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A B S T R A C T
Due to the lack of global positioning system (GPS) signals in some enclosed areas, indoor localiza
has recently gained significant importance for academics. However, indoor localization has a num
of challenges and defects, including accuracy, cost, coverage, and ease of use. This paper explores
integration between the inertial measurement unit (IMU) and Wi-Fi-based received signal stren
indicator (RSSI) measurements, demonstrating their combined potential for robust indoor localizat
IMUs excel at capturing precise short-term motion dynamics, offering insights into an obje
acceleration and orientation. Conversely, RSSI measurements serve as valuable indicators for rela
positioning within indoor environments. By fusing data from these sources, our approach compens
for the inherent weaknesses of each sensor type. To achieve accurate indoor positioning, we emp
techniques such as sensor fusion, Wi-Fi fingerprinting, and dead reckoning. Wi-Fi fingerprin
allows us to create a database that maps RSSI measurements to specific locations, while d
reckoning helps mitigate drift and inaccuracies. By combining these methods, we estimate a devi
position with increased precision. Through experimental evaluation, we assess the performance
efficiency of our integrated approach, comparing the estimated path or new location with a predefi
reference path. The findings emphasise a significant improvement in accuracy, with the integratio
crowd-sensing, particle filtering, and magnetic fingerprinting techniques resulting in a notable incre
from 80.49% to 96.32% accuracy.

roduction
or localization systems offer a wide range of appli-

and services, primarily focused on the identification
nitoring of individuals through the wireless signals
by their personal devices, as well as the utilisation of
sensor networks for asset tracking. The advent of the

-of-things (IoT) has introduced a pivotal application
domain, enabling seamless connectivity and com-
ion within smart homes, hospitals, schools, malls,
ories by leveraging various IoT technologies such as
LoRa, Wi-Fi HaLow, Weightless, and NB-IoT. Ad-

ly, other wireless standards including BLE, Wi-Fi,
RFID, and UWB play a significant role in facilitating
nctionalities [1]. However, the development of an
ocalization system that achieves high accuracy, flexi-
ordability, and user-friendliness presents significant
es [2, 4]. In this challenging scenario, relying on a
ensor for indoor localization is not recommended,
ds to cumulative errors over time and inaccurate
ing [4]. Therefore, the integration of multiple sen-
omes necessary for computing predicted paths or

ning new locations. This involves aggregating and
responding author.
g.abdellatef@zu.edu.eg (A.G. Abdellatif);
alama@acm.org (A.A.S. ); Dr.Hamed_zied@gmail.com ( Hamed S.
amegypt0@gmail.com (A.A. Elmahallawy);
1@research.gla.ac.uk (M.A. Shawky)
ID(s): 0000-0002-3440-8448 (A.G. Abdellatif)

synchronizing data and information from different sens
and feeding them into an estimation algorithm. Compariso
between the estimated path or new location and a predefin
reference path are performed to assess the performance a
efficiency of the proposed method.

Designing an indoor localization system with the afo
mentioned characteristics requires careful consideration a
innovative approaches to address the challenges associa
with accuracy, flexibility, cost-effectiveness, and usabi
[5]. The proposed method aims to overcome these ch
lenges and demonstrate superior performance and efficien
compared to existing approaches. This paper introduces
enhanced indoor localization system that utilises a parti
filter algorithm and incorporates crowd-sensing or mu
sensor fusion techniques. The aim is to achieve a low-c
system that maintains high accuracy and robustness. T
proposed system combines traditional positioning techno
gies with innovative approaches to overcome limitations a
improve performance.

Our proposed system aims to enhance the accuracy
indoor positioning by leveraging a combination of techno
gies. It integrates inertial navigation, utilising data from
inertial measurement unit (IMU), with a prior training ph
and a carefully constructed magnetic map created us
fingerprinting techniques. This integration serves to mitig
the inherent drift-related inaccuracies associated with IM
based systems. Additionally, our system utilises the ped
trian dead reckoning (PDR) method [6], which allows
d A. Shawky et al.: Preprint submitted to Elsevier Page 1 of 15
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Physical Communications

cted data collection. To determine the user’s position
ly, our positioning algorithm takes into account
a sources: the magnetic field and received signal
(RSS) data from Wi-Fi devices [7, 8]. These data are
d to a fingerprint map database that has been pre-
ed. This comprehensive approach offers a robust
for predicting the user’s movements within a defined
. By combining IMU data, PDR, and magnetic field
data with a fingerprint map, the system minimises
ing errors and provides reliable indoor localization.
system constructs a magnetic fingerprint database
to the test area by fusing all available data and
it into the particle filter algorithm. The position-
lts are promptly transmitted to the server, enabling
e responsiveness to dynamic changes within the
. To prove the validation of the proposed method,
deband (UWB) anchors are utilised to compute the
e trajectory, which closely approximates the actual
he user equipment (UE). This reference trajectory is
d using the trilateration method and then compared
predicted trajectory computed by the particle filter,

trating the effectiveness of the proposed technique.
proposed framework offers several significant con-
s, which can be summarised as follows:

he proposed framework provides a comprehensive
ploration and analysis of various techniques, meth-
s, technologies, and algorithms employed in in-
or positioning. Through an extensive evaluation and
mparison, it offers a profound understanding of the
ectiveness and performance of different positioning

ethods and algorithms. This in-depth analysis serves
a valuable resource for researchers in the field,

oviding them with valuable insights that can drive
novation and the development of more accurate al-
rithms to meet the evolving requirements of indoor
sitioning in the future.

he proposed approach introduces a cost-effective
obile mapping and reliable indoor positioning sys-
m that combines crowd-sensing data fusion with a
rticle filter. It utilises fingerprinting to incremen-
lly construct a comprehensive database for the test
ea, employing an infrastructure-free or PDR method
collect data and determine Wi-Fi device-equipped

gion’s RSS values. For accurate performance eval-
tion, the positions of deployed UWB devices are
veraged for trilateration-based trajectory computa-
on of the UE, which is then compared to the esti-
ated trajectory using the proposed approach.
inally, this paper employs a particle filter algorithm

enhance indoor localization accuracy through the
sion of data from various sources, including Wi-Fi,
SS, magnetic field measurements, UWB, and smart-
one inertial sensors (i.e., IMUs). synchronizing the
i-Fi access points with particles posed a challenge
achieving high granularity and precise timing. The

Table 1
List of Acronyms.

