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This thesis presents a novel hardware implementation of a binary-state, probabilistic 

artificial neuron using the pulse-stream analogue integrated circuit design 

methodology. The artificial neural network architecture targeted for implementation 

is the Helmholtz Machine, an auto-encoder trained by the unsupervised Wake-Sleep 

algorithm. A dual-layer network was implemented on one of two integrated circuit 

prototypes, intended for hardware-software comparative experiments in unsupervised 

probabilistic neural computation. Circuit modules were designed to perform the 

synaptic multiplication and integration functions, the sigmoid activation function, 

and to generate probabilistic output. All circuit design was modular and scaleable, 

with particular attention given to silicon area utilization and power consumption. The 

neuron outputs the calculated probability as a mark-to-period modulated stream of 

pulses, which is then randomly sampled to determine the next state for the neuron. 

Implementation issues are discussed, such as a tendency for the probabilistic 

oscillators inside each neuron to phase-lock or become unstable at higher 

frequencies, and how to overcome these issues through careful analogue circuit 

design and low-power operation. Results from parallel hardware-software 

experiments clearly show that learning takes place consistently on both networks, 

verifying that the proposed hardware is capable of unsupervised probabilistic neural 

computation. As expected, due to its superior mathematical precision, the software-

simulated network learns more efficiently when using the same training sets and 

learning parameters. The hardware implementation on the other hand has the 

advantage of speed, particularly when full advantage is taken of its parallel 

processing potential. The developed hardware can also accept pulse-width analogue 

neural states, a feature that can be exploited for the implementation of other existing 

and future auto-encoder artificial neural network architectures. 
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What we have to learn to do, we learn by doing. 

Aristotle (384-322 BC) 



This chapter serves as a concise introduction to the subject material, the motivation 

and aims of this project. 

1.1. 	Introduction 

Artificial neural networks (ANNs) are algorithmic structures inspired by biological 

nervous systems and capable of performing computations in a parallel, distributed 

fashion. They are often defined as mathematical formulae and implemented as 

software simulations running on mainstream digital computers, or hard-wired as 

electronic circuits in silicon chips'. ANNs are rather unconventional compared to 

most other man-made computation devices. Most such devices employ Boolean logic 

and some kind of central processing unit, while artificial neural computation  relies 

on information propagation via networks of highly interconnected simple 

thresholding units. By an analogy with neurophysiology these distributed processing 

units are referred to as neurons and their weighted interconnections are known as 

synapses. From the research point of view the main attractions of neural computation 

are the ability to learn from experience, the distributed and massively parallel nature 

of information processing, the algorithmic simplicity of individual nodes and the 

capacity for unsupervised learning [52]. 

In practical terms ANNs are particularly useful in scenarios where a problem requires 

some form of computational solution but it is difficult or intractable to predict and 

Unconventional technologies for neural implementations, such as optics and molecular computing 
have also been reported in the literature. 

2 Artificial neural computation will henceforth be referred to as neural computation, unless otherwise 
explicitly stated. 
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explicitly define a desirable output for each possible input. The ability to learn by 

experience and to form a model capable of providing useful conclusions, based on 

input encountered for the first time, is one of the most sought-after ANN 

characteristics. This characteristic could potentially form the basis for the largest 

technological impact of ANNs to date: to provide man-made machines with the 

ability to dynamically adapt to human behaviour, for instance through widespread 

use of speech, facial and gesture recognition, rather than expect their human 

operators to adapt to the limitations of contemporary I/O interfaces [30], [63]. 

Unsupervised ANNs have the additional advantage of performing learning-by-

experience without the need for an overseeing designer to set training targets during 

the training phase. This opens the possibility for practical applications such as 

continuous unsupervised learning and adaptability to drifly, noisy data as well as 

novelty detection [26]. 

1.2. 	Stochastic neural computation 

Stochastic or probabilistic neural computation refers to ANN information processing 

in which neuron inputs define the probability of neuron output, rather than explicitly 

defining it. Consequently, supplying a stochastic ANN repeatedly with the same 

input produces various possible outputs at particular probability distributions, rather 

than a single consistent answer. This is in contrast to deterministic ANNs, in which 

the output is consistent and explicitly defined by the input and the state of the 

weighted synaptic connections. 

Stochastic neural computation is becoming increasingly popular, particularly for 

ANN varieties which can learn in an unsupervised fashion. The element of 

probability in stochastic ANNs plays a dual role: it has an essential part in modelling 

natural variability in real-world analogue data, and also drives the search over 

solution space [25]. It has proven to be an effective technological element, improving 

flexibility and performance in various applications often associated with ANNs such 

as pattern classification, pattern completion and novelty detection [45], [41]. 
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Furthermore, stochastic ANNs have been shown to train from and adapt to drifting 

sensor output in real time, classify noisy biomedical data and perform handwriting 

recognition, in all cases without supervision [61], [25], [89]. 

Certain types of stochastic ANNs, such as Bayesian Belief Networks (BBNs) [35], 

are capable of probabilistic inference and capturing higher-level statistical 

relationships in input data, thus achieving popularity in application fields as diverse 

as automated medical diagnostics, finance and technical troubleshooting [74], [25]. 

The Helmholtz Machine is an unsupervised stochastic ANN algorithm which enjoys 

most of the aforementioned advantages [28], [47]. In addition, it learns using the 

Wake-Sleep unsupervised training algorithm which is comparatively simple and 

updates each synaptic weight using information that is locally available to each 

neuron. The Helmholtz Machine was therefore chosen among several stochastic 

neural architectures for its hardware amenability, to serve as an experimental 

platform for the investigations into stochastic neural computation described in this 

thesis. 

1.3. 	Hardware implementations 

ANN research is remarkably diverse, in some cases motivated by an effort to produce 

algorithms that are theoretically and mathematically sound, in others to provide 

biologically plausible neuromorphic models, to investigate neural structures that are 

computationally efficient and amenable to hardware implementation, or to provide 

practically useful solutions to computational problems in a variety of cross-

disciplinary scenarios [88], [78]. 

There are several reasons that make hardware implementations of ANN algorithms 

interesting from the research and application points of view. The primary advantage 

compared to software simulations is the exploitation of true parallel processing, 

asynchronous operation and fault tolerance [52]. Another benefit is that of interfacing 

to the environment via sensors and actuator, such as in the fields of telemetry and 
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robotics. Since no conventional analogue computers exist, software simulations have 

to run on digital machines, therefore requiring power and area-hungry conversions 

from analogue data to digital I/O and vice-versa. Even when such conversions are 

possible, an artificial quantization is imposed on the data which would be 

unnecessary in the case of an analogue very large scale integration (VLSI) 

implementation of the same ANN. 

The aforementioned reasons, along with additional motives such as increased design 

flexibility, reduced power consumption and silicon area efficiency, explain why a 

remarkable share of hardware ANN implementations reported in the literature utilise 

the analogue VLSI platform. In some applications such as biomedical neural implant 

prosthesis, size, power and an analogue interface are critical design requirements, 

making the use of analogue neural structures highly desirable [61], [31]. 

The drawback of analogue VLSI designs is their inherent vulnerability to amplitude 

noise. By adopting the pulse-stream design methodology, which encodes signals as 

analogue information in the time dimension of a stream of pulses, the importance of 

this drawback can be significantly reduced. The trade-off is increased sensitivity to 

frequency (edge-jitter) noise, but this is generally a less pressing concern for circuits 

operating in a conventionally noisy environment [67]. 

1.4. 	Thesis and novelty 

This thesis aims to examine the hypothesis that stochastic artificial neural network 

algorithms can be effectively implemented in analogue VLSI hardware using pulse-

stream design methods. As this proposition has not been investigated before, it will 

be studied in the context of a small Helmholtz Machine, a relatively simple and well-

understood binary stochastic neural network architecture, which can be trained by the 

low-complexity Wake-Sleep unsupervised algorithm. 

The performance of the prototype hardware developed for the Helmholtz Machine 

(HM) will be assessed against a benchmark provided by an equivalent HM network 
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operating under ideal software simulation conditions. By 'ideal' conditions we mean 

high accuracy of double-precision real number arithmetic for the calculations, as well 

as the lack of noise interference, function modelling imprecisions and manufacturing 

tolerances that affect computation on analogue hardware. The software simulation 

also enjoys an abundance of power, memory, time, space and silicon area resources, 

which indirectly also contribute to the same effect. 

The investigative plan of action can be analytically listed as follows below: 

Design a novel, scalable hardware neuron which can provide probabilistic 
output, employing the analogue pulse-stream methodology 

Build an analogue VLSI hardware prototype of the Helmholtz Machine ANN 
using the stochastic neuron design 

Generate a randomised training database for experimentation in neural 
learning, varying the number and inter-relation of probabilistic distributions 
in each data set 

Develop a software simulation model equivalent to the ANN implemented in 
hardware 

Choose meaningful points of merit that can be used to evaluate the capacity 
and efficiency of unsupervised learning in both the software and hardware 
ANNs 

Use the software simulation to investigate the limitations of a Helmholtz 
Machine of the particular size and topology under ideal' conditions 

Demonstrate that the prototype hardware is capable of unsupervised learning 

Evaluate the performance of the hardware prototype against the software 
simulation model 

Investigate the limitations of the proposed design and suggest further 
improvements 

Ideal in this case refers to the relatively more accurate, noise-free computation performed on a 
digital PC. We disregard for now digital quantization effects due to the high precision of the digitised 
analogue variables. 
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The approach for the design of the proposed stochastic neuron is original, based on 

the incorporation of a randomly-sampled pulse-width modulated oscillator rather 

than the addition of zero-mean noise to the signal [6], [21]. Part of the design 

challenge is to prevent the oscillators within each neuron from phase-locking with 

one another or, if this proves impossible, to investigate the noise propagation 

pathways that impede uncorrelated oscillation. Moreover, this is the first attempt to 

implement the Helmholtz Machine design in analogue hardware, combining the 

pulse-stream design methodology with stochastic neural computation. 

1.5. 	Chapter overview 

Chapter 2 presents a concise review of selected research in stochastic neural 

networks, with emphasis on unsupervised paradigms. The Helmholtz Machine and 

the Wake-Sleep training algorithm are introduced in more detail, since it occupies a 

central role in this project. Motives driving research into hardware implementations 

of ANNs are discussed, with a focus on the analogue VLSI platform. Finally, the 

pulse-stream circuit design methodology is briefly presented and discussed within 

the neural analogue VLSI context. 

Chapter 3 contains discussion of the various circuits comprising the 30 HM network 

and are proposed for hardware implementation. The circuits are presented as small 

modules, a synapse, sigmoid and an output stage probabilistic oscillator. Analogue 

simulation and layout plots are presented and discussed for each circuit. The design 

is gradually built up to higher levels of design hierarchy until the full HM network is 

presented. 

Chapter 4 presents PRONEO and STONECORPS, the two prototype application 

specific integrated circuits (ASICs) developed for this project using the analogue 

VLSI platform. Design goals are discussed along with an overview of the circuits 

implemented on each chip. Finally, circuit-level lab testing results are presented for 

each prototype. 
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Chapter 5 presents the software-hardware setup used to perform experiments 

comparing the performance of the prototype hardware to a HM of identical topology 

running in software simulation. The common data vector training set used for both 

sets of experiments is presented and merit points used to evaluate learning are 

discussed. Finally, the results from the experiments are presented, analysed and 

discussed, and a list of evaluation conclusions is drawn. 

Chapter 6 summarises the work and conclusions presented in the preceding chapters. 

It presents some ideas for improvement and future neural research both on the 

algorithmic and hardware design level, as well as some pertinent recent 

developments in the field of unsupervised stochastic neural computation. Finally, we 

take a brief look at promising emerging technologies and trends relevant to this work 

and attempt to gain some insight into future developments. 
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This chapter presents selected cases of existing research in the fields of probabilistic 

neural' computation, unsupervised neural learning and the pulse-stream analogue 

hardware design methodology, all of which underpin the hardware implementation of 

the Helmholtz Machine ANN presented in this thesis. 

2.1. 	Introduction 

Research in the field of Artificial Neural Networks (AINNs) has been increasingly 

focusing on architectures exploiting and capable of performing probabilistic 

computation, sometimes referred to as stochastic computation 2. The merits of these 

neural architectures which helped generate the gradual shift of interest, as well as 

their advantages over their deterministic ANN counterparts are discussed later in this 

chapter. 

Unsupervised network architectures are increasingly focused on within the ANN 

research community, particularly since the last decade. This interest originates from 

the inability of supervised architectures to function in circumstances where training 

targets are incomplete or entirely unavailable. In addition there exist scenarios in 

which it is advantageous for an algorithm to be able to periodically re-adjust to the 

data it processes over long time scales, without the need for constant supervision by a 

dedicated training expert. Tracking the gradual drift in the output of solid-state 

sensors, essentially performing periodic re-calibration necessitated by ageing or 

The term 'neural' in this thesis is used in the context of Artificial Neural Networks rather than 
biological neurons, unless explicitly stated otherwise. 

2 The two terms are used interchangeably in this thesis. 
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contamination of the sensor, is an example of such a scenario. It is worth noting that 

most unsupervised ANN training techniques can be straight-forwardly adapted for 

supervised learning, either through manipulation of their training data sets or 

modification of the training algorithm. 

The ANN architecture chosen as the focus for hardware implementation in this 

project is a product of combined research in the fields of stochastic neural 

computation and unsupervised neural learning. Introduced in 1994 by Dayan, Hinton 

and Zemel [28,46,47], the Helmholtz Machine (HM) belongs to a class of ANNs 

known as stochastic auto-encoders and is trained by the unsupervised Wake-Sleep 

algorithm. The reasons for selecting the HM as a focus for our experiments in 

stochastic neural computation are discussed later in this chapter. 

2.2. 	Stochastic Neural Computation 

The HM can be more generally classified as a stochastic neural computation device. 

Before proceeding with presenting details about its structure, training and 

computation capabilities it is worth defining stochastic neural computation. 

A deterministic computing device starts a computation session in a state precisely 

determined by its input data. It proceeds through intermediate states as instructed by 

its programming instructions, following a path through its continuous state space 

until it reaches the end of the program and produces its final output. The minimalist 

Turing Machine [95], an abstract computation device functionally as powerful as any 

computer, falls in this category ([40], p.748) and consequently so do all modem 

digital computers. 

A stochastic computing device introduces an element of probability somewhere in 

the process, so that its trajectory through state space can no longer be precisely 

determined by its input data and programming instructions. Moreover, given enough 

complexity in the input data and degrees of freedom in its state space, the device is 

likely to produce a different answer each time to the same input data. 
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Inference techniques based on the parametric combination of several probability 

density distributions are commonly used in the field of statistics. Probabilistic neural 

computation (PNC) techniques also rely on parametric mixing of probability density 

distributions to perform inference, but differ in several ways. 

First, the parameters involved in PNC are generally widely distributed and too 

complex to have a clear meaning assigned to them. In contrast, statistical inference 

techniques rely on correct assignment of probabilistic density models to the data 

being modelled, and on the parameters of the final model being meaningful in the 

context of the data being modelled ([25], p. 10-11). Second, statistical probabilistic 

inference techniques operate on the assumption that the data being modelled is the 

product of a single cause, or of a single set of parameters. PNC techniques, on the 

other hand, are generally capable of building multiple cause models. By this we 

mean that PNC techniques can accurately model data sets produced by multiple 

interacting processes, a large advantage given the abundance of such data in 

environmental measurements such as sensor readings. 

2.2.1. 	The Hopfield network 

The study of the computationally powerful human and animal nervous systems has 

long been suggesting to biologists and engineers the merits of exploiting the 

emergent collective computational abilities of networks consisting of simple, noisy, 

threshold computing elements. The strong research interest in the field of ANNs 

during the last two decades, however, was sparked by the introduction in 1982 of a 

non-linear feedback network with weighted interconnections known as the Hopfield 

network [49,50]. 

The Hopfield network is a recurrent network, using fully feedback-interconnected 

binary state neurons with the exception of self-feedback loops [52]. This is in 

contrast to feed-forward networks such as the HM which consist of neurons in 

separate input, output and —optionally- hidden layers, with no interconnections 
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within each layer. The topology of a 4-node Hopfield network is depicted in fig. 1 

below'. 

cK 
Input 
vector 

MAK 

Fig. 1: Topology of a HopJIeld auto-associative network (or content-addressable 
memor)), a recurrent ANN with symmetrically weighted feedback 
connections. There are no self-feedback loops or hidden neuron layers. 

The initial Hopfleld network model was based on a sharp threshold function and 

employed stochastic sampling of each neuron's input [49], while a later deterministic 

version employed a sigmoid logarithmic function and continuous neuron states [50]. 

Both networks demonstrated the ability to perform as a content-addressable 

memory?, essentially performing pattern completion after a number of feedback 

iterations during which the network's output settled into a stable state. 

The notation w, used throughout this thesis signifies the value of the synaptic weight on the 

connection feeding the output of neuronj to the input of neuron i. 

2  Sometimes also called an auto-associative memory 
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Once a pattern is presented, the network undergoes an iterative relaxation process 

during which the neuron outputs are calculated according to equation 2.1 

	

>0 	x(t+1)=+1 

wx(t) 	=0 	x(t+1)=x(t) 
	

[2.1] 

	

<0 	x.(t+1)=-1 

where w. is the value of the weighted bi-directional interconnection between neurons 

i and j, and x(t) is the state of neuron i at time t in the iterative relaxation process. 

Determination of neuron output is followed by freezing all network activity, in turn 

followed by an update of the synaptic weights associated with each neuron 

interconnection according to the following equation 

M-1 

	

= 
	

[2.2] 

where m is the index of a particular input vector pattern being 'memorised', Mis the 

number of elements it contains, and xim the particular vector element associated with 

neuron i. Note that the neuron index variable i must be different fromj at all times, as 

there are no self-feedback loops. 

There are two methodologies to perform the neuron state update, producing similar 

but slightly different results. The first is called synchronous updating, where all 

activity is temporarily frozen and the next state of each neuron is computed. The 

asynchronous updating method involves freezing all activity and then visiting each 

neuron in turn to update it to a new state. The significance in the latter method is that 

the order in which the neurons are visited matters, since their new state will affect the 

state of other neurons updated later within the same iteration. In order to prevent 
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negative effects on the training of the network, neurons are updated in a random 

order within each iteration therefore inserting an element of stochasticity in the 

whole process. This clearly alters the sequence of intermediate patterns that the 

network propagates through, however both algorithms share similar characteristics 

and the choice of update methodology is rarely an important factor in the Hopfield 

network ([11], p.  142-3). 

2.2.1.1. Discussion 

Hopfield networks tend to converge to local minima on the training energy landscape 

[51] which may not be the optimal solution. They also have a relatively poor storage 

capacity [91], estimated at about 0.15N patterns where N is the number of network 

nodes ([11], p.  144). In the research field of supervised ANNs they were surpassed 

by the introduction of the back-propagation algorithm by Rumeihart et all  [83] for 

the training of supervised feed-forward networks such as the Multi-Layer Perceptron 

([40], ch. 4). In the unsupervised training ANN camp stochastic recurrent 

architectures such as the Boltzmann Machine (see section 2.2.2), and feed-forward 

ones such as the HM and Product of Experts (PoE) also generally outperform the 

Hopfield network. 

The legacy of Hopfield's network, however, significantly influenced ANN research 

developments to this day. Its iterative auto-associative learning rules and the 

introduction of an energy function which is minimised during learning inspired 

several threads of neural architectures. In addition, its amenability to hardware 

mapping as a resistively-connected network of electronic amplifiers caused the first 

research wave of neural very large scale integration (VLSI) implementations on 

silicon ([73], p.  3). 

'It was later shown that similar results had been published by Parker in 1982 and also proposed —but 
not implemented- by Werbos in 1974 ([11], p.  68) 
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Of particular relevance to this thesis is the fact that the Hopfield network 

successfully combined, for the first time, simple networked 'neuron' nodes with the 

elements of unsupervised iterative learning, neuron feedback, a non-linear transfer 

function and stochasticitv. Though it does not consist of stochastic neurons and the 

probabilistic element does not have a dramatic impact on network performance, the 

randomised asynchronous updating methodology proposed by Hopfield makes this 

network an early forbear of stochastic computation ANNs. 

2.2.2. 	The Boltzmann Machine 

Proposed by Hinton [42,43], the Boltzmann Machine (BM) is a recurrent ANN 

consisting of binary stochastic neurons segregated in various layers. Some of these 

layers are hidden to the input neurons, while all neurons are fully interconnected with 

nodes in the same and its parental layer' via a single set of bidirectional weighted 

connections (see fig. 2 below). Hidden neurons are therefore not assigned values 

directly from the input data set, but their presence grants the BM the modelling 

flexibility to capture higher-order statistical structure inherent in the data. 

Unlike the Hopfield network, stochasticity in the BM is involved in assigning the 

binary state of neurons according to the following probability equation: 

A =p(s =l)= 	 [2.3] 

l+e T 

where s is the binary state of neuron with index i, p(s =1) is the probability that s 

will assume the value 1 for the next training iteration, T is a variable called the 

temperature of the system controlling the slope of the sigmoid function in the second 

part of the equation, and x7  is the neuron's total input activation given by the 

following formula: 

Parental dependency among layers begins with the input layer and propagates towards output 
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[2.4] 

where b is a bias input to the neuron (a constant) and wy  is the weight on the 

synaptic interconnection between neurons i andj. 

n units 

m units 

Ut units 

input vector 

Fig. 2: Topology of a 3x3x2 Boltzmann Machine ANN Neurons are partitioned in 
layers and interconnected only to the same and the parental layer. All bi-
directional inter-layer synaptic connections are depicted as solid-line 
arrows, while lateral (intra-layer) connections appear dashed. Parental 
dependency forms from the bottom upwards. 
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An analogy with thermodynamics provides the framework for calculating the energy 

of the network at any given time ([41])1. The probability of being in any one of these 

particular energy states is given by the Boltzmann distribution to which this ANN 

owes its name: 

E.  

Pm=ke T 
	

[2.5] 

where m denotes a state of the network, Em  the energy of the state, 'm  the 

probability of the network being in that energy state and T is the temperature of the 

system; for our purposes the temperature corresponds to the steepness of the slope of 

the sigmoid function in equation 2.3. 

Equation 2.5 expresses that lower energy states are more probable and also that as 

temperature is reduced, the probability is concentrated on a smaller subset of low-

energy states. These two properties form the basis for training the BM through 

gradient descent to lower energy states in its state space. The idea of slowly reducing 

temperature to force the network to assume lower-energy states is a technique called 

simulated annealing2  after yet another analogy with thermodynamics: annealing is 

the process of gradually cooling hot metal in order to harden it. 

According to the thermodynamics analogy, the energy of a particular BM is given by 

the following equation: 

[2.6] 
i::j jj 

'The idea of using statistical mechanics analogies to describe learning in ANNs was initially 
introduced by Hopfield. 

2  It is worth noting that the simulated annealing process is not mandatory but speeds up the process of 
reaching a thermal equilibrium (or Boltzmann equilibrium) state [42]. Since the BM is stochastic, this 
equilibrium state refers to a constant probability rather than a constant state (all states in a BM have a 
non-zero probability). The network will eventually reach this equilibrium provided the stochastic 
simulation is performed long enough. 
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A change of neuron i from state 1 to state 0 would propagate the following change in 

the energy of the network: 

AE=b+w3 s 
	

[2.7] 
ij 

The right part of this equation is equivalent to equation 2.4, which in turn means that 

the probability function for the state of a neuron (equation 2.3) can be rewritten as 

follows: 

Pi = p(s1  =1) 	 [2.8] 

1+e T 

Having established the formula required to form the energy landscape in the 

network's state space (equation 2.6), a process to evaluate the descent to the goal of 

lower energy levels (equation 2.7) and a probability for selecting neuron states 

(equation 2.8) what remains is a weight changing formula to increase the probability 

of the network switching to a lower energy state with each iteration. The weight 

change formula is produced using the Boltzmann distribution (equation 2.5) and 

minimisation of the subsequent Kuliback-Leibler divergence [38,60], the 

mathematical details of the calculation are available in [41]: 

IC 

z\w = .. (< s1s > - < ss >) 	 [2.9] 

where Aw j  is the change in the value of the synaptic weight, e is a learning step 

constant, T is the operating temperature, s1  is the binary state of neuron i, <.> 

denotes the 'expectation values' for neurons i and  (loosely the mean firing rate or 

correlation between them) over the training data, and <.> denotes the value of a 

similar expectation from network samples once it has reached thermal equilibrium. 
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Practically, the <s,s1> expectation values for the neural states is obtained by 

sampling the mean-firing correlation of neurons i and j over several iterations with 

the network inputs' clamped to the input data values. In a similar fashion, the <s1s1> 

expectations are calculated by letting the network iterate freely (i.e. without clamping 

the values of input neurons) and sampling once thermal equilibrium is reached 

It therefore becomes evident from equation 2.9 that there are two distinct phases in 

training the weights of the Boltzmann Machine. During the positive phase 

(sometimes also referred to as the incremental phase) the network operates with its 

inputs clamped. During the negative phase the network is allowed to run freely with 

no environmental input. Weight changing in both phases takes place by presenting 

the network with the entire set of learning examples and sampling the output 

probability of each neuron one at a time. The weight of each synaptic connection is 

consequently adjusted according to equation 2.9 and the change takes effect 

immediately affecting all subsequent weight changes. This technique has similarities 

to the technique used for training the stochastic model of the Hopfield ANN (see 

section 2.2. 1) and is known as Gibbs sampling [37,77]. 

2.2.2.1. Discussion 

The BM is considered to be the first truly stochastic ANN capable of unsupervised 

learning, in the sense that it incorporates probabilistic computing in the neuron 

processing level. Since its introduction it has inspired an abundance of related 

theoretical and hardware research in the field of stochastic ANNs [5], as well as 

formed the basis for a plethora of variations such as the Restricted Boltzmann 

Machine [86], Product of Experts [44,45] and the Continuous Research Boltzmann 

Machine [20,21,23] which are actively researched to this day. It has been 

successfully demonstrated to perform pattern completion, as an associative memory 

'Output neurons can also be clamped for a supervised training alternative ([11], p.  151-2). 
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and even provide optimised solutions to complex mathematical problems such as that 

of the travelling salesman ([11], p.  157-160) 

The negative phase in BM training is necessitated by a discrepancy in the steepest 

gradient descent in energy space as compared to the same descent in probability 

space [74]. While combined with the positive phase it stabilises the distribution of 

weights and helps the BM converge, it also dramatically increases computation time 

particularly due to the long Gibbs sampling process and despite the utilisation of 

simulated annealing. This turned out to be the more significant limitation of the BM, 

along with the requirement that a training pattern persist long enough for the network 

to reach thermal equilibrium. Another limitation of the BM is associated with it 

consisting of binary state neurons which limit its modelling capacities and prevent it 

from accepting analogue input data. Furthermore, its dependence on the difference 

between two average correlations to calculate the value of weight change can be a 

problem in the presence of sampling noise ([41], p. 569). 

2.2.3. 	Bayesian Belief Networks 

Sigmoid Belief Networks (SBNs) or Logistic Belief Networks were introduced in a 

paper by Neal in 1992 [74] as part of an effort to improve on the learning 

performance of the BM without sacrificing its capacity for unsupervised learning of 

arbitrary probability distributions. SBNs are a specific case of the broader ANN class 

of Belief Networks [76] which employ a directed acyclic graph topology, a fact that 

Neal exploited to replace the more numerous symmetric connections of the BM. 

Belief Networks can represent multiple-cause data using the neural nodes as 

variables and the interconnections as causal links explaining dependencies 

underlying the data. There is a limit, however, to these inference capabilities as they 

generally cannot learn causal links from data sets that do not explicitly contain values 

for every variable in the model. The response by unsupervised ANN researchers to 

this problem has been to restrict the type of variables (e.g. binary neural states) and 

to group them in layers. 
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Along these lines Neal restricted the SBN to binary state neurons organised in a feed-

forward topology, with no feedback or lateral connections within layers, further 

incorporating parental dependence between adjacent layers and unidirectional 

weighted interconnections. The diagram in fig. 3 below depicts a typical SBN 

topology. 

bias 

input vector 

Fig. 3: Topology of a 2x2x2 Sigmoid Belief Network. Binary state neurons are 
organised in layers with parental dependency from the bottom upwards, 
linked with unidirectional weighted interconnections and no feedback. Bias 
input is supplied by always-on dummy neurons via trainable synapses. 

Choosing a neuron's state only requires information available from its parental layer 

as can be deduced from the following SBN state probability formula: 
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Pi = p(s = 1)= 	 [2.10] 

1+e 

where pi  is the probability that neuron i will be in a binary state s1=1 in the next 

iteration, w11  is the weight on the synaptic connection from neuron i to j and T is a 

temperature variable for optional simulated annealing. 

