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Abstract

The intention of this thesis is to examine the role of the neocortical local circuit in
supporting synchronisation and fast (gamma) oscillation. The aim is to include
stereotypical features of the local neocortex in model simulations of cortical activity.
Modelling is limited by scale in numberand detail. Model features include three
neurontypes (RS, FS andIB) and synapses with three time courses taken from
reported tri-phasic PSPs (fEPSP, fIPSP and sIPSP). Cell types and synapses are
distributedin a two layer model.

The contribution of the layers to columnactivity is investigated. The upperlayerhasa
tendancy towards precise synchronisation and can dominate the activity producing
synchronisation and oscillation in the whole column. This is attributed to the stronger
inhibitory circuit in the upperlayer. The lowerlayer achieves a less precise
synchronisation, this is attributed to a lower level of inhibition and the intraburst

duration of IB neurons.

The significance of this difference in the temporal properties of the two layersis
discussed in relation to existing theories and models of local cortical function.
Following a further consideration of local cortical physiology a new model of cortical
functioning is proposed. The key features of this model include: the generationof
local oscillations in a vertical interlaminar reciprocél circuit; the apical dendrite
providing a sharp coincidence detection function between the layers; slow axonal
lateral propagation providinga time delay network; apical dendrites of bursting cells
(CH andIB) providing coincidence detecti@x between inputs from distant areas (layer
1 inputs) and local activity; bursting cell innervation of inferneurons, linking the local
oscillaﬁon cycle to coincidence detection. This model is termedan “intrinsically
oscillating time coding network” (IOTCN). Specific predictions are made concerning
the functioning of the local circuit in neocortex, and the connectivity of CH neurons.
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1 Introduction

Observations of high frequency synchronised oscillatory cortical responses, correlated
across distances, (for example Gray et al 1989) have led to various proposals »
regarding their significance. The basic proposal of “temporal binding” argues that the
various responses corresponding to a single perceptual object are synchronisedin a
single oscillatory neural assembly. This idea is proposedin a modified form by Engel
et al (2001), where thelocal synchronised neural assembly participates in a hierarchy
of assemblies.

A variation on the basic hypothesis of temporal bindingby synchronised oscillations
is proposedby Eckhornet al. Eckhornnotes that the lateral extent of high frequency
oscillationsis limited, and proposes that more distant interactions occur by amplitude
modulation of the high frequency oscillation envelope (Eckhomnet al 2001).

The antithesis to theories of oscillatory temporal bindingis givenby Lammeet al
(1998). Receptive field responses are observed in the absence of fast oscillations.
Eckhom (2001) replies that measurement difficulties may obscure the observations of
synchronised oscillations (this is discussed furtherin chapter?).

Few modelling studies implement details of local neocortical physiology that may
contribute to the generation of synchronised oscillations. Bush and Sejnowski (1996)
implementa simplified model of thelocal neocortical column that supports collective
synchronised oscillations. Traub et al propose a model where oscillations providea
time frame and the neural response is a phase time code (Traub et al 1997b). In this
model the oscillations are generated by a mutually inhibitory population. Both the

~ Bushand Traub models include model neurons that represent typical pyramidal and

interneuroncell types.



The empirical results of Stewartindicate that the intact columnvertical circuitis
importantfor the lateral propagation of local activity and the intact columnsupports
fast oscillations (Stewart 1999). This in vitro resultindicates the importance of |
modelling the interlaminarvertical circuit.

This thesis attempts to model local neocortex including “typical” physiology in an
attemptto discoverhow local functioning supports (or fails to support) collective
synchronised and oscillating activity. A simplified twolayer columnmodel is
developed. Features of local cortical physiology include the distribution of different
cell types. An emphasis has been placed on portrayinglayer differences and
representing the differentimpulse firing characteristics of the mainneurontypes.

1.1 Thesis structure

Chapter 2 includes a review of neurophysiology and proposes the developmentof
neuronand synapse models. Particular emphasisis placed onlayer differences. The
distribution of differentneurontypes and the asymmetry of interlaminar connections
are considered. The relative strengths of inhibitory and excitatory connections is
estimated from empirical results involving the actions of populations of synapsesin
compoundPSPs

Chapter 3 examines models of the excitable membrane and a simplified synapse. The
excitable membranemodel is based on a simplified physiological model that preserves
the basic impulse firing properties of the differentneurontypes. The frequency
response of the neuronand synapse models are examined using correlograms and
power spectra. Pyramidal neurontypes act as band pass filters, the interneuronpasses
all frequencies (in the range of interest) and the model synapse acts as a low pass
filter.

Chapter 4 examines illustrative simple circuits implemented with small numbers of
neuronmodels. The consistency of timing of pyramidal regular spiking neurons (RS)

2



to RS impulse recruitmentis noted. This is consistent witha time delay model (but
does not rule out many other models).

Chapter 5 implements a model network including 100 neuronsof RS and Fast
Spiking (FS) model neurons. The network model represents the upperlayers of a
neocortical column. The behaviour of the network is examined under different
conditions. The model exhibits a tendency for RS impulse synchronisation and

oscillation, but the collective oscillation is not robust.

The model is adjusted to include parameters similar to the Bush and Sejnowski
columnmodel (Bush and Sejnowski 1996). Oscillation and synchronisation is
strengthened, broadly reproducing their single columnresults.

Chapter 6 implements a simplified neocortical columnmodel comprising twolayers.
Featuresincludea difference in the layer distribution of neuron types: FS andRS
occur in bothlayers, Intrinsically Bursting (IB) cells are restricted to the lowerlayer.
Layers differ in their connectivity, the upperlayer has stronger inhibitory Connecﬁons
and the lowerlayer does not send direct inhibitory connections to the upperlayer. No
other published models incorporate these features.

Strong synchronisation and oscillation of the whole columnis demonstrated. The
upper layer is more tightly synchronised thanlower layer. It is proposed that the
collective action of the upperlayer supports a finer temporal resolution than the lower

layer.

Chapter 7 discusses the results from the simplified columnmodel in relation to
different theories of neural integration. Further features of local neocortex
neurophysiology are considered. A new model of cortical functionis proposedand
features of the modelinclude: the generation of local oscillations in a vertical
interlaminar reciprocal circuit; the apical dendrite providing a sharp coincidence
detection function between thelayers; slow axonal lateral propagationproviding a
time delay network; apical dendrites of bursting cells (IB) providing coincidence



detection between inputs from distant areas (layer 1 inputs) and local activity; bursting
cell innervation of interneurons, linking the local oscillation cycle to coincidence
detection. This model has been termed an intrinsically oscillating time coding network
(IOTCN). Specific predictions are made concerning the functioning of the local circuit
in neocortex, and the connectivity of chattering (CH) neurons.

Further modelling work is suggested to test the proposal of the IOTCN. Initial studies
should concentrate on defining the coincidence function that pyramidal neurons
support, and how this varies with different pyramidal types. It is suggested that
interneuron types mightbe classified according to their effect on the coincidence
function achieved by a pyramidal cell.

Chapter 8 providesa summaryof the thesis and some concluding comments.

1.2 Thesis contributions

Chapter 3 implements a modification of the Hindmarshand Rose excitable )
membranemodel. A parameteris introduced to modify the phase plane and allow the
control of the ‘triggered firing’ property of the Hindmarshand Rose system. This
allows the implementation of simple excitable neuronmodels with contrasting
properties using different parameter sets. FS, RS and IB impulse firing patterns canbe
achieved.

Chapter 5 implements a single layer model of spiking, adapting neuronsand
interneurons. The model is based on differentempirical sources and the model is
developed using a different method to the Bush and Sejnowski (1996) columnmodel.
Similar results are obtained when the fast inhibitory postsynaptic currentrise time
(fIPSC rise time) is set o a similar value to that used by Bush and Sejnowski. The
fIPSC rise time used by Bush and Sejnowski is based on single inhibitory postsynaptic
potential (IPSP) studies. The fIPSC rise time value used throughout this thésis (except
in model 5f) is based on population fIPSP studies that record the time course of

4



collective IPSPs (evoked by local electrical stimulation). This highlights the
importance of the fIPSC time course in determining the quality of synchrohisaﬁon and

oscillationin a local neuronnetwork.

Chapter 6 makesa strong contribution to the understandingof local cortical activity.
The upperlayer exhibits a more tightly synchronised and oscillatory patternof
populationactivity thanis evidentin the lowerlayer. This contrast appearsto be
robust. The relatively sharpsynchronisation of the upperlayeris attributed to the
strongerinhibition implementedin the upperlayer and the feedback from the lower
layer (note that the isolated “upper’ layer model 5a includes the same level of
inhibitionbut does not achieve the samelevel of synchronisation).

I amnot aware of any published model that includes layer differences of connectivity
and the distribution of different neurontypes (including spiking, adapting pyramid
typebehaviour). By itself this is a modestresult. (The immediateresultis not

. astonishing; layer differences are implementedand a difference in layer behaviouris
found.) However the consequences for the understanding of local cortical activity may
be far reaching. This is discussed in chapter?7.

Chapter 7 makesa contribution to the understanding of local cortical functionby
proposinga model that integrateslocal and distant inputs. The model arises froma
synthesis of:

i. theoretical proposals for a neural time code (Hopfield 1995; Sejnowski 1995);
ii. the distribution of interlaminar connections (Thomson and Bannister 20 03);
iii. response timing properties of active apical dendrites (Larkumet al 1999);

iv.and the chapter 6 results showing a differential in the synchronisationof the layers
of an oscillating column model.

The modelis briefly described in section 1.1 above (paragraphdescribing chapter7).



The novel feature of the model is the relationship between the local oscillatory circuit
and the neurons that mediate the integration of inputs from distant cortical areas and
local activity. Because of this the local oscillatory “clock’ is coupled to the
coincidence function that the bursting neurons achieve. This may have subtle effects
on the timing of subsequentlocal activity. This feature also opens up the possibility of
distantinteractions coupling to local activity at a lower frequency (consistent with
proposals of Eckhornet al 2001; von Stein and Sarnthein 2000).



2 Neurophysiology of the local neocortex

This chapter selectively surveys the local physiology of the neocorfex withthe
intention of developing a generalised model of local neocortex. This sketch is limited
to a consideration of 'fast local' action where duration is in milliseconds and distances
are withina few cortical columns. The aim is to include the functional qualitative
properties which appear to be typical of local cortical neurons.

Studies of local neocortical form and function are considered :
distributionof cell types throughthelayers;
synaptic function and connection frequency;
columnar organisation of neuronresponses;

comparative electrophysiology of differentneurons.

The individual functional studies provide a fragmentary picture of local neuronal
action and connectivity. However, by generalising from these resultsa stereotyped
scheme of connectivity is obtainedand a prototypeof a "typical’ area of local
neocortex is suggested. A simplified set of models, representing differenttypes of
neurons and synapses, is proposed. This profotypeof local neocortical organisation
provides the basis for the modelling of neuronactivity in subsequent chapters.
Simplified models of neuronimpulse production and synaptic transmission are
examined in chapter 3. Subsequent chapters examine networks based on these models,
culminatingin a model that implements neocortical layer differences in chapter 6.

2.1 Uniformity of neocortical areas

Different brain areas exhibit similarities in the organisationof neocortical tissue. The
absolute number of neurons though the thickness of a cortical area (beneatha unit
area, throughthe layers of the cortex) is nearly a constant in the brains of different
mammals (Rockel et al 1980) andis the samein functionally different cortical areas.



The striate cortex (primary visual cortex) is an exception to the neuronpopulation
'rule’ of uniformity between areas. It is thicker thanother cortical areas and has twice
the number of neurons per unif area. Its most distinctive featureis the greater
differentiation of the middle layers compared to the other areas, besides this the
organisation and variety of cell types and synapses appears similar to extrastriate
areas. Allowing for these differences, studies based on the striate cortex are
considered, below, alongside results from other areas.

2.1.1 Neocortical laminae
Historically six layers have been identified in the neocortex. In a discussionof the
general organisation and functioning of the neocortex, Crick simplifies this division
into four main layers (Crick and Asanuma1986):

a superficial layer, consisting mainly of axons and apical dendrites;

an upperlayer containing small pyramidal neurons;

a middle layer with many small stellate neurons;

a deeplayer containinglarge pyramidal neurons.

The distribution of neurons through the layers has been quantified. O'Kusky and
Colonnier counted cells and synapses in Macaque visual cortex (O'Kusky and
Colonnier 1982). The overall volumedensity is about 120x10® mnt3 neuronsand
276x108 mmnv® synapses. The numbersbeneatha surface area of one rnm2 of cortex

and the variation in densities between the cortical layers is shownin table 2.1 below.

The highest density of neurons occurs in the middle layers and the highest synaptic
density appearsin the upperlayers. This suggests some contrast in the functional roles
of the layers regarding the integration of neural activity. The upperlayers possess a
high synapse to neuron ratio and so may integrate activity across a larger numberof

neuronsources compared to the otherlayers.



Proportions of neurons and synapses in laminae of striate cortex

layer neuron % synapse % synapse/neuran
1-3 28 40 3380
4 45 35 1840
56 27 25 2200
total mm2 202x103 478x106 2370

Table 2.1 Neuronand synapse frequency  after O'Kusky and Colonnier (1982)

This interpretation of the synapse/neuronratio mustbe treated with care as the layers
arenot isolated. The apical dendrites and axon collaterals from lower layer (5,6)
neuronsascend into the upperlayers (1-3), so althougha synapse may physically
occur in a more superficial layer, it may be between an axon and an apical dendrite

originating from neuronbodies in lowerlayers.

2.1.2 Neuron and synapse types

Many neuron types have been distinguished, however, this account is limitedto a
sketch of some of the distinguishing features of the commonestneurons (pp224-226,
Gilbert and Wiesel 1983).

Two broad groups of cortical neuronsmay be distinguishedby the presence of spines
on the surface of their dendrites (in the matureneocortex). The presynaptic membrane -
of the typical spiny neuron’s synaptic bouton, overlying the synaptic cleft, appears
thicker than the underlying postsynaptic membrane (an asymmetric synapse). In
confrast, the aspiny neuronforms a synapsé which appears symmetrical. The
thickening of the presynaptic membane of the aspiny cell is comparable to the
thickness of the postsynaptic membrane underlying the synaptic bouton. Spiny cell

- axons possess asymmetric synapses and smooth cell axons make symmetric synapses.
It may be assumed that this binary division of morphology correspondsto the neurons'
synaptic function. It appears that spiny neurons make excitatory synapses on their
targets and aspiny neurons form inhibitory connections with the postsynaptic targets.



21.2a Spiny neurons
The great majority of neurons are spiny and pyramidal. Crick (1986 p361) estimates
that80% of co;ﬁcal neuronsare spiny. Spiny cells in the upperandlower layers are
predominately pyramidal. Layer 4 (the middle layer) contains large numbersof small
stellate cells which are spiny, but layer 4 has comparatively few pyramidal cells.

The excitatory neurochemistry of the middle layer differs from the upperand lower
layers. Glutamic acid and aspartic acid have a strong excitatory effect on neocortical
neurons. Glutamergic neurons can be identified by immunocytochemistry. It is
suggested that glutamic acid is associated with descending and inter-area pathways.
LayerIV, the middle layer which receives the bulk of thalamic afferents (ie 'ascending’
connections), has 19% of its neurons glutamic acid positive. In the upperand lower
layers 40 to 50% of neurons are glutamic acid positive (in macaque, Conti et al 1987).

Gilbert (1983) describes the local projections of spiny neuronsand proposes a local
circuit (simplified in figure 2.1). The small stellate cells of the middlelayers have
dendrites which arbourise locally and their axons ascend to the upperlayers. The

- pyramidal neurons of the upperlayers supportlocally projecting axons which
ixﬁmervaie the deeperlayers. Deep layer axons project locally to innervatelayer four.

In addition pyramidal neurons are responsible for the majority of non-ocal

projections, to other cortical areas and sub-cortical structures. The large pyramidal

neurons foundin the lowerlayers project sub-cortically.
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m O Cortex

LGN SC

Figure 2.1 Principle intracortical connections of spiny cells in cat striate cortex (simplified from
Gilbert (1983 pp 229-230) Lateral geniculate nucleus LGN, Superior coUiculus SC, w d * t of arrows
indicates relative density of connectivity. The strongest thalamic inputis to layer 4. A local circuitis

formedby the projectionsvia the upperlayers (1-3), to the lowerlayers (5 6) andback to layer 4.

2.1.2b Aspinyneurons
Around20% ofthe neuronpopulation are aspiny. The class of aspiny ceUs
has a greater variety of morphological types than the spiny class. Aspiny cells make
symmetrical synapses on their targets. The GABAergic action of the synapses made
by identified aspiny cells has been demonstrated (for example, Kisvarday et al 1987).
A working assumptionis made thatthese smoofhneuronshave an inhibitory effect on

their targets.

The morphologies of aspiny neuronshavebeen extensively recorded. Different classes
of [IPSPs have been identified and associated with the GABAa and GABAD receptors.
Howeverit is notclear if a particularpre-synaptic aspiny neuronmorphologyis

associated with a distinctive post-synaptic electrochemistry.

Commontypes of aspiny cells exhibit differences in their laminar distribution and the

laminardistribution of their postsynaptic targets. The dendritic and axonal

1



arbouiisationof aspiny neuronsis typically extensive in the local cortical column,
extending vertically to cells in otherlayers. The axonal and dendritic arbourisationof
bipolar cells project vertically, apparently within the ceUs Tiome' column. The
arbourisationof chandelier cells is also local. In contrast, large basketcells, which are
presentin the upperandlower layers, possess axons which arbourise laterally to
distances of several millimetres. The basketneurons’patternof patchy lateral
arbourisationis similar to thatof pyramidal cells. The local connectivity of the cortex,
although complex, is notamorphousat the scale of local vertical and lateral

connections (reviewedby Lund 1988).

The populationof inhibitory aspiny neurons has a more local projection than the spiny
types. 'Exceptions’to this generalisationare : the small spiny steUates of layer4 which
projectvertically to the upperlayers ; the large aspiny basketneuronswhich arbourise
laterally. The functional role of the inhibitory neurons doesnot seem to be a mirror

image of the excitatory cell population.

GABA-immmoceaciive neurons in area 17

o all neurons

0GABA

d cduntitotal

Figure2.2 Proportiansof mhibitoiy cells in visual cortex (adaptedfromHendiy1987).

The histogramindicates the fraction of the columntotal within each layer. The column total of

GABA immunoreactive cells is 19% of the column total of all neurons.

Hendryet al examine the distributionof GABA-immunoreactive neuronsin Macaque
neocortex. In the visual cortex around20% ofneuronsare GABA-immunoreactive
(Hendryet al 1987). The upperlayers have highernumbersof GABA-immunoreactive

cells thanthe lowerlayers, and the GABA-immunoreactive cells m the upperlayers
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are a somewhathigher proportion of the neuron population withineach layer (Figure
2.2).

Hendryet al compare different cortical areas and find GABA-immunoreactive cells in
higher densities in the layers receiving the main concentrations of thalamocortical
axon terminations (layers 4a and 4c in area 17). All areas display a high concentration

of GABA-immunoreactive neuronsin layer 2.

Hendryet al find a ratherlower proportion of all neuronsin the lower layers compared
to the cell counts of O'Kusky and Colonnier (1982). But their overall estimate for unit
volumeneurondensity is similar (120x10% mnt3).

2.1.3 Functional columns

Functional columns may be characterised by the gradattonm receptive field (RF)
properties. A columnis defined where similar RF properties are found throughthe
depthof the cortical layers. Iso-orientation columnsare foundin the primary visual
cortex. The population of neuransin a vertical column, throughthe cortical layers,
respondsoptimally to stimuli moving throughthe visual field at a certain angie.
Adjacent columns exhibit a gradationin orientation preference (a classic paperby
Hubel and Wiesel 1963).

Neurons differ in their particular RF properties within a column. Simple RF properties
are associated with the small stellate neurons of the middle layers (thalamocortical
recipient layer). Complex properties such as 'end-stopping' are associated with
pyramidal neurons, especially the larger pyramids, foundin the upperand lower
layers. Despite these differences the orientation preferences of the differentneurons
within the columnis similar.

In the primary visual cortex the iso-orientation preference columns are arrangedin a
'pinwheel hypercolumnwhere all orientations are represented (figure 2.3 below).
These pinwheel hypercolumnstile the whole area of the primary visual cortex. Other
RF properties are often arranged in the form of repeating stripes.
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M
Figure 2.3 Onentatianpreference in visual cortex (after figure 2¢ in Bonhoeffer and Grinvald
1991). Scale bar 300mm, A anterior, P posterior, L lateral, M medial. Hatching indicates similar

orientationpreference to a resolution of 15®. Iso-orientation patches areorderedso thatsimilar
orientations are adjacent. The patches occur aroundorientationfod forming a 'pinwheel' patternwhich

tiles the surface of the visual cortex.

It maybe noted thatthe scale of columnarorganisationis of the same orderof distance
as the proximal radius of the dendritic arbourisation of typical neurontypes. A radius
of 150-300jim would containthe dendritic arbour of smallneurons such as the spiny
steUates of layer4 andtypes such as the larger pyramids (for example figures in

GUbertand Wiesel 1981; Gilbertand Wiesel 1985).

A vertical cylinderofradius 300gm in macaque visual cortex contains a total of 52-
57x10” neurons (185x10" neuronsmm” sample CM 187 in Hendiyet al 1987,
approximately 200x10" neuronsmm” O Kusky 1982). Ofthese aroundlO-11x10”* wUI
be GABAergic and42-46x10" wUlbe spiny ceUs, mostly pyramids. A columnof'this
volume cannotpossess all to aU connectivity. O Kusky finds a mean of 2.4x10"
synapses perneuronindicating sparse connectivity at distances corresponding to the
local dendritic arbourisationof typical neurons. Nicoll andBlakemore (1993) estimate
a highertotal of synapsesperpyramidalneuron. Howeverthey estimate that the total

numberof functional synapses received by an individualpyramidto be around 1.2x10*
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(allowing a meanof 10 anatomical synapses contributing to one functional connection
between a pair of pyramids).

2.2 Local connectivity

The morphology of an individual nheuron, especially its dendritic and axonal
arbourisation, gives some indication of its role in the local cortical circuit. Studies,
using electrical and focal chemical stimulation, have investigated local functional
connectivity. This chapter considers studies which examine direct pathwaysbetween
neurons, withno mediating connections via intermediate neurons (knownas ‘mono-
synaptic transmission’). In some cases the connectivity of a morphologically identified
cell typehasbeen established. Ideally a map of the local circuit mightbe compiled,
identifying the role of particular neuron types. However, this information is partial.
Relatively little is knownabout the detailed functioning and connectivity of the
smaller inhibitory cells. More is knownaboutlocal connections between larger
pyramidal neurons. Differences in connectivity within and between layers is

represented in the model network implementedin chapter6.

2.2.1 Upper layers in the neocortex

Masonet al (1991) investigated synaptic transmission between individual pyramidal
neuronsin layers 2/30f the rat visual cortex in vitro. A connection probability of 9%
was found between cells separated by 50pm to 340pum. The excitatory post synaptic
potentials (EPSPs) had short latency and fast rise times. All of the recorded cells that
were successfully stained had typical pyramidal cell morphology.

Keeling et al (1996) compare PSPs evoked in layer 2/3 pyramidal neurons from lateral
and vertical sites of stimulation. Excitatory PSPs are evoked from stimulationsites up
to 150pm laterally (80% of PSPs). At greater lateral separations (250pm - 700um) up
to 80% of PSPs are inhibitory.

These findings, within the same layer, are consistent with the view that the effect of
action originating in the 'home column'is on balance excitatory and action originating
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in the neighbouring columnsis inhibitory (redolent of a competitive network
architecture). Excitatory PSPs prevail in the recordedlayer 2/3when the stimulation
site is located in layer 4 (91% of PSPs). In contrast stimulation of layer 5 evokes 40%
inhibitory PSPs in the upperlayer pyramids.

Hirsch and Gilbert record PSPs evoked in layer 2/3cells. An electrical shock is used
as the stimulusat lateral and vertical sites (Hirsch and Gilbert 1991). This method
activates many afferents and the recorded PSP meiybe complex as it results from the
action of multiple synapses from different pre-synaptic neurons. With the stimulus
within the home columnin either layer 2/3or layer 4, a triphasic PSP is evoked
comprised of fast excitatory, fast inhibitory and slow inhibitory parts (FEPSP, fIPSP
and sIPSP respectively). The triphasic PSP is still found after undercutting layer 2/3,
thus isolating it from ascending afferents. This indicates that the various PSPs are
intrinsic to the local layer and column. Lateral stimulation at wide separations (900um
t0 3000pum) evokes fEPSP and fIPSP, but sIPSPs were not found. It seems then that
the sIPSP is a feature of local inhibition within a column.

Van Brederodeand Spain compared IPSPs in the upper and lower layers of cat motor
cortex (van Brederode and Spain 1995). A stereotypical triphasic PSP was evokedin
the upper layer neurons whenlocal electrical stimulation was applied to upperor
lower layers. EPSPs were suppressed by glutaminergic blockade to examine activity
solely mediated by IPSPs. Following the application of glutaminergic blockade, both
fIPSPs and sIPSPs are evoked in the upperlayers during electrical stimulation of the
upperlayers. However, during glutaminergic blockade, no IPSPs could be evoked in
the upperlayer neuronsby the stimulationof the deep layers. This reveals an absence
of direct inhibitory connections from the deeplayers to the upperlayers.

2.2.2 Lowerlayers5 and 6

Van Brederode and Spain found that IPSPs in the lower layers are weak and are only
clearly revealed following the suppressionof EPSPs by glutaminergic blockade. In the
majority of recordedlayer 5 neurons only fIPSPs were found. Both fIPSPs and sIPSPs -

were evoked in the remaining neurons, however the sIPSPs were relatively feeble.
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Stimulation of the upperlayers evoked proportionately more sIPSPs in the lower
layers than a stimulationsited in the lower layers. It can be concluded that inhibitory
neuronsin the upperlayers directly innervate lower layer pyramids.

Nicholl et al investigate the laminar differences in fIPSP inputs to pyramidal neurons
in rat neocortex (Nicoll et al 1996). They also find thatlowerlayer IPSPs are weaker
than those evoked in upperlayer neurons. In addition within the lower layer they find
a class of pyramid (intrinsically bursting) thatis significantly more weakly inhibited (a
lower occurrence of evoked IPSPs) than otherlayer 5 pyramids.

Thomson and Deuchars investigate functional connectivity between pairs of layer 5
Ppyramidal neurons in neocortex (review Thomson and Deuchars 1994). They find
pyramid to pyramid connections within a columnor betweenneighbouring columns to
be strong and large EPSPs are evoked which are capable of eliciting post-synaptic
spikes. Pyramids that are laterally more widely separated have weaker synaptic
connections and EPSPs are smaller and slower. Histological reconstructions of the
connections between recorded pairs of neuronsreveals that strong functional synaptic
contact between two pyramids involves a numberof anatomical synapses.

Nicoll and Blakemore (1993) estimate the probability of functional connectivity
between pyramidsin the neocortical layers. Connections between pyramidal neurons
in the upperlayers are individually weaker thanbetween pyramidsin the lowerlayers,
butupperlayer connections are more frequent. The medianamplitudeof a single
connection EPSP in the upper layer pyramidsis 0.4mV andin layer 5 pyramids EPSP
medianamplitudeis 0.8mV. However the connection probability for pairs of neurons
at separations upto 300um s 8.7% betweenlayer 2/3pyramids and 1.5% between
layer 5 pyramids. |
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2.3 Individual Synapses

Connections of the same synaptic type exhibit different timecourses (PSP shapes) and
amplitudes at the soma. In addition a number of factors contribute to the variability of
PSP shapes resulting froma single synaptic connection.

Synaptic connections between different neurons occur at different positionson the

dendritic tree. The variability of PSP timecourseis presumably dueto the different
electrotonic positions of these different connections. Tt appears that the more distal
synapses have a slower somatic PSP rise times than proximal synapses of the same

type.

A single connection between two neurons exhibits some degree of PSP transmission
variability. Connections which evoke higher amplitude PSPs tend to be more reliable
than low amplitude PSPs. It is assumed that the collective probability of transmission -
at a number of synapses mediating a single functional connection contributes to a
morereliable and greafer amf;litude PSP. One or a few synapses contributing to a low
amplitude PSP have a low collective probability of transmission. Low amplitude PSPs
are more variable in amplitude and transmission may fail completely (Thomsonand
West 19935.

Other factors influence soméﬁc PSP shapes. Active conductances, whichare .
especially likely when pulse transmission occurs via the apical dendrite, introduce
further variability in somatic PSP shape. Postsynaptic electrochemistry may further
modulate PSP shape. For example NMDA facilitation of glutamergic synapses
enhances excitatory PSP amplitudes.

2.3.1 The functional synapse

Thomson and Deuchars (review 1994) propose the idea of a functional synapse which
correspondsto a set of multiple anafomical synapses connecting twoneuronsin
parallel. Where several presynaptic axon collaterals and several dendritic branches are
in a connection between two pyramids, all the anatomical synapses appearto be ata
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similar electrotonic distance on the dendkritic tree of the postsynaptic neuron. These
synapses contribute to a single 'functional synapse’ possessing a distinctive somatic
PSP timecourse. Other workers find a clustering of synaptic boutons that suggests a
narrow range of possible timings for the functional synapse PSP (Freundet al 1989).
(Note that the the “functional synapse’ proposal, a “functional synapse’ is comprised
of many individual synapses connecting twoneuronsin parallel, correspondsto
‘mono-synaptic” functional connectivity. This “functional synapse’ does not involve
transmission via intermediate neurons, and the “functional synapse’ does not
correspond to studies of general neural “functional connecticvity” which includes
indirect connections via multiple synapsesin series.) |

2.3.2 Synapsetypes

Connorset al (1988) studied inhibitory postsynaptic potentials (IPSP) in the upper
layers of somatosensory cortex in vitro. Slow (SIPSP) and fast (fIPSP) types were
found. The sIPSP was associated with the GABAD receptor type and fIPSP was
associated with the GABAa receptors. The rise time of fIPSP was found to be in the
orderof 8ms, only a little slower than excitatory PSPs (EPSP) evoked by a common
stimulus. The sIPSP time to peak was found to be in the orderof 100ms (figure 1
pp447). Connorseét al contrasted the inhibitory roles of the two IPSPs. The fIPSP
greatly increased a pyramidneuron’s firing threshold and abolished or substantially
reduced the productionof a spike train during the application of a strong excitatory
stimulus. The sIPSP increased the firing threshold and reduced the firing rate in a
spike train, but the pyramid'sresponse to a strong transient stimulus was unimpaired.
Hirsch and Gilbert have also investigated IPSP types in layers2 and 3 of cat visual
cortex (Hirsch and Gilbert 1991). Their findings echo those of Connorset al. They
find that fIPSPs are associated with the GABAa receptor and sIPSPs are GABAb-

ergic.