Symbol Definition
AOA Angle of arrival
CSI Channel state information
IMU Inertial measurement unit
IoT Internet-of-things
NICs Network interface cards
PDF Probability density function
PDR Pedestrian dead reckoning
PF Particle filter
PoA Phase of arrival
RNs Reference nodes
RSS Received signal strength
RSSI Received signal strength indicator
RToF Return time of flight
TDoA Time difference of arrival
ToF Time of flight
UWB Ultra-wideband

findings presented in this paper demonstrate the
markable capability of the proposed system to s
nificantly improve performance. The results indic
an enhancement from 80.49% to 96.32% accura
by integrating crowd-sensing, particle filtering, a
magnetic fingerprinting techniques.

For ease of understanding, the acronyms used in this pa
are listed in Table 1.

This paper is organised into the following sections: S
tion 2 discusses related work. Section 3 covers prelimin
concepts, providing a foundation for the subsequent sectio
Section 4 presents the system and scheme modelling. S
tion 5 presents and discusses the experimental results. Las
Section 6 provides the conclusions.

2. Related Works
This paper specifically examines the utilisation of W

Fi technology based on the RSS fingerprinting techniq
for indoor positioning. In this context, it is essential
acquire a comprehensive understanding of the diverse ran
of techniques and technologies currently employed in ind
positioning. Furthermore, it is crucial to assess the mer
drawbacks, and key characteristics associated with ea
technique and technology in order to obtain a comprehens
of indoor positioning. Generally, indoor positioning metho
incorporate a variety of localization resources, including
received signal strength indicator (RSSI) [9, 10], angle
arrival (AOA) [11], channel state information (CSI) [1
fingerprinting/scene analysis, time of flight (ToF) [13], ti
difference of arrival (TDoA) [14], return time of fli
(RToF) [15], and phase of arrival (PoA) [16]. Table 2 p
vides a brief overview of the advantages and disadvanta
of these localization techniques [18, 19].

The first technique discussed is the RSSI-based meth
which stands out due to its simplicity, affordability, a
d A. Shawky et al.: Preprint submitted to Elsevier Page 2 of 15
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son between different localization techniques [18, 19].

Technique Advantages Disadvantages

RSSI [9, 10] Simple to do, affordable, and can be
used with a number of technologies.

Prone to multipath fading and environmental noise,
Fingerprinting may be necessary at lower localization
accuracy.

CSI [11] More resilient to indoor noise and
multi-trajectories.

On commercially available NICs, it is not always
accessible.

AoA [12]
Can provide high localization
accuracy, does not require any
fingerprinting.

Might require directional antennas and complex
hardware, requires comparatively complex algorithms
and performance deteriorates with increase in distance
between the transmitter and receiver.

ToF [13] Provides high localization accuracy,
does not require any fingerprinting.

Require time stamps and multiple antennas at the
transmitter and receiver to ensure that the transmitters
and receivers are in synchronization with one another.
Line of Sight is mandatory for accurate performance.

TDoA [14]

Does not need any fingerprinting,
does not require clock
synchronization among the device
and RN.

Requires clock synchronization among the RNs, might
require time stamps, requires larger bandwidth

RToF [15]
Does not require any fingerprinting,
can provide high localization
accuracy.

Requires clock synchronization, processing delay can
have an impact on short-range measurement
performance.

PoA [16]
Can be used in conjunction with
RSS, ToA, TDoA to improve the
overall localization accuracy.

reduced performance when the line of sight is not
present.

ingerprinting [17] Reasonable ease of use. Even when there is a slight change in the space, new
fingerprints are necessary.

bility with diverse technologies. Nonetheless, its
bility to multipath fading and environmental noise
challenge to its accuracy. In certain scenarios, the
n of fingerprinting becomes necessary to achieve

localization accuracy [20]. The second technique
d is the CSI-based method, which exhibits greater
e to indoor noise and multi-trajectories compared to
owever, the accessibility of CSI is not always guar-

in commercially available network interface cards
[21]. Next, the AoA-based technique is explored,
ffers a high level of localization accuracy without the
fingerprinting. Nevertheless, the implementation of

nal antennas and complex hardware may be required,
involved algorithms tend to be relatively intricate.

nally, the performance of AoA deteriorates as the
between the transmitter and receiver increases [22].
-based technique is then discussed, which achieves
alization accuracy without reliance on fingerprint-
ever, it necessitates the availability of time stamps

ltiple antennas at both the transmitter and receiver
e synchronization. Furthermore, the accurate perfor-
f ToF depends on the line-of-sight conditions.
TDoA-based method is presented as another

inting-free technique that does not require clock
nization between devices and reference nodes (RNs)
netheless, time stamps and larger bandwidth may

ssary for its implementation. The RToF-based tech-
introduced, which also eliminates the need for fin-

ing and offers high localization accuracy. However,
nchronization is imperative, and the performance

-range measurements may be affected by processing
3]. The PoA-based method can be employed in

tion with RSSI, ToA, and TDoA techniques to

enhance overall localization accuracy. However, its p
formance is diminished in the absence of line of sig
Lastly, fingerprinting is examined as a localization techniq
that offers reasonable ease of use. Nevertheless, any sli
alterations in the physical space may require the creation
new fingerprints [19].