Assume a state vector V = {s , s2  , s3,. . .s, } where n is the number of neurons in the 

BBN and s, are their individual binary states at any given time. Also assume state 

vectors i containing the states of input (visible) neurons and the state vector of 

hidden units V, so that V = 	i. The BBN weight change for the synaptic 

connection from neuron i to j can then be calculated according to the following 

expression: 

Aw 	 [2.11] 
T 	 _W fl S 

1+e 

where s is a learning step constant, T is a temperature variable for (optional) 

simulated annealing, p(V I ) is the conditional probability' of state vector given 

input vector v, while s1  and sj are the binary states of neurons i and j respectively. 

The conditional probability p(:V 1i ..) is obtained from one step Gibbs sampling 

performed with all data vectors. This weight change equation is derived from 

maximising the log-likelihood function computed from the training set, the 

mathematical details can be found in [411] along with a step guide to the SBN 

learning procedure. It is clear that calculation of the probability for the state of a 

neuron is more complicated than for the BM, a trade-off for using a single step of 

Gibbs sampling. 

This conditional probability is calculated using Gibbs sampling, see section 2.2.2 
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2.2.3.1. Discussion 

Supervised Belief Networks are one of the more popular success stories among 

stochastic ANNs, having proven their inference capabilities from probabilistic data in 

application fields as diverse as medical diagnostics [74], finance and technical 

troubleshooting ([25], p.  1-2). The SBN is an unsupervised, binary state and feed-

forward restricted version which has been shown to successfully model non-trivial 

probabilistic distributions. Moreover it has been experimentally shown [74] to 

outperform the BM due to the elimination of a second round of Gibbs sampling in its 

training cycle (such as in the negative phase of BM training.) 

The main limitation of the SBN is the restriction to binary state neurons which limit 

its modelling capacity in a manner similar to the BM. DespitQthe elimination of the 

BM's second round of Gibbs sampling, its training algorithm is still relatively 

computationally intensive when compared to more recent architectures such as the 

HM. The sampling process also has the adverse effect of complicating hardware 

implementation of the SBN, as calculation of the weight change does not exclusively 

rely on information available to a neuron's immediate vicinity (see equation 2.11 

above). 

2.3. 	The Helmholtz Machine 

The Helmholtz Machine (HM) was proposed by Hinton and Dayan in 1995 [28,46] 

and belongs to a class of unsupervised ANNs known as auto-encoders [47]. It 

combines the unsupervised stochastic neural learning capabilities of the BM with the 

proven ability of SBNs to extract and represent higher-order statistical relationships 

inherent in the input data [74]. 

Auto-encoder networks consist of two feed-forward belief networks with similar 

topologies which process data in opposite directions as shown in the diagram of fig. 

4 below. The recognition network processes information in the bottom-up direction, 

extracting higher-order causal relationships inherent in the input data. In a separate 
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and subsequent phase of processing, the generative network processes information in 

the opposite direction, regenerating 'fantasy' data at the inputs. This bi-directional 

flow of information through the HM is depicted in the diagram of fig. 5 below and 

provides essential targets for the neural states of either network during its 

unsupervised learning phase. 

bias 

Fig 4: The topology of a 2x2x2 Helmholtz Machine auto-encoder ANN In this 
depiction the recognition and generative networks are superimposed, the 
synaptic connections of the latter shown as dashed arrows. The dummy 
neurons providing bias for the generative network neurons are not shown in 
order to preserve clarity in the diagram. 

The topology of the two belief networks comprising an HM is identical to an SBN 

and the calculation of a neuron's total activation is the usual sum of all weighted 

inputs: 

Xi = 	 [2.12] 

24 



Chapter 2 	 Literature Review 

where X j  is the total activation input received by neuronj from its parental layer (Ii 

12, /3, ...), w11  is the weight on the connection between neuron i feeding its output to j 

(1 -> j), and s, is the state of neuron i in the parental layer. 

Similar to the BM and SBN the total activation is used to calculate the probability of 

a neuron's next state, making the HM an inherently stochastic network. The 

following  equation is used to calculate this probability: 

Pi. 	p(s =1)= 
1+1ez = 
	1 WfiS 	 [2.13] 

1+e 

where Pj  is the probability that neuron j will be in a state of s=J for the next 

iteration, s is the binary state of neuron j (0 or 1) and wp  is the weight on the 

connection of neuron i feeding its output toj. 

2.3.1. 	Training the Helmholtz Machine 

The HM employs two superimposed feed-forward networks and consequently uses 

two sets of weights, from here on referred to as the recognition weights and the 

generative weights. The formula for updating both sets of weights is the simple delta 

rule 

Awji = &s (t —p1 ) 	 [2.14] 

where Aw11  is the variable representing the weight change on the connection feeding 

the output of neuron i to j, e is a learning step constant, p is the probability 

calculated according to equation 2.13 and t1  is a binary variable serving as the target 

state for neuronj. 

The synaptic weights can therefore be updated according to the following iterative 

rule 
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w31  (n + 1) = 	(n) + Awj, 	 [2.15] 

where n is the iterative index and Aw11  is given by equation 2.14 above. 

While the simplicity of the Hebbian training delta rule of equation 2.14 is attractive 

from the computational and hardware implementation perspective, it presents the 

difficulty of finding a target state for the network in an overall unsupervised training 

context. This problem is solved by the HM using an ingenious algorithmic technique, 

according to which the recognition and generative networks provide training targets 

for each other's neuronal states in subsequent training phases. 

More specifically, training of the HM is performed using the 4-step Wake-Sleep 

algorithm as depicted in fig. 5 and listed below: 

Phases of the 'Wake-Sleep 'training algorithm: 

- Initialisation: both sets of weights are randomised within a margin centred 
around 0 (a typical value would be ±0.5). Neuron states of both networks are 
assigned arbitrary binary values (0,1). This step is only performed once at the 
beginning of training. 

Recognition pass: a vector from the training data set is presented to the 
visible layer of the recognition network, then propagated upwards according 
to the parental layer dependencies and new neural states are selected using 
equation 2.13 

Generative weight update: the weights of the generative network, including 
bias weights, are updated according to equations 2.14 and 2.15, obtaining 
their target state t1  from the recognition network's corresponding neuron 
selected in step A. 

Generative pass: the vector supplied by the biases at the top of the generative 
network' is propagated from top to bottom according to the parental layer 
dependencies and new neural states are selected using equation 2.13. A 
fantasy vector is generated at the bottom of the generative network. 

the top level neurons of the generative network obtain their input from 'always on' biases via 
trainable weighted connections. 
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D. Recognition weight update: the weights of the recognition network, including 
bias weights, are updated according to equations 2.14 and 2.15, obtaining 
their target state t, from the generative network's corresponding neuron 
selected in step C. 

- 	End of the training iteration, proceed with step A using the next vector from 
the training set. Continue iterating until the end of the training set or until 
training is terminated. 

Steps A and B constitute the wake stage of the training algorithm, during which the 

input data vector is processed (step A) and partially memorised (step B). Steps C and 

D constitute the sleep stage during which the network generates a dream-like fantasy 

vector (step C) and adjusts its recognition weights (step D). 

8 
Recognition network 	 Generative network 

Fig 5: The four training stages of a Helmholtz Machine, depicted here as two 
separate networks: recognition pass (A), adjustment of generative weights 
(B), generative pass and fantasy vector generation (C) and adjustment of 
recognition weights (D). The transfer of a target state t1  during (D) is shown 
with a dashed arrow, bias nodes and some connections have been omitted. 

2.3.1.1. An image recognition/generation analogy 

A simplified but instructive analogy for the function of the Wake-Sleep algorithm is 

to imagine the recognition network as an image recognition processor and the 

generative network as a graphics (artificial image) generator [33]. Incoming data is 

presented to the recognition software and analysed during the bottom-up pass (step 
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A), where higher-order statistical information underlying the data is captured. By 

analogy, the generative network produces artificial images during its top-down 

generative pass (step Q. 

Following initialisation of both sets of weights and neural states, both networks are 

likely to perform extremely poorly. The 'explanations" formed in the hidden neurons 

of the image recognition network are not likely to be useful, while the artificial 

images produced by the generative network are highly unlikely to resemble the 

original image data at all. 

By modifying the recognition weights (step D) in such a way as to increase the 

probability of the recognition network providing the correct 'explanations' to 

generated fantasy data, we are also improving the quality of the target states for 

training the generative weights (step B). In an equivalent manner, by adjusting the 

generative weights (step B) so as to increase the probability of the generative 

network producing more plausible explanations to input data input vectors (step B), 

we are concurrently improving the quality of the target states used for training the 

recognition weights (step D.) 

While this analogy provides some intuitive explanation on the function of the Wake-

Sleep algorithm, it does not clarify an important point. Why should we expect that a 

poor image recognizer should be able to provide adequate assistance (in the form of 

training targets) to a poor graphics generator and vice versa? In other words, why 

should two networks with initially poor hidden representations manage to improve 

them through successive iterations when they can only rely on each other? 

1  By 'explanations' we actually mean the capturing of higher-order statistical relations and causes 
underlying the input data by the hidden neurons in either of the two networks. In the image 
recognition analogy, that could be the presence of an object in the scene resulting in a particular 
pattern of pixels imprinted in the input image. From a purely practical perspective, providing an 
explanation is choosing the binary states of all hidden neurons in the recognition network. 
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2.3.1.2. A statistical perspective of the Wake-Sleep algorithm 

Considering the generative network, adjusting its synaptic weights aims at 

maximizing the probability that the network will reproduce the training  data. This is 

essentially likelihood maximization task in model fitting, a standard statistical 

approach. To set a target for this maximisation we need to know the probability of a 

particular 'explanation' (i.e. set of hidden generative neuron states) producing a 

particular training input data vector as a fantasy, for a given set of generative 

weights. Unfortunately, the number of such 'explanations' grows exponentially with 

the number of hidden neurons in the generative network, making the computation of 

all those posterior probabilities an intractable  task. 

From this perspective, the function of the recognition weights is to approximate in a 

computationally tractable way the aforementioned posterior probabilities. Since the 

HM is a stochastic network, for each input data vector the recognition weights 

essentially provide a probability distribution over possible explanations. This 

probability distribution is not the same as the one we are seeking, but successive 

approximations during step D of the sleep phase make it good enough to allow the 

generative weights to be improved. 

Mathematically, the delta rule for training the recognition weights was derived by 

Hinton and Dayan from maximising the log-probability of obtaining (in the 

recognition network) the hidden neural states that caused a particular fantasy. In a 

similar fashion, the delta rule for training the generative weights is derived from 

maximising a lower bound to the log-probability of obtaining (in the generative 

network) the hidden neural states that were caused by a particular input vector. The 

mathematical details of an analysis from this statistical point of view can be found in 

[28]. The details of another attempt at analysing the Wake-Sleep algorithm based on 

minimising the description length of the training data vectors can be found in [47]. 

It is worth noting that no conclusive proof for the convergence of the Wake-Sleep 

algorithm has been published to the best the author's knowledge. However, Ikeda, 

Amari et al [54] have provided proof for the specific case of the HM as a factor 
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analysis model and experimental evidence proves the probability distribution 

modelling capacities of the HM beyond doubt. Still, it is worth keeping in mind that 

the HM trained by the Wake-Sleep algorithm is not guaranteed to work in all 

practical situations and does indeed occasionally fail [41]. 

2.3.2. 	Discussion 

The HM compares favourably with Belief Networks, Gibbs samplers and other 

mainstream probability density modelling tools, particularly when its speed and 

computational demands are taken into account [34]. It has proven its capabilities in 

unsupervised pattern classification and completion, synthetic image recognition and 

graphics generation, handwriting recognition and sensor drift compensation [97], all 

on a software simulation level. An added advantage particularly pertinent to this 

thesis is the fact that the Wake-Sleep algorithm relies on a simple training rule and 

information local to each neuron, making hardware implementation more feasible. 

Finally, the Wake-Sleep algorithm has attracted some additional attention due to a 

possible analogy with biology, as there is evidence that neural tissue in the cortex 

may be constructing a hierarchical stochastic generative model of incoming sensory 

data, while also implementing an inverse recognition model [27,75]. This suggestion 

however is based on limited evidence and to this day no conclusive proof through 

neurobiological experiments has been published. 

The main shortcoming of the HM comes from limitations to its modelling capacity. 

Applying the delta training rule to update the recognition and generative weights 

maximises a different quantity in each case (see section 2.3.1.2). This leads to an 

imbalance in the network which has been proposed as a possible explanation for the 

modelling limitations [25]. In a sense it is the price to be paid for a simple, fast 

training rule consistent between the two networks. 
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2.4. 	Stochastic ANN hardware implementations 

Very Large Scale Integration (VLSI) circuit design on silicon is a natural choice to 

implement ANN systems, particularly if the massive parallelism speed advantage of 

such architectures is to be exploited. Developed primarily with the needs of modem 

digital circuits in mind, complementary metal oxide semiconductor (CMOS) 

technology has formed the basis for the majority of neural hardware 

implementations' [67], though alternative technologies are being actively researched 

[31,82]. The integrated circuits used in the probabilistic neural computation 

experiments for this thesis used CMOS fabrication technology. 

The proposition of the Hopfleld network in 1982 (see section 2.2. 1) sparked the first 

large wave of interest in analogue VLSI implementation of ANNs. Since then several 

trends have appeared in neural VLSI research, ranging from neuromorphic 

engineering [7,64] to biomedical neural prosthesis [65,92] to stochastic neural 

computation [9,10,97]. 

Apart from the obvious benefits to the field of neural prosthesis in biomedical 

engineering, there are several other strong motivations for implementing ANN 

architectures on silicon. First, there is a growing realisation that some artificial 

intelligence (AT) problems do not readily lend themselves to solution via traditional 

symbolic Al methodologies. That is not to say that symbolic Al cannot solve such 

problems —after all a digital machine can always run an ANN in simulation- but that 

some problems can be computationally intractable given current technological 

capabilities. Second, the real benefits of speed and fault-tolerance associated with 

massive parallelism are being sacrificed when the ANN system is implemented as a 

simulation by a digital machine with a single-pipeline processor. And finally, 

neuromorphic engineering research has shown that hardware ANN implementations 

can be useful tools in modelling the human and animal nervous systems, providing 

'Both analogue and digital circuit ANN implementations are using predominantly CMOS fabrication 
technology. 
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reverse engineering insights that are not available through software simulation of 

ANNs. 

2.4.1. 	Stochastic ANNs and analogue VLSI 

One of the first stochastic ANN implementations on mixed signal VLSI with on-chip 

learning was that of the stochastic Boltzmann Machine ([2,4,5], also see section 

2.2.2). Neurons produce stochastic analogue output [56] which is then passed 

through a comparator to produce the final states for the BM's binary stochastic 

neurons. 

The most interesting aspect of this implementation is the technique used to add a 

stochasticity element to the binary state BM neurons. This is achieved by 

implementing multiple uncorrelated analogue noise sources on-chip, one for each 

neuron. The noise is added to the analogue neuron activation before the signal passes 

through the sigmoid activation function circuitry. The analogue noise is produced by 

low-pass filtering pseudo-random digital bit-streams, one for each analogue noise 

channel. The digital-bit streams, which also have to be uncorrelated, are produced by 

tapping a linear feedback shift register (LFSR) formed by a number of D-type flip-

flops in series [3,6]. Tapping the train of flip-flops and passing them through 3-input 

XOR digital gates produces the uncorrelated pseudo-random bit streams. 

The binary stochastic neurons in the aforementioned implementation can also 

provide analogue stochastic input if they are sampled before the signal is processed 

by the final stage comparator. This inspired the use of the LFSR-tapped pseudo-

random bitstream technique by another BM implementation attempt for a Continuous 

Restricted Boltzmann Machine (CRBM) variant ([20-24], also see section 6.3.2.) On 

a software application level, the CRBM has been demonstrated the capability to 

detect ectopic heart-beats in a cardiogram [24], as well as adaptively classify 

biomedical data and compensate for sensor drift in an ingestible diagnostic electronic 

capsule [88,89]. 
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2.4.1.1. A digital approach 

It is worth noting that apart from the aforementioned analogue VLSI 

implementations of neural algorithms, there have been a number of attempts to 

perform stochastic neural computation on explicitly digital hardware [58,59]. These 

attempts employ stochastic arithmetic [36] and the value of signals is typically 

encoded as a in the average pulse rate or primary statistic of a stochastic stream 

[14,15]. Technologically, they aim to benefit from the noise-robustness of digital 

processing and the ready availability of optimised fabrication techniques for digital 

circuits. 

When compared to performing neural computation in simulation running on a digital 

platform, there are benefits in silicon area demand, fault-tolerance and power 

consumption; however these implementations typically do not compete with the low 

transistor count and power consumption of their analogue VLSI counterparts. As we 

will see in the next section, this attempt to extract pseudo-analogue behaviour [84] 

out of digital circuits has some analogies with the incorporation of digital pulses in 

analogue neural VLSI design, though the trade-offs and circuit architectures are 

completely different. 

2.5. 	Pulse-stream analogue VLSI hardware 

Pulse-stream signalling is not a new idea, since it has long been known that 

biological neurons operate on such a principle. It was first reported in the context in 

the context of analogue neural VLSI hardware in 1987 [69-72] and has since been 

adopted and modified by a plethora of research groups in this field. 

The pulse-stream approach was inspired by neurobiology and applied to analogue 

ANN hardware out of a desire to combine some of the traditional strengths of digital 

processing with the increased flexibility, small silicon area and low power 

consumption characteristics associated with analogue design [67]. It is not 

exclusively motivated by neuromorphic engineering goals, that is to further our 
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understanding of biological nervous systems through hardware modelling, though 

some research groups have adopted this approach [31,61]. 

The idea behind pulse-stream signalling is that the analogue value of a signal is 

encoded in the form of pulses, expressed as either voltage or current and usually 

encoded in the time dimension.' The signal can be modulated as the width of the 

pulse, a technique known as pulse-width modulation (PWM); as the amplitude of the 

pulse, known as pulse-amplitude modulation (PAM); as the frequency of the pulse, 

known as pulse-frequency modulation (PFM); as the phase-difference between two 

signals of set frequencies, known as pulse-phase or pulse-position modulation 

(PPM); and as a serial string of bits following analogue-to-digital conversion, a 

technique known as pulse-code modulation (PCM)2. 

The merits of the various pulse stream techniques, and their implementation on 

hardware in particular, are an active area of research [79,80]. For the purposes of this 

thesis, however it is worth noting that PAM and PCM are not at all popular in the 

context of analogue neural VLSI research, primarily because they forfeit two of the 

most important pulse-stream advantages: in the former case the robustness against 

noise is sacrificed, in the latter the signal is quantised and the natural continuity of 

the analogue signal is lost3. The latter can have implications more profound than are 

immediately obvious: in the context of stochastic neural computation, it can lead to 

certain values being ruled out -rather than being highly improbable but still possible-

which leads to a distortion of probability distributions and can therefore negatively 

An exception to this rule is pulse-amplitude modulation: this technique however is not at all popular 
in the context of analogue neural VLSI, primarily because it forfeits robustness against noise which is 
one of the key advantages of the pulse-stream methodology over mainstream analogue signalling. 

2  The field of radio telecommunications uses slightly different terminology for practically equivalent 
pulse-modulation schemes. For example PFM is equivalent to frequency-shift keying (FSK), PAM is 
equivalent to amplitude-shift keying (ASK), etc. 

3 Not to mention the necessity for large, power-hungry ADCIDAC circuits, which usually limit the use 
of PCM to noise-sensitive scenarios such as radio telecommunications. 
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affect the performance of the training algorithm. Both of the prototype chips 

developed for this project employed pulse-width modulation (see chapter 3). 

When applied to neural design, the pulse-stream methodology benefits from the 

advantages generally associated with analogue circuits over their digital alternatives: 

compactness, modest power consumption, potential for higher speed and 

asynchronous operation, and lack of quantization effects. Setting aside for a moment 

the issue of noise interference, it follows as a consequence that the scalability 

potential of ANN implementations in analogue VLSI is considered to be higher than 

that of digital implementations, given the same neural topologies and availability of 

resources. The advantage of economy over area and power resources is particularly 

acute in the case of synaptic multiplications: digital multipliers tend to be particularly 

large and power hungry, while synapse matrices typically consume the bulk of the 

silicon area in neural chips. 

The additional advantages of adopting the pulse-stream methodology within the 

context of analogue neural VLSI are related to robustness against noise. Noise is 

generally considered a significant vulnerability of analogue circuits because it is the 

primary factor limiting accuracy, as contrasted to word length which is the case for 

digital circuits. As a consequence the trade-off between silicon area and accuracy is 

not as easily achieved as in digital designs, further limiting a designer's options. 

Apart from accuracy, noise can also interfere with the scalability potential of a 

design, a crucial issue for ANNs. All pulse-stream varieties except PAM and PCM 

encode continuous values in the time dimension, making amplitude noise variations 

less significant'. The trade-off is increased vulnerability to frequency noise (edge-

jitter), which is less significant in a conventionally noisy environment ([67], ch.4). 

Finally, noise can impose an upper limit on the speed of operation of an analogue 

design either directly and catastrophically, or indirectly and gradually by 

Within reasonable limits, of course, but in most cases enough to substantially boost the noise 
immunity of a design. 
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deteriorating the accuracy of computation to unacceptable levels. Frequency noise 

generated by multiple oscillators is one of the expected limitations on the speed for 

the designs proposed in this project and investigating its effects is one of the stated 

research objectives. 

2.5.1. 	Pulse-stream circuit implementations 

The signal processing performed by a typical Hopfield neuron involves 

multiplication of synaptic weights and incoming neural states, summation of the total 

activation, imposition of the activation function (typically sigmoid or gaussian), 

selection of the next state for the neuron and communication with the next node. 

One of the simplest and most compact pulse-stream designs for synapse 

multiplication and summation that has been proposed and implemented is based on 

the transconductance multiplier (fig. 6).Transistors Ml and M2 form the multiplier 

which outputs a current proportional to the voltage V representing the synapse 

weight. The current is subsequently passed through transistor M3 whose gate is 

operated by a voltage pulse' representing the preceding neuron's state. In the case of 

a binary neuron the pulse can have a fixed duration, while for a continuous state 

neuron the width of the pulse can be proportional to the state. The result is a current 

pulse Iw, whose charge is summed in a capacitor Csum along with that from other 

synaptic connections connected to the neuron. 

The main advantage of the synapse based on the transconductance multiplier is the 

low transistor count and the fact that all three transistors are n-type, which helps 

minimise the size of the circuit by avoiding the use of an additional p-type  CMOS 

well. This is a significant advantage from the point of view of scalability, allowing 

tens of thousands to be implemented on a single chip with today's fabrication 

processes. This circuit however is not widely used because of its sensitivity to the 

Alternatively the incoming neuron state can be represented by a stream of pulses. 
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voltage of the node between transistors Ml and M2, sensitivity to process variations 

in the fabrication process and parasitic charge transfer to the capacitor due to the 

switching of transistor M3. These effects affect the consistency and accuracy of the 

performed multiplication and necessitate added circuit complexity to fix. Still, the 

transconductance multiplier serves as a characteristic example of the kind of 

compactness and power frugality that can be achieved by pulse-stream techniques. 

vout  

Vstate2 

Vref H 	I 

Vw2H 	

sum 

Fig. 6: A pulse-mode synapse based on the compact CMOS transconductance 
multiplier The 3-transistor multiplier is depicted in the dashed outline box. 

The transconductance synapse design has inspired several pulse-stream synapse 

design variants, such as the 4-transistor per-pulse synapse [93,94] which elegantly 

solves some of the original design's shortcomings using a single extra transistor'. 

Amplifiers with sigmoidal output characteristics and current-mode differential pair 

(long tail) circuits are typical of the next stage in a neuron's processing, the 

imposition of the squashing function. The final output stage used in pulse-stream 

implementations mentioned in the literature is often a voltage controlled oscillator 

Tombs et al also replaced transistor Ml with a p-type, thus necessitating the implementation of a 
CMOS p-well. 
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(VCO), providing an output signal encoded with either pulse-width or pulse-

frequency modulation'. The choice of an oscillator for the output stage is popular 

since they can be simple, compact, and provide an output compatible with variants of 

the aforementioned transconductance synapse. However, oscillators tend to be 

notoriously sensitive to process variations when implemented in CMOS and generate 

sudden spikes in current demand from the power supplies. Noise injected to the 

power supplies of the chip in this way can travel to other oscillators and adversely 

affect their performance. These effects make PWM schemes more attractive and 

necessitate the use of super-sized power supply lines. A simple implementation for a 

PWM modulator is to supply an analogue voltage to a comparator along with a 

standard triangle wave [67]. 

2.6. Summary 

Unsupervised ANN algorithms are becoming increasingly popular due to their ability 

to function in scenarios where it is difficult or intractable to describe the target states 

for the network. Stochastic neural computing provides the possibility to perform 

probabilistic inference, helping an ANN device capture higher-order statistical 

relationships underlying the data. An added advantage over mainstream supervised 

inference techniques employed in the field of statistics is the ability to perform 

probabilistic inference with multiple-cause data, even when the algorithm has not 

been set up using a priori knowledge about the problem. 

Stochastic auto-encoders are ANN algorithms that combine stochastic neural 

computation, unsupervised learning and the ability to perform probabilistic inference. 

The HM is a stochastic auto-encoder employing the simple delta rule for training its 

synaptic connections, using information locally available to each neuron. The latter 

characteristic makes the HM an attractive candidate for hardware implementation. Its 

performance capabilities in pattern completion, pattern classification, novelty 

More rarely using pulse-amplitude modulation combined with a fixed carrier frequency. 
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detection and tracking sensor drift using on-line learning have been verified through 

software simulation experiments reported in the literature 

Hardware ANN implementations are motivated by a variety of reasons. The need for 

speed, asynchronous operation and massive parallelism are among the most popular 

motives. A desire to improve our understanding of biological nervous systems 

through modelling has given rise to the relatively new field of neuromorphic 

engineering, which focuses on hardware implementations as reverse engineering 

tools. The ability to perform in real time computationally complicated tasks such as 

visual classification and sensor fusion is motivating hardware ANN implementations 

in the fields of automation and robotics. Finally, some problems requiring intelligent 

machine behaviour do not easily lend themselves to the methods of symbolic AT, thus 

making the distributed nature of neural computation methods on hardware more 

attractive. 

Analogue VLSI is a platform that satisfies many of the requirements for mapping 

neural computation algorithms onto hardware. The potential for speed, scalability, 

asynchronous operation, frugality in silicon area and power consumption, relatively 

low fabrication costs and the lack of digital quantization effects are all factors for 

which analogue VLSI has become the most popular technology for hardware ANN 

implementations during the last three decades. Its Achilles heel is sensitivity to noise, 

an issue partially resolved by the adoption of the pulse-stream and current mode 

analogue design methodologies: by encoding continuous values in the time 

dimension of a stream of pulses, amplitude variations become less significant at the 

expense of added sensitivity to frequency (edge-jitter) noise. Frequency noise, 

however is generally less of a problem in a conventionally noisy analogue 

environment, making it possible to increase the number of neurons on a chip and the 

speed of operation for on-chip oscillators generating the pulse streams. 

We have therefore chosen to experiment with the hardware implementation of the 

HM stochastic auto-encoder ANN using the pulse-stream methodology for circuit 

design in analogue VLSI. Among other targets we are hoping to evaluate the 
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performance of a PWM modulator, the feasibility of extracting the neural state by 

randomly sampling it, the effects of edge-jitter on this process, the performance 

limits of the resulting ANN, the design factors influencing them, and to perform 

comparative experiments Wlith an HM of identical topology running in software 

simulation. 
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So far this thesis has discussed background material relating to various unsupervised 

artificial neural network (ANN) algorithms and issues relevant to their hardware 

implementation. This chapter introduces the circuit modules proposed for the 

hardware implementation of a stochastic neuron on silicon. Several instances of the 

neuron are subsequently interconnected to form a HM network prototype. The 

ultimate intention, described in succeeding chapters, is to demonstrate that the 

hardware is capable of unsupervised stochastic learning comparable to that of an 

equivalent Helmholtz Machine ANN running in software simulation. 

	

3.1. 	Introduction 

A HM stochastic neuron can be dissected into an input stage synapse module, an 

intermediate stage sigmoid logistic function, an output probabilistic stage, a weight 

storage and modification module and some overall co-ordinating logic module 

implementing the various stages of the Wake-Sleep training algorithm. The focus of 

this chapter is on the first three modules since they form the primary constituents of 

the stochastic neuron. The circuits described below were conceived and designed 

with the HM ANN in mind, but with little or no modification they can also be used as 

a hardware model for other stochastic neural network architectures such as the 

Product of Experts [44,45] for instance. 