The reversal potential of the fTPSP is around the typical resting potential of a
pyramidal neuron (eg -75mV). The fIPSP is only clearly revealed at more depolarised
potentials, for exampleat a potential close to the action potential threshold. The sIPSP
has a more negative reversal potential (eg -90mV, Connors et al 1988).
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2.3.3 Laminar differences of functional synapﬁé types

The time courses and laminar differences in PSP types have been reported by other
workers (below table 2.2 after van Brederodeand Spain 1995, fIPSP by Nicoll et al
1996, fEPSP by Mason 1991, fEPSP and fIPSP by Komatsuet al 1988). The PSP rise
times found for a particular synaptic type are variable and a wide range has been
reported by different workers. fIPSP 10-90% risetimes are reported by some to be in
the order of 10 mS (van Brederode p1153, Nicoll p114) and others as fast as ~2ms
(Komatsup361). fEPSP risetimes are generally reported to be in the orderof a few mS
and sIPSP risetimes are in the orderof 100ms.

Layers time to peakmS

upper fEPSP <5
fIPSP 16
sIPSP ~140

lower {EPSP <5
fIPSP 9
sIPSP ~100

‘Table2.2 PSP rise times after van Brederodeand Spain (1995),
Nicholl et al (1996), and Mason (1991).

These workers find that fIPSP amplitudesare larger in the upperlayers. Brederodeand
Spain find that fIPSPs are generally able to terminate fEPSPs in layer 2-3 neurons, but
the EPSP dominates in mostlayer 5 cells. They find that sIPSPs are very weak or
‘absent in the lowerlayer cells. In the upperlayers single SIPSPs have lower
amplitudes than fIPSPs. However, sIPSPs are long lasting and temporal summation of
sIPSPs results in a sustained depressionof the excitability of upperlayer neurons.

2.3.4 Estimation of relative conductances of synapse types

The relative conductance of a particular synapse type can be estimated from the
relationship between peak PSP and post synaptic membrane potential.
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Figure2.4 IPSP amplitudes and membranepotential in layer 2/Spyramicfe. Stimulation site in
upper layers (values estimated from figures 1A andID pllIS5 van Brederode andSpain 1995).

Assurningthat PSP achieved is proportional to the synaptic current, then PSP
amplitudeis a function of the potential 'driving force' (the difference betweenthe
neuron's membranepotential and the synaptic current's reversal potential) and the
conductance of the activated synapse. (The reversal potential is the eqnUibriumpoint

whereno currentflows throughthe activatedreceptor.)

The effectiveness of differentsynaptic typesmaybe comparedusing values of PSP
amplitude, membranepotential and estimation of symapse currentreversal potentials.
The three PSP types consideredhere have differentsynapse currentreversalpotentials

(fEPSP ~OmV, fIPSP ~79mV, sIPSP ~93mV).

The sketch graphin figure 2.4 above uses IPSP values foundby vanBrederode and
Spain (1995) in the upperlayerpyramidneurons in ratneocortex. AssumingthatPSP
amplitudeis proportional to peak synaptic current, the ratio of gradients in the figure
indicates thattire fIPSP/sIPSP conductance ratio is approximately 3. Connorset al
(1988) reporta fIPSP/sIPSP conductanceratio of 6 (for ratneocortex layers 2/3 with
stimulationoflayers 5/6 table 1 pp4481988). However, van Brederode and Spain
examinedIPSPs in layer2/3 which were evokedby the stimulation of the upper

layers, they donotreportvalues for pharmacologically isolated upperlayer IPSPs with
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the stimulationsite in layers 5/6. Brederode and Spain do report that the upperlayer
triphasic PSP, evoked by stimulation of layers 2/3, is different from the upperlayer
PSP evoked when the site of stimulationis in layers 5/6. They find a relatively
stronger fIPSP and weaker sIPSP in layers 2/3when the site of stimulationis in the
lower layers, hence their observations are at least qualitatively similar to Connorset
al.

Conductance ratios for the synapse types and differentlayers can be estimatedin a
similar fashion. Table 2.3, below, presents conductances calculated from
pharmacologically isolated PSP data reportedby van Brederode and Spain. The most
striking featureis the variable and weaker fIPSP and nearly absent sSIPSP
conductances of layer 5 pyramids. Oftenno sIPSP was foundin a layer 5 pyramid.
Where an sIPSP was foundin layer 5, it was only revealed by strong stimulationand
pharmacological blockade of EPSPs (the EPSP blockade avoided the generation of
action potentials and their afterpotentials which would have eclipsed the IPSPs, in this
instance the relative EPSP conductance presented in the table is estimated from other
cases). The last three rows of the table are included for comparison with the
conductances reported by Connors et al. Estimates, based on the triphasic PSPs
reported by van Brederodeand Spain, allow for the interaction of fEPSP and fIPSPs.

Layers Stimulation fEPSP fIPSP  sIPSP Comment
site
2/3 1/2 1.0 20 0.6
5 ‘ 5/6 - 1.0 045 0.0
5 5/6 (1.0) 047  0.037 {estimate)
2/3 1/2 (1.0 15 0.5) (estimated from
2/3 5/6 (0.67 15 0.3) triphasic PSP)
2/3 5/6 ~ 15 025 f{/s=6 Connorsetal

Table2.3 Synapse conductance ratios. Based on van Brederode and Spain (1995),

last row Connorset al (1988).



It shouldbe noted that PSPs were evoked using electrical stimulation of a local neuron
population and so conductances resulf from a population of synapses impingingon the
recordedneuron. The relative ‘connection’ strengths represent collective synaptic
action, not individual synapses (nor single functional synapses). The relative
conductance values are approximate and should be regarded as a qualitative guide to
laminar differences. These values, indicating relative connection strengthsin the local
neural populafion, are used as a guide for the network models implementedin chapters
5 and 6.

2.4 Neurontypes

Many morphological types of neocortical neurons have beenidentified. A series of
studieshave related differences in electrophysiology to some common morphological
types. Simple models of the impulse generation of these neurontypes are introduced
inchapter3.

24.1 Neuron electrophysiology

In the sensory neocortex three main types of neurons havebeen described according to
their electrophysiology (Connors et al 1982). These neurons are fast spiking, regular
spiking and intrinsically bursting (FS, RS, IB). These were later identified as smooth
stellates, pyramidal and large pyramidal cells, respectively (McCormick et al 1985).
Layer 4 spiny stellate neuronsexhibit RS type behaviour.

The regular spiking neuron (RS) respondsto a suprathreshold tonic stimulusby an
initial high frequency of firing which declines to a much slowerrate (firing rate
adaptation). The initial interspike interval (inverse of initial firing rate) reduces
proportionately as the stimulusamplitudeincreases.

Fast spiking neurons (FS) have been difficult to record. The spike producedby a FS
neuronhas a depolarisation rate comparable with the other types, but therate of
repolarisationis faster resulting in a 'thin’ spike of approximately 0.5ms duration. The
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afterhyperpolarisation period (‘refractory' period)is relatively brief. The response of
the FS cell to a tonic stimulusis distinctive in thatno, or very little, adaptation of

| spike train frequency occurs. The FS neuronsustains a firing rate proportional to
stimulus strength up to high frequencies.

Intrinsically bursting neurons (IB) differ from the response of RS neurons.
Characteristically several spikes occur in clusters or 'bursts'in the initial responseto a
tonic stimulus. As the stimulusis sustained repetitive bursts may continue or be
replacedby a train of single spikes. The spike frequency withina burstis very high
andis a productof the cell's intrinsic membrane properties. The frequency of burst
repetitionis an order of magnitude slower (eg 250Hz/12Hz intra/interburst frequency,
review Connors and Gutnick 1990). IB neurons appear to be restricted to layer5 and
some have been identified as large pyramidal neurons with thick apical dendrites
arbourising in layer 1 (Mason and Larkman 1990). Kasper et al find that the majority
of the bursting pyramids project to the superior colliculus (SC) and donot project to
the contralateral cortex. Every layer 5 pyramid that projected to the opposite visual
cortex was a non-bursting type with a thin apical dendrite terminating in layers 2/3 (rat
visual cortex, Kasperet al 1994).

2.5 Discussion of the local neocortex

This section summarises aspects of cortical physiology with the intention of
developing a simplified view of the local functional circuit. Studies showinglayer
differences of neurondistribution and cormectivity are used to inform the neural
circuit models examined in subsequent chapters.

The organisation of the neocortex into layers and columns may be taken as a starting
point when consideringlocal functioning. The distribution of cell typesand the
connectivity of pyramidal neurons has been extensively studied. Local differences in
the functioning of smooth neurontypes is less well established.

Relative frequencies of neurontypes is summarisedin table 2.4 below.
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Layers Type %

upper RS 80
FS 20
lower RS 80
FS 15
1B 5

Table2.4 Proportions of neurontypes in upperand lower layers.
- FS numberafter Hendry 1987. IB proportion estimated from Kasper et al 1994.

Local Pyramid Connectivity
Layer lateral vertical

upper 9% at <300pumbetweenpyramids ~ innervationof 5/6, receive many

axons from layer 4
stronglateral EPSPs

patchy arbourisation to several mm

lower  1.5% at <300pum, strong functional

Synapses
patchy axonal arbourisation to innervation of 2/3evokes 60%
several mm EPSPs, 40%IPSPs

Table2.5 Summary of local pyramidal connectivity

In thelocal neocortex the upperlayer pyramids project horizontally, with patchy
axonal arbourisation to several millimetres, and vertically to innervate the deeplayers.
Differences in the axonal arbourisationof layer 5 pyramidshave been reported. Local
axonal projections of IB pyramidal neurons mostly target layers 5/6.In contrast, layer
5 RS neurons possess vertical axon collaterals which arbourise in the upperlayers (in
rat neocortex, Chagnac-Amitai et al 1990). The distant projections of these two
pyramid types also differ. IB neurons project subcortically to the superior colliculus
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(SC). The axons of RS pyramids project to ipsi- and contra-ateral cortices (Kasperet
al 1994). The local connectivity of pyramidal neuronsis summarised in table 2.5
above.

The most striking characteristics of local inhibition are that upperlayers are more
strongly inhibited than the deeplayers and sSIPSPs are restricted to the home' column
(summarisedin table 2.6 below). In addition there is some evidence that IB neurons
receive weaker IPSPs than otherlayer5 pyramids.

Local inhibitory action
Layer lateral vertical

upper strong lateral fIPSPs <800um  smooth population20%

absent sTPSPs spike vetoing by fIPSPs
strong modulationby home

patchy arbourisation to several columnsIPSPs

mmby large cells direct inhibition.of 5/6

lower patchy axonal arbourisationto  smooth population 15%
several mmby large cells weak and variable fIPSPs

variable and absent sIPSPs
indirect inhibition of 2/3evokes

40%IPSPs

Table 2.6 Summary of aspects of local inhibition.

It is not knownif the differences in the fIPSP and sIPSP typesis correlated with the
morphological type of the (inhibitory) presynaptic neuron. GABAa receptors generate
fIPSPs and GABADb receptors generate sSIPSPs but both bind the same species of

~ transmittermolecule (GABA) and so in principle a presynaptic release of GABA may

evokeboth fIPSPs and sIPSPs. However, sIPSPs appear to be restricted to vertical
columnar projections (<300pm laterally) which suggests some association with a

morphological type.
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The extent of IPSPs in inhibitory neuron types has not been investigated. However,

smoothneurons have been observed to synapse on other smooth cells in the neocortex
(Kisvarday et al 1985).

2.5.1 The local neocortical circuit

By combining the classification of the functioning of 'typical' neurontypes and the
studies of functional connectivity a tentative sketch of the functional local neural
circuit may be proposed. In figure 2.5, below, layer 4 is lumped in with the population
of the upperlayers. Connections between and within subpopulations are sparse. The
indicated self innervation of the layers and reciprocal connections between
populations does not represent the directly reciprocal connections between pairs of
neurons. (Reciprocal connections between closely neighbouring pyramidsoccur
infrequently. Thomsonet al 1993 record, in 2/56 connections, pairs of layer 5
pyramids whereboth evoke EPSPs on the other, butin such cases they find the
involvementof a third neighbouring pyramid.)

This simplified local circuit is rich enoughin detail to preventany easy predictions of
its dynamic behaviour. The localisation of sIPSPs to the Thome' columnmightindicate
some form of 'gain control' of the reciprocal circuit between upperand lower layers.
Weak lateral inhibition mightindicate a cooperative interaction with neighbouring
columns, stronglateral inhibition should favour a competitive interaction, from this
consideration interactions betweenneighbouring columnsis ambiguous. Strong
fIPSPs, evoked in the upperlayers by lateral stimulation, support the idea of a
competitive interaction with adjacent columns. However the weak fIPSPs of the lower
layers and the presence of thythmicIB neuronsmay result in cooperative recruitment
across columns. These behaviours ate not exclusive, and could occur at the same time,

butat different ranges.



Cohmm Local Circuit

®

Upper
layers

Lower [fEp;
layers

LGN

Figure2.5 Sketch of simplified column circuit with inputs from adjacent columns.

Triangle represents a pyramidpopulation, circle represents smooth cell population. Weight of arrows
indicates relative density of connectivity. Open arrowheadfEPSP on target, solid arrowheadlPSP on
target. Non-local inputshown from lateral geniculate nucleus LGN. Notshown: deeplayer exhibit
some weak sIPSPs; upper andlower layers have significant reciprocal connections with distant cortical

areas; subcortical projections of layer 6 to LGN and layo* S IB projection to Superior CoUiculus.

The ability of the deep layers to evoke strong fIPSPs in the upperlayers is intriguing.
Neuronswithm a columnshare RF preferences. Since RF properties are similar a
circuitinvolvingupperand lower layers mustfit a model of cooperative behaviour.
Hence, it would seem, fIPSP inhibition of upperlayerneurons, evoked from deep
layerneurons, is partofa mechanismthat supports a cooperative response. Perhaps
fIPSPs contribute to the controlling of the phase of neuronalaction, and so enhance a
cooperative dynamic betweenupperand lower layerneurons. If this is the case, then
lateral inhibitory projectioris, supporting strong fIPSPs, maybe an indication of
cooperative phasebehaviourratherthan competitive inhibition. Further, if a columnar
cycle exists, the effect of any lateral connections will dependon the origin of the
lateral innervationin the cycle of columnaractivity. Inhibition in phase with
excitatory activity will have an inhibitory effect. Inhibition outof phase with
excitatory activity contributingto an oscillation may reinforce the oscillation. In
addition, differences in the intrinsic dynamics of neurontypes (FS, RS, IB) wiil also

contribute to a phase trajectory of the local circuit. The dynamic role of these different
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aspects of the local neocortex may be explored by modelling. Chapter 6 examinesa
model implementing layer differences in a representation of a single neocortical
columny; chapter? discusses the extension of this model to include adjacent columns
and more distantinputs.

2.6 Modellingaspects of local neocortex.

This studyis limited to examining aspects of the local neocortex which may contribute
to collective oscillations. Model dynamics need to encompass the range of time
periods reported for the observed behaviours of oscillation and synchronisation (see
chapter 1). The topology of the model neural network should take account of the
typical pattern of neuron distribution and connectivity.

2.6.1 The neuronimpulseand synaptic transmission

The time constants associated with different synapse types and the distinct dynamics
of FS and pyramidal neurons are especially relevant. This thesis uses a
phenomenological approach to modelling. Empirically reported values are modelled
by 'curve fitting' rather than the explicit simulation of a physiological process. It is
intended to reconstrict the qualitative behaviour of the local neocortical circuit.
"Each neuroneis a spatially extensive, complicated, system. However, whatis
biologically significant is not the spatio-temporal patternof activity in a neuronebut
when this influences other cells." (Holdenet al 1992). The task in this thesis is to
model and test the dynamics of impulse time series and their transmission across a
volumeof nodes forming a network. Chapter3 examines simple modéls of the neuron

excitable membrane and post synaptic potential shapes.

The various values for neuronand synapse types reported above mustbe considered as
approxirhate. In any case the partial nature of information about the local cortex means
that various assumptions have to be made. Additional assumptions are introduced with
the aim of simplifying the model to aid the interpretation of behaviours and reducing
the computational load of the simulationof activity in a network.
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Economy dictates that closely coupled processes are lumped together. For example the
chainof events which evokes a PSP at the soma may be representedby a single
function (an alpha function is used, see chapter 3) as a 'good enough' first

approximation.

As a furthermeasure of model parsimony, additional termsfor PSP latency arenot -
introduced. Axonal transmission (in the pre-synaptic neuron) introduces some delay
before the initiation of a PSP. However, here it is only infended to model local circuits
with sub-millimetre axonal length. This implies a maximumvariability of axonal
latency in the order of one millisecond. It is préposed that the variationin somatic
PSPs time to peak (of the same transmitter type) will be dominated by variationin
dendrife—soma electrotonic distance, which can be adequately modelled by the alpha
function giving risetimes in the order of several to tens of milliseconds.

The alpha function model of PSP shape has a number of weaknesses. It is nota good
model of weak synapse functioning as low quanta release probability is not modelled.
However strong functional synapses exhibit transmission reliability, so the generic
alpha function may be considered to be appropriate for modelling strong neuronal .
connections. This introduces an economy of modelling, only one functional synapse
betWeen source and targetneeds to be modelled in place of several anatomical

synapses.

An additional postsynaptic simplificationis mtroduoed It is assumed that PSPs will
sumlinearly at the soma. Nonlinear PSP interactions, for example shunting, are not
considered in this thesis. This is justified by the empirical in-vivo observationsby
Ferster and Jagadeesh (Ferster and Jagadeesh 1992). The linear summationof PSPs
were observedat 'in-vivo' levels of synapfic activity. Although, it is noted thatnon-
linear effects such as dendritic saturation have been investigated (Bush and Sejnowski
1994).

30



The effect of neuromodulators or slow processes of facilitation or depression fall
outside the scope of this investigation. In some cases, at least, this may be justified by
the time scale of the phenomena. For example NMDA facilitation takes many seconds
to develop (Thomsonet al 1993). |

2.6.2 Neocortical layer differences

Cortical areas differ in detail. The visual cortex is denser and possesses subdivisions
of the iayeﬁng scheme, for example functionally distinct subdivisions are foundin
layer 4. In contrast the motor cortex lacks the granularlayer 4. Yet, cortical areas
share generalised features of the distribution of neurontypes and columnand layer
topography. This investigation attempts to include stereotypical features of local
neocortex but finer detail is omitted. Neuronand synapse types are each reduced to
three. Basic layer and column differences are qualitatively represented by a
topography that distinguishes just an upperandlower layer. These simplifications
allow a generalised model of a cortical columnto be sought. Chapter 6 implementsa
representation of neocortical layer differences.

. The apical dendrite, the archetypal feature of pyramidal neurons, is common to all
neocortical areas. However, this stereotypical apical dendrite is not explicitly
modelled, even in a simplified form. It may be argued that the empirical datafor PSP
and neuronexcitability (discussed above) is derived from whole pyramidal neurons
and so the apical dendrite, or active currents on other parts of the dendritic tree, is
included at a phenomenological level. In addition, since it is intended to model local
neuronal interactions, the proximal dendrites may be considered more important than
the distal dendritic arboursupportedby the apical dendrite. If the functionof the
apical dendriteis passive, it simply reduces the electrotonic distance from the distal .
dendrites, and so thereis no need for a separate model to characterise the action of the
apical dendrite.

But thereis some evidence for the presence of active conductances on the apical
dendrite. In this case, an active apical dendrite may performa gating function to more
distal PSPs. Synapses whichimpinge on the shaft of the apical dendrite may perform
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an importantrole in this regard (Deuchars et al 1994). The omission of an explicit
model element representing the apical dendrite is seriousif the apical dendrite acts to
modulate a significant proportion of local PSPs. Connors et al demonstrate the
presence of active currents on the trunkof the apical dendrite and the modulationof
distal EPSPs by the action of the apical dendrite (Connorset al 1994). The apical
dendrite may act as a coincidence detector. The back-propagationof an action
potential info the apical dendrite coinciding with distal excitatory inputcan induce the
pyramidto fire a burst of 2 or 3 more spikes (Larkumet al 1999).

An alternative modelling approach, which develops a compartment model including
explicit physiological processes, may adequately portray the apical dendrite. However
the distribution of active conductances over the surface of the apical dendriteis not
well established, hence a such a modelling exercise is likely to be protracted and the
subject of a thesis in its ownright. The omission of a model representing an active
apical dendrite may notbe serious, at the attemptedlevel of simulation. If the function
of the active apical dendrite is to modulate input from distant neurons (cortico-cortical
synapseson the apical tuft in layer 1) thenit may be omitted froma model of purely
local activity. In vivo, locally evoked PSP action does not appear to be subject to
strong nondinear effects (Ferster and Jagadeesh 1992, discussed above). The models
introduced in this thesis do not include modelling of the active apical dendrite. This
omission is reconsideredin chapter 7, together with the consideration of other

modelling simplifications.

2.7 Summary

The functional physiology of the local neocortex is reviewed as a guide to the
developmentof a local circuit model of short termbehaviour. It is observed that

different cortical areas share a general pattern of organisationinto layers and columns.

Three neuron types are definedby their intrinsic properties of excitability. These are
identified as regular spiking (RS), intrinsically bursting (IB) and fast spiking (FS). RS
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and IB neurons are found to be pyramids. FS neuronsare smooth. Pyramidal neurons
evoke excitatory PSPs (EPSP) on their targets and smooth neurons evoke inhibitory
PSPs (IPSP).

Three PSP types are distinguished. These contribute to the typical triphasic PSP found
in upperlayer pyramidsfollowinglocal electrical stimulation. A fast EPSP (fEPSP) is
evokedby a presynaptic RS or IB neuron. Fast and slow IPSPs (fIPSP and sIPSP) are

evokedby a presynaptic FS neuron.

For the purposes of modelling, the established classification of six cortical layers are
simplified to just two: upper and lower layers. RS neurons are foundin all layers
(except the traditionally classified layer 1) and comprise around75% of the neuronal
population. IB cells are only foundin the lowerlayers. FS cells occurin all layers

(around20%), but with a lower frequency in the lower layers.

The upperlayers exhibit much stronger collective IPSPs than the lowerlayers. The
IPSPs of the lower layers are relatively weaker than the reduced lower layer FS
frequency would suggest (lower layer collective fIPSP conductance is aroundone
third or a quarter of the upperlayer value), and sIPSPs are weak or absent in lower
layer pyramids. Upperlayer fIPSPs are capable of terminating EPSP depolarisation
and effectively abolishes the generation of an action potential. Lower layer fIPSPs are
less effective. Upperlayer sIPSPs produce an effective and lasting (hundredsof
milliseconds) hyperpolarisation which substantially reduces firing rates.

Stimulation sited laterally evokes strong fEPSPs and fIPSPs, but sIPSPs are not
evokedin the upperlayers. Stimulation of thelower layers evokes strong fIPSPs and
fEPSPs in the upperlayers. However stimulation of the lower layers do not directly
evoke IPSPs in the upperlayers. In contrast, upperlayer FS cells directly innervate
lower layer pyramids.

A phenomenological modelling approachis proposed. Qualitative models representing
the neuronand synapse types are presented in the next chapter. Small circuits,
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connecting these elements according to the anisotropies observed in neocortical layers

and columns, are examined in subsequent chapters.



3  Simple properties of model elements

This chapterintroduces and examines the model components that will subsequently be
used to construct networks representing local circuits. The models chosen are intended
to reflect some basic properties of the transmission of neural activity.

Two simple generic models are presented. A 'synapse' model portrays the process of
transmission betweenneurons to evoke a post synaptic potential (PSP). The
generationof a neural impulse is characterised by an excitable membraneor somatic
‘meuron' model. Three types of impulse firing behaviours are modelled, representing
fast spiking, regular spiking and infrinsically bursting neurons.

Both excitable membrane and synapse models are based on curve fitting which
approximates the physiological behaviour. This approach maybe contrasted to
biophysical modelling where the physics which form the foundations of a behaviour
are explicitly modelled.

3.1 A simplesynapse model

The basic time course or shape of the somatic PSP is modelled using an alpha
function. The alpha functionhas a single time constant which controls the rise time
and exponential decay (see figure 3.1a, below).
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Fig 3.1a Theumtcurrentalphafunctionis definedby the equation “psc~" —

Solid line (X=20 and dashed line ot=80. The initial rate of increase and the exponential decay is

determinedby the single parameter a. The rise timeis inversely proportional to a.

In the simulation, below, the alpha functionunit shape is used as a conductance term

in the calculationof a post synaptic current (FSC);

PSC. - fait. ) XWIX(Xj - r.) synapsei acting on membrane;

0] alpha function
Wy connectionweight
X membranepotential of;th cell

reversal potential of ith synapse

X -n) 'driving force'

The unitamplitudeis multipliedby a weighting factor representing the synaptic
connection strength. The driving force is the potential difference between the
postsynaptic membranepotential and the synaptic currentreversal potential. This PSC
term is addedto the differential equationwhich defines the rate of change of
membranepotential on an excitable cell model. The resulting post synaptic p>otential is
both a function of the alpha function shape and the dynamic of the excitable
membrane system. (The reversal potential is the membrane polarisation which exactly
balances the concentration gradientof a particularion species, so thatno currentflows

throughthe activated channel.)
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Three parametersets are chosento portray typical somatic PSP types (table 3.1

below). Empirically observedrise times for somatic fEPSPs andfEPSPs are in a
similarrange; 2-20ms (reviewedin chapter2, Masonet al 1991; Nicoll et al 1996;
van Brederode and Spain 1995). The postsynaptic membranepotential rise time is
related reciprocally to the alpha functionparameter. The PSP changesby an integral of
the post synaptic current, this is processis limited by the current-voltage relationship
in the FS neuronimpulse model (the dynamics of this model are examinedin section
3.2 below). The reciprocal of a forthe fEPSP modelwouldsuggesta rise time of

1.8ms, howeverthe rise time achievedby the somatic fEPSP modelis S5ms. Slower

synapse models achieve somatic PSP rise times nearer 1/a.

The synapseimplementationhere andinnetw orkmodels in subsequentchapters is

represented schematically in figure 3.1b

presynaptic posts ynaptic
thieahoM
. | synapse
impulse weight
IPSC
membiane potential
reversal potential

Figure 3.1b Schematic of model synapse. The presynaptic inputsignal for the alpha functionis a
thresholding function applied to the presynaptic neuronimpulse. The postsynaptic process applies the
synapse weight and driving force (membranepotential minus reversal potential) multipliers to the alpha

function to find the PSC.

Model currentreversal potentials (modelrv) are estimatedbased on the equilibrium
points of the neuronimpulse model (equilibriumpx)ints are examinedin section 3.2.1)
and observedphysiological resting and threshold potentials (reviewedin chapter2,

values forp} Tamidalneurons taken from Connors et al 1988; Hirsch and Gilbert
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1991; vanBrederode and Spain 1995). Ifit is assumedthatthe subthiesholdrange of
the membranepotential of the impulse model (from resting point A to threshold'
equilibriumpomtB in figure 3.6), Hnearly approximates thatof a typical neuron, the
biological reversal potentials maybe scaled to impulse model values. The model
fIPSP reversal 'potential' is setnear the membrane potential (model x value) for the
resting equilibrium point. The sIPSP reversalis setto a more negative, hyperpolarised,

value. The fEPSP reversal potential is selected to approximate the biological OmV.

synapsetype ¢ {conductance) ™ PSPrisetime reversal potentialmV (modelrv)
mS X
fEPSP 555 5 0 (0.3
fIPSP 125 1 -70 (-14)
sIPSP 10 107 -90 (-1.8)
Table 3.1 Synapse model parameters

The fIPSC rise time is setto 8mS (=1/x). This is a compromise value based on the
empirical studies of van Brederode and Spain (1995) and Connors (1988). These
studiesrecord compoundIPSPs arising from the simultaneous action of multiple
inhibitoiy synapses. Komatsuet al obtainedmeasurements from the action of a single
inhibitory synapse, and found a considerably faster fIPSP rise time of 1 to 2mS
(Komatsuet al 1988). This difference may arise from the collective action causing a
differentdendritic behaviour (ie active conductances), butthis considerationis beyond
the scope of this thesis. Models in this thesis use the 8mS fIPSC rise time as it is
consideredto be representative of the conditions thatthe models are attemptingto

simulate (with the exceptionof model 5fin chapter5).

3.1.1 Synapse simulation

The model's responses to a test signalis examined. The simulationhas three parts; a
white noise signal source, the alpha function 'synapse' and a target 'cell body'. A noise
signal, simulatinguncorrelated multiple inputs, is applied to the alpha function via a
sigmoid threshold function. The PSC is calculated from the 'conductance' term of the
alpha function (using a reversal potential and weighting multipliers) and then addedto

a sub-threshold excitable cell model (FS impulse modelintroducedbelow in section
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3.2.1). This currentinjection evokes the PSP on this target 'cell’. The time series of

these PSPs are then compared to the noise series.

The noise inputhas a high rate of activity. This is intendedto simulate the

uncorrelated activity in a large numberof pre-synaptic sources (20x10° pre-synaptic
inputevents per second). Hence the 'synapse’ simulated here represents a large number
of functional synapsesbut with the same characteristic time constant. |

3.1.1a Synapse model results
Siniple transmission properties are revealed by the PSP frequency spectra and PSP to

inputcross-correlations.

All frequencies are equally presentin the white noise inputsignal, this yields a flat
frequency power spectrum (not shown). The frequency spectra below show that the
PSP models transmit low frequencies and attenuate higher frequencies (figs 3.2a c €).
The attenuation of higher frequenciesis in proportion to the inverse of the time
constant for the particular model (table 3.2 ). Synapse models with the faster time

constants allow the transmission of higher frequencies.

synapse type Hz at-3dB PSP rise time mS
fEPSP 25 5
fIPSP 10 11
sIPSP 1 107

Table 3.2 Approximate frequency at half the power of maximum transmission.
The inputnoise to PSP cross-correlations reveal the respective PSP alpha function

shapes (figs 3.2b, d and f). The model synaptic transmission process is simply a
convolution of the input series of noise events by the alpha function shape.
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fEPSP power spectrum fEPSP to input cross-correlation

0.03
0.02
0.01
0 50 100 150 -10 0 10
frequency lag ms
fIPSP power spectrum fIPSP to input cross-correlation
0.08
0.06
-0.04 -
0.04
-0.08 -
0.02
0.12
0 50 100 150 -20 0 20
frequency lag ms
siPSP power spectrum siPSP to input cross-correlation
0.12
0.01
0.06 -
-0.03
0 5 10 15 -400 -200 0 200 400
frequency lag ms

Fig 3.2a-f Responses of model synapses. Model parametersin table 3.1. The frequency power
spectra show that transmission at higher frequencies is strongly attenuated. Cross-correlations show
thatthe lag of maximumresponseis the same as the respective model rise-time constants. Note the

different frequency and time scales for the differentsynapse t}rpes.

Frequency spectra are estimated from the Discrete Fourier Transformof N points of the series h*

Hn="7

k=0
Correlationof two sampled functions andhk, atlagj, is definedby

N -1

Corr{g,hls'"
8 &0



3.1.1b Discussion
The generic PSP model behaveslike a low pass or smoothing filter, the rate of cut-off
of higher frequencies is determinedby the time constantassociated with the particular
synaptic type. This high frequency cut-off is quite sharp. For example the 11ms
risetime of the fIPSP model, above, may be considered to approximate the 1/4wave
period for a frequency of 25Hz. At this frequency the fIPSP model's transmitted power
is around 10dB less than the power at 1Hz in its frequency spectrum (estimated from
fig 3.2c). The transxfﬁttedpower at 60Hz is -9.5dB of the powerat 1Hz for the fEPSP
model (estimated from figure 3.2a). This indicates that synapses with fast PSP rise
times, in the order of a few milliseconds, are required to achieve the robust
transmission of frequencies in the cortical gammarange of 40 to 60 Hz.

