
E-I

Pulse-stream binary stochastic
hardware for neural computation:

the Helmholtz Machine

Alexander Astaras

AXavpoç Acthpaç

A thesis submitted for the degree of Doctor of Philosophy.

The University of Edinburgh.

September 13, 2004

-:1

TflV AAc'rro, TflV KapTrioia

This thesis presents a novel hardware implementation of a binary-state, probabilistic

artificial neuron using the pulse-stream analogue integrated circuit design

methodology. The artificial neural network architecture targeted for implementation

is the Helmholtz Machine, an auto-encoder trained by the unsupervised Wake-Sleep

algorithm. A dual-layer network was implemented on one of two integrated circuit

prototypes, intended for hardware-software comparative experiments in unsupervised

probabilistic neural computation. Circuit modules were designed to perform the

synaptic multiplication and integration functions, the sigmoid activation function,

and to generate probabilistic output. All circuit design was modular and scaleable,

with particular attention given to silicon area utilization and power consumption. The

neuron outputs the calculated probability as a mark-to-period modulated stream of

pulses, which is then randomly sampled to determine the next state for the neuron.

Implementation issues are discussed, such as a tendency for the probabilistic

oscillators inside each neuron to phase-lock or become unstable at higher

frequencies, and how to overcome these issues through careful analogue circuit

design and low-power operation. Results from parallel hardware-software

experiments clearly show that learning takes place consistently on both networks,

verifying that the proposed hardware is capable of unsupervised probabilistic neural

computation. As expected, due to its superior mathematical precision, the software-

simulated network learns more efficiently when using the same training sets and

learning parameters. The hardware implementation on the other hand has the

advantage of speed, particularly when full advantage is taken of its parallel

processing potential. The developed hardware can also accept pulse-width analogue

neural states, a feature that can be exploited for the implementation of other existing

and future auto-encoder artificial neural network architectures.

V

I would like to thank my supervisors Prof Alan Murray and Dr. Martin Reekie for
their scientific advice, encouragement and patience throughout the course of this
PhD. I am particularly indebted to Alan for bringing me in touch with the IDEAS
biomedical research group at a critical financial time for this project.

I would also like to express my gratitude to everyone in the Neural and
Neuromorphic Computation research group (formerly known as the neural team
within the Integrated Systems group) for the helpful exchange of ideas and
engineering approaches that helped enrich my research. I would particularly like to
single out Ash Arslan, Dr. Ryan Dalzell, Dr. Konstandinos Papathanasiou and Dr.
Robin Woodburn for their support, insights and guidance when I was taking my first
steps in artificial neural networks research and VLSI circuit design.

To my friends who contributed their incisive proofreading skills, Dr. Mansour
Ahmadian, Dr. Giorgos Arsenos, Dr. Ryan Dalzell, Dr. Erik Johannessen, Tong Boon
Tang and Dr. Robin Woodburn, I'd like to express my appreciation for their help.

I am indebted to Applied Materials Inc. for their financial support during this project,
and to the IDEAS group of research assistants with whom I conducted biomedical
research in parallel. Erik, Imran, Lei, Lili, Mansour, Matt, Nizamethn and Tong
Boon, our collaboration inspired me not only in biomedical engineering, but also
offered me priceless lessons in lateral thinking and cross-cultural teamwork.

I owe another big thank you to all my friends and housemates who offered their
company and friendship during coffee on sunday evenings at Negociants, at parties
all around Edinburgh and during the weekends at the Scottish skydiving dropzones.
Their names are too numerous to mention here, but they know who they are and my
gratitude and friendship is with them.

To my parents, Prof Theodore Astaras and Assoc. Prof. Anastasia Kaiki-Astara, as
well as my brother Christos Astaras I owe my gratitude for their love and unwavering
support throughout my life. Their influence bestowed on me the perseverance,
scientific analysis and troubleshooting skills which proved invaluable throughout this
project, while their insights into academic ethics and perspective on life helped me
stay focused on the forest, rather than individual trees.

Finally and most importantly, I would like to thank my partner Dr. Aileen Aisha
Dowling (a.k.a. A).Emo1) who never ceased to shower me with her affection,
understanding, support and encouragement, on the ground and across the Scottish
skies. Without her love I would never have seen the end of this project.

ix

ABSTRACTV

IIcLes.IR.4.TION OF ORIGINALITY ... VII

ACKNOWLEDGEMENTS IX

TABLE OF CONTENTS .. XI

TABLE OF FIGURES ... XVII

LIST OF TABLES IXIXIIII

TABLE OF LS.cIRON\'I1S .. XXV

CHAPTER 1. INTRODUCTION .. 1

1.1. 	Introduction...1

1.2. 	Stochastic neural computation...2

1.3. 	Hardware implementations..3

1.4. 	Thesis and novelty.................................. 4

1.5. 	Chapter overview..6

CHAPTER 2. LITERATURE IE\'IE,9

xi

Table of figures

2.1. 	Introduction ...9

2.2. Stochastic Neural Computation ...10
2.2.1. The Hopfield network .. 1]
2.2.1.1. Discussion 	..14
2.2.2. The Boltzmann Machine..15
2.2.2.1. Discussion 	..19
2.2.3. Bayesian BeliefNetworks .. 20
2.2.3.1. Discussion 	..23

2.3. The Helmholtz Machine..23
2.3.1. Training the Helmholtz Machine...25
2.3.1.1. An image recognition/generation analogy..27
2.3.1.2. A statistical perspective of the Wake-Sleep algorithm..29
2.3.2. Discussion ...30

2.4. Stochastic ANN hardware implementations31
2.4.1. Stochastic AIVNs and analogue VLSI ... 32
2.4.1.1. Adigital 	approach...33

2.5. Pulse-stream analogue VLSI hardware...33
2.5.1. Pulse-stream circuit implementations...36

	

2.6. 	Summary..38

CHAPTER 3. S'rOcIEllA.S'rIC HARDWARE 41

	

3.1. 	Introduction ...41

3.2. The synapse input module..41
3.2.1. A modular synapse circuit...42
3.2.1.1. Outline of the basic synaptic circuit element..42
3.2.1.2. Design and simulation of a single synapse module ..43
3.2.1.3. Layout of the synapse matrix 49
3.2.2. The synapse matrix ..
3.2.2.1. Outline 53
3.2.2.2. Layout...54

3.3. The sigmoidal activation function module..54
3.3.1. Outline ... 55
3.3.2. Design and simulation...56
3.3.3. Layout..60

3.4. Current to probability conversion: the oscillator output stage.........61
3.4.1. Outline ...
3.4.2. Design and simulation...63
3.4.2.1. Schmitt trigger characterisation .. 65
3.4.2.2. Oscillator charactensation.. 67
3.4.3. Layout..70

3.5. A stochastic neuron ...72
3.5.1. Block diagram outline...73

xli

Table of contents

3.5.2. 	Design and simulation...74
3.5.3. 	Layout..76

3.6. 	A network slice... 77
3.6.1. 	Block diagram...77
3.6.2. 	Layout..78

3.7. 	Conclusions..80

CHAPTER 4. IIAI.I)%%'AIR..1E TESTING ... 83

4.1. 	Introduction...83

4.2. PRONEO: the first prototype chip...83
4.2.1. Design Specifications .. 84
4.2.2. Schematics, layout and PCB design..86
4.2.3. ASIC testing...87
4.2.3.1. Oscillator l/O .. 87
4.2.3.2. Oscillator phase locking 	...88
4.2.4. Results...89
4.2.4.1. I/O 	response..89
4.2.4.2. Phase 	locking..90
4.2.5. Conclusions...93

4.3. STONECORPS: the second prototype chip...94
4.3.1. Design specifications & schematics..95
4.3.2. Layout..97
4.3.3. The STONECORPS testing board...98
4.3.4. Neuron sub-circuit characterisation ...100
4.3.4.1. The synapse circuit module ..100
4.3.4.2. The sigmoid circuit module 102
4.3.5. Oscillator locking investigation..104
4.3.6. Individual neuron results...106
4.3.6.1. Neuron simulations...107
4.3.6.2. Hardware neuron characterisation..109
4.3.6.3. Neuron Calibration ... III
4.3.6.4. Power consumption .. 113
4.3.7. Conclusions..115

CHAPTER 5. PROBABILISTIC NEURAL COMPUTATION 119

	

5.1. 	Introduction..119

	

5.2. 	The experimental setup...120

	

5.3. 	The testing automation software..123

	

5.4. 	The training sets..127

	

5.5. 	Optimising the number of training epochs.......................................128

Table offigures

5.5.1. Evaluating the progress of learning..129
5,5.2. Learning parameters ... 132
5.5.3. Preliminary HM performance evaluation: software simulation132
5.5.4. Preliminary HMperformance evaluation: hardware simulation..........134
5.5.5. Conclusions...136

5.6. Comparative training experiments..137
5.6.1. Training set 	..137
5.6.2. Training set B .. 138
5.6.3. Training set C..139
5.6.4. Training set D..141
5.6.5. Training set E..142
5.6.6. Training set F..143
5.6.7. Training set G..144
5.6.8. Conclusions...146

5.7. Experiments using the trained generative network.........................147

5.8. Conclusions ..149
5.8.1. Learning from training sets C, F' G...150
5.8.2. Learning from training set B ... 151
5.8.3. Learning from training sets A, D, E..152

CHAPTER 6. SUMMARY AND FUTURE WORK 153
6.1. 	Summary..153
6.1.1. 	Prototype circuit design...154
6.1.2. 	Characterisation measurements & experiments157
6.1.2.1. 	Probabilistic neural computation experiments with STONECORPS159

6.1.3. 	Thesis conclusion summary...162

6.2. Future Research & Circuit Improvements166
6.2.1. Algorithmic level...166
6.2.1.1. Over-training effects...166
6.2.2. Future hardware research & improvements..168
6.2.2.1. Random sampling of neuron outputs..169
6.2.2.2. A smaller, current input synapse...170

6.3. 	Related Research Developments..171
6.3.1. 	A Product of Experts.. 172
63.2. 	The Continuous Restricted Boltzmann Machine...................................173

6.4. 	Future directions, technological advances & trends174

APPENDIX AUTHOR'S PUBLICATIONS 177

Relatedto this research project...177

Journalpublications...177

xlv

Table of contents

Conferencepublications ... 178

Posters...178

Awards...179

BIBLIOGRAPHY•..•.. 181

xv

Fig. 1: Topology of a Hopfield auto-associative network (or content-
addressable memory), a recurrent ANN with symmetrically weighted
feedback connections. There are no self-feedback loops or hidden neuron
layers. 	... 12

Fig. 2: Topology of a 3x3x2 Boltzmann Machine ANN. Neurons are partitioned
in layers and interconnected only to the same and the parental layer. All bi-
directional inter-layer synaptic connections are depicted as solid-;ine
arrows, while lateral (intra-laver) connections appear dashed. Parental
dependency forms from the bottom upwards...16

Fig. 3: Topology of a 2x2x2 Sigmoid Belief Network. Binary state neurons are
organised in layers with parental dependency from the bottom upwards,
linked with unidirectional weighted interconnections and no feedback. Bias
input is supplied by always-on dummy neurons via trainable synapses..............21

Fig. 4: The topology of a 2x2x2 Helmholtz Machine auto-encoder ANN. In this
depiction the recognition and generative networks are superimposed, the
synaptic connections of the latter shown as dashed arrows. The dummy
neurons providing bias for the generative network neurons are not shown in
order to preserve clarity in the diagram. ..24

Fig. 5: The four training stages of a Helmholtz Machine, depicted here as two
separate networks: recognition pass (A), adjustment of generative weights
(B), generative pass and fantasy vector generation (C) and adjustment of
recognition weights (D). The transfer of a target state lj during (D) is shown
with a dashed arrow, bias nodes and some connections have been omitted 27

Fig. 6: A pulse-mode synapse based on the compact CMOS transconductance
multiplier. The 3-transistor multiplier is depicted in the dashed outline box.......37

Fig. 7: Block diagram of a synapse circuit module, shown here with I/O
connections within a synapse matrix..43

Fig. 8: Transistor-level schematic diagram of a synapse circuit for a single
neuronal interconnection..44

Fig. 9: Transistor-level schematic diagram of the source-follower output stage
circuit that is attached between the real output of the synapse module and
an output pad. It was used to test the synapse circuit in isolation........................46

Fig. 10: Simulation plot of a single synapse module's output (directly and
through a source-follower output stage) against a variable synaptic weight
input. The neuronal state input was a constant 10x5.tsec train of pulses and
the output capacitor (initially reset to ground) is charging 47

Fig. 11: Simulation plot of a single synapse module's output (directly and
through a source-follower output stage) against a variable synaptic weight

xvi'

Table of figures

input. The neuronal state input was a constant 10x51.lsec train of pulses and
the output capacitor (initially reset to 5V) is discharging 48

Fig. 12: Layout plot of a synapse circuit, designed in a modular fashion to
serve as a basic building block of a larger synapse matrix 50

Fig. 13: Block diagram of the 3 x 4 matrix of synapse modules, capable of
fully interconnecting a layer of 4 neurons with a successive layer of 3. Each
column serves as a neuron's input stage... 52

Fig. 14: Layout diagram of the 3 x 4 synapse matrix. Each column serving as a
neuron's input stage, capable of interfacing with 4 preceding neurons 53

Fig. 15: Numerical plot of the sigmoid logistic function f(x) = 1/1+ e 54
Fig. 16: Block diagram of the sigmoid activation function circuit module 55
Fig. 17: Transistor-level schematic diagram of the sigmoid circuit module 57
Fig. 18: Simulation plot of output current vs. input voltage of the sigmoid

module with a I 	00 output load..58
Fig. 19: Parametric analogue simulation results from the synapse circuit.

Output current is plotted against input voltage for different values of the
reference current 'sj 	.. 59

Fig. 20: Layout plot of the sigmoid circuit module..60
Fig. 21: Block diagram of the oscillator module, used as a neuron's output

stage. Separate analogue and digital power supply terminals help reduce
noise propagation between various oscillators on the same chip.........................62

Fig. 22: Transistor-level schematic diagram of an oscillator circuit, used as an
output stage for a neuron..63

Fig. 23: Transistor-level schematic diagram of the minimised Schmitt Trigger
circuit, a component of the output stage oscillator ... 65

Fig. 24: Simulation plot showing the oscillator in operation. The dashed square
wave is the oscillator's output, while the dotted triangular wave depicts the
capacitor voltage. V f = 2.5V, Iret=40.7A. ... 66

Fig. 25: Simulation plot showing the hysteretic loop plot for the Schmitt trigger
contained within the oscillator module 67

Fig. 26: Simulation plot showing the mark-to-period ratio of the square wave at
the oscillator's output vs. 1j j normalised against a reference current (lin/Iref) 69

Fig. 27: Layout diagram of the oscillator circuit module, shown here along with
the sigmoid. The cell measures 345 x 342.im (0.12mm2) in a 2-metal,
2.0gm CMOS fabrication process (the sigmoid is denoted by the two oval
markers.) ... 70

Fig. 28: Layout diagram of the minimised Schmitt Trigger circuit, serving as a
component in the oscillator output stage module. The cell measures 176 x
235ltm (0.04mm2) in a 2-metal, 2.0gm CMOS fabrication process 71

Fig. 29: Block diagram of a neuron module, containing the synapse, sigmoid
and oscillator circuit modules. It is shown here with 3 instances of the
synapse module, which would enable it to be interfaced to 3 preceding
neurons. 	.. 73

Fig. 30: Simulation plot of a neuron's output against a variable synaptic weight
input. The input comes from a single preceding neuron; the neuronal state

xviii

Table of figures

input was a constant 5x101isec train of pulses; the synapse output capacitor
(initially reset to ground) is charging . .. 75

Fig. 31: Simulation plot of a neuron's output against a variable synaptic weight
input. The input comes from a single preceding neuron; the neuronal state
input was a constant 5 x 0.isec train of pulses; the synapse output capacitor
(initially reset to 5V) is discharging...76

Fig. 32: Block diagram of a 3-neuron layer. The output of the synapse matrix,
which is not shown here, feeds to the left of the diagram. Bypass pins
permit access to the input of the sigmoid and oscillator modules for
prototvping purposes. The number indices indicate individual neurons..............78

Fig. 33: Layout diagram of a hardware implementation of a 3-neuron network
layer. The synapse matrix block at the top of the image houses 12 synapse
circuit modules, 4 for each neuron's input stage..79

Fig. 34: Simultaneous random sampling of uncorrelated oscillator outputs. It is
evident why oscillator locking is undesirable: sampling the output of phase-
locked oscillators at the beginning of a new period would almost certainly
result in a logical HIGH in all samples..85

Fig. 35: Layout plot (a) and explanatory diagram (b) of the core area of
PRONEO. The silicon dye measured 3. 10.lmm (approximately 10pm2
including 24 110 pads) and was fabricated using a 2.4pm, 2-metal, 2-poly
5VCMOS 	process..86

Fig. 36: Mark to period ratio of an oscillator's square wave voltage output from
the PRONEO chip. No other oscillators on the chip were operating while
the measurements were taken. The input current ranged 0-67 pA, V=2.5V. 90

Fig. 37: A network slice with 12 synaptic interconnections implemented on
STONECORPS. The synapse matrix is capable of implementing a 40
layer probabilistic network, in this case the 4th input neuron being used as a
bias. 	...96

Fig. 38: Layout plot of STONECORPS (a) and explanatory diagram (b). The
chip contains a network of 3 stochastic neurons (A, B, C) accepting input
from 4 input neurons via a 3x4 matrix of synapse circuits (D). Neuron sub-
circuits (E, F, G) were laid out separately. Separate power supplies pins (H,
I) were used for the analogue and digital sections, as well as for the core
andpad-ring areas 97

Fig. 39: Picture (a) and explanatory diagram (b) showing the 2d prototype chip
(A) plugged into the testing board. Also shown in the diagram is the
supporting chip set: the AD7228LN 8-bit DACs (B) and HEF4035BP
multiplexers (C). The two 50-pin (D) and one 100-pin (E) connectors were
used to interface the board with the multi I/O PCI cards installed in the
laboratory PC used for the testing..99

Fig. 40: Simulation vs. hardware testing I/O response of the synapse circuit
charging. The output is measured through an auxiliary source-follower
circuit, which was also included in the simulation. The synaptic capacitor
was initialised at OV and the state node pulsed for 5psec..................................101

Fig. 41: Simulation vs. hardware testing I/O response of the synapse circuit
discharging. The output is measured through an auxiliary source-follower

xix

Table of figures

circuit, which was also included in the simulation. The synaptic capacitor
was initialised at 5V (appearing less through the source follower) and the
state node pulsed for Slisec. 	... 102

Fig. 42: Output response of the sigmoid circuit module in simulation and
during hardware testing of STONECORPS . .. 103

Fig. 43: MPR plots from the output square waveform of an oscillator on
STONECORPS. The output is not significantly affected by the concurrent
operation of another two oscillators on the chip. The input current range
was0-lOpA. 	... 105

Fig. 44: Output frequency plots of an oscillator on the STONECORPS chip
operating at the 0-10.iA input current range. The output is not significantly
affected by the concurrent operation of another two oscillators on the chip.
At higher input current ranges the oscillator becomes more linear and this
graph becomes symmetrical around the 'in/'re°.S axis 106

Fig. 45: Simulated neuron charging from empty. The state input was a train of
64 lisec voltage pulses. No x-error bars are present due to the precision of
the simulated weight voltage input; y-error bars are the result of MPR
measurement uncertainty during the sweeping of the weight voltage input 108

Fig. 46: Simulated neuron discharging from full. The state input was a train of
64 1 p.sec voltage pulses. No x-error bars are present due to the precision of
the simulated weight voltage input; y-error bars are the result of MPR
measurement uncertainty during the sweeping of the weight voltage input 109

Fig. 47: 5-run average for 3 hardware neurons charging from empty. No
calibration adjustments were made to the neurons prior to obtaining these
readings. 	... 	110

Fig. 48: 5-run averages for 3 neurons charging from empty (neurons 2 & 3
adjusted to match neuron 1) along with simulated neuron results.....................112

Fig. 49: 5-run averages for 3 neurons discharging from full (neurons 2 & 3
adjusted to match neuron 1) along with simulated neuron results.....................113

Fig. 50: Diagram depicting the software and hardware setup used to test
STONECORPS. Only components controlled by the PC are shown on the
prototypetest board..122

Fig. 51: Screen shot of the Labview graphical user interface used to monitor
the training of the software and hardware HM networks. The top graph
depicts the value of APD during a 2000 epoch training session, the lower
graph shows concurrent weight evolution..124

Fig. 52: Screenshot of the Labview graphical user interface used to evaluate the
performance of the trained software and hardware HM networks. The text
fields show the target and fantasised vector distributions, the bar chart
described the same data graphically . .. 125

Fig. 53: Average deviation from target (training set) distributions during
software simulations of the 30 model of the Helmholtz Machine. A total of
100 2000-epoch training runs were used to produce the average for each
curve. 	... 133

Fig. 54: Average deviation from target (training set) distributions during
training of the hardware 3x3 model of the Helmholtz Machine. A total of

xx

Table of figures

100 2000-epoch training runs were used to produce the average for each
curve. 	... 135

Fig. 55: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 1750-epoch training runs, using training vector set A................................138

Fig. 56: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 900-epoch training runs, using training vector set B..................................139

Fig. 57: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 100-epoch training runs, using training vector set C..................................140

Fig. 58: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 750-epoch training runs, using training vector set D..................................141

Fig. 59: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 750-epoch training runs, using training vector set E...................................143

Fig. 60: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 650-epoch training runs, using training vector set F.144

Fig. 61: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 2000-epoch training runs, using training vector set G................................145

Fig. 62: A current-input version of the synapse module consisting of 8
transistors and an integrating capacitor. The dashed lines on the left connect
to a simplified weight storage circuit . .. 171

xxi

Table 1: List of CMOS components forming the synapse circuit module 45
Table 2: List of CMOS transistors forming the sigmoid circuit module.................... 58
Table 3: List of CMOS transistors forming the oscillator circuit module..................64
Table 4: List of CMOS transistors forming the Schmitt trigger circuit module 66
Table 5: Silicon area occupied by various circuit modules. The measurements

were extracted from layout plots and include the guard rings, power supply
metal lines and —in the case of the synapse matrix- interface overhead 81

Table 6: Operating frequency range, linearity and output dynamic range of the
prototype oscillator at different input current ranges. Any clipping of the
output range occurred almost exclusively at the top end (fig.36). 89

Table 7: Average power consumption of various neuron components on
STONECORPS. Elimination of a minor design bug in the sigmoid would
lead to a five-fold decrease in power consumption..114

Table 8: Listing of the seven 3-bit vector sets used to train the 3x3 HM
stochastic neural network for the comparative software and hardware
experiments. Vector sets are from here on referred to according to the label
inthe 	left 	column . 	.. 127

Table 9: Number of vectors and patterns inherent in the training data, average
probability deviation (APD) minima and difference calculated from post-
training generated fantasy vectors. The APD difference is calculated by
comparing the software and hardware networks' minima. The APD data
were produced by 100 runs at an optimised number of epochs to avoid
over-training effects. 'N' stands for 'no', 'Y' stands for 'yes 147

Table 10: Comparative results from fantasies generated using the software and
hardware HM models. The number of training epochs was restricted to the
number indicated in the second column to avoid over-training effects. A set
of fantasy generation runs was considered successful if all desirable
distributions it produced had a minimum 5% clearance margin from the
strongest undesirable distribution 148

Al Artificial Intelligence
ANN Artificial Neural Network
APD Average Probability Deviation
ASIC Application Specific Integrated Circuit
BBN Bayesian Belief Network
BM Boltzmann Machine
CAD Computer Aided Design
CCO Current Controlled Oscillator
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
CRBM Continuous Restricted Boltzmann Machine
DAC Digital to Analogue Converter
DC Direct current
DIL Dual In Line
EM Electro-magnetism, electro-magnetic
GPIB (IEEE standard 488.2)
HFE Helmholtz Free Energy
HM Helmholtz Machine
IEEE The Institute of Electrical and Electronics Engineers, Inc, USA
I/O Input Output
MLP Multi Layer Perceptron (a supervised, deterministic type of ANN)
MCD Minimising Contrastive Divergence (the PoE training algorithm)
MEMS Micro Electro-Mechanical Systems
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MPR Mark to Period Ratio (similar to the digital duty cycle)
OS Operating System
PAM Pulse-Amplitude Modulation
PCM Pulse-Code Modulation
PFM Pulse-Frequency Modulation
PGA Pin Grid Array
PC Personal Computer
PCI Peripheral Component Interconnect
PoE Product of Experts
PPM Pulse-Phase Modulation (or Pulse-Place Modulation)
PNC Probabilistic Neural Computation
PRONEO PRObabilistic NEural Oscillator chip
PS Power Supply
PWM Pulse-Width Modulation

xxv

Table of Acronyms

RBF 	Radial Basis Function
RBM 	Restricted Boltzmann Machine
STONECORPS STOchastic NEural COmputation Research Prototype System
VLSI 	Very Large Scale Integration

xxvi

What we have to learn to do, we learn by doing.

Aristotle (384-322 BC)

This chapter serves as a concise introduction to the subject material, the motivation

and aims of this project.

1.1. 	Introduction

Artificial neural networks (ANNs) are algorithmic structures inspired by biological

nervous systems and capable of performing computations in a parallel, distributed

fashion. They are often defined as mathematical formulae and implemented as

software simulations running on mainstream digital computers, or hard-wired as

electronic circuits in silicon chips'. ANNs are rather unconventional compared to

most other man-made computation devices. Most such devices employ Boolean logic

and some kind of central processing unit, while artificial neural computation relies

on information propagation via networks of highly interconnected simple

thresholding units. By an analogy with neurophysiology these distributed processing

units are referred to as neurons and their weighted interconnections are known as

synapses. From the research point of view the main attractions of neural computation

are the ability to learn from experience, the distributed and massively parallel nature

of information processing, the algorithmic simplicity of individual nodes and the

capacity for unsupervised learning [52].

In practical terms ANNs are particularly useful in scenarios where a problem requires

some form of computational solution but it is difficult or intractable to predict and

Unconventional technologies for neural implementations, such as optics and molecular computing
have also been reported in the literature.

2 Artificial neural computation will henceforth be referred to as neural computation, unless otherwise
explicitly stated.

1

Chapter] 	 Introduction

explicitly define a desirable output for each possible input. The ability to learn by

experience and to form a model capable of providing useful conclusions, based on

input encountered for the first time, is one of the most sought-after ANN

characteristics. This characteristic could potentially form the basis for the largest

technological impact of ANNs to date: to provide man-made machines with the

ability to dynamically adapt to human behaviour, for instance through widespread

use of speech, facial and gesture recognition, rather than expect their human

operators to adapt to the limitations of contemporary I/O interfaces [30], [63].

Unsupervised ANNs have the additional advantage of performing learning-by-

experience without the need for an overseeing designer to set training targets during

the training phase. This opens the possibility for practical applications such as

continuous unsupervised learning and adaptability to drifly, noisy data as well as

novelty detection [26].

1.2. 	Stochastic neural computation

Stochastic or probabilistic neural computation refers to ANN information processing

in which neuron inputs define the probability of neuron output, rather than explicitly

defining it. Consequently, supplying a stochastic ANN repeatedly with the same

input produces various possible outputs at particular probability distributions, rather

than a single consistent answer. This is in contrast to deterministic ANNs, in which

the output is consistent and explicitly defined by the input and the state of the

weighted synaptic connections.

Stochastic neural computation is becoming increasingly popular, particularly for

ANN varieties which can learn in an unsupervised fashion. The element of

probability in stochastic ANNs plays a dual role: it has an essential part in modelling

natural variability in real-world analogue data, and also drives the search over

solution space [25]. It has proven to be an effective technological element, improving

flexibility and performance in various applications often associated with ANNs such

as pattern classification, pattern completion and novelty detection [45], [41].

2

Chapter 1 	 Introduction

Furthermore, stochastic ANNs have been shown to train from and adapt to drifting

sensor output in real time, classify noisy biomedical data and perform handwriting

recognition, in all cases without supervision [61], [25], [89].

Certain types of stochastic ANNs, such as Bayesian Belief Networks (BBNs) [35],

are capable of probabilistic inference and capturing higher-level statistical

relationships in input data, thus achieving popularity in application fields as diverse

as automated medical diagnostics, finance and technical troubleshooting [74], [25].

The Helmholtz Machine is an unsupervised stochastic ANN algorithm which enjoys

most of the aforementioned advantages [28], [47]. In addition, it learns using the

Wake-Sleep unsupervised training algorithm which is comparatively simple and

updates each synaptic weight using information that is locally available to each

neuron. The Helmholtz Machine was therefore chosen among several stochastic

neural architectures for its hardware amenability, to serve as an experimental

platform for the investigations into stochastic neural computation described in this

thesis.

1.3. 	Hardware implementations

ANN research is remarkably diverse, in some cases motivated by an effort to produce

algorithms that are theoretically and mathematically sound, in others to provide

biologically plausible neuromorphic models, to investigate neural structures that are

computationally efficient and amenable to hardware implementation, or to provide

practically useful solutions to computational problems in a variety of cross-

disciplinary scenarios [88], [78].

There are several reasons that make hardware implementations of ANN algorithms

interesting from the research and application points of view. The primary advantage

compared to software simulations is the exploitation of true parallel processing,

asynchronous operation and fault tolerance [52]. Another benefit is that of interfacing

to the environment via sensors and actuator, such as in the fields of telemetry and

91

Chapter 1 	 Introduction

robotics. Since no conventional analogue computers exist, software simulations have

to run on digital machines, therefore requiring power and area-hungry conversions

from analogue data to digital I/O and vice-versa. Even when such conversions are

possible, an artificial quantization is imposed on the data which would be

unnecessary in the case of an analogue very large scale integration (VLSI)

implementation of the same ANN.

The aforementioned reasons, along with additional motives such as increased design

flexibility, reduced power consumption and silicon area efficiency, explain why a

remarkable share of hardware ANN implementations reported in the literature utilise

the analogue VLSI platform. In some applications such as biomedical neural implant

prosthesis, size, power and an analogue interface are critical design requirements,

making the use of analogue neural structures highly desirable [61], [31].

The drawback of analogue VLSI designs is their inherent vulnerability to amplitude

noise. By adopting the pulse-stream design methodology, which encodes signals as

analogue information in the time dimension of a stream of pulses, the importance of

this drawback can be significantly reduced. The trade-off is increased sensitivity to

frequency (edge-jitter) noise, but this is generally a less pressing concern for circuits

operating in a conventionally noisy environment [67].

1.4. 	Thesis and novelty

This thesis aims to examine the hypothesis that stochastic artificial neural network

algorithms can be effectively implemented in analogue VLSI hardware using pulse-

stream design methods. As this proposition has not been investigated before, it will

be studied in the context of a small Helmholtz Machine, a relatively simple and well-

understood binary stochastic neural network architecture, which can be trained by the

low-complexity Wake-Sleep unsupervised algorithm.

The performance of the prototype hardware developed for the Helmholtz Machine

(HM) will be assessed against a benchmark provided by an equivalent HM network

ru

Chapter 1 	 Introduction

operating under ideal software simulation conditions. By 'ideal' conditions we mean

high accuracy of double-precision real number arithmetic for the calculations, as well

as the lack of noise interference, function modelling imprecisions and manufacturing

tolerances that affect computation on analogue hardware. The software simulation

also enjoys an abundance of power, memory, time, space and silicon area resources,

which indirectly also contribute to the same effect.

The investigative plan of action can be analytically listed as follows below:

Design a novel, scalable hardware neuron which can provide probabilistic
output, employing the analogue pulse-stream methodology

Build an analogue VLSI hardware prototype of the Helmholtz Machine ANN
using the stochastic neuron design

Generate a randomised training database for experimentation in neural
learning, varying the number and inter-relation of probabilistic distributions
in each data set

Develop a software simulation model equivalent to the ANN implemented in
hardware

Choose meaningful points of merit that can be used to evaluate the capacity
and efficiency of unsupervised learning in both the software and hardware
ANNs

Use the software simulation to investigate the limitations of a Helmholtz
Machine of the particular size and topology under ideal' conditions

Demonstrate that the prototype hardware is capable of unsupervised learning

Evaluate the performance of the hardware prototype against the software
simulation model

Investigate the limitations of the proposed design and suggest further
improvements

Ideal in this case refers to the relatively more accurate, noise-free computation performed on a
digital PC. We disregard for now digital quantization effects due to the high precision of the digitised
analogue variables.

5

Chapter 1 	 Introduction

The approach for the design of the proposed stochastic neuron is original, based on

the incorporation of a randomly-sampled pulse-width modulated oscillator rather

than the addition of zero-mean noise to the signal [6], [21]. Part of the design

challenge is to prevent the oscillators within each neuron from phase-locking with

one another or, if this proves impossible, to investigate the noise propagation

pathways that impede uncorrelated oscillation. Moreover, this is the first attempt to

implement the Helmholtz Machine design in analogue hardware, combining the

pulse-stream design methodology with stochastic neural computation.

1.5. 	Chapter overview

Chapter 2 presents a concise review of selected research in stochastic neural

networks, with emphasis on unsupervised paradigms. The Helmholtz Machine and

the Wake-Sleep training algorithm are introduced in more detail, since it occupies a

central role in this project. Motives driving research into hardware implementations

of ANNs are discussed, with a focus on the analogue VLSI platform. Finally, the

pulse-stream circuit design methodology is briefly presented and discussed within

the neural analogue VLSI context.

Chapter 3 contains discussion of the various circuits comprising the 30 HM network

and are proposed for hardware implementation. The circuits are presented as small

modules, a synapse, sigmoid and an output stage probabilistic oscillator. Analogue

simulation and layout plots are presented and discussed for each circuit. The design

is gradually built up to higher levels of design hierarchy until the full HM network is

presented.

Chapter 4 presents PRONEO and STONECORPS, the two prototype application

specific integrated circuits (ASICs) developed for this project using the analogue

VLSI platform. Design goals are discussed along with an overview of the circuits

implemented on each chip. Finally, circuit-level lab testing results are presented for

each prototype.

ri

Chapter] 	 Introduction

Chapter 5 presents the software-hardware setup used to perform experiments

comparing the performance of the prototype hardware to a HM of identical topology

running in software simulation. The common data vector training set used for both

sets of experiments is presented and merit points used to evaluate learning are

discussed. Finally, the results from the experiments are presented, analysed and

discussed, and a list of evaluation conclusions is drawn.

Chapter 6 summarises the work and conclusions presented in the preceding chapters.

