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Abstract 

Research in Computational Neural Networks is currently 

taking place at many different levels; from coarse-grain symbolic 

models to fine-grain representations of neurons and cell processes. 

One feature that the different approaches share, is that they are 

all in relative infancy. Thus, most research concentrates on gross 

aspects of neural communication and methods of computational 

simulation. 

Recently, some clues have been found which point to more 

subtle mechanisms underlying the information processing 

capability of neural 'nodes'. These clues are the improvement in 

network operation by the injection of random noise; and the 

neurobiological finding that neuropeptides may exist as slower 

Signal transmission channels between neurons. 

This study concerns the difference between random noise 

injection, and directed, low-level, activity injections which are 

postulated to be produced by neuromodulators such as 

neuropeptides. The findings of this study are that random noise 

does, indeed, enhance the operation of coarse-grain neural models; 

and that a 'neuropeptidergic' analogue also enhances operation; but 

to a different extent, and probably through a different mechanism. 

Further testing of a medium-grain computer model gives some 

indication of how a neuropeptidergic modulation might affect real 

neurons, by extending the time-course of the activation of the 

neuron. This appears to be a similar mechanism to that postulated 

for the coarse-grain 'neuropeptidergic' simulation model. 



Abstract 

Given these findings, is it possible that signal transmission 

in real nervous systems assume these mechanisms? If so, it may 

be possible that a process of concurrent propagation, through 

different signal channels, also occurs in real nervous systems, 

making the nervous system much more complex than current 

models allow. 

i i 
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Introduction 

The Neural Networks field is a multi-disciplinary and 

divergent field, characterised by a number of very different 

approaches to what is, essentially, the same subject matter. These 

approaches share a common ancestry, but having diverged in the 

later part of the 20th century, each has begun to have a different 

development. Characterisation of these approaches requires a 

somewhat false reduction and polarisation of the aims of each sub

field into primary constituents, but such reduction is necessary to 

cover the full scope of the field. 

One of the sub-fields of the Neural Networks paradigm can be 

referred to as the 'classical' neural network field, made up of 

researchers whose main aim seems to be the production of an 

intelligent system, regardless of the method. This is expected to 

be brought about using network systems principles, sometimes 

established from the neurosciences, but also often from physics, 

and most often using a hybrid of the two. The products of this 

group need not have any direct relevance to the architecture of the 

living nervous system, and are often coded in mathematical and 

engineering terms. This approach merely requires an input/output 

transformation path, with a favourable transformation function. 

Another sub-field, which works along similar lines, is produced by 

more symbolic artificial neural network researchers and 

1 



1. Introduction 

psychologists, and is a largely symbolic approach. This is referred 

to as the 'Top-Down' approach, based on its focus of the display of 

symbol manipulation as 'intelligent behaviour', as its primary goal. 

This approach is also known as 'connectionism', after its theory of 

symbols connected by differing weight values. At the other 

extreme, a sub-field known as 'Computational Neuroscience', 

generally seeks to model the properties of single and combined 

neuron groups as accurately as possible, at the lowest tractable 

level, in order to characterise the exact workings of the living 

nervous system; hence its regard as the "Bottom-Up" approach. The 

reliance of this approach on the actual physical parameters of 

neural tissue also leads to the labelling of this approach as 'sub

symbolic', assuming that a 'symbol' occurs at a higher level than a 

single neuron. It can be said that computational neuroscience is 

merely continuing the work of the biological sciences, utilising 

modern computational tools where possible. This approach is 

relatively recent, hence the reference to the 

physics/engineering/symbolic sub-fields as 'classical' neural 

networks. 

The Classical Neural Networks field has generated many 

different designs of systems which are able to learn presented 

patterns, auto-associate different patterns and develop 

topographical maps of 'concepts'. Computational Neuroscience has 

been able to simulate groups of hundreds of neurons, which give 

similar patterns of, activity to that found in populations of real 

neurons in a particular organism. Both of these approaches rely 

heavily on computational power. All networks are designed to 

appear to operate in parallel, mimicking the operation of real 

nervous systems. The major bottle-neck at this time remains the 

2 



1. tntroduction 

availability of parallel architecture machines capable of running 

large scale models in a scientifically feasible time-scale. Many 

researchers must rely on networks tailored to run on serial 

machines. If the aim is to build networks which can perform as 

well as those of the human brain (and thus be 'artificially 

intelligent'), then we must build machines which can, in reality, 

operate at much faster speeds than the human brain. (Consider how 

long it takes a child to acquire efficient language use, and the 

ramifications of this on the development time of a human-scale 

neural network.) Until such machines are made available, we must 

continue to establish the ground rules, by which such systems will 

operate. 