	

3.2. 	The synapse input module 

As mentioned in chapters the use of the term 'synapse' is borrowed from biological 

neural networks and is used by analogy. In the case of most ANN algorithms it 

comprises the module that handles the collective input to a particular neuron. In the 
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case of the discussed hardware implementation of stochastic neurons for the 

Helmholtz Machine neural algorithm, the synapse serves as an input stage circuit. It 

therefore implements equation 2.12 presented in section 2.3. 

3.2.1. 	A modular synapse circuit 

Since the synapse circuitry must accommodate multiple neuronal interconnections it 

would be convenient to build it in a modular, scalable fashion, so as to accommodate 

for neurons with a variable number of input interconnections. Moreover, since some 

of these basic modules share a common binary state input (originating in the 

preceding neuron) as well as several biases, it is practical to build a matrix of these 

basic synaptic circuit elements so as to minimise silicon area usage and signal 

degradation across long metal lines. This is indeed the most common architecture for 

analogue VLSI implementations of neural synaptic elements in the past two decades 

[12,16,81]. 

3.2.1.1. Outline of the basic synaptic circuit element 

The basic function that such a building block should provide would be the 

multiplication of the synaptic weight w with the binary state of the preceding 

neuron Si . Fig. 7 presents a block diagram for such a circuit element 

As shown in the figure, state is an input pin supplying the binary state of the 

preceding neuron (described in equation 2.12 as s1 ) and weight is an input pin 

supplying the weight of the synaptic connection between two neurons i, j in 

succession (described in equation 2.12 as w1). Pin out is the module's output leading 

to the sigmoid activation function module, totall, sin/cl and zerow are bias nodes that 

will be discussed later in this section, set-capV and capV are I/O pins that enable the 

resetting of the module's output, and avdd, avss are power supply pins. 
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Fig 7: Block diagram of a synapse circuit module, shown here with I/O connections 
within a synapse matrix. 

Once the multiplication of the preceding neuron's binary state and the synaptic 

connection's weight is performed, a sum of the output of all synapse input modules 

of a neuron must be formed. Our design utilises a capacitor at the output of each 

synapse module to perform this integration. This provides the convenience of simply 

connecting the output of all synapse modules of a certain neuron together to form a 

single capacitor whose voltage represents the sum of all synaptic activation. The 

activation voltage can then be transferred to the activation function module (see 

section 3.3) for further processing. 

3.2.1.2. Design and simulation of a single synapse module 

Fig. 8 below is a transistor-level schematic diagram of a synapse module capable of 

interfacing  two neurons. Analogous topologies have been proposed and implemented 

in the context of ANN synapse implementations in the past [48]; this circuit module 

has been inspired by these predecessors and re-designed to suit the aims of this 

project. 
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Transistors M1-M5  form a differential stage input circuit for the synapse module. The 

bias voltage zerow allows the adjustment of the voltage representing a zero synaptic 

weight, so that that the circuit can be trimmed to match a preceding module's output 

range'. The output voltage of the differential stage is converted into a current through 

transistor M7  and balanced against the current flowing through transistor Al9. 

Transistors MP and M&g  form a transmission gate, which is operated by the state 

input voltage pulse and the auxiliary inverter. The transmission gate connects the 

balance node between transistors M7  and M9  with the integration capacitor Cact. 

Vdd 
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Fig 8. Transistor-level schematic diagram of a synapse circuit for a single neuronal 
interconnection. 

The summation of the two currents flowing through transistors M7  and M9  in the 

intermediate node performs a function central to the entire module. Reference 

voltage zerow and bias currents totall and sin/cl can be adjusted to shift the balance of 

The weight voltage in this case would be obtained from a preceding weight-changing module. 
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these two currents (IM7  and I) so as to achieve an approximate match for an input 

weight voltage representing a zero weight. 

Name Type W (pm) L (pm) Name Type W (pm) L (pm) 

M1  PMOS 15 10 M7  PMOS 6 20 

M2  PMOS 15 10 M9  NMOS 6 20 

M3  NMOS 3 30 M10  NMOS 15 20 

M4  NMOS 3 30 M11  NMOS 3 3 

M5  NMOS 16 8 Mtrg  NMOS 12 4 

M6  NMOS 8 8 MPtrg  PMOS 24 4 

Table 1: List of CMOS components forming the synapse circuit module 

The multiplication of the weight and neuronal state input voltages takes place by 

exploiting the following equation 

I•dt — C•dV 	 [3.1] 

where I is the current flowing through the transmission gate, dt is a slice of time, C is 

the capacitance of the output capacitor and dVis the change in the capacitor's voltage 

during dt. Equation [3.1] can be straightforwardly derived from the definition of 

capacitance with respect to charge and voltage. 

Equation [3.1] shows that the product of the current flowing through the transmission 

gate and the time that the transmission gate remains open, the former representing 

the weight, the latter the binary state of the preceding neuron, is linearly proportional 

to the change of voltage in the capacitor C,,,, at the output of the synapse circuit. 

Two versions of the synapse module were designed. One was identical to the one 

depicted in fig. 8, while the other had an additional output stage consisting of the 

source-follower transistor pair shown in fig. 9. The latter version was used to test the 

module in isolation -as opposed to testing it as part of an entire neuron circuit. The 

purpose of the source-follower pair was to prevent the addition of the parasitic 
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capacitance of the output pad (which can be up to 20pF) to the considerably smaller 

3.5pF output capacitor of the synapse module. A drawback of this method is an 

attenuation of the output voltage by 0-1.5V, the divergence being larger at higher 

voltage levels. 

Fig. 10 is a graph showing simulation results of the synapse output voltage at varying  

weight input voltage levels. For the purposes of this simulation the neuron state pulse 

input was kept constant: a train of 10 x 5isec, 0-5V voltage pulses. The graph 

displays results for positive weight values only, where the capacitor is charging from 

an initial value of OV -the reset value at the beginning of each measurement to ensure 

consistency of the readings. 

Two sets of simulation results are plotted in the graph: V0t  is the real voltage of the 

synapse circuit's output capacitor, while V0 f is the same voltage attenuated, as 

observed through the source-follower circuit discussed earlier in this section. 

1 

Fig. 9: Transistor-level schematic diagram of the source-follower output stage circuit 
that is attached between the real output of the synapse module and an output 
pad. It was used to test the synapse circuit in isolation 

Similar simulation results for negative weight values are presented in fig. 11. In this 

case the capacitor was discharging under a negative weight value from an initial 
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value of 5V. In this set of simulation results too, the neuron state input was kept 

constant as a train of 10 x 5p.sec, 0-5V voltage pulses. 

Observation of the simulation result data summarised in figs. 10 and 11 shows that 

the zero weight voltage —the value for which 'M = 	so that the output capacitor 

neither charges nor discharges— predicted by these simulations is Vweight  = 3.20V ± 

0.2V. The useful linear input range for the weight is 2.1 - 4.OV, yielding an output 

range of 0.2 - 4.2V. The corresponding attenuated ranges emerging at the output of 

the auxiliary source-follower module are 2.3 - 4.OV and 0.0 - 2.9V, respectively. 
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Fig. 10: Simulation plot of a single synapse module output (directly and through a 
source-follower output stage) against a variable synaptic weight input. The 
neuronal state input was a constant 10x5ec train ofpulses and the output 
capacitor (initially reset to ground) is charging. 

These ranges focus on linearity, since the primary mathematical function of this 

module is to perform the multiplication of weight and binary neuron state. It is 

important to point out that this type of synapse can also be used for neural 

architectures that do not entail binary neuron states. This is a particularity of the 

Helmholtz Machine: by adjusting the width or the number of pulses that operate the 

transmission gate, analogue values can be entered into the multiplication performed 
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by the synapse. Moreover, the zero-weight balance voltage as well as the input and 

output ranges can be adjusted by modifying the values of reference voltage and 

currents zerow, totall and sink!. In the case of the simulations performed to collect 

the data for fig. 10 and 11 these references were adjusted so as to maximise the I/O 

range of the synapse circuit, while at the same time matching the input range of the 

succeeding sigmoid module. 

.71 

4.5 

4 

; 3.5 

4-' 

2.5 

1.5 

I 

.5 	Vcut - 
3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 

Vwt (V) 

Fig. 11. Simulation plot of a single synapse module ' output (directly and through a 
source-follower output stage) against a variable synaptic weight input. The 
neuronal state input was a constant 1Ox5jec train ofpulses and the output 
capacitor ('initially reset to 5V) is discharging. 

Further observation of fig. 10 reveals that the V0  curve, depicting the capacitor 

voltage directly, displays three distinct slopes in the 'linear' section 3.2V < V < 

4.IV. The reason for this characteristic is the imperfections of the current sources 

supplying the currents which balance on node ' balance' (see fig. 8) in the synapse 

circuit. In the 3.2V 	< 3.4V range of the graph (fig. 10) the lower current sink 

formed by transistors M9  and M10  moves out of the saturation region, resulting in the 

steeper slope. In the 3.8V 	<4V section of the graph the current source formed 

by transistors M2  and M7  slips out of the saturation region, an effect responsible for 

the lower slope in the graph. Finally, in the 3.4V < Vwt  < 3.8V middle range both 
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current minors operate against a less strenuous output voltage range, resulting in an 

intermediate slope. 

The simulations were performed with the HSpice and Spectre analogue simulators, 

using the design kit data provided by Europractice for the 2.0tm Mietec/Alcatel 

fabrication process. 

3.2.1.3. Layout of the synapse matrix 

A 14 transistor CMOS cell was designed to implement on silicon hardware the 

topology depicted in fig. 8. It includes a 3.5pF capacitor at its output, which gives it 

the advantage of easy interconnection with other identical cells attached to the same 

neuron serving different synaptic connections. 

This kind of topology takes advantage of the total capacitance formula for capacitors 

that are connected iii parallel: 

CTQT  = C1 + C2  + C3  + ...+ C 	 [3.2] 

In this way the summation of the total activation input to the neuron that the synapse 

circuits are attached to can be performed, as required by the theoretical model (see 

equation 2.12). An extra instance of this synapse circuit can be used as an activation 

bias for the neuron, as described in the same equation. This bias can assume either 

positive or negative values by adjusting the weight input voltage accordingly, while 

the magnitude can be controlled by the width of the state voltage pulse. 

Fig. 12 shows the layout of such a prototype cell, as implemented in a 2-metal, 

2.0m CMOS fabrication process. It measures 290 x 335.tm (0.01mm2) and was 

designed with the following criteria in mind: 

9 	Implementation of the synapse function calculation for the HM 

Me 



I 
	

Introduction 

A modular architecture, so that the cell can be used as a building block for a 
synapse matrix (i.e. common reference V/I pins and power supply lines, 
connected output caps) 

Noise propagation countermeasures, esp. with respect to the noisy digital 
circuits of the neuron's output stage oscillator 

A small silicon footprint for the cell, as well as for the synapse matrix 

Fig. 12: Layout plot of a synapse circuit, designed in a modular fashion to serve as a 
basic building block of a larger synapse matrix. 

An advantage of the topology described in section 3.2.1.2 is the fact that each 

instance of the synapse module comes with its own built-in capacitance. This type of 

architecture means that the designer can quickly interconnect several of these blocks 

as the input stage of a neuron without worrying about compensating or normalising 

the output of the collective synaptic module with respect to the number of neuronal 

interconnects. In other words the input stage of a neuron, which will typically consist 
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of a number of synapse modules with connected output pins, has a self-normalising 

output voltage irrespective of the number of neuronal interconnects that it facilitates. 

Wide, low-resistance power lines, separate analogue and digital power supplies for 

the entire chip, closed analogue guard rings and physical isolation were used as noise 

propagation counter-measures. Since this is a cell that would be replicated to form a 

synapse, an effort was made to keep the silicon footprint low. This is a prototype cell, 

however, and some further, small optimisation of the silicon footprint size is 

possible. 

3.2.2. 	The synapse matrix 

Since each neuronal interconnection requires synaptic circuitry to take the weight 

into account it becomes clear that, as the number of neurons increases, the silicon 

area usage by the synapse circuitry increases a lot faster than that of the rest of a 

neuron's circuits. Even in the case of feed-forward ANN architectures which only 

employ connections between successive layers, the number of interconnections 

dramatically diverges from the number of neurons as the network becomes larger: 

Ninterconnects (Niayer i>< Niayer 2) + (Niayer  2 X  Niayer 3) + ... +Nlayer(n-i) X  Mayer n) [3.3] 

In the case of a 10-6-4 feed-forward network topology, for instance, the number of 

neurons would be 10 + 6 + 4 = 20, whereas the number of interconnections (and 

hence of synapse circuit cells required) would be (10x6) + (6x4) = 84. This issue 

becomes more pronounced when dealing with neural architectures that in addition 

involve lateral, bi-directional or full interconnectivity. 

It is clearly worthwhile for all but the smallest of networks to design synapse 

circuitry in as efficient a way possible, so as to minimise both design time and silicon 

area usage. The prototype synapse circuits for this project focused on a modular 

approach that enabled the basic synaptic circuit cell to serve as a building block for a 

larger synapse matrix array. 
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Fig. 13: Block diagram of the 3 x 4 matrix of synapse modules, capable of fully 
interconnecting a layer of 4 neurons with a successive layer of 3. Each 
column serves as a neuron s' input stage. 
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3.2.2.1. Outline 

For the planned experiments with the Helmholtz Machine unsupervised ANN 

architecture, a simple 4x3 network prototype was chosen. This entails a synapse 

matrix of 1.2 synaptic cells, such as the one depicted in fig. 13. 

Fig 14: Layout diagram of the 3 x 4 synapse matrix. Each column serving as a 
neuron input stage, capable of interfacing  with 4 preceding neurons. 

The basic building block of the prototype synapse matrix is the circuit described in 

section 3.2.1 and depicted in figs. 7 and 8. Each column of cells in the matrix is 

wired up as the input stage for a single neuron, enabling it to accept the output of 4 
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interconnected neurons (or 3 neurons + one bias connection). In a similar fashion, 

each row contains the synapse circuit cells that can serve 3 output interconnections 

for a particular neuron. 

3.2.2.2. Layout 

Fig. 14 above shows the layout of the synapse matrix cell described in the preceding 

section, implemented in a 2-metal, 24m CMOS fabrication process. The cell 

measures 966 x 1323gm (1.28mm) and includes 12 synapse circuit modules, 

capable of interconnecting 3 neurons with 3 inputs and a bias source each. 

Each input source has a common state pulse tree which addresses a row in the 

matrix. Each column contains 4 instances of the synapse circuit module, which 

comprise the input stage for a neuron. Each column therefore has common sin/cl, 

totall and zerow reference pins, as well as a common output. The output of each 

column leads to the remaining neuron circuits: a sigmoid circuit module, which in 

turn is connected to an oscillator output stage. 

3.3. 	The sigmoidal activation function module 

The sigmoid circuit module is expected to perform signal processing equivalent to 

the probabilistic activation function described by equation 2.13. A numerical plot of 

the mathematics equation is shown in fig. 15 below. 

Fig. 15: Numerical plot of the sigmoid logistic function f(x) =1/1 + e 
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One of the aims of the activation function is to keep the total activation within limits 

regardless of the number of neuron inputs connected to the preceding synapse 

module; the other is to ensure the smooth change in the levels of activation in a 

'sigmoidal' fashion. 

3.3.1. 	Outline 

The sigmoid transfer function is quite common in ANN algorithms, partly because it 

performs the 'squashing' of the summed activation in a smooth, differentiable 

fashion. While a reasonably smooth transfer function is important for step-by-step 

learning, the reason for selecting the particular logistic sigmoid function is partly 

historical: it is relatively simple, monotonic and differentiable, a requirement by 

some of the early supervised ANN training algorithms based on error back-

propagation [73]. Small deviations from the sigmoidal shape do not usually result in 

catastrophic failure of the training process: indeed Gaussian and sinusoid functions 

have been shown to improve convergence in Hopfield ANN classifiers [39]. Precise 

mathematical matching of the inverse exponential depicted in fig. 15 was therefore 

not a priority for this research project. 

cut 
flrk.: 

FM 

Fig. 16: Block diagram of the sigmoid activation function circuit module. 
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Fig. 16 is a block diagram for a circuit module designed to implement the sigmoid 

activation function in hardware. The in pin is a voltage input, the out pin is a current 

output (inbound current), and the Vref and sink[ pins correspond to a reference 

voltage and bias current, respectively. Apart from the implementation of a function of 

appropriate shape, the design focused on the following additional requirements: 

the ability to shift the sigmoid curve across the input range, so as to make it 
possible to match the preceding synapse module's output range 

the ability to adjust the output range to match that of the succeeding oscillator 
output stage circuit module 

a small silicon footprint 

3.3.2. 	Design and simulation 

Fig. 17 is a transistor-level schematic of the sigmoid activation function circuit. 

Transistors MP,, and MPr form a matched, differential pair input stage that splits the 

current flowing through transistor IVIPtaji at the top of the diagram. Transistors I. VIP tail 

and MPtail2 form a current mirror controlled by the bias current pin sinki Transistors 

Miefi and Mrzgir are diode-connected and serve as loads, while Mrjg;t and MO!Lt form an 

output stage current minor. The input voltage enters the circuit through the gate of 

transistor MP (input voltage pin in), while the gate of the matched transistorMPref is 

attached to reference voltage pin Vr 

Since transistors IP i,IVIPr and MieftMright are matched in pairs it is the voltage 

differential applied to the gates of the first pair that determine the ratio of current that 

will run down each leg of the circuit. Given the nature of the design requirements, 

precise matching of either pair of transistors was desirable though not critical. 

Fig. 18 shows a plot of simulation results from the circuit depicted in fig. 17. The 

simulation involved a sweep of input voltage in the 0-5V range with a 1OOk~ load 

connected between the output pin out and the positive power supply rail. The 

reference voltage at pin ref was set to 2V and the bias current at pin sinkl was held 
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constant at 60.tA. The input range with these reference and bias values is 

approximately 0-4V and the output range 0-40j.tA, and the output curve characteristic 

is clearly sigmoidal. 

MI 

in 

Ut 

Mout 

vss  

Fig. 17: Transistor-level schematic diagram of the sigmoid circuit module. 

Further simulations of the sigmoid circuit module revealed that varying the voltage at 

reference pin vref and bias current at pin sink! shifted the axis of symmetry of the 

sigmoid along the input voltage range as was the original design intention. More 

specifically, increasing the value of the bias current at pin sink! achieves the 

following: 

• 	it increases the range of the output current 

it flattens and smoothens the sigmoid curve across the input voltage range, 
creating a more analogue response of the neuron to activation input from the 
preceding synapse circuit module 

it shifts the vertical axis of symmetry of the sigmoid output curve towards 
lower input voltage values 
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Name Type W (pin) L (pm) Name Type W (pin) L (pm) 

MPtajj  PMOS 60 6 MIft NMOS 60 6 

MPtaii PMOS 60 6 Mright NMOS 60 6 

Mpil  PMOS 9 6 M0 NMOS 60 6 

MPref  PMOS 9 6 

Table 2: List of CMOS transistors forming the sigmoid circuit module. 

Fig. 19 shows results from parametric analogue simulations of the sigmoid circuit 

which demonstrate these points. The first point becomes obvious when one considers 

the current mirror at the bottom right of the diagram depicted in fig. 17. Everything 

else kept equal, a larger current flowing through the left side of the mirror will 

inevitably cause an increase in the current flowing through the right side as well. 
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Fig. 18: Simulation plot of output current vs. input voltage of the sigmoid module 
with a I 00 output load 

The other two points become clear once one considers the output characteristic 

curves for a PMOS transistor such as MP7 : lower gate voltages are required to 

decrease the transconductance of the device against an increasing VDS (so as to send 
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more current down the right leg of the device), giving rise to a flatter, left-shifted 

sigmoid curve with respect to the input voltage axis. 

1 	 2 	 3 

Fig 19: Parametric analogue simulation results from the synapse circuit. Output 
current is plotted against input voltage for different  values of the reference 
current 'sink. 

In a similar fashion, increasing the reference voltage at pin ref produces a sharper, 

more binary-like sigmoid characteristic, a shift of the vertical axis of symmetry 

towards larger input voltage values, and a lower output current range. 
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The simulations were performed using the HSpice and Spectre analogue simulators, 

using the design kit data provided by Europractice for the 2.0im Mietec/Alcatel 

fabrication process. 

3.3.3. Layout 

Fig. 20 is a layout plot of a hardware prototype  cell for the sigmoid circuit module 

described in the previous section. The 7 transistor cell measures 242 x 97.tm 

(0.02mm2) in a 2-metal, 2.04m CMOS fabrication process. 

Fig. 20: Layout plot of the sigmoid circuit module 

An effort was made to provide some noise immunity as well as to keep the silicon 

footprint area low. While noise contamination is not crucial in the function of this 

circuit module, however any noise could pass on to the succeeding oscillator circuit 

where it could cause problems. Separate analogue and digital power supplies on the 

prototype chip, low resistance power lines and closed guard rings were employed as 

the principal noise counter-measures. 
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3.4. 	Current to probability conversion: the oscillator 
output stage 

In a binary state neural network, the output stage module succeeds the activation 

function and must be able to perform a thresholding operation on the activation 

signal. Algorithmically this is equivalent to deciding whether the neuron has received 

enough input to become excited and generate output state during the succeeding 

computational cycle. 

In the case of a probabilistic ANN such as the Helmholtz Machine, the output of the 

sigmoid module is equivalent to the probability that the state of the neuron will be in 

the ON state during the next design cycle, rather than the state itself. Consequently, 

the discussed output module must be able to extract the state of the neuron from this 

probability. It does so by applying a pulse modulation function to the probability 

signal which, given a random temporal seed, supplies the neuron's state. 

3.4.1. 	Outline 

When considering an output stage module for a Helmholtz Machine neuron, it is 

worthwhile keeping in mind the effects of the value of the neuron state downstream 

in the algorithmic processing cycle. The state is required to calculate the excitation 

level of downstream neurons as information flows through the network, as well as to 

calculate changes to the weight of synaptic interconnections during training (see 

equation 2.14). The output of the synapse module, which is equivalent to the 

probability that the neuron will switch on during the next processing cycle, is also 

involved in the weight change calculation. 

Fig. 21 shows the block diagram of an oscillator module that was designed for this 

purpose. The main function performed by the circuit is to produce a pulse-modulated 

representation of the probability signal. By modulating the mark-to-period ratio of 

the output square wave and given an external temporal random seed, the oscillator's 
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output can be randomly sampled to extract the state of the neuron from the 

probability. 
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Fig. 21: Block diagram of the oscillator module, used as a neuron ' output stage. 
Separate analogue and digital power supply terminals help reduce noise 
propagation between various oscillators on the same chip. 

Apart from extracting the state of the neuron, the oscillator module must be able to 

fulfil the following requirements: 

current input to interface with the sigmoid module and an easy to sample 
output format 

several oscillators on the same chip must not synchronise in the time elapsing 
between the acquisition of a new excitation value at the synapse and the 
random sampling at the oscillator's output 

linear modulation performance 

a small silicon footprint 

The linear performance of the oscillator does not have to be precise, since the 

processing it performs is superimposed on the imperfect sigmoid function generated 

by the preceding module. Noise shielding and a small silicon footprint were 

prioritised during the design of the module at all stages. 
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Ensuring that the oscillators do not lock, that is do not shift their phase and frequency 

until they operate synchronously, is an essential requirement if the parallel operation 

capabilities of the network are to be preserved. A synchronisation of oscillation 

would mean that if the random sampling happens close to the beginning of an 

oscillation cycle all neurons would turn on, an artefact of noise propagation rather 

than a result of the Helmholtz Machine algorithm (see fig. 34, section 4.2.1 for more 

details). Facing such a problem is particularly undesirable since it would lead to a 

catastrophic failure of the algorithm rather than degradation of its performance. 

3.4.2. 	Design and simulation 

Fig. 22 shows the oscillator circuit that was designed to serve as the output stage of 

the neuron. Transistors MINi - MJN4 and MPREFI - MPREF4 form current mirrors that 

respectively charge and discharge capacitor Co. 
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ref 

MREF 
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Vret  

Fig. 22: Transistor-level schematic diagram of an oscillator circuit, used as an 
output stage for a neuron. 
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The upper PMOS current mirror is constantly connected and charging the capacitor, 

while the lower NMOS current mirror discharges the capacitor and can be 

disconnected from it using transistor M51. Transistors Md and !vlPdec  are wired as 

decoupling capacitors to prevent noise propagation from the power supplies to the 

current mirrors, while transistor M, is another anti-noise measure (it provides the 

PMOS current mirror with some current flow even after M51  has switched off; so that 

its source doesn't crash to OV, sending noise ripples through the ground.) 

By adjusting the reference current supplied to input tenninal 'rj,  the current drainage 

from the capacitor can be adjusted to be higher than the supply through the PMOS 

current mirror at the top of the schematic, which permits the hysteretic comparator 

(Schmitt trigger) on the right side of the diagram to charge and discharge the 

capacitor by controlling the voltage at the gate of switch transistor MS1. 

Name I Type W (pm) L (pm) I Name I Type W (pm) L (pm) 

	

MIN1  PMOS 	60 	6 
	

MREF2  NMOS 	40 	6 

	

MIN2  PMOS 	60 	6 
	

MREF3  NMOS 	40 	6 

	

MIN3  PMOS 	60 	6 
	

MREF4  NMOS 	40 	6 

	

MLN4  PMOS 	60 	6 
	

Mdec I NMOS 	50 	60 

	

MPdec I  PMOS 	50 	60 	MS, I NMOS 	24 	6 

	

MREF1  NMOS 	40 	6 	Mxtr NMOS 	24 	6 

Table 3: List of CMOS transistors forming the oscillator circuit module. 

The output of the oscillator is at the output of the Schmitt trigger, and the inverter is 

only present as a buffer that will boost the signal during transfer to the chip pad. A 

minimalist Schmitt trigger was designed and used in order to keep the silicon 

footprint low. Since the oscillator does not require a highly accurate hysteretic 

comparator, a 5-transistor Schmitt trigger was devised, in contrast to the textbook 

versions sporting higher precision and much larger silicon footprints, generally 

comprising 10-12 transistors [1]. The topology of the proposed circuit is depicted in 

fig. 23. 
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3.4.2.1. Schmitt trigger character/sat/on 

Starting with the Schmitt trigger input at ground (OV) voltage, assuming a 0-5V 

power supply and a reference voltage of 2.5V at the gate of transistor M, transistors 

M2  and MP2  are off and the output of the device is in the digital LOW state. Current 

drain and power consumption are at a minimum at this stage. 

As the voltage at the input increases and approaches 5V, a critical voltage V-P, is 

reached and the transconductance of M1  abruptly counterbalances that of MP1  and 

MP3  (which are connected in parallel). This in turn ensures that MP2  turns on and the 

output switches to a logical HIGH, given that MP2  has a much wider gate than M2. 

Jd 

)Ut 

V 1  

Fig. 23: Transistor-level schematic diagram of the minimised Schmitt Trigger circuit, 
a component of the output stage oscillator. 

Following the opposite scenario, in which the voltage at the input starts at a 5V and 

decreases, the output starts from a logical HIGH and switches to a LOW when the 

input voltage reaches VTRIP. This occurs when the potential node2 increases enough 

to turn MP3  off. 
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Name I Type W (pm) L (pm) I Name I Type W (pin) L (pm) 

MP, PMOS 24 6 M1 NMOS 12 	6 

MP2 PMOS 24 6 M2 NMOS 6 	6 

MP3 PMOS 36 6 

Table 4: List of CMOS transistors forming the Schmitt trigger circuit module. 

Proper choice of transistor sizes ensures that 5V ~! V, ~! V_ OV. More 

specifically, VTRJP+ is primarily dictated by balancing the transconductance ratio of 

M1 and Mp1, while VTPJP is primarily determined by the transconductance ratio of M1 

and MP3. Both of these critical voltage values can be altered using reference voltage 

Vp, albeit in tandem: adjustments VREF cause VTPJP± and VTRJP to move closer or 

further apart by an equal voltage difference and symmetrically with respect to the 

power rails. 

cn 2 

oF ... ..... 

1 	 ........ 
1 	1.1 	L2 	1.3 	1 4 

Time (us) 
Fig. 24: Simulation plot showing the oscillator in operation. The dashed square wave 

is the oscillator output, while the dotted triangular wave depicts the 
capacitor voltage. Vr 	2.5V, Iref40. 7/LA. 

Fig. 17 depicts the input and output voltage of the Schmitt trigger. The output is 

controlling the gate voltage of transistor M51, which in turn alternately the NMOS or 

M. 



Chapter 3 	 Stochastic Hardware 

PMOS current mirror to capacitor Co. When the capacitor voltage ascends to Vrpjp+  

or descends to Vmjp the Schmitt trigger flips states. 