It presents some ideas for improvement and future neural research both on the

algorithmic and hardware design level, as well as some pertinent recent

developments in the field of unsupervised stochastic neural computation. Finally, we

take a brief look at promising emerging technologies and trends relevant to this work

and attempt to gain some insight into future developments.

7

This chapter presents selected cases of existing research in the fields of probabilistic

neural' computation, unsupervised neural learning and the pulse-stream analogue

hardware design methodology, all of which underpin the hardware implementation of

the Helmholtz Machine ANN presented in this thesis.

2.1. 	Introduction

Research in the field of Artificial Neural Networks (AINNs) has been increasingly

focusing on architectures exploiting and capable of performing probabilistic

computation, sometimes referred to as stochastic computation 2. The merits of these

neural architectures which helped generate the gradual shift of interest, as well as

their advantages over their deterministic ANN counterparts are discussed later in this

chapter.

Unsupervised network architectures are increasingly focused on within the ANN

research community, particularly since the last decade. This interest originates from

the inability of supervised architectures to function in circumstances where training

targets are incomplete or entirely unavailable. In addition there exist scenarios in

which it is advantageous for an algorithm to be able to periodically re-adjust to the

data it processes over long time scales, without the need for constant supervision by a

dedicated training expert. Tracking the gradual drift in the output of solid-state

sensors, essentially performing periodic re-calibration necessitated by ageing or

The term 'neural' in this thesis is used in the context of Artificial Neural Networks rather than
biological neurons, unless explicitly stated otherwise.

2 The two terms are used interchangeably in this thesis.

Chapter] 	 Introduction

contamination of the sensor, is an example of such a scenario. It is worth noting that

most unsupervised ANN training techniques can be straight-forwardly adapted for

supervised learning, either through manipulation of their training data sets or

modification of the training algorithm.

The ANN architecture chosen as the focus for hardware implementation in this

project is a product of combined research in the fields of stochastic neural

computation and unsupervised neural learning. Introduced in 1994 by Dayan, Hinton

and Zemel [28,46,47], the Helmholtz Machine (HM) belongs to a class of ANNs

known as stochastic auto-encoders and is trained by the unsupervised Wake-Sleep

algorithm. The reasons for selecting the HM as a focus for our experiments in

stochastic neural computation are discussed later in this chapter.

2.2. 	Stochastic Neural Computation

The HM can be more generally classified as a stochastic neural computation device.

Before proceeding with presenting details about its structure, training and

computation capabilities it is worth defining stochastic neural computation.

A deterministic computing device starts a computation session in a state precisely

determined by its input data. It proceeds through intermediate states as instructed by

its programming instructions, following a path through its continuous state space

until it reaches the end of the program and produces its final output. The minimalist

Turing Machine [95], an abstract computation device functionally as powerful as any

computer, falls in this category ([40], p.748) and consequently so do all modem

digital computers.

A stochastic computing device introduces an element of probability somewhere in

the process, so that its trajectory through state space can no longer be precisely

determined by its input data and programming instructions. Moreover, given enough

complexity in the input data and degrees of freedom in its state space, the device is

likely to produce a different answer each time to the same input data.

10

Chapter 2 	 Literature Review

Inference techniques based on the parametric combination of several probability

density distributions are commonly used in the field of statistics. Probabilistic neural

computation (PNC) techniques also rely on parametric mixing of probability density

distributions to perform inference, but differ in several ways.

First, the parameters involved in PNC are generally widely distributed and too

complex to have a clear meaning assigned to them. In contrast, statistical inference

techniques rely on correct assignment of probabilistic density models to the data

being modelled, and on the parameters of the final model being meaningful in the

context of the data being modelled ([25], p. 10-11). Second, statistical probabilistic

inference techniques operate on the assumption that the data being modelled is the

product of a single cause, or of a single set of parameters. PNC techniques, on the

other hand, are generally capable of building multiple cause models. By this we

mean that PNC techniques can accurately model data sets produced by multiple

interacting processes, a large advantage given the abundance of such data in

environmental measurements such as sensor readings.

2.2.1. 	The Hopfield network

The study of the computationally powerful human and animal nervous systems has

long been suggesting to biologists and engineers the merits of exploiting the

emergent collective computational abilities of networks consisting of simple, noisy,

threshold computing elements. The strong research interest in the field of ANNs

during the last two decades, however, was sparked by the introduction in 1982 of a

non-linear feedback network with weighted interconnections known as the Hopfield

network [49,50].

The Hopfield network is a recurrent network, using fully feedback-interconnected

binary state neurons with the exception of self-feedback loops [52]. This is in

contrast to feed-forward networks such as the HM which consist of neurons in

separate input, output and —optionally- hidden layers, with no interconnections

11

Chapter] 	 Introduction

within each layer. The topology of a 4-node Hopfield network is depicted in fig. 1

below'.

cK
Input
vector

MAK

Fig. 1: Topology of a HopJIeld auto-associative network (or content-addressable
memor)), a recurrent ANN with symmetrically weighted feedback
connections. There are no self-feedback loops or hidden neuron layers.

The initial Hopfleld network model was based on a sharp threshold function and

employed stochastic sampling of each neuron's input [49], while a later deterministic

version employed a sigmoid logarithmic function and continuous neuron states [50].

Both networks demonstrated the ability to perform as a content-addressable

memory?, essentially performing pattern completion after a number of feedback

iterations during which the network's output settled into a stable state.

The notation w, used throughout this thesis signifies the value of the synaptic weight on the

connection feeding the output of neuronj to the input of neuron i.

2 Sometimes also called an auto-associative memory

12

Chapter 2 	 Literature Review

Once a pattern is presented, the network undergoes an iterative relaxation process

during which the neuron outputs are calculated according to equation 2.1

	

>0 	x(t+1)=+1

wx(t) 	=0 	x(t+1)=x(t)
	

[2.1]

	

<0 	x.(t+1)=-1

where w. is the value of the weighted bi-directional interconnection between neurons

i and j, and x(t) is the state of neuron i at time t in the iterative relaxation process.

Determination of neuron output is followed by freezing all network activity, in turn

followed by an update of the synaptic weights associated with each neuron

interconnection according to the following equation

M-1

	

=
	

[2.2]

where m is the index of a particular input vector pattern being 'memorised', Mis the

number of elements it contains, and xim the particular vector element associated with

neuron i. Note that the neuron index variable i must be different fromj at all times, as

there are no self-feedback loops.

There are two methodologies to perform the neuron state update, producing similar

but slightly different results. The first is called synchronous updating, where all

activity is temporarily frozen and the next state of each neuron is computed. The

asynchronous updating method involves freezing all activity and then visiting each

neuron in turn to update it to a new state. The significance in the latter method is that

the order in which the neurons are visited matters, since their new state will affect the

state of other neurons updated later within the same iteration. In order to prevent

13

Chapter 1 	 Introduction

negative effects on the training of the network, neurons are updated in a random

order within each iteration therefore inserting an element of stochasticity in the

whole process. This clearly alters the sequence of intermediate patterns that the

network propagates through, however both algorithms share similar characteristics

and the choice of update methodology is rarely an important factor in the Hopfield

network ([11], p. 142-3).

2.2.1.1. Discussion

Hopfield networks tend to converge to local minima on the training energy landscape

[51] which may not be the optimal solution. They also have a relatively poor storage

capacity [91], estimated at about 0.15N patterns where N is the number of network

nodes ([11], p. 144). In the research field of supervised ANNs they were surpassed

by the introduction of the back-propagation algorithm by Rumeihart et all [83] for

the training of supervised feed-forward networks such as the Multi-Layer Perceptron

([40], ch. 4). In the unsupervised training ANN camp stochastic recurrent

architectures such as the Boltzmann Machine (see section 2.2.2), and feed-forward

ones such as the HM and Product of Experts (PoE) also generally outperform the

Hopfield network.

The legacy of Hopfield's network, however, significantly influenced ANN research

developments to this day. Its iterative auto-associative learning rules and the

introduction of an energy function which is minimised during learning inspired

several threads of neural architectures. In addition, its amenability to hardware

mapping as a resistively-connected network of electronic amplifiers caused the first

research wave of neural very large scale integration (VLSI) implementations on

silicon ([73], p. 3).

'It was later shown that similar results had been published by Parker in 1982 and also proposed —but
not implemented- by Werbos in 1974 ([11], p. 68)

14

Chapter 2 	 Literature Review

Of particular relevance to this thesis is the fact that the Hopfield network

successfully combined, for the first time, simple networked 'neuron' nodes with the

elements of unsupervised iterative learning, neuron feedback, a non-linear transfer

function and stochasticitv. Though it does not consist of stochastic neurons and the

probabilistic element does not have a dramatic impact on network performance, the

randomised asynchronous updating methodology proposed by Hopfield makes this

network an early forbear of stochastic computation ANNs.

2.2.2. 	The Boltzmann Machine

Proposed by Hinton [42,43], the Boltzmann Machine (BM) is a recurrent ANN

consisting of binary stochastic neurons segregated in various layers. Some of these

layers are hidden to the input neurons, while all neurons are fully interconnected with

nodes in the same and its parental layer' via a single set of bidirectional weighted

connections (see fig. 2 below). Hidden neurons are therefore not assigned values

directly from the input data set, but their presence grants the BM the modelling

flexibility to capture higher-order statistical structure inherent in the data.

Unlike the Hopfield network, stochasticity in the BM is involved in assigning the

binary state of neurons according to the following probability equation:

A =p(s =l)= 	 [2.3]

l+e T

where s is the binary state of neuron with index i, p(s =1) is the probability that s

will assume the value 1 for the next training iteration, T is a variable called the

temperature of the system controlling the slope of the sigmoid function in the second

part of the equation, and x7 is the neuron's total input activation given by the

following formula:

Parental dependency among layers begins with the input layer and propagates towards output

15

Chapter 1 	 Introduction

[2.4]

where b is a bias input to the neuron (a constant) and wy is the weight on the

synaptic interconnection between neurons i andj.

n units

m units

Ut units

input vector

Fig. 2: Topology of a 3x3x2 Boltzmann Machine ANN Neurons are partitioned in
layers and interconnected only to the same and the parental layer. All bi-
directional inter-layer synaptic connections are depicted as solid-line
arrows, while lateral (intra-layer) connections appear dashed. Parental
dependency forms from the bottom upwards.

16

Chapter 2 	 Literature Review

An analogy with thermodynamics provides the framework for calculating the energy

of the network at any given time ([41])1. The probability of being in any one of these

particular energy states is given by the Boltzmann distribution to which this ANN

owes its name:

E.

Pm=ke T
	

[2.5]

where m denotes a state of the network, Em the energy of the state, 'm the

probability of the network being in that energy state and T is the temperature of the

system; for our purposes the temperature corresponds to the steepness of the slope of

the sigmoid function in equation 2.3.

Equation 2.5 expresses that lower energy states are more probable and also that as

temperature is reduced, the probability is concentrated on a smaller subset of low-

energy states. These two properties form the basis for training the BM through

gradient descent to lower energy states in its state space. The idea of slowly reducing

temperature to force the network to assume lower-energy states is a technique called

simulated annealing2 after yet another analogy with thermodynamics: annealing is

the process of gradually cooling hot metal in order to harden it.

According to the thermodynamics analogy, the energy of a particular BM is given by

the following equation:

[2.6]
i::j jj

'The idea of using statistical mechanics analogies to describe learning in ANNs was initially
introduced by Hopfield.

2 It is worth noting that the simulated annealing process is not mandatory but speeds up the process of
reaching a thermal equilibrium (or Boltzmann equilibrium) state [42]. Since the BM is stochastic, this
equilibrium state refers to a constant probability rather than a constant state (all states in a BM have a
non-zero probability). The network will eventually reach this equilibrium provided the stochastic
simulation is performed long enough.

17

Chapter 1 	 Introduction

A change of neuron i from state 1 to state 0 would propagate the following change in

the energy of the network:

AE=b+w3 s
	

[2.7]
ij

The right part of this equation is equivalent to equation 2.4, which in turn means that

the probability function for the state of a neuron (equation 2.3) can be rewritten as

follows:

Pi = p(s1 =1) 	 [2.8]

1+e T

Having established the formula required to form the energy landscape in the

network's state space (equation 2.6), a process to evaluate the descent to the goal of

lower energy levels (equation 2.7) and a probability for selecting neuron states

(equation 2.8) what remains is a weight changing formula to increase the probability

of the network switching to a lower energy state with each iteration. The weight

change formula is produced using the Boltzmann distribution (equation 2.5) and

minimisation of the subsequent Kuliback-Leibler divergence [38,60], the

mathematical details of the calculation are available in [41]:

IC

z\w = .. (< s1s > - < ss >) 	 [2.9]

where Aw j is the change in the value of the synaptic weight, e is a learning step

constant, T is the operating temperature, s1 is the binary state of neuron i, <.>

denotes the 'expectation values' for neurons i and (loosely the mean firing rate or

correlation between them) over the training data, and <.> denotes the value of a

similar expectation from network samples once it has reached thermal equilibrium.

18

Chapter 2 	 Literature Review

Practically, the <s,s1> expectation values for the neural states is obtained by

sampling the mean-firing correlation of neurons i and j over several iterations with

the network inputs' clamped to the input data values. In a similar fashion, the <s1s1>

expectations are calculated by letting the network iterate freely (i.e. without clamping

the values of input neurons) and sampling once thermal equilibrium is reached

It therefore becomes evident from equation 2.9 that there are two distinct phases in

training the weights of the Boltzmann Machine. During the positive phase

(sometimes also referred to as the incremental phase) the network operates with its

inputs clamped. During the negative phase the network is allowed to run freely with

no environmental input. Weight changing in both phases takes place by presenting

the network with the entire set of learning examples and sampling the output

probability of each neuron one at a time. The weight of each synaptic connection is

consequently adjusted according to equation 2.9 and the change takes effect

immediately affecting all subsequent weight changes. This technique has similarities

to the technique used for training the stochastic model of the Hopfield ANN (see

section 2.2. 1) and is known as Gibbs sampling [37,77].

2.2.2.1. Discussion

The BM is considered to be the first truly stochastic ANN capable of unsupervised

learning, in the sense that it incorporates probabilistic computing in the neuron

processing level. Since its introduction it has inspired an abundance of related

theoretical and hardware research in the field of stochastic ANNs [5], as well as

formed the basis for a plethora of variations such as the Restricted Boltzmann

Machine [86], Product of Experts [44,45] and the Continuous Research Boltzmann

Machine [20,21,23] which are actively researched to this day. It has been

successfully demonstrated to perform pattern completion, as an associative memory

'Output neurons can also be clamped for a supervised training alternative ([11], p. 151-2).

IvJ

Chapter 1 	 Introduction

and even provide optimised solutions to complex mathematical problems such as that

of the travelling salesman ([11], p. 157-160)

The negative phase in BM training is necessitated by a discrepancy in the steepest

gradient descent in energy space as compared to the same descent in probability

space [74]. While combined with the positive phase it stabilises the distribution of

weights and helps the BM converge, it also dramatically increases computation time

particularly due to the long Gibbs sampling process and despite the utilisation of

simulated annealing. This turned out to be the more significant limitation of the BM,

along with the requirement that a training pattern persist long enough for the network

to reach thermal equilibrium. Another limitation of the BM is associated with it

consisting of binary state neurons which limit its modelling capacities and prevent it

from accepting analogue input data. Furthermore, its dependence on the difference

between two average correlations to calculate the value of weight change can be a

problem in the presence of sampling noise ([41], p. 569).

2.2.3. 	Bayesian Belief Networks

Sigmoid Belief Networks (SBNs) or Logistic Belief Networks were introduced in a

paper by Neal in 1992 [74] as part of an effort to improve on the learning

performance of the BM without sacrificing its capacity for unsupervised learning of

arbitrary probability distributions. SBNs are a specific case of the broader ANN class

of Belief Networks [76] which employ a directed acyclic graph topology, a fact that

Neal exploited to replace the more numerous symmetric connections of the BM.

Belief Networks can represent multiple-cause data using the neural nodes as

variables and the interconnections as causal links explaining dependencies

underlying the data. There is a limit, however, to these inference capabilities as they

generally cannot learn causal links from data sets that do not explicitly contain values

for every variable in the model. The response by unsupervised ANN researchers to

this problem has been to restrict the type of variables (e.g. binary neural states) and

to group them in layers.

Rol

Chapter 2 	 Literature Review

Along these lines Neal restricted the SBN to binary state neurons organised in a feed-

forward topology, with no feedback or lateral connections within layers, further

incorporating parental dependence between adjacent layers and unidirectional

weighted interconnections. The diagram in fig. 3 below depicts a typical SBN

topology.

bias

input vector

Fig. 3: Topology of a 2x2x2 Sigmoid Belief Network. Binary state neurons are
organised in layers with parental dependency from the bottom upwards,
linked with unidirectional weighted interconnections and no feedback. Bias
input is supplied by always-on dummy neurons via trainable synapses.

Choosing a neuron's state only requires information available from its parental layer

as can be deduced from the following SBN state probability formula:

21

I 	 Introduction

Pi = p(s = 1)= 	 [2.10]

1+e

where pi is the probability that neuron i will be in a binary state s1=1 in the next

iteration, w11 is the weight on the synaptic connection from neuron i to j and T is a

temperature variable for optional simulated annealing.

Assume a state vector V = {s , s2 , s3,. . .s, } where n is the number of neurons in the

BBN and s, are their individual binary states at any given time. Also assume state

vectors i containing the states of input (visible) neurons and the state vector of

hidden units V, so that V = 	i. The BBN weight change for the synaptic

connection from neuron i to j can then be calculated according to the following

expression:

Aw 	 [2.11]
T 	 _W fl S

1+e

where s is a learning step constant, T is a temperature variable for (optional)

simulated annealing, p(V I) is the conditional probability' of state vector given

input vector v, while s1 and sj are the binary states of neurons i and j respectively.

The conditional probability p(:V 1i ..) is obtained from one step Gibbs sampling

performed with all data vectors. This weight change equation is derived from

maximising the log-likelihood function computed from the training set, the

mathematical details can be found in [411] along with a step guide to the SBN

learning procedure. It is clear that calculation of the probability for the state of a

neuron is more complicated than for the BM, a trade-off for using a single step of

Gibbs sampling.

This conditional probability is calculated using Gibbs sampling, see section 2.2.2

ON

Chapter 2 	 Literature Review

2.2.3.1. Discussion

Supervised Belief Networks are one of the more popular success stories among

stochastic ANNs, having proven their inference capabilities from probabilistic data in

application fields as diverse as medical diagnostics [74], finance and technical

troubleshooting ([25], p. 1-2). The SBN is an unsupervised, binary state and feed-

forward restricted version which has been shown to successfully model non-trivial

probabilistic distributions. Moreover it has been experimentally shown [74] to

outperform the BM due to the elimination of a second round of Gibbs sampling in its

training cycle (such as in the negative phase of BM training.)

The main limitation of the SBN is the restriction to binary state neurons which limit

its modelling capacity in a manner similar to the BM. DespitQthe elimination of the

BM's second round of Gibbs sampling, its training algorithm is still relatively

computationally intensive when compared to more recent architectures such as the

HM. The sampling process also has the adverse effect of complicating hardware

implementation of the SBN, as calculation of the weight change does not exclusively

rely on information available to a neuron's immediate vicinity (see equation 2.11

above).

2.3. 	The Helmholtz Machine

The Helmholtz Machine (HM) was proposed by Hinton and Dayan in 1995 [28,46]

and belongs to a class of unsupervised ANNs known as auto-encoders [47]. It

combines the unsupervised stochastic neural learning capabilities of the BM with the

proven ability of SBNs to extract and represent higher-order statistical relationships

inherent in the input data [74].

Auto-encoder networks consist of two feed-forward belief networks with similar

topologies which process data in opposite directions as shown in the diagram of fig.

4 below. The recognition network processes information in the bottom-up direction,

extracting higher-order causal relationships inherent in the input data. In a separate

23

I
	

Introduction

and subsequent phase of processing, the generative network processes information in

the opposite direction, regenerating 'fantasy' data at the inputs. This bi-directional

flow of information through the HM is depicted in the diagram of fig. 5 below and

provides essential targets for the neural states of either network during its

unsupervised learning phase.

bias

Fig 4: The topology of a 2x2x2 Helmholtz Machine auto-encoder ANN In this
depiction the recognition and generative networks are superimposed, the
synaptic connections of the latter shown as dashed arrows. The dummy
neurons providing bias for the generative network neurons are not shown in
order to preserve clarity in the diagram.

The topology of the two belief networks comprising an HM is identical to an SBN

and the calculation of a neuron's total activation is the usual sum of all weighted

inputs:

Xi = 	 [2.12]

24

Chapter 2 	 Literature Review

where X j is the total activation input received by neuronj from its parental layer (Ii

12, /3, ...), w11 is the weight on the connection between neuron i feeding its output to j

(1 -> j), and s, is the state of neuron i in the parental layer.

Similar to the BM and SBN the total activation is used to calculate the probability of

a neuron's next state, making the HM an inherently stochastic network. The

following equation is used to calculate this probability:

Pi. 	p(s =1)=
1+1ez =
	1 WfiS 	 [2.13]

1+e

where Pj is the probability that neuron j will be in a state of s=J for the next

iteration, s is the binary state of neuron j (0 or 1) and wp is the weight on the

connection of neuron i feeding its output toj.

2.3.1. 	Training the Helmholtz Machine

The HM employs two superimposed feed-forward networks and consequently uses

two sets of weights, from here on referred to as the recognition weights and the

generative weights. The formula for updating both sets of weights is the simple delta

rule

Awji = &s (t —p1) 	 [2.14]

where Aw11 is the variable representing the weight change on the connection feeding

the output of neuron i to j, e is a learning step constant, p is the probability

calculated according to equation 2.13 and t1 is a binary variable serving as the target

state for neuronj.

The synaptic weights can therefore be updated according to the following iterative

rule

25

I 	 Introduction

w31 (n + 1) = 	(n) + Awj, 	 [2.15]

where n is the iterative index and Aw11 is given by equation 2.14 above.

While the simplicity of the Hebbian training delta rule of equation 2.14 is attractive

from the computational and hardware implementation perspective, it presents the

difficulty of finding a target state for the network in an overall unsupervised training

context. This problem is solved by the HM using an ingenious algorithmic technique,

according to which the recognition and generative networks provide training targets

for each other's neuronal states in subsequent training phases.

More specifically, training of the HM is performed using the 4-step Wake-Sleep

algorithm as depicted in fig. 5 and listed below:

Phases of the 'Wake-Sleep 'training algorithm:

- Initialisation: both sets of weights are randomised within a margin centred
around 0 (a typical value would be ±0.5). Neuron states of both networks are
assigned arbitrary binary values (0,1). This step is only performed once at the
beginning of training.

Recognition pass: a vector from the training data set is presented to the
visible layer of the recognition network, then propagated upwards according
to the parental layer dependencies and new neural states are selected using
equation 2.13

Generative weight update: the weights of the generative network, including
bias weights, are updated according to equations 2.14 and 2.15, obtaining
their target state t1 from the recognition network's corresponding neuron
selected in step A.

Generative pass: the vector supplied by the biases at the top of the generative
network' is propagated from top to bottom according to the parental layer
dependencies and new neural states are selected using equation 2.13. A
fantasy vector is generated at the bottom of the generative network.

the top level neurons of the generative network obtain their input from 'always on' biases via
trainable weighted connections.

Chapter 2 	 Literature Review

D. Recognition weight update: the weights of the recognition network, including
bias weights, are updated according to equations 2.14 and 2.15, obtaining
their target state t, from the generative network's corresponding neuron
selected in step C.

- 	End of the training iteration, proceed with step A using the next vector from
the training set. Continue iterating until the end of the training set or until
training is terminated.

Steps A and B constitute the wake stage of the training algorithm, during which the

input data vector is processed (step A) and partially memorised (step B). Steps C and

D constitute the sleep stage during which the network generates a dream-like fantasy

vector (step C) and adjusts its recognition weights (step D).

8
Recognition network 	 Generative network

Fig 5: The four training stages of a Helmholtz Machine, depicted here as two
separate networks: recognition pass (A), adjustment of generative weights
(B), generative pass and fantasy vector generation (C) and adjustment of
recognition weights (D). The transfer of a target state t1 during (D) is shown
with a dashed arrow, bias nodes and some connections have been omitted.

2.3.1.1. An image recognition/generation analogy

A simplified but instructive analogy for the function of the Wake-Sleep algorithm is

to imagine the recognition network as an image recognition processor and the

generative network as a graphics (artificial image) generator [33]. Incoming data is

presented to the recognition software and analysed during the bottom-up pass (step

27

I 	 Introduction

A), where higher-order statistical information underlying the data is captured. By

analogy, the generative network produces artificial images during its top-down

generative pass (step Q.

Following initialisation of both sets of weights and neural states, both networks are

likely to perform extremely poorly. The 'explanations" formed in the hidden neurons

of the image recognition network are not likely to be useful, while the artificial

images produced by the generative network are highly unlikely to resemble the

original image data at all.

By modifying the recognition weights (step D) in such a way as to increase the

probability of the recognition network providing the correct 'explanations' to

generated fantasy data, we are also improving the quality of the target states for

training the generative weights (step B). In an equivalent manner, by adjusting the

generative weights (step B) so as to increase the probability of the generative

network producing more plausible explanations to input data input vectors (step B),

we are concurrently improving the quality of the target states used for training the

recognition weights (step D.)

While this analogy provides some intuitive explanation on the function of the Wake-

Sleep algorithm, it does not clarify an important point. Why should we expect that a

poor image recognizer should be able to provide adequate assistance (in the form of

training targets) to a poor graphics generator and vice versa? In other words, why

should two networks with initially poor hidden representations manage to improve

them through successive iterations when they can only rely on each other?

1 By 'explanations' we actually mean the capturing of higher-order statistical relations and causes
underlying the input data by the hidden neurons in either of the two networks. In the image
recognition analogy, that could be the presence of an object in the scene resulting in a particular
pattern of pixels imprinted in the input image. From a purely practical perspective, providing an
explanation is choosing the binary states of all hidden neurons in the recognition network.

Chapter 2
	

Literature Review

2.3.1.2. A statistical perspective of the Wake-Sleep algorithm

Considering the generative network, adjusting its synaptic weights aims at

maximizing the probability that the network will reproduce the training data. This is

essentially likelihood maximization task in model fitting, a standard statistical

approach. To set a target for this maximisation we need to know the probability of a

particular 'explanation' (i.e. set of hidden generative neuron states) producing a

particular training input data vector as a fantasy, for a given set of generative

weights. Unfortunately, the number of such 'explanations' grows exponentially with

the number of hidden neurons in the generative network, making the computation of

all those posterior probabilities an intractable task.

From this perspective, the function of the recognition weights is to approximate in a

computationally tractable way the aforementioned posterior probabilities. Since the

HM is a stochastic network, for each input data vector the recognition weights

essentially provide a probability distribution over possible explanations. This

probability distribution is not the same as the one we are seeking, but successive

approximations during step D of the sleep phase make it good enough to allow the

generative weights to be improved.

Mathematically, the delta rule for training the recognition weights was derived by

Hinton and Dayan from maximising the log-probability of obtaining (in the

recognition network) the hidden neural states that caused a particular fantasy. In a

similar fashion, the delta rule for training the generative weights is derived from

maximising a lower bound to the log-probability of obtaining (in the generative

network) the hidden neural states that were caused by a particular input vector. The

mathematical details of an analysis from this statistical point of view can be found in

[28]. The details of another attempt at analysing the Wake-Sleep algorithm based on

minimising the description length of the training data vectors can be found in [47].

It is worth noting that no conclusive proof for the convergence of the Wake-Sleep

algorithm has been published to the best the author's knowledge. However, Ikeda,

Amari et al [54] have provided proof for the specific case of the HM as a factor

WE

Chapter 1 	 Introduction

analysis model and experimental evidence proves the probability distribution

modelling capacities of the HM beyond doubt. Still, it is worth keeping in mind that

the HM trained by the Wake-Sleep algorithm is not guaranteed to work in all

practical situations and does indeed occasionally fail [41].

2.3.2. 	Discussion

The HM compares favourably with Belief Networks, Gibbs samplers and other

mainstream probability density modelling tools, particularly when its speed and

computational demands are taken into account [34]. It has proven its capabilities in

unsupervised pattern classification and completion, synthetic image recognition and

graphics generation, handwriting recognition and sensor drift compensation [97], all

on a software simulation level. An added advantage particularly pertinent to this

thesis is the fact that the Wake-Sleep algorithm relies on a simple training rule and

information local to each neuron, making hardware implementation more feasible.

Finally, the Wake-Sleep algorithm has attracted some additional attention due to a

possible analogy with biology, as there is evidence that neural tissue in the cortex

may be constructing a hierarchical stochastic generative model of incoming sensory

data, while also implementing an inverse recognition model [27,75]. This suggestion

however is based on limited evidence and to this day no conclusive proof through

neurobiological experiments has been published.

The main shortcoming of the HM comes from limitations to its modelling capacity.

Applying the delta training rule to update the recognition and generative weights

maximises a different quantity in each case (see section 2.3.1.2). This leads to an

imbalance in the network which has been proposed as a possible explanation for the

modelling limitations [25]. In a sense it is the price to be paid for a simple, fast

training rule consistent between the two networks.

30

Chapter 2 	 Literature Review

2.4. 	Stochastic ANN hardware implementations

Very Large Scale Integration (VLSI) circuit design on silicon is a natural choice to

implement ANN systems, particularly if the massive parallelism speed advantage of

such architectures is to be exploited. Developed primarily with the needs of modem

digital circuits in mind, complementary metal oxide semiconductor (CMOS)

technology has formed the basis for the majority of neural hardware

implementations' [67], though alternative technologies are being actively researched

[31,82]. The integrated circuits used in the probabilistic neural computation

experiments for this thesis used CMOS fabrication technology.

The proposition of the Hopfleld network in 1982 (see section 2.2. 1) sparked the first

large wave of interest in analogue VLSI implementation of ANNs. Since then several

trends have appeared in neural VLSI research, ranging from neuromorphic

engineering [7,64] to biomedical neural prosthesis [65,92] to stochastic neural

computation [9,10,97].

Apart from the obvious benefits to the field of neural prosthesis in biomedical

engineering, there are several other strong motivations for implementing ANN

architectures on silicon. First, there is a growing realisation that some artificial

intelligence (AT) problems do not readily lend themselves to solution via traditional

symbolic Al methodologies. That is not to say that symbolic Al cannot solve such

problems —after all a digital machine can always run an ANN in simulation- but that

some problems can be computationally intractable given current technological

capabilities. Second, the real benefits of speed and fault-tolerance associated with

massive parallelism are being sacrificed when the ANN system is implemented as a

simulation by a digital machine with a single-pipeline processor. And finally,

neuromorphic engineering research has shown that hardware ANN implementations

can be useful tools in modelling the human and animal nervous systems, providing

'Both analogue and digital circuit ANN implementations are using predominantly CMOS fabrication
technology.

31

Chapter 1 	 Introduction

reverse engineering insights that are not available through software simulation of

ANNs.

2.4.1. 	Stochastic ANNs and analogue VLSI

One of the first stochastic ANN implementations on mixed signal VLSI with on-chip

learning was that of the stochastic Boltzmann Machine ([2,4,5], also see section

2.2.2). Neurons produce stochastic analogue output [56] which is then passed

through a comparator to produce the final states for the BM's binary stochastic

neurons.

The most interesting aspect of this implementation is the technique used to add a

stochasticity element to the binary state BM neurons. This is achieved by

implementing multiple uncorrelated analogue noise sources on-chip, one for each

neuron. The noise is added to the analogue neuron activation before the signal passes

through the sigmoid activation function circuitry. The analogue noise is produced by

low-pass filtering pseudo-random digital bit-streams, one for each analogue noise

channel. The digital-bit streams, which also have to be uncorrelated, are produced by

tapping a linear feedback shift register (LFSR) formed by a number of D-type flip-

flops in series [3,6]. Tapping the train of flip-flops and passing them through 3-input

XOR digital gates produces the uncorrelated pseudo-random bit streams.

The binary stochastic neurons in the aforementioned implementation can also

provide analogue stochastic input if they are sampled before the signal is processed

by the final stage comparator. This inspired the use of the LFSR-tapped pseudo-

random bitstream technique by another BM implementation attempt for a Continuous

Restricted Boltzmann Machine (CRBM) variant ([20-24], also see section 6.3.2.) On

a software application level, the CRBM has been demonstrated the capability to

detect ectopic heart-beats in a cardiogram [24], as well as adaptively classify

biomedical data and compensate for sensor drift in an ingestible diagnostic electronic

capsule [88,89].

32

Chapter 2 	 Literature Review

2.4.1.1. A digital approach

It is worth noting that apart from the aforementioned analogue VLSI

implementations of neural algorithms, there have been a number of attempts to

perform stochastic neural computation on explicitly digital hardware [58,59]. These

attempts employ stochastic arithmetic [36] and the value of signals is typically

encoded as a in the average pulse rate or primary statistic of a stochastic stream

[14,15]. Technologically, they aim to benefit from the noise-robustness of digital

processing and the ready availability of optimised fabrication techniques for digital

circuits.

When compared to performing neural computation in simulation running on a digital

platform, there are benefits in silicon area demand, fault-tolerance and power

consumption; however these implementations typically do not compete with the low

transistor count and power consumption of their analogue VLSI counterparts. As we

will see in the next section, this attempt to extract pseudo-analogue behaviour [84]

out of digital circuits has some analogies with the incorporation of digital pulses in

analogue neural VLSI design, though the trade-offs and circuit architectures are

completely different.

2.5. 	Pulse-stream analogue VLSI hardware

Pulse-stream signalling is not a new idea, since it has long been known that

biological neurons operate on such a principle. It was first reported in the context in

the context of analogue neural VLSI hardware in 1987 [69-72] and has since been

adopted and modified by a plethora of research groups in this field.

The pulse-stream approach was inspired by neurobiology and applied to analogue

ANN hardware out of a desire to combine some of the traditional strengths of digital

processing with the increased flexibility, small silicon area and low power

consumption characteristics associated with analogue design [67]. It is not

exclusively motivated by neuromorphic engineering goals, that is to further our

33

Chapter 1 	 Introduction

understanding of biological nervous systems through hardware modelling, though

some research groups have adopted this approach [31,61].

The idea behind pulse-stream signalling is that the analogue value of a signal is

encoded in the form of pulses, expressed as either voltage or current and usually

encoded in the time dimension.' The signal can be modulated as the width of the

pulse, a technique known as pulse-width modulation (PWM); as the amplitude of the

pulse, known as pulse-amplitude modulation (PAM); as the frequency of the pulse,

known as pulse-frequency modulation (PFM); as the phase-difference between two

signals of set frequencies, known as pulse-phase or pulse-position modulation

(PPM); and as a serial string of bits following analogue-to-digital conversion, a

technique known as pulse-code modulation (PCM)2.