Despite the advances made in the classical neural networks 

field, it seems that any further advances would require a greater 

degree of insight or perhaps serendipity. In contrast, at the 

moment, neurobiological research seems able to furnish us with 

more details of the mechanisms of neural transmission at an 

enhanced rate, and in the light of some recent discoveries, we can 

further develop the Bottom-Up approach, and, perhaps add some 

more tools to the repertoi"re of the Top-Down approach. 

The gross organisation of the brain shows that the nervous 

system is a complex, interdependent network, even at the highest 

level of communication between specific areas of the brain. The 

complexity increases as lower levels of· structure are revealed, at 

the neuronal level. This gives rise to the theory that intelligent 

behaviour can be produced. from networks of artificial neurons. 

Historically, similar scientific achievements have inspired 

optimists to believe that animals can be fabricated, by mechanical 

3 



1. Introduction 

means, to behave exactly as their real counterparts do (see 

Changeux, 1985 for an interesting discussion of these attempts). 

At the present time, we are learning that the neuron is not 

the end of the chain as far as neural processes are concerned. To 

understand the mechanisms of memory, we have to delve deeper 

into the biochemistry of the neuron and learn the chemical 

mechanisms by which the cell organises its behaviour. 

How can such high level models as the engineering neural 

networks actually hope to achieve intelligence when the level of 

complexity inherent in the nervous system counters such a 

reductionistic approach? The answer lies in the expected goals in 

the study of this area. The entire neural networks community has 

to be satisfied with approximations to reality. In some cases the 

approximations are gross, but fast to produce and test, while at 

the other extreme the models are too complex to realistically 

produce the behaviour of a single neuron in a reasonable time

scale. The engineering neural networks field can test and explore, 

on a larger scale, some of the functional behaviours of networks -

with the aim of producing networks which work well as pattern 

correlators and differentiators. This practical application of the 

behaviours inherent in the lower level biophysical data is an 

important sphere of operation. The. computational neuroscientists 

must, necessarily, concentrate on smaller models at the sub

neuronal level, their results fuelling the projects of the classical 

neural networks field. 

One of the themes of this thesis is that both of these 

approaches should be interdependent, and sholJld be studied in 

parallel. Both of these fields can contribute to an increased 

understanding of nervous systems and artificial intelligence. On 
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1. Introduction 

the one hand Computational Neuroscience can, as well as 

elaborating on the behaviour of nervous systems, uncover 

previously unknown methods of network computation for network 

theorists; Classical Network theorists can guide computational 

neuroscience in looking for specific types of network activity. In 

concert, the two approaches should achieve an accelerated 

understanding of both network structures and nervous systems. 

The main theme of this thesis concerns progress towards a 

deeper understanding of factors affecting signal transmission in a 

nervous network. The increase in interest of the neuron itself as a 

complex computational entity increases the focus of attention on 

the more subtle processes of the neuron. We know that not all 

neurons exhibit the same, or even particularly similar, behaviour. 

Recent neuroscientific research is showing that cellular 

communication systems are not limited to the action of the 'fast', 

'classical' neurotransmitters; some effects seem to be produced by 

slower methods of communication. Some attention is. also being 

given to aspects of the cellular environment which may have an 

effect on transmission within the nervous system. The nervous 

system must be an inherently 'noisy' place. Thermal, chemical, and, 

perhaps, electrical 'noise' must be a factor of any nervous system: 

How much of a part does this have to play in altering the efficiency 

of signal transmission? What is the exact nature of signal 

transmission in the nervous system? Is it as straightforward as 

the current single-channel theories presume, or do the channels 

cross each other to form dual- or multi-channel systems? If more 

than one channel is available, this may mean that the 'not so 

humble' neuron can manage multiple input and/or output Signalling, 
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1. Introduction 

depending on the needs of the system. The answers to many of 

these questions are begun (albeit, on a minor scale) in this thesis. 