3.2 Neuron physiology and morphology

In the sensory neocortex fhree main types of neurons have been described according to
their electrophysiology and morphology (reviewedin chapter2, (McCormick et al
1985). These neurons are fast spiking, regular spikingand intrinsically bursting
(FS, RS, IB), identified as stellate inhibitory, pyramidal and large pyramidal cells,
respectively. A generic modelis introduced and adapted to imitate the qualitative
differences in the impulse time series of these neurons. These different neuronmodel
.o---—.._types are incorporatedin the simulations of neuronpopulation activity that are

examined in subsequentchapters.

3.2.1 A generic excitable cell model

The classic Hodgkin and Huxley axonal model (1952) identifies the contributionof
differentionic conductances to the productionof an action potential. The desired
properties may be built into a model by extending the Hodgkin and Huxley system.
But this systemis already mathematically complex with four coupled differential
equations and six functions. Here it is infended to examine the transmission of activity
in a networkmodel. A sufficient neural impulse model is required to characterise the
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impulse time series. An adequate model may be built upona more abstract
representation of the impulse dynamic than the Hodgkinand Huxley system. It is not
necessary to explicitly separate the biophysical components.

Hindmarsh and Rose (1982) obtain a considerably simpler abstract model. They
-examine the voltage current relation, but do not explicitly separate the ionic
conductances. Their generalised model is developed from some simplifying
assumptions; the rate of change of membranepotential, x, is linearly dependenton
intrinsic and electrode currents, y and g respectively, andis nondinearly dependenton
membrane potential; function f(x) (equationhrl). The rate of change of the intrinsic
currenty is assumedto be non-inearly dependenton the membrane potential; function
g(x), and an exponential decay of currentis representedby the -y termin the equation
(hr2).

g.c=—f(x)+y+q (hrl)

y=g(x)-y (hr2) |
membrane potential x, intrinsic currenty, clampingelectrode currentq
(time constantsused in Hindmarshand Rose 1982 are omitted)

They determined the form of the nonlinear functions f(x) and g(x) from a voltage
clamp experiment. As a depolarising voltage step is applied an initial inward current
occurs, as the voltage step is maintaineda steady outwardcurrent develops. The initial
and late currents are treated separately. Currents were determined for a range of |
voltage steps, producing an early current voltage curve and a late current voltage
curve. These curves are used to determine the form of the functions f(x) and g(x). The
shape of the function f(x) is taken from the early current voltage curve. In the resting

state y=0 and upon the application of the voltage step the early current, o develops.

Assuming'y remains 0 then the curve of the early current, gy is used to define f(x).

The voltage is clamped, 50 x = 0 =— £ (x) + go adf()=4p (fromhrl).



The late current q.. allows g(x) to be set. The currentis steady hence

y=0=g(x)~y (romhi2) andfromhrl ;= 0= — f(x) + g(x)+ guo-
or  g(x)=f(x-q..
The variable y should be considered to portray a slow intrinsic or recovery current
since the early current is represented by the function f(x).

A cubic function is used for f(x) and a quadratic fitted for g(x) (Hindmarshand Rose
1984) giving the two variable system:

J'c=y—ax3+bx2+l (hr3)

37=c—dx2—y (hr4)

I external current,a b ¢ d constants

This model maybe adjusted to introduce various behavioural qualities. However, first

it is useful to consider the nature of its operation. A time series is shownin figure 3.4 |
below (line HR). Trajectories drawnin the x-y phase plane indicate the coevolution of
the two variables (figure 3.3), the system's null clines and equilibrium points are also

shown.

The null cline identifies those points in the phase space (ie the x and y values) where
thatvariable is not changing with respect to another. The intersections of null clines
identify equilibriumpoints in a system as neither variable is changing. In one
dimension an equilibriumpoint can be stable, like a ball in a hollow, or unstable, like
a ball on top of a hill. In two dimensions three equilibriumtypes are possible; stable,
unstable and saddle points. The two dimensional stable and unstable points are
respectively stable and unstable in both dimensions. The saddle pointis stable in one

dimension andunstablein the ofher.
The Hindmarshand Rose basic two variable model is attractive as it is parsimonious.

It can easily be modified by the adjustmentof the voltage or recovery currentnull
clines which partition the voltage-current phase space (figure 3.3).

43



A characteristic of this model, termedby Hindmarshand Rose as a narrow channel
property', is the proximity of the x and y null dines in the area close to the label B in
figure 3.3. The trajectory of the action potential cycle throughthis regionis indicated
(line labelled 'cycle'). Because of the proximity of the null chnes the evolution of the
system is atits slowestin this channel. This slowerevolution correspondsto the inter-

spike interval in the first time series in figure 3.4 (line 'HR").

equilibrium points

x=0

-10 y=0
cyde

to rest

5 1 0 x 1 2

Figure 3.3 Phase plane of the Hindmarshand Rose model (1984). Parameters {a,b,c,d/}
are {1,3,1,5,0}. Equilibriumpoints at the interactions of the x andy null dines are marked; A
is stable, B is a saddle and C is an unstable spiral. The Emit cycle trajectoryis marked and its
direction of rotationis indicatedby arrows. This limitcycle correspondsto the first time series
shownin figure 3.4. The "in rest' trajectory starting at a point morenegative than B is shown

approachingthe resting equilibriumpoint A, its direction is indicatedby an arrow.
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Figure 3.4 Timeseries of the Hindmarshand Rose model (1984)and FS model. The limit cycle
shownin figure 3.3 correspondsto theline labelled HR. Thebrokenline indicates the FS model time

course, correspondingto the trajectoiy in figure3.5 .

3.2.1a Fast Spikingimpulse model
Hindmarshand Rose (1984) describe a property of triggered firing' in their two
variable model, the model couldbe inducedto fire indefinitely following an initial
impulse. This is notwanted m the fast spiking (FS) andregularspiking (RS, described
below) models. For these a response similarto a typical threshold modelis desirable; a
spike train is evoked whena supra-thresholdinputis applied, and the spike train

ceases when the inputis removed.

Figure 3.3 showsthe equilibriumpoints of the Ffindmarshand Rose system with no
external currentinput (1=0). The relative positions of the three equilibriumpoints
supportthe 'triggered firing' behaviour. The unstable spiral equiHbriumpx)intlabelled
C is the focus of the limit cycle of a sustained spike train. The recovery side of the
cycle (labelled 'recover') approaches the 'narrow channel' of the nuU clines at a more
positive potential than the saddle equiiibriumpoint, B, it enters the narrow channel
and continues round, sustaining the cycle indefinitely. The pointB maybe considered
to correspondto the thresholdlevel in a simple threshold and fire model. But unlike a
threshold model, once the 'threshold'has been exceeded, sustained firing occurs. If,
howe\"er, the system is displaced and arrives at a more negative potential with respect
to B, then the system evolves towardsthe rest or stable equilibriumpointA (trajectoiy

marked 'to rest' in figure 3.3). (The 'threshold'in this modelis notthe potential at B, it
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is atwo dimensional line or separatrix thatdivides the voltage-currentplane and

passes throughB.)

The triggeredtiring behaviouris avoidedin the FS modelby a modificationto they

nuU cline so thatthe equilibriumpointB is more positive than the recovery side of the

impulse cyde, so thata limitcyde cannotbe sustained. The trajectory shownin figure

3.5 illustrates this. The recovery side of the impulse trajectory in the FS model crosses

into a narrow channelbetweenthe points A and B. It then slowly evolves towardsthe

resting equilibrium A.
equilibrium points
o
-10 y'=0—
cycle-rest......
2 1 0 x 1 2
Figure 3.5 Phase plane of the FS model. Farameteis {a,b,c,d k/} are {1,3,1,4.3,-0.1,0}.

Equilibriumpoints at the inteisections of the x andy null clines are marked; A is stable, Bis a

saddle and C is an unstable spiral. An impulse trajectoiy is shown, arrows indicate the

direction of its evolution.



The equationsfor the FS systemare
;c=y—ax3 +bx’+]1 (fs1)

y=c-dk+xP -y (fs2)

I external current,a b ¢ dk constants
This modified system only differs from the Hindmarshand Rose (1984) model by the
addition of the constantk to the quadratic which defines the y recovery currentrate of
change. '

The FS model sustains an impulse train with the addiﬁoh of a tonic current. AsI the
inputcurrentis increased the x null-cline is displaced towardslowery values, the null
cline intersections A and B converge andboth are abolished. A sustainedcycle
develops, its frequency s a linear function of I, the current that determines the
distance of separationof the null clines on the recovery side. When!I is large the null
cline 'channel' is no longer narrow and frequency thenbegins to be limited by the
action potential part of the cycle. ‘

3.2.1b Regular Spiking impulsemodel
The FS and HindmarshRose models described above achieve a constant impulse rate
following the onset of a step currentinput. In contrast, regular spiking neurons show
impulse rate adaptation when stimulated by a tonic current. At the onset of a current
the firing rate is highbut the impulse train slowsor even stops as the currentis
- maintained. Intrinsically burstingneurons also exhibit response adaptation, but the
impulse patternis more complex as initially bursts of impulses occur and as the input
is maintained these bursts are replaced by a train of single impulses. Sustained

bursting may occur when excitation is strong.



Hindmarshand Rose (1984) proposea third variable, z, to introduce the property of
adaptation. This variable acts as an inhibitory currenton the model membrane
potential. The rate of change of z is set to be linearly dependenton the membrane
potential. Its rate of increase and decay is set by time constants r ands. The z reversal
potential is set to the resting equilibriumpotential of the systemx,,. Equations for the
complete three variable systemare ;

x=y—ax’ +bx’—7+1 (hr3) hyperpolarising z current
y=c—dd* -y (hr2)
%=r(s(x—xep)—z) (hr5)

I external current,ab ¢ dr s x,, constants
The z rate of changeis set to be slow compared to the impulse period, the constantr is
set to a low value. Consider the case wherean input >0 is applied. As x the
membrane potential rises above the resting potential, z the adaptation variable slowly
increases and in turnbegins to have a hyperpolarising effect on x. Slowly z will
increase to balance the input. If the current! is sufficient to initially evoke animpulse
train, (the large depolarisations will make z increase somewhat faster) the adaptation
current will start to oppose it. The impulse train will be slowed or stopped given the
relative strengthof I and the adaptation rate constants.

3.2.1¢ Intrinsically Bursting impulse model

" Hindmarshand Rose (1984) developa model of triggered firing (described above in
section 3.2.1), a short depolarising current can change a neuron from an initially silent
state to a repetitively firing condition. They add an adaptation current, z, to limit this
firing to a burst to model the observed action of a molluscanneuron. They find that
the model exhibits periodic bursting whena steady currentis applied and so is a
simple model of oscillatory bursting.

This bursting rests on two features of their model; firstly the triggered firing property
(in the two dimensional model) and secondly, the slow rate of adaptation withrespect
to the impulse cycle. Triggered firing may be explained by considering the relative
positions of the equilibrium points in the model's phase space (discussed in section
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3.2.1). Starting fromrest a transient depolarising currentis required to initiate firing.
Subsequently a hyperpolarising currentis required to terminate firing. In terms of the
afferent currenta hysteresis exists between an 'on’ threshold and a more negative 'off
threshold. In the three dimensional model a slow adaptation, z, currentallows many
impulse cycles before z grows sufficiently to achieve the 'off' current threshold and
terminate the burst. A relatively fast z currentwill terminate the burst' quickly (one
impulseis generally not considered to be a burst). The IB model has the same form as
the Hindmarshand Rose three variable bursting model (1984), with the addition of a
time constant to balance the relative rates of adaptation currentand limit cycle.

3.2.1d Impulse model summary
The FS model shares two general equations with the RS and IB models excepting that
the FS model has no z current (hence z==0). The adaptation currentz has the same
form as in the three variable model of Hindmarsh and Rose (1984).

x=(y-ax’ +b* —z+ DT (fs3)  (FS model z==0)
y=(c —dk+x* -y)T (fs4)
%=r(s(x—xgp)—-z) (hr5)

I external current,ab ¢ dkr s x,, T constants

The time constant T is infroduced to adjust the rate of evolution of the impulse model.
McCormick et al (1985) reportimpulse widthsof around1.7ms to 0.7ms (spike width
atbase for RS and FS cells). The © valueis chosen so that one time unit in the model
approximates one physiological millisecond for the above threshold region where an
exponential increase culminates in an impulse. The FS impulse canbe seento be
'thinner’ than the unmodified HindmarshRose model impulse in figure 3.4 above.

abc d k T S I T -

FastSpiking (z==0) 1 3 1 43 01 - - - 0.25+input 3

Regular Spiking 1 3 1 43 01 008 5 -1.5 17 +input- 3

Intrinsically Bursting 1 3 1 50 00 002 5 -1.5 1.7 +input 3
Table3.3 FS, RS

and IB impulse model parameters
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The FS and RS models' x and y parameters are the same. The adaptationrater of the
RS model i faster than that of the IB model. The triggered firing property is retained
in the IB model (parameter k=0).

3.2.2 Impulsemodelssimulation

3.2.2a Method
A noise input, simulating current from multiple uncorrelated sources, was directly
applied to the rate of change of x, the models membranepotential. A tonic inputwas
also applied to evoke a train of impulses.

3.2.2b Results

Qualitative differences may be seen by inspection of the raw time series for the three
excitable cell models.

50



200

RS
2
X
0
2
0 100 200
ms
B
2
X
0
2
0 100 200
ms

Figure3.5 a-c  Shortimpulse time series a FS, b RS, ¢ IB reqx)ndingto anoise input

Parametersin table 3.3. The impulse time series of the RS model appears more regular than
thatof the FS model. The IB model exhibits a clustering of impulses, evidence of buisting

behaviour is limited to two impulse doublets near 30 and 90ms.

The cross-correlationof the RS impulse time series is shownin figure 3.6. There is a
modulation of impulse probability at positive lags. Howeverthis tendencyis notvery

clear. The impulse time series are very sparse (pulse widths are aroundZms and
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impulse frequency is in the range40-80Hz so the impulse series is non-zero for around
0.05-0.025 ofthe time series). The resulting cross-correlationis quite hoisy' (not

shown, FS and IB cross-correlations showedno clear trend).

RS impulse-input cross-correlation

0.02

b

S
-150 -100 -50 0 50 100 150
lag ms
Figure 3.6 Cross-correlation of noise inputto RS impulse series.

The auto-correlationof the RS impulse series (in figure 3.7d, below) shows a clearer
response structure thatis otherwise qualitatively similarto the lag side of the cross-

correlation (figure 3.6, above).

In figures 3.7a and 3.7b, below, the FS impulse powerspectrumis nearly flat, ivith
bothlow andhigh frequencies well represented. The auto-correlationof FS impulse
activity showsa shortrefractory period of around2 mS following an initial impulse.
The firing probability reboundsto be slightly enhancedarounda delay of 10 mS,
subsequently the probability of firing remains constantwith increasing delay. This
characteristic is reminiscent of a leaky integrator threshold impulse model. A step
change of tonic inputevokes a simple change in the sustained FS model impulse firing

rate (not shown).
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FS impuke power spectrum FS impulse auto-correlation
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8e-5
0.010
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0.005
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frequency lag ms
RS impulse power spectrum RS impulse auto-correlation
0.015
0.010
8e-5
0.005
4e-5 -
0 50 100 150 100 150
frequency lag ms
0 IB Impulse power spectrum IB impulse auto-correlation
0.02
8e-5 0.01
0 50 100 150 100 150
frequency lag ms

Figures3.7a-f  Impulse transmission spectra and auto-correlations for FS, RS and IB models.

The RS model exhibits a very differentpower spectruirl. Low frequencies are nearly
abolished and there is a large peak in powerspectrum at approximately S6Hz and a
weak peak around 120Hz. The autocorrelation of the probability of firing is low for
12ms following an initial impulse, subsequently inhibited and enhanced probabilities
of firing occur at intervals with a period of 17.5ms which correspondsto the period of

the frequency p)eakin powerspectrum.(In figures 3.7c-d.) Thusthe RS modelhas an
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intrinsic frequency of activity. A step increase in the tonic inputresults in an initially
fast firing rate that slows as the adaptation process comes into effect (where the

increase s large enough, not shown).

The pattern of response of the IB model is similar to the RS model, butslower (figures
3.7e-f, above). The autocorrelation indicates that following an initial impulse and a
brief refractory period (~3ms) firing probability is immediately enhanced,
subsequently inhibited and then enhanced again around a lag of 42ms. The power
spectrumshows peak around22Hz, this denotes the lower intrinsic frequency of the

IB model. Unlike the RS model the IB model has an enhanced firing probability at a
very short delay of 4ms following the initial impulse. The impulse doublets in figure
3.5¢. areinstances of this short delay firing, this is due to the burst firing property. The
IB model respondsto a step increase in tonic input with an initial impulse burst. As
the adaptation process comes into effect subsequentbursts contain fewer impulses

(where the tonic step increase is large enough, not shown).

3.2.2¢ Summary of results
The neuronimpulse models are comparedin table 3.4. The FS model has a simple
impulse firing response where the rate of impulse firing is sustained following the
‘onsetof a tonic input(or step input). In contrast, a step inputto the RS and IB models,
evokes an initially high rate of impulse firing that slows. The adaptation process
governs the sustained impulse firing rate in the RS and IB models. Both the RS and IB
models exhibit an intrinsic firing rate thatis related to the adaptation process.

Model Variables Impulse train characteristic Frequency Hz
(inrange1-100) .
FS 2 threshold with brief refractory period variable
sustained impulse firing rate
RS 3 adaptationof impulse firing ~56
IB 3 adaptation of impulse burst firing _ ~22

Table 3.4 Comparison of impulse firing models
Note that the indicated characteristic frequency applies to the chosen parametersets



3.2.2d Discussion
The neuronimpulse models transmithigher frequencies in contrast to the alpha
function model synapses. The FS model transmits a broad spectrumandits
responsiveness seems only limited by the refractory period of the impulse cycle. High
frequencies are passedby the RS and IB models at nearly the same powerlevel as that
achievedin the FS model. It is notable thatboth the RS and IB models have
characteristic resonance frequencies and responses at lower frequencies are nearly
abolished. The resonance and the attenuationof lower frequencies is a consequence of

the action of the third variable, the adaptation current z, in these two models.

These different properties, the intrinsic resonance in the RS andIB models and the
contrasting low-pass ability of the FS model (or lack of low frequency attenuation),
indicate very differentroles for these elementsin the phase behaviourof a network.

3.3 Alternative modellingapproaches

The above models retain some of the temporal properties of neurons and synapses and
their simplified form contribute to the tractability of larger scale network modelling.
The synapse model represents a simplification of pre and postsynaptic processes; a
further simplification of the alpha function synapse model does not seem reasonable.
The FS model is a two variable system based on the Hindmarshand Rose (1982)
impulse model. Any further simplification of the neuronmodels leads to a

consideration of single variable models.

Kistler et al developa single variable ‘spike response” model neuron (SRM) as a
simplification of the Hodgkinand Huxley system (Kistler et al 1997). This model
includes a response function to represent the impulse and after-potential, and response
kernels to account for membrane voltage variation dueto inputs. Spike trains resulting
from noisy inputs are compared to the spike train series produced by the Hodgkinand
Huxley system (HH). The SRM model successfully predicts 90% of the HH spikes; an
integrate and fire model achieves 43%; and integrate and fire with moving threshold
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achieves 70% of the HH spikes (estimated from figure 8, coincidence measureby
Kistler et al). Kistler et al suggest that modelling adaptation of the firing rate mightbe
obtained by including a function that integrates previous episodes of afterpotential
hyperpolarisation. However the derivation of the response kernels is non-rivial (the
response kernels are foundby analysis and numerically); finding the response kernels
to include adaptation and burst firing, to allow modelling of RS andIB neuron
responses, is likely to require an extended study. Higher order kernels include many
terms, and althougha reduced variable system may be obtained, it is undearif a
network simulation would be more computationally efficient.

Fitzhughproposes a two variable model that represents some of the properties of the
excitable membrane (FitzHugh 1967). This is a somewhatsimpler system than the two
variable Hindmarshand Rose model and may be less computationally demandingin a
network simulation. The Fitzhugh abstract oscillator model would require some
adjustment to represent the different firing patterns for FS, RS and IB neurons.

Chay examines a three variable model of an excitable membrane (Chay 1985). This
includes an adaptation currentand is comparable to the Hindmarshand Rose (1984)
three variable model(HR3). The Chay modelis a simplification of the HH system and
explicitly retains HH terms for certain conductances. As a result the Chay systemis
more computationally expensive than the HR3 equations.

More detailed models of synapse, postsynaptic and neuron functioning are available.
For example, postsynaptic transmission over the dendritic tree may be implemented.

- Rall et al consider the passive transmission of PSPs in a model of the dendritic arbour
of a pyramidal neuron. They point out the contributionof the cell’s morphology to the
postsynaptic response (Rall et al 1992). The passive compartmentmodel represents
the dendritic tree as a networkof connected RC compartments (resistor and capacitor).
The spatio-temporal patternof activation of synapses contributes to the PSP shape that
is achieved at the soma. Such properties introduce temporal signal processing

properties.
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The intention of network modelling in this thesis does not require a detailed
representation of the (passive) dendritic tree. An implementation that includes a range
of alpha function rise times may be considered to represent the effect of different
synapse positions, sufficient for a model including local” connectivity.

Compartmentmodels which implement active conductances have been investigated.
Rhodes and Gray model a large layer 5 pyramidal neuron (Rhodes and Gray 1994). A
detailed compartmentmodel includes the distribution of active conductances on the
dendrites. Dendritic calcium impulses are found to contribute to the generationof
bursts of impulses. |

The models in this thesis only implement the active conductances that achieve an
impulse in the soma or axon. This is justified (chapter2, section 2.6) on the basis that
local connectivity is less likely to involve the more distal dendritic synaptic inputsand
the empirical whole cell recordingslump the synaptic and dendritic transmission
together, so the model implicitly includes these processes. Following the results of the
network simulationin chapter6, the importance of active dendritic conductancesis
reconsideredin chapter?.

The Hindmarsh and Rose models (1982 and 1984) are abstract models of impulse
generationand are the basis of the FS RS and IB neuron models presented in this
chapter. The impulse model is mathematically represented as a point process (these
impulse models donot explicitly model the surface of a neuron), and may be
compared to a single compartmentin a compartmentmodelling system. The alpha
function synapse model may be considered as acting in a separate compartment,
linked to the neuron compartmentby an input current term. These simplified neuron
and synapse models may be compared to the model elements used by Bush.and
Sejnowski (1996) in a simulation of local cortical activity. The Bush and Sejnowski
néuronmodels are reduced compartmentmodels. The soma has active conductances
and other compartments are passive. Alpha function synapses are madeonto various
neuroncompartments, so thereis a variation of somatic PSP shape due to differences

in dendritic (passive) conduction. This variationis not great as Bush and Sejnowski do
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notimplement the distal dendrites and they implement an electrotonically ‘compact’
cell (length constantA = 2.97, reportedrange of dendriticA is 0.5 to 2, (Segev 1992).
In the absence of an explicit model of the passive dendritic tree this variation of
somatic PSP shapes mightbe achieved by implementing a wider range of model
synapse time constant values (so lumping the synaptic and dendritic conduction
processes together). This ‘lumpedsynapse” approachis used in the models presented
+ in subsequent chapters. Although the detailed compartment modelling of Bush and
Sejnowski is omitted, a qualitatively similar model is obtained. The Bush and
Sejnowski pyramidal neuron models place HH type conductances, with an adapting
conductance, in one “somatic’ compartmentto achieve a burstingbehaviour. This is
qualitatively similar to the IB model presentedin this chapter. Similarities between the
modelling approach of this thesis and the modelling of Bush and Sejnowski is
discussed furtherin chapter5.

The simplified synapse and impulse models presented in this chapter are intended for
a limited application; the modelling of fast oscillatory activity in a “local neocortical
circuit’. The scale of the modelling is restricted, and simplifications are made to
increase the computation tractability of the model, whilst retaining certain
characteristic neocortical features. Inclusion of other features of neurophysiology
would require extensions to the modelling elements, or a different modelling
approach. Where furtherbiophysical detail is required, but computational efficiency is
important, other methodsare available (Destexhe et al 1994). Kinetic models which
define the rates of reactionbetweenstates may be implemented efficiently, and the -
state transition models, containing the set of the states and their possible transitions,
can be obtained by analysis or curve-fitting. o
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3.4 Summary

Qualitative models of post synaptic potential and neuron impulse are introduced.
Parameters allow the implementation of the different types of synapses and neurons
with contrasting transmission properties.

PSP models are based on the alpha function. These model synapses function as
passive low-pass or smoothing filters. Neuronimpulse models are based on modified
Hindmarshand Rose phase plane models (the triggered firing property is retainedin
the IB model, butRS and FS donot support triggered firing). The two variable fast
spiking (FS) model transmits a broad frequency spectrumincluding the high
frequencies. The three variable regular spiking (RS) and intrinsically bursting (IB)
models transmit high frequendies as effectively. Both the RS and IB modelshavea
band-pass characteristic where their response is enhanced at an intrinsic resonant
frequency. The transmission of lower frequencies s effectively abolishedin these two
models.

The interaction of these models is examined in the next chapter. Small circuits are

studied, as an initial step in the developmentof larger scale simulations in the
subsequent chapters.
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4. Properties of simplelocal circuits

This chapterexamines simple circuits which combine the model elements presentedin
chapter 3. These demonstration circuits serve to link the simple models in chapter 3 to
their incorporationinto larger scale networks where population activity is studiedin
chapters 5 and 6. Here, the interaction of a few model neuronsand synépses and
neuronsis examined in a ‘feedforward’ circuit and a reciprocal circuit. The form of
these circuits is guided by empirical results regardinglocal cortical receptive field

(RF) functioning and local connectivity.

A functional feedforward description of local connectionshas been given to account
for the RF properties of neuronsin the visual cortex (Hubel and Wiesel 1962). This
early proposal for the functional role of local connectivity is sufficient for a minimum
accountof the different RF properties; successive layers of a feedforward circuit
achieves more complicated RF propertiesby a combination of responses froma
previouslayer. In the pathway from thalamusto layer4 to layer 3: a line of LGN
centre-surroundresponses are amalgamated to achieve a simple orientation preference
RF in a layer 4 neuron; a layer 3 complex RF response (for example orientation
‘preference with end-stopping) is achieved by a combination of layer 4 responses. This
functional proposal was madein the knowledgeof the presence of a far more complex

local connectivity, howeverit succeedsin givinga basic account of these RF

properties.

Subsequent studies have built on the early contribution of Hubel and Wiesel. It is
observed that the orientation tuning of layer 4 cells is sharper than canbe accounted
forby their direct LGN inputs (review Sompolinsky and Shapley 1997). It is proposed
thatlateral feedback inhibition contributes to this (based on in-vivo suppressionof
lateral inhibition (Crook et al 1998a). Local lateral inhibition is an importantfactorin
achieving RF responses.
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Stratford et al conclude that intracortical afferents provide most of the excitation input
to the simple cells in layer 4. They find thatlayer 4 spiny stellate cells receive most of
their inputs from otherlayer 4 cells andlayer 6 pyramidal cells (both with restricted
lateral range). The volumeof local cortical connections compared to thalamic
afferents suggests that the interlaminar vertical recurrent circuit has an importantrole
in shaping RF properties (Stratford et al 1996). The functional contributionof the
local vertical circuit to RF properties is not extensively studied.

A purposeof this thesis is the examination of fast temporal behaviours in the cortical
local circuit. It is not infended to construct circuits which reproduce RF properties.
Howeverit is reasonable to study representations of local feedforwardand recurrent
circuits, justified as being biologically probable and relevant to explanations of RF

properties.

4.1 Two circuits

This chapter examines two basic circuit configurations. A simple feedforward chain
model allows a study of the timing of 'feedforward'impulse transmission between
differentneuron types. This chain model could be considered to represent the
“forward’ propagation of activity fromlayer4 to 3 or the lateral intralaminar
propagationbetween adjacent columns. A reciprocal circuitis presented, including

features representing the interlaminar vertical circuit of an upperand lower layer.

These simple model circuits are implemented withjust one model neuronacting as a
distinctive elementin the circuit (one neuronof each typein each layer). Accordingly
the interpretation of the behaviourof these circuits is limited, the circuits donot
achieve a good representation of the actions of populations of neurons. However,
strong functional synapses that are capable of recruiting an impulse on the
postsynaptic pyramidal neuron have been observed (observation of large EPSPs and
disynaptic EPSPs in layer 5 pyramids(Thomsonet al 1993) and so the activity in the



modd circuits maybe consideredto representthe early local propagationvia strong

synapsesbefore large numbersof neurons are involved.

4.1.1 Chain circuit

This modelis based on simplified descriptions of local connectivity thatemphasise the
feedforwaidpnopagationof activity (for examplelayer4 to 3, figure 1 in (Martin
2002), with the omissionof any Teedback' connections betueenthe layers'. The
chainmodelincludes connection weigjits which representthe typical ratio of post
synaptic conductances (PSC) in the upperlayers of the neooortex (discussed in chapter
2). Each stage of the full chainmodelindudes a pairof PS and RS exdtable
membrane models with associated alpha function synapses. Within a stage the RS FS
pair are redprocally connected. The FS elementmakesboth fIPSF and sIPSP
connectionsto the RS modd andreceives a fFPSP from the RS model element. The
chainhas a feedforward configuration, RSi andPSi elementsproject onto the elements
in the next stage, RS2and FS2 Later stages do notprojectback to an earlier stage. A
schematic of the chainmodd is shownin figure 4.1a. The configurationin 4.1d
implements feedforwardtransmissionbetweentwo RS elements for comparison with

the modelincludingFS neurons.

4a-c
noise F&
FSi
RSi
noise
Figure 4.1 Chain, model circuit, a Full chain model includes RS and FS (conditions4a-4c), d RS

only chain for comparison (condition4d). Triangle RS, circle FS, open arrowheadfEPSP
innervation, solid arrowhead fIPSP andsIPSP innervation. FS andRS elements receive weak

independentdisturbance signals (not shown).



A noise input(independentPoisson time series, activating a alpha functionmodel
synapse) is implemented. This represents an external, uncorrelated input, for example

LGN inputto layer4.

4.1.2 Reciprocal circuit
The reciprocal circuitincludes weigjits and connections which representthe
differences foundbetweenupperandlowerneocortical layers (figure4.2). A

simplified configuration of two layers is studied.

FSi

noise

noise

FS2

FSi

noise*

Figure4.2 Reciprocal model circuit. Upperlayer RSi and FSi, lower layer RSz and FSz

4e Full reciprocal modelincludes RS and FS. 4fRS-IB reciprocal model, lower layer indudes 1Bz
elementin place of RSz.4¢g RS only reciprocal model for comparison. Triangle RS, drde FS, open
arrowheads fEPSP and solid arrowheadis bothfIPSP andsIPSP innervation, connection strength

indicatedby weightof arrow. FS andRS andIB elements receive weak independent distuibance

signals (not shown).

Eachlayeris comprisedof a FS andRS pair. The upperlayer RSi elementis more
strongly inhibited than the lowerlayer RS2 (4e). The configurationincludes reciprocal
connections betu"eenthe model elements W th the exception thatthe lowerlayer FS2

elementdoes nottargetthe upperlayer elements (neocortical laminar differences are
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discussed in chapter2). Againa comparison configurationis implemented which
includesno FS elements (4g). In addition, a reciprocal circuit model with a IB element
in thelower layer is implemented (4f).