This study incorporates a range of techniques that util
diverse technological approaches, encompassing radio co
munication technologies such as IEEE 802.11 (Wi-Fi) [2
UWB [25], radio frequency identification devices (RFI
[26], Bluetooth [27], ultrasound [22], and visible light [2
Moreover, the utilisation of visible light and acoustic-ba
technologies [29] is also prominent. For a comprehens
comparison between these technologies, Table 3 prese
a summary of the merits and drawbacks associated w
these technologies, as reported in references [30]. This ta
presents a comparison of various localization technolog
based on their maximum range, power consumption,
vantages, and disadvantages. Wi-Fi is a widely availa
technology that offers high accuracy and does not requ
complex additional hardware. However, it is prone to no
and necessitates complex processing algorithms. UWB te
nology provides immunity to interference and delivers h
accuracy. Nonetheless, it has a shorter range, requires ex
hardware on different user devices, and comes with a hig
cost. RFID has a wide range and low power consumpti
However, its localization accuracy is relatively low. Bl
tooth offers high throughput, reception range, and low
ergy consumption. Yet, it exhibits weak positioning accura
and is susceptible to noise. Ultrasound technology cover
range of a few tens of meters and has comparatively less
sorption. However, its effectiveness heavily relies on sen
placement. Visible Light technology can achieve a range
d A. Shawky et al.: Preprint submitted to Elsevier Page 3 of 15
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son between localization technologies [30].

echnology Maximum
Range

Power
Consumption Advantages Disadvantages

i-Fi [24] 250 m outdoor
35 m indoor medium

Widely available, high accuracy,
does not require complex extra
hardware

Prone to noise, requires
complex processing algorithms

WB [25] 10-20 m medium Immune to interference, provides
high accuracy

Shorter range, requires extra
hardware on different user devices,
and high cost

FID [26] 200 m Low Has a wide range and uses little
power Low localization accuracy

etooth [27] 100 m Low High throughput, reception range,
low energy consumption

Weak positioning accuracy
and susceptible to noise

rasound [22] Couple-tens of meters Low-Moderate Comparatively less absorption High dependence on sensor
placement

le Light [28] 1.4 km Relatively higher High dependence on the sensor
placement

Obstacles reduce range and
mostly require LoS

oustics [29] Couple of meters Low-Moderate
Can be used for proprietary
applications can provide high
accuracy

Affected by sound pollution and
requires extra anchor points
or hardware

4 km but is relatively higher in power consumption.
depends significantly on sensor placement and its
ness is reduced by obstacles, often requiring line-
conditions. Acoustics technology operates within a

f a few meters and can provide high accuracy for
ary applications. However, it is affected by sound
n and necessitates extra anchor points or hardware.
calization technologies offer a range of capabilities
e-offs, making them suitable for different use cases
ng on the specific requirements and constraints of
ication [31, 32, 33].

liminaries
section introduces the formulation techniques (Sub-
3.1 and 3.2) and outlines the performance evalua-
hod (Subsection 3.3) for the proposed system.
atial fingerprinting technique
Wi-Fi technology explored in this work are widely
d and straightforward method for indoor position-
. In this study, the PDR approach is employed in
tion with the inertial sensors of the smartphone,
g the accelerometer, gyroscope, and magnetometer.
ws for the collection of real-time data while the user

ng. The collected magnetic readings are compared
magnetic fingerprint of an offline map. The output
DR approach serves as the motion model in the
rocess to determine the user’s position, while the
c data is utilised in the monitoring model [26, 23].
fingerprint based on the indoor localization system
two main stages:

ffline stage: In this stage, the RSS samples are gath-
ed at predefined locations known as reference points
Ps).

nline stage: In this stage, the users’ positions are
tablished by comparing real-time RSS estimates to
e database, as shown in Fig. 1.

 

Offline 

Localization 

Algorithm 
Fingerprint 

Database 

Site 

Survey 

Online 

(Location, 

Fingerprint) Signal 

Measurement 

Locatio

Estimat

Figure 1: An overview of fundamental system flow for ind
localization through fingerprinting.

Due to the dependence of the indoor localization strate
on the magnetic fingerprint, which is utilised to calibr
the results of the PDR approach, Wi-Fi fingerprinting
typically conducted in two phases:

1. The offline phase (survey): In this phase, the vector
𝑅𝑆𝑆𝑖 of all detected Wi-Fi signals from 𝑁 num
of access points 𝐴𝑃𝑖, ∀𝑖 = {1,⋯ , 𝑁}, at multi
reference points of recognized positions are collec
during a site assessment. Hence, the fingerprint
each RP is used to represent it [35, 36]. The fing
prints of the site are formed by aggregating all
RSS vectors, which are then stored in a database
subsequent online queries.

2. The online phase (query): When the user (or obje
samples or measures an RSS vector, the server co
pares it with the stored fingerprints using a similar
metric in the signal space, such as the Euclide
distance. This allows the server to identify the “nei
bouring” fingerprints that are most similar to the
ceived RSS vector [37]. The target position is th
calculated based on these neighbouring fingerprin
d A. Shawky et al.: Preprint submitted to Elsevier Page 4 of 15
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king into consideration their similarities to the mea-
red RSS vector.
lly, pure Wi-Fi-based indoor positioning may intro-
nsiderable errors, which can be mitigated by incor-
IMU data and employing position estimation tech-

uch as particle filtering. To achieve highly accurate
ocalization using RSS estimates, certain principles
delines need to be followed. For instance, the ref-
oints should be easily identifiable with at least one
oint and strategically positioned throughout the area
est to ensure accurate and reliable data collection
ser movement. Additionally, generating an offline

c field fingerprint map and performing online posi-
involve comparing the observed magnetic field with
erprints stored in the database [38]. These measures
te to enhancing the precision and correctness of Wi-
indoor localization systems. The proposed method

on the generation of an RSSI chart for the specified
, serving as a viable alternative to the extraction of
lized fingerprints for each user.