The merits of the various pulse stream techniques, and their implementation on

hardware in particular, are an active area of research [79,80]. For the purposes of this

thesis, however it is worth noting that PAM and PCM are not at all popular in the

context of analogue neural VLSI research, primarily because they forfeit two of the

most important pulse-stream advantages: in the former case the robustness against

noise is sacrificed, in the latter the signal is quantised and the natural continuity of

the analogue signal is lost3. The latter can have implications more profound than are

immediately obvious: in the context of stochastic neural computation, it can lead to

certain values being ruled out -rather than being highly improbable but still possible-

which leads to a distortion of probability distributions and can therefore negatively

An exception to this rule is pulse-amplitude modulation: this technique however is not at all popular
in the context of analogue neural VLSI, primarily because it forfeits robustness against noise which is
one of the key advantages of the pulse-stream methodology over mainstream analogue signalling.

2 The field of radio telecommunications uses slightly different terminology for practically equivalent
pulse-modulation schemes. For example PFM is equivalent to frequency-shift keying (FSK), PAM is
equivalent to amplitude-shift keying (ASK), etc.

3 Not to mention the necessity for large, power-hungry ADCIDAC circuits, which usually limit the use
of PCM to noise-sensitive scenarios such as radio telecommunications.

34

2 	 Literature Review

affect the performance of the training algorithm. Both of the prototype chips

developed for this project employed pulse-width modulation (see chapter 3).

When applied to neural design, the pulse-stream methodology benefits from the

advantages generally associated with analogue circuits over their digital alternatives:

compactness, modest power consumption, potential for higher speed and

asynchronous operation, and lack of quantization effects. Setting aside for a moment

the issue of noise interference, it follows as a consequence that the scalability

potential of ANN implementations in analogue VLSI is considered to be higher than

that of digital implementations, given the same neural topologies and availability of

resources. The advantage of economy over area and power resources is particularly

acute in the case of synaptic multiplications: digital multipliers tend to be particularly

large and power hungry, while synapse matrices typically consume the bulk of the

silicon area in neural chips.

The additional advantages of adopting the pulse-stream methodology within the

context of analogue neural VLSI are related to robustness against noise. Noise is

generally considered a significant vulnerability of analogue circuits because it is the

primary factor limiting accuracy, as contrasted to word length which is the case for

digital circuits. As a consequence the trade-off between silicon area and accuracy is

not as easily achieved as in digital designs, further limiting a designer's options.

Apart from accuracy, noise can also interfere with the scalability potential of a

design, a crucial issue for ANNs. All pulse-stream varieties except PAM and PCM

encode continuous values in the time dimension, making amplitude noise variations

less significant'. The trade-off is increased vulnerability to frequency noise (edge-

jitter), which is less significant in a conventionally noisy environment ([67], ch.4).

Finally, noise can impose an upper limit on the speed of operation of an analogue

design either directly and catastrophically, or indirectly and gradually by

Within reasonable limits, of course, but in most cases enough to substantially boost the noise
immunity of a design.

35

Chapter 1 	 Introduction

deteriorating the accuracy of computation to unacceptable levels. Frequency noise

generated by multiple oscillators is one of the expected limitations on the speed for

the designs proposed in this project and investigating its effects is one of the stated

research objectives.

2.5.1. 	Pulse-stream circuit implementations

The signal processing performed by a typical Hopfield neuron involves

multiplication of synaptic weights and incoming neural states, summation of the total

activation, imposition of the activation function (typically sigmoid or gaussian),

selection of the next state for the neuron and communication with the next node.

One of the simplest and most compact pulse-stream designs for synapse

multiplication and summation that has been proposed and implemented is based on

the transconductance multiplier (fig. 6).Transistors Ml and M2 form the multiplier

which outputs a current proportional to the voltage V representing the synapse

weight. The current is subsequently passed through transistor M3 whose gate is

operated by a voltage pulse' representing the preceding neuron's state. In the case of

a binary neuron the pulse can have a fixed duration, while for a continuous state

neuron the width of the pulse can be proportional to the state. The result is a current

pulse Iw, whose charge is summed in a capacitor Csum along with that from other

synaptic connections connected to the neuron.

The main advantage of the synapse based on the transconductance multiplier is the

low transistor count and the fact that all three transistors are n-type, which helps

minimise the size of the circuit by avoiding the use of an additional p-type CMOS

well. This is a significant advantage from the point of view of scalability, allowing

tens of thousands to be implemented on a single chip with today's fabrication

processes. This circuit however is not widely used because of its sensitivity to the

Alternatively the incoming neuron state can be represented by a stream of pulses.

Chapter 2 	 Literature Review

voltage of the node between transistors Ml and M2, sensitivity to process variations

in the fabrication process and parasitic charge transfer to the capacitor due to the

switching of transistor M3. These effects affect the consistency and accuracy of the

performed multiplication and necessitate added circuit complexity to fix. Still, the

transconductance multiplier serves as a characteristic example of the kind of

compactness and power frugality that can be achieved by pulse-stream techniques.

vout

Vstate2

Vref H 	I

Vw2H 	

sum

Fig. 6: A pulse-mode synapse based on the compact CMOS transconductance
multiplier The 3-transistor multiplier is depicted in the dashed outline box.

The transconductance synapse design has inspired several pulse-stream synapse

design variants, such as the 4-transistor per-pulse synapse [93,94] which elegantly

solves some of the original design's shortcomings using a single extra transistor'.

Amplifiers with sigmoidal output characteristics and current-mode differential pair

(long tail) circuits are typical of the next stage in a neuron's processing, the

imposition of the squashing function. The final output stage used in pulse-stream

implementations mentioned in the literature is often a voltage controlled oscillator

Tombs et al also replaced transistor Ml with a p-type, thus necessitating the implementation of a
CMOS p-well.

37

Chapter 	 Introduction

(VCO), providing an output signal encoded with either pulse-width or pulse-

frequency modulation'. The choice of an oscillator for the output stage is popular

since they can be simple, compact, and provide an output compatible with variants of

the aforementioned transconductance synapse. However, oscillators tend to be

notoriously sensitive to process variations when implemented in CMOS and generate

sudden spikes in current demand from the power supplies. Noise injected to the

power supplies of the chip in this way can travel to other oscillators and adversely

affect their performance. These effects make PWM schemes more attractive and

necessitate the use of super-sized power supply lines. A simple implementation for a

PWM modulator is to supply an analogue voltage to a comparator along with a

standard triangle wave [67].

2.6. Summary

Unsupervised ANN algorithms are becoming increasingly popular due to their ability

to function in scenarios where it is difficult or intractable to describe the target states

for the network. Stochastic neural computing provides the possibility to perform

probabilistic inference, helping an ANN device capture higher-order statistical

relationships underlying the data. An added advantage over mainstream supervised

inference techniques employed in the field of statistics is the ability to perform

probabilistic inference with multiple-cause data, even when the algorithm has not

been set up using a priori knowledge about the problem.

Stochastic auto-encoders are ANN algorithms that combine stochastic neural

computation, unsupervised learning and the ability to perform probabilistic inference.

The HM is a stochastic auto-encoder employing the simple delta rule for training its

synaptic connections, using information locally available to each neuron. The latter

characteristic makes the HM an attractive candidate for hardware implementation. Its

performance capabilities in pattern completion, pattern classification, novelty

More rarely using pulse-amplitude modulation combined with a fixed carrier frequency.

Chapter 2 	 Literature Review

detection and tracking sensor drift using on-line learning have been verified through

software simulation experiments reported in the literature

Hardware ANN implementations are motivated by a variety of reasons. The need for

speed, asynchronous operation and massive parallelism are among the most popular

motives. A desire to improve our understanding of biological nervous systems

through modelling has given rise to the relatively new field of neuromorphic

engineering, which focuses on hardware implementations as reverse engineering

tools. The ability to perform in real time computationally complicated tasks such as

visual classification and sensor fusion is motivating hardware ANN implementations

in the fields of automation and robotics. Finally, some problems requiring intelligent

machine behaviour do not easily lend themselves to the methods of symbolic AT, thus

making the distributed nature of neural computation methods on hardware more

attractive.

Analogue VLSI is a platform that satisfies many of the requirements for mapping

neural computation algorithms onto hardware. The potential for speed, scalability,

asynchronous operation, frugality in silicon area and power consumption, relatively

low fabrication costs and the lack of digital quantization effects are all factors for

which analogue VLSI has become the most popular technology for hardware ANN

implementations during the last three decades. Its Achilles heel is sensitivity to noise,

an issue partially resolved by the adoption of the pulse-stream and current mode

analogue design methodologies: by encoding continuous values in the time

dimension of a stream of pulses, amplitude variations become less significant at the

expense of added sensitivity to frequency (edge-jitter) noise. Frequency noise,

however is generally less of a problem in a conventionally noisy analogue

environment, making it possible to increase the number of neurons on a chip and the

speed of operation for on-chip oscillators generating the pulse streams.

We have therefore chosen to experiment with the hardware implementation of the

HM stochastic auto-encoder ANN using the pulse-stream methodology for circuit

design in analogue VLSI. Among other targets we are hoping to evaluate the

Chapter 1 	 Introduction

performance of a PWM modulator, the feasibility of extracting the neural state by

randomly sampling it, the effects of edge-jitter on this process, the performance

limits of the resulting ANN, the design factors influencing them, and to perform

comparative experiments Wlith an HM of identical topology running in software

simulation.

40

So far this thesis has discussed background material relating to various unsupervised

artificial neural network (ANN) algorithms and issues relevant to their hardware

implementation. This chapter introduces the circuit modules proposed for the

hardware implementation of a stochastic neuron on silicon. Several instances of the

neuron are subsequently interconnected to form a HM network prototype. The

ultimate intention, described in succeeding chapters, is to demonstrate that the

hardware is capable of unsupervised stochastic learning comparable to that of an

equivalent Helmholtz Machine ANN running in software simulation.

	

3.1. 	Introduction

A HM stochastic neuron can be dissected into an input stage synapse module, an

intermediate stage sigmoid logistic function, an output probabilistic stage, a weight

storage and modification module and some overall co-ordinating logic module

implementing the various stages of the Wake-Sleep training algorithm. The focus of

this chapter is on the first three modules since they form the primary constituents of

the stochastic neuron. The circuits described below were conceived and designed

with the HM ANN in mind, but with little or no modification they can also be used as

a hardware model for other stochastic neural network architectures such as the

Product of Experts [44,45] for instance.

	

3.2. 	The synapse input module

As mentioned in chapters the use of the term 'synapse' is borrowed from biological

neural networks and is used by analogy. In the case of most ANN algorithms it

comprises the module that handles the collective input to a particular neuron. In the

41

Chapter 1 	 Introduction

case of the discussed hardware implementation of stochastic neurons for the

Helmholtz Machine neural algorithm, the synapse serves as an input stage circuit. It

therefore implements equation 2.12 presented in section 2.3.

3.2.1. 	A modular synapse circuit

Since the synapse circuitry must accommodate multiple neuronal interconnections it

would be convenient to build it in a modular, scalable fashion, so as to accommodate

for neurons with a variable number of input interconnections. Moreover, since some

of these basic modules share a common binary state input (originating in the

preceding neuron) as well as several biases, it is practical to build a matrix of these

basic synaptic circuit elements so as to minimise silicon area usage and signal

degradation across long metal lines. This is indeed the most common architecture for

analogue VLSI implementations of neural synaptic elements in the past two decades

[12,16,81].

3.2.1.1. Outline of the basic synaptic circuit element

The basic function that such a building block should provide would be the

multiplication of the synaptic weight w with the binary state of the preceding

neuron Si . Fig. 7 presents a block diagram for such a circuit element

As shown in the figure, state is an input pin supplying the binary state of the

preceding neuron (described in equation 2.12 as s1) and weight is an input pin

supplying the weight of the synaptic connection between two neurons i, j in

succession (described in equation 2.12 as w1). Pin out is the module's output leading

to the sigmoid activation function module, totall, sin/cl and zerow are bias nodes that

will be discussed later in this section, set-capV and capV are I/O pins that enable the

resetting of the module's output, and avdd, avss are power supply pins.

42

Chapter 3 	 Stochastic Hardware

tGtCJLI Loff

inkI

L .. r•c•- cjt

zurnw

Fig 7: Block diagram of a synapse circuit module, shown here with I/O connections
within a synapse matrix.

Once the multiplication of the preceding neuron's binary state and the synaptic

connection's weight is performed, a sum of the output of all synapse input modules

of a neuron must be formed. Our design utilises a capacitor at the output of each

synapse module to perform this integration. This provides the convenience of simply

connecting the output of all synapse modules of a certain neuron together to form a

single capacitor whose voltage represents the sum of all synaptic activation. The

activation voltage can then be transferred to the activation function module (see

section 3.3) for further processing.

3.2.1.2. Design and simulation of a single synapse module

Fig. 8 below is a transistor-level schematic diagram of a synapse module capable of

interfacing two neurons. Analogous topologies have been proposed and implemented

in the context of ANN synapse implementations in the past [48]; this circuit module

has been inspired by these predecessors and re-designed to suit the aims of this

project.

43

Chapter 1 	 Introduction

Transistors M1-M5 form a differential stage input circuit for the synapse module. The

bias voltage zerow allows the adjustment of the voltage representing a zero synaptic

weight, so that that the circuit can be trimmed to match a preceding module's output

range'. The output voltage of the differential stage is converted into a current through

transistor M7 and balanced against the current flowing through transistor Al9.

Transistors MP and M&g form a transmission gate, which is operated by the state

input voltage pulse and the auxiliary inverter. The transmission gate connects the

balance node between transistors M7 and M9 with the integration capacitor Cact.

Vdd

	

M1 	M21 	 r M 7

zerow 	 Q V
M

sWte

	

3 	
11_eight

E

a)

O
I 	 I 	

Mtrg 	

vout C)
cc

total' sink'
MPtrg 	

M11

M6 	 M5 M 	 Mg
0act 	

setapV

VSS 	
capV

Fig 8. Transistor-level schematic diagram of a synapse circuit for a single neuronal
interconnection.

The summation of the two currents flowing through transistors M7 and M9 in the

intermediate node performs a function central to the entire module. Reference

voltage zerow and bias currents totall and sin/cl can be adjusted to shift the balance of

The weight voltage in this case would be obtained from a preceding weight-changing module.

Chapter 3 	 Stochastic Hardware

these two currents (IM7 and I) so as to achieve an approximate match for an input

weight voltage representing a zero weight.

Name Type W (pm) L (pm) Name Type W (pm) L (pm)

M1 PMOS 15 10 M7 PMOS 6 20

M2 PMOS 15 10 M9 NMOS 6 20

M3 NMOS 3 30 M10 NMOS 15 20

M4 NMOS 3 30 M11 NMOS 3 3

M5 NMOS 16 8 Mtrg NMOS 12 4

M6 NMOS 8 8 MPtrg PMOS 24 4

Table 1: List of CMOS components forming the synapse circuit module

The multiplication of the weight and neuronal state input voltages takes place by

exploiting the following equation

I•dt — C•dV 	 [3.1]

where I is the current flowing through the transmission gate, dt is a slice of time, C is

the capacitance of the output capacitor and dVis the change in the capacitor's voltage

during dt. Equation [3.1] can be straightforwardly derived from the definition of

capacitance with respect to charge and voltage.

Equation [3.1] shows that the product of the current flowing through the transmission

gate and the time that the transmission gate remains open, the former representing

the weight, the latter the binary state of the preceding neuron, is linearly proportional

to the change of voltage in the capacitor C,,,, at the output of the synapse circuit.

Two versions of the synapse module were designed. One was identical to the one

depicted in fig. 8, while the other had an additional output stage consisting of the

source-follower transistor pair shown in fig. 9. The latter version was used to test the

module in isolation -as opposed to testing it as part of an entire neuron circuit. The

purpose of the source-follower pair was to prevent the addition of the parasitic

I 	 Introduction

capacitance of the output pad (which can be up to 20pF) to the considerably smaller

3.5pF output capacitor of the synapse module. A drawback of this method is an

attenuation of the output voltage by 0-1.5V, the divergence being larger at higher

voltage levels.

Fig. 10 is a graph showing simulation results of the synapse output voltage at varying

weight input voltage levels. For the purposes of this simulation the neuron state pulse

input was kept constant: a train of 10 x 5isec, 0-5V voltage pulses. The graph

displays results for positive weight values only, where the capacitor is charging from

an initial value of OV -the reset value at the beginning of each measurement to ensure

consistency of the readings.

Two sets of simulation results are plotted in the graph: V0t is the real voltage of the

synapse circuit's output capacitor, while V0 f is the same voltage attenuated, as

observed through the source-follower circuit discussed earlier in this section.

1

Fig. 9: Transistor-level schematic diagram of the source-follower output stage circuit
that is attached between the real output of the synapse module and an output
pad. It was used to test the synapse circuit in isolation

Similar simulation results for negative weight values are presented in fig. 11. In this

case the capacitor was discharging under a negative weight value from an initial

rir

Chapter 3 	 Stochastic Hardware

value of 5V. In this set of simulation results too, the neuron state input was kept

constant as a train of 10 x 5p.sec, 0-5V voltage pulses.

Observation of the simulation result data summarised in figs. 10 and 11 shows that

the zero weight voltage —the value for which 'M = 	so that the output capacitor

neither charges nor discharges— predicted by these simulations is Vweight = 3.20V ±

0.2V. The useful linear input range for the weight is 2.1 - 4.OV, yielding an output

range of 0.2 - 4.2V. The corresponding attenuated ranges emerging at the output of

the auxiliary source-follower module are 2.3 - 4.OV and 0.0 - 2.9V, respectively.

4.5

4

3.5

CU
c3O

2 2.5

0.5

O
2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

Vwt (V

Fig. 10: Simulation plot of a single synapse module output (directly and through a
source-follower output stage) against a variable synaptic weight input. The
neuronal state input was a constant 10x5ec train ofpulses and the output
capacitor (initially reset to ground) is charging.

These ranges focus on linearity, since the primary mathematical function of this

module is to perform the multiplication of weight and binary neuron state. It is

important to point out that this type of synapse can also be used for neural

architectures that do not entail binary neuron states. This is a particularity of the

Helmholtz Machine: by adjusting the width or the number of pulses that operate the

transmission gate, analogue values can be entered into the multiplication performed

I 	 Introduction

by the synapse. Moreover, the zero-weight balance voltage as well as the input and

output ranges can be adjusted by modifying the values of reference voltage and

currents zerow, totall and sink!. In the case of the simulations performed to collect

the data for fig. 10 and 11 these references were adjusted so as to maximise the I/O

range of the synapse circuit, while at the same time matching the input range of the

succeeding sigmoid module.

.71

4.5

4

; 3.5

4-'

2.5

1.5

I

.5 	Vcut -
3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6

Vwt (V)

Fig. 11. Simulation plot of a single synapse module ' output (directly and through a
source-follower output stage) against a variable synaptic weight input. The
neuronal state input was a constant 1Ox5jec train ofpulses and the output
capacitor ('initially reset to 5V) is discharging.

Further observation of fig. 10 reveals that the V0 curve, depicting the capacitor

voltage directly, displays three distinct slopes in the 'linear' section 3.2V < V <

4.IV. The reason for this characteristic is the imperfections of the current sources

supplying the currents which balance on node ' balance' (see fig. 8) in the synapse

circuit. In the 3.2V 	< 3.4V range of the graph (fig. 10) the lower current sink

formed by transistors M9 and M10 moves out of the saturation region, resulting in the

steeper slope. In the 3.8V 	<4V section of the graph the current source formed

by transistors M2 and M7 slips out of the saturation region, an effect responsible for

the lower slope in the graph. Finally, in the 3.4V < Vwt < 3.8V middle range both

Chapter 3 	 Stochastic Hardware

current minors operate against a less strenuous output voltage range, resulting in an

intermediate slope.

The simulations were performed with the HSpice and Spectre analogue simulators,

using the design kit data provided by Europractice for the 2.0tm Mietec/Alcatel

fabrication process.

3.2.1.3. Layout of the synapse matrix

A 14 transistor CMOS cell was designed to implement on silicon hardware the

topology depicted in fig. 8. It includes a 3.5pF capacitor at its output, which gives it

the advantage of easy interconnection with other identical cells attached to the same

neuron serving different synaptic connections.

This kind of topology takes advantage of the total capacitance formula for capacitors

that are connected iii parallel:

CTQT = C1 + C2 + C3 + ...+ C 	 [3.2]

In this way the summation of the total activation input to the neuron that the synapse

circuits are attached to can be performed, as required by the theoretical model (see

equation 2.12). An extra instance of this synapse circuit can be used as an activation

bias for the neuron, as described in the same equation. This bias can assume either

positive or negative values by adjusting the weight input voltage accordingly, while

the magnitude can be controlled by the width of the state voltage pulse.

Fig. 12 shows the layout of such a prototype cell, as implemented in a 2-metal,

2.0m CMOS fabrication process. It measures 290 x 335.tm (0.01mm2) and was

designed with the following criteria in mind:

9 	Implementation of the synapse function calculation for the HM

Me

I
	

Introduction

A modular architecture, so that the cell can be used as a building block for a
synapse matrix (i.e. common reference V/I pins and power supply lines,
connected output caps)

Noise propagation countermeasures, esp. with respect to the noisy digital
circuits of the neuron's output stage oscillator

A small silicon footprint for the cell, as well as for the synapse matrix

Fig. 12: Layout plot of a synapse circuit, designed in a modular fashion to serve as a
basic building block of a larger synapse matrix.

An advantage of the topology described in section 3.2.1.2 is the fact that each

instance of the synapse module comes with its own built-in capacitance. This type of

architecture means that the designer can quickly interconnect several of these blocks

as the input stage of a neuron without worrying about compensating or normalising

the output of the collective synaptic module with respect to the number of neuronal

interconnects. In other words the input stage of a neuron, which will typically consist

Chapter 3 	 Stochastic Hardware

of a number of synapse modules with connected output pins, has a self-normalising

output voltage irrespective of the number of neuronal interconnects that it facilitates.

Wide, low-resistance power lines, separate analogue and digital power supplies for

the entire chip, closed analogue guard rings and physical isolation were used as noise

propagation counter-measures. Since this is a cell that would be replicated to form a

synapse, an effort was made to keep the silicon footprint low. This is a prototype cell,

however, and some further, small optimisation of the silicon footprint size is

possible.

3.2.2. 	The synapse matrix

Since each neuronal interconnection requires synaptic circuitry to take the weight

into account it becomes clear that, as the number of neurons increases, the silicon

area usage by the synapse circuitry increases a lot faster than that of the rest of a

neuron's circuits. Even in the case of feed-forward ANN architectures which only

employ connections between successive layers, the number of interconnections

dramatically diverges from the number of neurons as the network becomes larger:

Ninterconnects (Niayer i>< Niayer 2) + (Niayer 2 X Niayer 3) + ... +Nlayer(n-i) X Mayer n) [3.3]

In the case of a 10-6-4 feed-forward network topology, for instance, the number of

neurons would be 10 + 6 + 4 = 20, whereas the number of interconnections (and

hence of synapse circuit cells required) would be (10x6) + (6x4) = 84. This issue

becomes more pronounced when dealing with neural architectures that in addition

involve lateral, bi-directional or full interconnectivity.

It is clearly worthwhile for all but the smallest of networks to design synapse

circuitry in as efficient a way possible, so as to minimise both design time and silicon

area usage. The prototype synapse circuits for this project focused on a modular

approach that enabled the basic synaptic circuit cell to serve as a building block for a

larger synapse matrix array.

51

!.•

..

...

.........

:4

-.
1.

t

...
H PA

hi

ff
'2

.
WL

H

Chapter 1 	 Introduction

Fig. 13: Block diagram of the 3 x 4 matrix of synapse modules, capable of fully
interconnecting a layer of 4 neurons with a successive layer of 3. Each
column serves as a neuron s' input stage.

52

Chapter 3 	 Stochastic Hardware

3.2.2.1. Outline

For the planned experiments with the Helmholtz Machine unsupervised ANN

architecture, a simple 4x3 network prototype was chosen. This entails a synapse

matrix of 1.2 synaptic cells, such as the one depicted in fig. 13.

Fig 14: Layout diagram of the 3 x 4 synapse matrix. Each column serving as a
neuron input stage, capable of interfacing with 4 preceding neurons.

The basic building block of the prototype synapse matrix is the circuit described in

section 3.2.1 and depicted in figs. 7 and 8. Each column of cells in the matrix is

wired up as the input stage for a single neuron, enabling it to accept the output of 4

53

I 	 Introduction

interconnected neurons (or 3 neurons + one bias connection). In a similar fashion,

each row contains the synapse circuit cells that can serve 3 output interconnections

for a particular neuron.

3.2.2.2. Layout

Fig. 14 above shows the layout of the synapse matrix cell described in the preceding

section, implemented in a 2-metal, 24m CMOS fabrication process. The cell

measures 966 x 1323gm (1.28mm) and includes 12 synapse circuit modules,

capable of interconnecting 3 neurons with 3 inputs and a bias source each.

Each input source has a common state pulse tree which addresses a row in the

matrix. Each column contains 4 instances of the synapse circuit module, which

comprise the input stage for a neuron. Each column therefore has common sin/cl,

totall and zerow reference pins, as well as a common output. The output of each

column leads to the remaining neuron circuits: a sigmoid circuit module, which in

turn is connected to an oscillator output stage.

3.3. 	The sigmoidal activation function module

The sigmoid circuit module is expected to perform signal processing equivalent to

the probabilistic activation function described by equation 2.13. A numerical plot of

the mathematics equation is shown in fig. 15 below.

Fig. 15: Numerical plot of the sigmoid logistic function f(x) =1/1 + e

54

Chapter 3 	 Stochastic Hardware

One of the aims of the activation function is to keep the total activation within limits

regardless of the number of neuron inputs connected to the preceding synapse

module; the other is to ensure the smooth change in the levels of activation in a

'sigmoidal' fashion.

3.3.1. 	Outline

The sigmoid transfer function is quite common in ANN algorithms, partly because it

performs the 'squashing' of the summed activation in a smooth, differentiable

fashion. While a reasonably smooth transfer function is important for step-by-step

learning, the reason for selecting the particular logistic sigmoid function is partly

historical: it is relatively simple, monotonic and differentiable, a requirement by

some of the early supervised ANN training algorithms based on error back-

propagation [73]. Small deviations from the sigmoidal shape do not usually result in

catastrophic failure of the training process: indeed Gaussian and sinusoid functions

have been shown to improve convergence in Hopfield ANN classifiers [39]. Precise

mathematical matching of the inverse exponential depicted in fig. 15 was therefore

not a priority for this research project.

cut
flrk.:

FM

Fig. 16: Block diagram of the sigmoid activation function circuit module.

55

Chapter 1 	 Introduction

Fig. 16 is a block diagram for a circuit module designed to implement the sigmoid

activation function in hardware. The in pin is a voltage input, the out pin is a current

output (inbound current), and the Vref and sink[pins correspond to a reference

voltage and bias current, respectively. Apart from the implementation of a function of

appropriate shape, the design focused on the following additional requirements:

the ability to shift the sigmoid curve across the input range, so as to make it
possible to match the preceding synapse module's output range

the ability to adjust the output range to match that of the succeeding oscillator
output stage circuit module

a small silicon footprint

3.3.2. 	Design and simulation

Fig. 17 is a transistor-level schematic of the sigmoid activation function circuit.

Transistors MP,, and MPr form a matched, differential pair input stage that splits the

current flowing through transistor IVIPtaji at the top of the diagram. Transistors I. VIP tail

and MPtail2 form a current mirror controlled by the bias current pin sinki Transistors

Miefi and Mrzgir are diode-connected and serve as loads, while Mrjg;t and MO!Lt form an

output stage current minor. The input voltage enters the circuit through the gate of

transistor MP (input voltage pin in), while the gate of the matched transistorMPref is

attached to reference voltage pin Vr

Since transistors IP i,IVIPr and MieftMright are matched in pairs it is the voltage

differential applied to the gates of the first pair that determine the ratio of current that

will run down each leg of the circuit. Given the nature of the design requirements,

precise matching of either pair of transistors was desirable though not critical.

Fig. 18 shows a plot of simulation results from the circuit depicted in fig. 17. The

simulation involved a sweep of input voltage in the 0-5V range with a 1OOk~ load

connected between the output pin out and the positive power supply rail. The

reference voltage at pin ref was set to 2V and the bias current at pin sinkl was held

56

Chapter 3 	 Stochastic Hardware

constant at 60.tA. The input range with these reference and bias values is

approximately 0-4V and the output range 0-40j.tA, and the output curve characteristic

is clearly sigmoidal.

MI

in

Ut

Mout

vss

Fig. 17: Transistor-level schematic diagram of the sigmoid circuit module.

Further simulations of the sigmoid circuit module revealed that varying the voltage at

reference pin vref and bias current at pin sink! shifted the axis of symmetry of the

sigmoid along the input voltage range as was the original design intention. More

specifically, increasing the value of the bias current at pin sink! achieves the

following:

• 	it increases the range of the output current

it flattens and smoothens the sigmoid curve across the input voltage range,
creating a more analogue response of the neuron to activation input from the
preceding synapse circuit module

it shifts the vertical axis of symmetry of the sigmoid output curve towards
lower input voltage values

57

Chapter 1 	 Introduction

Name Type W (pin) L (pm) Name Type W (pin) L (pm)

MPtajj PMOS 60 6 MIft NMOS 60 6

MPtaii PMOS 60 6 Mright NMOS 60 6

Mpil PMOS 9 6 M0 NMOS 60 6

MPref PMOS 9 6

Table 2: List of CMOS transistors forming the sigmoid circuit module.

Fig. 19 shows results from parametric analogue simulations of the sigmoid circuit

which demonstrate these points. The first point becomes obvious when one considers

the current mirror at the bottom right of the diagram depicted in fig. 17. Everything

else kept equal, a larger current flowing through the left side of the mirror will

inevitably cause an increase in the current flowing through the right side as well.

40
r

3

30

2

20

0
15

10

S

iput

0 	1 	 2 	3 	 4 	 5

Vin (V)

Fig. 18: Simulation plot of output current vs. input voltage of the sigmoid module
with a I 00 output load

The other two points become clear once one considers the output characteristic

curves for a PMOS transistor such as MP7 : lower gate voltages are required to

decrease the transconductance of the device against an increasing VDS (so as to send

Chapter 3 	 Stochastic Hardware

more current down the right leg of the device), giving rise to a flatter, left-shifted

sigmoid curve with respect to the input voltage axis.

1 	 2 	 3

Fig 19: Parametric analogue simulation results from the synapse circuit. Output
current is plotted against input voltage for different values of the reference
current 'sink.

In a similar fashion, increasing the reference voltage at pin ref produces a sharper,

more binary-like sigmoid characteristic, a shift of the vertical axis of symmetry

towards larger input voltage values, and a lower output current range.

4Op

3Op

20p

=
0

lop

op

59

I 	 Introduction

The simulations were performed using the HSpice and Spectre analogue simulators,

using the design kit data provided by Europractice for the 2.0im Mietec/Alcatel

fabrication process.

3.3.3. Layout

Fig. 20 is a layout plot of a hardware prototype cell for the sigmoid circuit module

described in the previous section. The 7 transistor cell measures 242 x 97.tm

(0.02mm2) in a 2-metal, 2.04m CMOS fabrication process.

Fig. 20: Layout plot of the sigmoid circuit module

An effort was made to provide some noise immunity as well as to keep the silicon

footprint area low. While noise contamination is not crucial in the function of this

circuit module, however any noise could pass on to the succeeding oscillator circuit

where it could cause problems. Separate analogue and digital power supplies on the

prototype chip, low resistance power lines and closed guard rings were employed as

the principal noise counter-measures.

wo

Chapter 3 	 Stochastic Hardware

3.4. 	Current to probability conversion: the oscillator
output stage

In a binary state neural network, the output stage module succeeds the activation

function and must be able to perform a thresholding operation on the activation

signal. Algorithmically this is equivalent to deciding whether the neuron has received

enough input to become excited and generate output state during the succeeding

computational cycle.

In the case of a probabilistic ANN such as the Helmholtz Machine, the output of the

sigmoid module is equivalent to the probability that the state of the neuron will be in

the ON state during the next design cycle, rather than the state itself. Consequently,

the discussed output module must be able to extract the state of the neuron from this

probability. It does so by applying a pulse modulation function to the probability

signal which, given a random temporal seed, supplies the neuron's state.

3.4.1. 	Outline

When considering an output stage module for a Helmholtz Machine neuron, it is

worthwhile keeping in mind the effects of the value of the neuron state downstream

in the algorithmic processing cycle. The state is required to calculate the excitation

level of downstream neurons as information flows through the network, as well as to

calculate changes to the weight of synaptic interconnections during training (see

equation 2.14). The output of the synapse module, which is equivalent to the

probability that the neuron will switch on during the next processing cycle, is also

involved in the weight change calculation.

Fig. 21 shows the block diagram of an oscillator module that was designed for this

purpose. The main function performed by the circuit is to produce a pulse-modulated

representation of the probability signal. By modulating the mark-to-period ratio of

the output square wave and given an external temporal random seed, the oscillator's

61

Chapter 1 	 Introduction

output can be randomly sampled to extract the state of the neuron from the

probability.

- D
rre

Vrf

Noul
LO
fn

0

Fig. 21: Block diagram of the oscillator module, used as a neuron ' output stage.
Separate analogue and digital power supply terminals help reduce noise
propagation between various oscillators on the same chip.

Apart from extracting the state of the neuron, the oscillator module must be able to

fulfil the following requirements:

current input to interface with the sigmoid module and an easy to sample
output format

several oscillators on the same chip must not synchronise in the time elapsing
between the acquisition of a new excitation value at the synapse and the
random sampling at the oscillator's output

linear modulation performance

a small silicon footprint

The linear performance of the oscillator does not have to be precise, since the

processing it performs is superimposed on the imperfect sigmoid function generated

by the preceding module. Noise shielding and a small silicon footprint were

prioritised during the design of the module at all stages.

62

Chapter 3 	 Stochastic Hardware

Ensuring that the oscillators do not lock, that is do not shift their phase and frequency

until they operate synchronously, is an essential requirement if the parallel operation

capabilities of the network are to be preserved. A synchronisation of oscillation

would mean that if the random sampling happens close to the beginning of an

oscillation cycle all neurons would turn on, an artefact of noise propagation rather

than a result of the Helmholtz Machine algorithm (see fig. 34, section 4.2.1 for more

details). Facing such a problem is particularly undesirable since it would lead to a

catastrophic failure of the algorithm rather than degradation of its performance.

