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ARTICLE INFO ABSTRACT

Due to the lack of global positioning system (GPS) signals in some enclosed areas, indoor localization
has recently gained significant importance for academics. However, indoor localization has a number
of challenges and defects, including accuracy, cost, coverage, and ease of use. This paper explores the
integration between the inertial measurement unit (IMU) and Wi-Fi-based received signal strength
indicator (RSSI) measurements, demonstrating their combined potential for robust indoor localization.
IMUs excel at capturing precise short-term motion dynamics, offering insights into an object’s
acceleration and orientation. Conversely, RSSI measurements serve as valuable indicators for relative
positioning within indoor environments. By fusing data from these sources, our approach compensates
for the inherent weaknesses of each sensor type. To achieve accurate indoor positioning, we employ
techniques such as sensor fusion, Wi-Fi fingerprinting, and dead reckoning. Wi-Fi fingerprinting
allows us to create a database that maps RSSI measurements to specific locations, while dead
reckoning helps mitigate drift and inaccuracies. By combining these methods, we estimate a device’s
position with increased precision. Through experimental evaluation, we assess the performance and
efficiency of our integrated approach, comparing the estimated path or new location with a predefined
reference path. The findings emphasise a significant improvement in accuracy, with the integration of
crowd-sensing, particle filtering, and magnetic fingerprinting techniques resulting in a notable increase
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from 80.49% to 96.32% accuracy.

1. Introduction

Indoor localization systems offer a wide range of appli-
cations and services, primarily focused on the identification
and monitoring of individuals through the wireless signals
emitted by their personal devices, as well as the utilisation of
wireless sensor networks for asset tracking. The advent of the
internet-of-things (IoT) has introduced a pivotal application
in this domain, enabling seamless connectivity and com-
munication within smart homes, hospitals, schools, malls,
and factories by leveraging various IoT technologies such as
SigFox, LoRa, Wi-Fi HaLLow, Weightless, and NB-IoT. Ad-
ditionally, other wireless standards including BLE, Wi-Fi,
Zigbee, RFID, and UWB play a significant role in facilitating
these functionalities [1]. However, the development of an
indoor localization system that achieves high accuracy, flexi-
bility, affordability, and user-friendliness presents significant
challenges [2, 4]. In this challenging scenario, relying on a
single sensor for indoor localization is not recommended,
as it leads to cumulative errors over time and inaccurate
positioning [4]. Therefore, the integration of multiple sen-
sors becomes necessary for computing predicted paths or
determining new locations. This involves aggregating and
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synchronizing data and information from different sensors
and feeding them into an estimation algorithm. Comparisons
between the estimated path or new location and a predefined
reference path are performed to assess the performance and
efficiency of the proposed method.

Designing an indoor localization system with the afore-
mentioned characteristics requires careful consideration and
innovative approaches to address the challenges associated
with accuracy, flexibility, cost-effectiveness, and usability
[5]. The proposed method aims to overcome these chal-
lenges and demonstrate superior performance and efficiency
compared to existing approaches. This paper introduces an
enhanced indoor localization system that utilises a particle
filter algorithm and incorporates crowd-sensing or multi-
sensor fusion techniques. The aim is to achieve a low-cost
system that maintains high accuracy and robustness. The
proposed system combines traditional positioning technolo-
gies with innovative approaches to overcome limitations and
improve performance.

Our proposed system aims to enhance the accuracy of
indoor positioning by leveraging a combination of technolo-
gies. It integrates inertial navigation, utilising data from an
inertial measurement unit (IMU), with a prior training phase
and a carefully constructed magnetic map created using
fingerprinting techniques. This integration serves to mitigate
the inherent drift-related inaccuracies associated with IMU-
based systems. Additionally, our system utilises the pedes-
trian dead reckoning (PDR) method [6], which allows for
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unrestricted data collection. To determine the user’s position
accurately, our positioning algorithm takes into account
two data sources: the magnetic field and received signal
strength (RSS) data from Wi-Fi devices [7, 8]. These data are
compared to a fingerprint map database that has been pre-
established. This comprehensive approach offers a robust
solution for predicting the user’s movements within a defined
test area. By combining IMU data, PDR, and magnetic field
or RSS data with a fingerprint map, the system minimises
positioning errors and provides reliable indoor localization.

The system constructs a magnetic fingerprint database
specific to the test area by fusing all available data and
feeding it into the particle filter algorithm. The position-
ing results are promptly transmitted to the server, enabling
real-time responsiveness to dynamic changes within the
test area. To prove the validation of the proposed method,
ultra-wideband (UWB) anchors are utilised to compute the
reference trajectory, which closely approximates the actual
path of the user equipment (UE). This reference trajectory is
computed using the trilateration method and then compared
with the predicted trajectory computed by the particle filter,
demonstrating the effectiveness of the proposed technique.

The proposed framework offers several significant con-
tributions, which can be summarised as follows:

1. The proposed framework provides a comprehensive
exploration and analysis of various techniques, meth-
ods, technologies, and algorithms employed in in-
door positioning. Through an extensive evaluation and
comparison, it offers a profound understanding of the
effectiveness and performance of different positioning
methods and algorithms. This in-depth analysis serves
as a valuable resource for researchers in the field,
providing them with valuable insights that can drive
innovation and the development of more accurate al-
gorithms to meet the evolving requirements of indoor
positioning in the future.