Fig. 25 shows the hysteretic loop graph ([53], p. 231) for the Schmitt trigger during 

the same simulation. With Iref= 40.7j.A and Vre/ = 2.5V the measurements indicated 

VTRJP = 3.73V and VJFJp± = 2.53V which yields an input voltage difference of AV1  

1.53V. 

3.4.2.2. Oscillator characterisation 

Equation 3.1 that was derived to demonstrate linearity in the synapse circuit can be 

applied in the same way for the oscillator. In this case it demonstrates that the time 

required for the oscillator charge and discharge cycles vary linearly with the input 

currents responsible charging and draining the capacitor. 
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Fig. 25: Simulation plot showing the hysteretic loop plot for the Schmitt trigger 
contained within the oscillator module. 

We are interested in randomly sampling the output of the oscillator, in order to 

extract the state of the neuron from the probability obtained from the output of the 
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synapse module. We are therefore intrested in the mark-to-period ratio of the square 

wave at the oscillator's output. 

If t and tD  are the time that it takes for the oscillator's capacitor to charge and 

discharge respectively, it follows that tD  is the time within each oscillation cycle that 

the output square wave spends at a logical HIGH. This becomes evident when we 

consider that the ooscillator output operates the gate of transistor M 1, which initiates 

the discharge part of the oscillation cycle. Ignoring the rise and fall times of the 

square wave for simplicity (their values are much smaller to the period of oscillation) 

it follows that 

T=tc +tD 	 [3.4] 

Since 1m  is the current mirrored to charge the capacitor, it follows that 

Similarly, when transistor M 1  switches on, the net current draining the capacitor is 

equivalent to 'ref - un, SO 

'ref 'in 	
C•V 

tD 

[3.6] 

The negative sign denotes that the voltage difference now represents a voltage drop. 

The absolute value of the product C - V stays constant during both the charge and 

discharge cycles, since the upper (V,) and lower (V 11,_) limits for the capacitor 

voltage fluctuations are the same in both cases. 

Putting together these three equations permits us to calculate an expression for the 

mark-to-period ratio that described the pulse modulation function of the oscillator: 

M. 
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[3.7] 
T 	'ref 

where MPR(VOUt) stands for the mark-to-period ratio of the output square wave. 

This result indicates that —given ideal current mirrors as an input stage- the mark-to-

period ratio of the oscillator module ought to be linearly proportional to the ratio of 

input currents. This is of interest because the probability that a random sampling 

device will obtain a logic HIGH when sampling the output square wave is linearly 

proportional to the mark-to-period ratio. Equation 3.7 shows that this probability is 

also linearly proportional to the normalised current input of the oscillator. Fig. 26 

shows a plot of simulation results demonstrating this linearity. 

100 

so 

20 

0 
	

20 	40 	60 	so 	100 

un normalised (0-100) 

Fig 26: Simulation plot showing the mark-to-period ratio of the square wave at the 
oscillator output vs. Iin  normalised against a reference current (Izi/Ire). 

All simulations described in this section were performed using the HSpice and 

Spectre analogue simulators, using the design kit data provided by Europractice for 

the 2.0tm Mietec/Alcatel fabrication process. 
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3.4.3. Layout 

Fig. 27 depicts the layout of the oscillator module with the sigmoid module attached. 

The diagram also includes the sigmoid module discussed in section 3.3, divided in 

PMOS and NMOS transistor sections and designated by the two oval markers. The 

Schmitt trigger module is located to the left of the top oval marker. 

Fig. 27: Layout diagram of the oscillator circuit module, shown here along with the 
sigmoid. The cell measures 345 x 342tvn (0.12mm2) in a 2-metal, 2.Ojiin 
CMOSfabrication process (the sigmoid is denoted by the two oval markers.) 

The 15 transistor cell measures 345 x 342j.xm (0.12mm2) in a 2-metal, 2.0tm CMOS 

fabrication process. Apart from the 15 transistors forming the oscillator, this footprint 

takes into account two large decoupling transistors in the current mirrors as well as 

an inverting buffer to boost the output square wave before it is transferred to the 

output pad. 
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Noise shielding is of primary importance to this circuit as the digital behaviour of the 

Schmitt trigger output generates the most noise in the entire circuitry. In addition, it 

is of vital importance that the oscillators in different neurons on the same network do 

not communicate through substrate currents or power supply noise, as was discussed 

in section 3.4.1. 

Fig. 28: Layout diagram of the minimised Schmitt Trigger circuit, serving as a 
component in the oscillator output stage module. The cell measures 176 x 
235pm (0.04mm2) in a 2-metal, 2. Opin CMOS fabrication process. 

Several measures were taken during the layout design stage to prevent both inbound 

and outbound noise propagation from the module: 

separate analogue and digital power supplies for both prototype  chips (the 
Schmitt trigger module being the only digital circuit in the neuron.) 

separate core and pad-ring power supplies were used in STONECORPS, the 
second prototype chip (required modification of the standard design library 
power supply pads) 

an effort was made to keep the resistance of power supply lines to a minimum 
(line width, routing, connectivity) 

closed guard rings were used around all circuits 
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transistor MX fr shown in the schematic diagram of fig. 22 was added in order 
to prevent the sudden change in current flow through the NMOS current 
mirror and the subsequent generation of noise in the power supply noise lines. 
This transistor is not required for basic oscillator function. 

the input stage current minors were locally decoupled with capacitor-
connected transistors (i.e. drain, bulk and source tied together.) 

a moat was built around the Schmitt trigger circuit, in addition to standard 
guard rings. It consists of an n-well tied to Vdd  and acts as a barrier to 
substrate currents [85] 

The first three items of the list were standard procedure for mixed signal designs, the 

remaining being specific to the oscillator module. The n-well moat supplementing 

the analogue guard-ring noise protection of the Schmitt trigger can be seen in the 

perimeter of the layout diagram in fig. 28 above. 

3.5. 	A stochastic neuron 

The number of synapse modules required for each neuron depends on the number of 

neurons that are being interfaced to the input of that neuron. As was discussed earlier 

in section 3.2.1.3, the modular design of the synapse circuit allows for a self-

normalising synapse input stage: various synapse circuit modules can be bundled 

together simply by tying together their output pins. The distributed capacitance 

contained in each module ensures that the contribution of each synaptic connection 

to the final output voltage (as 'seen' by the succeeding sigmoid module) will be 

proportional to the activation input it represents. 

A single instance of the sigmoid and output oscillator is required in each neuron. For 

this reason the synapse input stage circuits of each neuron are grouped into a matrix 

(see section 3.2.2) whereas the synapse and oscillator modules are implemented 

together. 
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3.5.1. 	Block diagram outline 

Fig. 23 shows the modules and topology required to assemble a neuron capable of 

receiving input from 3 preceding neurons. It contains 3 instances of the synapse 

module connected at their output, succeeded by a sigmoid and an oscillator module. 

While the modules are conceptually presented together in this diagram block, in 

actual layout the synapse modules are part of the synapse matrix while the sigmoid 

and oscillator modules are grouped together. A fourth synapse module, not shown in 

this block diagram, is used to serve as an input bias for the neuron. 

Fig 29: Block diagram of a neuron module, containing the synapse, sigmoid and 
oscillator circuit modules. It is shown here with 3 instances of the synapse 
module, which would enable it to be interfaced to 3 preceding neurons. 
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The neuron depicted in the block diagram has 6 inputs: 3 binary state inputs and 

three analogue weight inputs. The length of the binary state pulse can be altered in an 

analogue fashion in order to accommodate probabilistic neural algorithms that 

employ analogue neuron states, such as the Product of Experts (PoE) or the 

Continuous Restricted Boltzmann Machine (CRBM)) algorithms. Alternatively, a 

pulse stream of variable length can be used to provide the neuron with analogue state 

input. 

For prototyping purposes there are also 3 adjustable reference voltage inputs (one for 

each type  of module, the synapse, sigmoid and oscillator) as well as 4 reference 

current inputs (two for the synapse, one of the sigmoid and one for the oscillator.) 

There is also a reset input for the output capacitor output. 

In the case of the Helmholtz Machine algorithm, the purpose of the neuron is to 

implement the probabilistic activation function described by equation 2.13 in section 

2.3. Random sampling of the oscillator's output provides the neuron's state so that 

the signal can be further propagated through the network. 

Details about the design, simulation and layout of each component circuit module 

can be found in preceding sections in this chapter. 

3.5.2. 	Design and simulation 

Mathematically the output of the neuron is the superimposition of the synapse and 

sigmoid functions as described by equation 2,13. In circuit terms it is the product of 

superimposition of the synapse and sigmoid curves described in fig. 10, 11 and 18 

presented earlier in this chapter that describe the synapse and sigmoid module 

characteristics. The oscillator module performs a current to pulse-modulated voltage 

linear conversion, so it does not affect the superimposition of the output 

characteristics. 

Fig. 30 and fig. 31 present simulation results of a neuron with a synapse capacitor 

that is charging and discharging respectively. The two sets of data are presented in 
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separate graphs due to different initial conditions in each simulation. This was 

necessary to obtain accurate results (the same scenario was encountered during 

simulation of the synapse circuit module in isolation.) 
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Fig 30: Simulation plot of a neuron output against a variable synaptic weight 
input. The input comes from a single preceding neuron; the neuronal state 
input was a constant 5x]0usec train ofpulses; the synapse output capacitor 
(initially reset to ground) is charging. 

In both simulations the input weight was varied while the input state received a train 

of five lOj.tsec digital pulses. A pulse stream was used to demonstrate the capacity of 

the circuit to operate with analogue state input if it is being used to implement an 

algorithm with such requirements. The input voltage reference for the synapse was 

l.OV, for the sigmoid 2.OV and for the oscillator 2.5V. The input current reference for 

the synapse was Ij=l.OtA, I0=1.6jiA; for the sigmoid 60tA; and for the oscillator 

40.7tA. The initial condition for the former simulation was OV for the synapse 

capacitor, while it was 5V for the latter. 
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All simulations described in this section were performed using the HSpice and 

Spectre analogue simulators, using the design kit data provided by Europractice for 

the 2.Oj.im Mietec/Alcatel fabrication process. 
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Fig. 31.• Simulation plot of a neuron output against a variable synaptic weight 
input. The input comes from a single preceding neuron; the neuronal state 
input was a constant 5x1Ojzsec train ofpulses; the synapse output capacitor 
(initially reset to 5V) is discharging. 

3.5.3. Layout 

As was explained earlier in this section the neuron was not physically laid out in the 

conceptual arrangement presented conceptually in the diagram of fig. 23. The 

synapse modules comprising the neuron's input stage are part of the synapse matrix 

whereas the succeeding sigmoid and oscillator modules are grouped together. As a 

result the layout of a single module cannot be presented in isolation, only as part of a 

larger layout diagram depicting the entire network (see fig. 27 in section 3.6.2.) 
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The area covered by a neuron cell with 4 input synapse circuit modules is 0.6mm2  ± 

5% in a 2.0gm, 2-metal CMOS process. About 75% of this area is occupied by the 4 

synapse modules, 5% by the synapse and 20% by the oscillator. These measurements 

take into account the interconnection overhead for assembling the neuron using the 

individual circuit modules. 

3.6. 	A network slice 

A modular neuron architecture was described in the preceding sections. Several 

neurons can be combined together to form a network, at which point the Helmholtz 

Machine algorithm can be employed. This particular type of neuron can be used for 

other types of probabilistic networks, such as the Product of Experts and Continuous 

Restricted Boltzmann Machine neural algoritluns that employ analogue state and 

input values. It could also be used for deterministic neural networks, since the output 

of a neuron can directly be connected to the state input of a synapse (in which case 

the sigmoid output would represent the output of the entire neuron, rather than the 

probability of an ON binary state.) 

This section examines an arrangement of a 3-neuron layer -or "slice"- within such a 

network, as depicted in fig. 37 in section 4.3.1. Information propagates forward 

through the layer and there are no lateral connections. The equations governing the 

information processing and the training for the Helmholtz Machine are described in 

chapter 2. A 3-neuron layer was selected to demonstrate the required connections and 

layout arrangement. Larger networks can be built by extending this paradigm. 

3.6.1. 	Block diagram 

Fig. 26 above presents a block diagram showing  the connections for the sigmoid and 

oscillator modules in a 3-neuron layer circuit. Since this was the type of layer chosen 

for silicon prototyping, bypass connections to the inputs of the sigmoid and oscillator 
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modules that accommodate the testing of the circuit are also shown. These 

connections would not be required past the prototyping stage, reducing complexity. 

U 

Fig 32: Block diagram of a 3-neuron layer. The output of the synapse matrix, which 
is not shown here, feeds to the left of the diagram. Bypass pins permit access 
to the input of the sigmoid and oscillator modules for prototyping purposes. 
The number indices indicate individual neurons. 

The synapse matrix accommodating the input stage for the three neurons is not 

shown in the diagram (it is described in fig. 13 in section 3.2.2). It provides the input 

to the sigmoid modules depicted in the fig. 17 diagram. 

3.6.2. 	Layout 

While the synapse circuit modules that form the input stage of each module are 

contained within the synapse matrix, the sigmoid and oscillator circuits are grouped 

together in pairs. This is a natural separation that increases layout efficiency and also 
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obstructs noise propagation: the circuit producing most of the noise is the digital 

Schmitt trigger within the oscillator, which must be kept separate from the sensitive 

inputs of the synapse. 

The twelve synapse circuit modules can be distinguished in the large synapse matrix 

at the top of the layout diagram. They are arranged in three columns and four rows. 

Each column comprises the synapse input stage of a neuron, while each row 

represents the synaptic connections originating from a previous neuron's output. As a 

result, the state pulse input is applied to each row, whereas the sum of the activation 

function is collected from each column and transferred to the associated sigmoid 

module. The three sigmoid-oscillator module conglomerates, one for each neuron 

within the layer, can be seen at the bottom of the layout diagram. 

Fig. 33: Layout diagram of a hardware implementation of a 3-neuron network layer. 
The synapse matrix block at the top of the image houses 12 synapse circuit 
modules, 4for each neuron input stage. 
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The twelve-cell synapse matrix uses approximately 1.28mm2  ± 5% of silicon in a 

2tm 2-metal CMOS process. The sigmoid module occupies approximately 0.02mm2  

± 5% of silicon in the same process and the oscillator 0.12mm2  ± 5%. Including a 

small interconnection overhead, the entire 3-neuron layer occupies approximately 

1.70mm2  ± 5%. It is worth pointing out that in the matrix arrangement that was 

utilised the overhead scales proportionately as the number of neurons increases (i.e. 

the overhead does not increase faster than the number of neurons.) 

3.7. 	Conclusions 

This chapter presented three modular circuit designs that can be used to assemble a 

neuron for a stochastic artificial neural network. The neuron can facilitate binary 

state stochastic algorithms such as the Helmholtz Machine and can also accept 

analogue input for analogue ones such as the Product of Experts and Continuous 

Restricted Boltzmann Machine. Apart from meeting the design requirements, the 

circuits were built with a focus on scalability, low power consumption and 

minimisation of silicon area requirements. Table 5 summarises the silicon footprint 

size for each of the aforementioned circuit modules, as well as that of a typical 4-

synapse neuron used for the probabilistic neural computing experiments described in 

chapter 5. 

The synapse circuit is designed with distributed capacitance within each module, so 

that a self-normalising input stage can be assembled for each neuron by simply tying 

the output of each module together. This permits easy connectivity of several synapse 

modules within a matrix with limited overhead in complexity and silicon area. The 

sigmoid module has a low transistor count and a current mode output, which enables 

the transfer of the signal without degradation due to resistance in the signal lines.' 

The oscillator module permits the conversion of the signal to a mark-to-period pulse 

Note that this feature was not optimally exploited in the prototype layout presented in section 3.6.2. 
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modulation that can be randomly sampled to extract the binary state of the neuron 

from the probability output of the sigmoid module. Individual oscillator modules 

have to be noise-shielded from each other so that they do not synchronise, as that 

would have undesirable effects to the function of the stochastic algorithm. 

Circuit module name 	I Area (nun) 

Synapse 0.097 

3x4 synapse matrix 1.278 

Sigmnoid 0.024 

Oscillator (modified version) 0.120 

Single-synapse neuron 0.241 

4-synapse neuron 26 0.570 

Table 5: Silicon area occupied by various circuit modules. The measurements were 
extracted from layout plots and include the guard rings, power supply 
metal lines and —in the case of the synapse matrix- interface overhead.. 

Finally, a prototype network layer of three neurons was presented to demonstrate the 

functionality of the neuron circuit interconnected within a network. It incorporates 

twelve synapse modules into a matrix, forming the input stage circuits for the three 

neurons, as well as the associated sigmoid and oscillator circuit modules. 

26  including associated silicon area overhead (as deduced from the synapse matrix) 
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This chapter describes the testing of individual circuit modules implemented on the 

two hardware prototype silicon chips. In this chapter we cover the aims of prototype 

design and testing, the software and hardware setup, measurements and experiments 

performed, and discuss conclusions obtained from measurements and experimental 

results. 

4.1. 	Introduction 

Two application specific integrated circuit (ASIC) chips were built to serve as 

prototypes for the proposed hardware. The first prototype, codenamed PRONEO 

(PRObabilistic NEural Oscillator chip) aimed at the evaluation of the probabilistic 

neural oscillator proposed in the previous chapter and investigation into oscillator 

inter-locking. The second prototype, codenamed STONECORPS (STOchastic NEural 

COmputation Research Prototype System) implemented a 4x3 dual-layer HM to 

serve as a hardware platform for experiments in probabilistic neural computation. 

Both chips were tested using wire-wrap printed circuit boards (PCBs) which carried 

the supporting electronics and interface sockets. A PC running the National 

Instruments Labview software assisted with the hardware testing of STONECORPS 

described in this chapter. The same software-hardware setup was used to facilitate 

the probabilistic computing experiments described in chapter 5. 

4.2. 	PRONEO: the first prototype chip 

Due to the central role of stochasticity for the proposed artificial neuron circuit 

architecture, the focus of PRONEO was the design and testing of the stochastic 
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oscillator module. More specifically the 110 characteristics of the oscillator were 

determined and the propensity for two or more oscillators to phase-lock when 

operating simultaneously was investigated. 

Three oscillators and an op-amp were included in PRONEO, the op-amp intended to 

facilitate testing and not for research purposes. An initial circuit draft was simulated 

and later laid out using computer aided design (CAD) tools for very large scale 

integration (VLSI) circuit design. The prototype application specific integrated 

circuit (ASIC) was fabricated using a 2.4j.tm complementary metal oxide 

semiconductor (CMOS) manufacturing process. The silicon was delivered in 28-pin 

dual-in-line (DIL) packages and a wire-wrap printed circuit board (PCB) was built to 

test it. Testing revealed a propensity for all oscillators to phase-lock and the most 

likely path of communication to be the power supply nodes. The findings led to 

design improvements in the oscillator circuit as well as peripheral circuits in the 

succeeding prototype, the STONECORPS chip. 

4.2.1. 	Design Specifications 

Accepting input from the output of the sigmoid circuit module, the oscillator circuit 

had to satisfy the following design requirements: 

approximate a linear I/O curve (to translate but not distort the input signal) 

an output that is amenable to sampling at random time intervals 

low power consumption, a small silicon footprint and a scaleable architecture 
to allow replication of large numbers of neurons on the same chip 

maintain the circuit modules' flexibility so that their use can be extended for 
other probabilistic ANN architectures apart from the HM 

As mentioned in section 3.4.1, phase-locking of oscillators is highly undesirable 

since it would prohibit simultaneous random sampling of all neurons. In order to 

prevent locking, measures had to be built into the design in order to reduce noise 
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levels, block noise propagation pathways and shield sensitive power supply and input 

lines. 

The chosen oscillator circuit architecture has already been described in section 3.4. 

The schematic diagram in fig. 34 depicts how simultaneous sampling of uncorrelated 

oscillator output works. Three such oscillators were placed on PRONEO to 

investigate any propensity to phase-lock during simultaneous operation. 
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Fig 34: Simultaneous random sampling of uncorrelated oscillator outputs. It is 
evident wkv oscillator locking is undesirable: sampling the output ofphase-
locked oscillators at the beginning of a new period would almost certainly 
result in a logical HIGH in all samples 

An operational amplifier was also included in the design (fig. 35) to facilitate testing 

by providing buffered access from the outside. A minor design error, however left 

one of the amplifier's power supplies disconnected rendering it useless. This did not 

pose a major problem due to redundancy of measurement pathways integrated into 

the prototype. During testing the malfunctioning operational amplifier was therefore 

bypassed and is not mentioned further in this chapter. 
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4.2.2. 	Schematics, layout and PCB design 

A Spice model of the 14-transistor oscillator circuit module was designed and 

simulated using the HSPICE analogue circuit simulator. Three instances of the 

module, a stand-alone instance of the Schmitt trigger component and an operational 

amplifier (for testing purposes) were laid out on a 10mm2  dye (approximately 

31000100pm). 
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Fig. 35: Layout plot (a) and explanatory diagram (b) of the core area of PRONEO. 
The silicon dye measured 3. 1x3. 1mm (approximately 10m2  including 24 
I/O pads) and was fabricated using a 2.4gm, 2-metal, 2-poly 5V CMOS 
process. 

The chip was fabricated using a 2,4pm double metal, double polysilicon 5V CMOS 

process offered by the company Alcatel. Fabrication of the application specific 

integrated circuit (ASIC) was undertaken by the company Mietec in Belgium and 

funded by the European Union's Europractice initiative. 

The silicon die was delivered in 28-pin DIL packages and tested on a wire-wrap 

printed circuit board that was built for this purpose. The board was powered by two 

5V DC voltage generators, one each for the analogue and digital power supply trees 

on the chip. To discourage noise propagation through the board's power supply 

nodes, they were decoupled in three places: 
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on the chip pin using 1 pF ceramic capacitors 

at the point where the voltage generator lines connected to the board using 

large electrolytic 1000pF capacitors 

at an intermediate point of each node using lOpF electrolytic capacitors 

The power supplies and reference input nodes were decoupled, as there were no fast-

changing input signal nodes on this chip. Naturally, output nodes were not decoupled 

as they all carried fast pulse-stream signals. 

4.2.3. 	ASIC testing 

Two experiments were performed using the PRONEO prototype. The first one 

focused on determining the I/O characteristic curve of the oscillator circuit module, 

three instances of which were included on the prototype ASIC. The second 

experiment focused on investigating whether the oscillators had a propensity to lock 

and evaluate the extent to which design measures taken to reduce this possibility 

were effective. 

4.2.3.1. Oscillator J//Q 

For the first experiment, straightforward measurements were taken from each 

oscillator to build the characteristic I/O curve. The chip power was supplied by two 

desktop voltage supplies, one for each of the analogue and digital power supply trees 

which had deliberately been kept separate. Each pair of power supply nodes was 

connected to 5V and a common ground established. Reference voltage Vref was set at 

2.5V and supplied to all three oscillators via a common pin, while a different pin 

supplied the same voltage to the isolated Schmitt trigger circuit module. Input 

currents were separate for each oscillator instance and ranged from 0 to 1 OOp.A, 

resulting in output frequencies between 0 and 10MHz. 
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The output characteristic curve of the oscillator module was thus determined and is 

discussed in section 4.2.4. The results from different instances of the oscillator 

module were consistent within error bar limits. The hysteretic loop of the Schmitt 

trigger was determined by operating the module with a triangular voltage wave and is 

depicted in fig. 25, section 3.4.2.2 

4.2.3.2. Oscillator phase locking 

The second experiment focused on any possible propensity for the oscillators to lock 

during simultaneous operation. Phase locking is undesirable as it would lead to 

skewing the value of probability during random sampling to select the next neuronal 

state, therefore breaking down the function of the HM algorithm. The measures to 

prevent noise propagating through the chip and enabling the oscillators to 

communicate and therefore lock are listed in section 3.4.3. 

All oscillators were run simultaneously as well as in pairs and their output square 

waves were observed simultaneously on an oscilloscope. Once locking was 

established, observations between oscillators were compared to establish whether 

physical proximity on silicon was relevant, an effect that would provide evidence 

about substrate-currents being the dominant noise propagation path. Measurements 

and observations were taken from all power supply nodes to investigate whether they 

too acted as propagation pathways. Separate readings were taken with the 

oscilloscope probes connected and disconnected 27  (to all but one of the oscillators) in 

order to establish whether electro-magnetic (EM) antenna transmissions provided the 

critical noise propagation path. Finally, an attempt was made to induce phase 

locking by running the separate Schmitt trigger and driving it with triangular wave 

voltage from a signal generator, simulating its function within the oscillator circuit: 

27  By taking advantage of inductive coupling, disconnected oscilloscope probes could still provide a 
weak but identifiable signal when the tip of the probe was approached to the ASIC pin connected to 
the oscillator output. It was thus possible to observe the frequency and phase of the signal on that pin 
without turning the probe itself into a transmission antenna and providing yet another path for noise 
propagation among oscillators. 
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this helped clarify suspicions that this circuit was the strongest source of the noise 

causing the phase-locking. 

4.2.4. 	Results 

As discussed earlier in section 4.2.1, the oscillator circuit on the PRONEO chip was 

designed to approximate a linear output response. Algorithmically speaking the 

circuit translates the current output of the sigmoid circuit module into a PWM signal 

form amenable to random sampling, in order to facilitate the selection of the 

succeeding neuronal state according to a proportional probability. 

4.2.4.1. I/O response 

Fig. 36 shows the output response of the oscillator circuit. Given the design 

restrictions on the size of the silicon footprint, noise generation, noise immunity and 

power consumption, the compromise in graph linearity was considered satisfactory. 

The modifications to the oscillator circuit implemented on STONECORPS therefore 

focused on noise generation and immunity, rather than output linearity. 

Input current I Output 	MPR output 	Linearity 

0-10.tA 0-2.5 MHz 98% Acceptable 

0-50iA 0-5 MHz 83% Acceptable 

0-100pA 0-6.5 MHz 91% Good 

0-200pA 0-10 MHz 94% Good 

Table 6: Operating frequency range, linearity and output dynamic range of the 
prototype oscillator at different input current ranges. Any clipping of the 
output range occurred almost exclusively at the top end (fg. 36). 

The circuit was demonstrated to oscillate stably with current inputs up to 200.tA and 

a frequency of 10MHz. Linearity  was found to improve with higher current inputs, 

however as the pulse length would increase to lengths close to those of the period 
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(high MPR) the oscillation would become unstable and the oscillator would jump to 

100% MPR value —a logical HIGH at the output. 
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Fig. 36: Mark to period ratio of an oscillator square wave voltage output from the 
PRONEO chip. No other oscillators on the chip were operating while the 
measurements were taken. The input current ranged 0-67uA, Vrej2.5V 

4.2.4.2. Phase locking 

The phase-locking experiments using the PRONEO chip focused on determining the 

strongest noise-generating part of the oscillator circuit as well as the dominant noise 

propagation path. The Schmitt trigger contained in the oscillator module was the 

natural suspect for noise generation and had already been surrounded by double 

guard rings -one of the standard analogue type, the other against substrate currents-

during the layout design phase. The suspected noise propagation paths were the 

power supply nodes and substrate currents. Noise coupling between oscilloscope 

connected to oscillator outputs was another possible noise propagation path during 

circuit testing, which had to be taken into account and eliminated in order to maintain 

the reliability of the results. 
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Experimenting with more than one oscillator in operation revealed a propensity for 

the square output waveforms to shift (edge-jitter) and phase-lock when they were at 

similar or harmonic frequencies. The lock was immediate and would even resist to a 

certain extent any attempts to shift the output by varying the input currents. The 

extent of the shift was found to be quite significant: up to 40% of the MPR output 

range at higher input current values. 

Due to the built-in dependency between the output square wave MPR and its 

frequency (fig. 44) this shift also translated into a skewing of the probabilities during 

random sampling. As discussed in section 4.2.1, this effect is highly undesirable as it 

leads to a breakdown of the HM algorithm. Further experimentation showed that this 

phenomenon was prevalent in all input current and output frequency ranges and was 

particularly exacerbated at the upper end of either range: the oscillator was tested 

with input currents up to 200pA, or frequencies up to 10MHz. 

Having established that phase locking occurs, the focus of further experiments 

shifted towards the identification of the dominant noise generation circuit and noise 

propagation path. The use of a single oscilloscope probe at a time, picking up a weak 

signal through inductive coupling close to the oscillator output pin ruled out the 

possibility that the noise primarily propagated through coupling between 

oscilloscope probes acting as antennae: the phase locking persisted nonetheless. 

Attention thus shifted on substrate currents and the physical proximity between 

various oscillators on the same silicon substrate. The distance among different 

instances of the oscillator module was deliberately kept different on the chip and the 

orientation of the modules was selected in such a way so as to further vary the 

distance between the Schmitt trigger circuits within them. The oscillators' propensity 

for locking with each other did not vary in accordance to their proximity on the 

silicon substrate, thus failing to provide evidence that substrate currents were the 

dominant noise propagation pathway. 