3.4.2. 	Design and simulation

Fig. 22 shows the oscillator circuit that was designed to serve as the output stage of

the neuron. Transistors MINi - MJN4 and MPREFI - MPREF4 form current mirrors that

respectively charge and discharge capacitor Co.

MIN

MIN

in

ref

MREF

MREF

Vret

Fig. 22: Transistor-level schematic diagram of an oscillator circuit, used as an
output stage for a neuron.

I 	 Introduction

The upper PMOS current mirror is constantly connected and charging the capacitor,

while the lower NMOS current mirror discharges the capacitor and can be

disconnected from it using transistor M51. Transistors Md and !vlPdec are wired as

decoupling capacitors to prevent noise propagation from the power supplies to the

current mirrors, while transistor M, is another anti-noise measure (it provides the

PMOS current mirror with some current flow even after M51 has switched off; so that

its source doesn't crash to OV, sending noise ripples through the ground.)

By adjusting the reference current supplied to input tenninal 'rj, the current drainage

from the capacitor can be adjusted to be higher than the supply through the PMOS

current mirror at the top of the schematic, which permits the hysteretic comparator

(Schmitt trigger) on the right side of the diagram to charge and discharge the

capacitor by controlling the voltage at the gate of switch transistor MS1.

Name I Type W (pm) L (pm) I Name I Type W (pm) L (pm)

	

MIN1 PMOS 	60 	6
	

MREF2 NMOS 	40 	6

	

MIN2 PMOS 	60 	6
	

MREF3 NMOS 	40 	6

	

MIN3 PMOS 	60 	6
	

MREF4 NMOS 	40 	6

	

MLN4 PMOS 	60 	6
	

Mdec I NMOS 	50 	60

	

MPdec I PMOS 	50 	60 	MS, I NMOS 	24 	6

	

MREF1 NMOS 	40 	6 	Mxtr NMOS 	24 	6

Table 3: List of CMOS transistors forming the oscillator circuit module.

The output of the oscillator is at the output of the Schmitt trigger, and the inverter is

only present as a buffer that will boost the signal during transfer to the chip pad. A

minimalist Schmitt trigger was designed and used in order to keep the silicon

footprint low. Since the oscillator does not require a highly accurate hysteretic

comparator, a 5-transistor Schmitt trigger was devised, in contrast to the textbook

versions sporting higher precision and much larger silicon footprints, generally

comprising 10-12 transistors [1]. The topology of the proposed circuit is depicted in

fig. 23.

RE I

Chapter 3 	 Stochastic Hardware

3.4.2.1. Schmitt trigger character/sat/on

Starting with the Schmitt trigger input at ground (OV) voltage, assuming a 0-5V

power supply and a reference voltage of 2.5V at the gate of transistor M, transistors

M2 and MP2 are off and the output of the device is in the digital LOW state. Current

drain and power consumption are at a minimum at this stage.

As the voltage at the input increases and approaches 5V, a critical voltage V-P, is

reached and the transconductance of M1 abruptly counterbalances that of MP1 and

MP3 (which are connected in parallel). This in turn ensures that MP2 turns on and the

output switches to a logical HIGH, given that MP2 has a much wider gate than M2.

Jd

)Ut

V 1

Fig. 23: Transistor-level schematic diagram of the minimised Schmitt Trigger circuit,
a component of the output stage oscillator.

Following the opposite scenario, in which the voltage at the input starts at a 5V and

decreases, the output starts from a logical HIGH and switches to a LOW when the

input voltage reaches VTRIP. This occurs when the potential node2 increases enough

to turn MP3 off.

65

Chapter] 	 Introduction

Name I Type W (pm) L (pm) I Name I Type W (pin) L (pm)

MP, PMOS 24 6 M1 NMOS 12 	6

MP2 PMOS 24 6 M2 NMOS 6 	6

MP3 PMOS 36 6

Table 4: List of CMOS transistors forming the Schmitt trigger circuit module.

Proper choice of transistor sizes ensures that 5V ~! V, ~! V_ OV. More

specifically, VTRJP+ is primarily dictated by balancing the transconductance ratio of

M1 and Mp1, while VTPJP is primarily determined by the transconductance ratio of M1

and MP3. Both of these critical voltage values can be altered using reference voltage

Vp, albeit in tandem: adjustments VREF cause VTPJP± and VTRJP to move closer or

further apart by an equal voltage difference and symmetrically with respect to the

power rails.

cn 2

oF

1 	
1 	1.1 	L2 	1.3 	1 4

Time (us)
Fig. 24: Simulation plot showing the oscillator in operation. The dashed square wave

is the oscillator output, while the dotted triangular wave depicts the
capacitor voltage. Vr 	2.5V, Iref40. 7/LA.

Fig. 17 depicts the input and output voltage of the Schmitt trigger. The output is

controlling the gate voltage of transistor M51, which in turn alternately the NMOS or

M.

Chapter 3 	 Stochastic Hardware

PMOS current mirror to capacitor Co. When the capacitor voltage ascends to Vrpjp+

or descends to Vmjp the Schmitt trigger flips states.

Fig. 25 shows the hysteretic loop graph ([53], p. 231) for the Schmitt trigger during

the same simulation. With Iref= 40.7j.A and Vre/ = 2.5V the measurements indicated

VTRJP = 3.73V and VJFJp± = 2.53V which yields an input voltage difference of AV1

1.53V.

3.4.2.2. Oscillator characterisation

Equation 3.1 that was derived to demonstrate linearity in the synapse circuit can be

applied in the same way for the oscillator. In this case it demonstrates that the time

required for the oscillator charge and discharge cycles vary linearly with the input

currents responsible charging and draining the capacitor.

5

4.5

4

3.5

3
4-,

2.5

2

1.5

1

0.5

0

Vin

Fig. 25: Simulation plot showing the hysteretic loop plot for the Schmitt trigger
contained within the oscillator module.

We are interested in randomly sampling the output of the oscillator, in order to

extract the state of the neuron from the probability obtained from the output of the

67

Chapter] 	 Introduction

synapse module. We are therefore intrested in the mark-to-period ratio of the square

wave at the oscillator's output.

If t and tD are the time that it takes for the oscillator's capacitor to charge and

discharge respectively, it follows that tD is the time within each oscillation cycle that

the output square wave spends at a logical HIGH. This becomes evident when we

consider that the ooscillator output operates the gate of transistor M 1, which initiates

the discharge part of the oscillation cycle. Ignoring the rise and fall times of the

square wave for simplicity (their values are much smaller to the period of oscillation)

it follows that

T=tc +tD 	 [3.4]

Since 1m is the current mirrored to charge the capacitor, it follows that

Similarly, when transistor M 1 switches on, the net current draining the capacitor is

equivalent to 'ref - un, SO

'ref 'in 	
C•V

tD

[3.6]

The negative sign denotes that the voltage difference now represents a voltage drop.

The absolute value of the product C - V stays constant during both the charge and

discharge cycles, since the upper (V,) and lower (V 11,_) limits for the capacitor

voltage fluctuations are the same in both cases.

Putting together these three equations permits us to calculate an expression for the

mark-to-period ratio that described the pulse modulation function of the oscillator:

M.

Chapter 3
	

Stochastic Hardware

[3.7]
T 	'ref

where MPR(VOUt) stands for the mark-to-period ratio of the output square wave.

This result indicates that —given ideal current mirrors as an input stage- the mark-to-

period ratio of the oscillator module ought to be linearly proportional to the ratio of

input currents. This is of interest because the probability that a random sampling

device will obtain a logic HIGH when sampling the output square wave is linearly

proportional to the mark-to-period ratio. Equation 3.7 shows that this probability is

also linearly proportional to the normalised current input of the oscillator. Fig. 26

shows a plot of simulation results demonstrating this linearity.

100

so

20

0
	

20 	40 	60 	so 	100

un normalised (0-100)

Fig 26: Simulation plot showing the mark-to-period ratio of the square wave at the
oscillator output vs. Iin normalised against a reference current (Izi/Ire).

All simulations described in this section were performed using the HSpice and

Spectre analogue simulators, using the design kit data provided by Europractice for

the 2.0tm Mietec/Alcatel fabrication process.

ZN

Chapter] 	 Introduction

3.4.3. Layout

Fig. 27 depicts the layout of the oscillator module with the sigmoid module attached.

The diagram also includes the sigmoid module discussed in section 3.3, divided in

PMOS and NMOS transistor sections and designated by the two oval markers. The

Schmitt trigger module is located to the left of the top oval marker.

Fig. 27: Layout diagram of the oscillator circuit module, shown here along with the
sigmoid. The cell measures 345 x 342tvn (0.12mm2) in a 2-metal, 2.Ojiin
CMOSfabrication process (the sigmoid is denoted by the two oval markers.)

The 15 transistor cell measures 345 x 342j.xm (0.12mm2) in a 2-metal, 2.0tm CMOS

fabrication process. Apart from the 15 transistors forming the oscillator, this footprint

takes into account two large decoupling transistors in the current mirrors as well as

an inverting buffer to boost the output square wave before it is transferred to the

output pad.

70

Chapter 3 	 Stochastic Hardware

Noise shielding is of primary importance to this circuit as the digital behaviour of the

Schmitt trigger output generates the most noise in the entire circuitry. In addition, it

is of vital importance that the oscillators in different neurons on the same network do

not communicate through substrate currents or power supply noise, as was discussed

in section 3.4.1.

Fig. 28: Layout diagram of the minimised Schmitt Trigger circuit, serving as a
component in the oscillator output stage module. The cell measures 176 x
235pm (0.04mm2) in a 2-metal, 2. Opin CMOS fabrication process.

Several measures were taken during the layout design stage to prevent both inbound

and outbound noise propagation from the module:

separate analogue and digital power supplies for both prototype chips (the
Schmitt trigger module being the only digital circuit in the neuron.)

separate core and pad-ring power supplies were used in STONECORPS, the
second prototype chip (required modification of the standard design library
power supply pads)

an effort was made to keep the resistance of power supply lines to a minimum
(line width, routing, connectivity)

closed guard rings were used around all circuits

71

Chapter 1 	 Introduction

transistor MX fr shown in the schematic diagram of fig. 22 was added in order
to prevent the sudden change in current flow through the NMOS current
mirror and the subsequent generation of noise in the power supply noise lines.
This transistor is not required for basic oscillator function.

the input stage current minors were locally decoupled with capacitor-
connected transistors (i.e. drain, bulk and source tied together.)

a moat was built around the Schmitt trigger circuit, in addition to standard
guard rings. It consists of an n-well tied to Vdd and acts as a barrier to
substrate currents [85]

The first three items of the list were standard procedure for mixed signal designs, the

remaining being specific to the oscillator module. The n-well moat supplementing

the analogue guard-ring noise protection of the Schmitt trigger can be seen in the

perimeter of the layout diagram in fig. 28 above.

3.5. 	A stochastic neuron

The number of synapse modules required for each neuron depends on the number of

neurons that are being interfaced to the input of that neuron. As was discussed earlier

in section 3.2.1.3, the modular design of the synapse circuit allows for a self-

normalising synapse input stage: various synapse circuit modules can be bundled

together simply by tying together their output pins. The distributed capacitance

contained in each module ensures that the contribution of each synaptic connection

to the final output voltage (as 'seen' by the succeeding sigmoid module) will be

proportional to the activation input it represents.

A single instance of the sigmoid and output oscillator is required in each neuron. For

this reason the synapse input stage circuits of each neuron are grouped into a matrix

(see section 3.2.2) whereas the synapse and oscillator modules are implemented

together.

72

3 	 Stochastic Hardware

3.5.1. 	Block diagram outline

Fig. 23 shows the modules and topology required to assemble a neuron capable of

receiving input from 3 preceding neurons. It contains 3 instances of the synapse

module connected at their output, succeeded by a sigmoid and an oscillator module.

While the modules are conceptually presented together in this diagram block, in

actual layout the synapse modules are part of the synapse matrix while the sigmoid

and oscillator modules are grouped together. A fourth synapse module, not shown in

this block diagram, is used to serve as an input bias for the neuron.

Fig 29: Block diagram of a neuron module, containing the synapse, sigmoid and
oscillator circuit modules. It is shown here with 3 instances of the synapse
module, which would enable it to be interfaced to 3 preceding neurons.

73

Chapter 1 	 Introduction

The neuron depicted in the block diagram has 6 inputs: 3 binary state inputs and

three analogue weight inputs. The length of the binary state pulse can be altered in an

analogue fashion in order to accommodate probabilistic neural algorithms that

employ analogue neuron states, such as the Product of Experts (PoE) or the

Continuous Restricted Boltzmann Machine (CRBM)) algorithms. Alternatively, a

pulse stream of variable length can be used to provide the neuron with analogue state

input.

For prototyping purposes there are also 3 adjustable reference voltage inputs (one for

each type of module, the synapse, sigmoid and oscillator) as well as 4 reference

current inputs (two for the synapse, one of the sigmoid and one for the oscillator.)

There is also a reset input for the output capacitor output.

In the case of the Helmholtz Machine algorithm, the purpose of the neuron is to

implement the probabilistic activation function described by equation 2.13 in section

2.3. Random sampling of the oscillator's output provides the neuron's state so that

the signal can be further propagated through the network.

Details about the design, simulation and layout of each component circuit module

can be found in preceding sections in this chapter.

3.5.2. 	Design and simulation

Mathematically the output of the neuron is the superimposition of the synapse and

sigmoid functions as described by equation 2,13. In circuit terms it is the product of

superimposition of the synapse and sigmoid curves described in fig. 10, 11 and 18

presented earlier in this chapter that describe the synapse and sigmoid module

characteristics. The oscillator module performs a current to pulse-modulated voltage

linear conversion, so it does not affect the superimposition of the output

characteristics.

Fig. 30 and fig. 31 present simulation results of a neuron with a synapse capacitor

that is charging and discharging respectively. The two sets of data are presented in

74

Chapter 3 	 Stochastic Hardware

separate graphs due to different initial conditions in each simulation. This was

necessary to obtain accurate results (the same scenario was encountered during

simulation of the synapse circuit module in isolation.)

100

80

60

061

Q
3.2
	

3.4 	3.6 	3.8 	4 	4.2 	4.4 	4.6 	4.8

Weight (V)

Fig 30: Simulation plot of a neuron output against a variable synaptic weight
input. The input comes from a single preceding neuron; the neuronal state
input was a constant 5x]0usec train ofpulses; the synapse output capacitor
(initially reset to ground) is charging.

In both simulations the input weight was varied while the input state received a train

of five lOj.tsec digital pulses. A pulse stream was used to demonstrate the capacity of

the circuit to operate with analogue state input if it is being used to implement an

algorithm with such requirements. The input voltage reference for the synapse was

l.OV, for the sigmoid 2.OV and for the oscillator 2.5V. The input current reference for

the synapse was Ij=l.OtA, I0=1.6jiA; for the sigmoid 60tA; and for the oscillator

40.7tA. The initial condition for the former simulation was OV for the synapse

capacitor, while it was 5V for the latter.

75

Chapter 1 	 Introduction

All simulations described in this section were performed using the HSpice and

Spectre analogue simulators, using the design kit data provided by Europractice for

the 2.Oj.im Mietec/Alcatel fabrication process.

100

go

80

70

.- 50
a-

4.)
a
> 40

30

20

10

0
2.2 2.4 	2.6 	2.8 	 3 	 3.2

Weight 01)

Fig. 31.• Simulation plot of a neuron output against a variable synaptic weight
input. The input comes from a single preceding neuron; the neuronal state
input was a constant 5x1Ojzsec train ofpulses; the synapse output capacitor
(initially reset to 5V) is discharging.

3.5.3. Layout

As was explained earlier in this section the neuron was not physically laid out in the

conceptual arrangement presented conceptually in the diagram of fig. 23. The

synapse modules comprising the neuron's input stage are part of the synapse matrix

whereas the succeeding sigmoid and oscillator modules are grouped together. As a

result the layout of a single module cannot be presented in isolation, only as part of a

larger layout diagram depicting the entire network (see fig. 27 in section 3.6.2.)

76

Chapter 3 	 Stochastic Hardware

The area covered by a neuron cell with 4 input synapse circuit modules is 0.6mm2 ±

5% in a 2.0gm, 2-metal CMOS process. About 75% of this area is occupied by the 4

synapse modules, 5% by the synapse and 20% by the oscillator. These measurements

take into account the interconnection overhead for assembling the neuron using the

individual circuit modules.

3.6. 	A network slice

A modular neuron architecture was described in the preceding sections. Several

neurons can be combined together to form a network, at which point the Helmholtz

Machine algorithm can be employed. This particular type of neuron can be used for

other types of probabilistic networks, such as the Product of Experts and Continuous

Restricted Boltzmann Machine neural algoritluns that employ analogue state and

input values. It could also be used for deterministic neural networks, since the output

of a neuron can directly be connected to the state input of a synapse (in which case

the sigmoid output would represent the output of the entire neuron, rather than the

probability of an ON binary state.)

This section examines an arrangement of a 3-neuron layer -or "slice"- within such a

network, as depicted in fig. 37 in section 4.3.1. Information propagates forward

through the layer and there are no lateral connections. The equations governing the

information processing and the training for the Helmholtz Machine are described in

chapter 2. A 3-neuron layer was selected to demonstrate the required connections and

layout arrangement. Larger networks can be built by extending this paradigm.

3.6.1. 	Block diagram

Fig. 26 above presents a block diagram showing the connections for the sigmoid and

oscillator modules in a 3-neuron layer circuit. Since this was the type of layer chosen

for silicon prototyping, bypass connections to the inputs of the sigmoid and oscillator

77

I
	

Introduction

modules that accommodate the testing of the circuit are also shown. These

connections would not be required past the prototyping stage, reducing complexity.

U

Fig 32: Block diagram of a 3-neuron layer. The output of the synapse matrix, which
is not shown here, feeds to the left of the diagram. Bypass pins permit access
to the input of the sigmoid and oscillator modules for prototyping purposes.
The number indices indicate individual neurons.

The synapse matrix accommodating the input stage for the three neurons is not

shown in the diagram (it is described in fig. 13 in section 3.2.2). It provides the input

to the sigmoid modules depicted in the fig. 17 diagram.

3.6.2. 	Layout

While the synapse circuit modules that form the input stage of each module are

contained within the synapse matrix, the sigmoid and oscillator circuits are grouped

together in pairs. This is a natural separation that increases layout efficiency and also

78

Chapter 3 	 Stochastic Hardware

obstructs noise propagation: the circuit producing most of the noise is the digital

Schmitt trigger within the oscillator, which must be kept separate from the sensitive

inputs of the synapse.

The twelve synapse circuit modules can be distinguished in the large synapse matrix

at the top of the layout diagram. They are arranged in three columns and four rows.

Each column comprises the synapse input stage of a neuron, while each row

represents the synaptic connections originating from a previous neuron's output. As a

result, the state pulse input is applied to each row, whereas the sum of the activation

function is collected from each column and transferred to the associated sigmoid

module. The three sigmoid-oscillator module conglomerates, one for each neuron

within the layer, can be seen at the bottom of the layout diagram.

Fig. 33: Layout diagram of a hardware implementation of a 3-neuron network layer.
The synapse matrix block at the top of the image houses 12 synapse circuit
modules, 4for each neuron input stage.

79

Chavter] 	 Introduction

The twelve-cell synapse matrix uses approximately 1.28mm2 ± 5% of silicon in a

2tm 2-metal CMOS process. The sigmoid module occupies approximately 0.02mm2

± 5% of silicon in the same process and the oscillator 0.12mm2 ± 5%. Including a

small interconnection overhead, the entire 3-neuron layer occupies approximately

1.70mm2 ± 5%. It is worth pointing out that in the matrix arrangement that was

utilised the overhead scales proportionately as the number of neurons increases (i.e.

the overhead does not increase faster than the number of neurons.)

3.7. 	Conclusions

This chapter presented three modular circuit designs that can be used to assemble a

neuron for a stochastic artificial neural network. The neuron can facilitate binary

state stochastic algorithms such as the Helmholtz Machine and can also accept

analogue input for analogue ones such as the Product of Experts and Continuous

Restricted Boltzmann Machine. Apart from meeting the design requirements, the

circuits were built with a focus on scalability, low power consumption and

minimisation of silicon area requirements. Table 5 summarises the silicon footprint

size for each of the aforementioned circuit modules, as well as that of a typical 4-

synapse neuron used for the probabilistic neural computing experiments described in

chapter 5.

The synapse circuit is designed with distributed capacitance within each module, so

that a self-normalising input stage can be assembled for each neuron by simply tying

the output of each module together. This permits easy connectivity of several synapse

modules within a matrix with limited overhead in complexity and silicon area. The

sigmoid module has a low transistor count and a current mode output, which enables

the transfer of the signal without degradation due to resistance in the signal lines.'

The oscillator module permits the conversion of the signal to a mark-to-period pulse

Note that this feature was not optimally exploited in the prototype layout presented in section 3.6.2.

80

Chapter 3 	 Stochastic Hardware

modulation that can be randomly sampled to extract the binary state of the neuron

from the probability output of the sigmoid module. Individual oscillator modules

have to be noise-shielded from each other so that they do not synchronise, as that

would have undesirable effects to the function of the stochastic algorithm.

Circuit module name 	I Area (nun)

Synapse 0.097

3x4 synapse matrix 1.278

Sigmnoid 0.024

Oscillator (modified version) 0.120

Single-synapse neuron 0.241

4-synapse neuron 26 0.570

Table 5: Silicon area occupied by various circuit modules. The measurements were
extracted from layout plots and include the guard rings, power supply
metal lines and —in the case of the synapse matrix- interface overhead..

Finally, a prototype network layer of three neurons was presented to demonstrate the

functionality of the neuron circuit interconnected within a network. It incorporates

twelve synapse modules into a matrix, forming the input stage circuits for the three

neurons, as well as the associated sigmoid and oscillator circuit modules.

26 including associated silicon area overhead (as deduced from the synapse matrix)

81

This chapter describes the testing of individual circuit modules implemented on the

two hardware prototype silicon chips. In this chapter we cover the aims of prototype

design and testing, the software and hardware setup, measurements and experiments

performed, and discuss conclusions obtained from measurements and experimental

results.

4.1. 	Introduction

Two application specific integrated circuit (ASIC) chips were built to serve as

prototypes for the proposed hardware. The first prototype, codenamed PRONEO

(PRObabilistic NEural Oscillator chip) aimed at the evaluation of the probabilistic

neural oscillator proposed in the previous chapter and investigation into oscillator

inter-locking. The second prototype, codenamed STONECORPS (STOchastic NEural

COmputation Research Prototype System) implemented a 4x3 dual-layer HM to

serve as a hardware platform for experiments in probabilistic neural computation.

Both chips were tested using wire-wrap printed circuit boards (PCBs) which carried

the supporting electronics and interface sockets. A PC running the National

Instruments Labview software assisted with the hardware testing of STONECORPS

described in this chapter. The same software-hardware setup was used to facilitate

the probabilistic computing experiments described in chapter 5.

4.2. 	PRONEO: the first prototype chip

Due to the central role of stochasticity for the proposed artificial neuron circuit

architecture, the focus of PRONEO was the design and testing of the stochastic

83

Chapter] 	 Introduction

oscillator module. More specifically the 110 characteristics of the oscillator were

determined and the propensity for two or more oscillators to phase-lock when

operating simultaneously was investigated.

Three oscillators and an op-amp were included in PRONEO, the op-amp intended to

facilitate testing and not for research purposes. An initial circuit draft was simulated

and later laid out using computer aided design (CAD) tools for very large scale

integration (VLSI) circuit design. The prototype application specific integrated

circuit (ASIC) was fabricated using a 2.4j.tm complementary metal oxide

semiconductor (CMOS) manufacturing process. The silicon was delivered in 28-pin

dual-in-line (DIL) packages and a wire-wrap printed circuit board (PCB) was built to

test it. Testing revealed a propensity for all oscillators to phase-lock and the most

likely path of communication to be the power supply nodes. The findings led to

design improvements in the oscillator circuit as well as peripheral circuits in the

succeeding prototype, the STONECORPS chip.

4.2.1. 	Design Specifications

Accepting input from the output of the sigmoid circuit module, the oscillator circuit

had to satisfy the following design requirements:

approximate a linear I/O curve (to translate but not distort the input signal)

an output that is amenable to sampling at random time intervals

low power consumption, a small silicon footprint and a scaleable architecture
to allow replication of large numbers of neurons on the same chip

maintain the circuit modules' flexibility so that their use can be extended for
other probabilistic ANN architectures apart from the HM

As mentioned in section 3.4.1, phase-locking of oscillators is highly undesirable

since it would prohibit simultaneous random sampling of all neurons. In order to

prevent locking, measures had to be built into the design in order to reduce noise

84

Chapter 4 	 Hardware testing

levels, block noise propagation pathways and shield sensitive power supply and input

lines.

The chosen oscillator circuit architecture has already been described in section 3.4.

The schematic diagram in fig. 34 depicts how simultaneous sampling of uncorrelated

oscillator output works. Three such oscillators were placed on PRONEO to

investigate any propensity to phase-lock during simultaneous operation.

0

-
: 0

sample

T 085

z_[~D_

069

050

Fig 34: Simultaneous random sampling of uncorrelated oscillator outputs. It is
evident wkv oscillator locking is undesirable: sampling the output ofphase-
locked oscillators at the beginning of a new period would almost certainly
result in a logical HIGH in all samples

An operational amplifier was also included in the design (fig. 35) to facilitate testing

by providing buffered access from the outside. A minor design error, however left

one of the amplifier's power supplies disconnected rendering it useless. This did not

pose a major problem due to redundancy of measurement pathways integrated into

the prototype. During testing the malfunctioning operational amplifier was therefore

bypassed and is not mentioned further in this chapter.

85

I 	 Introduction

4.2.2. 	Schematics, layout and PCB design

A Spice model of the 14-transistor oscillator circuit module was designed and

simulated using the HSPICE analogue circuit simulator. Three instances of the

module, a stand-alone instance of the Schmitt trigger component and an operational

amplifier (for testing purposes) were laid out on a 10mm2 dye (approximately

31000100pm).

Current 	(.'init
controlled 	controlled
oscillator 	oscillator

Schrnt.t
triCuiTeut 	 .I er

oiiti'o11t
oci11ator 	Op-amp

Fig. 35: Layout plot (a) and explanatory diagram (b) of the core area of PRONEO.
The silicon dye measured 3. 1x3. 1mm (approximately 10m2 including 24
I/O pads) and was fabricated using a 2.4gm, 2-metal, 2-poly 5V CMOS
process.

The chip was fabricated using a 2,4pm double metal, double polysilicon 5V CMOS

process offered by the company Alcatel. Fabrication of the application specific

integrated circuit (ASIC) was undertaken by the company Mietec in Belgium and

funded by the European Union's Europractice initiative.

The silicon die was delivered in 28-pin DIL packages and tested on a wire-wrap

printed circuit board that was built for this purpose. The board was powered by two

5V DC voltage generators, one each for the analogue and digital power supply trees

on the chip. To discourage noise propagation through the board's power supply

nodes, they were decoupled in three places:

Chapter 4 	 Hardware testing

on the chip pin using 1 pF ceramic capacitors

at the point where the voltage generator lines connected to the board using

large electrolytic 1000pF capacitors

at an intermediate point of each node using lOpF electrolytic capacitors

The power supplies and reference input nodes were decoupled, as there were no fast-

changing input signal nodes on this chip. Naturally, output nodes were not decoupled

as they all carried fast pulse-stream signals.

4.2.3. 	ASIC testing

Two experiments were performed using the PRONEO prototype. The first one

focused on determining the I/O characteristic curve of the oscillator circuit module,

three instances of which were included on the prototype ASIC. The second

experiment focused on investigating whether the oscillators had a propensity to lock

and evaluate the extent to which design measures taken to reduce this possibility

were effective.

4.2.3.1. Oscillator J//Q

For the first experiment, straightforward measurements were taken from each

oscillator to build the characteristic I/O curve. The chip power was supplied by two

desktop voltage supplies, one for each of the analogue and digital power supply trees

which had deliberately been kept separate. Each pair of power supply nodes was

connected to 5V and a common ground established. Reference voltage Vref was set at

2.5V and supplied to all three oscillators via a common pin, while a different pin

supplied the same voltage to the isolated Schmitt trigger circuit module. Input

currents were separate for each oscillator instance and ranged from 0 to 1 OOp.A,

resulting in output frequencies between 0 and 10MHz.

87

Chavter 1 	 Introduction

The output characteristic curve of the oscillator module was thus determined and is

discussed in section 4.2.4. The results from different instances of the oscillator

module were consistent within error bar limits. The hysteretic loop of the Schmitt

trigger was determined by operating the module with a triangular voltage wave and is

depicted in fig. 25, section 3.4.2.2

4.2.3.2. Oscillator phase locking

The second experiment focused on any possible propensity for the oscillators to lock

during simultaneous operation. Phase locking is undesirable as it would lead to

skewing the value of probability during random sampling to select the next neuronal

state, therefore breaking down the function of the HM algorithm. The measures to

prevent noise propagating through the chip and enabling the oscillators to

communicate and therefore lock are listed in section 3.4.3.

All oscillators were run simultaneously as well as in pairs and their output square

waves were observed simultaneously on an oscilloscope. Once locking was

established, observations between oscillators were compared to establish whether

physical proximity on silicon was relevant, an effect that would provide evidence

about substrate-currents being the dominant noise propagation path. Measurements

and observations were taken from all power supply nodes to investigate whether they

too acted as propagation pathways. Separate readings were taken with the

oscilloscope probes connected and disconnected 27 (to all but one of the oscillators) in

order to establish whether electro-magnetic (EM) antenna transmissions provided the

critical noise propagation path. Finally, an attempt was made to induce phase

locking by running the separate Schmitt trigger and driving it with triangular wave

voltage from a signal generator, simulating its function within the oscillator circuit:

27 By taking advantage of inductive coupling, disconnected oscilloscope probes could still provide a
weak but identifiable signal when the tip of the probe was approached to the ASIC pin connected to
the oscillator output. It was thus possible to observe the frequency and phase of the signal on that pin
without turning the probe itself into a transmission antenna and providing yet another path for noise
propagation among oscillators.

88

Chapter 4 	 Hardware testing

this helped clarify suspicions that this circuit was the strongest source of the noise

causing the phase-locking.

4.2.4. 	Results

As discussed earlier in section 4.2.1, the oscillator circuit on the PRONEO chip was

designed to approximate a linear output response. Algorithmically speaking the

circuit translates the current output of the sigmoid circuit module into a PWM signal

form amenable to random sampling, in order to facilitate the selection of the

succeeding neuronal state according to a proportional probability.

4.2.4.1. I/O response

Fig. 36 shows the output response of the oscillator circuit. Given the design

restrictions on the size of the silicon footprint, noise generation, noise immunity and

power consumption, the compromise in graph linearity was considered satisfactory.

The modifications to the oscillator circuit implemented on STONECORPS therefore

focused on noise generation and immunity, rather than output linearity.

Input current I Output 	MPR output 	Linearity

0-10.tA 0-2.5 MHz 98% Acceptable

0-50iA 0-5 MHz 83% Acceptable

0-100pA 0-6.5 MHz 91% Good

0-200pA 0-10 MHz 94% Good

Table 6: Operating frequency range, linearity and output dynamic range of the
prototype oscillator at different input current ranges. Any clipping of the
output range occurred almost exclusively at the top end (fg. 36).

The circuit was demonstrated to oscillate stably with current inputs up to 200.tA and

a frequency of 10MHz. Linearity was found to improve with higher current inputs,

however as the pulse length would increase to lengths close to those of the period

Chapter] 	 Introduction

(high MPR) the oscillation would become unstable and the oscillator would jump to

100% MPR value —a logical HIGH at the output.

100

80

60

20

Oscillator 1 Vout
0

0
	

0.2 	 0.4 	 0.6 	 0.8 	 1

lini'hef ratio

Fig. 36: Mark to period ratio of an oscillator square wave voltage output from the
PRONEO chip. No other oscillators on the chip were operating while the
measurements were taken. The input current ranged 0-67uA, Vrej2.5V

4.2.4.2. Phase locking

The phase-locking experiments using the PRONEO chip focused on determining the

strongest noise-generating part of the oscillator circuit as well as the dominant noise

propagation path. The Schmitt trigger contained in the oscillator module was the

natural suspect for noise generation and had already been surrounded by double

guard rings -one of the standard analogue type, the other against substrate currents-

during the layout design phase. The suspected noise propagation paths were the

power supply nodes and substrate currents. Noise coupling between oscilloscope

connected to oscillator outputs was another possible noise propagation path during

circuit testing, which had to be taken into account and eliminated in order to maintain

the reliability of the results.

Chapter 4 	 Hardware testing

Experimenting with more than one oscillator in operation revealed a propensity for

the square output waveforms to shift (edge-jitter) and phase-lock when they were at

similar or harmonic frequencies. The lock was immediate and would even resist to a

certain extent any attempts to shift the output by varying the input currents. The

extent of the shift was found to be quite significant: up to 40% of the MPR output

range at higher input current values.

Due to the built-in dependency between the output square wave MPR and its

frequency (fig. 44) this shift also translated into a skewing of the probabilities during

random sampling. As discussed in section 4.2.1, this effect is highly undesirable as it

leads to a breakdown of the HM algorithm. Further experimentation showed that this

phenomenon was prevalent in all input current and output frequency ranges and was

particularly exacerbated at the upper end of either range: the oscillator was tested

with input currents up to 200pA, or frequencies up to 10MHz.

Having established that phase locking occurs, the focus of further experiments

shifted towards the identification of the dominant noise generation circuit and noise

propagation path. The use of a single oscilloscope probe at a time, picking up a weak

signal through inductive coupling close to the oscillator output pin ruled out the

possibility that the noise primarily propagated through coupling between

oscilloscope probes acting as antennae: the phase locking persisted nonetheless.

Attention thus shifted on substrate currents and the physical proximity between

various oscillators on the same silicon substrate. The distance among different

instances of the oscillator module was deliberately kept different on the chip and the

orientation of the modules was selected in such a way so as to further vary the

distance between the Schmitt trigger circuits within them. The oscillators' propensity

for locking with each other did not vary in accordance to their proximity on the

silicon substrate, thus failing to provide evidence that substrate currents were the

dominant noise propagation pathway.