2. The proposed approach introduces a cost-effective
mobile mapping and reliable indoor positioning sys-
tem that combines crowd-sensing data fusion with a
particle filter. It utilises fingerprinting to incremen-
tally construct a comprehensive database for the test
area, employing an infrastructure-free or PDR method
to collect data and determine Wi-Fi device-equipped
region’s RSS values. For accurate performance eval-
uation, the positions of deployed UWB devices are
leveraged for trilateration-based trajectory computa-
tion of the UE, which is then compared to the esti-
mated trajectory using the proposed approach.

3. Finally, this paper employs a particle filter algorithm
to enhance indoor localization accuracy through the
fusion of data from various sources, including Wi-Fi,
RSS, magnetic field measurements, UWB, and smart-
phone inertial sensors (i.e., IMUs). synchronizing the
Wi-Fi access points with particles posed a challenge
in achieving high granularity and precise timing. The

Table 1
List of Acronyms.

Symbol | Definition

AOA Angle of arrival

CSlI Channel state information
IMU Inertial measurement unit
loT Internet-of-things

NICs Network interface cards
PDF Probability density function
PDR Pedestrian dead reckoning

PF Particle filter

PoA Phase of arrival

RNs Reference nodes

RSS Received signal strength

RSSI Received signal strength indicator
RToF Return time of flight

TDoA Time difference of arrival

ToF Time of flight

UuwB Ultra-wideband

findings presented in this paper demonstrate the re-
markable capability of the proposed system to sig-
nificantly improve performance. The results indicate
an enhancement from 80.49% to 96.32% accuracy
by integrating crowd-sensing, particle filtering, and
magnetic fingerprinting techniques.

For ease of understanding, the acronyms used in this paper
are listed in Table 1.

This paper is organised into the following sections: Sec-
tion 2 discusses related work. Section 3 covers preliminary
concepts, providing a foundation for the subsequent sections.
Section 4 presents the system and scheme modelling. Sec-
tion 5 presents and discusses the experimental results. Lastly,
Section 6 provides the conclusions.

2. Related Works

This paper specifically examines the utilisation of Wi-
Fi technology based on the RSS fingerprinting technique
for indoor positioning. In this context, it is essential to
acquire a comprehensive understanding of the diverse range
of techniques and technologies currently employed in indoor
positioning. Furthermore, it is crucial to assess the merits,
drawbacks, and key characteristics associated with each
technique and technology in order to obtain a comprehension
of indoor positioning. Generally, indoor positioning methods
incorporate a variety of localization resources, including the
received signal strength indicator (RSSI) [9, 10], angle of
arrival (AOA) [11], channel state information (CSI) [12],
fingerprinting/scene analysis, time of flight (ToF) [13], time
difference of arrival (TDoA) [14], return time of flight
(RToF) [15], and phase of arrival (PoA) [16]. Table 2 pro-
vides a brief overview of the advantages and disadvantages
of these localization techniques [18, 19].

The first technique discussed is the RSSI-based method,
which stands out due to its simplicity, affordability, and
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Table 2
Comparison between different localization techniques [18, 19].

Technique Advantages Disadvantages
. Prone to multipath fading and environmental noise,
RSSI [9, 10] Simple to do, affordable, and can be Fingerprinting may be necessary at lower localization
' used with a number of technologies.
accuracy.
csl [11] More resilient to indoor noise and On commercially available NICs, it is not always
multi-trajectories. accessible.
. . o Migh ire directional I
Can provide high localization ight require r:hrectlona antennas and comp ex
. hardware, requires comparatively complex algorithms
AoA [12] accuracy, does not require any P . A =
fingerprinting and performance de_tenorates with increase in distance
) between the transmitter and receiver.
Require time stamps and multiple antennas at the
ToF [13] Provides high localization accuracy, transmitter and receiver to ensure that the transmitters
does not require any fingerprinting. and receivers are in synchronization with one another.
Line of Sight is mandatory for accurate performance.
Does not need any fingerprinting,
does not require clock Requires clock synchronization among the RNs, might
TDoA [14] reat . Hres. : .
synchronization among the device require time stamps, requires larger bandwidth
and RN.
Does not require any fingerprinting, Requires clock synchronization, processing delay can
RToF [15] can provide high localization have an impact on short-range measurement
accuracy. performance.
Can be used in conjunction with reduced performance when the line of sight is not
PoA [16] RSS, ToA, TDoA to improve the resent P g
overall localization accuracy. P )
. s Even when there is a slight change in the space, ne
Fingerprinting [17]| Reasonable ease of use. f_v N ' ‘s neem p new
ingerprints are necessary.

compatibility with diverse technologies. Nonetheless, its
susceptibility to multipath fading and environmental noise
poses a challenge to its accuracy. In certain scenarios, the
utilisation of fingerprinting becomes necessary to achieve
higher localization accuracy [20]. The second technique
examined is the CSI-based method, which exhibits greater
resilience to indoor noise and multi-trajectories compared to
RSSI. However, the accessibility of CSI is not always guar-
anteed in commercially available network interface cards
(NICs) [21]. Next, the AoA-based technique is explored,
which offers a high level of localization accuracy without the
need for fingerprinting. Nevertheless, the implementation of
directional antennas and complex hardware may be required,
and the involved algorithms tend to be relatively intricate.
Additionally, the performance of AoA deteriorates as the
distance between the transmitter and receiver increases [22].
The ToF-based technique is then discussed, which achieves
high localization accuracy without reliance on fingerprint-
ing. However, it necessitates the availability of time stamps
and multiple antennas at both the transmitter and receiver
to ensure synchronization. Furthermore, the accurate perfor-
mance of ToF depends on the line-of-sight conditions.