Each layeris comprised of a FS and RS pair. The upperlayer RS; elementis more
strongly inhibited than the lowerlayer RS; (4e). The configuration includes reciprocal
connections between the model elements with the exception that the lower layer FS;
element does not target the upperlayer elements (neocortical laminar differences are
discussed in chapter 2). Againa comparison configuration is implemented which
includesno FS elements (4g). In addition, a reciprocal circuit model with a IB element
in the lower layer is implemented (4f).

An external input (independent Poisson time series, activating a alpha function model
synapse) is placed on the RS; in the upperlayer to representa distantinput (for
example LGN inputto layer4).

4.1.3 Modellimitations

The parameter values chosen for individual 'synapse’ and 'neuron'elements are
estimated from results in neurophysiology where local neocortex sub-populations have
beenstudied (see chapter2, section 2.3.4).

A single model element represents a nominal neocortical subpopulation. The simple
scheme of connections includes reciprocally connected elements. In the local
neocortex subpopulations are reciprocally connected, howeveridentified pairs of
neurons have a low probability of direct connection and directly reciprocal innervation
is rare. The dynamics of the model may be compromised by the implementation of
directly reciprocal connections, but only low rates of activity have been simulatedin
an attempt to minimise this problem.

The alpha function 'synapse' implemented in these model circuits should only be
considered as a reasonable approximation of the PSP achieved by a strong functional
synapse. The model 'synapse’ element does not include a model of release probability
of transmitter quanta, and so is not a good model of the weaker PSPs. Due to the lower
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probability of transmitter release, weaker synapses are also less reliable. In addition
PSPs are assumed to sum linearly and no active dendritic currents are modelled.

Axonal and dendritic transmission contribute latency and shape to the PSP, however,
the alpha function does not model these as separate processes. A “local’ circuit canbe
considered to include distances in the order of 300pm, implying anaxonal delay of
<0.3mS (assuming an axonal transmission rate of 1mS” approximately). The PSP
model ignores this delay, as it is small compared to the PSP rise time. In addition, van
Brederode and Spain(1995) (see chapter2 section 2.3) record PSPs using clamp
electrodes on the pyramidal cell body, hence the recorded PSP shape includes
dendritic transmission from more peripheral synaptic sites. The alpha function
parameters are based on these empirical values (Chapter3 table 3.1).

4.2 Methods

Parameters used are the same as in Chapter3 (tables 3.1, 3.3) and elements are
combined in various configurations to represent the different circuits. The excitable
cell inputhas a tonic part (table 3.3; I ) and a variable part. In the circuit models, the
variable inputis implemented as a weighted sum of the different alpha function
'synapse' inputs together with a 'synapse' noise signal. The presynaptic input'signal'
for the alpha function model synapseis a thresholding function applied to the
presynaptic excitable membrane model.

Where more than one synapse of the same type occurs on a single excitable membrane
element (for example, figure4.1a, FS, receives two fEPSP connections in the full
chain model) the conductance weightis dividedequally to preserve the conductance
ratio of the differentsynaptic types.

A strong simulated synaptic noise signal was applied to the 'input' elementof each
circuit model (RS;). Weak disturbance signals, comprised of mixtures of independent
noise signals, were applied to other neuronelements (0.1 the level of the inputsignal).
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The noise process was implemented as an independentPoisson event series with a
meaninterval of 5mS. This noise event time series was filtered with an alpha function
to simulate the fEPSC shape and then applied to the input element. Moderate spike
rates were obtained by applying a constantbias level or ‘tonic’ input to the neuron
elements. Spike trains, in the order of several hundred events, were recorded for each

neuronelement (recording simulations for 200 to 300 S of simulated time).
Certain parameters were varied to examine the behaviourof the circuits under
different conditions. Tables 4.1 and 4.2 summarise the different conditions for the two

circuit models.

42.1 Chain model conditions

RS1 noise Tonic input comment
input
RS1 RS2 FS1 Fs2
4a 0.2 25 3.1 0.14 0.14
4b 0.6 25 3.1 0.14 0.14 noise input+
4c 02 27 3.1 0.18 0.18 FS fast
4d 02 12 14 - - RS only

Table 4.1 Chain model conditions : input weights

4a Moderatenoise input, tonic inputlevels set to achieve a spike rate of 1052
4b Strongnoise input to RS1

4¢ FS tonic inputincreased to achieve a faster spiking rate.

4d RS only chain.

The different conditions for the chain model were: 4a moderatelevel inputsignal; 4b
strong noise input signal; 4c moderate input with FS biased to achieve a faster spike
rate; 4d moderateinputto chain of RS only (table 4.1). The tonic levels were set to
achieve an average spiking rate of around 10S™ for the moderate inputcase andRS

only cases.
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4.2.2 Reciprocal model conditions

RS1 noise Tonic input comment
input
RS1 RS2/IB2 FS1 FS2
de 02 27 1.55 0.14 0.12
4f 02 29 0.8 0.14 0.14 IB2
4g 02 ' 1.1 1.55 - - RS only

Table 4.2 Reciprocal model conditions; input weights
4e Moderate inputto RS1
4f IB elementin the lower layer

4g RS only reciprocal circuit.

The reciprocal model was tested in three configurations each with a moderate input
signallevel: 4e the full model; 4f the RS only comparison; 4g RS-IB wherean IB
elementreplaces the RS, element (figures 4.2a, 4.2b, 4.2c). Tonic levels were chosen
to achieve average spike rates in the orderof 10S* (table 4.2).

4,3 Results

Spike time series were recorded for all the model neuronsin the different model

circuit conditions.

4.3.1 Chain model

Time series for the first stage of the chain model are shownbelow in figures 4.3a and
4.3b (condition4a). The impulse series of the RS1 model neuronis ilreglﬂarrj'lhe rate
of impulse activation is muchlower than the intrinsic frequency of the RS model (due
to the action of the adaptationvariable). The RS; neuronshows a sub-threshold
variation due to the strongnoise input. In addition thereis a tendency for a damped
sub-threshold oscillation (for example figure 4.3a, following the impulse after
1500mS). The time series of the FS; model neuron closely follows the RS; series.
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Where two RSi impulses occur close together, aburstof FSi impulses are induced (for

example figure43b, around1200mS andI900mS).

RSI time series

500

1000 ms 1500

FSI time series

500

1000 ms 1500

Figures4.3a and4.3b Chain model time series, condition4a

2000

2000

Otherindividualmodelneuronimpulse time series are similar (notshown). Many RS2

impulses closely foUow an initial impulse on the RSi modelneuron. When an impulse

is notrecruited a clear EPSP is seen in the RS2modelneurontime series. Following

an impulse on the RS2modelneuron, a dampedsub-fthresholdosdUationis evident.

Rates of activity of individualmodelneuronsunderthe differentcircuit conditions are

comparedin the table 4.3 below.

Condition Spike rate S*
RSi RS2 FSi
4a moderatenoise input 85 10.9 94
4b strongnoise input 13.9 6.0 16.7
4c¢ FS biased fast 45 4.6 135
4d RS only 115 10.2
Table 4.3 Chain model spike rates under different conditions
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The strong input signal (condition 4b) was weighted to be three times the moderate
signal (condition4a). The strong inputevokes a higher spike rate in the first stage of
the chain (RS; andFS;). However the second stage of the chain (RS, and FS;) is
relatively inhibited and the RS, element achieves a spike rate of 65. The inhibitory
influence of the FS neuronsis powerful and limits the response to an increased input
signal, so that the RS;+RS,; spike total is similar in the two cases.

In condition4c the tonic inputto FS model neurons maintains the FS neurons close to
their threshold. The tonic inputincrease is not great enoughto obtain FS spiking
without the fEPSP input from the RS neurons, but the bias favours FS activity and
reduces the RS activity rate.

Table 4.4 summarises information from a number of correlograms (selected
correlogramsare shownin the figuresbelow). The magnitudeand lag of the first peak
in the particular correlogramis recorded. In the case of a cross-correlogramof the
spike series of two model neurons this indicates the timing of an increase in firing
probability on the second element, following an initial spike on the first element.

Condition Spike event correlation magnitude@ lag
RS1-RSp RS1-F$1 RS2-FSy
4a moderatenoise input 28 @ 4mS 34 @ 9mS 13 @ 10mS
4b strong noise input 17 @ 4mS 15 @ 10mS 16 @ 9mS
4c¢ FS biased fast 44 @ 4mS 38 @ 7mS 23 @ 6mS
4d RS only 25 @ 5ms - -

Table 4.4 Correlation of spike events in the chain model under different conditions. Magnitude
and lag of the first peak in the cross-correlogram. One cross-correlation unitis the chance level of spike

coincidence.

Despite the differences of signal input strengthand differences in FS activity, the
relative timing of RS spikes remains similar. The cross-correlation of spike events

shows similar lag values for the various RS element pairs under different conditions
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(table 4.4). The firing of RS, evokes a spike on RS; at a lag of 4 or 5mS. This timing
is preserved even in the RS only case (4d) whereno IPSPs are present. The relative
timing of spikes on FS units is more flexible.

RS elements evoke a spike onFS elements at a lag of around 10mS, again under
different input signal conditions (4a and 4b). However in the case where the tonic
inputwas increased to bias the FS units to achieve a higher average rate of firing (4c),
the cross-correlationlag betweenRS and FS was reduced, indicating that the RS
evokes a shorterlatency spike on the FS elementin the orderof 6 or 7mS (condition
4c FS biased fast, table 4.4).
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3. RS, RSg spike event cross-correlation 15 b RSg-FSgspike event cross-correlation

20
20 -10 0 10 20 -20 -10 0 10 20
lag ms lag ms
C RSj,spike event auto-correlation RS, RSg spike event cross-correlation
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Figures4.4 a-f Correlationsof spike eventseries in RS FS chain (figure4.2). One correlation unitis
a chancelevel of spike coincidence..

Condition 4a moderatenoise inputspike rates: RSi 8.5 s'\ RSz 10.9s"\ FSi 9.4s"\ FS210.9s'*

a Cross-correlation of RS nodes. RSi leadsby approximately4mS. b Cross-correlation of

RS: and FSz nodes. RSz leads by approximately 9mS (notshown; RSi andFSi show a similar pattern

of cross-correlation). Cc Auto-correlation of the RSz exhibits a dam pedperiodic response.
This is similar to the response of the RS modelin chapter3 (figure 3.7d).

Condition 4d figures 4.4d and 4.4e

d RS only condition 4d, cross-correlation of RSi andR Sz.

e RS only condition4d, auto correlationof RSz.

Condition 4c figure 4.4f

fFS biased fast condition4c, RSi auto-correlation is below chance level until>180mS lag.
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Selected cross and auto-correlograms are shownabove. Figure4.4 shows the spike
timings for the chain model withmoderate input (4a). Spike timing, resulting from the
inputof a strongnoise signal, exhibits very similar time shapes of cross and auto-
correlograms, althoughactual correlation peak values differ due to different firing

rates achieved in the two cases (condition 4b correlograms not shown).

The chainmodel RS only configuration (4d) has a similar RS to RS lag as the full
model (compare figures 4.4d and 4.4a). RS, spike auto-correlation may be compared
in figures4.4c and4.4e. Following an initial spike, subsequent firing probability of
the RS unit traces a dampedoscillation. However, in the RS only case (4d) theRS;
spike auto-correlation indicates a period of around 20mS of récovery of firing
following an initial spike compared to 12mS in the full RS-FS model (4a).

In the faster FS condition (4c), the RS1 auto-correlogram (figure 4.4f) exhibits firing
probability that is relatively depressed. However the general patternof an initial
recovery in firing probability arounda lag of 14mS, followed by a reduced firing
probability until lag > 180mS is similar for auto-correlations of RS elementsin all

- three conditions for the full model underthe different input conditions (condition 4a
moderatenoise input, 4b strong noise signal input, 4c FS biased faster) (4a and 4b not

shown).

In summaxy the recruitmentof impulses on the RS, model neuron following an initial
impulse on the RS; neuronis similar under different conditions; FS activity stabilises
or reduces RS activity as conditions are changed (4b and 4c).

4.3.2 Reciprocal model

Tonic inputs were chosen to set spike rates around 105 for all RS, IB and FS
elements. The spiking rate of the RS only configuration (4g) was very sensitive to
inputlevel and it achieved a spikerate of around 10S* with only a low tonic input
level. Firing rate changed fromnil to approximately 1005 as a small increase in the

tonic inputlevel was applied.
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The burst firing of the IB elementwas effective at evoking FS spikes, effectively
inhibiting the upperlayer RS; element (condition 4f). The tonic inputto the IB
elementwasset to a lower level than in the RS;-RS, model, to achieve arounda 10S*
spiking rate in the RS; element. Asbursts of spikes were evoked on the IB unit the
neuronmodel’s spike rate was still in the order of 1057 .

In the reciprocal circuit, following a spike on RS; a spikeis evoked on RS; at a lag of
around5mS under different conditions. The cross-correlogramalso indicates that the
RS, elementleads the RS; by around5mS but with a lower probability (figure4.5a).
This reciprocal relationshipis seen more strongly in the RS only case. Apartfrom
some fruncation of the peak around-5mS lag, the RS only RS;-RS; cross-correlogram
appears symmetrical, and so it resembles an auto-correlogram (figure 4.5¢).

In the full RS-FS reciprocal circuit model (condition 4e) the auto-correlogramsof the
RS elements are not clearly oscillatory in comparison to the chain model (4.5¢ and
4.5d comparedto 4.4c). The 'upperlayer' RS; exhibits a peak of firing probability ata
lag of 12mS in contrast to the sharp peak at 17mS lag foundin the lower layer' RS,
spike series. In the RS only model (condition 3), RS auto-correlograms show at besta
weak, dampedoscillatory pattern, and the initial period of recovery of firing
probability is around 25mS lag for RS, (figure 4.5f) and 36mS for RS; (not shown).
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Figures 4.5 a-f Spike correlationin reciprocal RS-RS circuitmodel.

Condition 4e Figures 4.5a-4.5d

a Cross-correlation of RSi andRS: spike trains., RSi leads by aroundSmS

b Cross-correlation of RSi and FS: spike trains, ¢ Auto-correlation of RS: spike train,
d Auto-correlation of RS: spike train.

Condition 4g Figures 4.5e and 4.5f

e cross-correlation of RS: andRS:, RS: leadsby aroundSmS.

f auto-correlation of RS: spike train.
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The RS-FS patternof cross-correlation is similar for 'upper’ and lower' RS-FS pairs
(condition4e RS;-FS; shownin figure 4.5b, other RS-FS cross-correlogramsare
similar but are not shown). An initial peak in firing probability occurs at a lag of 4mS
followedby a larger peak at 15mS. Firing probability remains above the chance level
up to 30mS lag.

Correlograms for the reciprocal RS-IB circuit are shownbelow (condition4g, figures
4.6a-d). The 'upperlayer' RS auto-correlogram (4.6c) is similar in shape to that found
in the RS-RS reciprocal model (4.5¢), but the correlation magnitudearound the 13mS
peakis greater. The RS-IB cross-correlation (4.6a) has a large peak at a lag of 6mS
which is comparable to the RS-RS cross-correlation maximumvalue at a lag of 5mS
(condition 4e, figure4.5a). Howeverthe RS-IB cross-correlogramdiffers in that it
exhibits an above chance correlation from arounda lead of 10mS to up to a lag of
20mS. Subsequently RS-IB spike correlation values remain depressed until they
recover to around chance levels at lags greater than170mS (not shown).

The lowerlayer' IB auto-correlogramshows a strong initial peak around6mS (4.6d).
Later firing is depressed until a lag of around 170mS, whichis consistent with the RS-
IB cross-correlation values found at these longer intervals. The in-circuit IB element
may be comparedto the isolated IB modelin chapter3 (figure 3.7f). The IB in-circuit
element's initial burst responseis similar but the longer period intrinsic frequency is
not clearly evident. IB in-circuit firing probability does recover to around the chance
level at a lag of approximately 50mS whichis consistent with an intrinsic frequency in
the order of 20Hz. The bursting behaviourof the IB elementis evidentin its initial
recovery of firing probability at 6mS. This contrasts with the RS-RS reciprocal model
lowerlayer RS; recovery of firing probability arounda lag of 17mS (auto-correlogram
4.5d).

UpperRS-FS andlower IB-FS cross-correlation patterns are broadly similar (RS-FS

correlation in figure 4.6b). The peaksin theIB-FS cross-correlation occur at

somewhatshorterlags (not shown).
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Figure 4.6 a-d Condition4f Spike correlaticsn.in reciprocal RS-IB circuitinodd.

a Cross-correlation of RSi and IBz spike trains., RSileadsby aroundSmS
b Cross-correlation o f RSi andFSi spike trains, ¢ Auto-correlation of RSi spike train,

d Auto-correlation o f IBz spike train.

In summaiy, the reciprocal model achieves: a graded average impulse rate occurs due
to the negative feedback of the FS neurons (in the absence of FS modelneurons, the
RS only reciprocal circuit tendsto self excite to resultin the maximumRS to RS rate

of activity).
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44 Summary of results

4.4.1 RS to RS spikelatency

The timing of RS to RS impulse recruitmentappears to be robust. Following a spike
on the pre-synaptic neuronmodel, a spike is evoked on the post-synaptic RS or IB
neuronat a lag of around5mS. This latency is robust under different configurations
and conditions (tables 4.4 and 4.5).

Model Spike event correlation magnitude@ lag
configuration R$1-RSy RSq autocorr RSy auto-corr

chain (4) RS-RS 28@ 4mS 12@ 14mS  4.9@ 135mS
reciprocal (4¢) RS-RS 45@ 5mS 34@ 12mS  59@ 17mS
reciprocal (4f) RS-IB 32@ 6mS(IB) 85@ 13mS 15 @5.6mS

(IB)

Table4.5 Comparison of reciprocal and chain models. Lag of first peak in correlogram,

one correlation unitis a chance level of spike coincidence.

4.4.2 FS negative feedback

Feedback from FS model neurons tendsto stabilise the average RS impulse firing rate.
In the chain circuit an increase in FS activity reduces the RS impulse rate (4b and 4c).
In the feedforwardcase the balance betweenRS andFS activity will determineif a
sustained chain of activity canbe achieved. In the reciprocal circuit FS model neurons
also act to moderate the RS activity rate (4g.adjusted tonic input, section4.3.2).

4.4.3 RS intrinsic oscillation

In the chain model a pattern of dampedoscillation of RS firing probability follows an
initial impulse (condition 4a, figure 4.4c). The reciprocal model exhibits a similar
primary period of recbvery, however subsequent firing probability does not clearly
show an oscillatory pattern (condition4e, figures4.5¢ and4.5d).
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44.4 1B elementburst firing

The RS-IB (condition 4f) differs from the RS-RS reciprocal model (condiﬁon 4e) in
the burstingbehaviourof the IB model neuronin the lower layer. The IB neuronhas a
high probability of firing a subsequent spike at a shorterlatency compared to the RS,
elements in a similar circuit position (table 4.5). The response timing of the upper
layer RS neurons appear to be similar in both conditions (4e and 4f).

4.5 Discussion

Two generalisations, relevant to the behaviour of the local neocortex, maybe drawn.
First, the timing of RS to RS impulse recruitment appears to be robust under different
conditions. Second, IPSP feedback by FS model neurons moderates the average rate of

spikingby RS neurons.

The use of negative feedback to control the gain of a circuitis well established, and so
- theinfluence of FS model neurons in reducing the average rate of activity was
predictable. Yet some of the results may seem counter-intuitive, for example: RS
neuronsin the reciprocal circuit appear to be 'less oscillatory' than those of the
feedforward chain model. This discussion will initially consider the basic properties of
the isolated model elements and then attempt an explanation of the circuit model
results.

4.5.1 RS transientresponse

A transientinputis effective at evokinga RS impulse where the rate of change of the
inputis short comparedto the adaptation process. A sub-threshold tonic input makes
little contribution to rise time to threshold, a transient inputis more effective at
approaching the spiking threshold. The RS-RS impulse timing is seen to be relatively
robust under different conditions as the adaptation process has time to oppose tonic or
slowly varying inputs. The constantinput factor is the high fEPSP rate of change
which evokes an impulsein the postsynaptic RS model neuronat a consistentlatency
(tables 4.4 and 4.5).
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4.5.2 Reciprocal circuit masks RS intrinsic frequency

The RS and IB neuronmodels have an intrinsic frequency of action associated with
the adaptation current (see chapter 3). The in-circuit RS model neuronexhibits some
evidence of oscillatory behaviourin the chain model (figures 4.4c and e). However, in
the reciprocal model the transmission of spike activity in the circuit is sufficiently
powerful to mask the intrinsic frequency of the RS or IB neuronsand RS auto
correlograms donot appear oscillatory (figures 4.5¢c and d).

4.5.3 sIPSPsmoderate average spikerates

The sIPSP rise time constantimplementedin the models is 100mS. Given the FS
impulse rate of approximately 1057, the successive sIPSPs merge to forma tonic
inhibitory inputto the RS elements. This inhibifory feedback moderates the RS
averageimpulserate.

4.5.4 IB spike timing more variable than RS

The RS-IB and RS-RS reciprocal circuits sﬁpportbroadly similar patterns of activity.
It is possible that the burstingbehaviourof IB pyramidalneuronsis associated with
their sub-cortical projection (see chapter 2). Howeverthe RS-IB cross-correlogram
indicates that the short period timing of the IB spike s less constrained by the RS1
element. Compared to the RS-RS case, the RS-IB relationship s relatively movable
and so it maybe considered that IB neurons may play a different role in the behaviour

of thelocal cortical circuit comparedto RS neurons.

4.5.5 Other models

Douglas and Martin implementsmall cortical circuitmodels (1991; 1992; 1994).
Their intention is to examine the cortical response to thalamocortical afferents. They
examine the response of upperand lowermodel layers (representing a simplification
of cortical layers) to a thalamocortical afferent pulse stimulus. They do not examine
the sustained response or consider the emergence of oscillatory activity. They
implementcompartmentmodels to represent the passive dendritic conduction of
morphologically described pyramidal and interneuron cells. Their model (1991) is
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implemented with three model neurons representing three subpopulations of neurons
in the ‘microcircuit’. The model upperlayer “population average neuron’ represents
the pyramidal and spiny stellate neurons in layers 2 to 4, the lower layer model neuron
represents the pyramidal neurons in cortical layers 5 and 6, an inhibitory model neuron
acts on both the upper and lower layers (self excitation and inhibition is allowed).
Active conductances that generate action potential impulses are not implemented
(p764 1991). The model assumes that population average rates of activity are
represented by the depolarisation of the membrane potentials of the (non-spiking)
model neurons. Douglas and Martin implement a strongerlevel of inhibition acting on
the lower layer, contrasting with the implementations in this thesis. (Their
assumptionsleading to this implementationof inhibitory levels are discussedin
chapter5, section 5.4.4 .) Althoughthe Douglas and Martin model differs in many
respects from the models implementedin this thesis, their work is of interestbecause
of their recognition of functional layer differences in the local circuit.

4.5.6 Modellimitations

The exact patternof transmission of spike activity in this chapter’s circuit models is
not a realistic representation of local circuit activity dueto the limited number of
neurons in the model circuits. The case of the RS only reciprocal circuit illustrates this
(4g). RS elements in the reciprocal model supporteda 100S™ firing rate when tonic
levels were set too high (see section4.3.2). This rate correspondsto the RS-RS retum
impulse recruitment time of 2x5mS. This sustained high frequency behaviour was not

explored as it was considered to be a poor representation of the biological case.

The exploration of local circuit dynamics requires the implementation of a more
complex model with longer circuit paths. The limitations of the above models flow
from the inadequaterepresentation of the numbers of neuronal elements withinlocal
sub-populations. Subsequent chapters will explore the behaviour of model networks
includinghundreds of neurons and synapses.

Given that the probability of pyramid to pyramid innervationin a local volumeis
around9% (chapter2) it can be expected that most local circuit returnpaths would
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involve at least one more neuron (discussed in chapter 5). The transmission of activity
througha populationrepresenting a local neuronal volume will be explored in the next
chapter.

4.5.7 Conclusions

Two general conclusions may be drawnfrom these results, despite the limited nature
of the model circuits. Inhibitory feedback by FS elements reduces average circuit rates
of activity, but the transientresponse of RS elements is not impaired. The timing of
RS to RS spike recruitmentappears similar under different conditions.

Both these features would seem to facilitate a reliable local circuit response to a time
varying signal. However the models” assumptionof PSP reliability contributes to the
similarity of RS to RS spike transmission times. A strong functional synapse
(comprised of a number of anatomical synapses, see chapter 2) reliably achieves a PSP
of a certain amplitude. In the case of a reliable EPSP, the model may reasonably
reflect the reliability of spike latency on a postsynaptic RS neuron.

Empirically observed weaker PSPs are less reliable in amplitude, even though the rise
time of a particular functional synapseis constant. Variationin weaker PSP amplitude
also implies a variability in the postsynaptic impulse recruitment (since RS neurons
respond to rate of change). Simply put, reliable RS to RS impulse transmission times
canbe expected for the stronger synapses where EPSP amplitudesare reliable (given
the assumptionof passive PSP integration). |

4.6 Summary

Simple models combining elements of the neocortical local circuit are considered. The

relative timing of activity is examined using impulse event cross-correlograms.

RS to RS (regular spiking neurons) impulse recruitmentis similar under different
conditions and circuit configurations. The model is appropriate for RS to RS
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transmissioninvolving a strong functional synapse. Weaker urireliable synapses,
leading to less reliable spike timing, are not well modelled.

Inhibitory feedback by fast spiking (FS) elements tends to stabilise the average RS
firing rate. The relative timing of spikingof the intrinsically bursting element (IB),
included in the lowerlayer of the reciprocal circuit, is more variable than the spiking
of thelowerlayerRS element.

The interpretation of the behaviourof the model circuits presented in this chapter must
be cautious. The detail of the behaviour exhibited by these circuits is subject to the
caveat that as low numbers of neuronsand synapses are modelled, the circuits are not
good representations of the typical local connectivity where each neuronreceives

* many thousandsof synapses. This chapter serves as a pilot exercise in developing
more realistic network models which include representative populations of model
neuronsand synapses.
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5 Local networks in upper layers of neocortex

This chapterexamines the behaviour of a model network, representing an assembly of
upperlayer neurons. The network comprises 80 Regular Spiking (RS) and 20 Fast
Spiking (FS) units, interconnected by model “synapses’ representing the fEPSP, fIPSP
and sIPSP syhapse types (as describedin chapter 3). The networkis sparsely and
randomly connected.

The model is based on in-vitro results which find relatively strong inhibitory PSPs in
the upperlayers (discussedin chapter 2). Althoughthe upperlayers are differentiated,
this model makes the simplification of treating these layers as a homogeneous
assembly. It is intended to address the question of the extent that local activity
contributes to neocortical synchronisation and oscillation. An independentnoise input
initiates impulse activity in the network. The noise inputrepresents uncorrelated
inputs, representing the state of thelocal assembly and its afferents before the
emergence of oscillatory activity. The noise inputalso acts to disturb the model
networkactivity as collective oscillationbegins to be established.

The patternsof activity in a number of networks are compared. The networkshave the
same general scheme of connectivity, but some connection parameters are varied: the
relative strength and time constants of different synapse types; tonic and noise input
levels. Models 5a to 5d explore the variation of parameters that affects the balance of
RS and FS activity and collective oscillations. Models 5e and 5f change inhibitory
synapse parameters, to allow a comparison with the published model of Bush and
Sejnowski (1996).

The full model network (5a) does not exhibit a strong oscillatory patternof activity. It
was found that removing sIPSP connections produced a network that sustains
oscillatory activity more effectively (5e). In addition, oscillatory network activity is
mademoreregularby setting fEPSP and fIPSP risetimes to similar values (5f).



However, such a reduced model does not correspond to the biophysics reported for an
assembly of upperlayer neurons, as the upperlayers exhibit sIPSPs that are stronger
than those foundin the lowerlayers (discussed in chapter2, section2.3 ).

51 Method

The neuronnetwork model is based on in-vivo and in-vitro results (discussed in
chapter?2). The sparsely connected networkis implemén&dwith a variationof the
parameters of individual model neurons and synapses to represent the variationof a

neural population.

5.1.1 Neuron model parameters

The FS and RS models are based on those introduced in chapter3 (section3.2.1,
parametertable 3.3). A network of units with identical parameters could introducea
sharpresponse at a specific frequency. To avoid this artifact, the adaptation rate
parameter for each RS was randomised (parameterr” , see chépterS section3.2.1.b).
A muiltiplier, taken from a uniform randomdistributionin the range 0.7 to 1.3 , was
applied to the adaptation rate. This range results in the fastest RS unit producing
nearly twice (1.86) as many impulses as the slowest RS unit for the same tonic input.

The RS unit population mean impulse rate remains approximately the same.

5.1.2 Synapse model parameters

Parameters for the model synapses are based on empirical studies reviewed in chapter
2 (sections 2.3.3 and 2.3.4). The generic alpha function synapse model does not
separate out pre and post-synaptic conduction; axonal and dendritic transmission are
notexplicitly modelled. However, parameters are chosen to achievea PSP rise time
appropriate for the type of model synapse (section 3.1 table 3.1). Empirical studies
give a range of PSP rise time values. To reflect this, a randommultiplier is applied to
the PSC time constant for each synapsein the model network. The multiplier is taken
from a uniformrandomdistributionin the range 0.8 to 1.2.
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It maybe noted that the achieved PSP rise time s a function of the action of the
conductance impulse (PSC) on the model excitable membrane (RS or FS model
neuron). Although the PSC time constant for the fEPSP is multiplied in the range 0.8
t0 1.2 (meano'= 1.81riS, rangefrom1.4 to2.2mS), the achieved PSP rise timeis
limited by the dynamics of the excitable membranemodel and remains approximately
5mS (note these PSP rise times are estimated when the membrane modelis in an epi-
threshold condition). In contrastthe slowerPSC risetimes of the IPSP models (fIPSC
or’’= 8mS, sIPSC or'= 100mS) determine PSP time courses approximately

proportionally.

5.1.3 Conductance weights

Synapse model ‘connection” weights were assigned in a ratio fo preserve the overall
conductance ratios appropriate to the upperlayers (section 2.3.4 table 2.3). These
conductance values represent the effect of populationsof synapses on the target
neuron. Accordingly the conductance ratio is apportioned according to the number of
each synapse type on the target model neuronunit. For example each RS neuron

- receives 15 fEPSP and 5 IPSP inputs. The individual synaptic weights are therefore
1/150f the population fEPSP and 1/50f the population IPSP weights respectively.
Each conductance weight assigned to a particular connection is randomised withina
band by a multiplier taken from uniformrandomdistributionin the rangeof 0.8 to 1.2.

5.1.4 Network activity and conductance ratios

A preliminary examination of the contribution of network inputsto evoking impulse
activity was made. The model neurons receive inputs from a noise source, a tonic
inputand the network’s synapses intrinsic connections. Parameters are selected to
achieve a moderate rate of impulse activity averaged over the network.

