t);

262 }

else{

264 map = malloc(n∗sizeof(int));

for(i=0; i<n; i++){

266 map[i] = i;

}

268 t = n;

q = 0;

270 }

//branching

272 j = 0;

for(i=0; i<n; i++){

274 if(lb[i]==0 && ub[i]==1){

map[j] = i;

276 j++;

}

278 }

free(lb);

280 free(ub);

t = j;

282 Padj = malloc(t∗sizeof(int∗));

for(i=0; i<t; i++){

284 Padj[i] = malloc(t∗sizeof(int));

for(j=0; j<t; j++){

286 Padj[i][j] = usrData−>av[2+map[i]∗n+map[j]];

}

288 }

m = (t+WORDSIZE−1)/WORDSIZE;

290 DYNALLOC2(graph, g, g sz, m, t, ”malloc”);

DYNALLOC1(setword, workspace, workspace sz, 5∗m, ”malloc”);

292 DYNALLOC1(int, lab, lab sz, t, ”malloc”);

DYNALLOC1(int, ptn, ptn sz, t, ”malloc”);

APPENDIX B. SOURCE CODE 98

294 DYNALLOC1(int, orbits, orbits sz, t, ”malloc”);

for(i=0; i<t; i++){

296 gv = GRAPHROW(g, i, m);

EMPTYSET(gv, m);

298 for(j=0; j<t; j++){

if(Padj[i][j]==1){

300 ADDELEMENT(gv, j);

}

302 }

}

304 nauty(g, lab, ptn, NULL, orbits, &options, &stats, workspace,

5∗m, m, t, NULL);

306 freeMatrix(Padj, t);

k = 0;

308 o = malloc(t∗sizeof(int));

for(i=0; i<t; i++){

310 j = 0;

while(j<k && orbits[i]!=o[j]){

312 j++;

}

314 if(j==k){

o[k] = orbits[i];

316 k++;

}

318 }

h = 0;

320 p = −1;

for(i=0; i<k; i++){

322 l = 0;

for(j=0; j<t; j++){

324 if(o[i]==orbits[j]){

l++;

326 }

}

328 if(l>h){

h = l;

330 p = o[i];

}

332

}

334 free(o);

end = clock();

336 usrData−>ntyTime += ((double) (end − start))/CLOCKS PER SEC;

/∗ SIDE 1 ∗/

99

338 l = 0;

for(i=0; i<n; i++){

340 l += usrData−>av[2+map[p]∗n+i];

}

342 j = q + 1 + l;

varindices = malloc(j∗sizeof(int));

344 varbd = malloc(j∗sizeof(int));

varlu = malloc(j∗sizeof(char));

346 for(i=0; i<q; i++){

varindices[i] = v[i];

348 varlu[i] = ’U’;

varbd[i] = 0;

350 }

varindices[i] = map[p];

352 varlu[i] = ’L’;

varbd[i] = 1;

354 i++;

for(l=0; l<n; l++){

356 if(usrData−>av[2+map[p]∗n+l]==1){

varindices[i] = l;

358 varlu[i] = ’U’;

varbd[i] = 0;

360 i++;

}

362 }

364 status = CPXbranchcallbackbranchbds(env, cbdata, wherefrom, objval,

j, varindices, varlu, varbd,

366 usrData, &seqnum1);

free(varindices);

368 free(varlu);

free(varbd);

370

/∗ SIDE 0 ∗/

372 j = q + h;

varindices = malloc(j∗sizeof(int));

374 varbd = malloc(j∗sizeof(int));

varlu = malloc(j∗sizeof(char));

376 for(i=0; i<q; i++){

varindices[i] = v[i];

378 varlu[i] = ’U’;

varbd[i] = 0;

380 }

for(l=0; l<t; l++){

APPENDIX B. SOURCE CODE 100

382 if(orbits[l]==p){

varindices[i] = map[l];

384 varlu[i] = ’U’;

varbd[i] = 0;

386 i++;

}

388 }

status = CPXbranchcallbackbranchbds(env, cbdata, wherefrom, objval,

390 j, varindices, varlu, varbd,

usrData, &seqnum0);

392 free(varindices);

free(varlu);

394 free(varbd);

396 free(map);

free(v);

398

DYNFREE(g,g sz);

400 DYNFREE(workspace, workspace sz);

DYNFREE(lab,lab sz);

402 DYNFREE(ptn,ptn sz);

DYNFREE(orbits,orbits sz);

404

∗useraction p = CPX CALLBACK SET;

406 return (status);

}

Bibliography

[CS90] K. Corrádi and S. Szabó. A combinatorial approach for keller’s conjec-

ture. Periodica Mathematica Hungarica, 21(2):95–100, 1990.