In the next experiment, each oscillator was operated in tandem with an isolated 

instance of the Schmitt trigger component. The Schmitt trigger was supplied with a 
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saw-tooth voltage wave from an external signal generator applied to its input. The 

frequency and MPR (leading edge to period) of the saw-tooth was swept in order to 

simulate the capacitor voltage connected to the Schmitt trigger within the oscillator 

circuit. Locking was easily recreated in this way and each of the three oscillators on 

the chip were observed to lock to the Schmitt trigger by shifting their output phase 

and frequency. The amount of shifting again varied up to 40% of the output MPR 

range at higher input current values. The substrate distance between the Schmitt 

trigger and each of the oscillators was not observed to affect the propensity towards 

phase locking. 

The experimental evidence to this point indicated the Schmitt trigger as the dominant 

noise-generating part of the circuit. Currents running through the substrate and 

antenna EM coupling between oscilloscope probes were ruled out as likely 

candidates for the dominant noise propagation path. Focus thus shifted to the power 

supply nodes as possible paths. The isolated Schmitt trigger was operated with a saw-

tooth input and oscilloscope readings from the analogue ground, analogue Vdd  and 

current input nodes of various oscillators. All readings clearly indicated consistent 

voltage ringing synchronous to the switching of the Schmitt trigger. The maximum 

peak-to-peak voltage (V) of the ringing was lOOmV for both the analogue and 

digital high power supply nodes and as much as 1269mV for the input current nodes. 

This result was clearly unexpected: it had been foreseen that the Schmitt trigger 

would be the dominant noise-generating circuit and had thus been connected to the 

separate digital power supply tree. It was thus expected to see noise propagating to 

the digital power supply nodes but not an equal amount of noise to be present in the 

analogue power supply nodes as well. Further investigation revealed that the 

proprietary I/O pads that had been provided by the fabrication company's 

(Mietec/Alcatel) design library connected all pads using common power supply 

nodes around the pad ring. These power supply pads were the only available option 

in the design library, their circuit contents being invisible during the design phase 

(most likely for intellectual property protection reasons). Their contents did 

subsequently become apparent in a large layout printed plot returned by the 
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fabrication plant along with the chip samples, thus leading to theresolution of the 

noise propagation mystery. 

4.2.5. Conclusions 

The Schmitt trigger and oscillator circuits implemented on the PRONEO chip were 

successfully tested and characterised. Significantly, it was determined that the 

oscillator circuit performed in a satisfactory fashion when operating in isolation, 

while inter-locking among oscillators operating concurrently remained a problem. 

More specifically: 

the oscillator circuits demonstrated satisfactory linearity (i.e. <6% deviation) 

in the 0-70pA input range 

this level of linearity was rated acceptable, given other imperfections in 

signal processing as it propagates through the neuron (e.g. an imperfect 

sigmoidal activation function) 

it was found that when the oscillator operated at the upper end of its output 

dynamic range it had a tendency to lock to 5V prematurely; this clipping of 

the output range significantly decreased at lower input currents 

at lower input currents oscillator linearity deteriorates, but the trade-off is a 

larger output dynamic range, decreased power consumption and less noise 

generation (less propensity for phase inter-locking among oscillators) 

an investigation into oscillator phase inter-locking revealed it to be a problem 

-despite some counter noise propagation measures implemented on the chip-

even at the lower end of the input current range 

as expected, the Schmitt trigger was identified as the dominant noise-

generating circuit; some further investigative experimentation provided 
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strong indications that the pad-ring power supply lines were the dominant 

noise propagation pathway 

Given the design target for a small silicon footprint and power consumption, it was 

decided that improvements to the oscillator circuit should also focus on preserving 

both of these resources, in order to maintain scalability of the neurons. O-lOj.tA was 

deemed to be the best input current range for the operation of the oscillator, 

sacrificing some linearity as a trade-off for lower noise generation, lower power 

consumption and a wider output dynamic range. 

Based on these experimental conclusions from the PRONEO chip, the planned 

modifications to the topology of the oscillator circuit for the next prototype focused 

on prevention of oscillator phase inter-locking. The aim was to decrease the amount 

of power supply noise generated by the digital section of the oscillator and increase 

the noise immunity of the sensitive analogue inputs. 

Some further modifications were planned both on-chip and on the testing PCB in 

order to impede noise propagation among oscillators. Having established the pad-

ring power supply lines as the dominant noise propagation pathway, a pair of 

custom-designed power supply pads was planned to separate the analogue and core 

power supply nodes (the Mietec standard I/O cell library did not provide this 

facility.) Design improvements for the testing board were also planned, such as a 

grounding copper plate and more thorough decoupling of the power supply nodes. 

4.3. 	STONECORPS: the second prototype chip 

The central aim of the STONECORPS chip was to characterise the circuit modules 

described in chapter 3, to investigate the propensity of the modified oscillators to 

phase-lock with one another, to evaluate the capacity of the hardware neurons to 

perform stochastic neural computation, and to draw comparative conclusions about 

the performance of the hardware with respect to an equivalent software simulation. 
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Experiments and conclusions relating to the two former goals are described later in 

this chapter, while all work relating to the latter two is described in the chapter 5. 

4.3.1. 	Design specifications & schematics 

STONECORPS included stand-alone instances of the components of a neuron - 

synapse input stage, sigmoid activation function and output stage oscillator, 3 

neurons and a synapse matrix that enabled the implementation of a 40 layer 

probabilistic neural network (fig. 37). The network of artificial neurons was designed 

to be fully functional and capable of performing probabilistic computation. It was 

also designed to be trained by the Wake-Sleep HM algorithm using the support of a 

lab bench PC for weight storage and random sampling. 

One of the four inputs of neuronal state inputs was used as a bias in order to simplify 

the hardware implementation of the algorithm. As a result, the network that was 

implemented by the hardware on STONECORPS was a 3x3 neuron HM probabilistic 

network. 

The design of the synapse, sigmoid and oscillator modules is discussed in chapter 3. 

Based on the conclusions drawn from experiments with the PRONEO chip, the 

design of the oscillator was modified to reduce —and ideally eliminate at lower 

frequencies- its propensity to lock with other oscillators. The two modifications 

implemented during the schematic and simulation stage were the addition of an extra 

transistor and the decoupling of the input current mirrors. The first was aimed at 

reducing noise generation by redirecting current drain from the oscillator capacitor; 

the second was at increasing the noise immunity of oscillators. Fig. 22 depicts the 

modified circuit, transistors MDee, MPDec and Mfr  being the additions. 

Overall the chip was designed to contain a large number of new, previously untested 

circuits. It therefore had to facilitate the testing and evaluation of each circuit 

individually as well as the neurons and synapse matrix in the form of a functioning 

probabilistic neural network. For this reason isolated instances of each component of 
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the neuron circuit were included in the core and large numbers of I/O pads were used 

to test them thoroughly and facilitate troubleshooting. In addition three neurons and a 

synapse matrix were implemented, capable of interfacing to four distinct inputs. The 

random sampling, weight storage and modification functions were planned for 

implementation on the supporting PC and thus not included on silicon. 

output I 	 output 2 	 output 3 

input I 	 input 2 	 input 3 	bias 

Fig. 37: A network slice with 12 synaptic interconnections implemented on 
STONECORPS. The synapse matrix is capable of implementing a 4x3 
layer probabilistic network, in this case the 411  input neuron being used as 
a bias. 

In the end STONECORPS required 60 110 pads and it became clear early in the 

design process that the chip would have a pad-limited silicon footprint. The large 

number of pads, however, was a choice made to facilitate prototype testing; the 

majority of the pads are not required for the function of the probabilistic network, 

particularly if the weights from a pre-trained version of the network were to be 

downloaded to the chip via a more space-efficient serial interface. 
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4.3.2. Layout 

In order to facilitate circuit improvements and comparisons the same fabrication 

process that was used for the PRONEO chip was also used for STONECORPS: a 

2.4jni, 2-metal, 2-polysilicon CMOS fabrication process offered by Mietec 

(Belgium) via the Europractice initiative. 

(b) 

Fig 38: Layout plot of STONECORPS (a) and explanatory diagram (b). The chip 
contains a network of 3 stochastic neurons (A, B, C) accepting input from 4 
input neurons via a 3x4 matrix of synapse circuits (D). Neuron sub-circuits 
(E, F, G) were laid out separately. Separate power supplies pins (H, I) were 
used for the analogue and digital sections, as well as for the core and pad-
ring areas. 

The new circuits included in this prototype and the improvements to the oscillators 

implemented in the previous one are mentioned in section 4.3.1 above and are 

discussed at length in section 3.4.3. In addition to the changes implemented during 

the schematic and simulation stage of the design process, the following measures 

were taken during the layout phase to reduce the generation, propagation and 

vulnerability of the circuits to noise: 
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separate power supply pins were used for the core and pad-ring; this option 
was not offered using the standard I/O library cells, so the existing power 
supply pads had to be modified 

the analogue and digital I/O pads were placed on opposite sides of the chip 

the trunk lines of all power supply trees were widened in order to reduce 
resistance between the core and I/O pads and thus discourage noise 
propagation 

all power supply trees were decoupled using large capacitor-connected 
transistors 

The entire silicon dye measured approximately 5100x5100im including the 60 I/O 

cell pad-ring and is depicted in fig. 38 along with an explanatory diagram. Due to the 

large number of testing pins the chip was clearly pad-limited in silicon footprint size. 

Of the 60 I/O pads 25 connect to nodes necessary for testing and troubleshooting and 

could be omitted for future implementations of a tested network. Another 12 pins 

represent a parallel bus connecting to the 3x4 module synapse matrix; in pre-trained 

network implementations these pins could also be omitted. Given the explosion in 

silicon area usage with increasing complexity of the synapse matrix, it is anticipated 

that if the chip were to move out of the prototyping stage and the number of neurons 

increased it would become core-limited. 

4.3.3. The STONECORPS testing board 

A 23cm x 23cm wire-wrap PCB was designed to facilitate the testing of 

STONECORPS. The top surface of the board was covered by a thin copper grounding 

plane, while the bottom surface was covered almost entirely by soldering copper 

pads around each pre-drilled hole. As can be seen in the diagram in fig. 39 the main 

features of the developed testing board comprise the following: 

a PGA 84 zero insertion force (ZIF) chip socket, carrying the STONECORPS 
chip which implemented the stochastic neural hardware 
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two 50-pin and one 100-pin I/O sockets to interface with the National 
Instruments PCI-6025 and PCI-6071E I/O boards fitted inside the PC used 
during testing 

two Analog Devices 8-bit 7228LN DACs, to enable analogue weight inputs 
programmable from the PC I/O boards 

two Phillips FIEF4035BP triple 2-channel analogue multiplexers, to facilitate 
analogue pulse input from the PC I/O boards 

13 LM334Z adjustable current sources, to provide reference current inputs 
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Fig 39: Picture (a) and explanatory diagram (b) showing the 2" prototype chip (A) 
plugged into the testing board. Also shown in the diagram is the supporting 
chip set: the AD7228LN 8-bit DACs (B) and HEF4035BP multiplexers (C). 
The two 50-pin (D) and one 100-pin (E) connectors were used to interface 
the board with the multi I/O PCI cards installed in the laboratory PC used 
for the testing. 

For simplicity the list above deliberately omits passive components or minor support 

elements such as potentiometers, switches and spacers which can be seen in fig. 39. 
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4.3.4. 	Neuron sub-circuit characterisation 

The first target for testing the STONECORPS chip was the verification and 

characterisation of each neuron component circuit module. Instances of each 

component were placed on the chip for this purpose, physically separate on the 

silicon substrate from the neural network intended for the higher level probabilistic 

computing experiments. 

4.3.4.1. The synapse circuit module 

The synapse circuit was tested in charging and discharging phases, with all reference 

voltages and currents kept equal, a state voltage pulse of a given length and a 

variable weight input. In the charging phase the capacitor in the circuit was initialised 

to ground and the output observed through a source-follower circuit. This output 

stage was necessary so as not to distort the measurement and was also used in the 

comparative analogue simulation in order to maintain consistency. 

The I/O readings taken from the circuit, vis a vis readings obtained from an 

equivalent simulation are presented in fig. 40 below. References were set at V0=3V, 

Itota11.6p.A, 	 VjnlV (the latter is a reference voltage used for the source 

follower). 
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Fig. 40: Simulation vs. hardware testing I/O response of the synapse circuit 
charging The output is measured through an auxiliary source-follower 
circuit, which was also included in the simulation. The synaptic capacitor 
was initialised at OVand the state node pulsed for 5sec. 

The circuit was also characterised during the discharging phase. For this purpose the 

synaptic capacitor was initialised at 5V (appearing as 3.5V through the source 

follower). These readings vis a vis the equivalent readings obtained from analogue 

simulation are presented in fig. 41. References were set at the same levels as for the 

charging phase: V 0=3V, Ii=l.6.tA, Is j=1.O.tA, Vf=1V. 
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Simulation vs. hardware testing I/O response of the synapse circuit 
discharging. The output is measured through an auxiliary source-follower 
circuit, which was also included in the simulation. The synaptic capacitor 
was initialised at 5V (appearing less through the source follower) and the 
state node pulsed for 5psec. 

The value of the zero-weight threshold was accurately predicted by the analogue 

simulation measurements. Still, some deviation between hardware and simulation 

measurements can be seen in both synapse characterisation graphs. This came as no 

surprise, as fabrication imprecisions are particularly pertinent to double-polysilicon 

capacitors in CMOS chips. In addition, these particular simulations were performed 

only to obtain some straightforward, indicative comparative results and did not 

include extracted parasitic capacitances from the layout mask. 

4.3.4.2. The sigmoid circuit module 

The sigmoid is the intermediate circuit stage in the hardware neuron, implementing 

the activation function within the HM algorithm. The stand-alone instance of the 

sigmoid circuit module was tested by varying the input voltage and measuring the 

output current as a voltage drop across a resistor on the testing PCB. Testing was 

straightforward and the results of the measurements vis a vis those from an 

102 



Chapter 4 	 Hardware testing 

equivalent analogue simulation are presented in fig. 42 below. The references were 

set at Isj=60i.!A and V=2.00V. 
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Fig. 42. Output response of the sigmoid circuit module in simulation and during 
hardware testing of STONECORPS. 

The consistency of the hardware measurements with those predicted by analogue 

simulation were considered to be satisfactory for the purposes of the intended 

function of the circuit. The smoothness of the sigmoid curve was also an issue of 

interest, as sharp edges and corners would certainly hinder  and could potentially 

destroy the capacity of the neuron to learn from training data. Variations between the 

two graphs are attributed to imprecisions in the amount of current sunk by the central 

current mirror of the circuit (i.e. slight transistor mismatch due to process variations) 

It is worth noting at this stage that a minor design bug was discovered in the sigmoid 

module, making calibration by adjustment of the reference current and voltage 

necessary. More specifically, the design bug brought the circuit out of the intended 

operating range with respect to the preceding synapse and succeeding oscillator 

circuits. The issue was remedied by adjusting the reference voltage and current, 
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sacrificing power efficiency to gain calibration consistency. This design issue 

affected all sigmoid modules on the prototype chip, as all were replicas of an original 

design archetype. 

4.3.5. 	Oscillator locking investigation 

The next testing target for STONECORPS was the evaluation of design measures 

taken to discourage the propensity of the oscillators to lock, an effect that was 

observed during testing of PRONEO. Such design methodologies were implemented 

during the design of both the chip and the testing board. 

The oscillators were initially operated in the O-lOiiA input range, accepting a trade-

off of linearity for better dynamic output range and lower noise levels. This resulted 

in all oscillators operating at frequencies below 3MHz, depending on the 'inhiref 

current input ratio (fig. 44). One oscilloscope probe was connected to an oscillator 

output pin at a time to ensure that the probes did not act as antennae and couple noise 

among themselves. The waveforms of the remaining oscillators were observed on the 

same oscilloscope by approaching the probe tip a few millimetres close to the output 

pin without touching: the waveform produced by inductive coupling was weak (a 

few tens of mV) but phase and frequency could be clearly observed. 

With only one of the oscillators running, the MPR of its output voltage square 

waveform was plotted against the input current ratio (fig. 43). It was immediately 

observed that the oscillator exhibited  a more stable output waveform with less 

variation in MPR, phase and frequency when compared to the oscillators on the 

PRONEO prototype. 
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Fig. 43: MPR plots from the output square waveform of an oscillator on 
STONECORPS. The output is not significantly affected  by the concurrent 
operation of another two oscillators on the chip. The input current range 
was 0-10uA. 

Most significantly, the output MPR results were not affected when a second and a 

third oscillator were turned on, their operating frequencies swept throughout the 

output frequency range (fig. 43). These were verified using both observations on the 

oscilloscope screen and plotting of the output square wave MPR. In the first case 

none of the frequency and phase "jumps" were observed, in the second no distortions 

of the I/O curve were present. 

The experiment was repeated with oscilloscope probes connected to all four of the 

oscillator outputs and it was observed that locking would occur as soon as more than 

one oscillator was turned on. The output pads contained a triple inverter buffer, 

combined with an inverter boosting the oscillation between the oscillator circuit and 

the pad. The added capacitance due to the presence of the oscilloscope probes did not 

therefore directly affect the oscillator circuit, as was planned during the design stage. 
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Fig. 44: Output frequency plots of an oscillator on the STONECORPS chip 
operating at the O-]OuA input current range. The output is not significantly 
affected by the concurrent operation of another two oscillators on the chip. 
At higher input current ranges the oscillator becomes more linear and this 
graph becomes symmetrical around the Iu/IrejO.  5 axis. 

Locking was observed even when just two oscillators were operating with 

oscilloscope probes attached, firmly establishing that probe-coupling was an active 

noise propagation path. With this fact in mind, the oscillators were tested at higher 

operating frequencies and it was discovered that locking could be avoided so long as 

the operating frequency did not exceed 5MHz (input current range up to 501iA). 

Above that frequency locking started affecting the oscillator output, and above 7MHz 

it became immediate and inevitable even if no oscilloscope probe was attached. 

4.3.6. 	Individual neuron results 

The next step in the testing of STONECORPS involved the characterisation and 

calibration of on-chip neurons. Each neuron on STONECORPS can interface with the 

outputs of four neurons in a preceding layer; therefore it consists of 4 synapse, 1 

sigmoid (activation function) and 1 oscillator circuit modules. Characterisation of the 
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synapse, sigmoid and oscillator circuit modules has been discussed in chapter 3 as 

well as in section 4.2 above. 

4.3.6.1. Neuron simulations 

Each neuron I/O response was measured individually and the results compared to 

each other as well as to simulations that had been performed with Spectre -an 

analogue simulator similar to SPICE- with reference voltage and current inputs 

equivalent to the corresponding hardware experiments. The term 'equivalent' is used 

to account for minor calibrations that were required during experimentation and are 

discussed in succeeding sections, as well as the lower precision with which common 

reference currents were distributed around the chip as compared to the simulated 

circuits. 

Two simulations were performed, one with the synapse capacitor initialised to 

ground voltage and charging, the other with the capacitor initialised at the high rail 

voltage (5V). The results are presented in fig. 45 and fig. 46: the MPR of the 

oscillator output square wave is plotted against a common input weight voltage 

supplied to all four synapse modules. 

The reference voltage used for the synapse circuit module was V 0  = 3.00V, for the 

sigmoid Vref = 2.35V and for the oscillator Vref = 2.5V. The V 	input was supplied 

with a train of 64 1 .tsec voltage pulses. The reference currents for each synapse 

circuit module were set at Ijj 	ipA and 'tothi = 1.6i.A, for the sigmoid Ijj = 

lOO.OpA and for the oscillator 1,,f  = 3.5jiA. Each neuron on STONECORPS 

comprised four synapse, a sigrnoid and an oscillator circuit module, hence the two 

former reference currents (Link, Ith1) were quadrupled to supply all associated 

synapse modules. 

107 



Chapter 1 	 Introduction 

100 

90 

80 

70 
0 

60 

50 
U) 
0. 
.2 40 

30 

20 

10 

0 	 I 	 I 

2.30 	2.50 	2.70 	2.90 	3.10 	3.30 	3.50 	3.70 	3.90 	4.10 	4.30 

weight (V) 

Fig 45: Simulated neuron charging from empty The state input was a train of 64 
1sec voltage pulses. No x-error bars are present due to the precision of the 
simulated weight voltage input; y-error bars are the result of IvIPR 
measurement uncertainty during the sweeping of the weight voltage input. 

Examination of the simulation results revealed no surprises: the multiplication of the 

synapse, projected onto the sigmoid curve implemented by the activation function 

circuit module and filtered through the linear function imposed by the oscillator 

output stage, was expected to have the roughly shape depicted in figures 45 and 46. 

The zero weight threshold —the voltage value for which the weight causes roughly no 

change in synaptic excitement- was found to be Vth6 = 3.23 ± 0.05V for the charging 

simulation and Vthdh = 3.27 ± 0.05V for the discharging one. The sweep of the 

voltage weight that was required in the first simulation for the neuron to charge its 

synapses was 0.57 ± 0. 1V, while to discharge the synapses in the second simulation 

the sweep spanned 0.40 ± 0. 1V. This latter asymmetry is an artefact of the hardware 

implementation and does not exist in the mathematics underlying the original HM 

network algorithm. As will be discussed later, this asymmetry did not prevent 

network training during probabilistic learning experiments, though it is believed that 

it impeded and delayed it -particularly in the earlier stages of learning. 
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Fig 46: Simulated neuron discharging from full. The state input was a train of 64 
1sec voltage pulses. No x-error bars are present due to the precision of the 
simulated weight voltage input; y-error bars are the result of AIPR 
measurement uncertainty during the sweeping of the weight voltage input. 

4.3.62. Hardware neuron characterisation 

Hardware measurements were taken from all neurons on STONECORPS in 

conditions analogous to those used for the simulations described in section 4.3.6.1 

above. The power supply voltage was set at 5V for the entire chip, the reference 

voltage for the synapse circuit module at V 0  3.00 ± 0.01 V, for the sigmoid Vief = 

2.35 ± 0.01 V and for the oscillator Vf = 2.5 ± 0.01 V. The V input was supplied 

with a train of 64 voltage pulses, each 1 ± 0.01 iisec  long. The reference currents for 

each synapse circuit module were set at 'sh=  1 ± 0.01 iiA and I= 1.6 ± 0.01 pA, 

for the sigmoid Jj = 100.0 + 0.1 pA and for the oscillator 'ref = 3.5 ± 0.01 pA. Each 

neuron comprises four synapse, one sigmoid and one oscillator circuit modules, 

while several neurons were operated at the same time: the actual external setting of 

common reference currents were therefore calculated by multiplying the 

aforementioned current values with the number of sub-neuron circuit modules being 

supplied. 
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The results of a hardware run in which the neuron is charging from empty can be 

seen in fig. 47 below. The zero weight threshold for all three neurons was found to be 

3.16 ± 0.05 V, a value within the measurement uncertainty of the error bars when 

compared to the simulation readings. Variation of the threshold value among neurons 

was also well within error bar limits. 

Fig 47: 5-run average for 3 hardware neurons charging from empty. No calibration 
adjustments were made to the neurons prior to obtaining these readings. 

The output dynamic range, however, differed significantly from the expected values 

as well as from simulation readings. Neurons 2 and 3 appeared to have the upper end 

of their output dynamic range trimmed, in such a way that output never exceeded 

85%. Neuron 1 achieved 100% MPR on its output but also displayed an 

unexpectedly broad input range with respect to Vweight when compared to the other 

two neurons (fig. 47). 

Differences in neuron behaviour had been anticipated and the circuit had been 

designed to accommodate detailed testing and adjustment of reference values and 

voltages to compensate. In this case the evidence pointed at the distribution of the 

Ij reference current among the sigmoid modules within each neuron: the reduction 
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of the input and output dynamic ranges and the higher slope of the sigmoid curves 

produced by neurons 2 & 3 when compared to that of neuron 1 (fig. 47). 

Examination of the relevant node in the layout graph also provided some more 

evidence also in accordance with the graphs. The sigmoid module within neuron 1 

was receiving a larger current than those delivered to the other two neurons, therefore 

making calibration necessary. 

Finally, fabrication imprecisions are also contributing to variation in the output 

characteristics among neurons. Variations in the dimensions and therefore 

capacitance of the double-polysilicon capacitors present in the synapse circuits of 

each neuron are particularly prominent in CMOS chip fabrication. This prototype 

was fabricated using a relatively coarse process (2.4pm minimum feature size) which 

exacerbates such problems. The large area covered by the synapse matrix further 

hinders any attempts to minimise such process variations by keeping synaptic 

capacitors physically close on the silicon substrate. 

4.3.6.3. Neuron Calibration 

The ability to adjust the neurons in order to uniformly calibrate their outputs had 

been built into the hardware from the early stages of the design phase. In order to 

make the circuit realistic from a practical point of view, and to maintain a reasonable 

number of I/O pads, most reference voltage and current supply was delivered 

through nodes common to all neurons. 

Another issue that affected decisions with respect to calibration was whether 

perfectly tweaked neuronal circuits are the most desirable objective for 

experimentation in probabilistic computing. Having incorporated both algorithmic 

and analogue circuit simulations into earlier phases of this work, there was already 

some information available about the function of the hardware neurons prior to final 

hardware testing. It is believed that such real world scenarios provide the best 

opportunities to investigate the amenability of the hardware for probabilistic neural 

computing, as well as the tolerances of the particular algorithm to imprecisions 
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arising from noise, manufacturing variability, imprecise references and power 

supplies, etc. 

Given the aforementioned considerations, it was decided that the difference in 

dynamic range be remedied in the least intrusive way possible. Since it was not 

possible to supply the sigmoid modules of neurons 2 & 3 with a larger reference 

current Isinic without also affecting neuron 1, it was decided to divert more of the 

current down the output leg of the sigmoid. This was achieved by widening the state 

pulse Vste or -more precisely- increasing the number of 1 tisec clicks in the pulse 

train from 64 to 74. 

-20 

2.90 3.10 	3.30 	3.50 	3.70 	3.90 	4.10 	4.30 	4.50 

weight (V) 

Fig. 48: 5-run averages for 3 neurons charging from empty (neurons 2 & 3 adjusted 
to match neuron ]) along with simulated neuron results 

The results from the experiment described in section 4.3.6.2 with the new calibration 

can be seen in fig. 48 above. In this graph the neuron 1 and simulation curves have 

been obtained with the same experimental parameters described in the previous 

section, while neurons 2 and 3 were recalibrated as described in the previous 
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paragraph. A similar graph obtained while the neurons are discharging from a full 

synaptic capacitor load is presented in fig. 49 below. 

Fig 49: 5-run averages for 3 neurons discharging from full (neurons 2 & 3 adjusted 
to match neuron 1) along with simulated neuron results 

This arrangement was a half-way solution that did not attempt to artificially 

completely eliminate all dissimilarities among the I/O graphs of different neurons, 

while it fixed the output dynamic range problem that could potentially prevent 

network training altogether. The slight variation in the slope and input dynamic range 

of the I/O curves still remained and —as will be demonstrated later in this thesis- it 

did not preclude training. It is believed that this difference, however, delayed and 

impeded learning with respect to the software algorithm operating under ideal 

mathematical precision in simulation. 

4.3.64. Power consumption 

As was discussed in earlier sections, neuron components had been designed with 

scalability in mind.  The most prominent design priorities towards this goal involved 
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restricting the size of the silicon footprint and power consumption. This was 

naturally weighed against other underlying design costs, particularly noise immunity 

and —for prototyping stages only- accessibility to the circuits for testing purposes. 

Circuit module 	I Power consumption (4u W) 

Synapse 29±2 

Sigmoid 510± 15 

Oscillator 60-315 ± 4 

4-synapse neuron 599 - 854 ± 23 

Table 7: Average power consumption of various neuron components on 
STONECORPS. Elimination of a minor design bug in the sigmoid would 
lead to afive-fold decrease in power consumption. 

Table 7 above lists measurements taken from distinct instances of all neuron circuit 

components during testing of STONECORPS. The power consumption of the 

synapse and sigmoid modules was constant as predicted during the design and 

simulation stages, while the oscillator's varied with output frequency. 

It is worth noting that the larger than intended power consumption of the sigmoid 

module -and hence the neuron- is due primarily to a calibration incompatibility 

between circuit modules caused by a minor design error (for details see section 

4.3.4.2 above). Some calibration adjustments became therefore necessary, involving 

an increase of the reference current and consequent increase of power consumption. 

The topology and architecture of the circuit permit the operation of the sigmoid at 

about 1 00W which was the original design target: the isolated operation of the 

sigmoid in that input current range has been verified successfully both in simulation 

(section 3.3.2) and on the hardware bench. 