Many fields have been reviewed in the preparation of this 

thesis. Some have not made it into this document, not because they 

are irrelevant to Neural Network research, but because they are not 

contextually relevant. Such ideas as chaos theory and associated 

fractal theories are now being assessed for their utility in 'node' 

formation stages of network design and operation, but inclusion 

here would have made the models over-involved and excessively 

slow to run. Many of the lower level compartmental model theories 

would also have proved difficult to implement sensibly on the 

available equipment. On the other hand, some of the currently 

fashionable classical neural network models do not lend 

themselves to being placed in three dimensional space - a 

requirement for this study - so these were not used. 

Obviously, 'classical' neural network theory is of great 

importance in a study of this kind so this material is covered in a 

detailed manner, as, indeed, is the neuroscientific background. 

This thesis is divided into seven chapters. The following 

chapter deals with the developmental history of the classical 

neural networks field, from the ideas of neuroscience, through the 

fallow period, up to the current ideas of the 'renaissance' workers. 

The third chapter is ·a parallel history of computational 

neuroscience ideas, artificially separated to enable a clearer 

discussion of developments in both fields, even though certain 

personalities are common to both fields. 

The fourth chapter outlines the proposals of this thesis. The 

foundations of the theory are discussed, and some preliminary 
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1. Introduction 

thoughts about the mechanisms of action are proposed. The fifth 

and sixth chapters deal with the experimental phase: The definition 

of the models to be used and the results of the experimental phase 

and the possible ramifications of the mechanisms under discussion 

within the human nervous system and in the neural networks field. 

The final chapter presents the findings of this study in 

context, and attempts to resolve some of the questions posed 

throughout the thesis. 

7 
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2 

Artificial Neural Networks 

The artificial neural networks field is composed of several 

different sub-fields. These sub-fields can be broken down on the 

basis of the philosophical 'view' taken by the researchers 

concerned. The relevant views in neural networks are usually taken 

as a 'level' of representation of the real neural environment, 

although classification is difficult, because researchers in each 

sub-field often indulge in variable levels of representation. At the 

highest level of representation (coarsest grain approach) we have 

'connectionism', which is based largely on the. work of 

psychologists. This approach uses a neural connectivity analogue to 

perform operations on symbolic quanta; the symbol being the 

lowest level of representation in the network. The 'Neural 

Networks' sub-field covers a multitude of approaches. Included in 

this sub-field are the mathematical/physical theoretical network 

analyses, computational/operational analyses, and other 'medium' 

level representations, generally defining 'nodes' or 'neurons' as the 

lowest level of representation in a network. The finest grain 

representations are those of the 'computational neuroscientists', / 

whose field encompasses all neurological and biophysical data 

obtained from past neuroscientific research. The aim of 

computational neuroscience is to model real neural networks at the 
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2. Artificial Neural Networks 

finest level of detail possible; a largely sub-symbolic approach. 

Computational neuroscience is described in the next chapter. This 

chapter will describe the history of, what is called, 'classical' 

neural networks research. It is not appropriate to list all the types 

of models that have been developed since the beginning of the field, 

but some important representative models will be given. The 

second part of this chapter is devoted to a detailed description of 

the particular model to be used later in this study, the well known 

'Back-propagation' model. 

History 

Classical Neural Networks is a fairly young field, compared 

to the study of neuroscience. As mentioned previously, the 'Neural 

networks' level of representation borrows heavily from physical, 

computational and mathematical sciences and so the threads are 

somewhat interwoven with other paradigms at different times 

during the development of the area. The main thrust of neural 

network research falls into fairly recent history, although work 

was being carried out in the mid-twentieth century, already based 

on neurological data, until the 1960's when the progress of the 

field was temporarily halted. This is described below. Since much 

of the early work has revolved around the contentions of different 

researchers, the headings will reflect the importance of these 

researchers on the development of the field. 

