2,658 research outputs found

    Indoor Navigation with MEMS sensors

    Get PDF
    AbstractAccurate positioning becomes extremely important for modern application like indoor navigation and location-based services. Standalone GPS cannot meet this accuracy. In this paper a method to couple GPS and a high resolution MEMS pressure sensor is presented to improve vertical as well as horizontal (in urban canyon environment) positioning. Further, a step counter based on an accelerometer is improved with an altimeter for stair detection and automatic step length adaptation for dead reckoning inside buildings. Finally, a stand-alone system accurately tracks floor levels inside buildings, using only a pressure sensor

    INDOOR POSITIONING USING WLAN FINGERPRINT MATCHING AND PATH ASSESSMENT WITH RETROACTIVE ADJUSTMENT ON MOBILE DEVICES

    Get PDF
    With the increasing number and usage of mobile devices in people’s daily life, indoor positioning has attracted a lot attention from both academia and industry for the purpose of providing location-aware services. This work proposes an indoor positioning system, primarily based on WLAN fingerprint matching, that includes various minor improvements to improve the positioning accuracy of the algorithm, as well as improve the quality and reduce the collection time of the reference fingerprints. In addition, a novel Path Evaluation and Retroactive Adjustment module is employed; it intends to improve the positioning accuracy of the system in a similar fashion to a Pedestrian Dead Reckoning implemented along with WLAN Fingerprint Matching in a Sensor Fusion system. The benefit of this approach being that it avoids the requirement of inertial sensor data, as well as its intensive computation and power use, while providing a similar accuracy improvement to Pedestrian Dead Reckoning. Our experimental results demonstrate that this may be a viable approach for positioning using mobile devices in an indoor environment

    Integrated WiFi/PDR/Smartphone using an unscented Kalman filter algorithm for 3D indoor localization

    Get PDF
    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals

    Combining WLAN fingerprint-based localization with sensor data for indoor navigation using mobile devices

    Get PDF
    This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    An improved indoor positioning based on crowd-sensing data fusion and particle filter

    Get PDF
    Due to the lack of global positioning system (GPS) signals in some enclosed areas, indoor localization has recently gained significant importance for academics. However, indoor localization has a number of challenges and defects, including accuracy, cost, coverage, and ease of use. This paper explores the integration between the inertial measurement unit (IMU) and Wi-Fi-based received signal strength indicator (RSSI) measurements, demonstrating their combined potential for robust indoor localization. IMUs excel at capturing precise short-term motion dynamics, offering insights into an object’s acceleration and orientation. Conversely, RSSI measurements serve as valuable indicators for relative positioning within indoor environments. By fusing data from these sources, our approach compensates for the inherent weaknesses of each sensor type. To achieve accurate indoor positioning, we employ techniques such as sensor fusion, Wi-Fi fingerprinting, and dead reckoning. Wi-Fi fingerprinting allows us to create a database that maps RSSI measurements to specific locations, while dead reckoning helps mitigate drift and inaccuracies. By combining these methods, we estimate a device’s position with increased precision. Through experimental evaluation, we assess the performance and efficiency of our integrated approach, comparing the estimated path or new location with a predefined reference path. The findings emphasise a significant improvement in accuracy, with the integration of crowd-sensing, particle filtering, and magnetic fingerprinting techniques resulting in a notable increase from 80.49% to 96.32% accuracy

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201
    • …
    corecore