114 



Chapter 4 	 Hardware testing 

4.3.7. Conclusions 

Testing of the individual neuron circuit components on STONECORPS revealed that 

the circuits generally functioned as expected, with respect to the design requirements 

and analogue simulations. Naturally some points were identified in the circuits that 

could benefit from design modifications and improvements in future work 

The synapse circuits demonstrated an accurate zero-weight threshold and acceptable 

linearity; the output of the synapse circuit is superimposed on the sigmoid module 

output curve, so precise linearity was not a top priority in this design. Of more 

concern was some measured asymmetry of the dynamic range of the synapse in the 

charging phase with respect to the same circuit during the discharging phase. Testing 

of the combined neuron circuits revealed that this characteristic was consistent 

among neurons and —as is seen by the measurements in the next chapter- was 

overcome by the algorithm. It is believed, however, that it was one of the factors that 

impeded training to a certain extent and account for the measured differences 

between the performance of the HM network as software simulation as compared to 

the prototype hardware. 

The stand-alone sigmoid circuit also behaved as expected. There was an imbalance in 

the output dynamic range of the neurons implemented on chip: this was traced to 

slight mismatching of the synaptic capacitors (a known fabrication issue with CMOS 

chips) and the imbalanced delivery of the reference current 'ref  to the sigmoid 

modules among different neurons. 

It was established that the modifications in the design of the oscillators, the power 

supply nodes and the pad-ring eliminated oscillator locking on STONECORPS, 

provided the oscillators did not operate in frequencies higher than 5MHz. 

The problem involving noise coupling through oscilloscope probes during testing 

had an impact on the planning of further experiments using the complete on chip 

neural network. Due to the fact that the random sampling function was implemented 

off-chip, initial plans required multiple oscilloscope probes to be attached to the PCB 
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in order to simultaneously poll all oscillators (the oscilloscope operated via a GPIB 

link to the PC on the laboratory test bench). Having completed and dissociated the 

oscillator locking investigation from the investigation of the function of the circuits 

as a hardware implementation of a probabilistic ANN, it was decided that oscillators 

would be operated one by one to avoid probe-to-probe coupling. This however was a 

compromise made based on the limitations of the testing instruments and equipment 

and is not a limitation of the prototype hardware: if the sampling of the oscillators is 

done on-chip the -at a frequency much lower than that of the oscillation frequency- it 

is expected that the problem would be removed altogether. 

The following list summarises imperfections found in the hardware and ranks them 

by reverse severity: 

trimmed neuron output dynamic range, variable among different neurons 

asymmetrical dynamic range for the synapse while charging as compared to 

the discharging phase 

measurement imprecision for both inbound and outbound values 

imperfect sigmoidal characteristic of the sigmoid module 

imperfect oscillator output dynamic range 

f, 	imperfect oscillator linearity 

oscillator approaches zero output but never completely shuts down 

oscillators locking when oscilloscope probes attached to output 

(a) had been anticipated and was traced to fabrication variations of the synaptic 

capacitors and imbalanced distribution of the 'ref  reference current to the sigmoid 

modules within each module. It was remedied by calibrating the neurons using the 

length of the synaptic pulse and the voltage reference Vref in the sigmoid module. 
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was anticipated based on prior analogue simulations of the synapse module; 

hardware testing verified that it is a consistent character among neurons. It is 

therefore accepted as an imperfection that the HM algorithm will have to overcome, 

possibly having an impedance effect on learning performance. It does not affect 

network performance of a trained network as synaptic weight connections 

compensate for it. 

is an issue pertaining to the testing equipment. It generally involved error below 

5% and is reflected in the error bars on the graphs presented in this chapter. It 

becomes more significant in the probabilistic neural computation experiments 

described in the next chapter, since there is an information feedback loop: oscillator 

output measurements taken by the PC from the PCB via the two multi-I/O adapters, 

while weights and state pulses are loaded onto the PCB from the PC via the same 

adapters and two on-board DACs 

(d), (e), (f) and (g) are not considered to be of substantial importance, particularly 

since the HM neural algorithm is expected to adjust to small imperfections; every 

effort was made to minimise their impact nonetheless. More specifically, it has been 

found in the past that deviation from the ideal sigmoidal shape of the sigmoid 

function does not have decisively catastrophic results on learning, while 

experimentation with various smooth activation functions is an area of active ANN 

research [39]. A minor design bug in the sigmoid module had caused some initial 

miscalibration with respect to the preceding and succeeding modules: it was 

remedied by adjusting the Vref and Isink reference nodes. 

The input range of the oscillator was selected to maximise the output dynamic range 

without causing locking, instabilities, or excessive power consumption at the higher 

frequency end of the spectrum. The oscillator does not completely shut down, but its 

MPR approaches so close to zero that for all practical purposes this imperfection 

should not pose any major hurdles to the HM neural algorithm. 

Finally (h) was remedied by avoiding having multiple oscilloscope probes attached 

to oscillator probes when taking measurements. Having established that the design 
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modifications to the oscillator implemented during the design of STONECORPS 

eliminated oscillator locking altogether (see section 4.3.5), it became feasible to take 

oscillator measurements one at a time, temporarily shutting down all other oscillators 

on the chip. In this way the oscillator probes could stay attached, since the GPIB-

controlled oscilloscope was an important part of the testing setup in order to perform 

the probabilistic neural computing experiments. 
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This chapter contains the descriptions of probabilistic computation experiments 

performed using STONECORPS. It describes the software and hardware setup used 

to implement the HM ANN algorithm, the vector data sets used to train it, 

comparative training results between a software simulation and the hardware, as well 

as relevant conclusions. 

5.1. 	Introduction 

The experiments described in this chapter revolve around the comparison between 

the performance of a 3x3 HM network running in software simulation and on the 

prototype hardware. The planned list of objectives for these experiments can be 

concisely listed as follows: 

Choose points of merit to evaluate learning with respect to the set of data 
vectors used for training 

Determine if either the hardware network or an equivalent software 
simulation require protection against over-training effects, then choose the 
optimum number of training epochs to terminate the training process 

Using the software simulation, investigate the learning capabilities of an HM 
with the particular size and topology (i.e. training using all data sets) 

Perform the same experiments using the hardware model 

Investigate the effectiveness of training with respect to particular sets of 
training vectors and draw comparative conclusions about the software and 
hardware HM model limitations 

Focus on differences in performance and associate with the associated 
training data sets, draw conclusions 
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To simplify the testing setup and ensure similar conditions for the comparative 

experiments, the software simulation was developed using the same software 

package used to implement the backbone of the testing of the hardware. 

5.2. 	The experimental setup 

A software simulation matching the probabilistic neural network implemented on 

STONECORPS was built using the National Instruments Labview software running 

on a Windows platform on the testing laboratory PC. The algorithm running as a 

purely software simulation was presented with a variety of data sets containing 

training vector data and the weight matrices were modified according to the HM 

training rule. The ability of the fantasy HM network to recreate the probability 

distributions inherent in the data was then evaluated by calculating the average 

probability deviation (APD) among all possible vectors -this was possible due to the 

small size of the network. By freezing training after a set number of training epochs 

and calculating the value of APD it was possible to build an image of the 

effectiveness of training. This evaluation method also permitted the selection of a 

reasonable limit for the maximum number of training epochs before over-training 

started having degenerative effects. 

The process was then repeated, this time with the probabilistic computing performed 

by the network implemented on STONECORPS. The PC running Labview was used 

for weight storage and random sampling, interfacing with the prototype's PCB via D-

type parallel connectors and a GPIB-controlled oscilloscope. 

A model of the network was built using the measurement and automation software 

package called Labview, version 6.0.2 (National Instruments, USA). The primary 

functions of this model were: 

to serve as a software simulation of a functioning Helmholtz Machine, using 
the Wake-Sleep algorithm to train itself and provide data for comparison with 
similar experiments performed with the prototype hardware 
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to complement the hardware network by providing those components of the 
algorithm that were not implemented on hardware (i.e. weight storage and 
modification, random sampling) 

The particular software package was selected for a variety of reasons. It contained a 

built-in higher level programming language which naturally accommodated modular 

design, had software driver support for the wildly variable mix of testing instruments 

and permitted the development of drivers for chipsets for which there were none 

available by the manufacturers28. 

The collection of measurement instruments and intermediate interface adapters 

consisted of two multi-I/O data acquisition cards, a GPIB adapter, a 50M1-Iz digital 

oscilloscope, two DACs and several multiplexers. The complete software and 

hardware setup built around the STONECORPS PCB is depicted in fig. 50. It is 

worth noting that the diagram only demonstrates connectivity: it does not specify 

signal and control lines and only depicts components controlled by the hardware 

testing PC. 

As mentioned earlier in section 4.3.1, STONECORPS was designed to implement a 

4x3 HM ANN using the hardware-testing PC to support the weight storage and 

modification functions. In order to make accurate comparisons the software 

simulation also implemented an identical model, using one of the four input neurons 

as a bias (essentially implementing a 3x3 topology). Taking advantage of the 

modular nature of the Labview programming environment, the software algorithm 

was built in nested modules. During hardware testing all modules that represented 

functions which overlapped with those of the prototype CMOS chip were replaced 

by the hardware testing setup. 

28  This was the case for the two AD7228LN DACs (Analog Devices, USA), so a driver was developed 
to program them. A higher-level interface driver, coordinating the individual communication protocol 
drivers for each instrument, interfaced the PC with the STONECORPS PCB. 
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software 
hardware 

PC 

board 

Fig. 50: Diagram depicting the software and hardware setup used to test 
STONECORPS. Only components29  controlled by the PC are shown on the 
prototype test board. 

Several graphical user interface (GUI) screens were also developed using Labview. 

Apart from allowing control of the HM algorithm they also facilitated data I/O 

29  Components whose label begins with AD are manufactured by Analog Devices Inc, USA; HP by 
Hewlett-Packard Inc, USA; MS by Microsoft Inc, USA; and NI by National Instruments Inc, USA. 
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functions to the hard drive and included line graph and bar chart windows to help 

visualise the results during and following network training. 

5.3. 	The testing automation software 

Labview is marketed as a "measurement & automation" software package: it is 

essentially a seamless bundle of a modular, higher level programming language, 

some inter-locking GUI objects and graphs, and drivers to interface the PC to its 

environment -in our case through an oscilloscope and multi 110 adapters installed on 

the PCI bus. More facilities are offered, such as a scripting interface for the C 

programming language, the ability to build standalone applications, web interfaces 

and so on, but the aforementioned features were the ones that ultimately influenced 

its selection as testing software for STONECORPS. 

The design of the software simulation was built with Labview in a modular fashion, 

namely dissecting the neuron into the same components that existed in the hardware 

and implementing the algorithm within each one. In this way the replacement of the 

simulation by hardware processing could be done on a one-to-one basis, simplifying 

the process and making software-hardware performance comparisons more 

transparent. 

Naturally, the software-simulated HM topology was an exact match of the one 

implemented on STONECORPS. It is a dual layer network, with 4 input and 3 output 

neurons (40), each one fully interconnected with all neurons on the other layer. One 

of the four input neurons was set to be always on, serving as a bias and simplifying 

the implementation of the algorithm on the hardware side —this was also reflected in 

the software simulation. The same network with a different synaptic weight matrix 

was used as the top-down generative network of the HM machine, matching the dual 

use of the neurons on hardware. A graphics picture of the network architecture can be 

seen on the top right corner of fig. 51. 
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The software HM simulation interfaces with the PC hard disk in order to read the 

training set data, save the synaptic weight matrices, a snapshot of the final weight 

values, record the calculated APD throughout training and a set of fantasy vectors 

generated by the training vector. 

The simulation also interfaces with the user via two GUI screens shown in figs. 51 

and 52. It receives the weight limit, learning rate, weight randomisation 

(initialisation) constant, epoch plot resolution and file paths as parameters for the 

simulation, while it also extracts and displays the training epoch limit from the 

training file. The first GUI screen (fig. 51) serves to display plots of weight evolution 

and the calculated APD, both updated live as training takes place. The latter is 

calculated by freezing training and using the latest snapshot of the generative weight 

matrix to produce fantasy vectors30: the fantasy vector probability distributions are in 

turn compared to those of the training set to produce the current APD value. 

The purpose of the second GUI screen (fig. 52) is to assist in visualising the 

probability distributions of data vectors contained in the training set, as a side-by-

side comparison with the equivalent vectors generated by the trained generative 

network once training is complete. The white number fields on the left side of the 

screen contain the number and percentage of occurrences of each vector in each set. 

The bar chart on the right side of the figure is a visual representation of the desirable 

distribution for each vector (solid bar) contrasted to the equivalent distribution of that 

vector in the generated fantasy set (outline bar). 

The Labview software was finally interfaced with the PCB used for testing 

STONECORPS. For this purpose the software simulation of the HM was replaced by 

processing on the developed hardware, with the exception of weight storage and 

modification that were still performed on the PC. For this reason the software 

communicated with the PCB via two multi I/O boards and a GPIB-controlled 

30  The concept of fantasy vectors in the context of the HM was introduced and explained earlier in 
section 2.3 
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oscilloscope. A more detailed description of this software-hardware setup used for 

testing the prototype ASIC can be found in the previous section and is shown in the 

schematic diagram of fig. 18. 

5.4. 	The training sets 

The training sets were generated by a simple random vector generator that was 

developed using the Labview programming language. They all contained equal 

overall distributions of several vectors, each consisting of 3-bit binary digits. The 

order of vectors in each set was mixed randomly to avoid bottlenecks of variation 

during training. The choice of equal, randomly mixed vector distributions was a 

choice made to facilitate and clarify the analysis of later training comparisons 

between simulation and hardware. 

Training 
Description Number 

List of vectors vector set  of vectors 

A 
one vector 

3 
bit on  [1,0,0], [0,1,0], [0,0,1] 

B complementary 
4 [1,0,0], [1,1,0], [0,1,1], [0,0,1] pairs  

C all possible 
8 [0,0,0], [0,0,1], [0,1,0], [0,1,1], 

vectors  [1,0,0], [1,0,1], [1,1,0], [1,1,1] 

D complementary 
4 [0,0,0], [0,1,0], [1,0,1], [1,1,1] pairs  

E 
one vector 

3 
bit off  [1,0,1], [1,1,0], [0,1,1] 

F uniform vectors 2 [0,0,0], [1,1,1] 

G 
complementary . 2 [0,1,0], [1,0,1] pair  

Table 8: Listing of the seven 3-bit vector sets used to train the 3x3 HM stochastic 
neural network for the comparative software and hardware experiments. 
Vector sets are from here on referred to according to the label in the left 
column. 

127 



Chanter 1 	 Introduction 

Table 8 above lists all training sets, their contents, number of distinct vectors 

contained and a short description. Seven different combinations of all eight possible 

3-bit vectors were used to form the training sets used for the probabilistic learning 

experiments. The population and identity of distinct vectors appearing in each 

training set varied, while several patterns were selected for each set in order to 

establish whether and how they affected the learning capabilities of either the 

software simulation or hardware HM network implementations. 

There are no excessively complicated patterns to choose from when one has to pick 

3-bit binary vector. Some sets were selected to contain complementary vector pairs, 

their addition yielding the unity vector [1,1,1]. Some others contained symmetrical 

vectors, that is vectors that can be generated by bit-shifting any other vector in the 

set. A set was put together simply by varying the zero and unity vectors, it was 

ensured that all vectors appeared in at least two sets and that the distinct vector 

population varied among sets. In the beginning each training set was generated with 

a content of 2000 vectors, a number that was later optimised to avoid overtraining 

effects. 

5.5. 	Optimising the number of training epochs 

As in most ANN experiments, care is necessary in choosing the number of training 

epochs to avoid over-training effects. This is particularly important in the case of the 

planned experiments, as we wish to compare HM training results from 'ideal' 

software simulation conditions with those from hardware that is known to operate in 

a noisy, non-ideal environment. 

Using results from preliminary training runs, the number of training epochs for each 

training set (see table 8) was selected for use in the subsequent learning experiments. 

During these preliminary runs the value of APD was monitored and a limit on the 

number of training epochs was selected if necessary: this limit was set after the APD 
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value reached the global minimum and before over-training started to gradually raise 

its value31. The limits were set at a compromise value between the ideal setting for 

the software and the hardware networks. The compromise limit values for each 

training vector set are listed in the second column of table 10 in section 5.7. 

From a strict point of view, truly unsupervised learning should entail a scenario in 

which the ANN can hold on to its optimum training configuration without outside 

intervention. This however is affected by the size and topology of the network vis a 

vis the size and complexity of the training set data, as well as the capabilities of the 

training algorithm: unsupervised algorithms for neural learning are, after all the focus 

of a currently lively research field for information theorists. The scope of this work, 

however focuses on the software-hardware comparison given the capabilities of the 

Wake-Sleep algorithm and the constraints imposed by the hardware prototyping. It 

was therefore accepted that restricting the number of training epochs was a necessary 

step that had to be taken in order to draw clearer conclusions from this comparison. 

5.5.1. 	Evaluating the progress of learning 

A method used commonly in the literature to evaluate the effectiveness of learning in 

a HM network is the measurement of the Helmholtz Free Energy (HFE) [28], a term 

borrowed from statistical mechanics and used to describe a measure of the statistical 

inference performed by the recognition network of the HM. 

While the HFE has certainly been used successfully to evaluate the effectiveness of 

learning in HM networks, the small network involved in the planned comparative 

permits us to use a simpler and faster measure. The fantasy vectors produced at the 

bottom of the generative network during the sleep phase (see section 2.3) provide a 

useful evaluation tool for the effectiveness of training at any given point of the 

31  This limit on the number of training epochs was only imposed if deemed necessary. It proved 
necessary for some training sets, useful in others and unnecessary only in the case of training set G. 
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training process. Moreover, in a small 3x3 neuron network it is feasible to evaluate 

all possible fantasy vector distributions. 

The percentage distribution of each vector present in the generative network's 

fantasies can thus be compared to the corresponding desired distribution in the 

training set, and the absolute value of the difference between the two distributions 

can serve as a partial snapshot of the network's learning progress. This calculation 

can be performed for all fantasy vectors and the results averaged over the number of 

vectors. The final result would then be the absolute value of a single number 

representative of the divergence between the training set data from the generative 

network's fantasies, and by extension also representative of the effectiveness of the 

learning progress. 

A step-by-step example helps clarify the process: 

The 3x3 network is trained using the Wake-Sleep algorithm and a data set of 

1000 binary vectors, each containing 3 digits. 

20 epochs into the training process, training is temporarily frozen in order to 

evaluate progress to that point. The process will be frozen in a similar fashion 

after 40, 60, 80, etc, epochs for the evaluation to be repeated. 

The inputs of the top layer of neurons in the generative network are biased to 

a binary 1 and the latest snapshot of the generative weights is used to 

generate fantasy vectors at the bottom of the network. 

The percentage probability of each possible 3-digit binary vector appearing in 

the set of fantasies is thus determined empirically, using 1000 (or more) 

repetitions of step 3. The sum of all probabilities should, of course, be 100%. 

The absolute value of the difference in probability for each vector to appear 

in the training or fantasy vector sets is calculated. For instance vector [1,0,1] 

may appear in the training set with a probability of 25% and in the fantasy 
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vector set with a probability of 32%. The absolute value of the probability 

difference is therefore registered as 7%. 

6. The sum of the probability differences for each vector is calculated and 

averaged over the number of all possible vectors. In the case of a 3x3 

network, for instance, this average probability deviation (APD) from the 

training set would be calculated as follows: 

2 

where Ap stands for the absolute value of the difference in probability distributions 

described in step 5, its subscript denoting the vector to which this difference refers. 

The calculated APD therefore becomes a measure of the gradual convergence of the 

representations of the recognition and generative network of the HM as expressed 

through the set of recognition and generative weights, respectively. 

As the training process progresses, one expects to see a gradual reduction of the 

value of APD as it approaches a lower limit, which represents the network's 

capabilities given its topology, training algorithm and training data. Again depending 

on the characteristics of the network and training set the value of APD might remain 

close to this minimum, oscillate around it or —undesirably- start rising. In the two 

latter cases the network is suffering from over-training effects. 

Over-training effects can therefore be avoided by restricting the number of training 

epochs, following an initial investigative run for an arbitrarily large number of 

epochs. During this first run the APD value can be assessed at set intervals and the 

optimum number of epochs determined. In the case of our experiments such 

preliminary runs were performed before each experiment and in the case of multiple 

global minima in the APD curve the one occurring the earliest in the training process 

was always selected. 
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5.5.2. 	Learning parameters 

A total of 100 runs, each consisting of 2000 training epochs, were performed to 

obtain the average curve of the APD value for each experiment, using first the 

software (fig. 53) and then the prototype hardware (fig. 54) HM networks. For runs 

using both networks the learning rate was set to Aw = 0. 15, and initial weights were 

randomised symmetrically around 0 by ±0.5. Upper and lower limits were set for the 

weights at +15 and -15 respectively. 

Weight storage and modification for the hardware experiments were performed 

within the supporting Labview algorithm running on the supporting PC. The weights 

were stored and modified as discrete arithmetic values, identically to the software 

experiments. For the neural calculations, however, the arithmetic values had to be 

translated to equivalent weights and a software module was developed to perform 

this translation. For a given set of reference voltages, currents and length of neuronal 

state pulse, a certain weight voltage value causes a 50% MPR voltage at the output of 

the neuron (i.e. randomly sampling the output of the neuron there is an equal 

probability of finding it on or off.) This voltage is therefore equivalent to a weight 

value w=0 because according to the Wake-Sleep algorithm probability formula for a 

neuron j,  the probability that this neuron will turn on is p(j=l) = 1I1+e 0  = 0.50. 

Similarly, for w=3 the arithmetic version of the algorithm yields a probability of 0.95 

and the equivalent weight voltage was determined. Using these two voltages the 

weight translation software of the algorithm was calibrated. 

5.5.3. 	Preliminary HM performance evaluation: software 
simulation 

The preliminary experiments associated with the graphs in fig. 53 indicated that the 

software HM simulation was overall capable of successfully reducing the APD in all 

training vector sets. In the case of vector set C the network started in a state that 

enabled it to generate fantasies that already closely resembled the distributions 

contained in its training set, thus generating an APD graph that was rising. This was 
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due due to the fact that this training set contained all possible vectors (table 8) in equal 

distributions of 12.5%. The network started with all weights initialised to 0 +0.5, 

which resulted in a nearly symmetrical weight array that was very likely to produce 

the desirable fantasy vector distributions from the beginning. For this reason and for 

this vector set only, the initial weight randomisation margin was slightly increased to 

+2.5, to demonstrate that the network is capable of decreasing the APD in this set as 

well. Still, the network reached the global minimum of the APD value very quickly 

(50 epochs) in this case with respect to the other experiments, hence the rising line 

graph for training set C in fig. 53. 
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Fig. 53: Average deviation from target (training set) distributions during software 
simulations of the 3x3 model of the Helmholtz Machine. A total of 100 2000- 
epoch training runs were used to produce the average for each curve. 

In all cases except training set G the software HIM network showed some 

overtraining effects. As expected, learning enabled the HM to generate fantasy 

vectors increasingly more similar to the training set. However after reaching an 

initial global minimum in most cases the APD tended to slightly rise, demonstrating 

the over-training effect that this preliminary set of experiments were designed to 
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detect and measure. In the case of training set G the network was capable of 

repeatedly reducing the value of APD following any rise after reaching local minima, 

leading to oscillations with a vague period of less than 150 epochs and slightly 

decreasing the global minimum reached after each oscillation. This was due to the 

simplicity of the training set, which contained only two complementary training 

vectors (i.e. their sum yields [1,1,1], see table 8). 

Overall the software HM network had an easier task reducing the value of APD in 

the fantasies that it generated when learning from those training sets that contained a 

smaller number of vectors, as well as when the vectors were complementary in pairs. 

It is important to note at this point that the reduction of APD is indicative of the 

effectiveness of learning but does not clearly define a limit beyond which the 

network is more likely to generate undesirable distributions than the ones described 

in its training set. This happens for the reason that the distribution error measured by 

the APD can occasionally be spread among the undesirable distributions without 

letting either of them become 'stronger' than any of the desirable ones, whereas in 

other cases —at similar APD levels- this might not turn out to be the case. For this 

reason a second set of experiments was performed using the trained networks, this 

time explicitly looking at how frequently the trained network generated fantasies in 

which the desirable vector distributions were clearly stronger than the remaining 

ones. More on these experiments is presented later in this chapter (section 5.7). 

5.5.4. 	Preliminary liNt performance evaluation: hardware 
simulation 

Parallel experiments conducted with the prototype hardware yielded similar results 

albeit at higher APD values (fig. 54). In order to facilitate comparisons with the 

results obtained from experiments with the software model all learning parameters 

for the network were kept the same -as described in section 5.5.2 above. 
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As was the case for the software HM simulation, the hardware runs indicated that the 

network was capable of reducing the value of APD when training using any of the 

sets. It also displayed the same over-training effects after reaching a global APD 

minimum when training with all sets except G. This set produced the lowest APD 

values from all and formed the basis for the only experiment in which the hardware 

network could retain its training despite the possibility of over-training as learning 

continued; it is believed that the extensive oscillations observed in fig. 54 are the 

manifestation of such a balance between over-training effects and corrective action 

by the Wake-Sleep algorithm. 
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Fig. 54: Average deviation from target (training set) distributions during training of 
the hardware 3x3 model of the Helmholtz Machine. A total of 100 2000- 
epoch training runs were used to produce the average for each curve. 

In the case of training set C the network learnt rather quickly, given the nature of the 

training set data, which was very close to the untrained network's fantasies before 

any training took place. This issue is discussed in more detail in section 5.6.3, along 

with some corrective action taken in the setup of the subsequent experiment using 

this training set. 
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5.5.5. Conclusions 

The primary objectives of these preliminary experiments was to demonstrate the 

capability of both the software and hardware networks to reduce the value of the 

APD during training, as well as to discover the optimum number of training epochs 

for each vector set. Both objectives were met forming the basis for the remaining 

experiments. 

Overall it was observed that in both the software and hardware experiments the I-TM 

networks were capable of reducing the value of APD in the fantasies they generated. 

In both scenarios the networks learnt the quickest from training set C. When training 

with set G both were able to reduce the APD to the lowest value compared with the 

remaining training sets. The ideal mathematics contained in the software network's 

algorithm enabled it to clearly achieve a higher overall reduction of the APD value in 

each experiment, as compared with the hardware HM network and everything else 

kept equal. Past the point of over-training, the software network performed slightly 

better in keeping the value of APD low for training sets B and F, an effect that was 

not observed with the hardware network. This was attributed to the fact that both 

sets, like training set (I contained vectors that were low in number, formed 

complementary pairs or both. 

Finally it is significant that contrary to the results obtained from the software HM 

simulation (fig. 53), the hardware network did not produce radically lower APD 

minima when training with sets B and F. While the two sets did lead to the lowest 

APD minimum values from all sets bar C and ( the difference between these 

minima and the remaining ones was less significant. The most likely explanation is 

associated with the slight impairment suffered by the hardware network due to the 

imprecision of the stochastic computation being performed on hardware (analogue 

noise, imprecise representation of the sigmoid activation function, imperfect output 

oscillator linearity, etc). 
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5.6. 	Comparative training experiments 

Having chosen the optimum number of training epochs for each training set 

experimentation proceeded with comparative experiments between software and 

hardware. 

In addition to determining the minimum APD value after learning from a particular 

training set, associations between this value and characteristic patterns in the training 

data were investigated. The first pattern, henceforth referred to as symmetry, is 

defined as the characteristic of a set in which shifting the bits of any one vector can 

generate all remaining ones. Complementarily is defined as a characteristic pattern in 

which all vectors in the set can be assigned to groups, within which the collective 

sum of all vectors is [1,1,1]; for instance vectors [0,1,0] and [1,0,1] form a 

complementary pair. Finally, the total population of distinct vectors appearing in a 

training set was also taken into account. 

5.6.1. 	Training set  

The first training set contained three 3-digit binary vectors: [0,0,1], [0,1,0], [1,0,0]. It 

was hoped that the symmetry inherent in these vectors would facilitate the learning 

process. Indeed, the network learned from the vector data as can be seen by the 

reduction of the value of APD (fig. 55). The small size of the HM network, however, 

as well as the lack of an intermediate layer impeded learning and the results from this 

experiment did not produce the lower APD values generated by most other training 

vector sets. This comparative conclusion held true for results obtained from 

experiments using both the software and hardware network. 

The selected optimum number of epochs was 1750, mostly affected by the 

performance of the hardware network: the software HM had reached its minimum at 

about 650 epochs. As expected, the software network was capable of reducing the 

value of APD the most (fig. 55), taking advantage of the precision of the arithmetic 

in the neural computation formulae as well as the lack of hardware imprecision and 
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noise. The APD minima reached by the two networks were 7.86 at 700 epochs for the 

software model and 10.13 at 1350 epochs, a difference of 2.27. 