The TDoA-based method is presented as another
fingerprinting-free technique that does not require clock
synchronization between devices and reference nodes (RNs)
[18]. Nonetheless, time stamps and larger bandwidth may
be necessary for its implementation. The RToF-based tech-
nique is introduced, which also eliminates the need for fin-
gerprinting and offers high localization accuracy. However,
clock synchronization is imperative, and the performance
of short-range measurements may be affected by processing
delay [23]. The PoA-based method can be employed in
conjunction with RSSI, ToA, and TDoA techniques to

enhance overall localization accuracy. However, its per-
formance is diminished in the absence of line of sight.
Lastly, fingerprinting is examined as a localization technique
that offers reasonable ease of use. Nevertheless, any slight
alterations in the physical space may require the creation of
new fingerprints [19].

This study incorporates a range of techniques that utilise
diverse technological approaches, encompassing radio com-
munication technologies such as IEEE 802.11 (Wi-Fi) [24],
UWB [25], radio frequency identification devices (RFID)
[26], Bluetooth [27], ultrasound [22], and visible light [28].
Moreover, the utilisation of visible light and acoustic-based
technologies [29] is also prominent. For a comprehensive
comparison between these technologies, Table 3 presents
a summary of the merits and drawbacks associated with
these technologies, as reported in references [30]. This table
presents a comparison of various localization technologies
based on their maximum range, power consumption, ad-
vantages, and disadvantages. Wi-Fi is a widely available
technology that offers high accuracy and does not require
complex additional hardware. However, it is prone to noise
and necessitates complex processing algorithms. UWB tech-
nology provides immunity to interference and delivers high
accuracy. Nonetheless, it has a shorter range, requires extra
hardware on different user devices, and comes with a higher
cost. RFID has a wide range and low power consumption.
However, its localization accuracy is relatively low. Blue-
tooth offers high throughput, reception range, and low en-
ergy consumption. Yet, it exhibits weak positioning accuracy
and is susceptible to noise. Ultrasound technology covers a
range of a few tens of meters and has comparatively less ab-
sorption. However, its effectiveness heavily relies on sensor
placement. Visible Light technology can achieve a range of
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Table 3
Comparison between localization technologies [30].

Maximum Power A
Technology Range Consumption Advantages Disadvantages
A 250 m outdoor . Widely avallat.)le, high accuracy, Prone to noise, requires
Wi-Fi [24] - medium does not require complex extra . :
35 m indoor complex processing algorithms
hardware
Immune to interference, provides Shorter range, requires extra
UWB [25] 10-20 m medium . P hardware on different user devices,
high accuracy .
and high cost
RFID [26] 200 m Low ’t{;‘f’; wide range and uses ittle Low localization accuracy
Bluetooth [27] 100 m Low High throughput, reception range, | Weak positioning accuracy

low energy consumption

and susceptible to noise

Ultrasound [22] |Couple-tens of meters| Low-Moderate

Comparatively less absorption

High dependence on sensor
placement

Visible Light [28] 1.4 km Relatively higher

High dependence on the sensor
placement

Obstacles reduce range and
mostly require LoS

Acoustics [29] Couple of meters Low-Moderate

Can be used for proprietary
applications can provide high
accuracy

Affected by sound pollution and
requires extra anchor points
or hardware

up to 1.4 km but is relatively higher in power consumption.
It also depends significantly on sensor placement and its
effectiveness is reduced by obstacles, often requiring line-
of-sight conditions. Acoustics technology operates within a
range of a few meters and can provide high accuracy for
proprietary applications. However, it is affected by sound
pollution and necessitates extra anchor points or hardware.
These localization technologies offer a range of capabilities
and trade-offs, making them suitable for different use cases
depending on the specific requirements and constraints of

27 1

the application [31, 32, 33].

3. Preliminaries

This section introduces the formulation techniques (Sub-
sections 3.1 and 3.2) and outlines the performance evalua-
tion method (Subsection 3.3) for the proposed system.

3.1. Spatial fingerprinting technique

The Wi-Fi technology explored in this work are widely
employed and straightforward method for indoor position-
ing [34]. In this study, the PDR approach is employed in
conjunction with the inertial sensors of the smartphone,
including the accelerometer, gyroscope, and magnetometer.
This allows for the collection of real-time data while the user
is walking. The collected magnetic readings are compared
with the magnetic fingerprint of an offline map. The output
of the PDR approach serves as the motion model in the
fusion process to determine the user’s position, while the
magnetic data is utilised in the monitoring model [26, 23].