In the next experiment, each oscillator was operated in tandem with an isolated

instance of the Schmitt trigger component. The Schmitt trigger was supplied with a

0l

Chapter 1 	 Introduction

saw-tooth voltage wave from an external signal generator applied to its input. The

frequency and MPR (leading edge to period) of the saw-tooth was swept in order to

simulate the capacitor voltage connected to the Schmitt trigger within the oscillator

circuit. Locking was easily recreated in this way and each of the three oscillators on

the chip were observed to lock to the Schmitt trigger by shifting their output phase

and frequency. The amount of shifting again varied up to 40% of the output MPR

range at higher input current values. The substrate distance between the Schmitt

trigger and each of the oscillators was not observed to affect the propensity towards

phase locking.

The experimental evidence to this point indicated the Schmitt trigger as the dominant

noise-generating part of the circuit. Currents running through the substrate and

antenna EM coupling between oscilloscope probes were ruled out as likely

candidates for the dominant noise propagation path. Focus thus shifted to the power

supply nodes as possible paths. The isolated Schmitt trigger was operated with a saw-

tooth input and oscilloscope readings from the analogue ground, analogue Vdd and

current input nodes of various oscillators. All readings clearly indicated consistent

voltage ringing synchronous to the switching of the Schmitt trigger. The maximum

peak-to-peak voltage (V) of the ringing was lOOmV for both the analogue and

digital high power supply nodes and as much as 1269mV for the input current nodes.

This result was clearly unexpected: it had been foreseen that the Schmitt trigger

would be the dominant noise-generating circuit and had thus been connected to the

separate digital power supply tree. It was thus expected to see noise propagating to

the digital power supply nodes but not an equal amount of noise to be present in the

analogue power supply nodes as well. Further investigation revealed that the

proprietary I/O pads that had been provided by the fabrication company's

(Mietec/Alcatel) design library connected all pads using common power supply

nodes around the pad ring. These power supply pads were the only available option

in the design library, their circuit contents being invisible during the design phase

(most likely for intellectual property protection reasons). Their contents did

subsequently become apparent in a large layout printed plot returned by the

92

Chapter 4 	 Hardware testing

fabrication plant along with the chip samples, thus leading to theresolution of the

noise propagation mystery.

4.2.5. Conclusions

The Schmitt trigger and oscillator circuits implemented on the PRONEO chip were

successfully tested and characterised. Significantly, it was determined that the

oscillator circuit performed in a satisfactory fashion when operating in isolation,

while inter-locking among oscillators operating concurrently remained a problem.

More specifically:

the oscillator circuits demonstrated satisfactory linearity (i.e. <6% deviation)

in the 0-70pA input range

this level of linearity was rated acceptable, given other imperfections in

signal processing as it propagates through the neuron (e.g. an imperfect

sigmoidal activation function)

it was found that when the oscillator operated at the upper end of its output

dynamic range it had a tendency to lock to 5V prematurely; this clipping of

the output range significantly decreased at lower input currents

at lower input currents oscillator linearity deteriorates, but the trade-off is a

larger output dynamic range, decreased power consumption and less noise

generation (less propensity for phase inter-locking among oscillators)

an investigation into oscillator phase inter-locking revealed it to be a problem

-despite some counter noise propagation measures implemented on the chip-

even at the lower end of the input current range

as expected, the Schmitt trigger was identified as the dominant noise-

generating circuit; some further investigative experimentation provided

93

Chapter 1 	 Introduction

strong indications that the pad-ring power supply lines were the dominant

noise propagation pathway

Given the design target for a small silicon footprint and power consumption, it was

decided that improvements to the oscillator circuit should also focus on preserving

both of these resources, in order to maintain scalability of the neurons. O-lOj.tA was

deemed to be the best input current range for the operation of the oscillator,

sacrificing some linearity as a trade-off for lower noise generation, lower power

consumption and a wider output dynamic range.

Based on these experimental conclusions from the PRONEO chip, the planned

modifications to the topology of the oscillator circuit for the next prototype focused

on prevention of oscillator phase inter-locking. The aim was to decrease the amount

of power supply noise generated by the digital section of the oscillator and increase

the noise immunity of the sensitive analogue inputs.

Some further modifications were planned both on-chip and on the testing PCB in

order to impede noise propagation among oscillators. Having established the pad-

ring power supply lines as the dominant noise propagation pathway, a pair of

custom-designed power supply pads was planned to separate the analogue and core

power supply nodes (the Mietec standard I/O cell library did not provide this

facility.) Design improvements for the testing board were also planned, such as a

grounding copper plate and more thorough decoupling of the power supply nodes.

4.3. 	STONECORPS: the second prototype chip

The central aim of the STONECORPS chip was to characterise the circuit modules

described in chapter 3, to investigate the propensity of the modified oscillators to

phase-lock with one another, to evaluate the capacity of the hardware neurons to

perform stochastic neural computation, and to draw comparative conclusions about

the performance of the hardware with respect to an equivalent software simulation.

Chapter 4 	 Hardware testing

Experiments and conclusions relating to the two former goals are described later in

this chapter, while all work relating to the latter two is described in the chapter 5.

4.3.1. 	Design specifications & schematics

STONECORPS included stand-alone instances of the components of a neuron -

synapse input stage, sigmoid activation function and output stage oscillator, 3

neurons and a synapse matrix that enabled the implementation of a 40 layer

probabilistic neural network (fig. 37). The network of artificial neurons was designed

to be fully functional and capable of performing probabilistic computation. It was

also designed to be trained by the Wake-Sleep HM algorithm using the support of a

lab bench PC for weight storage and random sampling.

One of the four inputs of neuronal state inputs was used as a bias in order to simplify

the hardware implementation of the algorithm. As a result, the network that was

implemented by the hardware on STONECORPS was a 3x3 neuron HM probabilistic

network.

The design of the synapse, sigmoid and oscillator modules is discussed in chapter 3.

Based on the conclusions drawn from experiments with the PRONEO chip, the

design of the oscillator was modified to reduce —and ideally eliminate at lower

frequencies- its propensity to lock with other oscillators. The two modifications

implemented during the schematic and simulation stage were the addition of an extra

transistor and the decoupling of the input current mirrors. The first was aimed at

reducing noise generation by redirecting current drain from the oscillator capacitor;

the second was at increasing the noise immunity of oscillators. Fig. 22 depicts the

modified circuit, transistors MDee, MPDec and Mfr being the additions.

Overall the chip was designed to contain a large number of new, previously untested

circuits. It therefore had to facilitate the testing and evaluation of each circuit

individually as well as the neurons and synapse matrix in the form of a functioning

probabilistic neural network. For this reason isolated instances of each component of

Chapter 1 	 Introduction

the neuron circuit were included in the core and large numbers of I/O pads were used

to test them thoroughly and facilitate troubleshooting. In addition three neurons and a

synapse matrix were implemented, capable of interfacing to four distinct inputs. The

random sampling, weight storage and modification functions were planned for

implementation on the supporting PC and thus not included on silicon.

output I 	 output 2 	 output 3

input I 	 input 2 	 input 3 	bias

Fig. 37: A network slice with 12 synaptic interconnections implemented on
STONECORPS. The synapse matrix is capable of implementing a 4x3
layer probabilistic network, in this case the 411 input neuron being used as
a bias.

In the end STONECORPS required 60 110 pads and it became clear early in the

design process that the chip would have a pad-limited silicon footprint. The large

number of pads, however, was a choice made to facilitate prototype testing; the

majority of the pads are not required for the function of the probabilistic network,

particularly if the weights from a pre-trained version of the network were to be

downloaded to the chip via a more space-efficient serial interface.

Chapter 4 	 Hardware testing

4.3.2. Layout

In order to facilitate circuit improvements and comparisons the same fabrication

process that was used for the PRONEO chip was also used for STONECORPS: a

2.4jni, 2-metal, 2-polysilicon CMOS fabrication process offered by Mietec

(Belgium) via the Europractice initiative.

(b)

Fig 38: Layout plot of STONECORPS (a) and explanatory diagram (b). The chip
contains a network of 3 stochastic neurons (A, B, C) accepting input from 4
input neurons via a 3x4 matrix of synapse circuits (D). Neuron sub-circuits
(E, F, G) were laid out separately. Separate power supplies pins (H, I) were
used for the analogue and digital sections, as well as for the core and pad-
ring areas.

The new circuits included in this prototype and the improvements to the oscillators

implemented in the previous one are mentioned in section 4.3.1 above and are

discussed at length in section 3.4.3. In addition to the changes implemented during

the schematic and simulation stage of the design process, the following measures

were taken during the layout phase to reduce the generation, propagation and

vulnerability of the circuits to noise:

97

Chapter 1 	 Introduction

separate power supply pins were used for the core and pad-ring; this option
was not offered using the standard I/O library cells, so the existing power
supply pads had to be modified

the analogue and digital I/O pads were placed on opposite sides of the chip

the trunk lines of all power supply trees were widened in order to reduce
resistance between the core and I/O pads and thus discourage noise
propagation

all power supply trees were decoupled using large capacitor-connected
transistors

The entire silicon dye measured approximately 5100x5100im including the 60 I/O

cell pad-ring and is depicted in fig. 38 along with an explanatory diagram. Due to the

large number of testing pins the chip was clearly pad-limited in silicon footprint size.

Of the 60 I/O pads 25 connect to nodes necessary for testing and troubleshooting and

could be omitted for future implementations of a tested network. Another 12 pins

represent a parallel bus connecting to the 3x4 module synapse matrix; in pre-trained

network implementations these pins could also be omitted. Given the explosion in

silicon area usage with increasing complexity of the synapse matrix, it is anticipated

that if the chip were to move out of the prototyping stage and the number of neurons

increased it would become core-limited.

4.3.3. The STONECORPS testing board

A 23cm x 23cm wire-wrap PCB was designed to facilitate the testing of

STONECORPS. The top surface of the board was covered by a thin copper grounding

plane, while the bottom surface was covered almost entirely by soldering copper

pads around each pre-drilled hole. As can be seen in the diagram in fig. 39 the main

features of the developed testing board comprise the following:

a PGA 84 zero insertion force (ZIF) chip socket, carrying the STONECORPS
chip which implemented the stochastic neural hardware

Chapter 4 	 Hardware testing

two 50-pin and one 100-pin I/O sockets to interface with the National
Instruments PCI-6025 and PCI-6071E I/O boards fitted inside the PC used
during testing

two Analog Devices 8-bit 7228LN DACs, to enable analogue weight inputs
programmable from the PC I/O boards

two Phillips FIEF4035BP triple 2-channel analogue multiplexers, to facilitate
analogue pulse input from the PC I/O boards

13 LM334Z adjustable current sources, to provide reference current inputs

oO
C)

	

I 	 C)

7
A 	 0

II. 	 Li

	

DI 	 0

	

H 	 0

	

_j 	 a
00000 000000

Fig 39: Picture (a) and explanatory diagram (b) showing the 2" prototype chip (A)
plugged into the testing board. Also shown in the diagram is the supporting
chip set: the AD7228LN 8-bit DACs (B) and HEF4035BP multiplexers (C).
The two 50-pin (D) and one 100-pin (E) connectors were used to interface
the board with the multi I/O PCI cards installed in the laboratory PC used
for the testing.

For simplicity the list above deliberately omits passive components or minor support

elements such as potentiometers, switches and spacers which can be seen in fig. 39.

Chapter 1 	 Introduction

4.3.4. 	Neuron sub-circuit characterisation

The first target for testing the STONECORPS chip was the verification and

characterisation of each neuron component circuit module. Instances of each

component were placed on the chip for this purpose, physically separate on the

silicon substrate from the neural network intended for the higher level probabilistic

computing experiments.

4.3.4.1. The synapse circuit module

The synapse circuit was tested in charging and discharging phases, with all reference

voltages and currents kept equal, a state voltage pulse of a given length and a

variable weight input. In the charging phase the capacitor in the circuit was initialised

to ground and the output observed through a source-follower circuit. This output

stage was necessary so as not to distort the measurement and was also used in the

comparative analogue simulation in order to maintain consistency.

The I/O readings taken from the circuit, vis a vis readings obtained from an

equivalent simulation are presented in fig. 40 below. References were set at V0=3V,

Itota11.6p.A, 	 VjnlV (the latter is a reference voltage used for the source

follower).

Chapter 4 	 Hardware testing

3.5

3

2.5

OEM

V s 	2

>
1.5

rk

0.5

0

/

/
/

/ /
/

/
/

/ / /*

/
simulation
lab results

3 	3.2 	3.4 	3.6 	3.8 	4 	4.2 	4.4 	4.6

Vwt(V)

Fig. 40: Simulation vs. hardware testing I/O response of the synapse circuit
charging The output is measured through an auxiliary source-follower
circuit, which was also included in the simulation. The synaptic capacitor
was initialised at OVand the state node pulsed for 5sec.

The circuit was also characterised during the discharging phase. For this purpose the

synaptic capacitor was initialised at 5V (appearing as 3.5V through the source

follower). These readings vis a vis the equivalent readings obtained from analogue

simulation are presented in fig. 41. References were set at the same levels as for the

charging phase: V 0=3V, Ii=l.6.tA, Is j=1.O.tA, Vf=1V.

101

er 1

3.5

3

2.5

>

1.5

0.5

simulation
lab results

Introduction

Fig. 41

I 	 . 	 I

3.4 	3.2 	3 	2.8 	2.6 	2.4 	2.2 	2 	1.8

Vwt(V)

Simulation vs. hardware testing I/O response of the synapse circuit
discharging. The output is measured through an auxiliary source-follower
circuit, which was also included in the simulation. The synaptic capacitor
was initialised at 5V (appearing less through the source follower) and the
state node pulsed for 5psec.

The value of the zero-weight threshold was accurately predicted by the analogue

simulation measurements. Still, some deviation between hardware and simulation

measurements can be seen in both synapse characterisation graphs. This came as no

surprise, as fabrication imprecisions are particularly pertinent to double-polysilicon

capacitors in CMOS chips. In addition, these particular simulations were performed

only to obtain some straightforward, indicative comparative results and did not

include extracted parasitic capacitances from the layout mask.

4.3.4.2. The sigmoid circuit module

The sigmoid is the intermediate circuit stage in the hardware neuron, implementing

the activation function within the HM algorithm. The stand-alone instance of the

sigmoid circuit module was tested by varying the input voltage and measuring the

output current as a voltage drop across a resistor on the testing PCB. Testing was

straightforward and the results of the measurements vis a vis those from an

102

Chapter 4 	 Hardware testing

equivalent analogue simulation are presented in fig. 42 below. The references were

set at Isj=60i.!A and V=2.00V.

45

40

35

30

25

20

15

10

5

0

lab results -
simulation --

0 	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5

Vin (V)

Fig. 42. Output response of the sigmoid circuit module in simulation and during
hardware testing of STONECORPS.

The consistency of the hardware measurements with those predicted by analogue

simulation were considered to be satisfactory for the purposes of the intended

function of the circuit. The smoothness of the sigmoid curve was also an issue of

interest, as sharp edges and corners would certainly hinder and could potentially

destroy the capacity of the neuron to learn from training data. Variations between the

two graphs are attributed to imprecisions in the amount of current sunk by the central

current mirror of the circuit (i.e. slight transistor mismatch due to process variations)

It is worth noting at this stage that a minor design bug was discovered in the sigmoid

module, making calibration by adjustment of the reference current and voltage

necessary. More specifically, the design bug brought the circuit out of the intended

operating range with respect to the preceding synapse and succeeding oscillator

circuits. The issue was remedied by adjusting the reference voltage and current,

103

Chapter] 	 Introduction

sacrificing power efficiency to gain calibration consistency. This design issue

affected all sigmoid modules on the prototype chip, as all were replicas of an original

design archetype.

4.3.5. 	Oscillator locking investigation

The next testing target for STONECORPS was the evaluation of design measures

taken to discourage the propensity of the oscillators to lock, an effect that was

observed during testing of PRONEO. Such design methodologies were implemented

during the design of both the chip and the testing board.

The oscillators were initially operated in the O-lOiiA input range, accepting a trade-

off of linearity for better dynamic output range and lower noise levels. This resulted

in all oscillators operating at frequencies below 3MHz, depending on the 'inhiref

current input ratio (fig. 44). One oscilloscope probe was connected to an oscillator

output pin at a time to ensure that the probes did not act as antennae and couple noise

among themselves. The waveforms of the remaining oscillators were observed on the

same oscilloscope by approaching the probe tip a few millimetres close to the output

pin without touching: the waveform produced by inductive coupling was weak (a

few tens of mV) but phase and frequency could be clearly observed.

With only one of the oscillators running, the MPR of its output voltage square

waveform was plotted against the input current ratio (fig. 43). It was immediately

observed that the oscillator exhibited a more stable output waveform with less

variation in MPR, phase and frequency when compared to the oscillators on the

PRONEO prototype.

104

Chapter 4 	 Hardware testing

100

80

I

I oscillator
2 oscillator
3 oscillators

0.2 	 0.4 	 0.6 	 0.8

lin/Iref

Fig. 43: MPR plots from the output square waveform of an oscillator on
STONECORPS. The output is not significantly affected by the concurrent
operation of another two oscillators on the chip. The input current range
was 0-10uA.

Most significantly, the output MPR results were not affected when a second and a

third oscillator were turned on, their operating frequencies swept throughout the

output frequency range (fig. 43). These were verified using both observations on the

oscilloscope screen and plotting of the output square wave MPR. In the first case

none of the frequency and phase "jumps" were observed, in the second no distortions

of the I/O curve were present.

The experiment was repeated with oscilloscope probes connected to all four of the

oscillator outputs and it was observed that locking would occur as soon as more than

one oscillator was turned on. The output pads contained a triple inverter buffer,

combined with an inverter boosting the oscillation between the oscillator circuit and

the pad. The added capacitance due to the presence of the oscilloscope probes did not

therefore directly affect the oscillator circuit, as was planned during the design stage.

20

0

Chapter] 	 Introduction

I 	 I 	 I 	 I
1 oscillator
2 oscillators -
3 oscillators ----------- 	 ...I

L\I
/

7 	 1\ T

V

0 	 0.2 	0.4 	0.6 	0.8 	 1

lin/Iref

Fig. 44: Output frequency plots of an oscillator on the STONECORPS chip
operating at the O-]OuA input current range. The output is not significantly
affected by the concurrent operation of another two oscillators on the chip.
At higher input current ranges the oscillator becomes more linear and this
graph becomes symmetrical around the Iu/IrejO. 5 axis.

Locking was observed even when just two oscillators were operating with

oscilloscope probes attached, firmly establishing that probe-coupling was an active

noise propagation path. With this fact in mind, the oscillators were tested at higher

operating frequencies and it was discovered that locking could be avoided so long as

the operating frequency did not exceed 5MHz (input current range up to 501iA).

Above that frequency locking started affecting the oscillator output, and above 7MHz

it became immediate and inevitable even if no oscilloscope probe was attached.

4.3.6. 	Individual neuron results

The next step in the testing of STONECORPS involved the characterisation and

calibration of on-chip neurons. Each neuron on STONECORPS can interface with the

outputs of four neurons in a preceding layer; therefore it consists of 4 synapse, 1

sigmoid (activation function) and 1 oscillator circuit modules. Characterisation of the

3.5

3

2.5

2

1.5

0.5

0

106

Chapter 4 	 Hardware testing

synapse, sigmoid and oscillator circuit modules has been discussed in chapter 3 as

well as in section 4.2 above.

4.3.6.1. Neuron simulations

Each neuron I/O response was measured individually and the results compared to

each other as well as to simulations that had been performed with Spectre -an

analogue simulator similar to SPICE- with reference voltage and current inputs

equivalent to the corresponding hardware experiments. The term 'equivalent' is used

to account for minor calibrations that were required during experimentation and are

discussed in succeeding sections, as well as the lower precision with which common

reference currents were distributed around the chip as compared to the simulated

circuits.

Two simulations were performed, one with the synapse capacitor initialised to

ground voltage and charging, the other with the capacitor initialised at the high rail

voltage (5V). The results are presented in fig. 45 and fig. 46: the MPR of the

oscillator output square wave is plotted against a common input weight voltage

supplied to all four synapse modules.

The reference voltage used for the synapse circuit module was V 0 = 3.00V, for the

sigmoid Vref = 2.35V and for the oscillator Vref = 2.5V. The V 	input was supplied

with a train of 64 1 .tsec voltage pulses. The reference currents for each synapse

circuit module were set at Ijj 	ipA and 'tothi = 1.6i.A, for the sigmoid Ijj =

lOO.OpA and for the oscillator 1,,f = 3.5jiA. Each neuron on STONECORPS

comprised four synapse, a sigrnoid and an oscillator circuit module, hence the two

former reference currents (Link, Ith1) were quadrupled to supply all associated

synapse modules.

107

Chapter 1 	 Introduction

100

90

80

70
0

60

50
U)
0.
.2 40

30

20

10

0 	 I 	 I

2.30 	2.50 	2.70 	2.90 	3.10 	3.30 	3.50 	3.70 	3.90 	4.10 	4.30

weight (V)

Fig 45: Simulated neuron charging from empty The state input was a train of 64
1sec voltage pulses. No x-error bars are present due to the precision of the
simulated weight voltage input; y-error bars are the result of IvIPR
measurement uncertainty during the sweeping of the weight voltage input.

Examination of the simulation results revealed no surprises: the multiplication of the

synapse, projected onto the sigmoid curve implemented by the activation function

circuit module and filtered through the linear function imposed by the oscillator

output stage, was expected to have the roughly shape depicted in figures 45 and 46.

The zero weight threshold —the voltage value for which the weight causes roughly no

change in synaptic excitement- was found to be Vth6 = 3.23 ± 0.05V for the charging

simulation and Vthdh = 3.27 ± 0.05V for the discharging one. The sweep of the

voltage weight that was required in the first simulation for the neuron to charge its

synapses was 0.57 ± 0. 1V, while to discharge the synapses in the second simulation

the sweep spanned 0.40 ± 0. 1V. This latter asymmetry is an artefact of the hardware

implementation and does not exist in the mathematics underlying the original HM

network algorithm. As will be discussed later, this asymmetry did not prevent

network training during probabilistic learning experiments, though it is believed that

it impeded and delayed it -particularly in the earlier stages of learning.

108

Chapter 4 	 Hardware testing

100

90

80

70
0

60

ci) 50
0.
0 40

CO 30

20

10

0 4-

3.70

3.50 	 3.30 	 3.10 	 2.90 	 2.70

weight (V)

2.50

Fig 46: Simulated neuron discharging from full. The state input was a train of 64
1sec voltage pulses. No x-error bars are present due to the precision of the
simulated weight voltage input; y-error bars are the result of AIPR
measurement uncertainty during the sweeping of the weight voltage input.

4.3.62. Hardware neuron characterisation

Hardware measurements were taken from all neurons on STONECORPS in

conditions analogous to those used for the simulations described in section 4.3.6.1

above. The power supply voltage was set at 5V for the entire chip, the reference

voltage for the synapse circuit module at V 0 3.00 ± 0.01 V, for the sigmoid Vief =

2.35 ± 0.01 V and for the oscillator Vf = 2.5 ± 0.01 V. The V input was supplied

with a train of 64 voltage pulses, each 1 ± 0.01 iisec long. The reference currents for

each synapse circuit module were set at 'sh= 1 ± 0.01 iiA and I= 1.6 ± 0.01 pA,

for the sigmoid Jj = 100.0 + 0.1 pA and for the oscillator 'ref = 3.5 ± 0.01 pA. Each

neuron comprises four synapse, one sigmoid and one oscillator circuit modules,

while several neurons were operated at the same time: the actual external setting of

common reference currents were therefore calculated by multiplying the

aforementioned current values with the number of sub-neuron circuit modules being

supplied.

109

3.10 	3.30 	3.50 	3.70 	3.90 	4.10 	4.30 	4.50

weight (V)

-20
2.90

120

100

80
0

.60
0

a)

0- 40
0

(0 E 20

0

Chapter 1 	 Introduction

The results of a hardware run in which the neuron is charging from empty can be

seen in fig. 47 below. The zero weight threshold for all three neurons was found to be

3.16 ± 0.05 V, a value within the measurement uncertainty of the error bars when

compared to the simulation readings. Variation of the threshold value among neurons

was also well within error bar limits.

Fig 47: 5-run average for 3 hardware neurons charging from empty. No calibration
adjustments were made to the neurons prior to obtaining these readings.

The output dynamic range, however, differed significantly from the expected values

as well as from simulation readings. Neurons 2 and 3 appeared to have the upper end

of their output dynamic range trimmed, in such a way that output never exceeded

85%. Neuron 1 achieved 100% MPR on its output but also displayed an

unexpectedly broad input range with respect to Vweight when compared to the other

two neurons (fig. 47).

Differences in neuron behaviour had been anticipated and the circuit had been

designed to accommodate detailed testing and adjustment of reference values and

voltages to compensate. In this case the evidence pointed at the distribution of the

Ij reference current among the sigmoid modules within each neuron: the reduction

110

Chapter 4 	 Hardware testing

of the input and output dynamic ranges and the higher slope of the sigmoid curves

produced by neurons 2 & 3 when compared to that of neuron 1 (fig. 47).

Examination of the relevant node in the layout graph also provided some more

evidence also in accordance with the graphs. The sigmoid module within neuron 1

was receiving a larger current than those delivered to the other two neurons, therefore

making calibration necessary.

Finally, fabrication imprecisions are also contributing to variation in the output

characteristics among neurons. Variations in the dimensions and therefore

capacitance of the double-polysilicon capacitors present in the synapse circuits of

each neuron are particularly prominent in CMOS chip fabrication. This prototype

was fabricated using a relatively coarse process (2.4pm minimum feature size) which

exacerbates such problems. The large area covered by the synapse matrix further

hinders any attempts to minimise such process variations by keeping synaptic

capacitors physically close on the silicon substrate.

4.3.6.3. Neuron Calibration

The ability to adjust the neurons in order to uniformly calibrate their outputs had

been built into the hardware from the early stages of the design phase. In order to

make the circuit realistic from a practical point of view, and to maintain a reasonable

number of I/O pads, most reference voltage and current supply was delivered

through nodes common to all neurons.

Another issue that affected decisions with respect to calibration was whether

perfectly tweaked neuronal circuits are the most desirable objective for

experimentation in probabilistic computing. Having incorporated both algorithmic

and analogue circuit simulations into earlier phases of this work, there was already

some information available about the function of the hardware neurons prior to final

hardware testing. It is believed that such real world scenarios provide the best

opportunities to investigate the amenability of the hardware for probabilistic neural

computing, as well as the tolerances of the particular algorithm to imprecisions

111

120

100

80
0

60
0

ci)
- 40

0

Ca E 20

I 	 Introduction

arising from noise, manufacturing variability, imprecise references and power

supplies, etc.

Given the aforementioned considerations, it was decided that the difference in

dynamic range be remedied in the least intrusive way possible. Since it was not

possible to supply the sigmoid modules of neurons 2 & 3 with a larger reference

current Isinic without also affecting neuron 1, it was decided to divert more of the

current down the output leg of the sigmoid. This was achieved by widening the state

pulse Vste or -more precisely- increasing the number of 1 tisec clicks in the pulse

train from 64 to 74.

-20

2.90 3.10 	3.30 	3.50 	3.70 	3.90 	4.10 	4.30 	4.50

weight (V)

Fig. 48: 5-run averages for 3 neurons charging from empty (neurons 2 & 3 adjusted
to match neuron]) along with simulated neuron results

The results from the experiment described in section 4.3.6.2 with the new calibration

can be seen in fig. 48 above. In this graph the neuron 1 and simulation curves have

been obtained with the same experimental parameters described in the previous

section, while neurons 2 and 3 were recalibrated as described in the previous

112

3.70 	3.50 	3.30 	3.10 	2.90 	2.70 	2.50 	2.30

weight (V)

-20
3.90

120

100

80

4; 60
0

w
- 40

0

Ct
E 20

0

Chapter 4 	 Hardware testing

paragraph. A similar graph obtained while the neurons are discharging from a full

synaptic capacitor load is presented in fig. 49 below.

Fig 49: 5-run averages for 3 neurons discharging from full (neurons 2 & 3 adjusted
to match neuron 1) along with simulated neuron results

This arrangement was a half-way solution that did not attempt to artificially

completely eliminate all dissimilarities among the I/O graphs of different neurons,

while it fixed the output dynamic range problem that could potentially prevent

network training altogether. The slight variation in the slope and input dynamic range

of the I/O curves still remained and —as will be demonstrated later in this thesis- it

did not preclude training. It is believed that this difference, however, delayed and

impeded learning with respect to the software algorithm operating under ideal

mathematical precision in simulation.

4.3.64. Power consumption

As was discussed in earlier sections, neuron components had been designed with

scalability in mind. The most prominent design priorities towards this goal involved

113

Chapter 1 	 Introduction

restricting the size of the silicon footprint and power consumption. This was

naturally weighed against other underlying design costs, particularly noise immunity

and —for prototyping stages only- accessibility to the circuits for testing purposes.

Circuit module 	I Power consumption (4u W)

Synapse 29±2

Sigmoid 510± 15

Oscillator 60-315 ± 4

4-synapse neuron 599 - 854 ± 23

Table 7: Average power consumption of various neuron components on
STONECORPS. Elimination of a minor design bug in the sigmoid would
lead to afive-fold decrease in power consumption.

Table 7 above lists measurements taken from distinct instances of all neuron circuit

components during testing of STONECORPS. The power consumption of the

synapse and sigmoid modules was constant as predicted during the design and

simulation stages, while the oscillator's varied with output frequency.

It is worth noting that the larger than intended power consumption of the sigmoid

module -and hence the neuron- is due primarily to a calibration incompatibility

between circuit modules caused by a minor design error (for details see section

4.3.4.2 above). Some calibration adjustments became therefore necessary, involving

an increase of the reference current and consequent increase of power consumption.

The topology and architecture of the circuit permit the operation of the sigmoid at

about 1 00W which was the original design target: the isolated operation of the

sigmoid in that input current range has been verified successfully both in simulation

(section 3.3.2) and on the hardware bench.

114

Chapter 4 	 Hardware testing

4.3.7. Conclusions

Testing of the individual neuron circuit components on STONECORPS revealed that

the circuits generally functioned as expected, with respect to the design requirements

and analogue simulations. Naturally some points were identified in the circuits that

could benefit from design modifications and improvements in future work

The synapse circuits demonstrated an accurate zero-weight threshold and acceptable

linearity; the output of the synapse circuit is superimposed on the sigmoid module

output curve, so precise linearity was not a top priority in this design. Of more

concern was some measured asymmetry of the dynamic range of the synapse in the

charging phase with respect to the same circuit during the discharging phase. Testing

of the combined neuron circuits revealed that this characteristic was consistent

among neurons and —as is seen by the measurements in the next chapter- was

overcome by the algorithm. It is believed, however, that it was one of the factors that

impeded training to a certain extent and account for the measured differences

between the performance of the HM network as software simulation as compared to

the prototype hardware.

The stand-alone sigmoid circuit also behaved as expected. There was an imbalance in

the output dynamic range of the neurons implemented on chip: this was traced to

slight mismatching of the synaptic capacitors (a known fabrication issue with CMOS

chips) and the imbalanced delivery of the reference current 'ref to the sigmoid

modules among different neurons.

It was established that the modifications in the design of the oscillators, the power

supply nodes and the pad-ring eliminated oscillator locking on STONECORPS,

provided the oscillators did not operate in frequencies higher than 5MHz.

The problem involving noise coupling through oscilloscope probes during testing

had an impact on the planning of further experiments using the complete on chip

neural network. Due to the fact that the random sampling function was implemented

off-chip, initial plans required multiple oscilloscope probes to be attached to the PCB

115

Chapter 1 	 Introduction

in order to simultaneously poll all oscillators (the oscilloscope operated via a GPIB

link to the PC on the laboratory test bench). Having completed and dissociated the

oscillator locking investigation from the investigation of the function of the circuits

as a hardware implementation of a probabilistic ANN, it was decided that oscillators

would be operated one by one to avoid probe-to-probe coupling. This however was a

compromise made based on the limitations of the testing instruments and equipment

and is not a limitation of the prototype hardware: if the sampling of the oscillators is

done on-chip the -at a frequency much lower than that of the oscillation frequency- it

is expected that the problem would be removed altogether.

The following list summarises imperfections found in the hardware and ranks them

by reverse severity:

trimmed neuron output dynamic range, variable among different neurons

asymmetrical dynamic range for the synapse while charging as compared to

the discharging phase

measurement imprecision for both inbound and outbound values

imperfect sigmoidal characteristic of the sigmoid module

imperfect oscillator output dynamic range

f, 	imperfect oscillator linearity

oscillator approaches zero output but never completely shuts down

oscillators locking when oscilloscope probes attached to output

(a) had been anticipated and was traced to fabrication variations of the synaptic

capacitors and imbalanced distribution of the 'ref reference current to the sigmoid

modules within each module. It was remedied by calibrating the neurons using the

length of the synaptic pulse and the voltage reference Vref in the sigmoid module.

116

Chapter 4 	 Hardware testing

was anticipated based on prior analogue simulations of the synapse module;

hardware testing verified that it is a consistent character among neurons. It is

therefore accepted as an imperfection that the HM algorithm will have to overcome,

possibly having an impedance effect on learning performance. It does not affect

network performance of a trained network as synaptic weight connections

compensate for it.

is an issue pertaining to the testing equipment. It generally involved error below

5% and is reflected in the error bars on the graphs presented in this chapter. It

becomes more significant in the probabilistic neural computation experiments

described in the next chapter, since there is an information feedback loop: oscillator

output measurements taken by the PC from the PCB via the two multi-I/O adapters,

while weights and state pulses are loaded onto the PCB from the PC via the same

adapters and two on-board DACs

(d), (e), (f) and (g) are not considered to be of substantial importance, particularly

since the HM neural algorithm is expected to adjust to small imperfections; every

effort was made to minimise their impact nonetheless. More specifically, it has been

found in the past that deviation from the ideal sigmoidal shape of the sigmoid

function does not have decisively catastrophic results on learning, while

experimentation with various smooth activation functions is an area of active ANN

research [39]. A minor design bug in the sigmoid module had caused some initial

miscalibration with respect to the preceding and succeeding modules: it was

remedied by adjusting the Vref and Isink reference nodes.

The input range of the oscillator was selected to maximise the output dynamic range

without causing locking, instabilities, or excessive power consumption at the higher

frequency end of the spectrum. The oscillator does not completely shut down, but its

MPR approaches so close to zero that for all practical purposes this imperfection

should not pose any major hurdles to the HM neural algorithm.

Finally (h) was remedied by avoiding having multiple oscilloscope probes attached

to oscillator probes when taking measurements. Having established that the design

117

Chapter] 	 Introduction

modifications to the oscillator implemented during the design of STONECORPS

eliminated oscillator locking altogether (see section 4.3.5), it became feasible to take

oscillator measurements one at a time, temporarily shutting down all other oscillators

on the chip. In this way the oscillator probes could stay attached, since the GPIB-

controlled oscilloscope was an important part of the testing setup in order to perform

the probabilistic neural computing experiments.