10 



2. Artificial Neural Networks 

McCulloch and Pitts 

The first ventures into neural simulations began with Warren 

McCulloch and Walter Pitts in the 1940's, with their modelling of 

the theory behind the first primitive networks, consisting of 

binary elements (McCulloch and Pitts, 1943). This was more of a 

computational/engineering approach to neural modelling, although 

the basis of their paper was at the limits of what was known of 

the nervous system at the time. It is unfortunate that the only 

references given in their paper are for the basis of their logical 

symbols, so that it is now unknown from where they took the 

biological details upon which their theorems are based. McCulloch 

and Pitts attempted to describe the action of their primitive 

'neurons' in terms of logical primitives. It must be assumed that 

this may have been done in the assumption that the brain works 

logically. 

Interestingly enough, in their seminal paper, McCulloch and 

Pitts began by summarising what they knew about the physical 

structure of the nervous system, including, implicitly, the time 

variant behaviour of nervous impulses. Unfortunately, they then 

continued to propose their logical calculus without reference to 

this behaviour. In other words, they excluded the wider behaviour 

of the nervous system, seemingly to concentrate on the actual 

nervous impulse itself. It is left to the following paper in the 

journal (Landahl, McCulloch and Pitts, 1943) to do some kind of 

treatment on this. This latter paper deals with the statistics 

behind the mean frequencies of impulses impinging on a particular 

cell. This paper still deals only in the McCulloch and Pitts logic 

which precludes the properties of asynchrony in the nervous 

1 1 



2. Artificial Neural Networks 

system. This may not be an important consideration, if the models 

proposed were not intended to be representative of the biological 

nervous system. 

The importance of McCulloch and Pitts' paper, however, is 

that it defines neurons in the logical roles of AND, OR and NOT 

functions (See figure 2.1). This means that these logical neurons in 

combination should be able to perform any operation which could be 

performed by logic gates, or on a higher level, by· modern 

computers. A McCulloch-Pitts neural net, with enough nodes and 

with enough prior experience, should be on a comparable level with 

a serial computer, Conversely, a serial computer large enough and 

with enough 'knowledge' at its disposal could show intelligent 

behaviour - if the McCulloch-Pitts definition of the neurons' 

behaviour is close enough to the way in which real neurons work. It 

is largely on this basis that researchers have followed this 

approach, even to the present day. This may be a mistake for if the 

sub-symbolists are 'correct', then even our symbolic, serial 

implementations on modern computing equipment are incapable of 

truly intelligent behaviour in human time-scales and spaces. 

12 



2. Artificial Neural Networks 

Figure 2.1 McCulloch and Pitts implementation of the basic 

logical functions using binary neural elements. See text for 

explanation. 

McCulloch and Pitts' model requires that each unit has a 

threshold which is exceeded by the summation of the attached 

units, in a certain configuration. For example, in the figure above, 

each arc represents a value of +1, each arc terminated with a 

circle represents an inversion of sign for the arc. If we set the 

threshold value for the central unit at +2, any figure equal to or 

greater than +2 will 'activate' the central unit. Now, in the case of 

the AND unit, when both units A and B are active, this will achieve 

the threshold value of +2, and the central unit will become active. 

For the OR case, either A or B becoming active will exceed the 

threshold value and the central unit will become active. In the NOT 

case, . despite the activity if the B unit, the central unit will not be 

active if the A unit is active, due to the sign inversion of' the arc 

from the A unit. 

13 
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2. Artificial Neural Networks 

Hebb 

The McCulloch and Pitts approach, however, showed only the 

structure required for representing the solution of a logical 

proposition. It did not deal with the way in which the network 

would acquire such solutions. The work of Donald Hebb (Hebb, 

1949), following the general principals of Lashley, Lorente de No 

and Cajal, was where work on a necessary theory of learning began 

to gain momentum. Hebb's contribution was to propose that 

synaptic changes were the basis of learning in the nervous system. 

He expressed this generally in his 'Neurophysiological Postulate' 

(ibid P. 62): 

When an axon of cell A is near enough to 

excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or 

metabolic change takes place in one or both cells 

such that A's efficiency, as one of the cells 

firing B, is increased. 