R-based site surveying technique
PDR technique is a highly effective approach for in-
sitioning, involving three main stages: (I) step detec-
) step length estimation, and (III) walking direction
nation, as depicted in Fig. 2. Fig. 2(a) illustrates the
dinates associated with each step undertaken during
ess of data collection, whereas Fig. 2(b) depicts the
on between the path-based and point-based method-
employed in data collection. In the path-based ap-
data is collected systematically along predefined
trajectories within the environment. These paths can
fic routes or walkways. On the other hand, the point-
pproach involves the collection of data at discrete,
ally selected locations within the environment, with

ction of these points often guided by the attributes
eters being measured. The proposed algorithm em-

e path-based methodology for site surveying, pri-
hosen for its exceptional accuracy and reliability.
R technique offers advantages such as simplifying
loss model and improving reliability, particularly in

eas. Unlike fingerprinting, which requires a lengthy
process, the PDR approach leverages measurements
tegrated IMU sensors in a smartphone, including
meters, accelerometers, gyroscopes, and barome-
ese sensors enable the measurement of direction,
tion, rotational velocity, and altitude. If the initial
is known, the device can be tracked using dead
g.
accelerometer is utilised for step counting and es-
step length, while the accelerometer, magnetome-
gyroscope are utilised to measure the differences
two consecutive steps [39, 40]. It is important

ight that magnetic field data, despite its inherent
hen employed for localization, presents significant
ges for positioning due to its capacity to detect even
lterations in the three-dimensional behaviour of the

 

East 

North 

ሺ𝑥0, 𝑦0ሻ 

𝑆1 

𝑆2 

𝑆𝑘 ሺ𝑥𝑘 , 𝑦𝑘ሻ 

𝜃1 

𝜃2 

𝜃𝑘 

ሺ𝑥2, 𝑦2ሻ 

ሺ𝑥1, 𝑦1ሻ 

(a) 2D coordinates representation for each step.

 

Path-based: 

Collect data along paths 

Point-based: 

Collect data at points 

(b) The two types for the data collection approach.

Figure 2: Location estimation and data gathering with UW
and IMU by PDR approach.

magnetic field, as discerned by the magnetometer within
IMU sensors. Notably, this magnetic field data demonstra
a remarkable level of measurement stability that persists o
time, thereby establishing it as a viable and apt choice
facilitating assisted localization endeavours.
3.3. RSSI-based method

UWB devices can be employed for user equipment
sitioning through the utilisation of the trilateration meth
UWB technology offers the advantage of high-precision d
tance measurements by utilising short-duration, wideba
radio pulses. When multiple UWB anchors with kno
positions are strategically placed, they can enable accur
trilateration, leading to precise UE positioning based on
measurement of the time it takes for UWB signals to tra
between the device and the anchors, see Fig. 3. As the R
value increases, the distance between Tx and Rx decreas
A minimum of three UWBs (𝑈𝑊𝐵𝑖, ∀𝑖 = {1,⋯ ,𝑀
are needed to determine the position of the UE, wh
𝑀 represents the number of the UWB anchors [32]. T
positioning error decreases as the number of 𝑀 increas
and conversely, it increases as the number of 𝑀 decrease

This method employs the radio propagation model
calculate the distance, which can be characterised as follow
d A. Shawky et al.: Preprint submitted to Elsevier Page 5 of 15
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d1 d2 

d3 

UWB2 UWB1 

UWB3 

UWB device 

  Pedestrian 

: Position computation utilising trilateration method
RSS measurements.

𝑖
𝑡 = 𝑃0 −

(
10 𝜂 log10

𝑑𝑖𝑡
𝑑0

)
(1)

𝑖
𝑡 demonstrates the RSS from the 𝑈𝑊𝐵𝑖 and 𝑑𝑖𝑡the space from the 𝑈𝑊𝐵𝑖 during the step 𝑡. The
er 𝑃0 is the RSS at a reference distance 𝑑0, which
ally one meter [33]. Typically, 𝑃0 is considered
nt to the power transmitted from the UWB device.

ectory loss exponent is represented by 𝜂 and its value
dered to range from 1.5 to 7.2 for a complex indoor

ent. So, by utilising (1), the distance 𝑑𝑖𝑡 can be
as:

𝑖
𝑡 = 10

(
𝑃0−𝑃

𝑖
𝑡

10 𝜂

)

(2)
artesian coordinates, it can be expressed as
𝑖
𝑡 =

√(
𝑋 − 𝑥𝑖

)2 − (
𝑌 − 𝑦𝑖

)2 (3)
𝑥𝑖, 𝑦𝑖) represents the two-dimensional (2D) coordi-
the 𝑈𝑊𝐵𝑖 and (𝑋, 𝑌 ) is that of the pedestrian. The
d RSS (𝑅𝑆𝑆𝑖) of the signal received from 𝑈𝑊𝐵𝑖 is
verted into the corresponding distance between the
𝑈𝑊𝐵𝑖 using (2).

tem and scheme modelling
section introduces the system model and provides a
ensive discussion of the proposed scheme.

verview
a clear understanding of the proposed approach, it
of two stages: collecting reference fingerprints and
ing location estimation.
Stage 1: Collection of reference fingerprints
rence fingerprints constitute a dataset of Wi-Fi sig-
acteristics gathered from different locations within
rea, serving as reference points for subsequent local-
This collection process encompasses the following

1. Placement of access points: Strategically position
Wi-Fi access points across the test area to ens
sufficient coverage.