The noise inputis intended to simulate a set of external inputs that are independentof
the network’s intrinsic activity. The noise source is implemented as a Poisson noise
process, where each noise event activates a mbdel synapse witha fEPSP time course.
The noise synapse is weighted and each conductance weight is randomised withina
band by a multiplier taken from uniform randomdistribution in the range of 0.8 to 1.2.
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The inverse of the Poisson interval gives the meannoise event rate. The Poisson
interval and weight are chosen so that the productof the noise weight and event rateis
similar to thelevel of fEPSP activity on a networkmodel neuron. For examplea
Poisson interval of 12.5mS gives a noise rate of 805, this rate, weightedby 0.1,
achieves a noise inputactivity level of 8 S per neuron. Network RS meanimpulse
activity of 40S™ , with an individual PSC synapse weightof 0.013 gives a comparable
fEPSP inputactivity level of 7.85" perneuron (with 15 fEPSPs acting on one model

neuron).

The tonic input parameter is set to maintain the model neurons close to animpulse
threshold level (parameter] , see chapter3 section3.2.1.d ).

The conductance weight for fEPSP model synapse and the networks intrinsic rate of
activity is used to set thelevel of noise inputas described above. Conductance weights
for fIPSP and sIPSP model synapses were initially set according to the conductance
ratio estimated from the results of van Brederodeand Spain (1995) (approximate
conductanceratio fE : fI : sI 2:3:1 for upperlayer neurons, discussedin chapter2,
section 2.3.4).

It was found that the model network cannot supportsustained RS impulse activity
whenimplemented using this conductance ratio. As inputweights are increased an
initial burstof RS impulse activity can be evoked butsustained RS activity is not
achieved. As inputs are increased further this burst terminates in the ‘excitatory death’
of the model neuron. The RS neuronmodel x variable (see chapter 3, section 3.2)
recovers to less hyperpolarisedlevels (x variable more positive) after successive
impulse cycles, until the x variable remains above the impulse threshold. This level
wouldnot be consistent with the survival of a biological cell.

5.1.5 Adjustmentof synapse conductance ratio

Changing the balance of the conductance ratios, increasing the relative contribution of
the excitatory conductance, allows the model network to achieve sustained RS
activity. A conductanceratio fE : fI: sI of 4:3:1 wasfoundto achievea balance of
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impulse activity, with comparable average rates of impulse activity on RS and FS
model neurons. In addition inhibitory conductances for synapses on FS neuronsare
reduced to achieve a higherrate of FS action. The relative IPSC values arebased on
the lower layer conductance ratio reportedby van Brederode and Spain.

The working model conductance ratio (4:3:1 approximately) doubles the confribution
of the excitatory conductance compared to the fE : fI : sI conductanceratio estimated
from the empirical results of van Brederode and Spain (ratio 2:3:1 see chapter2
section 2.3.1). This discrepancy may have arisen due to a number of factors.

The morphology of FS neurons differs from typical RS neurons (pyramidal neurons).
Also the patternof innervation of FS neurons may differ from typical RS neurons. In
the empirical study, differences in physioldgy and morphology may affect the
recruitmentof neuronslocal to the stimulation site (stimulationof a population of
presynaptic neuronsis by extracellular electrode). Possibly, the experimental
conditions may have over recruited FS neurons, resulting in relatively larger IPSPs in

comparison to IPSPs achieved by naturally occurring rates of activity.

In addition, the limited accuracy of estimationof conductances from empirical
measurements contributes to inaccuracies. Given these uncertainties, the adjustmentof

the conductance ratio is unsurprising.

5.1.6 Network configuration

Each networkmodel contains 100 model neurons, comprising 80 RS and 20 FS model
neurons. In the neocortex a functional column contains many thousandsof neurons
(chapter2, section 2.1.3). The size (upperlimit) of the model network s chosento
ensure that the calculation of network activity is tractable. Consideration of preserving
some of the statistics of population activity guides the minimumnetwork size. Given
the restricted network size, the model networkis over connected compared to thelocal
connection probability of the natural neocortex (discussionin chapter2, section2.2).
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This allows the implementation of a larger numberof synapse inputsinnervating each

model neuron, preserving some statistical function over these inputs.

Connectivity between the model neuronsis sparse and random (reciprocal connections
are excluded):
80 RS model neurons, each receives ;

15 fEPSP connections from other RS,

5 fIPSP and5 sIPSP connections from FS
20 ES model neurons, each receives;

15 fEPSP connections fromRS,

5 fIPSP from otherFS,
giving a network total of 2400 model synapses across the whole network. (Note
sIPSPs removed for some model networks, see table below.)

On RS neurons the model synapse conductance ratio fE : fI : sI is maintained at
3:2:1 . The absolute conductance valueis varied for different model networks (see
table 5.1 below). Inhibitory conductances on FS model neurons were set at lower

levels.

The noise process interval and input weightis adjusted so that the weighted noise
activity level is approximately 0.67 of the sum of the fEPSC weighted activity level

received by a neuron. (The same weightis applied across the model network.)

The set of inputs, applied across the model network, is adjusted to obtain a meanrate
of impulse activity of 20 S t040S™ per modelneuron. In this activity range, a
majority of model neuronsare involved in each population peak of activity. At lower
inputlevels it was difficult to obtain sustained network activity.

5.1.7 Network Models

Network parameters and configuration were varied to explore the model’s behaviour.

The variation in network parametersis set outin table 5.1 below.
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The balance of synaptic conductances implementedin the modelsis based on
empirical results (and subsequently adjusted; section 5.1.5 above). However the
‘absolute’” weightof a synapseis less well defined. A roughestimate of the absolute
strengthof a single functional synapse may be madefor a particularinstance. In-vitro,
for example, Thomson and Deuchars (1993) measurelarge single axon EPSPs
between pyramidal neuronsin layer 5. The amplitudeof a large pyramid to pyramid
EPSP is in the orderof 9mV and these functional synapses are capable of eliciting an
action potential in the postsynaptic pyramid.

From an estimate of somatic surface area and electrical characteristics (depolarisation,
membraneresistance and capacitance) the peak current (PSC amplitude) may be
estimated to be in the orderof 100pA. This value is then scaled to the “single point’
process of the RS model, to give an estimate for the required amplitude for a strong
model PSC, and the model synapse weightrequired to achieve the PSC amplitude.
Fortunately confirmation for this roughestimate can be obtained by considering the
strong EPSP amplitude (for example9mYV) in relation to the approximate threshold for A
impulse firing and the EPSC reversal potential and the model equivalentvalues. These
different approaches give estimates for a “strong’ individual excitatory synapse weight
in theregionof 0.1 to 0.15 model units.

Brederode and Spain (1995) find collective EPSPs achieving amplitudes that are not
greatly differentin scale compared to the single EPSPs found by Thomsonand
Deuchars (estimated from their figure 1A, p1152, EPSP amplitudes evoked by
stimulationin same layer: upperlayer 7.5mV; lowerlayer 15mV).

The precise “absolute’ level of synaptic weights implemented in the model networks
cannotbe specified from a consideration of the in-vitro recordings; a limited
exploration of networkbehaviour at different synapse weights is justified. Model 5a
implementsa collective EPSC weight of 0.2, which s divided amongst the individual
excitatory synapses. Model 5b implements a collective EPSC weightof 0.3 to
examine the case where synapses may be stronger. (In model 5b the tonic inputto RS
model neuronsis increased to balance FS and RS activity.)
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Tonic inputlevels are initially set to place model neurons close to their impulse
thresholds as a modelling expedient. In pilot network simulations these levels are
adjusted as other parameters are changed in order to approximately balance the rates
of impulseactivity of theRS and FS model neurons. The use of a tonic inputlevel
may be jusﬁﬁéd by the in-vivo observation of backgroundactivity that maintains a
tonic depolarisation level (Destexhe and Pare 1999). Ideally tonic levels mightbe
based on in-vivo measurements, however available data is limited (especially for a
state just before local oscillations occur). Model network 5¢ implementsincreased
tonic inputsto RS and FS neurans. Model 5d increases the tonic inputto the RS
neuronsonly, unbalancing the RS and FS activity.

The role of IPSPs is changed in models 5e and 5f, to allow comparison with the Bush

and Sejnowski columnmodel (1996). sIPSPs are omitted from model 5e, note that the
RS tonic inputlevel is reduced to maintain the balance of FS and RS impulse activity.
Model 5f sets the fIPSP rise time to fast rate for comparisonwith Bush and Sejnowski
model.

Model RS PSCtotalweights ~ RStonic | FS PSCtotalweights  FS tonic
comment fE fI sI I | fE fI sI I

5a 02 -015  -0.06 25 025 -0.09 -0.006 0.17

5b increasePSC | 0.3 -0225  -0.09 26 03 -009 -0.009 0.17

5¢ increase I 02 015  -0.06 2.75 025 -0.09 -0.006 0.185

5d inreaseRSI | 02  -015  -0.06 2.75 025 -0.09 -0.006 0.17

5e nosIPSP 02 -03 none 1.7 02 -01 none 0.14

| 5f nos[PSP 02 -03* none 17 02 -01* none 0.14

*fast fI[PSP

Table 5.1 Individual synapse conductance weights equal the total conductance divided by the
number of synapses innervating a neuron and multiplied by a valiie in the uniform random interval 0.8
to1.2. *fIPSC time constantset samerate as fE (o = 1.8mS). Individual model synapse PSC time
constants are multiplied by valuein the uniformrandominterval 0.8 to 1.2 . Noise input Poisson
interval is 12.8mS, noise weight is 0.1 and 0.02 on RS and FS model neuirons respectively. Individual
noise inpufs are multiplied by value in the uniform randominterval 0.8 to 1.2 .
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In summary, model 5a provides a baseline of network behaviour. Synapse PSC
weights are increased in model 5b. Increased tonic inputs are implementedin Model
5c and PSC weights are set at the samelevel as 5a. Networkmodel 5d has an
increased tonic inputlevel actingon RS neurons (level as 5c), but the tonic inputsto
FS neurons are set to the lower 5a level. In models 5e and 5f sIPSPs are omitted to
allow comparisonwitha published columnmodel. In addition, model 5f sets the time
constant for fIPSPs to the same value as fEPSP model synapses.

The noise input represents non-oscillatory inputs that are not correlated to thelocal
activity. The synapse weight of the noise inputis set to achieve a similar power
(activity rate multiplied by weight) to the collective network model ‘internal” fEPSPs.
This may be considered o represent inputs to a local neural assembly before local
oscillatory activity is established. It is intended to examine the collective oscillation
properties of model network. The noise inputinitiates impulse activity in the network,
butit also serves to deflect network activity and may weaken periodic or collective
oscillatory activity.

5.1.8 Simulationmethod

The network was specified as an array of partial differential equations. The state of the
network was evolved using an adaptive step algorithmbased on Richardson
Extrapolation and the Bulirsch-Stoer Method described by Press et al (1992). This
methodis appropriate for smooth systems and allows control of calculationerror. The
calculation of network activity scales approximately linearly with the numberof
variables and is dominatedby the numberof model synapses.

Initial states for the neuron elements of the network were randomly chosen froma
lookup table of time series of RS and FS models. Synapse model variables were
initialised within a uniform randomdistribution arounda time averaged mean, found
from trial runs of a network with moderate levels of activity (the slow time constant of
the sIPSP model ensures that it is moderately active at the start, fIlPSP and fEPSP
show little activation at the start). A settling time of 500mS was used before 1000mS
of networkactivity was recorded. The model simulations ignore initial activity
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occurringatthe onsetof a stimulus. Due to the initialisation of variables and settling

period, sustainednetwork activity is recorded.

5.2 Results

5.2.1 Network Model 5a

The time series of network activity is shownas impulse rates per millisecond in
figures 5.1a and 5.1a detail, below. The meanrates of activity are 325" per RS model
neuronand308" per FS modelneuroa A large proportion of the neuronsin the
network contribute to each populationactivity peak (figures 5.1.a andS.l.a detail).
The collective action of FS units typically lag the RS unitsby 10ms or so. The pattern
of activity is not strongly osdUatoiy (auto and cross-correlationsof activity are

examinedin section 5.3.1 below).

3 Network model 5.a time series
RS -
FS -
1
I 30
0 200 400 600 BOO 1000
ms
Figure 5.1a
3 detail Network model 5.a time series
RS —
FS —
30
i
600 620 640 660 680 700

Figure 5.1a detail



5.2.2 Network Model5Sb

Network model 5.b time series

35

0 200 400 600 800 1000

Figure 5.1b

Network 5b has strongermcdel synapse innervatLonof RS modelneuronsthanthe 5a
model. The overall impulse rates for RS andFS neurons are somewhatreduced (24S“*
and 23S" respectively), comparedto the S5a model. Each population activity peak
involves a large proportion of the modelnetwork's neurons. The generalpattemof

population activity appears a little less regularthanthatshownby the 5a model

52.3 Networkmodel 5¢
Comparedto 5a, model Sc retains the same level of synapse innervation,but the tonic

inputsto RS andFS neurons are increased.

C Network model 5.c time series
45 RS
FS—
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Figure 5.1c

Meanrates of impulse activity are similar to those of the Sa model: RS 33S"* andFS

33S'l The general pattemof activity is also similarto thatofthe 5a model, however



the RS activity peakshave tendedto spreadover 3-4ms comparedto I-2ms in the 5a

model.

52.4 Networkmodel 5d

The tonic inputto RS neuronsis increased, other inputs are at the same level as model

Sa.

d Network model 5.d time series

1000

Figure 5.1d

Model 5d population activity is less regularthan the pattern shownby 5a, especially in
the secondhalf of the time series. Meanrates of impulse activity are RS 42S"* and FS

348\

5.2.5 Networkmodel 5e

The 5e network lacks any sIPSP, also synapse weights and tonic levels differ from the

5a model.
0 Network model S.e time series
RS
FS
30
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Figure 5.1e



Networkmodel Se achieves the mean activity rates: RS 32S“*andFS 24S"\ The

general pattern of activity appears similarto that of Sa.

5.2.6 Networkmodel 5f
The fIPSP time constantis setto achieve a fasterrisetime than the othernetwork

models. Otherparameters are set to the same levels as model Se.

f Network model 5.ftime series
RS —
FS —
M
e D-
All
0 200 400 800 1000
Figure 5.1f

The populationactivity of model 5f appears more regularthan Se. The meanrates of
activity per neuron are higher: RS 46S"*andFS 51S"*. In commonwith the other

modelnetworks, peaks of population activity include a large proportion of neurons.

5.3 Correlation of impulse activity

Time series correlations give an indication of the relative contribution of the neuron
types andnoise inputto the activity pattem of the network models. Correlograms
allow the examination of the correlation of the activity of network elements at

differenttime lags.

53.1 Model5a

The impulse time series of network model 5a (section 5.2.1, figure 5.1a) exhibits

synchronised RS activity, butthis activity is not clearly regular.
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Model 5a RS auto-correlation Model 5a FS auto-correlation
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In the impulse existence correlograms, one correlationunitis the chance level of
correlation. Some of the variationin the correlogramscanbe ascribed to the limited
durationofthe data series, for example the noise-RS correlogramFig 5.5a. shows
variation in the region -60ms to OmS lag. In this region RS activity leads the noise
event, hence the expected correlationis the chance level of one unit.

5.3,1a RS impulse autocorrelation figure 5.2a

The time series of RS neuronpopulation activity in modelnetwork 5a showspeaks of
activity which involve many of the RS neurons (section5.2.1, figure 5.1.a). RS
impulse activity is broadly synchronisedbutnot clearly oscillatory. This pattemis
confirmedby the RS impulse existence autocorrelogram Following the initial RS
impulse (OmS lag), there is a depressionof riringprobability reaching a rninimumat
10mS lag. The first minimumis 0.27 times the chance level of autocorrelation,
indicating a strong depression of firing probability. Firing probability recovers to
reach a maximum at 28mS. This and variation of firing probability at greater lags is

consistentwith a weakly osdllatory pattern. Following the first rninimum, subsequent
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maxima and minimareach 1.35 and 0.7 fimes the chance level of autocorrelation,

respectively.

5.3.1b FS impulse autocorrelation figure5.3a

The autocorrelogramshows a depression and recovery of FS impulse firing
probability to above chance by a 30mS lag. This modulationis relatively weak
compared to the RS patternof activity. At greaterlags, the correlogramdoes not show
a strong pattern of modulation.

5.3.1c RS - FS impulse cross-correlation figure5.4a

Following a RS impulse, FS model impulse firing probability is greatly enhanced ata
lag of 8mS; the RS FS impulse existence cross-correlogramshows a strong maximum
peakat 8mS lag. In addition the RS FS impulse cross-correlogram showsa strong
minimumin the region-12mS to -2mS lag (ie a lead), minimaare 0.3 to 0.36 times the
chance level of cross-correlation. This indicates that RS firing probability is strongly
depressed following a FS impulse.

5.3.1d Noiseevent to RS impulse cross-correlation figure5.5a

The correlogramexhibits a first maximumat 4mS lag, followed by a minimumat
16mS. This may be interpreted as the recruitmentof a RS impulse by the noise event,
followedby a depression of RS firing probability.

The effect of the data series length on the variability of correlation values can be seen.
The noise RS correlogramshowsa randomvariation where RS impulse leads the
noise event (negative lags). If the network simulation time series were extended, the
cross-correlation of the independentnoise process and RS impulse time series would

approach the chance level of one unit in the negative lag region of the correlogram.
5.3.2 Model 5f

The RS impulse time series of network model 5f appears more regular than the
activity of 5a (section 5.2.1, figures 5.1.f and 5.1.a respectively).
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Model 5f RS auto-correlation Model 5fFS auto-correlation
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5.3.2a RS impulse autocorrelation figure 5.2f

The general pattemofthe model 5fRS impulse existence autocorrelationis similar to
thatexhibitedby 5a. Flowevera strongermodulationof RS impulse activity is
indicatedby the greater difference between the first correlation minimum and
maximumat 12mS and24mS lags, respectively. The recovery of RS firing probability
is strongerthan in the 5a model. This is consistentwith the apparentregularity of the

impulse time series of network 5f (figure 5.1f above).

5.3.2b FS impulse autocorrelation figure 5.3f
TTie modulation of FS impulse probability is weak. There is a weak depression and
recovery up to about24msS, at greater lags the autocorrelogram shows little variation

aroundthe chance level.
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5.3.2¢ RS FS impulsecross—correlation figure5.4f

The correlogramshows a sharp maximumat a lag of 8mS indicating the enhanced FS
impulse probability following an initial RS impulse. There is some modulationof the
correlation level at greater lags, echoing the strong modulation of RS activity. The
depressionof RS firing probability following an initial FS impulseis indicatedby the
correlogramlead minimumat 4mS. This is a “sharp” minimumit does not extend over
many mS, in contrast the lead minimumin model 5a (figure 5.4a above) extends from
-2mS to -12mS. Similarly FS lead minimumextends from -4mS to -12mS in model 5e
RS FS cross-correlogram(not shown).

5.3.2d Noiseevent RS impulse cross-correlation figure5.5f

Following a noise event, RS impulse probability reaches a maximumat 4mS lag. RS
firing probability is depressed to minimumat a lag of 12mS. The noise RS correlation
is modulated at greater lags, echoing the strong modulationof RS activity as in figure
5.4f above.

5.3.3 Comparison of network models 5a to 5f RS autocorrelations

Figures5.2a to 5.2f are presented below for comparison. Impulse existence correlation

variation and timing is summarisedin table 5.2 below.
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Figures 5.2a-f
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Figure 5.2b

Model 5d RS auto correlation
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Figure 5.2f

Comparison of networkmodels RS autocorrelations
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Networkmodel Impulse existence autocorrelation@ lag mS
max@ 0mS| Istminimum @ lagm$ | Istmaximum @ lagmS | maxmin
5a 5.48 0.27 10 1.35 28 1.08
5b 5.32 0.54 12 1.03 20 0.49
5¢ 3.33 0.45 14 1.19 24 0.74
5d 2.23 0.72 12 1.15 24 043
Se 5.69 0.20 12 1.03 18 0.83
5f 410 0.33 12 1.61 24 1.28

Table 5.2 RS collective impulse existence autocorrelation comparison.
Precision of correlation timing is limited by 2mS data bin size.

The magnitudeof the difference between the first maxima and minima may be
considered as a roughindicator of the regularity of the RS popLﬂaﬁon activity (last
columnin Table 5.2). This measure indicates model 5f as the most oscillatory, and
model 5d has theleast regular RS populationactivity.

Model 5a exhibits a moderate oscillation of RS impulse activity. Model 5¢ has
increased tonic inputlevels, howeverRS and FS rates of activity are barely changed,
butRS collective activity is somewhatless regular. Model 5b has increase synapse
weights (noise input unchanged), impulse activity rates are reduced, and collective RS
activity is less oscillatory. Model 5d has an increased fonic inputto RS neurons, RS
impulse activity is greater than the rate of FS activity andRS collective activity is the
least oscillatory. This limited exploration of networkbehaviour indicates that the _
model is sensitive to the balance of inputs (intrinsic synapse weights and tonic input
level) and the balance of RS and FS activity. In addition the collective RS neuron
impulse oscillationis not very pronouncedin the ‘best’ configuration, model 5a
(howeverit shouldbe recalled that the noise inputis relatively strong, and will tend to
disturba collective activity cycle).

Model 5f exhibits a strong collective RS oscillation, evidentin the raw time series and
the RS autocorrelogram (figures 5.1f and 5.2f respectively). Model 5f omits sIPSP
synapses and implementsa fast fIPSC rise time and so is comparable with the Bush
and Sejnowski model (1996). Model 5e omits sIPSP synapses, but retains the same
fIPSC rise time as the previousmodels 5a to 5d. Model 5e achieves a patternof RS
impulse aéﬁﬁty that s similar to the ‘moderate’ collective oscillation of 5a.
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5.3.4 Results summary

Given the limited exploration of the models’ parameters space it is appropriate to
consider the broad differences between the behaviours exhibited by the models. Small
differences in behaviour mightbe abolished by a small adjustmentof parameters (for
example the regularity of RS collective activity in models 5a and 5e).

Common behaviour of network models

Peaks of activity in the RS neuronpopulationinvolve a majority of the RS neurons.
The probability of RS action is depressed to a minimumat around 12mS following
initial collective activity, recovering to above chance levels by 20mS. The recovery of
RS impulse probability is at a meximumat 24mS (mean of all networkmodels 5a to
5f). Innervation from the “external” noise process recruits impulses in RS model
neurons after a delay of around4mS. Impulse activity by RS model neuronsrecruits
FS impulses at around8mS.

Contrasts in behaviour of network models

The 5a network model does not sustain a strong oscillatory action, although RS
autocorrelation reveals a weak periodic component. Model 5b, 5¢ and 5d implement
parameter changes and demonstrate the sensitivity of the networkas all of theses
changes reduce the regularity of network activity. ihe ‘unbalanced’ change in model
5d results in the average RS neuronactivity rate béiﬁg higher thanthe FS rate, and the
least regular collective action. These upperlayer models (5a to.'5d) donotappearto
support the strong oscillatory action observed in-vivo (see Chapter1 discussion).

Models 5e and 5f differ from 5a by omission of sTPSP model synapses. Despite this,
model 5e achieves a time series which appears similar to 5a. The population activity in .
5a is supportedby a relatively higher fonic inputlevel (reducing 5a tonic inputto the
5e level abolished nearly all RS impulse activity). Despite this, model 5e achieves a
time series which appears similar to 5a. The 5f model implements fTPSP synapses
witha fast rise time. The 5f model achieves a sustained oscillatory patternof activity.
Thus the neuron population appears to be sensitive to the relative time courses of
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fIPSP and fEPSP model synapses. The 24mS oscillatory period of the 5f modelis the
same as the mean of all the models period for the RS autocorrelation first maximum.

5.4 Discussion

54.1 RS neuron population synchronisation

The synchronisation of RS population activity appearsto be a robusf phenomenon,
appearingin the activity of all the networks. (Network 5d is a partial exceptionas the
patternof RS activity is less clear in the latter half of the activity time series.)

The networkmodels are sparsely connected and individual synapse weightings are set
randomly (within a band), so the innervation of each model neuronis different, yetRS
activity is largely confined to narrowpeaks of activity. Although connectivity is
sparse, “fan out’ ensures that each model neuronis indirectly connected to the rest of
the network population via another model neuron. In addition, althoughindividual
synapse weights vary, the individual neuron‘sees’ innervation from a numberof
synapses, smoothing out the variation. Despite the randomisation of certain
parameters, the numbersof synapses and neurons enforces some homogeneity on the
network.

The narrowest peaks of RS collective impulse activity precludes the direct recruitment
of manyRS neuronsby other RS neurons as the duration of the peak is too short
(<5mS). (RS chain model cross-correlation indicates a lag of 4 or 5mS for RS to RS
recruitment, chapter4, section4.3.1, table 4.4 .) Certain RS activity peaksoccur with
a greater duration (for example 8mS in the time series of model network 5¢) thus
allowing direct RS recruitment. However, RS autocorrelations show a chance level of
firing probability at 4mS lag and below chance at greater lags towards the first
minimum, indicating that fast RS to RS impulse recruitmentis not a major feature of

networkbehaviour.

The regularity and synchronisation of RS impulsesis likely to be drivenby the sub-
threshold cycle and recovery of firing probability related to the model neuron

adaptation current. The RS model neurons are implemented with a range of adaptation
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time constants (section 5.1.1), so it is notable that the RS populationis capable of
relatively “tight’ synchronisation. It seemslikely thatRS model neuronsreceive a
‘resetting” input, and the inhibitory synapses from FS neuronsare a likely candidate
for this role.

54.2 FS neurons and RS population activity

FS neuronactivity contributes to the regularity of networkbehaviour. In model 5d, the
meanrate of FS activity is muchless thanthe RS rate (RS 4257 and FS 345™) andRS
population activity in model 5d is less regular than other models.

The timing of FS activity, or strictly the time course of model fIPSPs, contributes to
the regularity of networkbehaviour. Network 5f, where a faster fIPSP is implemented,
exhibits distinctly oscillatory RS population activity. A model RS impulse recruits the
FS impulse at a delay of 9ms (Chapter4, section4.3.1, table 4.4), and theRS - FS
cross-correlations (example figure 5.3f) indicate a similar delay of 8mS. FS action
resultsin a depression of RS activity at about4mS in the 5f model network.
Considering the chain of action RS - FS - RS, there is a maximuminhibition of
networkactivity at 12mS following the initiating peak of RS populationactivity. The
intrinsic period of action of the 5f model networkis about24mS, the effect of FS
action, out of phase at 12mS, may contributing to RS phase cycle and help preserve
the regular network activity. '

As a corollary the slower fIPSP rise time, implementedin the other models, results in
less regular network activity. In models 5a to 5e the fIPSP supports an extended
depressionof RS activity in the range 4mS to 12mS following FS activity. In this case
the chain of actionRS - FS - RS resultsin fIPSP action that will tend to depress
network RS activity as late as 20mS following an initial RS activity peak. The
“intrinsic’ cycle of the RS model neuron, culminating in the generation of an impulse,
is likely to be delayed or disrupted (where that intrinsic period is around 24mS).

Model network 5f intrinsic population oscillation tends to resist the disturbance of
Phase caused by the independentnoise input. In contrast, the population activity of
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model 5a (and others) is less stable, althoughan intrinsic period of action is evident.

5.4.3 Modellimitations

The simulation results must be qualified. The model networksincorporate many
assumptions and compromises. The scale of the models is limited to ensure
tractability. The number of neurons being includedin each networkis limited. The
‘upperlayer model’ presented here is limited to a homogenous assembly of FS and RS
model neurons, whereas a variety of neurontypes are distributed throughthe |
neocortical upperlayers (layers 1 to 4).

Model synapse conductances are based on estimates from neurophysiology studies,
however the balance of conductivities has been significantly adjusted to achieve a
functioning network. A numberof model parameters are estimated using minimal
empirical information. Network parameters were adjusted so that FS and RS mean
impulse rates achieved a similar level, but the relative in-vivo rates of activity arenot
well known. The adjustmentof model pafameters to achieve an approximatebalance
of activity in RS and FS model neurons was adopted as a modelling expedient. Ideally
this heuristic method would be replaced by parameter setting that conforms to
physiological principle.

Identified GABAergic neuronsinclude different morphological types. However
differences in physiology corresponding to the variety of morphological types are not
well known. The model implements just one FS neuron type and makes no systematic
distinction between sIPSP and fIPSP connectivity (within the upperlayer model). In
addition the balance of synaptic conductances on smooth neuron types (ie inhibitory

neurons) is not well known.

Risetimes of individual synaptic conductances are knownto be very variéble foran
individual synapse type. The model PSC risetimes are chosen from population studies
with the assumption that the collective PSP ‘averagesout’ to an empirical mass value.
This ‘average’ value may ignore distinctive fast or slow local circuits. The model -
implementsa randomisation of synapse weights, but withina narrowband. This is
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partly justified by the view thata functional model synapse representsa population of
real synapses, therefore variability is likely to be reduced by averaging. This again

may ignore a systematic feature of a real local circuit.

5.4.4 Alternative neocortical models
Bush and Sejnowski (1996) presenta model of synchronisationin an assembly of
neocortical neurons. Their model is similar to the models presented above in a number
of respects:

excitable membranemodels are implemented;

model neurons are sparsely connected by alpha function synapses ;

network parameters for individual components are set withina range ;

Model parameters such as individual PSC risetimes and individual synaptic
conductances are set within a range of approximately 1:2 in their model (using a
Gaussian distribution). The upperlayer model, uses the somewhatnarrower ranges of
1:1.5 (risetime 0.8 to 1.2 and conductance 0.8 to 1.2 uniforminterval random
multipliers, section 5.1.1 above). |

The Bush and Sejnowski model is significantly different to the upperlayer model 5a
in other areas:

neurons are implemented as simplified compartmentneurons;

pyramidal neurons are intrinsically bursting (IB) ;

pyramidal adaptation rate time constant varies by 1:5 ;

fIPSC rise time s set to a fast value;

sIPSP synapses are omitted ;

synaptic latency is separated from synapse risetime ;

synapses act on different neuronmodel compartments;

the total fEPSC : fIPSC ratio perneuronis 1:1 ;

Bush and Sejnowski present this as a model of a neocortical column, ie including
upper and lower layers. This approach substantially differs from this thesis where two
layers are implemented with contrasting inhibition levels and connectivity (a two layer |
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modelis presented in the next chapter). The inclusion of IB neurons and omission of
sIPSPs would be appropriate for a lower layer model, however the relatively high
level of fIPSP inhibition suggests that the Bush and Sejnowski model resembles the

upper layer.

Model 5f may be compared to the Bush and Sejnowski columnmodel. In model 5
sIPSPs are omitted and the fIPSC time constant is set to the same value as that of the
fEPSC. Despite the different model implementation a similar synchronised behaviour
is obtained. The peaks of population activity in 5f are formed from the combination of
single impulses of RS model neurons, notby the burstfiring of IB neurons. The
individual pyramid neuron time course is more variable in the Bush and Sejnowski
model, but this is consistent with the setting of network parameters to a wider range
and the duration of impulse bursts. Both network models achieve a periodic
populationactivity of around40 Hz from the combination of inhibitory connections
and pyramidal intrinsic frequency.

Model 5e examines the effect of setting a slower fIPSC rise time thanin model 5f.
Network model 5f achieves a synchronised population behavioursimilar to that of
model 5a. As model 5e omits sIPSP, it can be concluded that sSIPSP actionis nota
strong determinant of its oscillatory behaviour. The population activity of model 5e is
markedly less regular than the 5f time series. Model 5f demonstrates that the slower
fIPSC rise time reduces the stability of the population activity cycle, making the
timing of network activity more sensitive to disturbance by ‘external’ inputs.