The fingerprint based on the indoor localization system
includes two main stages:

1. Offline stage: In this stage, the RSS samples are gath-
ered at predefined locations known as reference points
(RPs).

2. Online stage: In this stage, the users’ positions are
established by comparing real-time RSS estimates to
the database, as shown in Fig. 1.

Offline Online .
Location
Site Estimation
Survey ,
(Location,
Fingerprint) Signal
v Measurement
Fingerprint Localization
Database Algorithm

Figure 1: An overview of fundamental system flow for indoor
localization through fingerprinting.

Due to the dependence of the indoor localization strategy
on the magnetic fingerprint, which is utilised to calibrate
the results of the PDR approach, Wi-Fi fingerprinting is
typically conducted in two phases:

1. The offline phase (survey): In this phase, the vector of
RS'S; of all detected Wi-Fi signals from N number
of access points AP, Vi = {1,---, N}, at multiple
reference points of recognized positions are collected
during a site assessment. Hence, the fingerprint of
each RP is used to represent it [35, 36]. The finger-
prints of the site are formed by aggregating all the
RSS vectors, which are then stored in a database for
subsequent online queries.

2. The online phase (query): When the user (or object)
samples or measures an RSS vector, the server com-
pares it with the stored fingerprints using a similarity
metric in the signal space, such as the Euclidean
distance. This allows the server to identify the “neigh-
bouring” fingerprints that are most similar to the re-
ceived RSS vector [37]. The target position is then
calculated based on these neighbouring fingerprints,
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taking into consideration their similarities to the mea-
sured RSS vector.

Finally, pure Wi-Fi-based indoor positioning may intro-
duce considerable errors, which can be mitigated by incor-
porating IMU data and employing position estimation tech-
niques such as particle filtering. To achieve highly accurate
indoor localization using RSS estimates, certain principles
and guidelines need to be followed. For instance, the ref-
erence points should be easily identifiable with at least one
access point and strategically positioned throughout the area
of interest to ensure accurate and reliable data collection
during user movement. Additionally, generating an offline
magnetic field fingerprint map and performing online posi-
tioning involve comparing the observed magnetic field with
the fingerprints stored in the database [38]. These measures
contribute to enhancing the precision and correctness of Wi-
Fi-based indoor localization systems. The proposed method
focuses on the generation of an RSSI chart for the specified
test area, serving as a viable alternative to the extraction of
personalized fingerprints for each user.

3.2. PDR-based site surveying technique

The PDR technique is a highly effective approach for in-
door positioning, involving three main stages: (I) step detec-
tion, (II) step length estimation, and (III) walking direction
determination, as depicted in Fig. 2. Fig. 2(a) illustrates the
2D coordinates associated with each step undertaken during
the process of data collection, whereas Fig. 2(b) depicts the
distinction between the path-based and point-based method-
ologies employed in data collection. In the path-based ap-
proach, data is collected systematically along predefined
paths or trajectories within the environment. These paths can
be specific routes or walkways. On the other hand, the point-
based approach involves the collection of data at discrete,
strategically selected locations within the environment, with
the selection of these points often guided by the attributes
or parameters being measured. The proposed algorithm em-
ploys the path-based methodology for site surveying, pri-
marily chosen for its exceptional accuracy and reliability.
The PDR technique offers advantages such as simplifying
the path loss model and improving reliability, particularly in
large areas. Unlike fingerprinting, which requires a lengthy
training process, the PDR approach leverages measurements
from integrated IMU sensors in a smartphone, including
magnetometers, accelerometers, gyroscopes, and barome-
ters. These sensors enable the measurement of direction,
acceleration, rotational velocity, and altitude. If the initial
location is known, the device can be tracked using dead
reckoning.

The accelerometer is utilised for step counting and es-
timating step length, while the accelerometer, magnetome-
ter, and gyroscope are utilised to measure the differences
between two consecutive steps [39, 40]. It is important
to highlight that magnetic field data, despite its inherent
noise when employed for localization, presents significant
advantages for positioning due to its capacity to detect even
minor alterations in the three-dimensional behaviour of the

A

North (X5, i)

$1 (x1,¥1)
(x0,¥0) | /B,

Ny,
7

East

(a) 2D coordinates representation for each step.

Path-based:
Collect data along paths

Point-based:
Collect data at points

/// [/

(b) The two types for the data collection approach.

Figure 2: Location estimation and data gathering with UWB
and IMU by PDR approach.

magnetic field, as discerned by the magnetometer within the
IMU sensors. Notably, this magnetic field data demonstrates
aremarkable level of measurement stability that persists over
time, thereby establishing it as a viable and apt choice for
facilitating assisted localization endeavours.

3.3. RSSI-based method

UWRB devices can be employed for user equipment po-
sitioning through the utilisation of the trilateration method.
UWB technology offers the advantage of high-precision dis-
tance measurements by utilising short-duration, wideband
radio pulses. When multiple UWB anchors with known
positions are strategically placed, they can enable accurate
trilateration, leading to precise UE positioning based on the
measurement of the time it takes for UWB signals to travel
between the device and the anchors, see Fig. 3. As the RSS
value increases, the distance between Tx and Rx decreases.
A minimum of three UWBs (UWB;, Vi = {1,---,M})
are needed to determine the position of the UE, where
M represents the number of the UWB anchors [32]. The
positioning error decreases as the number of M increases,
and conversely, it increases as the number of M decreases.