This theory has been one of the major contributions to neural 

network theory. Most current models use a mechanism of this form, 

which allows a net~ork to adapt to experience. There was, at the 

time, little evidence for this theory of synaptic change, which had 

many opponents. Later in his book (Ibid P .231), Hebb continues 

along his line of thought and proposes that synaptic decay occurs 

through disuse of a particular junction, although often repeated 

14 



2. Artificial Neural Networks 

activities make such a degeneration a much longer process. This 

was the theory he proposed to help explain the process of 

forgetting. This theory has, unfortunately, not made it into the 

intellectual currency of neural networks, and despite there being, 

apparently, no evidence against this theory, seems never to have 

been voiced again. 

Hebb also noted some other interesting points: He believed 

that reverberations around a network were responsible for 

attention, and that the firing rate of neurons was an important 

factor in recognising such things as brightness in the visual field. 

Hebb may have been a man ahead of his time. 

Through the late 1940's and early 1950's, work continued in 

this field. During this time, Pitts and McCulloch even proposed a 

method by which 'universals' might be encoded in the brain. (Pitts 

and McCulloch, 1947) 

Minsky,Edmonds,Papert & Rosenblatt 

In 1951, Marvin Minsky and Dean Edmonds produced a working 

'Neural Network' using potentiometers and electronic valves. In a 

much quoted interview with New Yorker magazine, Minsky 

described the experimental process (Bernstein, 1981). Minsky's PhD 

dissertation was also on the subject of neural networks. 

Rosenblatt appeared on the scene next, with the publication 

of his book "Principles of Neurodynamics" (Rosenblatt, 1962). In 

this, Rosenblatt (a Psychologist) summarised the work that he had 

been dOing on the Perceptron. This network model assumed almost 

15 



2. Artificial Neural Networks 

mythical proportions, and became a cause celebre, at the root of 

most of the argument from 1962 to the present time. The first 

Perceptron consisted of an array of photocells connected to an 

association area made up of units, whose input arrived from a 

random selection of photocells. These inputs were summated and 

passed on to 8 response units. The connections between the 

associator units and the response units was where the Hebbian 

paradigm was used. Each connection was weighted using a 

potentiometer positioned by automatic control (as in the Edmonds 

and Minsky machine). In addition, each of the response units had 

lateral inhibition channels, such that an input pattern would be 

discriminated by competitive learning. (See figure 2.2, below) 

A 

Figure 2.2 A One-layer Perceptron model. Point A is an 

associator unit, point B is a weighting unit and point C is the 

comparator. 

16 



2. Artificial Neural Networks 

The Perceptron was a basic two dimensional pattern 

recognition system, based on Rosenblatts' idea of an approximation 

to the brain (Rosenblatt had never intended the Perceptron to be an 

analogue of the human brain). In general terms, it was a trainable 

feature detector, where arbitrary patterns could be presented 

which it would 'learn' to recognise over a number of trials with a 

teacher. Its architecture consisted of a digitising 'retina' which 

transliterated light intensity on a picture plane into binary digits. 

These binary data were passed on to the associator unit or 

predicate, using a pre-specified weighting scheme which sampled 

the attached inputs, propagating a signal only when the summation 

of the number of active units reached a given threshold. A 

propagated signal from the associator units was passed on and 

multiplied by the weighting system before being compared to a 

threshold in a comparator. If the received value was found to be 

above the threshold a pattern was said to have been detected -

otherwise, no pattern was detected. 

The one-layer perceptron is so called because it only has one 

layer of modifiable connections, implemented by the weighting 

schemes used between the associator and the response units. 

The weighting scheme used was fairly simple. The weights 

would be adjusted following an erroneous response in a 

proportional incremental manner, subtracting the error factor and 

the feature value, using various methods that Rosenblatt devised. 

It was very important that these weights should be shown to 

actually achieve a stable configuration within a finite time, and 

thus the 'Perceptron Convergence Theorem' was born. 

Rosenblatt made some rather grand claims about the abilities 

of the Perceptron, but later in the sixties it was found to be very 
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hard to scale the perceptron up to cope with anything other than so 

called 'toy' problems. 