As reported synaptic timings are very variable, it remains open as to which fIPSC rise
time valueis the more plausible (also note that in this thesis model synapses, latency
and rise times are lumped together). Althoughthereis a great variety of observed
fIPSP rise times, it would seem reasonable to implementa model that achieves PSP
timings that represent the bulk of a population. The fIPSC rise time values used here
(exceptmodel 5f) are based on recordings of collective synaptic action (discussed in
chapter 2, section 2.3.3). This ‘slower” fIPSC rise time is used in the two layer model
in the next chapter.
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Despite these differences there is a broad agreementbetween the results from models
5a to 5d and the Bush and Sejnowski single columnmodel. Synchronisation of a
networkis sensitive to aspects of inhibition: in model 5b, where synapses are
strengthened, oscillation is weakened; in model 5d, whereinhibitory FS activity is
proportionately less thanRS activity, collective oscillation is weakened.

Otherbiologically detailed models include pyramidal and inhibitory neuron types and
fE, I and sI synapse types but donot examine oscillatory activity. These are
mentioned here to provide a comparison of some approaches to physiologically based
modelling.

Bush and Priebe (1998) examine a layer 4 model including GABAb inhibition
(sIPSP). GABAa conductances are set to a fast rise time (1.1ms). The implementation
includes IPSCs that are set to a lower value when the postsynaptic cell typeis
inhibitory, although the values used differ from the IPSC weights implemented on FS
neuronsin the layer models presented in this thesis. The Bush and Priebe model
examines the response to a thalamic input, oscillation is not examined. They suggest
thata role for GABAb inhibition s to subtracta DC component from thalamic input,
controlling the sustained response.

Douglas and Martin (1992) presenta 'canonical microcircuit' of thelocal cortexina
series of papers, closely based on empirical measurement. This includes model
elements representing separate superficial, deeplayer and inhibitory subpopulations.
Their intention is to simulate the neocortical response to thalamocortical stimulation,
and model orientation preference. They donot specifically examine oscillatory
activity.

Douglas and Martin donot state a specific fIPSC risetime, however they do observe
GABAa mediated fIPSPs persisting for 50mS (which is not consistent with a Imsrise
time alpha function - see above). They observe thatlowerlayer inhibitory conductance
ratios differ from the upperlayer, in the lower layers GABAa are proportionately
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stronger than GABAbD conductances. To preserve this ratio they implement the same
GABAD conductance in upper and lower layers, and set a 2 times stronger GABAa
conductance in the lower layer compared to the upperlayer. This method implements
a stronger general inhibition in the lower layer. The relative amplitudesof fast and
slow IPSPs in the deeplayer could have been achieved by setting a weaker sSIPSP
input. This would bring their model closer to the generally observed condition. The
Douglas and Martin model is in contrast to the weakly inhibited lowerlayer model -
presented in this thesis, and contradicts the observation of weaker lower layer
inhibitionby a number of workers (lowerlayer IPSPs are discussedin chapter2,
section 2.2.1.b). Their model also contrasts in that they implementa common
inhibitory population that directly acts on both upper and lower layers.

5.5 Conclusion

Anupperlayer model, based on a sparsely connected networkof RS and FS neurons,
is examined. The populationof RS neuronshave a tendency to synchronise their
impulse activity under different conditions. This synchronisationis a resultof the
timing of fIPSP inhibition and the intrinsic frequency of the model RS neurons. sIPSP
inhibition does not strongly affect the synchronisationof RS activity, but providesa
slowly varyinglevel of inhibition. Synchronisationand oscillation of RS population
activity is sensitive to fIPSC rise time. Collective oscillations are relatively weak
using a slower fIPSC rise time (model 5a). Collective oscillations are mademore

robustby setting the fIPSC rise time to a faster value similar to the fEPSC rise time.

Inhibitory action plays an importantrole influencing the pattern of collective activity.
It is less clear how fEPSPs contribute to the synchronised regular network activity.
Local RS to RS connectivity might appear redundantin an oscillatory local assembly
as direct RS to RS impulse recruitment generates EPSPs which coincide witha
depressionin RS firing probability (section 5.3.3 and autocorrelograms5.2a to 5.2f).
The isolated homogeneous “upperlayer model” may be misleading. An extension of
the model to include distinct RS subpopulations (layers) opens the possibility of phase
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differences so that RS to RS innervation may contribute to the cycle of network
activity. The next chapter examines a two layer columnmodel.
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6 A model of the neocortical cqumn

Introduction: the Layer Difference Column Model

The purposeof this chapteris fo examine a model of an assembly of neurons that
includes a representation of the neocortical layer differences. The model presentedin
this chapfer represents the local connectivity withina functional neocortical column
includinglocal connections withina layer of the columnand interlaminar connections
(“vertical” connections between the layers). A distinctive feaure of the model
implementationis the contrast between the upper andlower layers and is referred o as
a ‘layer difference columnmodel’ (LDCM). The LDCM includes 200 neurons
distributedin two distinct layers. The upperlayerincludesRS and FS model neurons
and associated synapse types. The lower layer includesRS, IB and FS model neurons.
The lowerlayer FS neurons do not support sIPSPs on their targets. Inhibition of the
lower layer is weaker than the upperlayer. A noise inputacts strongly on the upper
layer (representing ‘ascending’ afferents).

The LDCM is basedon empirical studies of neurondistribution(Hendry et al 1987;
McCormick et al 1985), relative synaptic strengths (Connorset al 1988; van
Brederode and Spain 1995) and local and interlaminar connectivity (Nicoll et al 1996;
Thomsonand Deuchars1994; van Brederode and Spain 1995) (discussed in chapter2
)- The LDCM implements a strongerlevel of inhibition in the upperlayer,
representing the stronger inhibition found in the neocortical layers 2 to 4 comparedto
the model lower layer representing the layers 5 and 6. It is intended to examinehow
the interlaminarvertical circuit contributes to synchronisation and oscillation in the
local neocortex. An independentnoise inputrepresents uncorrelated inputs, the noise
inputacts to disturb the timing of the model’s activity as the collective oscillations
become established. |

The behaviour of the network under different conditions is examined. The strongest
noise inpuf, representingnondocal afferents, targets the model upperlayer. This may
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be considered to represent modulated inputs from ‘external” sources such as the LGN
(in vivo LGN afferents are dense in layer 4, which is partof the model’s upperlayer
neural population).
Impulse time series are recorded under three conditions:

6a,the upperlayer receives a strong noise input and parameters are

set to balance the rate of activity in neuronsubpopulations;
6b, the strengthof the noise input to the upperlayer is reduced;
6c, an additional, independentnoise inputacts on upperand

lower layers.

In condition 6a the upperlayer RS neuronsreceive a strong noise inputand much
weakernoise inputs act on the other model neurons. In 6b the strength of the upper
layer noise inputis reduced. Both of these arrangementsrepresent the feedforward
case ie where LGN inputor “lower’ cortical area is feeding forwardto a ’hlghet’
cortical area, preferentially contacting layer 4 andlayer 2/3neurons. In 6¢ an
additional independentnoise inputacts on both upperand lower layers, representing
the case where feedback from "higher” cortical areas innervateslayers 2/3and5 (via
layer 1). (This laminar difference between feedforward and feedback laminar targets is
suggested by a number of workers, for example Sanes and Yamagata 1999; Thomson
and Bannister 2003; Zeki and Shipp 1988).

The main results indicate that the neuron population of the whole column exhibits
synchronised oscillatory activity, but the synchronisation of the neurons within each
layer is different. The neurons in the upperlayer are more sharply synchronised; the
timing of impulse firing is more variable in the lower layer. This behaviouris seen
most clearly in condition 6a, the synchronisation of the neuronsin 6b and 6c is
wealker. The significance of this layer difference in behaviouris discussedin chapter
7.
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6.1 Method

Networkimplementationis similar to that above (chapter5, section 5.1). The model is
extendedby defining twolayers. The FS model neuronis redefined as two sub-types
supporting either fIPSPs or sIPSPs on their targets, indicated as FSf and FSs
respectively (to facilitate the implementation of layer differences). The assignedlayer
of a model neuronis indicated by a suffix ( lower 1, upper u). As in the modelsin
chapter5, the relative numbersof RSu and FSfu neuronsare chosen to reflect the
reported frequency of GABAergic neurons (chapter2, section2.1.2b, Hendry et al
1987). The numbers of other neurontypes are chosen as a modelling expedient (partly
guided by the weaker inhibitory PSPs reported for the lower layers, for example van -
Brederodeand Spain 1995).

The columnmodel network comprises two layers:
an upperlayer of 80 RSu, 20 FSfu and 10FSsu ;
a lowerlayerof 70 RSI 10 IBI 10FSfl.

The upper layer parameters are similar to model 5a. The layer model 5e omits sIPSP
synapses and may be compared to the lowerlayer of the columnmodel which receives
weak sIPSP synapses. However, the lower layer implements a weaker fIPSC, in line
with the observation of weaker inhibition in the lower layers (reviewedin chapter?2,
section2.3.4 ).

Connections betweenneuronsubpopulations are randomised, directly reciprocal
connections and self connections are not allowed. Upperlayer FS neurons directly
contactneurons in the lower layer, but the lowerlayer FS neurons donot project to the
upper layer. Individual synapse conductance weights and time constants are set using
a randommultiplier t(g give a uniformrangeof 0.8 to 1.2 times the mean value. The
adaptationrate parameter for individual RS and IB model neuronsis set using a
randommultiplier to give a uniformrange of 0.7 to 1.3 times the typical adaptation

rate for the neurontype.
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Figure 6.1 is a sketch of the connectivity betweenneuron subpopulationsin the
columnmodel. Table 6.1 lists the numberof connections made on each neurontype

accordingto the layer position.

Column Local Circuit

[FS
Upper ps:
layers
Lower Fs
layers
Noise
Figure 6.1 Sketch of two layer columnmodel. Triangles represent RS or IB model neuron

populations (Cf chapter 2, figure2.5). Circles representFS neuronpopulations. Weightof arrows
represents relative synaptic weight. Open arrowheadindicates fEPSP, solid arrowheadindicates IPSP
on respective targets. The lower layer receives weak IPSPs and does not directly inhibit upperlayer

neurons. The lower layer does not possess a FS-IPSP subpopulation.
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Post synaptic ] Presynaptic neurons and synapse type
neurons
RSu FSfu FSsu RSl IB1 Fsfl

iE fI sl fE {E fi

RSu 15 6 6 8 2 0
FSfu 15 6 1 8 2 0
FSsu 15 6 1 8 2 0
RSI 10 2 1 12 3 3

IBl 10 2 0 12 3 3

FSfl 10 2 0 12 3 2

Table 6.1 Connection densities and layer position. Upperlayer suffix u, lower layer suffix 1..

Numbers of functional synapses made by the presynapticneuron type on the postsynaptic neuron ypes.
Within layer innervationis denser than between layer innervation. The upperlayer has more inhibitory
synapses. Lower layer FS neurons do not contact the upperlayer neurons.

This scheme of connectivity is partly compromised by low numbers of FS
connécﬁons, especially between FS neuron subpopulations. These low numbersresult
from the restricted scale of the model (for reasons of tractability) and the division of
the neuron types into layer subpopulations.

Post synaptic Synapse total weight per postsynaptic neuron
neurons

upper layer origin lower layer origin noise

fE fl sl {E fI fE

RSu 195 180  .072 130 - 02
FSfu 150 0906  .009 100 - 0.02
FSsu 150 090 .009 100 - 0.02
RSI JA30 020 001 195 030 0.02

IBl 130 020 0 195 .030 0.02
Esfl J00 030 0 150 030 0.02

Table 6.2 Model 6a synapse conductance weight totals, by presynaptic origin and postsynaptic
target. Individual model synapse weights are found by dividing the conductance total by the numberof
functional synapses on the postsynaptic target neuron. For example, one RS upperlayer neuron

receives 15 {E synapses from the upperlayer, hence individual fE synapse weightis 0.013 (=0.195/15).

The ratio of synaptic conductances for the upper layer is based on the revised

conductance ratios foundin chapter5 (section5.1.5). Lowerlayer fI conductancesare
set to be substantially weaker. Between layer conductances are set so that their
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contributionis less than within layer innervation. This arrangementroughly
approximates the results reported by van Brederode and Spain (1995) (layer
differences are discussed in chapter2 section2.3.4).

A preliminary examination of network activity and parameter levels was madewith
the intention of achieving a similar rate of activity in the neuronsubpopulations. Tonic
inputs] wereset: RSu 2.9, all FS 0.155, RS1 1.8, IB 0.8. The noise inputwasset to a
level approximately equal to the upperlayer fE afferents in model 6a (noise process
implementation described in chapter 3 section 5.1.4).

The columnmodels differ in the configuration of the noise input:
6a one noise source,

RSu noise synapse input weighted at 0.2, other neurons 0.02;

6b one noise source,

RSu noise synapse inputweighted at 0.1, other neurons0.01;

6¢ twonoise sourcesn; and,
RSun; weight0.1, RSu n, weight 0.1, RS rp weight0.1, othersn; 0.01.

The upperlayer noise input represents uncorrelated ‘feedforward’ inputs. The upper
layer noise inputin model 6b is half that in 6a. Model 6c implementsa commonnoise
inputto both the Jower and upperlayers and a concurrentindependentnoise input to
the upperlayer only, representing a combination of feedforwardinputto the upper
layer and feedback to both layers (with feedforward and feedback in terms of the
hierarchy of cortical areas, for example Zeki and Shipp 1988). This difference in the
targeting of differentlayers according to feedforwardor feedback direction of cortical
innervationis also suggested by others (Sanes and Yamagata 1999; Thomsonand
Bannister 2003). The implementation of two mdepmdetifnoise sources in condition
6c is intended to portray a “worst case” for synchronisation within the model column
(where feedforward and feedback inputs are uncorrelated), where the independent
noise inputs will tend to disrupt the synchronisation of the upperand lowerlayers.
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6.2 Results

The mainresults indicate a synchronisation of impulse firing by the neuron population
of the whole column. The synchronisation of the neurons within each layeris
different. The neuronsin the upperlayer exhibit more strongly synchronised impulse
firing; the timing of impulse firing is more variable in the lowerlayer.

a
Model 6a time series
T 1 1 .
RSu
FSu
RSI
B
FSI 5
5 1000
ms
Figure6.2a
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Model 6b time series
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Inspectionof the raw time series shows the synchronisation of populationactivity over
the whole column (figures 6.2a-6.2c above). Peaks of population activity involve the
majority of RS andIB model neurons. The onset of bursts of IB neuronactivity
coincides with the peaks of RS activity. FS activity closely follows these peaks.

Model Impulse rate mean per neuron S™

RSu RSI andIBI
6a 39 42
6b 17 41
6¢c 33 43
Table 6.3 Pyramidal neuron rates of activity.

The synchronisation of RS neurons, especially in the upperlayer, is distinctive. In-
model 6a, activity in the whole columnis strongly synchronised and oscillatory. The
upperlayer is more sharply synchronised than the lower layer. Model 6b is less
synchronised as a whole column, howevér most upperlayer neurons are involvedin (a
reduced number of) population activity peaks. The whole columnactivity of model 6¢
is less well synchronised and the upperlayer is less sharply synchronised thanin
model 6a. In model 6b it is notable that altl’moughtheArate of RSu écﬁvity is
substantially less than the lower layer, the patternof activity remains relatively tightly
synchronised.

The coherence of whole column activity can be comparedin the autocorrelogramsin

figure 6.3 below. Model 6a exhibits a stronger oscillatory pattern than 6b or 6c.

121



Model 6a column auto-correlation
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lag ms

Figure 6.3a

Model 6¢ column auto-correlation

6

0 20 40 60

lag ms

Figure 6.3c

Figures 6.3a-C  Column autocorrelation of impulse time series, RS and IB model neurons.

6.2.1 Model 6a

The relationship of the differentmodelneuron subpopulationsis seen in Figures 6.4 -
6.15. The RSu population shows a strong depression of firing probability foUowtingan

initial impulse, recovering to twice the chance level at 32mS lag (figure 6.4a),

Model 6b column auto-correlation

«0

0 20 40

lag ms

Figure 6.3b

consistentwith the strong synchronisation of upperlayer activity.
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Model 6a RSu auto-correlation
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Figure 6.4 a
6 Model 6a RSI auto-correlation
4
Yo P
lag ms 40
Figure 6.6 a
6 Model 6a 1Bl auto-correlation
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Model 6a FSu auto-correlation
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Figure 6.5 a
Model 6a FSI auto-correlation
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Figure 6.7 a
Model 6a PI auto-correlation
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Figure 6.9 a

Figures 6.4a to 6.9a  Autocorrelations of columnmodel subpopulations

60

60

60

The modulation of FSu activity echoes this pattern (figure 6.5a). In the lowerlayers,

RSI and FSI activity is less strongly modulated (figures 6.6a and 6.7a). Notably the IB

neuronpopulationshowsa distinctive period of action. IB activity recovers to a strong

maximumat 64mS (figure 6.8a). Howeverthe IB neurons are only a fraction of the

lower layer pyramidalneuronpopulation and the PI autocorrelation (figure 6.9a) of the
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combined populationof RSI and IBI closely resembles the autocorrelation of RS]
alone (figure 6.6a).

The FSI autocorrelogram appears to incorporate something of the shape of both the IB
and RS autocorrelograms (figure 6.7a). FSI activity remains above chance until a lag
of around 10mS, reflecting the persistence of IB activity at shortlags. Followinga lag
of 20ms, FSI activity recovers towardsa maximumat a lag of 32mS, reﬂeéting RS
activity.

Cross-correlations of columnmodel subpopulations are shownin figures 6.10a to
6.15a, below. The RSu FSu cross-correlation exhibits a méximumat alag of 8mS
(Figure 6.10 a). This lag is consistent with earlier results for RS to FS impulse timing
(chapter4 section4.3.1, chapter5 section5.4.2). The cross-correlationof RSu and
lower layer pyramid (P1) activity exhibits a strong central peak.

The central maximum, symmetry and modulation of the RSu Pl cross-correlogram
indicates the synchronisation and periodic patternof the model columnactivity
(Figure 6.11 a).

Figure 6.12a indicates that FSI activity lags RS by 8mS. The symmetry of modulation

about this time echoes the general oscillatory pattern of columnactivity. Figure 6.14a,
the RS1 IBI cross-correlogram, follows a remarkably similar pattern of modulation.
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Mode! 6a RSu FSu cross-correlation
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Figure 6.10 a

Model 6a RSI FSI cross-correlation

-60 -40 40 60

Figure 6.12 a

Model 6a RSI 1B cross-correlation
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Figure 6.14 a

Model 6a RSu PI cross-correlation
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Figure 6.11 a

Model 6a 1Bl FSI cross-correlation
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Figure 6.13 a

Model 6a Noise RSu cross-correlation
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Figure 6.15 a

Figures 6.10a to 6.15a Cross-correlations of colum nm odel sit>populations

The central maximum of the IB1 FSI cross-correlogram confirmsthe coincidence of

FSI and IBI activity (figure 6.13a). The effect of noise inputis indicated in the last
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correlogramofthis series. Noise inputquickly evokes RSu activity arounda lag of

4mS (figure 6.15a).

6.2.2 Model 6b

The RSu autocorrelation indicates a periodic action similarto RSu activity in the 6a
model. Following initial activity firing probability is strongly depressed, recovering to
a maximumat 32mS of more thantwdce the chance level (figure 6.4b). A Ithou”this
modulationis strong, the absolute rate of RSu action is low, and its influence on other
neurons is weakened. The FSu autocorrelationbarely echoes the periodicity of the
RSu population (figure 6.5b). The FSu autocorrelogram also shows some influence of
the lowerlayer, since a 'shoulder' of enhanced impulse activity persists after the initial

FS action (to alag of approximately 8mS, figure 6.5b).

" Model 6b RSu auto-correlation Model 6b FSu auto correlation
8
4
92
80
0 20 lag ms 40 60 0 20 lag ms 40 60
Figure 6.4 b Figure 6.5 b
Model 6b 1B auto-correlation 3 Model 6b PI auto-correlation
4 2
2 1
. .
1 1
8o 0
0 20 wo 10 0 20 lagms 40 60
Figure 6.8 b Figure 6.9 b

The collective activity of the lowerlayer pyramidal populationis weakly modulated

(figure 6.9a), butthe activity of the IBI neuronsis strongly modulatedw ith a period of
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about64mS (figure 6.8b). (Figures 6.6b and 6.7b omitted.)

Cross-correlations of the neuronal subpopulations of model 6b follow similar patterns

to those of 6a, butwith lower amplitudesand less symmetry.

Model 6b RSu FSu cross-correlation
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L,
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Figure 6.10 b

Model 6b RSI FSI cross-correlation
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Figure 6.12 b

Model 6b RSu PI cross-correlation
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Figure 6.11 b

Model 6b RSI IBl cross-correlation
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Figure 6.14 b

Figures 6.10b to 6.12b and 6.14b (figures 6.13b and6.15b omitted)

6.2.3 Model6¢

The column autocorrelogram (figure 6.3¢) doesnot show a strong periodic modulation

of activity. Similarly the individual cross-correlogramsof the RSu and PI

subpopulations (figures 6.4c and 6.7c) do not show strong modulation of activity.

Howeveran increase of impulse activity towardsa lag of 60mS is evident. The IB1

cross-correlogram does show strong modulation, indicating a characteristic period of

60mS (figure 6.8¢).



Model 6¢ RSu auto-correlation
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Figure 6.4 c

Model 6¢ 1Bl auto-correlation
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Figures 6.4c 6.7¢ 6.8¢ 6.11c

Model 6¢ PI auto correlation
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Figure 6.7 ¢

Model 6¢ RSu PI cross-correlation
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Figure 6.11 ¢

The cross-correlationof RSu and PI activity is nearly symmetrical and correlation of

activity is weU above chance ata lag of 60mS. At30mS lag, activity recovers to about

the chance level (figure 6.11c). The 6¢ columnmodel exhibits a significant component

of activity at a period of 60mS. The 60mS period forms a significantcomponentof the

activity exhibited by the 6¢ columnmodel.

6.24 Summary ofresults

Model 6a: The modelis configuredto achieve a similarrate of activity in upperand

lowerlayers. The upperlayeris innervatedby anoise signal. The columnachieves

strongly synchronised and osctilatory activity. TTie upperlayeris more shaiply

synchronised than the lower layer.
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Model 6b: The upperlayer noise input weightis reduced. Synchronisationof the RSu
subpopulation remains strong. Columnactivity is less synchronised, oscillations are
weaker.

Model 6¢: A commonnoise inputacts on upperand lower layers in addition to the
noise inputto the upperlayer. Columnactivity is less synchronised, a long period
oscillation is more evidentin the activity of the whole column. This slower period

(60mS) is associated with the lowerlayer IB model neurons.

In each model condition the upperlayer is more strongly synchronised than the Iower
layer. FS population activity lags peaks in RS action by about8mS in all the models.
The bursts of IB neuron subpopulationactivity tends to synchronise with population
activity in all the models.

6.3 Discussion

The RSu neurons in model 6a have a 32mS period of action, this is similar to the-
periodof RS activity identified in the 5a model. It is suggested that the mechanism of
strong synchrony and oscillation of RS neuronsarises from combination of the
intrinsic periodof RS action and inhibitory fIPSP timing. As the upperlayer FSu
neurcnsreceive a proportion of inputs from the lowerlayer, this upperlayer
synchronisation may be modified by differences in the timing of lower layer activity.
The sharply synchronised impulse activity of RSu model neuronsin 6a results in large
compoundfEPSPs acting on neurons throughout the LDCM.

It is notable that strong synchronisation of RS model neurons occurs despite the
setting of individual neuronadaptationrate variables to a range of values. The
variation of input weightsis to some extent averaged out over a numberof synapses.
The fan-outof connectivity keeps neuronmodels closely coupled despite “sparse’
connectivity. Individual RS neurons are likely to “see” similar conditions. RSu

neurons are more strongly synchronised than lower layer RSl neurons. The mainlayer
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difference is the stronger level of inhibition applied to RSu neurons. The timingof
fIPSPs can reduce the variability population action by inhibiting “early” or ‘late” RSu

impulses.

It is notable that 6b model RSu neuronsretain strong synchronisation with whole
columnactivity despite a lower rate of activity. This is achieved by phase slipping of
whole periodsas the RSu population remains quiet for a columncycle. This suggests
that the RSu populationis following a subthreshold cycle as it receives fEPSPs
originating in the lower layer and fIPSPs due to the recruitmentof upperlayer FSu

neuronsby lower layer activity.

The lower layer IB populationhas an interburst period of action that is approximately
twice the period of columnactivity in 6a. The IB model neuronsare silent during
certain columnimpulse activity peaks, but when they do occur IB bursts tend to
‘synchronise to the cycle of columnactivity. The IB populationis a small fraction of
the population of pyramidal model neurons in the lower layer. The effect of each
episode of IB populationactivity is enhanced by the synchronisation of impulse bursts
and the number of impulses per burst. In the lower layer, compound fEPSPs arising
from synchronised IB innervation may approach the amplitudeof fEPSPs arising from
highly synchronised RSu activity (assuming3 impulses per IB burstin 10mS,
impulses x synapse numberx weight: IB fEPSC total 3x3x0.195=1.755 in
approximately 10ms; RSu to RS1 fEPSC 1x10x1.95 = 1.95 in approximately 4msS).

The initiation of impulse burstsby IB model neurons tend to coincide withthe RS -
population synchronised action. However the IB impulse bursts persist for a number
of mS and this activity overlaps that of the FS neurons. The effect of this timing is
ambiguous, as resulting fEPSPs and fTlPSPs may be acting against each other
according to their relative timings. The effect of this may differ between the layers.
The lowerlayers are weakly inhibited and so IB fEPSPs may dominate and contribute
to the timing of RS impulses. In the upperlayer, IB action may recruit FSu neurons
resulting in some fIPSPs occurring relatively late stage in a populationcycle (allowing
approximately 8+8+8mS for IB burst,- FS recruitmentand fIPSP effective rise time
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respectively), relatively suppressing the ~30mS upperlayer recovery of activity.
Action of this kind may account for the pattern of activity seenin RSu neuronsin
model 6¢c. However seeking a causal explanation at this level of detail is perhaps
stretching a fair interpretationof the model. Model elements and parametersincludea
large margin of working assumptions and approximationand so any interpretation
shouldbe suitably coarse grained.

6.3.1 LDCM limitations
It is appropriate to consider model limitations wheninterpreting the behaviourof the
LDCM.

The fIPSC rise time implemented in this thesis is based on a particular set of empirical
studies (chapter2, section 2.3.3). However other empirical studies have reported a
range of faster values. The upperlayer model 5f implementsa fIPSC with a fast rise
time and finds greater network synchronisation.

Neurophysiological studies describe a wide variation in the neocortical pyramid
population. It is not clear that pyramid subpopulations are separable. IB neurons may
represent one extremeof a continuous distribution of pyramid morphology. The
LDCM implements RS andIB neuronsas distinct populations. For example minimum
possible individual RS neuronadaptationrate is more than twice the maximumIB
adaptationrate. (Adaptationrate parameterr defined in Chapter3 section3.2.1,
means: IB 7 = 0.02; RS 7 = 0.08. Randomised range 1.3:0.7: IB maximumr =0.026,
minimumRS 7 = 0.056.) In addition the bursting parameterk is set so thatIB model
neurons supportburst firing and RS model fire single impulses (see chapter3 section
3.2.1d). '

The LDCM RSu neurons do not supportbursting, however there is some evidence that -
bursting pyramidal neurons do occur in the upper layers. Fast burstingneurons with an
interburst frequency up to 75Hz are observedin the upperlayers (Gray and
McCormick 1996). The intraburst frequency of these neuronsis very high, so thata 3
or 4 impulse burst might occur within 4mS. The inclusion of bursting neuronsin the
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upper layer is likely to enhance the action of the synchronised upperlayer on the
whole column. The inclusionof faster cycle neuronsin the upperlayer of the LDCM
would enable the LDCM to synchronise to higher frequencies. The basic mechanisms
of synchronisationby inhibition and phase slipping are not ruled out by the addition of
biological detail of this kind. Faster pyramidsin the upperlayer raises the possibility
of the upperlayer contributing to a finer temporal resolution compared to the lower
layer (if the response of an individual pyramidal neuronis sensitive to relative phase
timing of inputs then an upperlayer pyramid, posessing a faster cycle of action, will
‘see’ a larger phase change for a certain input time series than the phase change “seen’
by the slower lowerlayer pyramids).

The LDCM is partly compromised by low numbers of synapses between FS neurons.
Low numbers of connections are to be avoided because of the increased possibility of
certain connection paths dominating neuroninteraction. The relatively weaker FS to
FS synaptic weights partly mitigates this, and each FS model receives 25 fEPSP
synapses, which are likely to dominate FS activity. A single model sSIPSP synapse
occurs on each upperlayer FS neuron. This extremeis mitigatedby the long time
period of SIPSP action, effectively smoothing out short term changes in presynaptic
impulse rates (sIPSC rise time is in the orderof 100mS, the half widthof the synapse
model alpha function is around250msS).

The LDCM implementationof FS distribution only distinguishes an upperand lower
layer. The LDCM does not consider a “feedforward’ or “feedback’ topology of
projection (beyond differentlevels of noise input). Any extension of modelling to
include subcortical connections and other cortical colurmmsshould consider the
anisofropic patternof inhibitory connections suggested by empirical observations.
Differences in the directivity of GABAa-ergic and GABAb-ergic synapses are
implementedin a model of layer 4 orientation selectivity (Bush and Priebe 1998).
Bush and Priebe propose that sSIPSP action removes a DC component from a thalamic
inpuf signal. In the LDCM sIPSP acﬁonfowerfully inhibits upperlayer activity and a
tonic inputis used to offset this. The slow negative feedback provided by sIPSPs
moderates upper layer RS meanactivity, but does not block short term variability.
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6.3.2 Mechanisms of synchronisation and oéci]laﬁon

The conclusion of chapter 5 raised the possibility of a phase difference between
pyramidal neuronactivity in upperandlower layers (section 5.4). However, the
LDCM simulations demonstrate the tendency towards synchronisation of impulse
activity in the whole column. There is no systematic phase difference between RSu
and RSl activity. The emergence of synchronised activity may be accounted for by
the two factors: a population oscillation producedby the coupling together of
excitatory and inhibitory populations (i-e oscillator); phase coupling of the pyramidal

neurons’ infrinsic periodicity. The i-e oscillator takes the form: ;-= e é=_ ;5 and

is used in many abstract network models (for example von der Malsburgand
Buhmann1992).

The property of adaptationis capable of synchronising a network of pyramidal
neurons (Crook et al 1998b). The adaptationrate of the pyramid neuronis determined
by a set of adaptation currents, and affects the regular spiking period (or inter burst
period for bursting cells). The adaptation cycle providesa mechanismto shift the
timing of impulse generation as the adaptation process is sensitive to depolarisation ( z
- adaptationvariable, chapter 3 section 3.2.1b). The phase response function of coupled
adapting pyramid model neuronsis continuous (Crook p844 figure 2), suggesting that
a pyramid network is a single phase system and is not likely to support multiple phase
representations (Cairns et al 1993).