This method employs the radio propagation model to
calculate the distance, which can be characterised as follows:
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2 ‘QUWB device
¢ Pedestrian

Figure 3: Position computation utilising trilateration method
based on RSS measurements.

i

P =pPy—|(10 nlogmd—’ (1)
0

where P/ demonstrates the RSS from the UW B; and d
signify the space from the UW B; during the step ¢. The
parameter P, is the RSS at a reference distance d;, which
is typically one meter [33]. Typically, P, is considered
equivalent to the power transmitted from the UWB device.
The trajectory loss exponent is represented by # and its value
is considered to range from 1.5 to 7.2 for a complex indoor
environment. So, by utilising (1), the distance d,i can be
defined as:

dl = 10(P?‘;§i> @

In the Cartesian coordinates, it can be expressed as

dy = \/(X —x) = (Y -y) 3)

where (x;, y;) represents the two-dimensional (2D) coordi-
nates of the UW B; and (X, Y) is that of the pedestrian. The
estimated RSS (RS'S;) of the signal received from U W B, is
then converted into the corresponding distance between the
UE and UW B, using (2).

4. System and scheme modelling

This section introduces the system model and provides a
comprehensive discussion of the proposed scheme.

4.1. Overview

For a clear understanding of the proposed approach, it
consists of two stages: collecting reference fingerprints and
performing location estimation.

4.1.1. Stage 1: Collection of reference fingerprints

Reference fingerprints constitute a dataset of Wi-Fi sig-
nal characteristics gathered from different locations within
the test area, serving as reference points for subsequent local-
ization. This collection process encompasses the following
steps:

1. Placement of access points: Strategically positioning
Wi-Fi access points across the test area to ensure
sufficient coverage.

2. Signal measurement: Employing devices equipped
with Wi-Fi receivers, such as smartphones, to measure
the RSS from nearby AP at predefined locations.

3. Data recording: Recording the measured signal char-
acteristics alongside the corresponding location de-
tails to establish the reference fingerprint dataset.

4.1.2. Stage 2: Location estimation

Upon the collection of reference fingerprints, the process
of localizing a target device goes through the following
typical steps:

1. Signal sampling: The target device, often a smart-
phone, continually scans and samples the Wi-Fi sig-
nals in its vicinity.

2. Signal matching: The sampled Wi-Fi signal character-
istics are compared to the reference fingerprints stored
within the dataset, with the objective of identifying the
closest match based on signal similarity.

3. Location estimation: Upon discovering a match, the
associated location information linked to the reference
fingerprint is designated as the estimated location of
the target device.

4.2. System modelling

The system comprises two primary components, Wi-Fi
devices and smartphone inertial sensors integrated within
the UE. For testing, ultra-wideband devices are employed to
calculate the reference or actual trajectory of the UE within
the designated test area. Each device has a specific role
defined as follows.

1. Wi-Fi devices: These devices, as part of the system,
play a significant role in facilitating wireless connec-
tivity and data exchange. They utilise Wi-Fi technol-
ogy to establish communication within the system and
contribute to the localization process. These devices
provide additional information such as signal strength
and connectivity patterns, which are utilised for po-
sitioning and tracking purposes in conjunction with
other devices.

2. Smartphone inertial sensors: Smartphones are equipped

with various sensors, such as the accelerometer, mag-
netometer, and gyroscope, that can measure different
physical quantities related to the smartphone’s move-
ment and orientation. The measurements of these
sensors are used as input to the PDR technique to
estimate the user’s position and track their movement.
3. Pozyx ultra-wideband devices: In the system, the
UWRB devices, also referred to as anchors and rover
devices operate in conjunction with a network of
devices placed at fixed and predetermined locations.
The tag, connected to the smartphone’s inertial sen-
sors, captures UWB measurements and timestamps
throughout the designated experimental area. Trilat-
eration is employed to calculate the distances between
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Figure 4: The proposed method architecture and the evaluation method.

the UE and anchors, yielding a near-actual trajectory
for assessing the proposed method’s accuracy. It is
important to note that precise calibration of UWB
readings is essential to accurately model the range
error and achieve improved localization accuracy.

4.3. Scheme modelling

This research paper presents a novel system, depicted in
Fig. 4, that introduces an enhanced indoor positioning so-
lution characterised by improved reliability, cost-efficiency,
and accuracy. The proposed system leverages the particle
filter algorithm and integrates data obtained from various
sensors or crowd-sensing techniques. The data collection
process occurs within the designated test area, as previously
mentioned. The system involves the meticulous scanning of
the test area by the user. The IMU features embedded in the
user’s smartphone are utilised to enable positioning using the
PDR method. Additionally, measurements of the magnetic
field obtained from Wi-Fi RSS are captured to construct a
magnetic map employing fingerprinting techniques. Conse-
quently, a magnetic database specific to the test region is de-
veloped. The collected data from the aforementioned sources
are synchronized, fused, and subsequently transmitted to
the particle filter algorithm. In this context, we discuss in
detail the particle filter fusion algorithm and the positioning
method used in the proposed scheme.