0 	200 	400 	000 	800 	1000 	1200 	1400 	1000 	100 

epach 

Fig. 55: Average deviation from the targeted distribution during training of the 
software and hardware HM models. Each curve represents the average of 
100 1750-epoch training runs, using training vector set A. 

5.6.2. 	Training set B 

Training set B comprised four vectors each containing three binary digits: [1,0,0], 

[1,1,0], [0,1,1], [0,0,1]. Despite the fact that this set contained a relatively large 

number of vectors, it was one of the three training sets in which the software 

algorithm was able to reduce the APD to the lowest values (figs. 53, 56). The vectors 

in the set formed complementary pairs, but results from training set D cast doubt on 

any associations between this characteristic and the relatively effective learning of 

both networks from this set. This difference in learning relative to the other sets is 

less dramatic for the hardware network (figs. 54, 56), a result that can be attributed to 

the lack of mathematical precision in the computation performed by the hardware. 
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The selected optimum number of epochs for the comparative experiment was 900 

which was a compromise between the performance of the software and hardware 

networks: in the preliminary experiment the software HM had reached its minimum 

at about 650 epochs and the hardware in 1100. As expected, the software network 

was capable of reducing the value of APD the most (fig. 56), which can be explained 

by the superior precision and lack of hardware noise when the algorithmic 

computation takes place within a software simulation. The APD minima reached by 

the two networks were 4.75 at 650 epochs for the software model and 8.94 at 900 

epochs, a difference of 4.19. 

1O 	20) 	XICI 	4:6 	t00 	8O0 	70 	600 	900 	1000 

epochs 

Fig. 56: Average deviation from the targeted distribution during training of the 
software and hardware JIM models. Each curve represents the average of 
100 900-epoch training runs, using training vector set B. 

5.6.3. 	Training set C 

Training set C contained all possible binary 3-digit combinations in 8 vectors 

appearing with equal probability of 12.5%: [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], 

[1,0,1], [1,1,0], [1,1,1]. Due to the small initial weight randomisation at the 

139 



16 

14 

12 

10 

2 

0 

Chapter 1 	 Introduction 

beginning of each experiment, the network started in a state that enabled it to 

produce fantasies with distributions very close to the desirable results immediately, 

before any training took place (figs. 53, 54). To make experimentation more 

interesting the weight randomisation constant was therefore increased from 0.5 

(which was used for all other equivalent experiments) to 2.5. Still, the network was 

capable of reaching its APD value rather quickly: in 80 epochs for both networks. 

0 	10 	20 	.0 	40 	50 	60 	70 	 90 	100 
apccs 

Fig. 57: Average deviation from the targeted distribution during training of the 
software and hardware JIM models. Each curve represents the average of 
100 100-epoch training runs, using training vector set C. 

A relatively small number of 100 epochs was therefore selected as the optimum for 

training both networks using this vector set. As expected, the software network 

achieved the reduction of the value of APD to the lowest minimum value (fig. 57), 

taking advantage of the precision of the arithmetic in the neural computation 

formulae, the lower precision and inherent noise of the hardware computation. The 

APD minima reached by the two networks were 4.37 at 80 epochs for the software 

model and 5.99 also at 80 epochs, a difference of 1.62. This set enabled both 

networks to lower the value of APD (as calculated from their post-training fantasy 
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vectors) to the second lowest minimum values; the lowest APD minima were 

produced using training set G 

5.6.4. 	Training set  

Training set D contained four vectors each containing three binary digits: [0,0,0], 

[0, 1,0], [1,0,1], [1,1,1]. Despite the fact that the vectors formed complementary pairs 

the relatively large number of vectors made this set one of the hardest for either 

network to train from (figs. 53, 54). 

1O 0 	200 	00 	400 	500 	000 	700 	600 

epochs 

Fig 58: Average deviation from the targeted distribution during training of the 
software and hardware HM models. Each curve represents the average of 
100 750-epoch training runs, using training vector set D. 

This difference relative to the other sets is less dramatic in the results from the 

experiment using the hardware network (figs. 54, 58), a result that can be attributed 

to the lack of mathematical precision in the computation performed by the hardware. 

The selected optimum number of epochs for the comparative experiment was 750, 

which was a compromise between the performance of the software and hardware 
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networks: in the preliminary experiment the software HM had reached its minimum 

at 600 epochs and the hardware in 1400. This compromise epoch number was 

reached due to the fact that the local minimum reached by the hardware after 50 

epochs was close to the global minimum despite the large difference in the number of 

training epochs between the two minima. 

As expected, the software network was capable of reducing the value of APD faster 

and to the lowest value (fig. 58), taking advantage of the precision of the arithmetic 

in the neural computation formulae as well as the lower hardware precision and 

noise. The APD minima reached by the two networks were 6.65 at 600 epochs for the 

software model and 10.07 at 750 epochs, a difference of 3.42. 

5.6.5. 	Training set E 

Training set E contained three 3-digit binary vectors, each with a single bit turned 

off: [1,0,1], [1,1,0], [0,1,1]. The symmetry inherent in the training set data seemed to 

make no difference as this was one of the hardest sets for either network to train from 

(figs. 53, 54). This difference relative to the other sets is less dramatic in the results 

from the experiment using the hardware network (figs. 54, 58), an effect that can be 

attributed to the lower algorithmic precision in the computation performed by the 

hardware. 

The selected optimum number of epochs for the comparative experiment was 750 

which was a compromise between the performance of the software and hardware 

networks: in the preliminary experiment the software HM had reached its minimum 

at 600 epochs and the hardware in 1400. This compromise epoch number was 

selected bearing in mind that the local minimum reached by the hardware after 750 

epochs was close to the global minimum. 

As expected the software network was capable of reducing the value of APD faster 

and to the lowest value between the two networks, taking advantage of its superior 

precision of the arithmetic in the neural computation formulae (fig. 59). The APD 
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minima reached by the two networks were 8.12 at 750 epochs for the software model 

and 12.27 at 650 epochs, a difference of 4.15. 

C, 	 200 	0 	0 0 	SOD 	e.00 	700 	6,  0o 
epochs 

Fig. 59: Average deviation from the targeted distribution during training of the 
software and hardware JIM models. Each curve represents the average of 
100 750-epoch training runs, using training vector set E. 

5.6.6. 	Training set F 

Training set F consisted of the two homogenous 3-digit binary vectors: [0,0,0], 

[1,1,1]. Using this vector set which contained only two symmetrical and 

complementary vectors both networks learned comparatively faster and more 

effectively (figs. 53, 60). The difference relative to other sets is less dramatic for the 

hardware network results (figs. 54, 60), an effect that is most likely connected with 

the lower mathematical precision of the computation performed by the hardware 

network, and the presence of noise. 

The selected optimum number of epochs for the comparative experiment was 650 

which was a compromise between the performance of the software and hardware 
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networks. In the preliminary experiment the software HM had reached its minimum 

in 600 epochs and the hardware in 900. As expected, the software network was 

capable of reducing the value of APD the most, taking advantage of the precision of 

the arithmetic in the neural computation formulae as well as the lack of hardware 

imprecision and noise (fig. 60). The APD minima reached by the two networks were 

4.50 at 600 epochs for the software model and 10.69 at 650 epochs, a difference of 

6.19. 
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Fig. 60: Average deviation from the targeted distribution during training of the 
software and hardware HM models. Each curve represents the average of 
100 650-epoch training runs, using training vector set F. 

	

5.6.7. 	Training set G 

Training set G consisted of the two complementary 3-digit binary vectors: [0,1,0], 

[1,0,1]. The small number of vectors in the data contributed to this being the training 

set from which both networks learned the fastest and the most effectively (figs. 53, 

54). Unlike some other training sets which proved significantly easier for the 
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software network to train from, the fast and dramatic reduction of the value of APD 

was equally prominent in the results of both networks (fig. 61). 

It is of particular importance that both networks were able to maintain the low value 

of APD long after it reached levels close to the global minimum. The oscillations 

apparent in fig. 61 appear on both graphs, a fact which leads to the conclusion that 

they are characteristic of the training set, network topology and learning algorithm 

rather than the nature of the software or hardware implementations of the network. It 

is believed that they represent successful corrections by the training algorithm, in 

response to over-training effects. The ability to learn from the training data without 

the imposition of training length limits from the outside was unique to this training 

set. 
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Fig. 61: Average deviation from the targeted distribution during training of the 
software and hardware lily! models. Each curve represents the average of 
100 2000-epoch training runs, using training vector set G 

The selected optimum number of epochs for the comparative experiment was 2000 

which required no compromise between the software and hardware networks: in the 

preliminary experiment both had reached the global minimum in the value of APD in 
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200 epochs. As expected, the software network was capable of reducing the value of 

APD to slightly lower values, taking advantage of the precision of the arithmetic in 

the neural computation formulae as well as the lack of hardware imprecision and 

noise (fig. 61). The APD minima were reached at 2000 epochs by both networks and 

were 1.97 for the software model and 4.04 for the hardware, a difference of 2.07. 

5.6.8. Conclusions 

The experiments described earlier in this section compared the performance of the 

software simulation ANN with that running on the prototype hardware in generating 

the probability distributions that they had both learnt from the training set database. 

Both networks trained on identical data for each comparison and learning was 

restricted according to the conclusions drawn from the preliminary experiments 

described in section 5.5. Using as a criterion the reduction of APD inherent in the 

post-training fantasy vectors, the software network clearly learnt more effectively 

while training from sets B, C, F and G; the hardware network learnt more effectively 

from sets C and G When training from the same set of data and for the same number 

of epochs the software network always reduced the value of APD more quickly and 

to a lower minimum value -bearing in mind that the results were averaged over 100 

identical runs. 

Bit-shifting symmetry and complementarity in the training vector data —as defined in 

section 5.6- did not appear to have any clear, decisive effects on the performance of 

either network. This conclusion is specific to the HM networks with the particular 

topology used for the aforementioned experiments and more work would be needed 

before attempting to generalise it; this however lies outside the scope of the 

comparative investigation undertaken for this thesis. 

The number of vectors in the training set, on the contrary, did show a clear 

association with the capability of either network to reduce the value of APD in post-

training generated fantasy vectors (table 9). As was expected, a lower number of 

vectors was associated with more effective learning; the network simply had to 
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decode and store fewer vector patterns in its weight matrix during training. The only 

exception to this conclusion was training set C, a set that included 8 vectors. As 

explained in section 5.6.3, the relative symmetry of the initialised weights was 

responsible for this aberration making the learning task significantly easier for both 

networks. 

Training Number Symmetrical Complementary APD min APD min 	APD 
set 	of vectors 	vectors 	vectors 	(S ofh4'are) (hardware) difference 

A 	3 	Y 	 N 	 7.86 	10.13 	2.27 

B 	4 	N 	 Y 	 4.75 	8.94 	4.19 

C 	8 	N 	 y 	 1.55 	2.69 	1.62 

D 	4 	N 	 y 	 6.65 	9.92 	3.42 

E 	3 	Y 	 N 	 7.75 	11.14 	4.15 

F 	2 	N 	 Y 	 4.50 	9.79 	5.29 

G 	2 	N 	 y 	 1.97 	4.04 	2.07 

Table 9: Number of vectors and patterns inherent in the training data, average 
probability deviation (APD) minima and difference calculated from post-
training generated fantasy vectors. The APD difference is calculated by 
comparing the software and hardware networks' minima. The APD data 
were produced by 100 runs at an optimised number of epochs to avoid 
over-training effects. 'N'stands for 'no', 'Y 'stands for 'yes'. 

5.7. 	Experiments using the trained generative network 

It is important to point out that the calculated APD is a general indication of learning 

and does not always accurately signify whether the network has successfully learned 

the desirable distributions. In a stochastic computing network for one, there is always 

the possibility that weak undesirable distributions might appear in the fantasies of 

even a well-trained network. For another, predicting the minimum value of APD 

below which the network will generate the desirable (training set) probability 

distributions with a certain frequency is neither easy nor reliable. For that reason a 
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second criterion was formed to characterise the effectiveness of training: a set of 

generated fantasies was obtained from the trained generative network and the 

probability distribution for each vector was calculated with respect to the total 

number of fantasy vectors in the set. If the weakest desirable vector distribution was 

greater by 5% or more than any of the undesirable distributions, the learning was 

considered to be successful. 

Based on this criterion a second set of experiments was performed with the software 

and hardware networks, using the trained weight matrices obtained from the previous 

set of experiments. The results are presented in table 10 below; columns four and six 

repeat the minimum APD values presented in table 9, in order to facilitate a side-by-

side comparison with the data from this last set of experiments. 

training 
set name 

training 
epochs 

software hardware 
successful 

runs 
minimum 

deviation (%) 
successful 

runs 
minimum 

deviation ('%,) 

A 1750 3/10 7.86 1/10 10.13 

B 900 7/10 4.75 2/10 8.94 

C 100 10/10 1.55 10/10 2.69 

D 750 4/10 6.65 1/10 9.92 

E 750 4/10 7.75 1/10 11.14 

F 650 10/10 4.50 6/10 9.79 

G 2000 10/10 1.97 7/10 4.04 

Table 10: Comparative results from fantasies generated using the software and 
hardware HM models. The number of training epochs was restricted to the 
number indicated in the second column to avoid over-training effects. A set 
of fantasy generation runs was considered successful if all desirable 
distributions it produced had a minimum 5% clearance margin from the 
strongest undesirable distribution. 

Column 2 contains the number of epochs for which the training was performed in 

this second set of experiments. This was chosen using the deviation results from the 

first set of experiments in such a way as to avoid overtraining effects (i.e. training 

was performed to the global minimum of the APD curve and no further). Since the 
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number of epochs for the APD minimum tended to slightly differ between the 

software and hardware networks, a compromise was chosen in order to facilitate 

comparisons between the two. 

It is also worth noting that in the case of training set C, the untrained network with 

randomised weights produced distributions very close to those of the training set. 

The result was a very brief training period (100 epochs), after which the deviation 

generally showed a slight increase, since it was at a bare minimum to begin with. For 

this reason, in the second set of experiments the weights were randomised by a much 

wider margin for the runs using training set C (initial w = 0±3.5) than for any of the 

other training runs (initial w = 0±0.5). This revealed a training set that was - 

predictably- quite easy for both the software and hardware networks to successfully 

train from. 

5.8. 	Conclusions 

The purpose of all aforementioned experiments was to evaluate and compare the 

performance of a HM ANN running as a software simulation to the same ANN 

topology when running on the prototype hardware and training from the same data 

sets. This section summarises conclusions drawn from 

the preliminary experiments whose main objective was to optimise the 
number of epochs for the training of each network 

the evaluation of the results obtained from the optimised learning 
experiments that followed 

the investigation into associations between learning performance and variety, 
symmetry and complementarity in the training set vectors 

the comparison between the learning performance of the hardware network 
and its software simulation replica 

The comparative conclusions drawn about the performance of the two networks were 

the more significant with respect to the hardware-oriented investigation undertaken 

in this project. 
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5.8.1. 	Learning from training sets C, F, G 

The software network was capable of learning consistently the distributions in sets C, 

F and (i provided that training terminated before over-training effects became 

dominant. This conclusion is based on the fact that in 10/10 generative runs the 

network was capable of reproducing the desirable vectors in distributions that were 

significantly larger than the remaining possible vector distributions (i.e. the weakest 

desirable distribution was at least >5% larger than the strongest undesirable vector 

distribution in the fantasy vector set.) The 100-run average plots show a clear drop of 

APD during training, which further testifies towards this conclusion. 

Taking into account the patterns in the synopsis of training results presented in table 

9, no associations are evident between learning performance and symmetry or 

complementarity patterns in the vector data. It is significant however that vectors F 

and (3 from which the network trained particularly well, also contain the lowest 

number of distinct vectors. Clearly, for a small network with two layers and only 

three inputs, training on fewer vector distributions was significantly more effective. 

The apparent aberration of vector C is a special case due to the initialised state of the 

network weights, which essentially meant the network was already close to the 

trained state at the very beginning of each experiment. 

The hardware network also found these three training sets the easiest to learn among 

the seven training sets used. It managed to successfully reduce the average deviation 

in all three cases, albeit not to the low levels achieved by the software simulation. 

This was expected due to the fact that the hardware network approximates the 

mathematical equations governing the behaviour of the HM neurons with a certain 

degree of inaccuracy. Out of the 10 test runs for each training set, the hardware 

network learnt the desirable distributions 10/10 times for set C, 6/10 times for set F 

and 7/10 times for set G In the latter two cases its performance was poorer than that 

of the software network, which again came as no surprise for the same reasons. 

It is of particular importance that when trained with set ( both the software and 

hardware networks were capable of keeping the average deviation close to minimum 

150 



Chapter 5 	 Probabilistic Neural Computation 

even without protection from over-training effects (i.e. even as training continued.) If 

one defines unsupervised learning in a strict fashion, this was the only network in 

which learning would be both achieved and maintained without any interference 

from outside the algorithmic environment (i.e. by terminating training at an optimum 

number of epochs, before over-training effects kicked in). Significantly, this held true 

for both the software and hardware networks. 

5.8.2. 	Learning from training set B 

This training set was interesting because the software network was able to learn from 

it 7/10 times, whereas the hardware network was clearly less successful in learning 

the contained distribution (success rate of 2/10). While the plots clearly show that the 

value of APD was overall reduced in both networks, in the case of the hardware 

implementation learning was encumbered and did not lead to a model capable of 

consistently recreating the desirable fantasy vector probability distributions. The 

inaccuracies and noise inherent in the calculations performed by the hardware 

network were enough to 'push it off the edge' and prevent it from learning this set of 

vector distributions consistently. 

Taking into account the patterns in the vector data contained in this training set (table 

9) no associations are evident between symmetry, complementarity and its learning 

performance. The large number of vectors in the training set, however, most likely 

inhibited the effectiveness of learning. This association between vector diversity and 

learning performance was a general trend in these experiments given the limited 

topology and number of neurons in both networks. It becomes particularly evident 

when comparing the hardware learning results from this set with those obtained from 

training set F (table 10): the hardware network was capable of generating fantasies 

with a lower overall APD minimum when training from this set rather than F, yet it 

succeeded in clearly recreating the desirable distributions with a success rate of 2/10. 

The simpler, less diverse vector data contained in vector set F were successfully 
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recreated in the generative network's fantasies with a success rate of 6/10 times, 

despite the slightly higher overall APD minimum value. 

5.8.3. 	Learning from training sets A, D, E 

These are the training sets from which both networks had trouble learning the 

contained distributions. While the average deviation clearly shows that some learning 

is taking place, in neither case does the final model manage to consistently recreate 

the distributions in each of the training sets. Predictably, the hardware network fares 

a bit worse than its software counterpart. 

Taking into account the patterns in the vector data (table 9) of these three training 

sets, no associations are evident between the poor learning performance and 

symmetry or complementarily. It is significant, however, that they all contain a larger 

number of vectors than average among all training sets -not taking into account set C, 

which is a special case as discussed in section 5.6.3. The conclusion is that these 

training sets are problematic for a Helmholtz Machine of this particular topology and 

small size when trained by the Wake-Sleep algorithm. There are other unsupervised 

learning algorithms that have been developed (e.g. PoE, CRBM, etc) which have 

been demonstrated to offer increased learning capabilities to a given topology for an 

unsupervised neural network. 
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In this chapter we will summarise the research and conclusions presented in this 

thesis, make immediate and longer-term suggestions on how to advance the pulsed 

probabilistic neural approach, present selected recent developments in the field and 

attempt to anticipate the effects of current technological trends on the future of 

probabilistic neural computation. 

6.1. 	Summary 

In this thesis document we have so far presented a pulse-based approach for 

probabilistic neural computation, as well as a novel hardware implementation of the 

Helmholtz Machine artificial neural network architecture. At the heart of the 

hardware prototyping is the design of a new type of probabilistic neuron, comprising 

synaptic input circuit modules, an activation function module and a probabilistic 

output oscillator. The latest developed hardware chip is autonomous once trained, 

and is supported by the hardware testing setup for random sampling and weight 

changing operations during unsupervised training. 

The ANN topology chosen as a target for hardware implementation was the 

Helmholtz Machine (HM) [28]. It is an auto-encoder network [47] consisting of two 

sub-networks which share a nearly identical topology but propagate information in 

opposite directions. This enables the sub-networks to work in a complementary 

fashion, providing each other with training targets during unsupervised learning. 

Neurons have binary probabilistic states, a sigmoidal activation function and are 

organised in fully interconnected layers with an acyclic information flow and no 

intra-layer synaptic connections. 
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The most significant incentives behind the selection of the HM derive from its Wake-

Sleep unsupervised training algorithm. The weight changing equation the algorithm 

utilises is relatively computationally inexpensive and requires information local to 

each neuron. It is these two characteristics that make it an attractive candidate for 

VLSI hardware implementation. Other proven probabilistic ANN architectures, such 

as the stochastic Boltzmann Machine [43] use comparatively slower, more 

complicated and more computationally expensive training algorithms. 

6.1.1. 	Prototype circuit design 

Since this project attempted to combine pulse-based circuits with a probabilistic 

ANN model for the first time, a new type of probabilistic neuron had to be developed 

as a hardware prototype, using the HM as our model of choice. While the design 

focused on endowing the neuron with probabilistic properties, two more design 

qualities were given priority: a modular design for the neurons —particularly the 

synapse circuits- and overall scalability. The former increases the flexibility of the 

design, while the latter practically translates into an effort to minimise the neuron's 

silicon footprint, power consumption and dependency on individual biases. 

The HM's probabilistic neurons algorithmically resemble pre-existing deterministic 

neurons in the sense that they also accept input through weighted synaptic 

connections, sum the total activation and threshold it through a sigmoidal activation 

function. The main difference is a double output from each neuron, consisting of the 

probability that the neuron will assume the binary ON state during the next cycle of 

operation, as well as the binary neuronal state itself The prototype hardware neuron 

has to therefore output both variables, or at least produce the probability in a form 

that permits the extraction of the binary neuronal state in a quick and non-

computationally intensive fashion. 

A current-biased differential pair circuit with NMOS gate inputs and current output 

was combined with a simple pulsed-mode integrator to perform the synaptic 

multiplication required for each neuronal interconnect [13]. 
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The sigmoid-like output curve of a similar circuit comprising a current-biased 

differential pair with PMOS gate inputs and a current output (see section 3.3.2) was 

exploited to implement the activation function for the prototype HM neuron. 

The output stage of the neuron was designed using a current-controlled oscillator 

(CCO) built around a capacitor and a Schmitt trigger (see section 3.4.2). The output 

mode of the oscillator is a mark-to-period (MPR) modulated voltage pulse train, 

quite similar to the duty cycle of a clocked digital signal. This form of output is 

particularly convenient for our purposes as it can be randomly sampled to select the 

next neuronal state. The probability value is available as a current (sigmoid module 

output) and can also be straightforwardly extracted as a voltage value from the MPR-

modulated CCO output through integration. 

Two hardware prototype  CMOS silicon chips, codenamed PRONEO and 

STONECORPS were designed, simulated, fabricated using a 2.4pm 3-metal CMOS 

process and tested using custom-built wire wrap PCBs. PRONEO contained several 

instances of the output stage CCO prototype module in order to characterise it and 

evaluate the propensity of the oscillators to lock when operating concurrently. 

STONECORPS carried a dual layer 40 hardware implementation of the HM 

network, which served as a platform for experiments in probabilistic neural 

computation. Parallel software simulation experiments with identical training sets 

and HM network topology were performed and the results were compared to those 

obtained from the experiments from the STONECORPS chip. 

Overall the main aims set and achieved during the design phase of both chips are as 

follows: 

a novel pulse-stream probabilistic neuron circuit module which can perform 
autonomously and in parallel the recognition and generative processing 
phases of HM operation 2  

32  or semi-autonomously, if one considers that the weights for the prototype are set ex-temally 
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a scalable neuron design, with a relatively small silicon footprint', low power 
consumption and no requirements for individual bias nodes for each neuron; 

a synapse circuit with the flexibility of accepting state input in analogue form 
from the preceding neuron, rather than just the binary state input required by 
the HM. This can be achieved without modifying the synapse design, simply 
by feeding a pulse-width encoded neuron state to the same input node 
(section 3.2.1.2) 

a neuron output that can supply the probability in analogue current mode 
(sigmoid output node) as well as in the form of a MPR-modulated voltage 
pulse train; the latter is amenable to parallel random sampling to extract the 
neuron's next binary state 

With respect to the first bullet point it is worth clarifying that the hardware design is 

novel in several ways. First, this is the first hardware implementation of the 

Helmholtz Machine. Second, this is the first attempt to specifically focus on 

employing the pulse-stream methodology to design analogue hardware for 

probabilistic neural computation. Finally, the neuron circuit consists of a novel 

combination of processing stages and introduces the element of stochasticity in an 

entirely original fashion: the pulse-width modulated output of an oscillator is 

randomly sampled, functioning as a current-to-probability converter. 

Apart from the design goals stated in the aforementioned bullet list, there are two 

points in the design that leave room for some simple and immediate improvement in 

future hardware implementations: 

it would be preferable to locate the sigmoid module as close to the synapse 
matrix as possible; this modification would take advantage of the current 
mode interface implemented by that node and make the design less 
vulnerable to noise contamination during transfer along long metal lines 
across the chip. Even though this node was not identified as the chief noise 
propagation pathway, this modification should contribute to a modest 

1  The silicon footprint of the design is of comparable size to that of other pulse-stream designs, despite 
also being stochastic. It is worth pointing out that both chips were prototypes, so minimisation of the 
neuron's silicon footprint was not the top design priority: using minimum transistor size, shrinking the 
pad ring and packing circuitry closer together should lead to a dramatic further reduction in size. 
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reduction of noise propagation among neurons, possibly allowing the network 
to operate in higher frequencies. 

a post-design examination of the sigmoid module revealed that a simple 
resizing of transistors would reduce power consumption by 80%, a fact 
verified through analogue simulation. This approximately translates to a 45% 
power consumption reduction for a 4-synapse neuron. 

6.1.2. 	Characterisation measurements & experiments 

PRONEO, the first prototype chip, implemented three instances of the probabilistic 

output oscillator module as well as a separate instance of the Schmitt trigger circuit 

within each oscillator. The placement of the oscillators on the silicon substrate and 

the topology of the testing nodes permitted experimentation with noise propagation 

across the chip, the primary objective being an investigation into oscillator locking. 

the probabilistic oscillator output stage circuit was found to be working as 
expected, with satisfactory linearity (<6% deviation) in the 0-70pA input 
range. 

an output dynamic range problem was identified: phase jitter due to power 
supply noise trimmed the upper end of the dynamic range (the oscillator 
would prematurely jump to 100% MPR). 

at lower input current ranges the aforementioned output dynamic range 
problem gradually becomes insignificant, power consumption improves but 
linearity gradually deteriorates; considering the effect of these three factors 
on the function of the HM, it was decided to operate the oscillator in the 0-
20tA input current range. 

the Schmitt trigger was characterised and found to work as expected; it was 
also identified as the dominant power supply noise generator. Further 
experimentation proved that this noise was indeed capable of pulling any on-
chip oscillator into frequency and phase synchronisation (i.e. locking). 

an investigation into oscillator locking showed it to be a problem. It occurred 
immediately when two oscillators were operated concurrently; further 
experimentation identified the pad ring power supply nodes as the dominant 
noise propagation pathway. 

These conclusions formed the basis for the modification of the second generation 

probabilistic neuron circuit, implemented on the succeeding STONECOPRS 
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prototype. More specifically, the topology of the oscillator output module was 

modified to reduce noise generation and improve its power supply rejection. 

Moreover, design measures were taken to block noise propagation across the chip, 

particularly the dominant pathway via the pad ring power supplies and the critical 

routes from the dominant noise-generating circuits to the noise-sensitive analogue 

inputs. 

The STONECORPS chip aimed to characterise the synapse, sigmoid and second 

generation oscillator modules individually, as well as perform experiments in 

probabilistic computing using a hardware HM network. For this purpose, 

STONECORPS contained individual instances of each of the aforementioned 

modules, as well as a dual-layer 40 network of probabilistic neurons. Each neuron 

in a layer had full interconnectivity with every neuron in the other layer, while no 

lateral connections were present (see fig. 37, section 4.3.1). This hardware network 

operated as both the recognition as well as the generative belief networks within the 

HM, thus permitting the bi-directional function of the algorithm. 

The following list draws together the more significant conclusions drawn from 

characterisation of the probabilistic neuron and its components circuits implemented 

on the STONECOPRS chip 

the synapse module was shown to perform as expected, with a 1.8 ± 0. lv 
linear input range and approximately 3.9V output range'. The V 0  bias 
voltage node, which was common to all synapses, allowed the adjustment of 
the zero-weight threshold to within 35mV from simulation values during 
synapse calibration. 

the sigmoid circuit module required re-calibration involving adjustment of the 
circuit's bias current and voltage nodes. Post-calibration characterisation 
measurements showed a smooth sigmoid output curve in the intended I/O 
ranges. 