118

This chapter contains the descriptions of probabilistic computation experiments

performed using STONECORPS. It describes the software and hardware setup used

to implement the HM ANN algorithm, the vector data sets used to train it,

comparative training results between a software simulation and the hardware, as well

as relevant conclusions.

5.1. 	Introduction

The experiments described in this chapter revolve around the comparison between

the performance of a 3x3 HM network running in software simulation and on the

prototype hardware. The planned list of objectives for these experiments can be

concisely listed as follows:

Choose points of merit to evaluate learning with respect to the set of data
vectors used for training

Determine if either the hardware network or an equivalent software
simulation require protection against over-training effects, then choose the
optimum number of training epochs to terminate the training process

Using the software simulation, investigate the learning capabilities of an HM
with the particular size and topology (i.e. training using all data sets)

Perform the same experiments using the hardware model

Investigate the effectiveness of training with respect to particular sets of
training vectors and draw comparative conclusions about the software and
hardware HM model limitations

Focus on differences in performance and associate with the associated
training data sets, draw conclusions

119

Chapter] 	 Introduction

To simplify the testing setup and ensure similar conditions for the comparative

experiments, the software simulation was developed using the same software

package used to implement the backbone of the testing of the hardware.

5.2. 	The experimental setup

A software simulation matching the probabilistic neural network implemented on

STONECORPS was built using the National Instruments Labview software running

on a Windows platform on the testing laboratory PC. The algorithm running as a

purely software simulation was presented with a variety of data sets containing

training vector data and the weight matrices were modified according to the HM

training rule. The ability of the fantasy HM network to recreate the probability

distributions inherent in the data was then evaluated by calculating the average

probability deviation (APD) among all possible vectors -this was possible due to the

small size of the network. By freezing training after a set number of training epochs

and calculating the value of APD it was possible to build an image of the

effectiveness of training. This evaluation method also permitted the selection of a

reasonable limit for the maximum number of training epochs before over-training

started having degenerative effects.

The process was then repeated, this time with the probabilistic computing performed

by the network implemented on STONECORPS. The PC running Labview was used

for weight storage and random sampling, interfacing with the prototype's PCB via D-

type parallel connectors and a GPIB-controlled oscilloscope.

A model of the network was built using the measurement and automation software

package called Labview, version 6.0.2 (National Instruments, USA). The primary

functions of this model were:

to serve as a software simulation of a functioning Helmholtz Machine, using
the Wake-Sleep algorithm to train itself and provide data for comparison with
similar experiments performed with the prototype hardware

120

Chapter 5 	 Probabilistic Neural Computation

to complement the hardware network by providing those components of the
algorithm that were not implemented on hardware (i.e. weight storage and
modification, random sampling)

The particular software package was selected for a variety of reasons. It contained a

built-in higher level programming language which naturally accommodated modular

design, had software driver support for the wildly variable mix of testing instruments

and permitted the development of drivers for chipsets for which there were none

available by the manufacturers28.

The collection of measurement instruments and intermediate interface adapters

consisted of two multi-I/O data acquisition cards, a GPIB adapter, a 50M1-Iz digital

oscilloscope, two DACs and several multiplexers. The complete software and

hardware setup built around the STONECORPS PCB is depicted in fig. 50. It is

worth noting that the diagram only demonstrates connectivity: it does not specify

signal and control lines and only depicts components controlled by the hardware

testing PC.

As mentioned earlier in section 4.3.1, STONECORPS was designed to implement a

4x3 HM ANN using the hardware-testing PC to support the weight storage and

modification functions. In order to make accurate comparisons the software

simulation also implemented an identical model, using one of the four input neurons

as a bias (essentially implementing a 3x3 topology). Taking advantage of the

modular nature of the Labview programming environment, the software algorithm

was built in nested modules. During hardware testing all modules that represented

functions which overlapped with those of the prototype CMOS chip were replaced

by the hardware testing setup.

28 This was the case for the two AD7228LN DACs (Analog Devices, USA), so a driver was developed
to program them. A higher-level interface driver, coordinating the individual communication protocol
drivers for each instrument, interfaced the PC with the STONECORPS PCB.

121

Chapter 1 	 Introduction

software
hardware

PC

board

Fig. 50: Diagram depicting the software and hardware setup used to test
STONECORPS. Only components29 controlled by the PC are shown on the
prototype test board.

Several graphical user interface (GUI) screens were also developed using Labview.

Apart from allowing control of the HM algorithm they also facilitated data I/O

29 Components whose label begins with AD are manufactured by Analog Devices Inc, USA; HP by
Hewlett-Packard Inc, USA; MS by Microsoft Inc, USA; and NI by National Instruments Inc, USA.

122

Chapter 5 	 Probabilistic Neural -Computation

functions to the hard drive and included line graph and bar chart windows to help

visualise the results during and following network training.

5.3. 	The testing automation software

Labview is marketed as a "measurement & automation" software package: it is

essentially a seamless bundle of a modular, higher level programming language,

some inter-locking GUI objects and graphs, and drivers to interface the PC to its

environment -in our case through an oscilloscope and multi 110 adapters installed on

the PCI bus. More facilities are offered, such as a scripting interface for the C

programming language, the ability to build standalone applications, web interfaces

and so on, but the aforementioned features were the ones that ultimately influenced

its selection as testing software for STONECORPS.

The design of the software simulation was built with Labview in a modular fashion,

namely dissecting the neuron into the same components that existed in the hardware

and implementing the algorithm within each one. In this way the replacement of the

simulation by hardware processing could be done on a one-to-one basis, simplifying

the process and making software-hardware performance comparisons more

transparent.

Naturally, the software-simulated HM topology was an exact match of the one

implemented on STONECORPS. It is a dual layer network, with 4 input and 3 output

neurons (40), each one fully interconnected with all neurons on the other layer. One

of the four input neurons was set to be always on, serving as a bias and simplifying

the implementation of the algorithm on the hardware side —this was also reflected in

the software simulation. The same network with a different synaptic weight matrix

was used as the top-down generative network of the HM machine, matching the dual

use of the neurons on hardware. A graphics picture of the network architecture can be

seen on the top right corner of fig. 51.

123

Chapter 1 	 Introduction

The software HM simulation interfaces with the PC hard disk in order to read the

training set data, save the synaptic weight matrices, a snapshot of the final weight

values, record the calculated APD throughout training and a set of fantasy vectors

generated by the training vector.

The simulation also interfaces with the user via two GUI screens shown in figs. 51

and 52. It receives the weight limit, learning rate, weight randomisation

(initialisation) constant, epoch plot resolution and file paths as parameters for the

simulation, while it also extracts and displays the training epoch limit from the

training file. The first GUI screen (fig. 51) serves to display plots of weight evolution

and the calculated APD, both updated live as training takes place. The latter is

calculated by freezing training and using the latest snapshot of the generative weight

matrix to produce fantasy vectors30: the fantasy vector probability distributions are in

turn compared to those of the training set to produce the current APD value.

The purpose of the second GUI screen (fig. 52) is to assist in visualising the

probability distributions of data vectors contained in the training set, as a side-by-

side comparison with the equivalent vectors generated by the trained generative

network once training is complete. The white number fields on the left side of the

screen contain the number and percentage of occurrences of each vector in each set.

The bar chart on the right side of the figure is a visual representation of the desirable

distribution for each vector (solid bar) contrasted to the equivalent distribution of that

vector in the generated fantasy set (outline bar).

The Labview software was finally interfaced with the PCB used for testing

STONECORPS. For this purpose the software simulation of the HM was replaced by

processing on the developed hardware, with the exception of weight storage and

modification that were still performed on the PC. For this reason the software

communicated with the PCB via two multi I/O boards and a GPIB-controlled

30 The concept of fantasy vectors in the context of the HM was introduced and explained earlier in
section 2.3

126

Chapter .5 	 Probabilistic Neural Computation

oscilloscope. A more detailed description of this software-hardware setup used for

testing the prototype ASIC can be found in the previous section and is shown in the

schematic diagram of fig. 18.

5.4. 	The training sets

The training sets were generated by a simple random vector generator that was

developed using the Labview programming language. They all contained equal

overall distributions of several vectors, each consisting of 3-bit binary digits. The

order of vectors in each set was mixed randomly to avoid bottlenecks of variation

during training. The choice of equal, randomly mixed vector distributions was a

choice made to facilitate and clarify the analysis of later training comparisons

between simulation and hardware.

Training
Description Number

List of vectors vector set of vectors

A
one vector

3
bit on [1,0,0], [0,1,0], [0,0,1]

B complementary
4 [1,0,0], [1,1,0], [0,1,1], [0,0,1] pairs

C all possible
8 [0,0,0], [0,0,1], [0,1,0], [0,1,1],

vectors [1,0,0], [1,0,1], [1,1,0], [1,1,1]

D complementary
4 [0,0,0], [0,1,0], [1,0,1], [1,1,1] pairs

E
one vector

3
bit off [1,0,1], [1,1,0], [0,1,1]

F uniform vectors 2 [0,0,0], [1,1,1]

G
complementary . 2 [0,1,0], [1,0,1] pair

Table 8: Listing of the seven 3-bit vector sets used to train the 3x3 HM stochastic
neural network for the comparative software and hardware experiments.
Vector sets are from here on referred to according to the label in the left
column.

127

Chanter 1 	 Introduction

Table 8 above lists all training sets, their contents, number of distinct vectors

contained and a short description. Seven different combinations of all eight possible

3-bit vectors were used to form the training sets used for the probabilistic learning

experiments. The population and identity of distinct vectors appearing in each

training set varied, while several patterns were selected for each set in order to

establish whether and how they affected the learning capabilities of either the

software simulation or hardware HM network implementations.

There are no excessively complicated patterns to choose from when one has to pick

3-bit binary vector. Some sets were selected to contain complementary vector pairs,

their addition yielding the unity vector [1,1,1]. Some others contained symmetrical

vectors, that is vectors that can be generated by bit-shifting any other vector in the

set. A set was put together simply by varying the zero and unity vectors, it was

ensured that all vectors appeared in at least two sets and that the distinct vector

population varied among sets. In the beginning each training set was generated with

a content of 2000 vectors, a number that was later optimised to avoid overtraining

effects.

5.5. 	Optimising the number of training epochs

As in most ANN experiments, care is necessary in choosing the number of training

epochs to avoid over-training effects. This is particularly important in the case of the

planned experiments, as we wish to compare HM training results from 'ideal'

software simulation conditions with those from hardware that is known to operate in

a noisy, non-ideal environment.

Using results from preliminary training runs, the number of training epochs for each

training set (see table 8) was selected for use in the subsequent learning experiments.

During these preliminary runs the value of APD was monitored and a limit on the

number of training epochs was selected if necessary: this limit was set after the APD

128

Chapter 5 	 Probabilistic Neural Computation

value reached the global minimum and before over-training started to gradually raise

its value31. The limits were set at a compromise value between the ideal setting for

the software and the hardware networks. The compromise limit values for each

training vector set are listed in the second column of table 10 in section 5.7.

From a strict point of view, truly unsupervised learning should entail a scenario in

which the ANN can hold on to its optimum training configuration without outside

intervention. This however is affected by the size and topology of the network vis a

vis the size and complexity of the training set data, as well as the capabilities of the

training algorithm: unsupervised algorithms for neural learning are, after all the focus

of a currently lively research field for information theorists. The scope of this work,

however focuses on the software-hardware comparison given the capabilities of the

Wake-Sleep algorithm and the constraints imposed by the hardware prototyping. It

was therefore accepted that restricting the number of training epochs was a necessary

step that had to be taken in order to draw clearer conclusions from this comparison.

5.5.1. 	Evaluating the progress of learning

A method used commonly in the literature to evaluate the effectiveness of learning in

a HM network is the measurement of the Helmholtz Free Energy (HFE) [28], a term

borrowed from statistical mechanics and used to describe a measure of the statistical

inference performed by the recognition network of the HM.

While the HFE has certainly been used successfully to evaluate the effectiveness of

learning in HM networks, the small network involved in the planned comparative

permits us to use a simpler and faster measure. The fantasy vectors produced at the

bottom of the generative network during the sleep phase (see section 2.3) provide a

useful evaluation tool for the effectiveness of training at any given point of the

31 This limit on the number of training epochs was only imposed if deemed necessary. It proved
necessary for some training sets, useful in others and unnecessary only in the case of training set G.

129

Chapter 1 	 Introduction

training process. Moreover, in a small 3x3 neuron network it is feasible to evaluate

all possible fantasy vector distributions.

The percentage distribution of each vector present in the generative network's

fantasies can thus be compared to the corresponding desired distribution in the

training set, and the absolute value of the difference between the two distributions

can serve as a partial snapshot of the network's learning progress. This calculation

can be performed for all fantasy vectors and the results averaged over the number of

vectors. The final result would then be the absolute value of a single number

representative of the divergence between the training set data from the generative

network's fantasies, and by extension also representative of the effectiveness of the

learning progress.

A step-by-step example helps clarify the process:

The 3x3 network is trained using the Wake-Sleep algorithm and a data set of

1000 binary vectors, each containing 3 digits.

20 epochs into the training process, training is temporarily frozen in order to

evaluate progress to that point. The process will be frozen in a similar fashion

after 40, 60, 80, etc, epochs for the evaluation to be repeated.

The inputs of the top layer of neurons in the generative network are biased to

a binary 1 and the latest snapshot of the generative weights is used to

generate fantasy vectors at the bottom of the network.

The percentage probability of each possible 3-digit binary vector appearing in

the set of fantasies is thus determined empirically, using 1000 (or more)

repetitions of step 3. The sum of all probabilities should, of course, be 100%.

The absolute value of the difference in probability for each vector to appear

in the training or fantasy vector sets is calculated. For instance vector [1,0,1]

may appear in the training set with a probability of 25% and in the fantasy

130

Chapter 5 	 Probabilistic Neural Computation

vector set with a probability of 32%. The absolute value of the probability

difference is therefore registered as 7%.

6. The sum of the probability differences for each vector is calculated and

averaged over the number of all possible vectors. In the case of a 3x3

network, for instance, this average probability deviation (APD) from the

training set would be calculated as follows:

2

where Ap stands for the absolute value of the difference in probability distributions

described in step 5, its subscript denoting the vector to which this difference refers.

The calculated APD therefore becomes a measure of the gradual convergence of the

representations of the recognition and generative network of the HM as expressed

through the set of recognition and generative weights, respectively.

As the training process progresses, one expects to see a gradual reduction of the

value of APD as it approaches a lower limit, which represents the network's

capabilities given its topology, training algorithm and training data. Again depending

on the characteristics of the network and training set the value of APD might remain

close to this minimum, oscillate around it or —undesirably- start rising. In the two

latter cases the network is suffering from over-training effects.

Over-training effects can therefore be avoided by restricting the number of training

epochs, following an initial investigative run for an arbitrarily large number of

epochs. During this first run the APD value can be assessed at set intervals and the

optimum number of epochs determined. In the case of our experiments such

preliminary runs were performed before each experiment and in the case of multiple

global minima in the APD curve the one occurring the earliest in the training process

was always selected.

131

Chapter 1 	 Introduction

5.5.2. 	Learning parameters

A total of 100 runs, each consisting of 2000 training epochs, were performed to

obtain the average curve of the APD value for each experiment, using first the

software (fig. 53) and then the prototype hardware (fig. 54) HM networks. For runs

using both networks the learning rate was set to Aw = 0. 15, and initial weights were

randomised symmetrically around 0 by ±0.5. Upper and lower limits were set for the

weights at +15 and -15 respectively.

Weight storage and modification for the hardware experiments were performed

within the supporting Labview algorithm running on the supporting PC. The weights

were stored and modified as discrete arithmetic values, identically to the software

experiments. For the neural calculations, however, the arithmetic values had to be

translated to equivalent weights and a software module was developed to perform

this translation. For a given set of reference voltages, currents and length of neuronal

state pulse, a certain weight voltage value causes a 50% MPR voltage at the output of

the neuron (i.e. randomly sampling the output of the neuron there is an equal

probability of finding it on or off.) This voltage is therefore equivalent to a weight

value w=0 because according to the Wake-Sleep algorithm probability formula for a

neuron j, the probability that this neuron will turn on is p(j=l) = 1I1+e 0 = 0.50.

Similarly, for w=3 the arithmetic version of the algorithm yields a probability of 0.95

and the equivalent weight voltage was determined. Using these two voltages the

weight translation software of the algorithm was calibrated.

5.5.3. 	Preliminary HM performance evaluation: software
simulation

The preliminary experiments associated with the graphs in fig. 53 indicated that the

software HM simulation was overall capable of successfully reducing the APD in all

training vector sets. In the case of vector set C the network started in a state that

enabled it to generate fantasies that already closely resembled the distributions

contained in its training set, thus generating an APD graph that was rising. This was

132

Chapter 5 	 Probabilistic Neural-Computation- euralComputation

due due to the fact that this training set contained all possible vectors (table 8) in equal

distributions of 12.5%. The network started with all weights initialised to 0 +0.5,

which resulted in a nearly symmetrical weight array that was very likely to produce

the desirable fantasy vector distributions from the beginning. For this reason and for

this vector set only, the initial weight randomisation margin was slightly increased to

+2.5, to demonstrate that the network is capable of decreasing the APD in this set as

well. Still, the network reached the global minimum of the APD value very quickly

(50 epochs) in this case with respect to the other experiments, hence the rising line

graph for training set C in fig. 53.

20 —.--vector set A
—.---vectorset B

18 vector setC
- 	- vector set D

16 — .—vectoretE
— ..—vectorsetF

j5 14 \\ vector set G

I::

8

0 I 	 I 	 I 	 I

0 200 400 600 800 1000 1200 1400 1600 1800 2000

epochs

Fig. 53: Average deviation from target (training set) distributions during software
simulations of the 3x3 model of the Helmholtz Machine. A total of 100 2000-
epoch training runs were used to produce the average for each curve.

In all cases except training set G the software HIM network showed some

overtraining effects. As expected, learning enabled the HM to generate fantasy

vectors increasingly more similar to the training set. However after reaching an

initial global minimum in most cases the APD tended to slightly rise, demonstrating

the over-training effect that this preliminary set of experiments were designed to

133

Chapter 1 	 Introduction

detect and measure. In the case of training set G the network was capable of

repeatedly reducing the value of APD following any rise after reaching local minima,

leading to oscillations with a vague period of less than 150 epochs and slightly

decreasing the global minimum reached after each oscillation. This was due to the

simplicity of the training set, which contained only two complementary training

vectors (i.e. their sum yields [1,1,1], see table 8).

Overall the software HM network had an easier task reducing the value of APD in

the fantasies that it generated when learning from those training sets that contained a

smaller number of vectors, as well as when the vectors were complementary in pairs.

It is important to note at this point that the reduction of APD is indicative of the

effectiveness of learning but does not clearly define a limit beyond which the

network is more likely to generate undesirable distributions than the ones described

in its training set. This happens for the reason that the distribution error measured by

the APD can occasionally be spread among the undesirable distributions without

letting either of them become 'stronger' than any of the desirable ones, whereas in

other cases —at similar APD levels- this might not turn out to be the case. For this

reason a second set of experiments was performed using the trained networks, this

time explicitly looking at how frequently the trained network generated fantasies in

which the desirable vector distributions were clearly stronger than the remaining

ones. More on these experiments is presented later in this chapter (section 5.7).

5.5.4. 	Preliminary liNt performance evaluation: hardware
simulation

Parallel experiments conducted with the prototype hardware yielded similar results

albeit at higher APD values (fig. 54). In order to facilitate comparisons with the

results obtained from experiments with the software model all learning parameters

for the network were kept the same -as described in section 5.5.2 above.

134

Chapter 5 	 Probabilistic Neural Computation

As was the case for the software HM simulation, the hardware runs indicated that the

network was capable of reducing the value of APD when training using any of the

sets. It also displayed the same over-training effects after reaching a global APD

minimum when training with all sets except G. This set produced the lowest APD

values from all and formed the basis for the only experiment in which the hardware

network could retain its training despite the possibility of over-training as learning

continued; it is believed that the extensive oscillations observed in fig. 54 are the

manifestation of such a balance between over-training effects and corrective action

by the Wake-Sleep algorithm.

—.--vector set A
—.--vector set

vector set C
vector set D
vectorset E
vector set F

------ vector - ----vector set G

4

2

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

epochs

Fig. 54: Average deviation from target (training set) distributions during training of
the hardware 3x3 model of the Helmholtz Machine. A total of 100 2000-
epoch training runs were used to produce the average for each curve.

In the case of training set C the network learnt rather quickly, given the nature of the

training set data, which was very close to the untrained network's fantasies before

any training took place. This issue is discussed in more detail in section 5.6.3, along

with some corrective action taken in the setup of the subsequent experiment using

this training set.

20

18

16

if 14

135

Chapter] 	 Introduction

5.5.5. Conclusions

The primary objectives of these preliminary experiments was to demonstrate the

capability of both the software and hardware networks to reduce the value of the

APD during training, as well as to discover the optimum number of training epochs

for each vector set. Both objectives were met forming the basis for the remaining

experiments.

Overall it was observed that in both the software and hardware experiments the I-TM

networks were capable of reducing the value of APD in the fantasies they generated.

In both scenarios the networks learnt the quickest from training set C. When training

with set G both were able to reduce the APD to the lowest value compared with the

remaining training sets. The ideal mathematics contained in the software network's

algorithm enabled it to clearly achieve a higher overall reduction of the APD value in

each experiment, as compared with the hardware HM network and everything else

kept equal. Past the point of over-training, the software network performed slightly

better in keeping the value of APD low for training sets B and F, an effect that was

not observed with the hardware network. This was attributed to the fact that both

sets, like training set (I contained vectors that were low in number, formed

complementary pairs or both.

Finally it is significant that contrary to the results obtained from the software HM

simulation (fig. 53), the hardware network did not produce radically lower APD

minima when training with sets B and F. While the two sets did lead to the lowest

APD minimum values from all sets bar C and (the difference between these

minima and the remaining ones was less significant. The most likely explanation is

associated with the slight impairment suffered by the hardware network due to the

imprecision of the stochastic computation being performed on hardware (analogue

noise, imprecise representation of the sigmoid activation function, imperfect output

oscillator linearity, etc).

136

Chapter 5 	 Probabilistic Neural Computation

5.6. 	Comparative training experiments

Having chosen the optimum number of training epochs for each training set

experimentation proceeded with comparative experiments between software and

hardware.

In addition to determining the minimum APD value after learning from a particular

training set, associations between this value and characteristic patterns in the training

data were investigated. The first pattern, henceforth referred to as symmetry, is

defined as the characteristic of a set in which shifting the bits of any one vector can

generate all remaining ones. Complementarily is defined as a characteristic pattern in

which all vectors in the set can be assigned to groups, within which the collective

sum of all vectors is [1,1,1]; for instance vectors [0,1,0] and [1,0,1] form a

complementary pair. Finally, the total population of distinct vectors appearing in a

training set was also taken into account.

5.6.1. 	Training set

The first training set contained three 3-digit binary vectors: [0,0,1], [0,1,0], [1,0,0]. It

was hoped that the symmetry inherent in these vectors would facilitate the learning

process. Indeed, the network learned from the vector data as can be seen by the

reduction of the value of APD (fig. 55). The small size of the HM network, however,

as well as the lack of an intermediate layer impeded learning and the results from this

experiment did not produce the lower APD values generated by most other training

vector sets. This comparative conclusion held true for results obtained from

experiments using both the software and hardware network.

The selected optimum number of epochs was 1750, mostly affected by the

performance of the hardware network: the software HM had reached its minimum at

about 650 epochs. As expected, the software network was capable of reducing the

value of APD the most (fig. 55), taking advantage of the precision of the arithmetic

in the neural computation formulae as well as the lack of hardware imprecision and

137

14

4

FA

Chapter 1 	 Introduction

noise. The APD minima reached by the two networks were 7.86 at 700 epochs for the

software model and 10.13 at 1350 epochs, a difference of 2.27.

0 	200 	400 	000 	800 	1000 	1200 	1400 	1000 	100

epach

Fig. 55: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 1750-epoch training runs, using training vector set A.

5.6.2. 	Training set B

Training set B comprised four vectors each containing three binary digits: [1,0,0],

[1,1,0], [0,1,1], [0,0,1]. Despite the fact that this set contained a relatively large

number of vectors, it was one of the three training sets in which the software

algorithm was able to reduce the APD to the lowest values (figs. 53, 56). The vectors

in the set formed complementary pairs, but results from training set D cast doubt on

any associations between this characteristic and the relatively effective learning of

both networks from this set. This difference in learning relative to the other sets is

less dramatic for the hardware network (figs. 54, 56), a result that can be attributed to

the lack of mathematical precision in the computation performed by the hardware.

138

14

12

2

Chapter 5 	 Probabilistic Neural Computation

The selected optimum number of epochs for the comparative experiment was 900

which was a compromise between the performance of the software and hardware

networks: in the preliminary experiment the software HM had reached its minimum

at about 650 epochs and the hardware in 1100. As expected, the software network

was capable of reducing the value of APD the most (fig. 56), which can be explained

by the superior precision and lack of hardware noise when the algorithmic

computation takes place within a software simulation. The APD minima reached by

the two networks were 4.75 at 650 epochs for the software model and 8.94 at 900

epochs, a difference of 4.19.

1O 	20) 	XICI 	4:6 	t00 	8O0 	70 	600 	900 	1000

epochs

Fig. 56: Average deviation from the targeted distribution during training of the
software and hardware JIM models. Each curve represents the average of
100 900-epoch training runs, using training vector set B.

5.6.3. 	Training set C

Training set C contained all possible binary 3-digit combinations in 8 vectors

appearing with equal probability of 12.5%: [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0],

[1,0,1], [1,1,0], [1,1,1]. Due to the small initial weight randomisation at the

139

16

14

12

10

2

0

Chapter 1 	 Introduction

beginning of each experiment, the network started in a state that enabled it to

produce fantasies with distributions very close to the desirable results immediately,

before any training took place (figs. 53, 54). To make experimentation more

interesting the weight randomisation constant was therefore increased from 0.5

(which was used for all other equivalent experiments) to 2.5. Still, the network was

capable of reaching its APD value rather quickly: in 80 epochs for both networks.

0 	10 	20 	.0 	40 	50 	60 	70 	 90 	100
apccs

Fig. 57: Average deviation from the targeted distribution during training of the
software and hardware JIM models. Each curve represents the average of
100 100-epoch training runs, using training vector set C.

A relatively small number of 100 epochs was therefore selected as the optimum for

training both networks using this vector set. As expected, the software network

achieved the reduction of the value of APD to the lowest minimum value (fig. 57),

taking advantage of the precision of the arithmetic in the neural computation

formulae, the lower precision and inherent noise of the hardware computation. The

APD minima reached by the two networks were 4.37 at 80 epochs for the software

model and 5.99 also at 80 epochs, a difference of 1.62. This set enabled both

networks to lower the value of APD (as calculated from their post-training fantasy

140

12

2

Chapter 5 	 Probabilistic Neural Computation

vectors) to the second lowest minimum values; the lowest APD minima were

produced using training set G

5.6.4. 	Training set

Training set D contained four vectors each containing three binary digits: [0,0,0],

[0, 1,0], [1,0,1], [1,1,1]. Despite the fact that the vectors formed complementary pairs

the relatively large number of vectors made this set one of the hardest for either

network to train from (figs. 53, 54).

1O 0 	200 	00 	400 	500 	000 	700 	600

epochs

Fig 58: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 750-epoch training runs, using training vector set D.

This difference relative to the other sets is less dramatic in the results from the

experiment using the hardware network (figs. 54, 58), a result that can be attributed

to the lack of mathematical precision in the computation performed by the hardware.

The selected optimum number of epochs for the comparative experiment was 750,

which was a compromise between the performance of the software and hardware

141

Chanter 	 Introduction

networks: in the preliminary experiment the software HM had reached its minimum

at 600 epochs and the hardware in 1400. This compromise epoch number was

reached due to the fact that the local minimum reached by the hardware after 50

epochs was close to the global minimum despite the large difference in the number of

training epochs between the two minima.

As expected, the software network was capable of reducing the value of APD faster

and to the lowest value (fig. 58), taking advantage of the precision of the arithmetic

in the neural computation formulae as well as the lower hardware precision and

noise. The APD minima reached by the two networks were 6.65 at 600 epochs for the

software model and 10.07 at 750 epochs, a difference of 3.42.

5.6.5. 	Training set E

Training set E contained three 3-digit binary vectors, each with a single bit turned

off: [1,0,1], [1,1,0], [0,1,1]. The symmetry inherent in the training set data seemed to

make no difference as this was one of the hardest sets for either network to train from

(figs. 53, 54). This difference relative to the other sets is less dramatic in the results

from the experiment using the hardware network (figs. 54, 58), an effect that can be

attributed to the lower algorithmic precision in the computation performed by the

hardware.

The selected optimum number of epochs for the comparative experiment was 750

which was a compromise between the performance of the software and hardware

networks: in the preliminary experiment the software HM had reached its minimum

at 600 epochs and the hardware in 1400. This compromise epoch number was

selected bearing in mind that the local minimum reached by the hardware after 750

epochs was close to the global minimum.

As expected the software network was capable of reducing the value of APD faster

and to the lowest value between the two networks, taking advantage of its superior

precision of the arithmetic in the neural computation formulae (fig. 59). The APD

142

18

1t

1$

4

Chapter 5 	 Probabilistic Neural Computation

minima reached by the two networks were 8.12 at 750 epochs for the software model

and 12.27 at 650 epochs, a difference of 4.15.

C, 	 200 	0 	0 0 	SOD 	e.00 	700 	6, 0o
epochs

Fig. 59: Average deviation from the targeted distribution during training of the
software and hardware JIM models. Each curve represents the average of
100 750-epoch training runs, using training vector set E.

5.6.6. 	Training set F

Training set F consisted of the two homogenous 3-digit binary vectors: [0,0,0],

[1,1,1]. Using this vector set which contained only two symmetrical and

complementary vectors both networks learned comparatively faster and more

effectively (figs. 53, 60). The difference relative to other sets is less dramatic for the

hardware network results (figs. 54, 60), an effect that is most likely connected with

the lower mathematical precision of the computation performed by the hardware

network, and the presence of noise.

The selected optimum number of epochs for the comparative experiment was 650

which was a compromise between the performance of the software and hardware

143

Chapter] 	 Introduction

networks. In the preliminary experiment the software HM had reached its minimum

in 600 epochs and the hardware in 900. As expected, the software network was

capable of reducing the value of APD the most, taking advantage of the precision of

the arithmetic in the neural computation formulae as well as the lack of hardware

imprecision and noise (fig. 60). The APD minima reached by the two networks were

4.50 at 600 epochs for the software model and 10.69 at 650 epochs, a difference of

6.19.

20

18

16

	

0 	 1 	 1 	 1 	 1

Q 	 00 	20 	 400 	600 	600 	TOO

epochs

Fig. 60: Average deviation from the targeted distribution during training of the
software and hardware HM models. Each curve represents the average of
100 650-epoch training runs, using training vector set F.

	

5.6.7. 	Training set G

Training set G consisted of the two complementary 3-digit binary vectors: [0,1,0],

[1,0,1]. The small number of vectors in the data contributed to this being the training

set from which both networks learned the fastest and the most effectively (figs. 53,

54). Unlike some other training sets which proved significantly easier for the

144

Chapter 5 	 Probabilistic Neural Computation

software network to train from, the fast and dramatic reduction of the value of APD

was equally prominent in the results of both networks (fig. 61).

It is of particular importance that both networks were able to maintain the low value

of APD long after it reached levels close to the global minimum. The oscillations

apparent in fig. 61 appear on both graphs, a fact which leads to the conclusion that

they are characteristic of the training set, network topology and learning algorithm

rather than the nature of the software or hardware implementations of the network. It

is believed that they represent successful corrections by the training algorithm, in

response to over-training effects. The ability to learn from the training data without

the imposition of training length limits from the outside was unique to this training

set.

20

4 	
\.

N

(' 	\

'J '.4 	
4

200 	400 	000 	8 00 	1000 	1200 	1400 	10.00 	1300 	2000
epochs

Fig. 61: Average deviation from the targeted distribution during training of the
software and hardware lily! models. Each curve represents the average of
100 2000-epoch training runs, using training vector set G

The selected optimum number of epochs for the comparative experiment was 2000

which required no compromise between the software and hardware networks: in the

preliminary experiment both had reached the global minimum in the value of APD in

145

Ghavter 1 	 Introduction

200 epochs. As expected, the software network was capable of reducing the value of

APD to slightly lower values, taking advantage of the precision of the arithmetic in

the neural computation formulae as well as the lack of hardware imprecision and

noise (fig. 61). The APD minima were reached at 2000 epochs by both networks and

were 1.97 for the software model and 4.04 for the hardware, a difference of 2.07.

5.6.8. Conclusions

The experiments described earlier in this section compared the performance of the

software simulation ANN with that running on the prototype hardware in generating

the probability distributions that they had both learnt from the training set database.

Both networks trained on identical data for each comparison and learning was

restricted according to the conclusions drawn from the preliminary experiments

described in section 5.5. Using as a criterion the reduction of APD inherent in the

post-training fantasy vectors, the software network clearly learnt more effectively

while training from sets B, C, F and G; the hardware network learnt more effectively

from sets C and G When training from the same set of data and for the same number

of epochs the software network always reduced the value of APD more quickly and

to a lower minimum value -bearing in mind that the results were averaged over 100

identical runs.

Bit-shifting symmetry and complementarity in the training vector data —as defined in

section 5.6- did not appear to have any clear, decisive effects on the performance of

either network. This conclusion is specific to the HM networks with the particular

topology used for the aforementioned experiments and more work would be needed

before attempting to generalise it; this however lies outside the scope of the

comparative investigation undertaken for this thesis.

The number of vectors in the training set, on the contrary, did show a clear

association with the capability of either network to reduce the value of APD in post-

training generated fantasy vectors (table 9). As was expected, a lower number of

vectors was associated with more effective learning; the network simply had to

146

Chapter 5 	 Probabilistic Neural Computation

decode and store fewer vector patterns in its weight matrix during training. The only

exception to this conclusion was training set C, a set that included 8 vectors. As

explained in section 5.6.3, the relative symmetry of the initialised weights was

responsible for this aberration making the learning task significantly easier for both

networks.