4.3.1. Particle filter fusion algorithm

Fig. 5 depicts the flowchart of the proposed system,
which highlights the process of matching various data de-
rived from crowdsensing through the PDR approach. These
data are subsequently fed into the particle filter algorithm to
predict the new location and generate a path. The generated
path is then compared with the reference trajectory obtained
from UWB anchors. Furthermore, the system leverages Wi-
Fi devices positioned at strategic locations within the test
area to construct a magnetic map. This map is pre-drawn
and computed to capture acceleration data using a set of N
access points. The magnetic map serves as a fingerprinting
database, enabling synchronization to identify the access
point with the highest RSS within the test area. This data
is then utilised to update the particle filter and enhance the
accuracy of localization. By comparing the particle filter’s
trajectory with the reference path, the closest match is deter-
mined for evaluation. Additionally, the mutual information
method is employed to facilitate a comprehensive compari-
son and assessment of the results.

4.3.2. The positioning algorithm

The particle filter (PF) plays a crucial role in the pro-
posed system as it serves as a probabilistic estimator capable
of handling non-Gaussian and nonlinear processes. This
estimation technique relies on random samples, known as
particles, to recursively approximate the target distribution.
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The PF offers several advantages, including the ability to
estimate full probability density functions (PDFs), efficiency
in concentrating particles in high probability regions, and the
capability to handle non-linear state and observation models.
In order to gain a deeper understanding of the PF’s operation
within the proposed system, it is important to discuss its key
steps, see Fig. 4.

1. State representation or initialisation step: The pdf of
the state values is described using (n-particles) instead
of a second-order statistical description. As a result,
the PDF p(x) can be expressed as

p(x) = /—1 w;K (x = x;) 4)

where w; is the weight of the i"” particle, and K (x) is
the basis function. If we assume that K(x) is Dirac’s
delta function, the particle representation of p(x) with
equal weights can be exemplified as

p(x)=1/ 5 (x=x,) ®)
n Ji=i

2. Prediction step: Update the particle’s state by applying
the state transition function for each particle i as
follows.

p ('xt+Ai/yO,..,yt) = /P (xi+At/xt) p (xt/J’O,..,Yt) dx,
(6)

p (xr+Ar/y0,...yr) = 2 Wy ip (xr+At/3_cr,i) (7
i=1

where w, ; is the weight factor. After sampling X, ; the
equation of prediction can be expressed as

n

p (xt+Ar/YO,“.Yt) = Z %5 (x, - f‘t,i) (®
i=1

. Update step: In this step, the algorithm evaluates the

likelihood or probability of the RSS measurements
given the predicted state of the system. Then, we
undertake the computation of likelihood values, while
taking into account the inherent noise and uncer-
tainties, to establish a quantitative assessment of the
degree of concordance between estimated and actual
measurements. To refine the accuracy of our particle
filter fusion algorithm, we then proceed to update
the weights of the individual particles based on their
respective likelihood values, assigning higher weights
to those particles that exhibit measurements in closer
proximity to the actual sensor measurements. In situ-
ations where the probability is primarily concentrated
on a limited set of state values, the weights associated
with these values can diminish significantly, leading
to extremely low probabilities. To mitigate this chal-
lenge, we employ a resampling procedure aimed at
substituting a particle with a substantial weight, which
has a higher likelihood of being selected multiple
times, while a particle with a low weight is unlikely
to be chosen at all. The resultant equations governing
the update step can be expressed as

plulnn)= [ Lan-x) O

=1 N

n

1 _
p (xr+Ar/y0,...yt+Ar) = / ;5 (xt+Ar - xt+At,i)
i=
(10)

. FParticle resample step: The degeneracy problem,

which occurs when only a few particles have a high
weight while the rest have very low weights, can be
solved by using the resampling step. This problem can
be identified using an effective sample size estimate
from the following equation:

1
Nyp=—— (11

/ill (wr,i)2

4.3.3. RSS-based reference trajectory estimation

algorithm

This algorithm employs the received data to predict the
user’s current position and generates a reference trajectory
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that closely aligns with the UE’s actual path for further
comparative analysis. UWB devices are strategically de-
ployed within the test area to establish a reference trajectory
through the implementation of the trilateration method. Sub-
sequently, this reference path serves as a basis for compari-
son with the anticipated trajectory generated by employing
the particle filter algorithm in conjunction with the mutual
information method. The dynamic model for computing the
reference trajectory can be presented as:

g+ a0 ] [ 0 0.(1)

[ 5t + Ar) ] ~ [ sy | TA [ 8,(1) ] 12
ot+An | [ 0.0 N0

[ 0,(t + Ar) ] = [ 0,(0) ] + [ 0 ] 3

where [£(7), 51T and [&( + Af), 9t + Af)]T are the 2D
positions at times ¢ and ¢ + At, respectively, [0, (?), ﬁy(t)]T
are the two dimension velocity at time ¢, [é,(), éy(t)]T are
the difference variable at time #, and At is the time interval
between two sequential UWB transceiver devices.