2. Signal measurement: Employing devices equipp
with Wi-Fi receivers, such as smartphones, to meas
the RSS from nearby 𝐴𝑃 at predefined locations.

3. Data recording: Recording the measured signal ch
acteristics alongside the corresponding location
tails to establish the reference fingerprint dataset.

4.1.2. Stage 2: Location estimation
Upon the collection of reference fingerprints, the proc

of localizing a target device goes through the follow
typical steps:

1. Signal sampling: The target device, often a sma
phone, continually scans and samples the Wi-Fi s
nals in its vicinity.

2. Signal matching: The sampled Wi-Fi signal charact
istics are compared to the reference fingerprints sto
within the dataset, with the objective of identifying
closest match based on signal similarity.

3. Location estimation: Upon discovering a match,
associated location information linked to the referen
fingerprint is designated as the estimated location
the target device.

4.2. System modelling
The system comprises two primary components, Wi

devices and smartphone inertial sensors integrated wit
the UE. For testing, ultra-wideband devices are employed
calculate the reference or actual trajectory of the UE wit
the designated test area. Each device has a specific r
defined as follows.

1. Wi-Fi devices: These devices, as part of the syste
play a significant role in facilitating wireless conn
tivity and data exchange. They utilise Wi-Fi techn
ogy to establish communication within the system a
contribute to the localization process. These devi
provide additional information such as signal stren
and connectivity patterns, which are utilised for
sitioning and tracking purposes in conjunction w
other devices.

2. Smartphone inertial sensors: Smartphones are equi
with various sensors, such as the accelerometer, m
netometer, and gyroscope, that can measure differ
physical quantities related to the smartphone’s mo
ment and orientation. The measurements of th
sensors are used as input to the PDR technique
estimate the user’s position and track their moveme

3. Pozyx ultra-wideband devices: In the system,
UWB devices, also referred to as anchors and ro
devices operate in conjunction with a network
devices placed at fixed and predetermined locatio
The tag, connected to the smartphone’s inertial s
sors, captures UWB measurements and timestam
throughout the designated experimental area. Tri
eration is employed to calculate the distances betwe
d A. Shawky et al.: Preprint submitted to Elsevier Page 6 of 15
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 IMU 

PDR 

Output 

Particle Filter 

Fusion Algorithm     

(State representation at time 𝑡) 

(State representation at time 𝑡 + ∆posed localization method 

Performance 

evaluation 

method 

Figure 4: The proposed method architecture and the evaluation method.

e UE and anchors, yielding a near-actual trajectory
r assessing the proposed method’s accuracy. It is
portant to note that precise calibration of UWB

adings is essential to accurately model the range
ror and achieve improved localization accuracy.

heme modelling
research paper presents a novel system, depicted in

that introduces an enhanced indoor positioning so-
haracterised by improved reliability, cost-efficiency,
uracy. The proposed system leverages the particle
orithm and integrates data obtained from various
or crowd-sensing techniques. The data collection
occurs within the designated test area, as previously
ed. The system involves the meticulous scanning of
area by the user. The IMU features embedded in the

artphone are utilised to enable positioning using the
ethod. Additionally, measurements of the magnetic
tained from Wi-Fi RSS are captured to construct a
c map employing fingerprinting techniques. Conse-
a magnetic database specific to the test region is de-
. The collected data from the aforementioned sources
chronized, fused, and subsequently transmitted to
icle filter algorithm. In this context, we discuss in
e particle filter fusion algorithm and the positioning
used in the proposed scheme.

4.3.1. Particle filter fusion algorithm
Fig. 5 depicts the flowchart of the proposed syste

which highlights the process of matching various data
rived from crowdsensing through the PDR approach. Th
data are subsequently fed into the particle filter algorithm
predict the new location and generate a path. The genera
path is then compared with the reference trajectory obtain
from UWB anchors. Furthermore, the system leverages W
Fi devices positioned at strategic locations within the t
area to construct a magnetic map. This map is pre-dra
and computed to capture acceleration data using a set of
access points. The magnetic map serves as a fingerprint
database, enabling synchronization to identify the acc
point with the highest RSS within the test area. This d
is then utilised to update the particle filter and enhance
accuracy of localization. By comparing the particle filte
trajectory with the reference path, the closest match is det
mined for evaluation. Additionally, the mutual informat
method is employed to facilitate a comprehensive compa
son and assessment of the results.
4.3.2. The positioning algorithm

The particle filter (PF) plays a crucial role in the p
posed system as it serves as a probabilistic estimator capa
of handling non-Gaussian and nonlinear processes. T
estimation technique relies on random samples, known
particles, to recursively approximate the target distributi
d A. Shawky et al.: Preprint submitted to Elsevier Page 7 of 15
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ence Trajectory  

rom UWB 
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rprint Algorithm 
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Predicted ≟ 
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Output Position 

(Predicted Trajectory) 

Particle Filter 
(Prediction-Update-Resample) 

ynchronization  

usion Algorithm 

PDR-based Site Surveying 

using Path-based Model 

Crowd-sensing Data 

IMU 

Start 

Yes 

No 

5: The flowchart of the proposed system and the
n process.

offers several advantages, including the ability to
full probability density functions (PDFs), efficiency
ntrating particles in high probability regions, and the
ty to handle non-linear state and observation models.
to gain a deeper understanding of the PF’s operation

he proposed system, it is important to discuss its key
e Fig. 4.
ate representation or initialisation step: The pdf of
e state values is described using (𝑛-particles) instead
a second-order statistical description. As a result,

e PDF 𝑝(𝑥) can be expressed as

𝑝(𝑥) = ∫
𝑛

𝑖=1
𝑤𝑖𝐾

(
𝑥 − 𝑥𝑖

) (4)

here 𝑤𝑖 is the weight of the 𝑖𝑡ℎ particle, and 𝐾(𝑥) is
e basis function. If we assume that 𝐾(𝑥) is Dirac’s
lta function, the particle representation of 𝑝(𝑥) with
ual weights can be exemplified as

𝑝(𝑥) = 1
𝑛 ∫

𝑛

𝑖=1
𝛿
(
𝑥 − 𝑥𝑖

) (5)

rediction step: Update the particle’s state by applying
e state transition function for each particle 𝑖 as
llows.