The higherlevel of inhibition in the upperlayer reinforces the synchronisation of
upper layer RS neurons. The lower layer RS neuronsare more weakly inhibited, and
their synchronisationis weaker. Correspondingly: reduced inputto the upperlayer,
reducing activity in the upperlayer, reduces synchronisation in the whole column;
increased input to the lower layer, evoking more activity in the lower layer, reduces
the synchronisation of the whole column. In addition the lack of direct connections
from lower layer inhibitory neurons (FS) synapsing on the upperlayers may indicate a
differentiation of temporal function between the layers. The possibility that the
observed differences in the behaviour of thelayers of the LDCM are functionally
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significant is exploredin the next chapter.

I am not aware of published models that are directly comparable with the LDCM
examined in this chapter. Local neocortex models incorporating models of different
neurontypes include the local circuit model of Douglas and Martin (1992) and the
columnmodel of Bush and Sejnowski (1996). The Douglas and Martinmodel
identifies layer differences and include GABAa and GABAb model synapses (fIPSP
and sIPSP synapses), butimplements a twolayer model where a commoninhibitory
populationacts on both upperand lower layers. Douglas and Martin use this model is
used to examine thelocal response to thalamocortical afferents, they donot examine
the synchronisation of oscillations. Bush and Sejnowski implementa columnmodel
thatincludes different neurontypes but does not implement layer differences (and so
is closer to the single layer model of chapter5). The Bush and Sejnowski model
demonstrates synchronised oscillations, but synapse parameters differ from the
networks implementedin this thesis (except model 5f). (Differences between the
Douglas Martin and Bush Sejnowski models and this thesis are discussed in chapter5,
section5.4.4.) Traubetal (1997b) implementa model including different neuron
types that exhibits oscillations. This model does not includelayer differences and uses
a specific mechanism to generate oscillatory activity (a mutually inhibitory circuit
based on hippocampal physiology) and is not directly comparable with the model
presentedhere. This model is discussed furtherin chapter? (section7.5.4). These
studies illustrate different approaches to modelling local neocortical aéﬁvity, butthey
donot examine the contribution of layer differences to synchronisation and oscillation

of neocortical activity.

6.4 Summary

A neocorﬁcal functional columnmodel (LDCM) is implemented. The LDCM
incorporates RS, FS andIB neurons distributed in twolayers. The upperlayer is more
strongly inhibited.
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Synchronisation and oscillation of the whole columnis demonstrated. The upperlayer
is more tightly synchronised than the lower layer. When the balance of column
activity favours the upperlayer, the whole columnis more synchronised and
oscillatory.

Synchronisation of populationimpulse activity is facilitated by fIPSP inhibition. RS
and IB model neurons possess a characteristic period of action associated withthe
respective adaptationrates. Whenthe RS or IB rate of activity is less than the column
oscillation rate, synchronisation occurs by phaseslips, withsilent periods.

It is proposed that the upperlayer is concerned with a finer temporal resolution, and
the lower layer supports a broader temporal tuning. The consequences of this layer
difference are consideredin the next chapter. Approaches to extending the model to
includelateral and more distant connectivity are also discussed.
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7  Discussion, a New Model and Future Work

In previous chapters this thesis has developed a sﬁnpliﬁed model of local neocortex
that portrays the dynamic relationship of upper and lowerlayers. Here the results of
chapter 6 are reviewed in relation to existing theory and models concerninglocal
cortical function. A new synthesis of theoretical and empirical results is suggested, a
new model of local cortical circuit functioning and areas of furtherinvestigation are

proposed.

7.1 Consequences of results

The simple columnof chapter6 demonstrates the synchronisation of oscillatory
activity in a two layer columnmodel (the ‘layer difference columnmodel” : LDCM).
The greaterlevel of inhibitionin the upperlayer contributes to the tighter
synchronisation of thatlayer. How do these results inform an understanding of
different theoretical approaches to oscillating activity in the local neocortex? The
existence of oscillation and synchrony is consistent with many theoretical models and
empirical studies, and is not a novel contribution. The finding of a laminar differences
in the quality of synchronisation in the LDCM leads to a new proposal of a functional
circuit for the integration of Jaminar activity, inputs from distant cortical areas and the
role of collective oscillatory activity.

Chapter1 briefly introduced some empirically based proposals regarding cortical
synchronised gamma oscillations. These are revisited in the light of the results from
chapter 6.

7.1.1 Multiple synchronised assemblies
Engel and Singer find stimulus dependantsynchronisations of cortical activity (review
Engel and Singer 2001). They propose that the responses evoked by a single stimulus
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object are bound together by the temporal correlations of spatially separatedneuronal
responses, forminga synchronised neural assembly. Because of the temporal precision
of synchronisation, the assembly supports a more effective interaction with other
assemblies and contributes to ‘bottom up’ activity. Because of the persistence of the
active assembly, interaction with “top down’ processing is also supported. They
further suggest that multiple assemblies can be active in the network at the same time,
and these multiple representations can participate in larger scale coherence, bmdmg
into higher order arrangements. Mechanisms which support such higher levels of
integration are not described. As Engel and Singer’s account does not portray specific
mechanisms, the ‘laminar difference’ results of chapter6 do not contradict their
general account, however this hardly takes us any further forward.

7.1.2 Synchronisation over distance

Traubet al propose a model where interneuroninhibition (disinhibition) developsan
oscillation that modulates the action of pyramidal neurons (Traub et al 1997b). The
model is based on the physiology of the hippocampuswhere excitatory to excitatory
connectivity is sparse. It is proposed that the phase timing of an excitatory impulse
relative to the inhibitory clock is a functional ‘code’. In addition interneuron’spike
doublet’ firing supports synchronisation despite conduction delay of the orderof
several milliseconds (eg 5mS delay over 1.5mm (Traub et al 1996). A motivation for
this modelis the possibility of the phase timing of an individual impulse supportinga
radial basis function code (RBF) (Hopfield 1995; Sejnowski 1995).

Local inhibitory oscillation may be supported by the denser interneuronto interneuron
connections that appear in the upperlayers (layers 2/3: Gonchar and Burkhalter 1999).
But it is certainly the case that the majority of neocortical synapses are excitatory,
reducing the probability that ‘inhibitory oscillation” can be a sole modulatory
influence. In additionit is not clear if sufficientlong range inhibitory connections
exist to support this mechanign of inhibitory oscillation across more distant cortices.

Re cordings of PSP activity during oscillatory synchronous activity in neocortex found
a contribution fromboth IPSPs and EPSPs to sub-threshold membrane potential
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oscillations (Fetz et al 2000). Indeed, recordingson the same postsynaptic cells
measured a larger collective EPSP component during oscillatory activity than
recordings made during periods of unsynchronised activity (oscillation indicated by
the local field potential). The view that inhibitory action plays a separaterole in
synchronisationis not supportedby these observations. However, a mechanismof
relative phase coding of impulses is still possible, butless tractable as the oscillatory
‘clock’ is insepafable from thelocal collective activity.

The oscillation of the LDCM is not exclusively drivenby an inhibitory field. On
balance, the inhibitory clock mechanism of Traub et al (1997b) mustbe rejected for
neocortical oscillations. However the possibility of a ‘timing code’, where the timing
of individual impulses carries significant information, remains open. The more
variable timing of individual RS impulses in the lowerlayer of the LDCM is
consistent with the possibility of a “timing code’, with the tightly synchronised upper
layer population providing a clock. '

7.1.3 Stimuluslocked and stimulus induced oscillatory responses
The proposals of Eckhorn et al are based on visual cortex empirical results and the
modelling of activity in single layer multiple area networks (Eckhorn 1999). In
commonwith the results of Engel and Gray (Engel et al 1990; Gray and Singer 1989),
Eckhornet al finds that the response to a common stimulus involves a synchronisation
of the oscillatory local field potential across a populations of neurons (Eckhornet al
1988). Following stimulus onset a ‘stimuluslocked’ response is observed. A local area
of cortical neuronsis active, buta collective oscillationis not evidentin the LFP (local
field potential). If the stimulusis maintained, a collective oscillation is observed by
around 100ms following the stimulusonset. This response is typical for smoothly
moving stimuli (gratings). Eckhorn et al observe that the frequency of the single unit
-activity (SUA) is more variable than the oscillatory LFP (Eckhornet al 1993).
Eckhomnet al suggesta variationof the ‘binding by synchronisation” hypothesis
(Eckhornet al 2001). They observe that the lateral cortical range of gamma
synchronisationis only a few millimetres (which is not large enough to accommodate
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the responses from a single large stimulus object). They demonstrate the existence of a
larger oscillatory response field using a different analysis of the empirical results.
They find a gamma wave, with continuous phase shifts over the responding cortical
area and suggest that object continuity is coded by phase continuity of the wave.
Eckhom et al suggest that distant cortico-cortical cooperation is notby gammawave
phaselocking, butby the amplitudeenvelope of the local gammawave. If it is allowed
that this “amplitudeenvelope” may representmodulationby a lower frequency wave
then Eckhornet al’s proposal is consistent with the proposals of von Stein and
Sarnthein (2000).

The in-vivo local cortical response contains different frequency components (Frien
and Eckhom2000). Using two recording sites it was found thathigh and low
frequency components of coherent oscillations depended on the orientation preference
of the two sites and the orientation of the stimulus. The coherence of the low
frequency component showed a dependence on the co-axiality of the two receptive
fields and the gamma frequency component did not. This resulf introduces the
possibility of parallel coding streamsin the activity time series of the local cortex

neurons at different frequencies.

7.1.4 Scalesof EEG frequencies and spatial scale of cortical integration

Based on EEG recordings, it is suggested that different temporal scales correspond to
the integration of activity across different cortical spatial scales (von Stein and
Sarnthein 2000). Gamma frequency EEG is associated withlocal area visual
processing. Synchronisation between neighbouring cortices occurs in the betal range
(12-18Hz). Long range interactions (fronto-parietal) involved the alpha and theta
frequencies (8-12Hz and 4-8Hz). It is suggested that the lower frequencies are

involvedin top-downor feedback processing.

The results and proposals of Eckhormn, Frien and von Stein introduce the idea of
different scales of responses, that may impinge on the local cortical circuit. This is
relevant to an extension of the LDCM. The problem of the incorporationof distant
cortico-cortical inputsis discussed below.
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7.1.5 Antithesis: gamma oscillations as epiphenomena

The view that oscillation and synchronisationis importantin the generationof a
cortical response is questioned (Lamme and Spekreijse 1998). Lamme and Spekrijse -
did not find that gamma oscillations were ubiquitous. They obtained good RF
responses withoutnoticeable oscillations. They consider that gamma oscillations are
epiphenomena of lateral connectivity. Similar views have been expressedby others
(Tovee and Rolls 1992).

Eckhornet al reply that differences in results may be because Lamme and Spekrijse
measured multi unit activity (MUA) whichis a 1éss reliable indicator of local
populationoscillation than the LFP (Eckhornet al 2001). In addition Eckhorn (1999)
observes an initial ‘stimuluslocked” response that correspondsto the stimulus onset
(section?7.1.3 above), that may accountfor a fast non-oscillatory RF response.

Engel et al make a similar reply to Tovee and Rolls, defending their observations of
synchronised oscillations, pointing to difficulties in methodology. Engel et al pointout
thatas correlogramsmay be compiled over a numberof trials and where the
oscillation frequency varies, the correlogrammay fail to exhibit characteristic
oscillatory peaks and troughs (Engel et al 1992).

7.1.6 Layer differences in synchronisation
The LDCM, presentedin chapter 6, demonstrates a difference in temporal behaviour
between the upper and lower layers. What is the functional significance of this?

The layer difference does not seem useful for a “vanilla’ theory of binding by
synchronisation. Why is the lower layer less synchronised than the upperlayer?

A neural oscillator time delay coding network has been modelled (Traub et al 1997b),
but the clock was formed from mutual inhibitory action, andnot drivenby the local
excitatory action. From the results of chapter6, collective oscillations occur as a result
of the interlaminar circuit. This includesboth inhibitory and excitatory components, if
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the upperlayeris used to providea clock, the clock cycle is simply a characteristic of
the whole circuit. The ‘clock” mechanismof the Traub model may notbe correctin
the neocortex, however the possibility of a “time code’ still exists. The variability of
impulse timing in the lower layer might allow a response characteristic that could
supporta temporal code.

Eckhornreports that the correlationsof SUA are variable and are weaker than
correlations of the collective population oscillations (as seen in the LFP: Eckhornet al
2001; Eckhomet al 1992). This variationin the timing of the individual neuron
impulse response, withina population supporting synchronised oscillatory activity,
allows the possibility of a time coding mechanism.

Before strong claims of the existence in cortex of a particular temporal coding
mechanism can be supported, a further consideration of neurophysiology is necessary.

7.2 Local cortical physiology

7.2.1 Neuron types

Nowaket al providea classification of neuron types based on morphology and
electrophysiology that extends earlier work (Nowak et al 2003). Four main classes of
neurons are distinguished:

RS regularspiking are pyramidalin layers 2,3,5,6 and spiny stellate in layer4;

FS fast spiking are sparsely spiny or aspiny nonpyramidal cells;

IB intrinsically bursting are pyramidal in all layers, but concentrated in layer 5; CH
chatteringneurons are in layers 2 to 4, concentrated in layer 3, they are pyramidal or
spiny stellate cells and producehigh frequency bursts of action potentials.

These layer differences will contribute to the behaviourof the local “vertical’
columnar circuit. Modelling of local activity has includedrepresentation of IB neurons
(for example LDCM in chapter 6 or Bush and Sejnowski 1996). The LDCM includes
IB model neuronsin the lower layer. The existence of CH neurons (higher frequency
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bursting neurons concentrated in layer 3) suggests a differentiation of the layers 2/3
and 4 that may repeat the lower/upperdifferentiation implementedin the LDCM.

7.2.2 Cortical connections and the local circuit

7.2.2a Local circuit afferents
An extensive and historic literature addresses the complex patternof connectivity in
the local neocortex (Gilbert and Wiesel 1979; Lorente de No 1922) and later reviews
(Callaway 1998; Gilbertand Wiesel 1983). Callaway (pp64-68) reviewslocal
connectivity and identifies feedforward connections: thalamic (LGN) input to layer
4c, layer 4c to 2-4b and then to ‘higher” areas. And feedback connections: layer 4c to
6 to 4c; layers 2-4b to 5 to 2-4b. Layers 2-4b provide the source of cortico-cortical
feedforwardflow to ‘higher” areas. Local horizontal projections allow intralaminar
reciprocal connections (with patchy lateral arbourisation). At a greater scale, cortico-
cortical feedback occurs from a ‘higher” arealayer5 to a ‘lower” cortical area layer5
and upperlayers (via layer 1) (Felleman and Van Essen 1991; Tanaka 1997). The
general pattern of feedforward and feedback innervationinvolves a different targeting
of thelayers, hence one might expect thatbehavioural layer differences are likely to be
important for larger scale cortico-cortical integration.

7.2.2b Interlaminar connections
Thomsonand Bannister make an extensive review of interlaminar connections in the
neocortex (Thomson and Bannister 2003). They note a general pattern of connections:
‘forward’ projections from layer 4 to 3 and 3 to 5 target pyramidcells and
interneurons; ‘back” projections from 5 to 3 and 3 to 4 primarily targetinterneurons.
They find very specific interlaminar selectivity. For example layer 3b pyramidstarget
layer 5a IB pyramids, and donot contactlayer 5 smaller pyramids (RS neurons).
Intriguingly, both the layer 3b pyramidsand 5a large pyramids (assumed to be IB)
have apical dendrites that enterslayer 1. The apical dendrites of layer 5 smaller
neurons (RS) donotreachlayer 1. Thelayer5 RS pyramidshave extensive lateral
axonal arboursin layer 5 and they innervate the IB neurons, but returnIB to RS
connections appear to be infrequent (at a ratio of 1:10). These differences suggesta
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convergence of processing streams. Interneuron classes show highly selective

connectivity patterns, contacting specific regions of the target cells.

Thomson and Bannister presenta generalised classification of interneuronsinto
proximally targeting and dendrite targeting cells. In addition to the anisotropy of
“vertical’ inhibitory connections, they note a difference in horizontal connectivity. The
horizontally projecting axons of pyramidal neuronsare fine and largely urmyélinated
witha conduction velocity in the orderof 0.3 metres S™. Interneuronaxons are thicker
and strongly myelinated, and for a diameter in the order of 10ptm the conduction
velocity is approximately 4m S (p137 Nicholls et al 1992). The differencein
conduction velocity is in the order of 3ms per millimetre. Thomsonand Bannister note
that this may form the basis of a time delay network and contribute to temporal signal

processing.

These observations (7.2.2a and 7.2.2b) provide a more general context for the
consideration of the results from the LDCM consideredin chapter 6. This and earlier
chapters made a number of simplifying assumptions and have excludeda
consideration of some typical physiological features of local neocortex as being
beyond the scope of the local circuit model. The results from the LDCM are qualified
by these simplifying assumptions. An extension of the model must reconsider features
which will allow the extension of the model vertically, for example to include |
additional interlaminar connections, and extension of the model horizontally to allow

interaction withadjacent column circuits.

7.3 Modellingmore local physiology

The developmentof the LDCM omitted a number of features of local cortical
physiology and organisation that may be relevantto a more extensive model
concerned with temporal activity and the integration of inputs from lateral and distant
areas. For example the active apical dendrite is not portrayed. The apical dendriteof a
pyramidal neuron providesa vertical pathway throughthe laminae. The LDCM does
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not address the possibility of active processes on the apical dendrite, however there is
good evidence that the apical dendrite supports active conductances (Connors et al
1994). Lateral locally projecting axons differ in their myelination and the different
conduction velocities may supporta local delay line network (Thomsonand Bannister
2003). The inclusion of additional layers would modify the chapter6 LDCM, the
implementation of layers 4 and 1 would allow an investigation of the influence of

“distant” feedforward and feedback inputs.

7.3.1 Apical dendrite function

Passive transmission of PSPs on the apical dendriteis inconsistent with empirical
results. The pyramidal neuron’s apical dendrite may act as a sharp coincidence
detector, correlating distal inputs withlocal layer inputs (Larkumet al 1999).

Passive integration of synaptic activity acts as a weaker coincidence detector, as PSPs
arriving at the same time will sum to a greater amplitude than PSPs that are separated
in time. The integration of PSPs on the proximal or basal dendritic arbourmay be

predominantly passive.

7.3.2 Local lateral axon conduction velocity

Local lateral pyramidal isocortex axons are unmyelinated or sparsely myelinated and
propagation velocity is around0.3m S. Interneuronaxons are myelinated and achieve
a propagationvelocity in the orderof 4m S™. For a cortical lateral distance of 10mm
the EPSP IPSP timing difference is in the order of 30mS. The local lateral axonal
connections may providea time delay network. The faster inhibitory pathway may
serve as a reference timing signal (so partially reintroducinga theme from the models
of Traubet al 1997a and 1997b).

7.3.3 Subcortical and intercortical inputs: Layers 4 and 1

A more detailed local circuit may be implementedby the separation of layer4 as a
distinct inputlayer, contributing to an upper léyer reciprocal circuit. Inputs from
distantneurons arriving atlayer 1 innervate the apical dendrites of larger pyramidal
cells.
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7.3.4 The functioninglocal circuit

The implementation of active apical dendrites, providing coincidence detectionand a
lateral axonal ‘delay” network may introduce a new signal processing capability to an
extendedmodel of thelocal cortical circuit. A time delay networkand coincidence
detection are necessary elements for a time based implementation of a Radial Basis
Function Network (RBF) (Hopfield 1995; Sejnowski 1995). RBF is a powerful
patternrecognition algorithm. The interactions of cortical column circuits withlateral

connections may achieve this role.

7.4 A new synthesis for local cortical action

This proposal is based on an extension of the simple LDCM of chapter 6, including
further features of local cortical physiology. Thomsonand Bannister (2003, section
7.2.2b above) observe thatlayer 3 pyramidsinnervatelarge layer 5 pyramidal cells (IB
neurons) and these IB neurons preferentially contact layer 3 interneurons achieving a
vertical circuit similar to the LDCM.

The neocortical layer 1 is not represéntedin the LDCM, the upperlayer of the LDCM |
representslayers 2 to 4 and the lowerlayer representslayers 5 and 6.

However, it is knownthat the apical dendrite of IB neuronsascendsto layer 1. The
LDCM may be extended vertically to connect to another inputlayerby the
implementation of the apical dendrite extending fromlowerlayer IB neuronsto a
superficial inputlayer (representing layer 1, above the upperlayer of the LDCM). The
action of theactive apicai dendrite introduces a coincidence detection function to the
local circuit. The response of the IB neuron dependson the relative timing of
superficial inputs and local activity.

The LDCM does not implementlateral connectivity to “horizontally” adjacent

columns. The horizontal extension of the model network’s circuit involves the local
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lateral axonal projections. Differences in inhibitory and excitatory axonal conduction
velocities (section7.3.2) may provide the basis for a local time delay network.

The combinationof the local circuit oscillation (providing a time frame), coincidence
detectionand a delay network may provide the elementsnecessary for the time coding
network proposedby Hopfield and Sejnowski (1995, and section7.4.1).

The above description of this arrangementuses the example of the interlaminar
connectivity of layers 3 and 5. It may be noted thatlayers 4 and2/3appearto have
many aspects in commonwith the interlaminar relationship of layers 3 and 5. Layer 4
possesses a high density of interneurons, implying a higher level of local inhibition.
Layers 2/3receive excitatory and inhibitory inputs fromlayer 4, but layer pyramid 3
neurons preferentially target the interneuronsin layer 4. In addition, layer 3 pyramid
neurons possess apical dendrites thatascend to the superficial layer 1. It is a shortstep
to propose that the CH neuronsthat are concentrated in layer 3b are the neurons that
preferentially project to layer4 interneurons and to propdse that these CHneurons
possess apical dendrites that arbourise in layer 1. This proposal suggests that the fast
bursting CH neurons of layer 3b play a role in the 4 to 2/3circuit thatis similarto the
role of IB neuronsin the 3 to 5 vertical circuit. The proposal of a generalised
functional ‘local columnarcircuit’ is elaborated below (section 7.4.2).

7.4.1 The components supportinglocal cortical action:

The vertical circuit and layer differences achieve a synchronised oscillation (in the
LDCM), providing a timing reference.

The pyramidal active apical dendrite provides a coincidence detection function
vertically across layers. Horizontal local axonal projections providea time delay
network. The less strongly synchronised layer (less inhibited, lower layerin the
LDCM) contains the soma of the pyramidneuron, and the impulse timing of the
individual pyramidal neuronis a function of the coincidence detected between the
"home’ layer and the distal inputlayer. The combination of these components may
- supportthe time coding function proposedby Hopfield and Sejnowski (1995).
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74.2 Proposal for a prototype ‘time coding’ local columnar circuit
The minimumarrangement comprises:

a cortical “input’ layer A;

alocal cortical feedbacklayer B;

a cortico-cortical ‘distantinput’ layer C.

Layer A includes RS, FS, and may include bursting neurons.

Layer B includesRS, FS, and bursting neurons (CH or IB).

Local lateral connectionsin layers A and B form time delay networks. The vertical
connection from A to B innervates both pyramidal and interneurons.

The bursting pyramidal neuronsin layer B preferentially innervatelayer A
interneurons, and the reciprocal A to B circuit is oscillatory. This collective oscillation

provides a reference time frame for a time code.

The distal apical tufts, of the apical dendrites of bursting pyramidsin layer B, receive
inputs from layer C. The apical dendrite can providea ‘coincidence detection’
function between the distal inputs and the local inputsinlayer B. According to the
timing of distal inputs, relative to the local (oscillatory) activity, the layer B pyramidal
neuron will produce an impulse thatis delayed or advancedrelative to the collective
activity. This “time code” impulse in conjunction with the lateral time delay network
may achieve Hopfield's proposal of “action potential timing for stimulus
representation”(1995). |

Layer B sendsintercortical projections to distantlayer C areas. (The “distant’ circuit is
reciprocal betweenlocal area layer B projecting to distantarea layer C, and thereturn
projection from distant B to thelocal arealayer C.) This circuit is sketched in figure
7.1 below. |
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layer C

layer A
lateral time
delay network O FS Coincidence detection
byApLcal dendrite
feedforward
ircxjts
5<3'
Bursting i>
layer B
lateral time

delay network <« 1
Axon projection
to distant areas

Figure 7.1 Sketch of local columnar circuit. Three layers are distinguished: a cortical 'input' layer A;
alocal cortical feedback layer B; a cortico-cortical'distantinput'layer C. Triangles represent
populations o f RS neurons, circles representpopulations of inhibitory FS neurons (a small population
of FS neuronsin layer B is notshown). The shapelabelled 'Bursting' represents a population of
burstingpyramidalneurons (CH or IB cells). Open arrowheads representexcitatory synapses, solid
arrowheadsrepresentinhibitorysynapses. Arrow weightrepresents the relative strengthof a
connection.

A local vertical recurrentcircuitis formedbetween the layers A and B. The feedback from layer B to
inhibitory FS cells in layer A contributes to the oscillatory activity of thelocal neuronpopulation. The
bursting cells in layer B mediate the feedback to layer A, and so play animportantrole in the local
oscillatory circuit. The bursting neuron also receives inputs to the distal apical tuftin layer C. These
inputs are modified by the action of the active apical dendrite,which acts as a coincidence detector.
When the timing of the inputs to the apical tuftis correlated to the local activity (inputs to the pyramids
basal dendritic arbour) burst firing is enhanced. This 'coincidence detection' then affects the local
activity as the burstingneuron innervates: the layer A intemeurons,potentially shifting the phase of the

local oscillatory cycle; and the lateral 'time delay' networkof layer B.

This proposalis novelbecause the oscillation 'clock' is closely coupledto the activity

of the burstingneurons. As the burstingneuronpopulationprovides coincidence
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detection between distantlayer C inputs andlocal activity, the ‘clock” oscillations are
sensitive to the interaction of “distant’ inputsandlocal activity.

This schemeis extended to described relationsbetween the cortical layers 1 to 5. (For
simplicity I will ignorelayer 6 for the moment.)

74.3 A scheme of neocortical local circuit function

It is proposed that the columnvertical circuit consists of two main component circuits:
the reciprocal layer 4 to 2/3circuit; the reciprocal layer 2/3to 5 circuit. Both circuits
interact with layer 1. Figure 7.2 sketches the arrangement for the circuit 4-2/3 (layers
4,2/3and1 are comparable withlayers A, B and C respectively in figure 7.1).

7.4.3a Alocal circuit for layers 4, 2/3 and 1

A mechanistic account of the circuit4 to 2/3 follows:

i. layer4 activity receives LGN thalamic inputs;

ii. activity spreadslaterally withinlayer 4 (butis restricted), layer4 relays activity to
layer2/3;

ifi. activity spreadslaterally withinlayer2/3;

iv.layer2/3RS cells innervatelayer 3b CH cells but CH cells do not (mostly) contact
otherlayer 2/3RS neurons (prediction 1);

v. CH cells have apical dendrites that arbourisein layer 1 (prediction2);

vi. the CH cells serve as coincidence detectors, integratinglayer 1 inputs with the
temporal responses of layer 3;

vii.the predominantlayer 4 targets of CH cells are interneurons (prediction 3),
completing the vertical circuit.
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RS FS to distant areas

LGN irguts

Figure 7.2 Sketch oflayer4 to 2/3 circuit. Layer 2/3 inhibitory intemeurons not shown. Lateral
projection from layer 4 neurons is restricted to the ""home' column. Lateral projections in layer 2/3

extend to several millimetres.

The feedback innervation of inhibitory intemeuronsin layer4 enhances the oscillatory
action of the circuit During an oscillatory episode, the phase timing of impulse firing
by layer2/3 RS neuronsand CH cells willbe more variable thanlayer4 spiny cells
(prediction4; predictions are listed in table 7.1 below). Crudely, it maybe thoughtthat
layer4 is providing a clock, and the timing of layer2/3 RS and CH impulses are
varying 'coincidence detection' changes the timing of impulse production. The
'clocking' mechanismis subtle as it will be influencedby the functioningof the CH

population, ie: the coincidence of layer 1 activity and layer 2/3 activity.

7.4.3b A local circuit for layers 2/3, 5 and 1

This circuit schemais similar for the layer4 to 2/3 reciprocal circuit, with some
additions (figure 7.3 below). Layer 2/3neuronsproject to layer 5, preferentially

contacting IB neurons. Layer2/3 intemeurons are innervatedby layer 5 IB neurons.

150



Layer 5 IB neuronsreceive inputs from layer 5 RS neurons,butretum connections are
infrequent The vertical circuit differs from the 4-2/3 scheme, because it integrates ata
larger scale. Layer 5 RS neuronshave apical dendrites that arbourise in layers 4. It
seems then thatlayer5 RS neurons can integrate the local responses of layer4 with
layer 5, and the resulting activity is relayed to the IB neurons. As the IB neuronapical
dendrite arbourises in layer 1, the response of the IB neurons can code for coincidence
betweenlayer5 andlayer 1. IB neurons contact the intemeuronsin layers 2/3,
enhancingthe oscillation of the drcuit and linking the inhibitory activity to the
coinddencebetweendistal inputs and local activity. (Patterns of interlarninar

connectivity reviewedby Thomson and Bannister 2003).

layer 1 disiant inputs
layer 2/3 lateral time {>
delay network FS
Coincidence detection
byjf*iical denddte
feedforward
inputs t> layer4
lateral time
C> delayretwork
layer 5
lateral time
delay network <1 RS

Axon projection
to distant areas

Figure 7.3 Sketch of layer2/3 to 5 vertical circuit.
Counectiousbetween layer4 and2/3, and apical dendrite from layer 3 pyramidto layer 1 notshown

(see figure 7.2), Inhibitoiy intemeurons in layer S notshown.

The commonfeatures of these proposed circuits include inhibition of an 'm puf layer

being drivenby burstingneurons m a differentlayer. The burstingneurons are
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involved with the integration of local activity and distant (layer 1 inputs) activity.
Axon fibres innervatinglayer 1 have dispersed terminations over a several mnt' so.
individual inputs to apical dendrites are likely to achieve a small amplitudeand
relatively subtle interactions are likely.

The circuits (4 to 2/3and 2/3to 5) are closely linked as layer 2/3is common to both
and the apical dendrite of layer5 RS pyramidsarbourise in layer 4c; so local
collective oscillations will be strongly coupled.

Thelayer 4 to 6 reciprocal circuit has some features common to thé above: a
sublamina of layer 4 innervateslayer 6 andlayer 6 large pyramids (Mynert cells)
selectively target interneuronsin layer 4. However the apical dendrite of the layer 6
pyramids does not reach layer 1, so it may be thought that this circuit is more
concerned with the coordination of local activity and not directly concerned with
integrating a response with distant cortical areas. As layer 6 large pyramids project
subcortically this circuit may be more concerned with the coordination of sub-cortical
activity. (The4 to 6 circuitis coupled to the other vertical circuits as in addition to the

commonlayer 4, layer 6 receives inputs from layer5.)

~ 74.3c Testable predictions
The application of the prototype circuit (7.4.2) to the 4-2/3circuit and 2/35 circuit
cast the CHneuronsin a similar role to IB neurons. Flowing from this, some
predictions are made concerning the morphology and connectivity of CHneurons (in
section7.4.3), which may be tested by an investigation of neurophysiology. Specific
predictions are listed in table 7.1, below.