The optimisation equation for obtaining the reference
trajectory of UWB devices in the trilateration problem,
assuming a fixed altitude of the device in the Z direction, can
be expressed as

[%() 3()] = arg min Z ,~ r (14)
‘ij(i) = \/(X[ - xanch,j)2 + (yi - yanch,j)2 (15)

where [X(i) y(i)] represents the calculated coordinates cor-
responding to the U W B, time sample, r (i) denotes the mea-
surement obtained from the j* anchor at the UW B; time
sample, o, represents the uncertainty associated with UWB
measurements (assuming a zero-mean Gaussian distribution
for simplicity), and [x ] denote the location of
the j* anchor.

anch,j yanch,j

5. Experimental Results and Discussion

This section presents the experimental findings of the
proposed scheme. Firstly, the experiment is conducted in
a pair of corridors on the second level of a building at
the University of Padua in Italy. One corridor measures
approximately 40 meters in length, while the other corridor
is approximately 12 meters long. The experiment area is
equipped with 11 Pozyx ultra-wideband devices and eigh-
teen Wi-Fi devices (i.e., N = 18 access points) positioned
on the tops of the two corridors. The map of the corridors is
illustrated in Fig. 6.

In this experiment, the Pozyx UWB devices are posi-
tioned within the test area to establish a reference trajec-
tory through the utilisation of the trilateration method. This

Meter

40 - UWBs  UWB,
5=
UWBs 2 A (1)) A (@)
A (@) N (o) a |
3 UWB, UWB,
5
= A
30 UWB|
25 LI B
e (UwWs,
20 E A
:
UWBg
15 ]
&|uws,
10
UWBy| = | *
g
5 A
3luws,,
0
A
0 10 20
Meter
UWB; (@)
AP; A
Reference Trajectory

Figure 6: The map of the test area and the reference trajectory
using UWBs.

reference path serves as a basis for comparison with the
predicted trajectory generated using the particle filter and
mutual information method. In this experiment, a total of
11 UWBs are employed. Subsequently, the user proceeds to
carefully traverse back and forth in the corridor adjacent to
the CIRGEO lab. This movement generates three distinct
tracks: one in the centre of the hallway, another adjacent
to the wall, and a third in close proximity to the windows.
The sampling rate of the IMU in LG Android smartphones
can range from 100 Hz to 200 H z. The IMU features inte-
grated within the smartphone are leveraged to momentarily
pause at the conclusion of each run before recommencing,
allowing for the collection of data using the PDR method.
Measurements of the magnetic field from Wi-Fi RSS are also
obtained, enabling the creation of a magnetic map using fin-
gerprinting techniques. Subsequently, a magnetic database
is constructed specifically tailored to the test region.

The acquired data, encompassing the UWB, IMU, and
magnetic field measurements, are then synchronized, fused,
and conveyed to the particle filter. This filtering mechanism
facilitates the prediction of the new position and draws a tra-
jectory that closely aligns with the reference path, enabling
subsequent comparison and evaluation. Table 4 lists the
localization algorithm implemented in the proposed system,
outlining the complete sequence of operations involving the
particle filter and crowd-sensing on the designated test area.

Fig. 6 illustrates the reference trajectory computed using
the trilateration method with UWB anchors (UW B,,Vi =
{1,---,11}). The green solid line represents the reference
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Table 4
Positioning Algorithm based on the particle filter.

Step 1: Utilising Pozyx UWB anchors and IMU to collect data by PDR method.

Step 2: Utilising Matlab to preprocess data and then load the processed data.

Step 3: Representing the phase one (3 tracks) and the 2D trajectory predicted by UWB.

Step 4: Displaying points of the initial to the third path in stage one (which is split into 6 sub-paths).
Step 5: Defining Wi-Fi measurements and displaying the RSS vs. time relationship.

Step 6: Measuring Magnetic Fields directions.
Step 7: Creating the fingerprinting database for the test of area.
Step 8: Particle filter process.

Step 8.1: State representation or initialisation using (5)

Step 8.2: Applying the Prediction step using (8)

Step 8.3: Applying the Update step: using (10)

Step 8.4: Applying the Particle Resample step using (11)

Step 9: Particle filter loop to compute the predicted location and drawing trajectory.

Step 10: Utilising the mutual information and reference trajectory for matching and comparing with the particle filter's predicted trajectory.

trajectory for the trial region, while the red circles signify the
11 UWB devices, each accompanied by a number (UW B;)
indicating the UWB anchor.

5.1. The obtained UWB trajectories

Fig. 7 presents a comprehensive overview of the data col-
lected during the experiment, showcasing the three distinct
tracks: left, central, and right. These tracks serve as the train-
ing dataset for the fingerprinting process utilising IMUs with
path-based movement within the test region. Additionally,
the figure depicts the resultant 2D trajectory computed via
UWRB technology. In order to increase the learning dataset
of the test region and use it as a database for fingerprinting,
the PDR approach is employed to collect data at the centre
of the test area, both in forward and backward directions,
thereby creating the central track. This process has been
repeated six times, resulting in six sub-tracks, see Fig. 7(b).
The same process was repeated on the left side, creating
six additional sub-tracks, see Fig. 7(c). Similarly, data is
collected on the right side, resulting in four sub-tracks, see
Fig. 7(d). Note that, we generated many sub-tracks for each
main track. However, we choose the best-estimated sub-
tracks that present the left, central, and right sides of the
corridor. Finally, Fig. 7(a) illustrates all computed reference
trajectories using the trilateration method and the estimated
UWRB anchors.

