33 research outputs found

    A Recurrent Cooperative/Competitive Field for Segmentation of Magnetic Resonance Brain Imagery

    Full text link
    The Grey-White Decision Network is introduced as an application of an on-center, off-surround recurrent cooperative/competitive network for segmentation of magnetic resonance imaging (MRI) brain images. The three layer dynamical system relaxes into a solution where each pixel is labeled as either grey matter, white matter, or "other" matter by considering raw input intensity, edge information, and neighbor interactions. This network is presented as an example of applying a recurrent cooperative/competitive field (RCCF) to a problem with multiple conflicting constraints. Simulations of the network and its phase plane analysis are presented

    Computational models of intracellular signalling in cerebellar Purkinje cells

    Get PDF
    In spite of the regular and well-characterised anatomy of the cerebellum, its function is still not clear. To understand the function of the cerebellum, it is necessary to understand the behaviour of a single cerebellar Purkinje cell. The behaviour of Purkinje cells is determined by their intracellular calcium dynamics, and by the network of intracellular signalling molecules that control the calcium dynamics. The aim of this thesis is to contribute to an understanding of the intracellular signalling network that is linked to the activation of metabotropic glutamate receptors (mGluRs) in a cerebellar Purkinje cell. In the thesis, ten different computational models of the mGluR signalling network are mathematically analysed and numerically integrated. The main result of this thesis is that the mGluR signalling network can implement an adaptive time delay between the activation of the mGluRs by glutamate and the release of calcium from intracellular stores. The adaptation of the time de..

    Nonlinear neural networks: Principles, mechanisms, and architectures

    Full text link

    Pulse-stream binary stochastic hardware for neural computation the Helmholtz Machine

    Get PDF

    Theory and applications of artificial neural networks

    Get PDF
    In this thesis some fundamental theoretical problems about artificial neural networks and their application in communication and control systems are discussed. We consider the convergence properties of the Back-Propagation algorithm which is widely used for training of artificial neural networks, and two stepsize variation techniques are proposed to accelerate convergence. Simulation results demonstrate significant improvement over conventional Back-Propagation algorithms. We also discuss the relationship between generalization performance of artificial neural networks and their structure and representation strategy. It is shown that the structure of the network which represent a priori knowledge of the environment has a strong influence on generalization performance. A Theorem about the number of hidden units and the capacity of self-association MLP (Multi-Layer Perceptron) type network is also given in the thesis. In the application part of the thesis, we discuss the feasibility of using artificial neural networks for nonlinear system identification. Some advantages and disadvantages of this approach are analyzed. The thesis continues with a study of artificial neural networks applied to communication channel equalization and the problem of call access control in broadband ATM (Asynchronous Transfer Mode) communication networks. A final chapter provides overall conclusions and suggestions for further work

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u
    corecore