'this approximation is due to the fact that the synapse module's output could only be measured 
through a source-follower circuit (see section 3.2.1.2) 
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characterisation measurements obtained from the second generation 
STONECORPS oscillators revealed similar performance characteristics to the 
original oscillator design implemented on the PRONEO chip. The significant 
difference, however was that the improved STONECORPS oscillators would 
not phase-lock when operated concurrently up to 5Mhz. 

experimentation with each oscillator clearly showed that its output does not 
vary outside measuring error margins whether it is operating in isolation or 
concurrently with other oscillators. It was discovered, however, that attached 
oscillator probes acted as transceiver antennae and affected experimentation 
by consistently causing locking. Having demonstrated that oscillator locking 
was resolved on STONECORPS (see section 4.2.4.2), it was decided that 
experiments in probabilistic neural computation should proceed by sampling 
one neuron at a time, since the oscilloscope probes had to remain attached in 
order to sample the fast-changing MPR-modulated neuron output nodes. 

6.1.2.1. Probabilistic neural computation experiments with 
STONECORPS 

The STONECORPS prototype chip implemented a dual-layer 4x3 network of 

probabilistic neurons capable of functioning autonomously and performing the 

recognition and generative phases of a functioning HM. The functions implemented 

by the lab PC and supporting hardware involved random sampling of the MPR-

modulated neuron output, weight modification and weight storage. 

The testing setup involved a wire-wrap PCB which carried the STONECOPRS 

prototype, some testing hardware (mostly DACs, multiplexers, current sources and 

associated passive components) and interfaced to the lab bench PC. The PC was a 

Windows NT platform running Labview 61 (a testing & automation software 

package) and communicated with the STONECORPS PCB via two on-board digital 

acquisition multi 110 PCI adapters. Fast sampling of the oscillator output nodes was 

performed by a 50MHz digital oscilloscope interfaced to the PC using an on-board 

GPIB adapter. The diagram in fig. 50, section 5.2, graphically depicts the hardware 

testing setup. 

The module programming language included in the Labview package was used to 

develop a software simulation of a dual-layer 4x3 HM with an identical topology to 
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the one implemented in the STONECORPS chip. The probabilistic neurons were built 

in a modular fashion echoing the on-chip hardware structure and one of the 4 

neurons in the larger layer was chosen to act as an always-on bias unit, thus 

simplifying the implementation of the algorithm. The criterion chosen to monitor and 

evaluate the effectiveness of choice was the Average Probability Deviation (APD), an 

average of the percentage probability distribution difference between the training set 

and the set of fantasies generated by the trained network. The learning process was 

frozen in 50-epoch intervals, a set with of fantasies containing the same number of 

vectors as the training set was generated, and the value of APD calculated. 

A group of binary vector data sets was formed to perform probabilistic neural 

computation experiments both as a software simulation and using the STONECOPRS 

chip. Each vector consisted of three binary bits and sets varied in both the number 

and nature of the vectors: some contained complementary vectors (their sum being 

the unity vector [1,1,1]) while others comprised symmetrical vectors (bit-shifting one 

vector produces all others in the set). 

The first experiment aimed at determining the optimum number of training epochs 

for each set, using both the software and hardware models of the HM network, in 

order to protect against over-training effects. 2000-epoch training runs were 

performed using each training set with both networks for this purpose. Once this 

optimum number of epochs was determined, a compromise number of epochs was 

chosen to serve both models and to be used in comparative experiments between 

software and hardware. 

Comparative experiments with each training set showed that both models were 

capable of consistently reducing the value of APD during training. As was expected 

due to its superior computation precision, the software model performed reduced the 

value of APD faster and to lower levels as compared to the hardware. This was 

expected due to the fact that the software model works with superior mathematical 

precision and does not suffer the calculation imprecisions associated with I/O noise, 

signal transfer noise, fabrication process variations and imperfections in the 
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sigmoidal and linear characteristics of the circuit modules comprising the neuron. 

Results from this set of comparative experiments are concisely presented in table 9, 

section 5.6.8. 

Finally, a last set of experiments averaged the fantasy distributions of pre-trained 

networks over the optimum number of epochs. 10 sets of 100-runs were performed 

and the results were averaged and filtered in the following manner: a set of desirable 

fantasy distributions would be judged as a successful results if and only if it cleared 

all undesirable distributions by a margin of 5% or greater'. This filtering process was 

designed to eliminate false positives caused by a low APD value exclusively 

represented by a single undesirable distribution. Results from this set of experiments 

are concisely presented in table 10, section 5.7. 

Overall, conclusions drawn from probabilistic neural learning experiments using 

both the software and hardware models can be summarised as follows: 

both network models were demonstrated to be capable of reducing the value 
of APD in generated fantasy vector sets, having previously trained with any 
of the 7 binary vector training sets, proving that learning was taking place. 

the software model reduced the value of APD consistently faster and to lower 
levels than did the hardware model on the STONECORPS chip; this was 
expected due to computation imprecisions of the hardware: I/O noise, signal 
transfer noise, process variations and imperfections in the linear and 
sigmoidal characteristics of the neuron component circuits. 

the software HM simulation model was capable of successfully learning and 
re-generating the probability distributions contained in 4 out of 7 training sets 
most of the time2. It was clear from APD graphs that it was also capable of 
learning distributions from the remaining sets to a certain extent, but was not 
capable to recreate them consistently. This was due to limitations associated 

The value of 5% was chosen empirically as a safety margin to ensure that the desirable distributions 
were indeed the strongest within generated fantasy vectors. For details see section 5.7. 

2  since the HM is a probabilistic ANN there is always the possibility of the odd undesirable 
distribution appearing even in a well-trained network configuration. For details about the generative 
performance of both networks, see tables 9 and 10. 

161 



I 	 Introduction 

with the modest size of the HM network, a topology choice designed to make 
to make comparisons with hardware more revealing and meaningful. 

the hardware model was successful in recreating the correct distributions of 
all but one of the training sets from which the software network was 
successful in training. The remaining case was that of training set B, from 
which the software model was not capable of consistently learning the correct 
distributions either. 

larger numbers of vector distributions in a training set had an impeding 
impact on the learning performance of both networks; this result was 
expected due to the modest size of the implemented HM network and 
associated encoding limitations. Training set C was an exception to this rule, 
due to the homogenous initial distributions involved. 

bit-shifting symmetry and complementary symmetry among vectors in the 
training sets did not have clearly observable effects on the training 
performance of either network model during the aforementioned experiments. 

6.1.3. 	Thesis conclusion summary 

The work for this research project focused on investigating the thesis statement 

presented in section 1.4. The research therefore focused on the use of pulse-stream 

methods for hardware implementation of a HM ANN, a well-understood and 

hardware-friendly example of a stochastic neural computation architecture. 

The HM ANN is both unsupervised and stochastic, so a novel, pulse-stream 

probabilistic neuron circuit design was proposed for its hardware implementation 

(chapter 3). The scaleable and modular design was simulated, fabricated and tested in 

two prototyping cycles (chapter 4), and the hardware performance was contrasted to 

a software simulation model of equivalent topology using identical training sets 

(chapter 5). 

After investigating and resolving an obstacle involving phase locking of the 

oscillators in the neuron circuit's output stage (sections 4.2.4, 4.3.5), results obtained 

from the parallel learning experiments contrasting the software and hardware 

implementations were rather promising. The small hardware network was clearly 

shown to learn, with a performance comparable to that of the software model 
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(sections 5.6 - 5.8). Assessment of the performance of both networks was done using 

the calculated value of APD during training as well as post-training success rates in 

reproducing the training set vector distributions. Both networks were benchmarked 

against a pattern storage and re-generation task, which is characteristic of auto-

encoder networks. A database of 7 training sets containing a variety of binary data 

vector distributions was used. 

Results from the comparative learning experiments showed that the hardware I-TM 

prototype is capable of learning at approximately the same number of training epochs 

as the software. The software however is capable of reducing the value of APD to 

lower minima, which translates into more accurate' overall pattern regeneration 

when all other factors are kept equal 

The size of the network used was small to facilitate charactensation and 

troubleshooting during the prototyping phases, however previous research using the 

HM indicates that learning performance scales well to larger topologies [25]. The 

smaller network size did however restrict the range of possible training data inputs, 

so an effort was made to enrich diversity within the training set database used for the 

comparative experiments. 

The size limitations of the network, however also had some positive effects. It 

facilitated the performance of the comparative training experiments at the limits of 

the small network's capabilities, revealing that the slight deterioration of 

computational accuracy observed in hardware can indeed 'push it off the edge' and 

cause learning to fail. This was particularly interesting for those training sets from 

which the software simulation was still capable of successfully learning (section 

5.8.2). 

The use of the pulse-stream design methodology proved both practical during design 

and resource-efficient, while protecting against amplitude noise by encoding 

More accurate in this context means the generation of fantasy vector data with the desirable 
probability distributions (i.e. those contained in the training vector data set.) 
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analogue values on the time axis. The trade-off, however was increased sensitivity to 

frequency jitter, which proved to be a nuisance in a design that relied in deliberately 

simple oscillator circuits. This was anticipated and design measures were taken to 

prevent oscillator locking on the STONECORPS chip, though a combination of 

oscillator phase-locking and instability limited its operation to below 5MHz. 

Assuming that such a speed-limit on the operation of neurons in parallel is 

acceptable for a given application, pulse-stream design is a viable and attractive 

alternative to the addition of uncorrelated Gaussian noise in order to create stochastic 

neurons. 

Further research is required to determine how well this design would scale down to 

more modem, smaller minimum feature CMOS fabrication processes. It would be of 

particular interest to determine the performance of such a stochastic ANN design 

when implemented in deep sub-micron processes (i.e. below O.li.tm minimum 

feature) since at those levels amplitude noise is a particularly acute problem for 

analogue hardware and probabilistic computation might turn out to be a natural -even 

inevitable- methodology. 

An interesting and meaningful direction for future research would be 

experimentation with larger pulse-stream neural topologies in order to explore the 

limitations of the Helmholtz Machine using more complex training data sets. 

Contrasting hardware performance with software simulation solutions in larger 

topologies would once again be the natural next step. 

Overall, the more significant milestones and conclusions drawn from this project can 

be summarised as follows: 

the Helmholtz Machine, a stochastic, unsupervised auto-encoder ANN 
architecture, was selected for hardware implementation using the pulse-
stream hardware design methodology for stochastic neural computation. 

there were several criteria for this choice, most significant of which were the 
promising prospects of unsupervised ANNs, the proven robustness of pulse-
stream designs and the hardware amenability of the HM's simple Wake-Sleep 
training algorithm. 
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the components of the proposed neuron circuit design have been simulated, 
fabricated, individually tested and characterised; all performed as expected, 
with only some straight-forward calibration adjustments required. 

the fabricated hardware neuron features power and silicon area demands 
small enough not to preclude large scale multiple neuron integration, can 
share common bias nodes with other neurons and employs a modular, 
scaleable on-chip interface. 

the oscillator circuit module, the neuron's probabilistic output stage, faced 
some initial problems associated with phase synchronisation and inter-
locking; the prototype displaying the problem was studied and experimental 
conclusions led to the design of a second generation oscillator module that 
overcame this problem for frequencies below 5MIHz. 

the second generation hardware prototype, codenarned STONECORPS, 
implemented a small HM that proved capable of learning simple binary 
vector patterns; proof of its learning capacity came from graphs depicting the 
value of APD, a measure of 'likeness' between vectors distributions in the 
training set and generated fantasy vector data. 

a software simulation of an identical network to the one implemented on 
STONECOPRS was also developed. As was expected, comparative 
experiments between the two showed faster and more accurate learning 
performed by the software; noise and circuit imprecisions gracefully —rather 
than catastrophically- degraded the hardware network's learning capacity. 

the comparative experiments helped separate the training sets that a HM 
network of this size is incapable of consistently learning' from similar 
limitations arising from hardware imprecisions. 

the chief advantage of the hardware implementation is the capacity for 
massive parallelism, which can potentially outperform in speed of 
computation any software simulation running on modern digital CPUs; 
physical size, cost and power demand per neuron are also advantageous for 
the analogue VLSI hardware due to the small overhead, particularly for 
modest size networks. 

It is worth re-stating at this point that the hardware described in this thesis was the 

product of prototype design and therefore have not been explicitly optimised for 

silicon area and power consumption. Both of these resources however were taken 

into account during the entire design process, with scalability in mind. Without major 
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design sacrifices there is the potential for significant further area and power savings 

as these circuits move out of the initial prototyping stage. 

6.2. 	Future Research & Circuit Improvements 

6.2.1. 	Algorithmic level 

On the algorithmic level it would be particularly interesting to use the same dual-

layer 4x3 network topology described in this thesis with other unsupervised 

probabilistic training schemes. The recently developed Product of Experts (PoE) 

algorithm would be of particular interest, because it also uses binary state neurons 

and employs an unsupervised, auto-encoding learning algorithm [45]. The PoE has 

also been demonstrated to possess pattern recognition and pattern completion 

capacities superior to many other state-of-the-art ANN schemes (including 

supervised ones [63]), a fact promising some interesting comparative results to those 

obtained from the HM in this thesis, using the same training sets. 

Training the probabilistic network on the STONECORPS chip using the PoE's 

minimisation of contrastive divergence (MCD) training algorithm would be the 

natural next step, revealing whether the PoE architecture is better at compensating 

for hardware noise and imprecisions than the HM. 

6.2.1.1. Over-training effects 

One of the more significant limitations of the HM algorithm encountered during this 

research project was over-training. The recipe for protecting the HM network against 

overtraining that was used during our experiments is simple: develop a measurement 

to monitor the quality of learning (in our case APD), proceed with training while the 

APD value is being minimised, and freeze training briefly thereafter. The problem 

1  using the Wake-Sleep algorithm, that is. 
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that arises from this process is that it is not trivial to determine whether the algorithm 

has reached a global or local maximum in the convergence between the training and 

fantasy training sets'. 

When the training set is available on demand, one method to bypass this problem is 

to pre-train the network for a large arbitrary number of epochs in order to determine 

the optimum length of training 2. This however is not an effective approach in 

scenarios in which there is no prior availability of the training set, or the training set 

is streaming in real time, as in the case of continuous live monitoring of sensor drift 

[25]. Clearly an auto-encoder algorithm capable of minimising the value of APD and 

maintaining it at levels close to minimum would be a superior algorithm: a practical 

example would be the performance of the modest HM network on the 

STONECORPS chip when learning from the rather simple training set G (fig. 53, 

5.5.3). 

It would therefore be interesting to determine how the PoE auto-encoder algorithm3  

would fare with the training sets used for the experiments in this thesis. Its improved 

encoding efficiency may result in successful retention of the APD value close to 

minimum levels without having to use additional neurons and layers, therefore 

resolving the over-training issue for the training sets in our experiments. 

It would also be meaningful to experiment with some gradual weight decay for the 

HM model, particularly at a variable rate during the training phase. Observations 

during the stochastic neural computation experiments suggest that over-training 

effects may be related to several weights in the network reaching their limits; it is 

therefore reasonable to hypothesise that weight-decay may be a useful feature for 

adding resilience to the network or at least postponing over-training effects. 

'or minimum, in the case of APD used in our experiments 

2  this is the methodology that was adopted for the neural learning experiments described in this thesis 

the PoE algorithm is of particular interest because it also employs binary stochastic neurons and can 
therefore be used to train the existing hardware 
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Assuming analogue capacitive weight storage in hardware, this gradual weight decay 

ought to be easy to implement: in the case of leaky double-polysilicon CMOS 

capacitors, it is in fact unavoidable. 

6.2.2. 	Future hardware research & improvements 

An immediate and efficient way to improve the hardware developed for this thesis 

would be to make minor changes to existing circuit designs. The top of the list would 

be the correction of a minor layout bug in the sigmoid module of each neuron. 

Simple transistor resizing would lead to a five-fold decrease of the sigmoid current to 

bring the circuit back into calibration. Fixing this design discrepancy would use no 

extra silicon area, but would reduce the power consumption of a 4-synapse neuron by 

approximately 45%. 

Another relatively simple fix also involves the layout of the STONECORPS chip. 

The distribution tree for the sigmoid reference module is not symmetrical, the 

resultant imbalance in resistance translating in uneven reference currents among the 

modules. Most of the effect of this issue was resolved with calibration, but it is 

preferable to ensure a symmetrical layout that does not push the circuit biases to 

extremes. 

A couple of improvements to the layout would also benefit the precision and noise-

immunity of the ANN on the STONECOPRS chip. Redesigning the sigmoid module 

using centroid layout techniques ought to produce a more symmetrical output 

characteristic. And placing the instances of the sigmoid module as close as possible 

to the synapses, rather than the output oscillator stage ought to take advantage of the 

current-mode interface between the synapse and the oscillator. Current mode 

connections are less vulnerable to electromagnetic interference and such a move 

ought to contribute to a reduction in noise. The synapse-sigmoid node is not believed 

to be one of the dominant noise propagation pathway, however experiments have 

shown that the HM is past the point of absorbing hardware noise and imprecisions 
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have an impact on its performance: any boost to hardware precision would therefore 

be likely to have a direct impact on its performance. 

Developing and evaluating on-chip weight storage, random sampling and weight 

modification for the hardware HM model developed in this thesis are some 

meaningful directions for related future research. On-chip weight storage is a general 

problem faced by analogue hardware ANNs in the past three decades, as no flexible 

& robust system exists for long-term weight storage in analogue VLSI. Several 

design directions have been taken in the past to surmount this obstacle: off-chip 

learning altogether, on-chip digital storage, analogue capacitive on-chip storage with 

periodical refreshment from off-chip digital RAM, analogue EEPROM and even 

fixing the size of transistors or capacitors using post-fabrication processing (for case 

studies and discussion of these techniques see [29], [48], [55], [62]). 

62.2.1. Random sampling of neuron outputs 

A different and research-interesting approach to extract the neuron's state from its 

MPR-modulated probabilistic output would be to sample it 'sparsely' rather than 

randomly. During hardware testing of the STONECORPS chip, the probabilistic 

neuron's output stage oscillators displayed significant amounts of phase jitter: after a 

large number of periods the phase of the output square wave would be very difficult 

to predict, though not necessarily random. It is possible that sampling the neuron 

output at a frequency much lower than that of the sampled squared wave might be 

'random enough' to permit the HM training algorithm to work. 

If sparse sampling were to be experimentally verified as functional, the main 

advantage would be the simplification of on-chip learning circuitry. Random 

sampling entails on-chip random analogue noise generation for triggering, while this 

alternative scheme would bypass this problem. Though a technique to produce 

uncorrelated, on-chip, pseudo-random analogue noise sources exists [6], a commonly 

clocked bank of flip-flops would suffice to sparsely sample the neuron states, 
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therefore simplifying the learning circuitry and increasing the scalability of the 

artificial neuron 

It is speculated that poor power supply rejection is the major contributor to the large 

amount of jitter observed in integrated CMOS oscillators ([57], p.  675-6). This 

characteristic of the oscillators provides evidence that the neuron output jitter 

observed during our experiments is likely to originate from power supply noise 

caused by other oscillators: it is therefore quite likely that the jitter would be far from 

random. Still, the distortion of the statistics of the jitter noise after a large number of 

periods might be 'uncorrelated enough' for the algorithm to work and would be 

worth further experimental investigation. Due to the antenna effects interfering with 

measurements of oscillator output this experiment was not tried using the 

STONECORPS chip: it is therefore recommended that such experimentation be 

attempted with on-chip sampling circuitry. 

In the event that the aforementioned scheme proves inadequate, the natural next step 

would be to generate multiple on-chip uncorrelated analogue noise sources to serve 

as sampling triggers. One such scheme, based on shifted portions of a pseudo-

random bit-stream generated by a linear feedback shift register (LFSR), has been 

proposed [6] and implemented in an analogue neural VLSI context [3,20]. This 

approach has a reasonable silicon area overhead (only one LFSR required per chip) 

and can form the basis for random sampling triggers for the output of the 

probabilistic neuron presented in this thesis. A different approach to produce multiple 

uncorrelated analogue vectors based on cellular automata has also been proposed 

[17,18] and recently implemented [19]. 

6.2.2.2. A smaller, current input synapse 

The largest silicon area usage in most ANN VLSI implementations is attributed to 

the synapse matrix. Reducing the silicon area consumed by the synapse circuit would 

therefore be one of the most efficient ways to reduce the overall size of the chip. The 

synapse presented in this thesis was chosen to be inherently simple: most of the 
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circuit complexity is concentrated around the differential pair of input transistors (see 

section 3.2.1.2, fig. 8). 

By using a current-mode weight input it is possible to dispose of the differential pair 

circuit and shave 5 transistors from the synapse module, thus reducing its 

complexity, power consumption and silicon footprint size (fig. 62). The current mode 

connection between the weight-storage and the synapse matrix would also be less 

vulnerable to cross-talk noise in such a scenario, an additional improvement over the 

voltage-input synapse. 

V.. 

Fig. 62: A current-input version of the synapse module consisting of 8 transistors 
and an integrating capacitor. The dashed lines on the left connect to a 
simplified weight storage circuit. 

Finally, and for prototype testing purposes only, it would be particularly useful to 

implement an on-chip testing operational amplifier buffer to observe the output of 

any synapse prototype module. The source-follower structure used in the 

STONECORPS chip served this purpose but did not permit the extraction of precise 

measurements due to the reduced dynamic range at its output. 
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6.3. 	Related Research Developments 

The field of unsupervised ANNs, or auto-encoders, has been fast-paced and dynamic 

in all stages from mathematical concept to programming and hardware model 

implementations. We will focus on two pertinent advances on the algorithm design 

level and briefly discuss their significance with respect to this thesis. 

6.3.1. 	A Product of Experts 

A relatively recent development in probabilistic auto-encoders is the Product of 

Experts (PoE) ANN algorithm [44]. It shares some similarities with the HM such as 

its utilisation of binary stochastic neurons and its reliance on bi-directional sampling 

to provide targets for weight training. The PoE, however, also relies on a layer of 

continuous deterministic output neurons (called experts), a single set of synaptic 

weights and is trained using the Minimising Contrastive Divergence (MCD) 

algorithm [45]. 

The main attractions of the PoE are its ability to handle continuous data values and 

its amenability to analogue VLSI implementation [68]. It is particularly pertinent to 

the work presented in this thesis, because the probabilistic neuron implemented on 

STONECORPS can perform as both types of neuron composing a PoE: the binary 

stochastic neurons in the input layers, as well as the continuous deterministic experts 

forming its top hidden layer. By modulating the length of the state pulse clocking the 

transmission gate within the synapse (see section 3.2.1.2, fig. 8), a continuous 

analogue value can be input to a continuous discrete 'expert' neuron; in a similar 

fashion an analogue value can be obtained from the same neuron by removing the 

random sampling stage and directly using the sigmoid module's current as a discrete 

analogue output value (see section 3.5.1, fig. 23). 

It would therefore be of particular research interest in future work to evaluate the 

performance of the MCD algorithm in training the STONECORPS probabilistic 

ANN. With a small modification of the MCD training algorithm, it should also be 
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possible to input and extract binary data vectors from the PoE. This could form the 

basis for interesting comparative experiments between the HM's Wake-Sleep 

algorithm and the PoE's MCD, both in software simulation and using the 

STONECORPS chip. 

6.3.2. 	The Continuous Restricted Boltzmann Machine 

The Continuous Restricted Boltzmann Machine (CRBM) is another recent 

development in auto-encoder algorithms, designed to overcome some of the 

limitations of the Boltzmann Machine (BM), the HM and the PoE algorithms [23]. 

The more significant development is its utilisation of 'noisy neurons', analogue value 

(continuous) probabilistic units based on the addition of Gaussian noise prior to 

squashing by the activation function: 

Si = 	 [6.11 
—a1( us+n1) 

1+e 

where si  and S3  are the analogue state values for neurons i andj respectively, w j j  is the 

synaptic weight on the connection supplying the output of the former to the latter, a3  

is a scaling factor controlling the slope of the sigmoid and ii is a Gaussian noise term 

with a probability calculated as follows [20]: 

e 2a2 	

[6.2] 

Factor a in equation 6.1 above is significant in the training of the CRBM as it 

controls the slope of the sigmoid with respect to a fixed probability distribution of 

Gaussian noise. A large value of a leads to a very sharp sigmoid slope with respect 

to the added noise variance, leading to a neuron with predominantly binary stochastic 

behavior; lower values for aj lead to more analogue and more deterministic 

behaviour. Intermediate a3  values allow a smooth transition between the two [22,24]. 
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The sigmoid multiplier term cx1  is modified along with the synaptic weights by the 

training algorithm while the network is learning. The MCD training algorithm used 

to train the PoE was simplified and adapted to train the CRBM, along with this 

additional noise-control term. 

Two aspects of the CRBM make it particularly significant under the light of this 

research project. The first is the increased modeling flexibility of the CRBM, which 

can accept and output continuous data and model more complex, asymmetric 

distributions compared to the HM and PoE. The second is the fact that these features 

come at an acceptable cost to hardware amenability, again relative to other auto-

encoder schemes. Comparative experimentation between the HM and CRBM can 

therefore be particularly revealing and helpful in balancing cost (silicon area, power 

consumption, etc) against modeling capability for future auto-encoder hardware 

implementations. 

6.4. 	Future directions, technological advances & trends 

Moore's law, as stated in his initial 1975 paper [66], predicted that the number of 

devices on a chip of given size would double every 12 months throughout the 1970s; 

Gordon Moore also predicted that this trend would gradually slow down in the 

1980s, stabilising at a doubling period of approximately 24 months. This simple 

relationship turned out to describe with remarkable accuracy the growth of transistor 

numbers during the next 30 years to date [13]. Abidance by Moore's law has meant a 

dramatic scaling down for the mainstream CMOS fabrication processes during the 

past 25 years, leading from millimetre devices to the state-of-the-art deep sub-micron 

technologies of today. 

Naturally, silicon manufacturing capacity is not limitless: as the size of devices and 

metal interconnects approaches atomic levels, increasing electrical resistance, noise 

propagation, power dissipation, quantum effects, laser light minimum wavelength 

and even IC fabrication plant costs start dominating the list of VLSI engineering 

obstacles. Concerns that the collective effect of these factors will derail the IC 
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industry from Moore's law are now mounting [32]: noisy, fast-clocked mixed-signal 

circuits are likely to face insurmountable noise propagation problems first, while all 

circuits will have to face the ultimate atomic level size barrier. 

Several design techniques and even new media and fabrication technologies have 

been proposed to postpone the technological and economic gap that will inevitably 

follow our arrival at the ultimate shrinking barrier, currently forecast sometime at the 

end of the next decade: vertical MOSFETs, design placement based on cellular 

automata, quantum-tunnelling devices [96], self-assembling structures and a plethora 

of other techniques. Ultimately, however, it will be by changing our design 

methodologies, rather than by improving our existing silicon hardware technology, 

that will ensure continuing growth of our computing capacity. Research into massive 

parallel processing, quantum computing, optoelectronics and photonics are some of 

the longer-term directions that computing may take to bypass the atomic barrier. 

Under this light, the author believes that ANNs and probabilistic auto-encoders in 

particular, are well-suited to play an instrumental role in the transformation of 

computation methodologies as the minimum feature size is reached on silicon. The 

ability to process asynchronously' and in parallel, the ability to train from data and 

adapt in real time and most importantly their exploitation of -rather than limitation 

by- naturally noisy data are likely to become increasingly valuable characteristics as 

silicon transistors continue to shrink and beyond. 

The ability of auto-encoder ANNs to adapt to sensor drift [25,88] and perform as 

novelty detectors [68] in real time, along with the rising popularity of Micro Electro-

Mechanical Systems (MEMS) technology makes sensor support electronics a 

candidate field likely to exploit them in an increasing number of scenarios[8,90]. 

The research fields of ubiquitous computing2  [98], distributed sensing and radio- 

The auto-encoding ANN architectures discussed in this thesis can process asynchronously once the 
network has been trained. All of them require some limited clocking throughout the training phase. 

2  Sometimes alternatively called pervasive computing. 
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frequency ID (RFID) tags [87] all aim to increase the number of sensors in our 

everyday working and living environment, while at the same time drive down the 

cost, size and power requirements of the MIEMS sensors and their support 

electronics. It is in such environments that small, noise-tolerant and inexpensive to 

manufacture auto-encoder ANN CMOS electronics might prove the most power-

efficient solution for real-time sensor drift and novelty detection. Environments in 

which MEMS sensors are likely to degrade more dramatically, such as environmental 

and biomedical applications, are already taking advantage of ANN auto-encoders to 

compensate for sensor drift [89]. 
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