Training Number Symmetrical Complementary APD min APD min 	APD
set 	of vectors 	vectors 	vectors 	(S ofh4'are) (hardware) difference

A 	3 	Y 	 N 	 7.86 	10.13 	2.27

B 	4 	N 	 Y 	 4.75 	8.94 	4.19

C 	8 	N 	 y 	 1.55 	2.69 	1.62

D 	4 	N 	 y 	 6.65 	9.92 	3.42

E 	3 	Y 	 N 	 7.75 	11.14 	4.15

F 	2 	N 	 Y 	 4.50 	9.79 	5.29

G 	2 	N 	 y 	 1.97 	4.04 	2.07

Table 9: Number of vectors and patterns inherent in the training data, average
probability deviation (APD) minima and difference calculated from post-
training generated fantasy vectors. The APD difference is calculated by
comparing the software and hardware networks' minima. The APD data
were produced by 100 runs at an optimised number of epochs to avoid
over-training effects. 'N'stands for 'no', 'Y 'stands for 'yes'.

5.7. 	Experiments using the trained generative network

It is important to point out that the calculated APD is a general indication of learning

and does not always accurately signify whether the network has successfully learned

the desirable distributions. In a stochastic computing network for one, there is always

the possibility that weak undesirable distributions might appear in the fantasies of

even a well-trained network. For another, predicting the minimum value of APD

below which the network will generate the desirable (training set) probability

distributions with a certain frequency is neither easy nor reliable. For that reason a

147

Chapter 1 	 Introduction

second criterion was formed to characterise the effectiveness of training: a set of

generated fantasies was obtained from the trained generative network and the

probability distribution for each vector was calculated with respect to the total

number of fantasy vectors in the set. If the weakest desirable vector distribution was

greater by 5% or more than any of the undesirable distributions, the learning was

considered to be successful.

Based on this criterion a second set of experiments was performed with the software

and hardware networks, using the trained weight matrices obtained from the previous

set of experiments. The results are presented in table 10 below; columns four and six

repeat the minimum APD values presented in table 9, in order to facilitate a side-by-

side comparison with the data from this last set of experiments.

training
set name

training
epochs

software hardware
successful

runs
minimum

deviation (%)
successful

runs
minimum

deviation ('%,)

A 1750 3/10 7.86 1/10 10.13

B 900 7/10 4.75 2/10 8.94

C 100 10/10 1.55 10/10 2.69

D 750 4/10 6.65 1/10 9.92

E 750 4/10 7.75 1/10 11.14

F 650 10/10 4.50 6/10 9.79

G 2000 10/10 1.97 7/10 4.04

Table 10: Comparative results from fantasies generated using the software and
hardware HM models. The number of training epochs was restricted to the
number indicated in the second column to avoid over-training effects. A set
of fantasy generation runs was considered successful if all desirable
distributions it produced had a minimum 5% clearance margin from the
strongest undesirable distribution.

Column 2 contains the number of epochs for which the training was performed in

this second set of experiments. This was chosen using the deviation results from the

first set of experiments in such a way as to avoid overtraining effects (i.e. training

was performed to the global minimum of the APD curve and no further). Since the

148

Chapter 5 	 Probabilistic Neural Computation

number of epochs for the APD minimum tended to slightly differ between the

software and hardware networks, a compromise was chosen in order to facilitate

comparisons between the two.

It is also worth noting that in the case of training set C, the untrained network with

randomised weights produced distributions very close to those of the training set.

The result was a very brief training period (100 epochs), after which the deviation

generally showed a slight increase, since it was at a bare minimum to begin with. For

this reason, in the second set of experiments the weights were randomised by a much

wider margin for the runs using training set C (initial w = 0±3.5) than for any of the

other training runs (initial w = 0±0.5). This revealed a training set that was -

predictably- quite easy for both the software and hardware networks to successfully

train from.

5.8. 	Conclusions

The purpose of all aforementioned experiments was to evaluate and compare the

performance of a HM ANN running as a software simulation to the same ANN

topology when running on the prototype hardware and training from the same data

sets. This section summarises conclusions drawn from

the preliminary experiments whose main objective was to optimise the
number of epochs for the training of each network

the evaluation of the results obtained from the optimised learning
experiments that followed

the investigation into associations between learning performance and variety,
symmetry and complementarity in the training set vectors

the comparison between the learning performance of the hardware network
and its software simulation replica

The comparative conclusions drawn about the performance of the two networks were

the more significant with respect to the hardware-oriented investigation undertaken

in this project.

149

I 	 Introduction

5.8.1. 	Learning from training sets C, F, G

The software network was capable of learning consistently the distributions in sets C,

F and (i provided that training terminated before over-training effects became

dominant. This conclusion is based on the fact that in 10/10 generative runs the

network was capable of reproducing the desirable vectors in distributions that were

significantly larger than the remaining possible vector distributions (i.e. the weakest

desirable distribution was at least >5% larger than the strongest undesirable vector

distribution in the fantasy vector set.) The 100-run average plots show a clear drop of

APD during training, which further testifies towards this conclusion.

Taking into account the patterns in the synopsis of training results presented in table

9, no associations are evident between learning performance and symmetry or

complementarity patterns in the vector data. It is significant however that vectors F

and (3 from which the network trained particularly well, also contain the lowest

number of distinct vectors. Clearly, for a small network with two layers and only

three inputs, training on fewer vector distributions was significantly more effective.

The apparent aberration of vector C is a special case due to the initialised state of the

network weights, which essentially meant the network was already close to the

trained state at the very beginning of each experiment.

The hardware network also found these three training sets the easiest to learn among

the seven training sets used. It managed to successfully reduce the average deviation

in all three cases, albeit not to the low levels achieved by the software simulation.

This was expected due to the fact that the hardware network approximates the

mathematical equations governing the behaviour of the HM neurons with a certain

degree of inaccuracy. Out of the 10 test runs for each training set, the hardware

network learnt the desirable distributions 10/10 times for set C, 6/10 times for set F

and 7/10 times for set G In the latter two cases its performance was poorer than that

of the software network, which again came as no surprise for the same reasons.

It is of particular importance that when trained with set (both the software and

hardware networks were capable of keeping the average deviation close to minimum

150

Chapter 5 	 Probabilistic Neural Computation

even without protection from over-training effects (i.e. even as training continued.) If

one defines unsupervised learning in a strict fashion, this was the only network in

which learning would be both achieved and maintained without any interference

from outside the algorithmic environment (i.e. by terminating training at an optimum

number of epochs, before over-training effects kicked in). Significantly, this held true

for both the software and hardware networks.

5.8.2. 	Learning from training set B

This training set was interesting because the software network was able to learn from

it 7/10 times, whereas the hardware network was clearly less successful in learning

the contained distribution (success rate of 2/10). While the plots clearly show that the

value of APD was overall reduced in both networks, in the case of the hardware

implementation learning was encumbered and did not lead to a model capable of

consistently recreating the desirable fantasy vector probability distributions. The

inaccuracies and noise inherent in the calculations performed by the hardware

network were enough to 'push it off the edge' and prevent it from learning this set of

vector distributions consistently.

Taking into account the patterns in the vector data contained in this training set (table

9) no associations are evident between symmetry, complementarity and its learning

performance. The large number of vectors in the training set, however, most likely

inhibited the effectiveness of learning. This association between vector diversity and

learning performance was a general trend in these experiments given the limited

topology and number of neurons in both networks. It becomes particularly evident

when comparing the hardware learning results from this set with those obtained from

training set F (table 10): the hardware network was capable of generating fantasies

with a lower overall APD minimum when training from this set rather than F, yet it

succeeded in clearly recreating the desirable distributions with a success rate of 2/10.

The simpler, less diverse vector data contained in vector set F were successfully

151

Chapter 1 	 Introduction

recreated in the generative network's fantasies with a success rate of 6/10 times,

despite the slightly higher overall APD minimum value.

5.8.3. 	Learning from training sets A, D, E

These are the training sets from which both networks had trouble learning the

contained distributions. While the average deviation clearly shows that some learning

is taking place, in neither case does the final model manage to consistently recreate

the distributions in each of the training sets. Predictably, the hardware network fares

a bit worse than its software counterpart.

Taking into account the patterns in the vector data (table 9) of these three training

sets, no associations are evident between the poor learning performance and

symmetry or complementarily. It is significant, however, that they all contain a larger

number of vectors than average among all training sets -not taking into account set C,

which is a special case as discussed in section 5.6.3. The conclusion is that these

training sets are problematic for a Helmholtz Machine of this particular topology and

small size when trained by the Wake-Sleep algorithm. There are other unsupervised

learning algorithms that have been developed (e.g. PoE, CRBM, etc) which have

been demonstrated to offer increased learning capabilities to a given topology for an

unsupervised neural network.

152

In this chapter we will summarise the research and conclusions presented in this

thesis, make immediate and longer-term suggestions on how to advance the pulsed

probabilistic neural approach, present selected recent developments in the field and

attempt to anticipate the effects of current technological trends on the future of

probabilistic neural computation.

6.1. 	Summary

In this thesis document we have so far presented a pulse-based approach for

probabilistic neural computation, as well as a novel hardware implementation of the

Helmholtz Machine artificial neural network architecture. At the heart of the

hardware prototyping is the design of a new type of probabilistic neuron, comprising

synaptic input circuit modules, an activation function module and a probabilistic

output oscillator. The latest developed hardware chip is autonomous once trained,

and is supported by the hardware testing setup for random sampling and weight

changing operations during unsupervised training.

The ANN topology chosen as a target for hardware implementation was the

Helmholtz Machine (HM) [28]. It is an auto-encoder network [47] consisting of two

sub-networks which share a nearly identical topology but propagate information in

opposite directions. This enables the sub-networks to work in a complementary

fashion, providing each other with training targets during unsupervised learning.

Neurons have binary probabilistic states, a sigmoidal activation function and are

organised in fully interconnected layers with an acyclic information flow and no

intra-layer synaptic connections.

153

Chanter 1 	 Introduction

The most significant incentives behind the selection of the HM derive from its Wake-

Sleep unsupervised training algorithm. The weight changing equation the algorithm

utilises is relatively computationally inexpensive and requires information local to

each neuron. It is these two characteristics that make it an attractive candidate for

VLSI hardware implementation. Other proven probabilistic ANN architectures, such

as the stochastic Boltzmann Machine [43] use comparatively slower, more

complicated and more computationally expensive training algorithms.

6.1.1. 	Prototype circuit design

Since this project attempted to combine pulse-based circuits with a probabilistic

ANN model for the first time, a new type of probabilistic neuron had to be developed

as a hardware prototype, using the HM as our model of choice. While the design

focused on endowing the neuron with probabilistic properties, two more design

qualities were given priority: a modular design for the neurons —particularly the

synapse circuits- and overall scalability. The former increases the flexibility of the

design, while the latter practically translates into an effort to minimise the neuron's

silicon footprint, power consumption and dependency on individual biases.

The HM's probabilistic neurons algorithmically resemble pre-existing deterministic

neurons in the sense that they also accept input through weighted synaptic

connections, sum the total activation and threshold it through a sigmoidal activation

function. The main difference is a double output from each neuron, consisting of the

probability that the neuron will assume the binary ON state during the next cycle of

operation, as well as the binary neuronal state itself The prototype hardware neuron

has to therefore output both variables, or at least produce the probability in a form

that permits the extraction of the binary neuronal state in a quick and non-

computationally intensive fashion.

A current-biased differential pair circuit with NMOS gate inputs and current output

was combined with a simple pulsed-mode integrator to perform the synaptic

multiplication required for each neuronal interconnect [13].

154

Chapter 6 	 Summary andfuture work

The sigmoid-like output curve of a similar circuit comprising a current-biased

differential pair with PMOS gate inputs and a current output (see section 3.3.2) was

exploited to implement the activation function for the prototype HM neuron.

The output stage of the neuron was designed using a current-controlled oscillator

(CCO) built around a capacitor and a Schmitt trigger (see section 3.4.2). The output

mode of the oscillator is a mark-to-period (MPR) modulated voltage pulse train,

quite similar to the duty cycle of a clocked digital signal. This form of output is

particularly convenient for our purposes as it can be randomly sampled to select the

next neuronal state. The probability value is available as a current (sigmoid module

output) and can also be straightforwardly extracted as a voltage value from the MPR-

modulated CCO output through integration.

Two hardware prototype CMOS silicon chips, codenamed PRONEO and

STONECORPS were designed, simulated, fabricated using a 2.4pm 3-metal CMOS

process and tested using custom-built wire wrap PCBs. PRONEO contained several

instances of the output stage CCO prototype module in order to characterise it and

evaluate the propensity of the oscillators to lock when operating concurrently.

STONECORPS carried a dual layer 40 hardware implementation of the HM

network, which served as a platform for experiments in probabilistic neural

computation. Parallel software simulation experiments with identical training sets

and HM network topology were performed and the results were compared to those

obtained from the experiments from the STONECORPS chip.

Overall the main aims set and achieved during the design phase of both chips are as

follows:

a novel pulse-stream probabilistic neuron circuit module which can perform
autonomously and in parallel the recognition and generative processing
phases of HM operation 2

32 or semi-autonomously, if one considers that the weights for the prototype are set ex-temally

155

I 	 Introduction

a scalable neuron design, with a relatively small silicon footprint', low power
consumption and no requirements for individual bias nodes for each neuron;

a synapse circuit with the flexibility of accepting state input in analogue form
from the preceding neuron, rather than just the binary state input required by
the HM. This can be achieved without modifying the synapse design, simply
by feeding a pulse-width encoded neuron state to the same input node
(section 3.2.1.2)

a neuron output that can supply the probability in analogue current mode
(sigmoid output node) as well as in the form of a MPR-modulated voltage
pulse train; the latter is amenable to parallel random sampling to extract the
neuron's next binary state

With respect to the first bullet point it is worth clarifying that the hardware design is

novel in several ways. First, this is the first hardware implementation of the

Helmholtz Machine. Second, this is the first attempt to specifically focus on

employing the pulse-stream methodology to design analogue hardware for

probabilistic neural computation. Finally, the neuron circuit consists of a novel

combination of processing stages and introduces the element of stochasticity in an

entirely original fashion: the pulse-width modulated output of an oscillator is

randomly sampled, functioning as a current-to-probability converter.

Apart from the design goals stated in the aforementioned bullet list, there are two

points in the design that leave room for some simple and immediate improvement in

future hardware implementations:

it would be preferable to locate the sigmoid module as close to the synapse
matrix as possible; this modification would take advantage of the current
mode interface implemented by that node and make the design less
vulnerable to noise contamination during transfer along long metal lines
across the chip. Even though this node was not identified as the chief noise
propagation pathway, this modification should contribute to a modest

1 The silicon footprint of the design is of comparable size to that of other pulse-stream designs, despite
also being stochastic. It is worth pointing out that both chips were prototypes, so minimisation of the
neuron's silicon footprint was not the top design priority: using minimum transistor size, shrinking the
pad ring and packing circuitry closer together should lead to a dramatic further reduction in size.

156

Chapter 6 	 Summary and future work

reduction of noise propagation among neurons, possibly allowing the network
to operate in higher frequencies.

a post-design examination of the sigmoid module revealed that a simple
resizing of transistors would reduce power consumption by 80%, a fact
verified through analogue simulation. This approximately translates to a 45%
power consumption reduction for a 4-synapse neuron.

6.1.2. 	Characterisation measurements & experiments

PRONEO, the first prototype chip, implemented three instances of the probabilistic

output oscillator module as well as a separate instance of the Schmitt trigger circuit

within each oscillator. The placement of the oscillators on the silicon substrate and

the topology of the testing nodes permitted experimentation with noise propagation

across the chip, the primary objective being an investigation into oscillator locking.

the probabilistic oscillator output stage circuit was found to be working as
expected, with satisfactory linearity (<6% deviation) in the 0-70pA input
range.

an output dynamic range problem was identified: phase jitter due to power
supply noise trimmed the upper end of the dynamic range (the oscillator
would prematurely jump to 100% MPR).

at lower input current ranges the aforementioned output dynamic range
problem gradually becomes insignificant, power consumption improves but
linearity gradually deteriorates; considering the effect of these three factors
on the function of the HM, it was decided to operate the oscillator in the 0-
20tA input current range.

the Schmitt trigger was characterised and found to work as expected; it was
also identified as the dominant power supply noise generator. Further
experimentation proved that this noise was indeed capable of pulling any on-
chip oscillator into frequency and phase synchronisation (i.e. locking).

an investigation into oscillator locking showed it to be a problem. It occurred
immediately when two oscillators were operated concurrently; further
experimentation identified the pad ring power supply nodes as the dominant
noise propagation pathway.

These conclusions formed the basis for the modification of the second generation

probabilistic neuron circuit, implemented on the succeeding STONECOPRS

157

Chapter] 	 Introduction

prototype. More specifically, the topology of the oscillator output module was

modified to reduce noise generation and improve its power supply rejection.

Moreover, design measures were taken to block noise propagation across the chip,

particularly the dominant pathway via the pad ring power supplies and the critical

routes from the dominant noise-generating circuits to the noise-sensitive analogue

inputs.

The STONECORPS chip aimed to characterise the synapse, sigmoid and second

generation oscillator modules individually, as well as perform experiments in

probabilistic computing using a hardware HM network. For this purpose,

STONECORPS contained individual instances of each of the aforementioned

modules, as well as a dual-layer 40 network of probabilistic neurons. Each neuron

in a layer had full interconnectivity with every neuron in the other layer, while no

lateral connections were present (see fig. 37, section 4.3.1). This hardware network

operated as both the recognition as well as the generative belief networks within the

HM, thus permitting the bi-directional function of the algorithm.

The following list draws together the more significant conclusions drawn from

characterisation of the probabilistic neuron and its components circuits implemented

on the STONECOPRS chip

the synapse module was shown to perform as expected, with a 1.8 ± 0. lv
linear input range and approximately 3.9V output range'. The V 0 bias
voltage node, which was common to all synapses, allowed the adjustment of
the zero-weight threshold to within 35mV from simulation values during
synapse calibration.

the sigmoid circuit module required re-calibration involving adjustment of the
circuit's bias current and voltage nodes. Post-calibration characterisation
measurements showed a smooth sigmoid output curve in the intended I/O
ranges.

'this approximation is due to the fact that the synapse module's output could only be measured
through a source-follower circuit (see section 3.2.1.2)

158

Chapter 6 	 Summaiy andfuture work

characterisation measurements obtained from the second generation
STONECORPS oscillators revealed similar performance characteristics to the
original oscillator design implemented on the PRONEO chip. The significant
difference, however was that the improved STONECORPS oscillators would
not phase-lock when operated concurrently up to 5Mhz.

experimentation with each oscillator clearly showed that its output does not
vary outside measuring error margins whether it is operating in isolation or
concurrently with other oscillators. It was discovered, however, that attached
oscillator probes acted as transceiver antennae and affected experimentation
by consistently causing locking. Having demonstrated that oscillator locking
was resolved on STONECORPS (see section 4.2.4.2), it was decided that
experiments in probabilistic neural computation should proceed by sampling
one neuron at a time, since the oscilloscope probes had to remain attached in
order to sample the fast-changing MPR-modulated neuron output nodes.

6.1.2.1. Probabilistic neural computation experiments with
STONECORPS

The STONECORPS prototype chip implemented a dual-layer 4x3 network of

probabilistic neurons capable of functioning autonomously and performing the

recognition and generative phases of a functioning HM. The functions implemented

by the lab PC and supporting hardware involved random sampling of the MPR-

modulated neuron output, weight modification and weight storage.

The testing setup involved a wire-wrap PCB which carried the STONECOPRS

prototype, some testing hardware (mostly DACs, multiplexers, current sources and

associated passive components) and interfaced to the lab bench PC. The PC was a

Windows NT platform running Labview 61 (a testing & automation software

package) and communicated with the STONECORPS PCB via two on-board digital

acquisition multi 110 PCI adapters. Fast sampling of the oscillator output nodes was

performed by a 50MHz digital oscilloscope interfaced to the PC using an on-board

GPIB adapter. The diagram in fig. 50, section 5.2, graphically depicts the hardware

testing setup.

The module programming language included in the Labview package was used to

develop a software simulation of a dual-layer 4x3 HM with an identical topology to

159

Chapter 1 	 Introduction

the one implemented in the STONECORPS chip. The probabilistic neurons were built

in a modular fashion echoing the on-chip hardware structure and one of the 4

neurons in the larger layer was chosen to act as an always-on bias unit, thus

simplifying the implementation of the algorithm. The criterion chosen to monitor and

evaluate the effectiveness of choice was the Average Probability Deviation (APD), an

average of the percentage probability distribution difference between the training set

and the set of fantasies generated by the trained network. The learning process was

frozen in 50-epoch intervals, a set with of fantasies containing the same number of

vectors as the training set was generated, and the value of APD calculated.

A group of binary vector data sets was formed to perform probabilistic neural

computation experiments both as a software simulation and using the STONECOPRS

chip. Each vector consisted of three binary bits and sets varied in both the number

and nature of the vectors: some contained complementary vectors (their sum being

the unity vector [1,1,1]) while others comprised symmetrical vectors (bit-shifting one

vector produces all others in the set).

The first experiment aimed at determining the optimum number of training epochs

for each set, using both the software and hardware models of the HM network, in

order to protect against over-training effects. 2000-epoch training runs were

performed using each training set with both networks for this purpose. Once this

optimum number of epochs was determined, a compromise number of epochs was

chosen to serve both models and to be used in comparative experiments between

software and hardware.

Comparative experiments with each training set showed that both models were

capable of consistently reducing the value of APD during training. As was expected

due to its superior computation precision, the software model performed reduced the

value of APD faster and to lower levels as compared to the hardware. This was

expected due to the fact that the software model works with superior mathematical

precision and does not suffer the calculation imprecisions associated with I/O noise,

signal transfer noise, fabrication process variations and imperfections in the

160

Chapter 6 	 Summary and future work

sigmoidal and linear characteristics of the circuit modules comprising the neuron.

Results from this set of comparative experiments are concisely presented in table 9,

section 5.6.8.

Finally, a last set of experiments averaged the fantasy distributions of pre-trained

networks over the optimum number of epochs. 10 sets of 100-runs were performed

and the results were averaged and filtered in the following manner: a set of desirable

fantasy distributions would be judged as a successful results if and only if it cleared

all undesirable distributions by a margin of 5% or greater'. This filtering process was

designed to eliminate false positives caused by a low APD value exclusively

represented by a single undesirable distribution. Results from this set of experiments

are concisely presented in table 10, section 5.7.

Overall, conclusions drawn from probabilistic neural learning experiments using

both the software and hardware models can be summarised as follows:

both network models were demonstrated to be capable of reducing the value
of APD in generated fantasy vector sets, having previously trained with any
of the 7 binary vector training sets, proving that learning was taking place.

the software model reduced the value of APD consistently faster and to lower
levels than did the hardware model on the STONECORPS chip; this was
expected due to computation imprecisions of the hardware: I/O noise, signal
transfer noise, process variations and imperfections in the linear and
sigmoidal characteristics of the neuron component circuits.

the software HM simulation model was capable of successfully learning and
re-generating the probability distributions contained in 4 out of 7 training sets
most of the time2. It was clear from APD graphs that it was also capable of
learning distributions from the remaining sets to a certain extent, but was not
capable to recreate them consistently. This was due to limitations associated

The value of 5% was chosen empirically as a safety margin to ensure that the desirable distributions
were indeed the strongest within generated fantasy vectors. For details see section 5.7.

2 since the HM is a probabilistic ANN there is always the possibility of the odd undesirable
distribution appearing even in a well-trained network configuration. For details about the generative
performance of both networks, see tables 9 and 10.

161

I 	 Introduction

with the modest size of the HM network, a topology choice designed to make
to make comparisons with hardware more revealing and meaningful.

the hardware model was successful in recreating the correct distributions of
all but one of the training sets from which the software network was
successful in training. The remaining case was that of training set B, from
which the software model was not capable of consistently learning the correct
distributions either.

larger numbers of vector distributions in a training set had an impeding
impact on the learning performance of both networks; this result was
expected due to the modest size of the implemented HM network and
associated encoding limitations. Training set C was an exception to this rule,
due to the homogenous initial distributions involved.

bit-shifting symmetry and complementary symmetry among vectors in the
training sets did not have clearly observable effects on the training
performance of either network model during the aforementioned experiments.

6.1.3. 	Thesis conclusion summary

The work for this research project focused on investigating the thesis statement

presented in section 1.4. The research therefore focused on the use of pulse-stream

methods for hardware implementation of a HM ANN, a well-understood and

hardware-friendly example of a stochastic neural computation architecture.

The HM ANN is both unsupervised and stochastic, so a novel, pulse-stream

probabilistic neuron circuit design was proposed for its hardware implementation

(chapter 3). The scaleable and modular design was simulated, fabricated and tested in

two prototyping cycles (chapter 4), and the hardware performance was contrasted to

a software simulation model of equivalent topology using identical training sets

(chapter 5).

After investigating and resolving an obstacle involving phase locking of the

oscillators in the neuron circuit's output stage (sections 4.2.4, 4.3.5), results obtained

from the parallel learning experiments contrasting the software and hardware

implementations were rather promising. The small hardware network was clearly

shown to learn, with a performance comparable to that of the software model

162

Chapter 6 	 Summary and future work

(sections 5.6 - 5.8). Assessment of the performance of both networks was done using

the calculated value of APD during training as well as post-training success rates in

reproducing the training set vector distributions. Both networks were benchmarked

against a pattern storage and re-generation task, which is characteristic of auto-

encoder networks. A database of 7 training sets containing a variety of binary data

vector distributions was used.

Results from the comparative learning experiments showed that the hardware I-TM

prototype is capable of learning at approximately the same number of training epochs

as the software. The software however is capable of reducing the value of APD to

lower minima, which translates into more accurate' overall pattern regeneration

when all other factors are kept equal

The size of the network used was small to facilitate charactensation and

troubleshooting during the prototyping phases, however previous research using the

HM indicates that learning performance scales well to larger topologies [25]. The

smaller network size did however restrict the range of possible training data inputs,

so an effort was made to enrich diversity within the training set database used for the

comparative experiments.

The size limitations of the network, however also had some positive effects. It

facilitated the performance of the comparative training experiments at the limits of

the small network's capabilities, revealing that the slight deterioration of

computational accuracy observed in hardware can indeed 'push it off the edge' and

cause learning to fail. This was particularly interesting for those training sets from

which the software simulation was still capable of successfully learning (section

5.8.2).

The use of the pulse-stream design methodology proved both practical during design

and resource-efficient, while protecting against amplitude noise by encoding

More accurate in this context means the generation of fantasy vector data with the desirable
probability distributions (i.e. those contained in the training vector data set.)

163

Chapter] 	 Introduction

analogue values on the time axis. The trade-off, however was increased sensitivity to

frequency jitter, which proved to be a nuisance in a design that relied in deliberately

simple oscillator circuits. This was anticipated and design measures were taken to

prevent oscillator locking on the STONECORPS chip, though a combination of

oscillator phase-locking and instability limited its operation to below 5MHz.

Assuming that such a speed-limit on the operation of neurons in parallel is

acceptable for a given application, pulse-stream design is a viable and attractive

alternative to the addition of uncorrelated Gaussian noise in order to create stochastic

neurons.

Further research is required to determine how well this design would scale down to

more modem, smaller minimum feature CMOS fabrication processes. It would be of

particular interest to determine the performance of such a stochastic ANN design

when implemented in deep sub-micron processes (i.e. below O.li.tm minimum

feature) since at those levels amplitude noise is a particularly acute problem for

analogue hardware and probabilistic computation might turn out to be a natural -even

inevitable- methodology.

An interesting and meaningful direction for future research would be

experimentation with larger pulse-stream neural topologies in order to explore the

limitations of the Helmholtz Machine using more complex training data sets.

Contrasting hardware performance with software simulation solutions in larger

topologies would once again be the natural next step.

Overall, the more significant milestones and conclusions drawn from this project can

be summarised as follows:

the Helmholtz Machine, a stochastic, unsupervised auto-encoder ANN
architecture, was selected for hardware implementation using the pulse-
stream hardware design methodology for stochastic neural computation.

there were several criteria for this choice, most significant of which were the
promising prospects of unsupervised ANNs, the proven robustness of pulse-
stream designs and the hardware amenability of the HM's simple Wake-Sleep
training algorithm.

164

Chapter 6 	 Summary and future work

the components of the proposed neuron circuit design have been simulated,
fabricated, individually tested and characterised; all performed as expected,
with only some straight-forward calibration adjustments required.

the fabricated hardware neuron features power and silicon area demands
small enough not to preclude large scale multiple neuron integration, can
share common bias nodes with other neurons and employs a modular,
scaleable on-chip interface.

the oscillator circuit module, the neuron's probabilistic output stage, faced
some initial problems associated with phase synchronisation and inter-
locking; the prototype displaying the problem was studied and experimental
conclusions led to the design of a second generation oscillator module that
overcame this problem for frequencies below 5MIHz.

the second generation hardware prototype, codenarned STONECORPS,
implemented a small HM that proved capable of learning simple binary
vector patterns; proof of its learning capacity came from graphs depicting the
value of APD, a measure of 'likeness' between vectors distributions in the
training set and generated fantasy vector data.

a software simulation of an identical network to the one implemented on
STONECOPRS was also developed. As was expected, comparative
experiments between the two showed faster and more accurate learning
performed by the software; noise and circuit imprecisions gracefully —rather
than catastrophically- degraded the hardware network's learning capacity.

the comparative experiments helped separate the training sets that a HM
network of this size is incapable of consistently learning' from similar
limitations arising from hardware imprecisions.

the chief advantage of the hardware implementation is the capacity for
massive parallelism, which can potentially outperform in speed of
computation any software simulation running on modern digital CPUs;
physical size, cost and power demand per neuron are also advantageous for
the analogue VLSI hardware due to the small overhead, particularly for
modest size networks.

It is worth re-stating at this point that the hardware described in this thesis was the

product of prototype design and therefore have not been explicitly optimised for

silicon area and power consumption. Both of these resources however were taken

into account during the entire design process, with scalability in mind. Without major

165

Chapter 1 	 Introduction

design sacrifices there is the potential for significant further area and power savings

as these circuits move out of the initial prototyping stage.

6.2. 	Future Research & Circuit Improvements

6.2.1. 	Algorithmic level

On the algorithmic level it would be particularly interesting to use the same dual-

layer 4x3 network topology described in this thesis with other unsupervised

probabilistic training schemes. The recently developed Product of Experts (PoE)

algorithm would be of particular interest, because it also uses binary state neurons

and employs an unsupervised, auto-encoding learning algorithm [45]. The PoE has

also been demonstrated to possess pattern recognition and pattern completion

capacities superior to many other state-of-the-art ANN schemes (including

supervised ones [63]), a fact promising some interesting comparative results to those

obtained from the HM in this thesis, using the same training sets.

Training the probabilistic network on the STONECORPS chip using the PoE's

minimisation of contrastive divergence (MCD) training algorithm would be the

natural next step, revealing whether the PoE architecture is better at compensating

for hardware noise and imprecisions than the HM.

6.2.1.1. Over-training effects

One of the more significant limitations of the HM algorithm encountered during this

research project was over-training. The recipe for protecting the HM network against

overtraining that was used during our experiments is simple: develop a measurement

to monitor the quality of learning (in our case APD), proceed with training while the

APD value is being minimised, and freeze training briefly thereafter. The problem

1 using the Wake-Sleep algorithm, that is.

166

Chapter 6 	 Summary and future work

that arises from this process is that it is not trivial to determine whether the algorithm

has reached a global or local maximum in the convergence between the training and

fantasy training sets'.

When the training set is available on demand, one method to bypass this problem is

to pre-train the network for a large arbitrary number of epochs in order to determine

the optimum length of training 2. This however is not an effective approach in

scenarios in which there is no prior availability of the training set, or the training set

is streaming in real time, as in the case of continuous live monitoring of sensor drift

[25]. Clearly an auto-encoder algorithm capable of minimising the value of APD and

maintaining it at levels close to minimum would be a superior algorithm: a practical

example would be the performance of the modest HM network on the

STONECORPS chip when learning from the rather simple training set G (fig. 53,

5.5.3).

It would therefore be interesting to determine how the PoE auto-encoder algorithm3

would fare with the training sets used for the experiments in this thesis. Its improved

encoding efficiency may result in successful retention of the APD value close to

minimum levels without having to use additional neurons and layers, therefore

resolving the over-training issue for the training sets in our experiments.

It would also be meaningful to experiment with some gradual weight decay for the

HM model, particularly at a variable rate during the training phase. Observations

during the stochastic neural computation experiments suggest that over-training

effects may be related to several weights in the network reaching their limits; it is

therefore reasonable to hypothesise that weight-decay may be a useful feature for

adding resilience to the network or at least postponing over-training effects.

'or minimum, in the case of APD used in our experiments

2 this is the methodology that was adopted for the neural learning experiments described in this thesis

the PoE algorithm is of particular interest because it also employs binary stochastic neurons and can
therefore be used to train the existing hardware

167

Chapter 1 	 Introduction

Assuming analogue capacitive weight storage in hardware, this gradual weight decay

ought to be easy to implement: in the case of leaky double-polysilicon CMOS

capacitors, it is in fact unavoidable.

6.2.2. 	Future hardware research & improvements

An immediate and efficient way to improve the hardware developed for this thesis

would be to make minor changes to existing circuit designs. The top of the list would

be the correction of a minor layout bug in the sigmoid module of each neuron.

Simple transistor resizing would lead to a five-fold decrease of the sigmoid current to

bring the circuit back into calibration. Fixing this design discrepancy would use no

extra silicon area, but would reduce the power consumption of a 4-synapse neuron by

approximately 45%.

Another relatively simple fix also involves the layout of the STONECORPS chip.

The distribution tree for the sigmoid reference module is not symmetrical, the

resultant imbalance in resistance translating in uneven reference currents among the

modules. Most of the effect of this issue was resolved with calibration, but it is

preferable to ensure a symmetrical layout that does not push the circuit biases to

extremes.

A couple of improvements to the layout would also benefit the precision and noise-

immunity of the ANN on the STONECOPRS chip. Redesigning the sigmoid module

using centroid layout techniques ought to produce a more symmetrical output

characteristic. And placing the instances of the sigmoid module as close as possible

to the synapses, rather than the output oscillator stage ought to take advantage of the

current-mode interface between the synapse and the oscillator. Current mode

connections are less vulnerable to electromagnetic interference and such a move

ought to contribute to a reduction in noise. The synapse-sigmoid node is not believed

to be one of the dominant noise propagation pathway, however experiments have

shown that the HM is past the point of absorbing hardware noise and imprecisions

168

Chapter 6 	 Summaiy and future work

have an impact on its performance: any boost to hardware precision would therefore

be likely to have a direct impact on its performance.