𝑥𝑡+Δ𝑡∕𝑦0,…𝑦𝑡
)
= ∫ 𝑝

(
𝑥𝑡+Δ𝑡∕𝑥𝑡

)
𝑝
(
𝑥𝑡∕𝑦0,…𝑦𝑡

)
𝑑𝑥𝑡

(6)

𝑝
(
𝑥𝑡+Δ𝑡∕𝑦0,…𝑦𝑡

)
=

𝑛∑
𝑖=1

𝑤𝑡,𝑖𝑝
(
𝑥𝑡+Δ𝑡∕𝑥̄𝑡,𝑖

)

where 𝑤𝑡,𝑖 is the weight factor. After sampling 𝑥̂𝑡,𝑖equation of prediction can be expressed as

𝑝
(
𝑥𝑡+Δ𝑡∕𝑦0,…𝑦𝑡

)
=

𝑛∑
𝑖=1

1
𝑛
𝛿
(
𝑥𝑡 − 𝑥̂𝑡,𝑖

)

3. Update step: In this step, the algorithm evaluates
likelihood or probability of the RSS measureme
given the predicted state of the system. Then,
undertake the computation of likelihood values, wh
taking into account the inherent noise and unc
tainties, to establish a quantitative assessment of
degree of concordance between estimated and act
measurements. To refine the accuracy of our parti
filter fusion algorithm, we then proceed to upd
the weights of the individual particles based on th
respective likelihood values, assigning higher weig
to those particles that exhibit measurements in clo
proximity to the actual sensor measurements. In si
ations where the probability is primarily concentra
on a limited set of state values, the weights associa
with these values can diminish significantly, lead
to extremely low probabilities. To mitigate this ch
lenge, we employ a resampling procedure aimed
substituting a particle with a substantial weight, wh
has a higher likelihood of being selected multi
times, while a particle with a low weight is unlik
to be chosen at all. The resultant equations govern
the update step can be expressed as

𝑝
(
𝑥𝑡∕𝑦0,…𝑦𝑡

)
= ∫

𝑛

𝑖=1

1
𝑛
𝛿
(
𝑥𝑡 − 𝑥̄𝑡,𝑖

)

𝑝
(
𝑥𝑡+Δ𝑡∕𝑦0,…𝑦𝑡+Δ𝑡

)
= ∫

𝑛

𝑖=1

1
𝑛
𝛿
(
𝑥𝑡+Δ𝑡 − 𝑥̄𝑡+Δ

(
4. Particle resample step: The degeneracy proble

which occurs when only a few particles have a h
weight while the rest have very low weights, can
solved by using the resampling step. This problem c
be identified using an effective sample size estim
from the following equation:

𝑁𝑒𝑓𝑓 = 1
∫ 𝑛
𝑖=1

(
𝑤𝑡,𝑖

)2 (

4.3.3. RSS-based reference trajectory estimation
algorithm

This algorithm employs the received data to predict
user’s current position and generates a reference trajecto
d A. Shawky et al.: Preprint submitted to Elsevier Page 8 of 15
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sely aligns with the UE’s actual path for further
tive analysis. UWB devices are strategically de-
ithin the test area to establish a reference trajectory

the implementation of the trilateration method. Sub-
ly, this reference path serves as a basis for compari-

the anticipated trajectory generated by employing
icle filter algorithm in conjunction with the mutual
tion method. The dynamic model for computing the
e trajectory can be presented as:

𝑥̂(𝑡 + Δ𝑡)
𝑦̂(𝑡 + Δ𝑡)

]
≈
[

𝑥̂(𝑡)
𝑦̂(𝑡)

]
+ Δ𝑡

[
𝑣̂𝑥(𝑡)
𝑣̂𝑦(𝑡)

]
(12)

𝑣̂𝑥(𝑡 + Δ𝑡)
𝑣̂𝑦(𝑡 + Δ𝑡)

]
=
[

𝑣̂𝑥(𝑡)
𝑣̂𝑦(𝑡)

]
+
[

𝑒𝑣,𝑥(𝑡)
𝑒𝑣,𝑦(𝑡)

]
(13)

𝑥̂(𝑡), 𝑦̂(𝑡)]𝑇 and [𝑥̂(𝑡 + Δ𝑡), 𝑦̂(𝑡 + Δ𝑡)]𝑇 are the 2D
s at times 𝑡 and 𝑡 + Δ𝑡, respectively, [𝑣̂𝑥(𝑡), 𝑣̂𝑦(𝑡)]𝑇
two dimension velocity at time 𝑡, [𝑒𝑥(𝑡), 𝑒𝑦(𝑡)]𝑇 are
rence variable at time 𝑡, and Δ𝑡 is the time interval
two sequential UWB transceiver devices.
optimisation equation for obtaining the reference
y of UWB devices in the trilateration problem,
g a fixed altitude of the device in the z direction, can
ssed as