[DEL+11] Jennifer Debroni, John D. Eblen, Michael A. Langston, Wendy Myr-

vold, Peter Shor, and Dinesh Weerapurage. A complete resolution of the

keller maximum clique problem. In Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11,

pages 129–135. SIAM, 2011.

[Dim92] Dimacs. Clique benchmark instances (web site), 1992. http://cs.hbg.

psu.edu/txn131/clique.html.

[EO98] T. Etzion and P. R.J. Ostergard. Greedy and heuristic algorithms for

codes and colorings. IEEE Trans. Inf. Theor., 44(1):382–388, Septem-

ber 1998.

[FNT74] D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. Two compu-

tationally difficult set covering problems that arise in computing the

1-width of incidence matrices of steiner triple systems. Mathematical

Programming Study, 2:72–81, 1974.

[FR89] Thomas A Feo and Mauricio G. C Resende. A probabilistic heuristic

for a computationally difficult set covering problem. Oper. Res. Lett.,

8(2):67–71, April 1989.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid

method and its consequences in combinatorial optimization. Combina-

torica, 1(2):169–197, 1981.

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric

algorithms and combinatorial optimization. Springer4060 XII, 362 S,

1988.

[GLS92] DIMACS (GROUP), J.C. Lagarias, and P.W. Shor. Keller’s Cube-tiling

Conjecture is False in High Dimensions. 1992.

101

BIBLIOGRAPHY 102

[H̊as96] Johan H̊astad. Clique is hard to approximate within n1-epsilon. In

FOCS, pages 627–636, 1996.

[HR09] Stephen G. Hartke and A.J. Radcliffe. McKay’s canonical graph label-

ing algorithm., pages 99–111. Providence, RI: American Mathematical

Society (AMS), 2009.

[IBM11] IBM. IBM ILOG CPLEX Optimization Studio 12.4 - CPLEX User’s

Manual, 2011.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Dok-

lady Akademii Nauk SSSR, 244:1093–1096, 1979.

[Klø81] Torleiv Kløve. Upper bounds on codes correcting asymmetric errors.

IEEE Transactions on Information Theory, 27(1):128–131, 1981.

[KP08] Volker Kaibel and Marc Pfetsch. Packing and partitioning orbitopes.

Math. Program., 114(1):1–36, March 2008.

[Mac02] J. Mackey. A cube tiling of dimension eight with no facesharing, 2002.

[Mar03] François Margot. Exploiting orbits in symmetric ilp. Mathematical

Programming, pages 3–21, 2003.

[McK81] Brendan D. McKay. Practical graph isomorphism, 1981.

[Mck90] B. D. Mckay. nauty User’s Guide (version 1.5), Tech. Rep. Technical

report, Department Computer Science, Australian National University,

1990.

[MDZ08] Isabel Méndez-Dı́az and Paula Zabala. A cutting plane algorithm for

graph coloring. Discrete Appl. Math., 156(2):159–179, January 2008.

[MS95] Carlo Mannino and Antonio Sassano. Solving hard set covering prob-

lems. Oper. Res. Lett., 18(1):1–5, August 1995.

[OLRS11a] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio.

Orbital branching. Mathematical Programming, 126:147–178, 2011.

[OLRS11b] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio.

Solving large steiner triple covering problems. Operations Research Let-

ters, 39(2):127 – 131, 2011.

[Ost09] J. Ostrowski. Symmetry in Mixed Integer Programming. PhD thesis,

Lehigh University, 2009.

BIBLIOGRAPHY 103

[Per40] O. Perron. Über lückenlose ausfüllung des n-dimensionalen raumes

durch kongruente würfel, 1940.

[Res88] AT&T Research. Graphviz - graph visualization software (web site),

1988. http://www.graphviz.org.

[RS01] Fabrizio Rossi and Stefano Smriglio. A branch-and-cut algorithm for the

maximum cardinality stable set problem. Oper. Res. Lett., 28(2):63–74,

2001.

[RSU94] Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman.

Fractional isomorphism of graphs. Discrete Mathematics, 132(1-3):247–

265, 1994.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. John

Wiley & Sons, Inc., New York, NY, USA, 1986.

[Slo00] Neil J.A. Sloane. Challenge problems (web site), 2000. http://

neilsloane.com/doc/graphs.html.

[SU97] E.R. Scheinerman and D.H. Ullman. Fractional graph theory: a rational

approach to the theory of graphs. Wiley-Interscience series in discrete

mathematics and optimization. Wiley, 1997.

[Var65] R. R Varshamov. Some features of linear codes that correct asymmetric

errors. Trans. Soviet Physics-Doklady, 9:538–540, 1965.