Developing and evaluating on-chip weight storage, random sampling and weight

modification for the hardware HM model developed in this thesis are some

meaningful directions for related future research. On-chip weight storage is a general

problem faced by analogue hardware ANNs in the past three decades, as no flexible

& robust system exists for long-term weight storage in analogue VLSI. Several

design directions have been taken in the past to surmount this obstacle: off-chip

learning altogether, on-chip digital storage, analogue capacitive on-chip storage with

periodical refreshment from off-chip digital RAM, analogue EEPROM and even

fixing the size of transistors or capacitors using post-fabrication processing (for case

studies and discussion of these techniques see [29], [48], [55], [62]).

62.2.1. Random sampling of neuron outputs

A different and research-interesting approach to extract the neuron's state from its

MPR-modulated probabilistic output would be to sample it 'sparsely' rather than

randomly. During hardware testing of the STONECORPS chip, the probabilistic

neuron's output stage oscillators displayed significant amounts of phase jitter: after a

large number of periods the phase of the output square wave would be very difficult

to predict, though not necessarily random. It is possible that sampling the neuron

output at a frequency much lower than that of the sampled squared wave might be

'random enough' to permit the HM training algorithm to work.

If sparse sampling were to be experimentally verified as functional, the main

advantage would be the simplification of on-chip learning circuitry. Random

sampling entails on-chip random analogue noise generation for triggering, while this

alternative scheme would bypass this problem. Though a technique to produce

uncorrelated, on-chip, pseudo-random analogue noise sources exists [6], a commonly

clocked bank of flip-flops would suffice to sparsely sample the neuron states,

169

Chapter 1 	 Introduction

therefore simplifying the learning circuitry and increasing the scalability of the

artificial neuron

It is speculated that poor power supply rejection is the major contributor to the large

amount of jitter observed in integrated CMOS oscillators ([57], p. 675-6). This

characteristic of the oscillators provides evidence that the neuron output jitter

observed during our experiments is likely to originate from power supply noise

caused by other oscillators: it is therefore quite likely that the jitter would be far from

random. Still, the distortion of the statistics of the jitter noise after a large number of

periods might be 'uncorrelated enough' for the algorithm to work and would be

worth further experimental investigation. Due to the antenna effects interfering with

measurements of oscillator output this experiment was not tried using the

STONECORPS chip: it is therefore recommended that such experimentation be

attempted with on-chip sampling circuitry.

In the event that the aforementioned scheme proves inadequate, the natural next step

would be to generate multiple on-chip uncorrelated analogue noise sources to serve

as sampling triggers. One such scheme, based on shifted portions of a pseudo-

random bit-stream generated by a linear feedback shift register (LFSR), has been

proposed [6] and implemented in an analogue neural VLSI context [3,20]. This

approach has a reasonable silicon area overhead (only one LFSR required per chip)

and can form the basis for random sampling triggers for the output of the

probabilistic neuron presented in this thesis. A different approach to produce multiple

uncorrelated analogue vectors based on cellular automata has also been proposed

[17,18] and recently implemented [19].

6.2.2.2. A smaller, current input synapse

The largest silicon area usage in most ANN VLSI implementations is attributed to

the synapse matrix. Reducing the silicon area consumed by the synapse circuit would

therefore be one of the most efficient ways to reduce the overall size of the chip. The

synapse presented in this thesis was chosen to be inherently simple: most of the

170

Chapter 6 	 Summary andfuture work

circuit complexity is concentrated around the differential pair of input transistors (see

section 3.2.1.2, fig. 8).

By using a current-mode weight input it is possible to dispose of the differential pair

circuit and shave 5 transistors from the synapse module, thus reducing its

complexity, power consumption and silicon footprint size (fig. 62). The current mode

connection between the weight-storage and the synapse matrix would also be less

vulnerable to cross-talk noise in such a scenario, an additional improvement over the

voltage-input synapse.

V..

Fig. 62: A current-input version of the synapse module consisting of 8 transistors
and an integrating capacitor. The dashed lines on the left connect to a
simplified weight storage circuit.

Finally, and for prototype testing purposes only, it would be particularly useful to

implement an on-chip testing operational amplifier buffer to observe the output of

any synapse prototype module. The source-follower structure used in the

STONECORPS chip served this purpose but did not permit the extraction of precise

measurements due to the reduced dynamic range at its output.

171

Chapter 1 	 Introduction

6.3. 	Related Research Developments

The field of unsupervised ANNs, or auto-encoders, has been fast-paced and dynamic

in all stages from mathematical concept to programming and hardware model

implementations. We will focus on two pertinent advances on the algorithm design

level and briefly discuss their significance with respect to this thesis.

6.3.1. 	A Product of Experts

A relatively recent development in probabilistic auto-encoders is the Product of

Experts (PoE) ANN algorithm [44]. It shares some similarities with the HM such as

its utilisation of binary stochastic neurons and its reliance on bi-directional sampling

to provide targets for weight training. The PoE, however, also relies on a layer of

continuous deterministic output neurons (called experts), a single set of synaptic

weights and is trained using the Minimising Contrastive Divergence (MCD)

algorithm [45].

The main attractions of the PoE are its ability to handle continuous data values and

its amenability to analogue VLSI implementation [68]. It is particularly pertinent to

the work presented in this thesis, because the probabilistic neuron implemented on

STONECORPS can perform as both types of neuron composing a PoE: the binary

stochastic neurons in the input layers, as well as the continuous deterministic experts

forming its top hidden layer. By modulating the length of the state pulse clocking the

transmission gate within the synapse (see section 3.2.1.2, fig. 8), a continuous

analogue value can be input to a continuous discrete 'expert' neuron; in a similar

fashion an analogue value can be obtained from the same neuron by removing the

random sampling stage and directly using the sigmoid module's current as a discrete

analogue output value (see section 3.5.1, fig. 23).

It would therefore be of particular research interest in future work to evaluate the

performance of the MCD algorithm in training the STONECORPS probabilistic

ANN. With a small modification of the MCD training algorithm, it should also be

172

Chapter 6 	 Summary and future work

possible to input and extract binary data vectors from the PoE. This could form the

basis for interesting comparative experiments between the HM's Wake-Sleep

algorithm and the PoE's MCD, both in software simulation and using the

STONECORPS chip.

6.3.2. 	The Continuous Restricted Boltzmann Machine

The Continuous Restricted Boltzmann Machine (CRBM) is another recent

development in auto-encoder algorithms, designed to overcome some of the

limitations of the Boltzmann Machine (BM), the HM and the PoE algorithms [23].

The more significant development is its utilisation of 'noisy neurons', analogue value

(continuous) probabilistic units based on the addition of Gaussian noise prior to

squashing by the activation function:

Si = 	 [6.11
—a1(us+n1)

1+e

where si and S3 are the analogue state values for neurons i andj respectively, w j j is the

synaptic weight on the connection supplying the output of the former to the latter, a3

is a scaling factor controlling the slope of the sigmoid and ii is a Gaussian noise term

with a probability calculated as follows [20]:

e 2a2 	

[6.2]

Factor a in equation 6.1 above is significant in the training of the CRBM as it

controls the slope of the sigmoid with respect to a fixed probability distribution of

Gaussian noise. A large value of a leads to a very sharp sigmoid slope with respect

to the added noise variance, leading to a neuron with predominantly binary stochastic

behavior; lower values for aj lead to more analogue and more deterministic

behaviour. Intermediate a3 values allow a smooth transition between the two [22,24].

173

Chapter 1 	 Introduction

The sigmoid multiplier term cx1 is modified along with the synaptic weights by the

training algorithm while the network is learning. The MCD training algorithm used

to train the PoE was simplified and adapted to train the CRBM, along with this

additional noise-control term.

Two aspects of the CRBM make it particularly significant under the light of this

research project. The first is the increased modeling flexibility of the CRBM, which

can accept and output continuous data and model more complex, asymmetric

distributions compared to the HM and PoE. The second is the fact that these features

come at an acceptable cost to hardware amenability, again relative to other auto-

encoder schemes. Comparative experimentation between the HM and CRBM can

therefore be particularly revealing and helpful in balancing cost (silicon area, power

consumption, etc) against modeling capability for future auto-encoder hardware

implementations.

6.4. 	Future directions, technological advances & trends

Moore's law, as stated in his initial 1975 paper [66], predicted that the number of

devices on a chip of given size would double every 12 months throughout the 1970s;

Gordon Moore also predicted that this trend would gradually slow down in the

1980s, stabilising at a doubling period of approximately 24 months. This simple

relationship turned out to describe with remarkable accuracy the growth of transistor

numbers during the next 30 years to date [13]. Abidance by Moore's law has meant a

dramatic scaling down for the mainstream CMOS fabrication processes during the

past 25 years, leading from millimetre devices to the state-of-the-art deep sub-micron

technologies of today.

Naturally, silicon manufacturing capacity is not limitless: as the size of devices and

metal interconnects approaches atomic levels, increasing electrical resistance, noise

propagation, power dissipation, quantum effects, laser light minimum wavelength

and even IC fabrication plant costs start dominating the list of VLSI engineering

obstacles. Concerns that the collective effect of these factors will derail the IC

174

Chapter 6 	 Summary and future work

industry from Moore's law are now mounting [32]: noisy, fast-clocked mixed-signal

circuits are likely to face insurmountable noise propagation problems first, while all

circuits will have to face the ultimate atomic level size barrier.

Several design techniques and even new media and fabrication technologies have

been proposed to postpone the technological and economic gap that will inevitably

follow our arrival at the ultimate shrinking barrier, currently forecast sometime at the

end of the next decade: vertical MOSFETs, design placement based on cellular

automata, quantum-tunnelling devices [96], self-assembling structures and a plethora

of other techniques. Ultimately, however, it will be by changing our design

methodologies, rather than by improving our existing silicon hardware technology,

that will ensure continuing growth of our computing capacity. Research into massive

parallel processing, quantum computing, optoelectronics and photonics are some of

the longer-term directions that computing may take to bypass the atomic barrier.

Under this light, the author believes that ANNs and probabilistic auto-encoders in

particular, are well-suited to play an instrumental role in the transformation of

computation methodologies as the minimum feature size is reached on silicon. The

ability to process asynchronously' and in parallel, the ability to train from data and

adapt in real time and most importantly their exploitation of -rather than limitation

by- naturally noisy data are likely to become increasingly valuable characteristics as

silicon transistors continue to shrink and beyond.

The ability of auto-encoder ANNs to adapt to sensor drift [25,88] and perform as

novelty detectors [68] in real time, along with the rising popularity of Micro Electro-

Mechanical Systems (MEMS) technology makes sensor support electronics a

candidate field likely to exploit them in an increasing number of scenarios[8,90].

The research fields of ubiquitous computing2 [98], distributed sensing and radio-

The auto-encoding ANN architectures discussed in this thesis can process asynchronously once the
network has been trained. All of them require some limited clocking throughout the training phase.

2 Sometimes alternatively called pervasive computing.

175

I
	

Introduction

frequency ID (RFID) tags [87] all aim to increase the number of sensors in our

everyday working and living environment, while at the same time drive down the

cost, size and power requirements of the MIEMS sensors and their support

electronics. It is in such environments that small, noise-tolerant and inexpensive to

manufacture auto-encoder ANN CMOS electronics might prove the most power-

efficient solution for real-time sensor drift and novelty detection. Environments in

which MEMS sensors are likely to degrade more dramatically, such as environmental

and biomedical applications, are already taking advantage of ANN auto-encoders to

compensate for sensor drift [89].

I NO

Portable document format (PDF) copies of most publications can be downloaded

from the author's website at http://www. see. ed. ac. u/c/--a a/publications. html

Related to this research project

Astaras, A., DaIzell, R. W, Murray, A. F., Woodbum, R. J., 2000. "Improved
representation and hardware implementation of the Helmholtz Machine".
PhDEE - The Postgraduate Journal of the Department of Electronics and
Electrical Engineering, The University of Edinburgh. vol. 5, issue 6, Jun. p.
49-53.

Woodbum, R. J., Astaras, A., DaIzell, R. WI, Murray, A. F. et al, 2000.
"Computing with uncertainty in probabilistic neural networks on silicon".
Proceedings from the International ICSC Symposium on Neural Computation
(NC 2000), May, Berlin, Germany.

Astaras, A., Daizell R. W., Murray A. F., Reekie, M., 1999. "Pulse-based
Circuits and Methods for Probabilistic Neural Computation". Proceedings
from the IEEE Microneuro '99 conference, Apr, Granada, Spain.

Journal publications

Johannessen, E. A., Lei, WI, Li, C., Tong, B. T, Ahmadian, M., Astaras, A. et
al, 2004. Implementation of multichannel sensors for remote biomedical
measurements in a microsystems format", Biomedical Engineering, IEEE
Transactions on, vol. 51, 3, pp.525-535

Tong Boon Tang, Erik A. Johannessen, Lei Wang, Alexander Astaras et al,
2002. "Toward a Miniature Wireless Integrated Multisensor Microsystem for
Industrial and Biomedical Applications. " IEEE Sensors Journal, vol.2, no.6,
Dec, pp.628-35.

177

Introduction

Conference publications

A. Astaras, T.B. Tang, A.F. Murray, S.P. Beaumont, D.R.S. Cumming, 2004.
"Noise Analysis on Integrated Multisensor Microsystems", Accepted for
presentation at the IEEE Sensors Conference, Oct, Vienna, Austria.

Wang, L., Johannessen, E. A., Ciii, L., Ramsay, C., Tang, T. B., Ahmadian,
M., Astaras, A. et al, 2003. "Networked Wireless Microsystem for Remote
Gastrointestinal Monitoring". Digest of technical papers for the 12th
International Conference on Solid-State Sensors, Actuators and
Microsystems, Jun, Boston, MA, USA. pp. 1184-1187

Astaras, A., Ahmadian, M., Aydin, N., Cui, L. et al, 2002. "A miniature
integrated electronics sensor capsule for real-time monitoring of the
gastrointestinal tract (IDEAS)." Proceedings of the IEEE ICBME conference,
Dec 3-7, Singapore.

Johannessen, E. A., Tang, T B., Wang, L., Cui, L., Ahmadian, M., Aydin, N.,
Astaras, A. et al, 2002. "An ingestible electronic pill for real time analytical
measurements of the gastrointestinal tract" Proceedings of the mTAS 2002
Symposium, Nov, Japan. pp. 181-183.

Tang, T. B., Johannessen, E. A., Wang, L., Astaras, A. et ai, 2002. "IDEAS: A
Miniature Lab-in-a-Pill Multisensor Microsystem." Proceedings of the IEEE
NORCHIP Conference, Nov, Copenhagen, Denmark. pp. 329-334.

Wang, L., Tang, T. B., Johannessen, E., Astaras, A. et al, 2002. "Integrated
micro-instrumentation for dynamic gastro-intestinal tract monitoring."
Presented at the IEEE Instrumentation and Measurement Technology
Conference, May, Anchorage, AK, USA.

Wang, L., Tang, T. B., Johannessen, B., Astaras, A. et al, 2002. "An integrated
sensor microsystem for industrial and biomedical applications." Presented at
the IEEE-Elv[BS Special Topic Conference on Microtechnologies in Medicine
& Biology, May, Madison, WI, USA.

Posters

Astaras, A., Ahmadian, M., Aydin, N., Farooq, I. et al, 2001. "IDEAS:
Miniature Lab-in-a-Pill Sensor System." Presented at the SET for Britain
conference, Dec, London, UK.

178

Appendix] 	 Author publications

Awards

Received the IEE/ICBME Young Investigators Award for the slide
presentation and paper "A miniature integrated electronics sensor capsule for
real-time monitoring of the gastrointestinal tract (IDEAS)" presented at the
IEEE International Conference on Biomedical Engineering (ICBME) held in
Singapore, Dec 3-7 2002. Details about the award were published at
http://.ifinbe-news. lee. org4finbe -news/mar2003/astaras. html

179

Allen, P. E. and Holberg, D. R., "Comparators", "CMOSAnalogue Circuit
Design" 2nd ed. New York: Oxford University Press, 2002, PP. 439-491.

Alspector, J, Allen, R. B., Javakumar, A., Zeppelfeld, T., and Meyer, R. 1991.
"Relaxation Networks for Large Supervised Learning Problems". Advances in
Neural Information Processing Systems (7\TIPS90), p. 1015-1021

Alspector, J., Gannett, J. W, Haber, S., Parker, M. B., and Chu, R., 1991.
"Analog hardware implementation of the random neural network model",
IEEE Iansactions on Circuits & Systems, vol. 38, Jan, pp. 109-123

Alspector, J, Gupta, B., and Allen, R. B. 1989. "Performance of a stochastic
learning microchip". Advances in Neural Information Processing (NIPS88),
P. 748-760, AlP Press

Alspector, J, Jaya.kumar, A., and Luna, S. 1992. "Experimental Evaluation of
Learning in a Neural Microsy stem". Advances in Neurals Information
Processing Systems, p. 871-878, San Mateo, CA, USA, Morgan-Kaufmann

Alspector, J., Gannett, J. W., Haber, S., Parker, M. B., and Chu, R. 1990.
"Generating multiple analog noise sources from a single linear feedback shift
register with neural network applications", p. 1058-106 1, New York, IEEE

Andreou, A. C. 1993. "Analog VLSI Neuromorphic Systems". Proc. of the
IEEE Intl. Symp. on Circuits and Systems (ISCAS'93), p. 1471-1474, IEEE

Astaras, A., Ahmadian, M., Aydin, N., Cui L., Johannessen, E., Tang, T B.,
Wang, L., Arsian, T, Beaumont, S. P., Flynn, B. W., Murray, A. F., Reid, S.
W. J., Yam, P. S., Cooper, J. M., and Cumming, D. R. S. 2002. "A miniature
integrated electronics sensor capsule for real-time monitoring of the
gastrointestinal tract (IDEAS)". Proceedings of the IEEE ICBME conference,
Singapore, IEEE

Astaras, A., Daizell, R, Murray, A. F., and Woodburn, R., 2000. "Improved
representation and hardware implementation of the Helmholtz Machine",
PhDEE, vol. 5, 6, pp. 49-53

181

Bibliography

Astaras, A., Daizell, R. W H., Murray, A. F., and Reekie, M. 1999. "Pulse-
based circuits and methods for probabilistic neural computation".
MicroNeuro, p. 96-102, Los Alamitos, CA, USA., IEEE Comput. Soc.

Beale, R. and Jackson, T "Neural Computing: an Introduction" Bristol, UK:
lOP Publishing Ltd, 1990.

Boahen, K. A., Pouliquen, P. 0., Andreou, A. G, and Jenkins, R. E., 1989. "A
heteroassociative memory using current-mode MOS analog VLSI circuits",
Circuits and Systems, IEEE Transactions on, vol. 36, 5, pp. 747-755

Borkar, 5. 2000. "Obeying Moore's law beyond 0.18 micron [microprocessor
design]", p. 26-31

Brown, B. D. and Card, H. C., 2001. "Stochastic neural computation. I.
Computational elements", Computers, IEEE Transactions on, vol. 50, 9, pp.
891-905

Brown, B. D. and Card, H. C., 2001. "Stochastic neural computation. II. Soft
competitive learning", Computers, IEEE Transactions on, vol. 50, 9, pp. 906-
920

Cauwenberghs, G, 1996. "An analog VLSI recurrent neural network learning
a continuous-time trajectory", Neural Networks, IEEE Transactions on, vol.
7, 2, pp. 346-361

Cauwenberghs, U 1997. "VLSI cellular array of coupled delta-sigma
modulators for random analog vector generation", p. 1151-1155

Cauwenberghs, U 1998. "VLSI delta-sigma cellular neural network for
analog random vector generation", p. 147-150

Cauwenberghs, U, 1999. "Delta-sigma cellular automata for analog VLSI
random vector generation", Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on [see also Circuits and Systems II:
Express Briefs, IEEE Transactions on], vol. 46, 3, pp. 240-250

Chen, H., Fleury, P., and Murray, A. F. 2003. "Minimizing Contrastive
Divergence in Noisy, Mixed-mode VLSI Neurons". Proceedings of the
Neural Information Processing Systems (NIPS'2003) conference

182

Bibliography

Chen, H., Floury, P., and Murray, A. F., "Unsupervised Probabilistic Neural
Computation in Mixed-Mode VLSI" in Valle, M. (ed.), "Smart Adaptive
Systems on Silicon" 2004.

Chen, H., Fleury, P., Tang, T. B., and Murray, A. F. 2004. "Adaptive Noisy
Neural Computation in Mixed-mode VLSI". Proceedings of the Seventh
International Conference on Cognitive and Neural Systems, p. 68, Boston,
USA

Chen, H. and Murray, A. F. 2002. "A Continuous Restricted Boltzmann
Machine with a Hardware-Amenable Learning Algorithm ". Proceedings of
the International Conference on Artificial Neural Networks (ICANN2002), p.
358-363

Chen, H. and Murray, A. F., 2003. "Continuous restricted Boltzmann machine
with an implementable training algorithm", Vision, Image and Signal
Processing, lEE Proceedings-, vol. 150, 3, pp. 153-158

Dalzell, R. W H. "Helmholtz Machines and Non-stationary Data Fusion."
Ph.D. dissertation, The University of Edinburgh, 2001.

Dalzell, R. W. H. and Murray, A. F. 1999. "A framework for a discrete valued
Helmholtz machine"-54

Dayan, P. and Hinton, G, 1996. "Varieties of Helmholtz machine", Neural
Networks, vol. 9, 8, pp. 1385-1403

Dayan, P., Hinton, G, Neal, R., and Zemel, R., 1995. "The Helmholtz
machine", Neural Computation, vol. 7, 5, pp. 889-904

Edwards, P. J. and Murray, A. F., 1998. "Fault tolerance via weight noise in
analog VLSI implementations of MILPs-a case study with EPSILON",
Circuits and Systems IT Analog and Digital Signal Processing, IEEE
Transactions on [see also Circuits and Systems IT Express Briefs, IEEE
Transactions on], vol. 45, 9, pp. 1255-1262

Fels, S. S. and Hinton, G E., 1997. "Glove-talk II - a neural-network interface
which maps gestures to parallel formant speech synthesizer controls", Neural
Networks, IEEE Transactions on, vol. 8, 5, pp. 977-984

Fleury, P., Bofill-i-Petit, A, and Murray, A. F. 2004. "Neural Hardware:
beyond ones and zeros". Proceedings of the European Symposium on
Artificial Neural Networks (Esann '2004)

183

Bibliography

Forbes, N. and Foster, M., 2003. "The end of moore's law?", Computing in
Science & Engineering [see also IEEE Computational Science and
Engineering], vol. 5, 1, pp. 18-19

Frey, B. J. and Hinton, G E., "A simple algorithm that discovers efficient
perceptual codes" in Hams, L. and Jenkin, M. (eds.), "Computational and
Biological Mechanisms of Visual Coding" New York: Cambridge University
Press, 1996.

Frey, B. J., Hinton, G E., and Dayan, P. 1995. "Does the wake-sleep
algorithm produce good density estimators?"-7

Friston, K. J., Penny, W., Phillips, C., Kiebel, S., Hinton, G E., and
Ashburner, J., 2002. "Classical and Bayesian Inference in Neuroimaging:
Theory", Neurolmage, 16, pp. 465-483

Gaines, B. R., "Stochastic Computing Systems" in Tou, J. F. (ed), "Advances
in Information Systems Science, v.2" New York: Plenum, 1969, pp. 37-172.

Geman, S. and Geman, D., 1984. "Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images", IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741

Gray, R. M. "Entropy and Information Theory" New York, NY USA:
Springer-Verlag, 1990.

Hara, K. and Nakayamma, K. 1994. "Comparison of activation functions in
multilayer neural network for pattern classification", p. 2997-3002

Haykin, S. "Neural Networks: a comprehensive foundation" 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall Inc., 1999.

Haykin, S., "Stochastic Machines and their Approximates", "Neural
Networks: a comprehensive foundati on" 2nd ed. Upper Saddle River, NJ,
USA: Prentice Hall Inc., 1999.

Hinton, G E. and Sejnowski, T J., "Learning and Relearning in the
Boltzmann Machine" in Rumelhart, D. E. and McLelland, J. D. (eds.),
"Parallel Distributed Processing: Explorations in the Microstructure of
Cognition" Cambridge, MA, USA: MIT Press, 1986, pp. 283-317.

Hinton, G E., 1989. "Connectionist learning procedures", Artificial
Intelligence, vol. 40, sep. pp. 185-234

Bibliography

Hinton, G E. 1999. "Products of experts", p. 1-6, London, UK, IEEE

Hinton, G E., 2002. "Training products of experts by minimizing contrastive
divergence", Neural Computation, vol. 14, 8, pp. 1771-1800

Hinton, Ci E., Dayan, P., Frey, B. J., and Neal, R. M., 1995. "The "wake-
sleep" algorithm for unsupervised neural networks", Science, vol. 268, 5214,
pp. 1158-1161

Hinton, G B. and Zemel, R. S., "Autoencoders, Minimum Description Length
and Helmholtz Free Energy" in Cowan, J. D., Tesauro, Ci, and Aispector, J.
(eds.), "Advances in Neural Information Processing Systems" San Mateo,
CA: Morgan Kaufmann, 1994.

Holmes, A. J. "The use of nonvolatile a-Si:H memory devices for synaptic
weight storage in artificial neural networks." Ph.D. dissertation, University of
Edinburgh, U.K., 1995.

Hopfleld, J. J., 1982. "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities", Proceedings of the National Academy of
Science, USA, vol. 79, April, pp. 2554-2558

Hopfleld, J. J., 1984. "Neural networks and physical systems with graded
response have collective properties like those of two-state neurons",
Proceedings of the NationalAcademy of Science, USA, vol. 81, May, pp.
3088-3092

Hopfleld, J. J., 1988. "Artificial neural networks", Circuits andDevices
Magazine, IEEE, vol. 4, 5, pp. 3-10

Hopgood, A. "Intelligent Systems for Engineers and Scientists" Boca Raton,
FL, USA: CRC Press, 2001.

Horrowitz, P. and Hill, W. "The art of electronics" 2nd ed. Cambridge, UK:
Cambridge University Press, 1989.

Ikeda, S., Amari, S., and Nakahara, H. 1999. "Convergence of The Wake-
Sleep Algorithm". Advances in Neural Information Processing Systems
(7VIPS98), p. 239-245, Cambridge, MA, MIT Press

Jackson, (I B. "Hardware Neural Systems for Applications: a Pulsed Analog
Approach." Ph.D. dissertation, University of Edinburgh, U.K., 1996.

Bibliography

Jayakumar, A. and Alspector, J. 1992. "A Cascadable Neural Network Chip
Set With On-chip Learning Using Noise And Gain Annealing", p. 19-19

Johns, D. A. and Martin, K. "Analog Integrated Circuit Design" Toronto,
Canada: John Wiley & Sons, 1997.

Kondo, Y. and Sawada, Y. 1991. "A stochastic logic neural network as a
deterministic and probabilistic Hopfield network", p. 924

Kondo, Y. and Sawada, Y, 1992. "Functional abilities of a stochastic logic
neural network", Neural Networks, IEEE Transactions on, vol. 3, 3, pp. 434-
443

Kullback, S. "Information Theory and Statistics" Gloucester, MA, USA: Peter
Smith, 1968.

Linares-Barranco, B., Andreou, A. G, Indiveri, U, and Shibata, T., 2003.
"Guest editorial - Special issue on neural networks hardware
implementations", Neural Networks, IEEE Transactions on, vol. 14, 5, pp.
976-979

Mayes, D. J., Louvet, J. E., and Hamilton, A. 1995. "DYMPLES-an analogue
current mode pulsed synapse", p. 477-482

Mayraz, U and Hinton, G E., 2002. "Recognizing handwritten digits using
hierarchical products of experts", IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 24, vol. 24, Feb, pp. 189-197

Mead, C. A. "Analog VLSI and Neural Systems" Reading, MA, USA:
Addison-Wesley, 1989.

Mojarradi, M., Binkley, D., Blalock, B., Andersen, R., Ulshoefer, N.,
Johnson, T., and Del Castillo, N., 2003. "A miniaturized neuroprosthesis
suitable for implantation into the brain", IEEE Trans. on Neural Systems and
Rehabilitation Engineering, vol. 11, 1, pp. 38-42

Moore, G E. 1975. "Progress in Digital Integrated Electronics". IEDM

Murray, A. and Tarassenko, L. "Analogue Neural VLSI" 1st ed. London, UK:
Chapman & Hall, 1994.

186

Bibliography

Murray, A. F., Nov.2001. "Novelty detection using products of simple experts
- a potential architecture for embedded systems", Neural Networks, vol. 9, 14.
pp. 1257-1264

Murray, A. F., Butler, Z. F., and Smith, A. V. W. 1988. "VLSI neural
networks", p. 7/1-7/4

Murray, A. F. and Smith, A. V. W. 1987. "A novel computational and
signalling method for VLSI neural networks". Proceedings of the European
Solid State Circuits Conference, p. 19-22, Berlin, VDE-Verlag

Murray, A. F. and Smith, A. V. W, 1987. "Asynchronous arithmetic for VLSI
neural systems", Electronics Letters, vol. 23, 12, pp. 642-643

Murray, A. F. and Smith, A. V. W., 1988. "Asynchronous VLSI neural
networks using pulse-stream arithmetic", Solid-State Circuits, IEEE Journal
of vol. 23, 3, pp. 688-697

Murray, A. F. and Tarassenko, L. "Analogue Neural VLSI. a pulse stream
approach" London, UK: Chapman & Hall, 1994.

Neal, R. M., 1992. "Connectionist Learning of Belief Networks", Artificial
Intelligence, vol. 56, pp. 71-113

Neal, R. M. and Dayan, P., 1996. "Factor analysis using delta-rule wake-sleep
learning", Neural Computation, vol. 9, pp. 1781-1803

Pearl, J. "Probabilistic Reasoning in Intelligent Systems" San Mateo, CA,
USA: Morgan Kauffman, 1991.

Pearl, J., 2004. "Evidential reasoning using stochastic simulation of causal
models", Artificial Intelligence, vol. 32, pp. 245-257

Revow, M., Williams, C. K. I., and Hinton, G E., 1996. "Using generative
models for handwritten digit recognition", Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 18, 6, pp. 592-606

Reyneri, L. M., 1995. "A performance analysis of pulse stream neural and
fuzzy computing systems", Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on [see also Circuits and Systems II:
Express Briefs, IEEE Transactions on], vol. 42, 10, pp. 642-660

187

Bibliography

Reyneri, L. M. 1999. "Theoretical and implementation aspects of pulse
streams: an overview", p. 78-89

Robinson, M. E., Yoneda, H., and Sanchez- Sinencio, E., 1992. "A modular
CMOS design of a Hamming network", Neural Networks, IEEE Transactions
on, vol. 3, 3, pp. 444-456

Romariz, A. and Wagner, K. 2004. "Implementation and coupling of
dynamic neurons through optoelectronics". Proc. of the European Symposium
on Artificial Neural Networks (ESANN'04)

Rumelhart, D. E. and McLelland, J. D. "Parallel Distributed Processing:
Explorations in the Mircrostructures of Cognition" Cambridge, MA, USA:
MIT Press, 1986.

Sato, S., Nemoto, K., Akimoto, S., Kinjo, M., and Nakajima, K., 2003.
"Implementation of a new neurochip using stochastic logic", Neural
Networks, IEEE Transactions on, vol. 14, 5, pp. 1122-1127

Schmerbeck, T. 2-9-2002. "Noise coupling in mixed-mode ICs". CMOS IC
Design: Practical Aspects in Analog and Mixed-Mode ICs, Lausanne,
Switzerland, Ecole Polytechnique Federale de Lausanne (EPFL)

Smolensky, P., "Information processing in dynamical systems: Foundations of
harmony theory" in Rumeihart, D. E. and McLelland, J. D. (eds.), "Parallel
Distributed Processing: Explorations in the Microstructure of Cognition"
Cambridge, MA, USA: MIT Press, 1986, pp. 195-281.

Stanford, V., 2003. "Pervasive computing goes the last hundred feet with
RFID systems", Pervasive Computing, IEEE, vol. 2, 2, pp. 9-14

Tang, T. B., Chen, H., and Murray, A. F. 2003. "Adaptive Stochastic
Classifier for Noisy pH-ISFET Measurements ". Proceedings of the
International Conference on Artificial Neural Networks (ICANN2003), p.
638-645

Tang, T. B., Chen, H., and Murray, A. F., 2004. "Adaptive, integrated sensor
processing to compensate for drift and uncertainty: a stochastic 'neural'
approach", Nanobiotechnology lEE Proceedings-, vol. 151, 1, pp. 28-34

Tang, T B., Johannessen, E. A., Wang, L., Astaras, A., Ahmadian, M., Cm L.,
Murray, A. F., Cooper, J. M., Beaumont, S. P., Flynn, B. W., and Cumming,
D. R. S. 2002. "IDEAS: A Miniature Lab-in-a-Pill Multisensor

188

Bibliography

Microsystem". Proceedings of the IEEE NORCHIP Conference, p. 329-334,
Copenhagen, Denmark- enmark

[91] Tarassenko, L., Murray, A. F., and Tombs, J. 1989. "Neural Network-
Architectures

etwork
Architectures for Associative Memory". Proceedings of the lEE Conference
on Artificial Neural Networks, p. 17-22

Tarler, M. D. and Mortimer, J. T., 2004. "Selective and Independent
Activation of Four Motor Fascicles Using a Four Contact Nerve-Cuff
Electrode", Neural Systems and Rehabilitation Engineering, IEEE
Transactions on [see also IEEE Trans. on Rehabilitation Engineering], vol.
12, 2, pp. 251-257

Tombs, J. and Tarassenko, L. 1991. "A fast, novel, cascadable design for
multi-layer networks". Proceedings of the 2nd International Conference on
Artificial Neural Networks, p. 64-68, Bournemouth, UK

Tombs, J. N., Tarassenko, L., and Murray, A. F., 1992. "Novel analogue VLSI
design for multilayer networks", Radar and Signal Processing, lEE
Proceedings F, vol. 139, 6, pp. 426-430

Turing, A. M. 1936. "On computable numbers with an application to the
Entscheidungs problem". Proceedings of the London Mathematical Society,
p. 230-265

Wang, K. L. 2001. "Microelectronics roadmap: from ultimate CMOS to
quantum information systems"

Woodburn, R. J., Astaras, A., Dalzell, R. W. H., Murray, A. F., and McNeill,
Dean K. 2000. "Computing with uncertainty in probabilistic neural networks
on silicon", Berlin, Germany

Yamazaki, K. 2004. "Research directions for ubiquitous services".
Proceedings of the International Symposium on Applications and the Internet
(SAINT '04), p. 12, IEEE Computer Society

189