(𝑖) 𝑦̂(𝑖)] = argmin
𝑥𝑖,𝑦𝑖

∑
𝑖

∑
𝑗

(
𝑑𝑗(𝑖) − 𝑟𝑗(𝑖)2

)2

𝜎2𝑟
(14)

𝑗(𝑖) =
√(

𝑥𝑖 − 𝑥𝑎𝑛𝑐ℎ,𝑗
)2 + (

𝑦𝑖 − 𝑦𝑎𝑛𝑐ℎ,𝑗
)2 (15)

𝑥̂(𝑖) 𝑦̂(𝑖)] represents the calculated coordinates cor-
ing to the𝑈𝑊𝐵𝑖 time sample, 𝑟𝑗(𝑖) denotes the mea-
t obtained from the 𝑗𝑡ℎ anchor at the 𝑈𝑊𝐵𝑖 time
𝜎𝑟 represents the uncertainty associated with UWB
ments (assuming a zero-mean Gaussian distribution
licity), and [𝑥𝑎𝑛𝑐ℎ,𝑗 𝑦𝑎𝑛𝑐ℎ,𝑗] denote the location of
nchor.

erimental Results and Discussion
section presents the experimental findings of the

d scheme. Firstly, the experiment is conducted in
f corridors on the second level of a building at

versity of Padua in Italy. One corridor measures
mately 40 meters in length, while the other corridor
ximately 12 meters long. The experiment area is
d with 11 Pozyx ultra-wideband devices and eigh-
-Fi devices (i.e., 𝑁 = 18 access points) positioned
ps of the two corridors. The map of the corridors is

ed in Fig. 6.
is experiment, the Pozyx UWB devices are posi-
ithin the test area to establish a reference trajec-
ugh the utilisation of the trilateration method. This
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Figure 6: The map of the test area and the reference traject
using UWBs.

reference path serves as a basis for comparison with
predicted trajectory generated using the particle filter a
mutual information method. In this experiment, a total
11 UWBs are employed. Subsequently, the user proceeds
carefully traverse back and forth in the corridor adjacen
the CIRGEO lab. This movement generates three disti
tracks: one in the centre of the hallway, another adjac
to the wall, and a third in close proximity to the windo
The sampling rate of the IMU in LG Android smartpho
can range from 100 𝐻𝑧 to 200 𝐻𝑧. The IMU features in
grated within the smartphone are leveraged to momentar
pause at the conclusion of each run before recommenci
allowing for the collection of data using the PDR meth
Measurements of the magnetic field from Wi-Fi RSS are a
obtained, enabling the creation of a magnetic map using fi
gerprinting techniques. Subsequently, a magnetic datab
is constructed specifically tailored to the test region.

The acquired data, encompassing the UWB, IMU, a
magnetic field measurements, are then synchronized, fus
and conveyed to the particle filter. This filtering mechani
facilitates the prediction of the new position and draws a t
jectory that closely aligns with the reference path, enabl
subsequent comparison and evaluation. Table 4 lists
localization algorithm implemented in the proposed syste
outlining the complete sequence of operations involving
particle filter and crowd-sensing on the designated test ar

Fig. 6 illustrates the reference trajectory computed us
the trilateration method with UWB anchors (𝑈𝑊𝐵𝑖,∀𝑖
{1,⋯ , 11}). The green solid line represents the referen
d A. Shawky et al.: Preprint submitted to Elsevier Page 9 of 15
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ing Algorithm based on the particle filter.

Utilising Pozyx UWB anchors and IMU to collect data by PDR method.
Utilising Matlab to preprocess data and then load the processed data.
Representing the phase one (3 tracks) and the 2D trajectory predicted by UWB.
Displaying points of the initial to the third path in stage one (which is split into 6 sub-paths).
Defining Wi-Fi measurements and displaying the RSS vs. time relationship.
Measuring Magnetic Fields directions.
Creating the fingerprinting database for the test of area.
Particle filter process.
8.1 : State representation or initialisation using (5)
8.2 : Applying the Prediction step using (8)
8.3 : Applying the Update step: using (10)
8.4 : Applying the Particle Resample step using (11)
Particle filter loop to compute the predicted location and drawing trajectory.
Utilising the mutual information and reference trajectory for matching and comparing with the particle filter’s predicted trajec

y for the trial region, while the red circles signify the
devices, each accompanied by a number (𝑈𝑊𝐵𝑖)g the UWB anchor.

e obtained UWB trajectories
7 presents a comprehensive overview of the data col-
uring the experiment, showcasing the three distinct
eft, central, and right. These tracks serve as the train-
set for the fingerprinting process utilising IMUs with
ed movement within the test region. Additionally,

re depicts the resultant 2D trajectory computed via
chnology. In order to increase the learning dataset
st region and use it as a database for fingerprinting,
approach is employed to collect data at the centre

est area, both in forward and backward directions,
creating the central track. This process has been
six times, resulting in six sub-tracks, see Fig. 7(b).
e process was repeated on the left side, creating

itional sub-tracks, see Fig. 7(c). Similarly, data is
d on the right side, resulting in four sub-tracks, see
). Note that, we generated many sub-tracks for each
ack. However, we choose the best-estimated sub-
hat present the left, central, and right sides of the
. Finally, Fig. 7(a) illustrates all computed reference
ies using the trilateration method and the estimated

nchors.
e particle filter process
inclusion of the particle filter in the proposed
enhances the accuracy and effectiveness of pre-

the position and trajectory within the trial region.
provement is achieved by leveraging data obtained
the PDR approach and IMU, along with continual
from the magnetic fingerprint database. Subse-
the computed trajectory is compared to the refer-
jectory with a high probability of matching. This
involves utilising particles and connecting them to
hronized 18 access points. These access points are
nized with the central server. Fig. 8 and 9 provide
presentations of the RSS estimates, the distribution