5.2. The particle filter process

The inclusion of the particle filter in the proposed
method enhances the accuracy and effectiveness of pre-
dicting the position and trajectory within the trial region.
This improvement is achieved by leveraging data obtained
through the PDR approach and IMU, along with continual
updates from the magnetic fingerprint database. Subse-
quently, the computed trajectory is compared to the refer-
ence trajectory with a high probability of matching. This
process involves utilising particles and connecting them to
the synchronized 18 access points. These access points are
synchronized with the central server. Fig. 8 and 9 provide
visual representations of the RSS estimates, the distribution

of particles, and the resampling step of the particle filter,
specifically for the best 13 out of the 18 access points.
In the first column of Fig. 8 and Fig. 9, the RSS values
(RS'S;) from AP, are presented for i = {1,---,7} and
i = {8, -+, 13}, respectively. The second column of Fig. 8
and Fig. 9 illustrate the distribution of n particles at a certain
time-slot for AP;, where i = {1,---,7} and i = {8, ---,13},
respectively. The distribution is presented within the tested
area’s map defined in Fig. 6. Finally, the third column of Fig.
8 and Fig. 9 depict the resampling process of the particles for
AP, withi = {1,---,7} and i = {8, ---, 13}, respectively.
The resampling process effectively addresses the degen-
eracy problem, wherein only a few particles possess signifi-
cant weights while the majority of particles have exceedingly
small weights. During resampling, particles with substantial
weights are selected multiple times, while those with low
weights are unlikely to be chosen. In the context of our
experiment, the resampling process exhibits two distinct be-
haviours contingent upon the particle’s weight, as presented
in the third column of Fig. 8 and Fig. 9. Specifically, when
the weight exceeds or equals the threshold of -70, the particle
is deemed eligible for consideration in our experimental
analysis. Conversely, particles failing to meet this weight
criterion are excluded from further consideration.
Following the completion of all the operations and steps
described earlier, the particle filter can predict and estimate
the magnetic path by fusing all the data obtained from
crowd-sensing, as illustrated in Fig. 10. Table 5 summarises
the performance metrics of different methods. These meth-
ods are evaluated in terms of enhanced accuracy and av-
erage error. The first method corresponds to the IMU and
PDR approach without a magnetic fingerprinting database,
achieving an enhanced accuracy of 80.49% with an aver-
age error of 0.3. In contrast, the second method presents
results for the IMU and PDR approach when incorporating
a magnetic fingerprinting database, showing an enhanced
accuracy of 85.86% and an average error of 0.32. Finally,
the proposed method employs a particle filter with 1000 par-
ticles and a magnetic fingerprinting database. This method
demonstrates a significantly improved enhanced accuracy of
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Figure 7: Computed paths using UW B, devices, Vi =1 — 11, and tracks using the IMU.

Table 5

Comparison between the root mean square error (RMSE) values for the trajectory states obtained using the IMU, PDR, and
particle filter and magnetic fingerprinting with reference trajectory using UWB.

Algorithm

Enhanced accuracy | Average error to the
reference trajectory

IMU and PDR approach without

magnetic fingerprinting database 80.49% 0.3
IMU ;?nd.PDR a}pp‘roach with 85.86% 032
magnetic fingerprinting database
The proposed method using the particle filter of 96.32% 0359

n = 1000 particles and magnetic fingerprinting database

96.32% while maintaining an average error of 0.359. Based
on these findings, we conclude that the proposed method
achieves the highest level of accuracy, which attains an
enhanced accuracy of 96.32%. However, this approach does
exhibit the largest average error in the last column from
Table 5, indicating an average error of 0.359. Therefore,
while the proposed method significantly improves accuracy,
it does come at the expense of a slightly higher average
error. The choice of which approach is “best” depends on the
specific trade-off between accuracy and average error that
aligns with the application’s objectives and requirements.

6. Conclusions

This paper provides an overview of indoor position-
ing technologies, methodologies, strategies, and contempo-
rary applications. Additionally, the paper presents a low-
cost, reliable, and highly accurate indoor localization system
based on crowdsensing, particle filter, and the test region’s
infrastructure. Furthermore, the system relies on the RSS
signals from Wi-Fi devices equipped in the test area, and
the signals from access points are synchronized to build a
magnetic fingerprinting database used for acceleration. This
approach overcomes the limitations of traditional magnetic
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Figure 9: The particle filter process linked with the synchronized access points for each AP, Vi =8 — 13.

field-based localization techniques, which are heavy in terms
of comparison workload and insufficient in analysing mag-
netic field signals that do not change easily over time. The
system also employs continuous updating of the particle
filter with data collected by the IMU, using the PDR method
to obtain motion data such as acceleration, stride size, and
Figure 10: The predicted trajectory using particle filter. direction to estimate the predicted trajectory. Finally, the
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proposed system’s accuracy is demonstrated by comparing
the estimated trajectory using the particle filter with the
reference path using the UWB anchors through trilateration
and the mutual information approach, which showed an
improvement in accuracy from 80.49% to 96.32% using
crowd-sensing, particle filter, and magnetic fingerprinting.
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