Prediction 2, 'CH cells have apical dendrites that arbourise in layer 1', is the most
likely to be confirmedby empirical results. It is already known that, of pyramidsin
layers 4 to 2, a subpopulation concentrated in layer 3b have apical dendrites that

arbourisein layer 1, also CH cells are concentratedin layer 3b.
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Predictions of CHneuron morphology, connectivity and functioning

1 Intralaminar asymmetry of connectivity: layer 2/3RS cells innervate layer
3b CH cells but CH cells do not (mostly) contact otherlayer2/3RS neurons.

2 Morphology: CH cells have apical dendrites that arbourise in layer 1.

3 Interlaminar asymmetry of connectivity: layer 4 innervates both neurons and
interneuronsin layer 3; the predominantlayer 4 targetsof CHcells are

intermeurons.

4 During an oscillatory episode, the phase timing of impulse firing by layer
2/3RS neurons and CH cells will be more variable thanlayer4 spiny cells.

Table7.1 Predictions regarding CH neurons

The other predictions are less likely to be tested quickly as they would require the
identification of morphology and functioning of pairs of connected neurons (1 and 3)
or identification and detailed analysis of activity (4).

7.4.4 Summary of the proposal

This “‘working hypothesis” of local circuit functioning combines the ideas of a time
coding network and interlaminar” coincidence detector” afforded by the action of the
apical dendrite. A strong feature of the proposal is the action of the bursting neurons.
It is proposed that the bursting neurons provide coincidence detection betweenlocal
lateral activity and distant inputs via layer1. In addition to this the bursting neurons
drive the local oscillatory ‘clock” by their innervation of local interneurons, so the

. local oscillation is inseparable from the action of the bursting neurons. (For further
reference this model will be referred to as IOTCIN : the Intrinsic Oscillating Time
Coding Network.)

The JOTCN proposal is a powerful one because:

i. different theoretical approaches to local brain function and empirical physiology,
morphology and function are unified;
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ii. specific mechanisms are falsifiable, for example the range of axonal time delay
differences mustbe consistent with the coincidence function achieved by the
pyramidal neurons;

iii. the proposal may be extended to include interaction with sub-cortical centres and
other circuits, for example the reciprocallayer 4c to layer 6 circuit;

iv. the proposal may be extended to include interaction with distant cortices. The local
‘clock” may interact with distant clocks. Modelling possibilities for a phase shifting
local oscillation are discussed in the section7.6.4 below.

Before considering a programmeof future work I will briefly review a range of

published modelling studies:

7.5 Cortical neuron and network models

7.5.1 Neuron compartment models: one or a few cells

The interaction of the cell body and active conductances on the dendritic arbour
produces a distinctive firing patternin a detailed compartmentmodel of a pyramidal
neuron(Mainen and Sejnowski 1996). This study is relevant to investigating the
response function of pyramidal neurons.

Other studies implementing a small network of biophysically based neuronmodels
(compartmentmodels or reduced compartmentmodels) consider oscillation and
synchronisation (Bush and Douglas 1991; Lytton and Sejnowski 1991) and find that
synchronisationis a consequence of local inhibition. These studies are relevant to the
issue of the stability of thelocal ‘clock” oscillator.

Crooket al find that a networkof zidapting neurons (including networks of
biophysically based reduced compartment pyramid models) are capable of
synchronisation by adaptation alone in the absence of inhibition (Crook et al 1998b).
This is also relevant to the natureof local oscillations.
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Douglas and Martin (1991) examine the response of a small model network that
represents the cortical response to a thalamic pulse input. They include compartment
models of pyramidal cells and inhibitory interneurons. This model is of interest
because they represent an upper and lower neocortical layer. They identify three
subpopulations of neuronsin the “microcircuit’. The model upperlayer represents the
layers 2 to 4, the lower layer represents the cortical layers 5 and 6. An inhibitory
subpopulationis not divided between the layers and acts on both upperand lower
layers, a stronger level of inhibition acts on the lowerlayer (assumptionsleading to
this implementationare discussed in chapter 5, section 5.4.4). Douglas and Martindo
not implement action potential generation with each subpopulation, and each
subpopulationis represented by a single “populationaverage” model neuron (p764
1991); the network model contains three non-spiking neurons. The sustained response

is notexamined and the emergence of circuit oscillation is not considered.

7.5.2 Networks of many cells with reduced morphology

Bush and Sejnowski investigate the behaviourof a sparsely connected network of
adapting pyramidal neurons and interneurons (reduced compartment models) (Bush
and Sejnowski 1996). Oscillation and synchronisation within and between columnsis
demonstrated. They find that synchronisation is sensitive to inhibitory strength. Their ’
columnmodel does not differentiate layers or implementa vertical circuit. In terms of
the representation of adapting pyramids and interneurons, this model is nearest to the
single layer model presentedin chapter5 (especially 5f).

Anotherbiologically motivated model is studied by Series and Tarroux. Networks of
sparsely connected spiking neurons and interneurons are implemented.
Synchronisation of columns is demonstrated (Series and Tarroux 1999). This modelis
harderto compare to the results of chapter5 as the neuronmodels are bistable
(latching on to produce a spike train; this may be considered to be an extreme form of
the Hindmarshand Rose ‘“triggered firing” property: see chapter2) and adaptaﬁdnis

notimplemented. Layers are not implemented.
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Sommer and Wennekers study a biologically inspired Hebbian learning network
(Sommer and Wennekers 2000). The oscillatory networkis formed from an over
connected array of bursting neurons, with global feedback inhibition. Layers are not
implemented. This study does not implementaxonal delay, butit has some relevance

to a consideration of local lateral interactions.

7.5.3 Simplified ‘neuron” model networks

Simplified neuron models are often used to make the implementation of extensive
networks with large populations tractable. A very large literature exists. As most of
these models do not implement, even in a reduced form, properties such as adaptation
or bursting I will not review themhere. Multiple layer modelshave been implemented
(Ross et al 2000; vonder Malsburgand Buhmarn1992). The Malsburgmodel uses
an abstract oscillator to represent the variation of neural activity (this maybe
considered to represent the ‘mean field” of a local oscillation) and does not implement
layer differences. Ross et al implement differences in layer connectivity in a
hierarchical model of columns and areas. However the Ross model uses a non-spiking
leaky integrator model to represent the individual models. Neurontypes are not
differentiated hence layer differences in neuronbehaviour are not well represented.
These models are not particularly useful in the task of developinga local circuit model
that portrays details of layer differences.

Kormner et al (Korneret al 1999) implement a detailed large scale model that includes
five layers, multiple columns and thalamic nuclei. A hierarchy of processinglevelsis
implemented. Populations of columns forming a single cortical level, project forward
to a higher cortical level representing V1, V2 to V4 and the inferotemporal cortex, and
- reciprocal projections feedback. Much of the structure of this model resembles the
proposal by Gilbert (2001) regarding cortical function.

Gilbert (2001) proposes “anoutline of brain function” that includes cortico-thalamic
units, hippocampal inputand sub-cortical areas. Of interest here is the view of the

‘columncircuit’. Upperlayers 4,3 and 1 receive inputs from the subcortical areas,
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hippocampusand other cortical areas. Layers 2,3 innervate the lower layer 5. The
lowerlayers form an outputlayer to subcortical areas (esPecially the thalamus).

Fundamental to the Korner et al modelis the implementationof a ‘latency firing
code’. Ateachlevel of a hierarchy a feature detector signals a perfect matchby the
timing of its activity in relation to a clocking mechanism. Korner et al implementa
global network clock, representing the activity of the thalamic intralaminarnuclei
(they do acknowledge that the origin of real cortical oscillations is more complex).

Korner donot examine the question of the contribution of laminar difference to
synchronisationor oscillatory activity. Their networkneurons are implemented as
integrate and fire models (Rodemannand Korner 2001), and so their columnmodels
donotinclude the dynamics of RS or IB neuronsor the active apical dendrite.

However, Korner et al do suggest the columnarmodules provide parallel modes of
processing, a feed-forward categorisation route, and a top-down feedback refinement
or prediction. Feedforward categorisation is placed in layers 4 and 3c, refinement
occurs by feed back providedby layers 5 and 6, activating partial matches in the
refinement systemin layers 2,3a and 3b (which subsequently feedforward).

Althoughthis architecture does not capture the dynamics of local reciprocal circuits
that contribute to columnarsynchronisation and oscillation, it is a reminderof
interlaminar functional differences and goes some way to developing a time coding
model of cortical functioning.

7.5.4 Multilayer network with biophysically based neurons -

The LDCM presented in chapter 6 is unique. There are no published cortical models
thatincludelayer differences with spiking, adapting neurons (ie FS, RS andIB or
CH). In addition there are no models that implement the proposed IOTCN, with active
apical dendrites acting across layers, layer differences and adaptingneurons. Table 7.2

compares a selection of neuronassembly models.
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Model Layers NeuronModel Intrinsic

implementation Number  Difference |fieldequation integrate biophysically | population

& fire based oscillation
Colenso 2003 2 Y - - Y Y
Bush 1996 1 - - - Y Y
Traub 1997b 1 - - - Y xy
Sommer 2000 1 - - - Y Y
Malsburg 1992 8 N Y - - Y
Ross 2000 3 Y Y - - N
Korner 1999 5 Y - Y - *N

Table 7.2 Comparison of neuron assembly model features.

*Y Traubetal (1997b) implementa cortical inhibitory oscillator that omits excitatory to excitatory
connectivity Traub et al (1997a) include excitatory to excitatory synapses but find that these tend to
disruptoscillatory activity. *N Korner et al (1999) implementan ‘external” thalamic oscillator that

drives the cortical population activity.

A number of models share some of the featuresincludedin the LDCM presentedin
chapter 6. A few models implementneocortical layer differences but they donot
implementdifferentneurontypes.

The Bush and Sejnowski model (1996) is closest to the LDCM and single layer model
in chapter5. Collective oscillations occur throughthe interaction of the neuron
population. The Bush and Sejnowski columnmodel is implemented as a sparsely
connected network, and does not differentiate the features that are distinguished
between twolayers in the LDCM. Bush and Sejnowski includebursting neurons and
omit sIPSP synapses, features which are appropriate for the lowerlayer. The strength
of fIPSP synapses in the Bush and Sejnowski model are set at a level whichis
comparable to the fIPSP weight in the upperlayer of the models in .chapters 5 and 6.

Traub et al (1997a,b) implement models which achieve synchronised oscillations and
inélude biophysically based model neurons. These single layer models are based on
findings from the hippocampus. A specific oscillatory mechanismis proposed which
emphasises the role of an inhibitory circuit, and a phase coding response is described.
Traub et al find that excitatory to excitatory recurrentactivity tendsto disruptthe
phase coding response (Traub et al 1997a). The emphasis on an inhibitory interneuron
circuit as the basis of local oscillations is hard to reconcile to the typical pyramid to
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pyramid connectivity that is foundin the local neocortex (althoughthis may be an
appropriate model for the hippocampus). The Traub et al approachis of interest
because a “phase delay code’ responseis demonstrated.

Sommer and Wennekers (2000) implementa single layer model withall to all pyramid
connectivity and global inhibition. This is hard to reconcile with knownlocal
connection probabilities. However, the model demonstrates Hebbian learning in an
oscillating network. This may be relevant to a consideration of very local lateral
functioning (for example in layer 4 lateral projection is very limited and high cell
density may indicate a high connection probability). Layers are not differentiated so
this model is not informative about the local vertical circuit.

The large model of Korner et al differentiate cortical layers but neuron dynamics are
not differentiated (beyond inhibitory or excitatory). The multilayer model of Korneris
interesting because layer connectivity differences are implemented. But model
neurons are based on integrate and fire units so dynamics of the local circuit are not
captured. Oscillation is drivenby a centre that is external to the local neocortex
(thalamic ILN). The character of locally generated ‘intrinsic” oscillationsis not
examined and again, it is hard to compare to the LDCM presentedin this thesis.

Kormer et al doimplementa time delay coding, so, like the Traub et al model, they
provide an example of Hopfield's impulse timing proposal (1995). To a degreeboth
the Traub and Korner models isolate the generation of oscillations from local |
excitatory activity (stabilising the oscillation and simplifying any temporal code).
However the results of chapter 6 indicate that the neocortical interlaminar circuit is
capable of supporting a local population oscillation involving both pyramidal and
inhibitory neurons. The model proposal of this chapter portrays the oscillatory
population’clock” as an intrinsic behaviourof the local cortical circuit, with the
neuronsengagedin a “time code” response directly contributing to the “clock’

oscillator.
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7.6  Further modelling studies

The proposal for an Intrinsically Oscillating Time Coding Network (IOTCN) of local
neocortex function is incomplete. Many aspects require a more precise definition
before a model may be implemented.

A number of preliminary studies mustbe conducted to define the functional limits for
different model components. A primary task is an explorationof the ‘coincidence
| function’ that each neuron type can support. The ‘coincidence” results of Larkum
(1999) need to be generalised for the different pyramid types. Single cell compartment
model simulations are suited to this task and some pub]ished single neuronstudies are
relevant (for example Bush and Sejnowski 1994; -Rhodes and Gray 1994). Differences
in the response function of RS, CHand IB pyramids, and the contrast between distal
apical and proximal dendritic inputs will be highly significant in a time coding model
implementation. Differences betweenRS and bursting respohse functionsmay
indicate the functional difference of integratinglayer 1 to local activity comparedto
local vertical interlaminarintegration.

The action of interneuronsmustbe considered. Modelling may allow the classification
of interneurontype according to the modification of the response function: modulatory
action supportinga clock (providing a sub-threshold oscillation together with EPSPs);
gating acting on the shaft of apical and axon initial segment; firing rate stabilisation by
the action of sIPSP negative feedback. (Gating action may be associated with a lateral
‘logical” network, supporting a feedforwardresponse.)

The effect of variable synaptic activity on the response function may be investigated
by modelling (see variable oscillation frequency below). In addition, longer term
synaptic modification as a function of the coincidence of the action potential impulse
(AP) and EPSPs and IPSPs have been reported (Holmgrenand Zilberter 2001; Magee
and Johnston1997; Markramet al 1997). Other findings regarding synaptic LTP,
LTD and the coincidence of the AP and synaptic PSP are reviewed by Paulsenand
Sejnowski (2000). These process of synapse plasticity appears to arise froma
coincidence timing mechanism thatis related to the enhanced impulse firing
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coincidence timing mechanism and therefore may providea learning rule thatis
entirely consistent with the short term “time coding’ behaviour. A model incorporating
differentlearning rules according to the apical or basal synaptic site difference has
been implemented (Kording and Konig 2001).

7.6.1 Challenges for the implementation of the IOTCN model

However some immediate problems exist. If the oscillations are providinga coding
clock, whyin-vivo aré the oscillations variable between different presentations of the
same stimulus, and within the same response episode?

Tf the clock is required to “code’ and decode a response, how can a fast RF responsebe
achieved in-vivo before the local oscillations are established (Tovee and Rolls 1992)?
The former objection is consideredin the sections 7.6.3 and 7.6.4 below. I will
consider the latter objection first.

7.6.2 Reconciling fast responses and oscillatory activity

One constraint on the functional model is that it should support the ‘fast feedforward’
receptive field response that can be established before widespread oscillations can
emerge. The IOTCN proposal does not prevent fast “feedforward’ responses. It is
likely that the stronger synapses mediate the early response to thalamocortical inputs.
Coincidence detection and axonal time delays are available as activity propagates
laterally between the most strongly interconnected neurons. In this case the time code
is in relation to the onset of a stimulus. In Eckhorn’s terms this is a “stimulus locked’
responsé, that occurs before collective oscillations are observed. However the pattem
of temporal activity which is evoked by a different stimulus, with a different onset
time, is displaced in time and so cannot integrate with the temporal pattern of the first
stimulus (in the absence of collective oscillations and so without the emergence of a

common time frame).

Further, in the case where the only timing reference is the time of the stimulus onset
(again, in the absence of collective oscillations), as a stimulus persists the precision of

- the timing of collective activity will be lost (the timing of successive impulses will
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accumulate small timing differences that will tend to disrupta precise timing ‘code’).
The response of a neural assembly will initially achieve the precision of a time delay
network, where the timing of each neuronimpulse s significant, butin the absence of
another timing mechanism the response will degradeto an average firing rate
encoding,.

A model that can supportboth a “fast feedforward’ response (with no collective
synchronising oscillations) and an oscillatory response will go some way to meeting
the objections of Lamme (Lamme and Spekreijse 1998) (see section7.1.5 above).

7.6.3 Variable oscillation frequency

A problemfor aIOTCNin a real cortex is that the local oscillation frequency (or
coding reference “clock’) is not fixed. It varies between successive presentations of the
same stimulus. So if a time coding s generatedis it coded by relative phase with
respect to the clock, or an absolute time difference? Axon conductionis likely to
remain the same for different response epochs, but the collective oscillation ‘“clock”

frequency varies somewhat.

This problem may be investigated by modelling and different mechanisms may
contribute to “time code stability’. One possible solution arises from typical synapse
function. Common EPSPs exhibit ‘depressing’ firing. At a single synapsesite the
amplitude of a train of EPSPs diminishes. Repeated activations of the same synapse
results in reduced EPSP amplitude (asymptotic to a limit that is frequency dependant).
Now, if the clock is faster, then EPSPs will be more frequent, but smaller. A smaller
EPSP will not evoke postsynaptic cell impulse as quickly as a larger EPSP, hence the
pyramid may time the coincidence at a later time (a phase delayed). Axon conduction
times are relatively fixed, so for a high frequency clock the delay line signal will
arrive at a relatively late phase. Such effects stabilises the coding over a range of
frequencies and may maintain the efficacy of the IOTCIN. Modelling could test this
mechanism and compare the action of different synapse interactions on the temporal
coding.
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7.6.4 Phase continuity and phase shifts

Why does local oscillation frequency vary? If IOTCN is the main mechanism of local
cortical integration, then why didn’t evolution implementa stable clock? For example
the inhibitory oscillation of the Traub model (Traub et al 1997b) or the external
thalamic clock as modelled by Korner(Korner et al 1999).

The tentative explanation (which goes beYond thelocal cortical area) is that phase
shifts or phase modulation would be expected if there is interaction with other cortices
at a lower frequency. Now this raises the possibility of two interacting timing schemes
running concurrently. It may be suggested thatlayer5 IB neuronsare ‘tuned’ to a
lower frequency and so will be more sensitive to a slower modulation. It may be
recalled that different stimulus related frequency componentshave been foundin the
local LEP (Frien and Eckhom 2000). Such a mechanismmight correspondto the
‘amplitudeenvelope’ interaction proposals (Eckhorn et al 2001) or the ‘scales of
synchronisation” proposal (von Stein and Sarnthein 2000). In the IOTCN model this
distant feedback is interesting because as the IB neuronactivity changes, the local
population’clock” will be modified.

7.6.5 Local clocklocation

In an above section it is indicated that the coding “clock’ is in the more inhibited and
synchronised layer (upperlayer of model 6a)(layer4 in 4-2/3 circuit; section 7.4.3).
This is somewhatmisleading as model 5a (upperlayer only) has similar pararheters
and relatively poor oscillation compared to the upperlayer of model 6a. A better
interpretationis that the lowerlayer of model 6a contributes to upperlayer
synchronisation and oscillation, therefore the “clock” is a collective property of that
circuit. In network 6¢ inputsto thelower layer are increased and it appears that the
whole columnoscillation is exhibiting some characteristics of the IB neuronsin the
lower layer. The collective ‘clock” is thén more associated with characteristics of the
lower layer, because the lower layer is more active. The balance of activity between
the layers is importantin determining the nature of the collective oscillatory activity.
The simple assumption that the “upper” layer provides timing information may be

163



wrong. In vivo there are mechanisms that can balance activity (negative feedback) and
so large changes in the balance of layer activity may not arise.

The specific pattern of interlaminar connections appears to highlight the importance of
the bursting neurons (for IB neurons, the specificity of CH to layer4 interneuronsis a
proposal of this thesis). Layer5 IB neuronswill have a strong effect on the
modulation of columnactivity as they preferentially targetlayer 3 interneurons. In
addition the IB neurons are (it is proposed that) achieving a coincidence detection
function comparing distal layer 1 inputsand local inputs. The local circuit’clock’ is a
productof this resolved population activity.

7.6.6 Temporal binding hypothesis

The temporal binding hypothesis proposes that responses corresponding to a common
stimuluswill be bound together by a synchronised oscillatory activity (sections 7.1.1
and 7.1.3). The IOTCN proposal requires a common time frame for “time code’
responses to be effective across different areas. The exchange of precisely timed
impulses will be confused if twolocal areas use two different unsynchronised clocks.
IOTCN does not rule out a “temporal binding hypothesis” that correlated oscillations
provide a mechanism for perceptual grouping. Howevera different functional
explanationis given. For IOTCN the oscillations donot encode stimuli details, the
population oscillations provide the time frame calibration against which detailed
response impulse timings canbe measured.
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7.7 =~ Summary

LDCM results are discussed in relation to theories of cortical oscillations and
synchronisation. The consequences of the LDCM property of differencesin laminar
temporal behaviouris consideredin conjunction with additional physiological features
of the local neocortex. The possibility of a neural timing codeis examined.

A novel prototype circuit is proposed, the “Intrinsically Oscillating Time Coding
Network”, as a functional model for local neocortex. The model includes: layer
differences of neuron types and connectivity; active apical dendrite supporting
interlaminar coincidence detection; axonal delay providing a lateral time delay
network.

Future modelling tasks are proposed. Central to these is an exploration of the

coincidence response function, mediated by the apical dendrite, of RS CH and IB

neurons.
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8 Conclusion

This thesis develops a simplified model of the local neocortex column that portrays
the dynamic relationship of upperand lower layers. The model includesa sub-set of
typical local physiology, with particular emphasis on layer differences (layer
difference columnmodel: LDCM). Modelling results indicate that the layer
differences give rise to differences in the temporal behaviour of the layers. Using this
result together with a consideration of further typical local physiology and theoretical
proposals of neural coincidence detection a new model of local cortical functioningis

proposed.

8.1 Reviewof chapters

8.1.1 Introduction and thesis motivation

Chapter1 introduces the backgroundto this thesis. Empirical findings of stimulus
related cortical oscillations and theories of oscillation synchronisation and theories of
bindingof the neural response are briefly introduced.(The discussion of chapter7
returns to consider these theoretical approaches in the light of the thesis results.) The
questionof whichlocal cortical properties might contribute to this behaviouris raised.
A modelling approach that considers simpliﬁcaﬁohs of “typical” local
neurophysiology is proposed. Thesis contributions are listed in this chapter.

8.1.2 Physiological bases for modelling

Chapter2 includes a review of neurophysiology and proposes the development of
neuronand synapse models. The distribution of neurons through the layers,
connection patterns and layer differences are considered. A simplified modelling - |
scheme is proposed that includes a representation of common features of the local
neocortex: three neurontypes RS, FS and IB; three synapse types supporting fEPSP,
fIPSP and sIPSP; upperand lower layers with stronger inhibition in the upperlayer
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and IB neuronsrestricted to the lowerlayer; connection asymmetry between upper

and lower layers.

The scale of the proposed modelling is restricted. It is intended to investigate a model
at thelevel of a small local populatién of neurons. Empirical results involving the
actions of populations of synapses are considered, and strengths of connectivity are
estimated from compound PSPs.

8.1.3 Model elements

Models of the excitable membraneand a simplified synapse are examined in chapter
3. The excitable membranemodel is based on a modification of the Hindmarshand
Rose system. The modification allows control of the triggered firing property. Three
parameter sets implement the characteristic firing behaviours of the FS , RS and IB
neurontypes. The model synapse is implemented using an alpha function to give a
characteristic time course. The s&ength of the synapse is implemented using a weight
multiplier.

Correlations and power spectra of time series are examined. The FS model is foundto
have a flat frequency response and passes all frequencies in range of interest. RS and
IB model exhibit a band pass characteristic and are resonant at their preferred
frequencies. The synapse model alpha function acts as a low pass filter.

8.1.4 Simplemodel circuits

Mustrative simple circuits are examined in chapter 4. General findings include:
inhibitory feedback by FS neuronsreduces average circuit rates of activity
(unsurprisingly) but transient response of RS model neurons is not impaired;
RS to RS impulse recruitment time is similar under different conditions;

RS toIB impulse recruitmentdelay is more variable.

The consistency of timing of RS to RS impulse recruitmentis noted. This is consistent
witha time delay model (but does not rule out many other models).
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The interpretation of the behaviourof these small circuits mustinclude the caveat that
the circuits are somewhat pathological as they includelow numbers and large
connection weights which is not typical of the majority of connections in the local

neocortex.

8.1.5 Thesinglelayer ﬁMel

Chapter5 implements a model network including 100 neuronsof RS and FS model
neurons. The networkmodel is configured to represent the upperlayers of a
neocortical column. Parameters are chosen to balance the average rate of impulse
activity in RS and FS neurons. The network’s response to a noise inputis examined

under different conditions.

The model exhibits a tendency for RS neuronimpulse synchronisation. A collective
oscillation occurs, butis not Very robust. Variation of the conditions reduces the
strength of the oscillation: animbalance in the rates of RS and FS activity reduced the
oscillation, reducing the rate of inhibitory activity reduces synchronisation (result 5d).
The inhibitory effect of sIPSP stabilises the network response rate and opposes tonic
input.

The model configuration is adjusted (models 5e and 5f) to allow comparisonwith the
Bush and Sejnowski columnmodel (Bush and Sejnowski 1996). The 5f model
achieves a relatively strong synchronised oscillation (compared to 5a) and broadly
reproduces the single columnresults of Bush and Sejnowski.

Contrasts between the Bush and Sejnowski column model and the modelling approach
in this thesis are made. Bush and Sejnowski donot implementlayer differences in
their columnmodel. The Bush and Sejnowski model uses a fast fIPSP rise time (based
on empirical results examining single synapseIPSPs). Models in this thesis (except

5f) implementa slower fIPSP based on the empirical recording of the time course of
compoundIPSPs involving multiple simultaneously acﬁfze inhibitory synapses.
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8.1.6 The layer difference column model

The LDCM implementedin chapter 6 includesbiophysically based neuronmodels and
layer differences of neurondistribution and connectivity (the neuronmodels are ,
simplified, but preserve properties of impulse firing, adaptation of firing rate and burst
firing). No other published models incorporate these features.

Bush and Sejnowski implementa columnmodel that includes bursting neurons, but
they do not implementlayer differences (Bush and Sejnowski 1996). Traubet al also
implementa single layer model of cortical oscillation, however the oscillationis

drivenby a mutually inhibitory populationof interneurons (Traub et al 1997b).

Multiple layer models are published, and they do implement some interlaminar
connection differences. However the layered distribution of differentneurontypesis
notincluded. The model neurons are implemented as integrate and fire, or mean field
oscillators, and do not include adaptation of firing rate or bursting behaviours. The
multilayer model of Ross et al does not implement spiking neurons (Ross et al 2000),
similarly Malsburg’s coupled neural oscillator layers are based on a non-spiking phase
planemodel that does not capture bursting, adaptation or refractoriness (von der
Malsburgand Buhmann1992). The extensive multiple layer model of Korneret al
implementslayers, columns and cortical areas, however these networks are built with
integrate and fire neuronmodels, so the adaptation and bursting behaviourof typical
pyramidal neuronsis not included (Korneret al 1999; Rodemannand Korner2001).
In addition the Korner model includes oscillation thatis driven by a source external to
the cortical layers (thalamic oscillator).

(Note that the terminology of cortical structure and neural network modelling
sometimes requires translation: someneural network models that are described as
‘multiple layer” networksare, in cortical terminology, implementing the connection of
single layers in multiple areas, for example in a model portraying the hierarchy of
different cortices.)
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The LDCM introduced in chapter 6 comprises RS and FS neurons distributed over two
layers. IB neuronsare restricted to the lower layer. The upperlayeris more strongly
inhibited than the lower layer. The upperlayer neurons projects to all neuronsin the
lowerlayer. Interlaminar inhibitory connections are asymmetric. The lower layer FS
neurons do not directly project to the upperlayer. The lowerlayer pyramidal neurons
(RS and IB) project to the upperlayer.

Strong synchronisation and oscillation of the whole columnis demonstrated. The
upper layer is more tightly synchronised thanlower layer. It is proposed that the
collective action of the upperlayer supports a finer temporal resolution than the lower
layer, complementing this the variability of individual neuronimpulse timing in the
lower layer may supporta time code mechanism (discussed in chapter 7).

8.1.7 Discussionand proposal for a newmodel of local cortical integration

The results from the LDCM are discussed in relation to different theories of neural
integration and further features of local neocortex neurophysiology are considered.

A newmodel of cortical functionis proposed. The key features of this model include:
the generation of local oscillations in a vertical interlaminarreciprocal circuit; the
apical dendrite providing a sharp coincidence detection function between the layers;
slow axonal lateral propagation providinga time delay network; apical dendrites of
bursting cells (CH and IB) providing coincidence detection between inputs from
distantareas (layer 1 inputs) andlocal activity; bursting cell innervation of
interneurons, linking the local oscillation cycle to coincidence detection. This model
has been termedan intrinsically oscillating time coding network IOTCN). Specific
predictions are made concerning the functioning of the local circuit in neocortex, and

the connectivity of CH neurons.
The IOTCN proposal differs from other time coding proposals which distance the

generation of oscillations from the local excitatory neuronpopulation (Korner et al
1999; Traubet al 1997b). In the IOTCN model local population activity oscillations
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arise from the local interlaminar circuit, and the “time coding’ pyramidal neurons are a

key component of this circuit.

Further modelling work is suggested to test the proposal of the IOTCN. Initial studies
should concentrate on defining the coincidence function that pyramidal neurons
support, and how this varies with different pyramidal types. It is suggested that
interneurontypes mightbe classified according to their effect on the coincidence
function achieved by a pyramidal cell.

8.2 Conclusion

The LDCM of chapter 6 is based on some simplifying assumptions and details could
be refined, however the basic resultis likely to remain the same. The upperlayer
achieves a more tightly synchronised patternof activity than the lowerlayer. This
result opens the question: whatis the functional role of differences in layer behaviour?

Extending the LDCM raises further questions of how other “typical” features of local
neocortex will contribute to circuit activity. The IOTCN proposal arises from the
consideration of these common features. Extending the LDCM to connect laferaﬂy to
adj acent columnsinvites consideration of why lateral excitatory and inhibitory axons
should have different conduction velocities (answer: delay network). Extending
theLDCM to includeintercortical connections via layer 1, raises the questionof what
is the functional role of the apical dendrite (answer: coincidence timing detector).

The proposal of IOTCN opens up many further questions, which may be studied by
modelling or addressed by results from physiological studies:

For example, I have not givena strong account for the role of interneuronsin IOTCN.
This is an area which should be investigated by modelling. As a starting pointit would
seem likely that inhibitory synapses, providing a graded modulation, may contribute

to an oscillatory modulation, providing a phase reference for the timedresponse of a
pyramidal neuron. “Vetoing” inhibition may be more appropriate for implementing the
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logical structureof the local lateral circuit.

Also, it seems that the bursting neuronsIB and CH are strongly associated with the
integration of inputs fromlayer 1 intolocal activity. Perhaps the bursting dynamic
provides a particular response function suitable for this. Again this is a suitable area
for investigationby modelling.
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