of particles, and the resampling step of the particle fil
specifically for the best 13 out of the 18 access poin
In the first column of Fig. 8 and Fig. 9, the RSS val
(𝑅𝑆𝑆𝑖) from 𝐴𝑃𝑖 are presented for 𝑖 = {1,⋯ , 7} a
𝑖 = {8,⋯ , 13}, respectively. The second column of Fig
and Fig. 9 illustrate the distribution of 𝑛 particles at a cert
time-slot for 𝐴𝑃𝑖, where 𝑖 = {1,⋯ , 7} and 𝑖 = {8,⋯ , 1
respectively. The distribution is presented within the tes
area’s map defined in Fig. 6. Finally, the third column of F
8 and Fig. 9 depict the resampling process of the particles
𝐴𝑃𝑖, with 𝑖 = {1,⋯ , 7} and 𝑖 = {8,⋯ , 13}, respectively

The resampling process effectively addresses the deg
eracy problem, wherein only a few particles possess sign
cant weights while the majority of particles have exceedin
small weights. During resampling, particles with substan
weights are selected multiple times, while those with l
weights are unlikely to be chosen. In the context of
experiment, the resampling process exhibits two distinct
haviours contingent upon the particle’s weight, as presen
in the third column of Fig. 8 and Fig. 9. Specifically, wh
the weight exceeds or equals the threshold of -70, the parti
is deemed eligible for consideration in our experimen
analysis. Conversely, particles failing to meet this wei
criterion are excluded from further consideration.

Following the completion of all the operations and st
described earlier, the particle filter can predict and estim
the magnetic path by fusing all the data obtained fr
crowd-sensing, as illustrated in Fig. 10. Table 5 summari
the performance metrics of different methods. These me
ods are evaluated in terms of enhanced accuracy and
erage error. The first method corresponds to the IMU a
PDR approach without a magnetic fingerprinting databa
achieving an enhanced accuracy of 80.49% with an av
age error of 0.3. In contrast, the second method prese
results for the IMU and PDR approach when incorporat
a magnetic fingerprinting database, showing an enhanc
accuracy of 85.86% and an average error of 0.32. Fina
the proposed method employs a particle filter with 1000 p
ticles and a magnetic fingerprinting database. This meth
demonstrates a significantly improved enhanced accuracy
d A. Shawky et al.: Preprint submitted to Elsevier Page 10 of 15
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Figure 7: Computed paths using 𝑈𝑊𝐵𝑖 devices, ∀𝑖 = 1 → 11, and tracks using the IMU.

son between the root mean square error (RMSE) values for the trajectory states obtained using the IMU, PDR, a
filter and magnetic fingerprinting with reference trajectory using UWB.

Algorithm Enhanced accuracy Average error to the
reference trajectory

IMU and PDR approach without
magnetic fingerprinting database 80.49% 0.3

IMU and PDR approach with
magnetic fingerprinting database 85.86% 0.32

The proposed method using the particle filter of
𝑛 = 1000 particles and magnetic fingerprinting database 96.32% 0.359

while maintaining an average error of 0.359. Based
findings, we conclude that the proposed method
the highest level of accuracy, which attains an

d accuracy of 96.32%. However, this approach does
the largest average error in the last column from
, indicating an average error of 0.359. Therefore,
e proposed method significantly improves accuracy,
come at the expense of a slightly higher average
e choice of which approach is “best” depends on the
trade-off between accuracy and average error that
ith the application’s objectives and requirements.

6. Conclusions
This paper provides an overview of indoor positi

ing technologies, methodologies, strategies, and contem
rary applications. Additionally, the paper presents a lo
cost, reliable, and highly accurate indoor localization syst
based on crowdsensing, particle filter, and the test regio
infrastructure. Furthermore, the system relies on the R
signals from Wi-Fi devices equipped in the test area, a
the signals from access points are synchronized to buil
magnetic fingerprinting database used for acceleration. T
approach overcomes the limitations of traditional magne
d A. Shawky et al.: Preprint submitted to Elsevier Page 11 of 15
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(f) RSS of 𝐴𝑃6 vs. time (𝑠𝑒𝑐) . The 𝑛-particles distribution. The particle filter resampling.
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(g) RSS of 𝐴𝑃7 vs. time (𝑠𝑒𝑐) . The 𝑛-particles distribution. The particle filter resampling.

Figure 8: The particle filter process linked with the synchronized access points for each 𝐴𝑃𝑖, ∀𝑖 = 1 → 7.
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(c) RSS of 𝐴𝑃10 vs. time (𝑠𝑒𝑐) . The 𝑛-particles distribution. The particle filter resampling.
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(d) RSS of 𝐴𝑃11 vs. time (𝑠𝑒𝑐) . The 𝑛-particles distribution. The particle filter resampling.
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(e) RSS of 𝐴𝑃12 vs. time (𝑠𝑒𝑐) . The 𝑛-particles distribution. The particle filter resampling.
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(f) RSS of 𝐴𝑃13 vs. time (𝑠𝑒𝑐) . The 𝑛-particles distribution. The particle filter resampling.

Figure 9: The particle filter process linked with the synchronized access points for each 𝐴𝑃𝑖, ∀𝑖 = 8 → 13.

 

e 10: The predicted trajectory using particle filter.

field-based localization techniques, which are heavy in ter
of comparison workload and insufficient in analysing m
netic field signals that do not change easily over time. T
system also employs continuous updating of the parti
filter with data collected by the IMU, using the PDR meth
to obtain motion data such as acceleration, stride size, a
direction to estimate the predicted trajectory. Finally,
d A. Shawky et al.: Preprint submitted to Elsevier Page 13 of 15
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d system’s accuracy is demonstrated by comparing
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mutual information approach, which showed an
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