This early sixties phase of interest in Neural Networks more 

or less ended after the publication of Minsky and Papert's book, 

"Perceptrons", in 1969, in which the one-layer perceptron was 

shown to be unable to perform certain types of operations, such as 

Exclusive-Or-ing its inputs in order to perform such functions as 

parity checking. and deciding on the connectedness of figures. This 

stems from the 'order' of a predicate formed from perceptron 

units. A perceptron, they argued, was only capable of forming a 

predicate of the first order, whilst the Exclusive-Or function 

requires a predicate of the second order. In addition to this, parity 

checking (a useful function to have in the computational world, 

although not necessarily present in the human nervous system) 

requires a non-finite order predicate, to allow for any number of 

input units, so that the parity could be computed. 

Minsky's criticisms referred only to the one-layer 

Perceptron, (Minsky and Papert, 1969) and, as has been proved, 

multi-layer Perceptrons are capable of calculating the Exclusive

Or function, and hence, in principle, any calculation that can be 

performed by a Von Neumann architecture machine. 

There are many authors who attribute the publication of 

"Perceptrons" to competition for funds and other political ends, 

with the 'advancement of· science' as a by-product. See (Pollack, 

1989). 
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After "Perceptrons" 

Work continued in the field throughout the seventies, 

although funding was reputedly hard to come by. Most notable 

research being done by only a few workers, such as Kohonen, 

Grossberg, von der Malsburg, Amari, Anderson, Fukushima, 

Aleksander and a few others, (see the Reference section for some 

sampled works) but generally from within other fields than 

Artificial Intelligence (Psychology, Engineering, Physics ...... ). 

Much work was done on associative memory models, and the 

theoretical basis of network modelling, in particular the 

establishment of the mathematics to be used in connection with 

such research. 

Renaissance 

The apparent rebirth of neural network research in the 1980's 

has been linked to the work o~ Hopfield (Hopfield, 1982), who, as a 

respected physicist, was interested in the collective 

computational properties of physical systems. On a physical basis, 

any system which exhibits locally stable states according to a 

particular attractor can be regarded as an associative memory. 

Since then, physics has found what it sees as a parallel between 

neural networks and other collective physical systems. In 

particular, the Hopfield model of neural networks is similar to the 

two-state model of spin glass materials. (Spin glass materials are 
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molecular materials with magnetic moments on each molecule, On 

a material wide scale these moments normally cancel each other, 

but on a local level they lead to stable attractor states which show 

local magnetic patterning.) 

Interesting as it is, this model is not generally held to be 

biologically feasible. However, Hopfield's paper was apparently 

enough to rekindle interest in the wider community and bring 

neural network research back on a wider scale into the artificial 

intelligence field. 

In 1982, Feldman and Ballard published a paper which 

proposed that symbolic Artificial Intelligence was in the throes of 

death and that connectionist principles should be the way forward 

into the study of intelligent systems. In this paper was one of the 

most driving observations in favour of the connectionist approach. 

This is, that: 

Neurons whose basic computational speed is a 

few milliseconds must be made to account for 

complex behaviours which are carried out in a few 

hundred milliseconds. This. means that entire 

complex behaviours 'are carried out in less than a 

hundred time steps. 

This has become an important consideration in current 

research, and has become known as the "1 ~O-step program" 

constraint (Feldman, 1985). 
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However, a little earlier, in 1981, David Rumelhart and James 

McClelland published reports postulating a spreading activation 

model of letter and word recognition, implying a connection 

between different letter and word combinations. Although these 

were psychological reports, it is probably a point which one could 

indicate as being the foetal period of the current rebirth in 

connectionism. 

Later in the eighties, one of the more enthusiastic groups of 

workers under the title of the Parallel Distributed Processing 

Research Group, published a three volume set sub-titled 

"Explorations in the Microstructure of Cognition". (1986-1987) 

This group consists mostly of psychologists, under the editorship 

of Rumelhart and McClelland, who sought to approach 

connectionism from the psychological angle (and of course, other 

angles), including in the group some of the more active workers in 

the field (Geoffrey Hinton, Paul Smolensky, Terrence Sejnowski) 

and a few other famous names (FranciS Crick, Donald Norman). 

This 'PDP research group' has- become a basis for a particular 

paradigm within connectionism, as has the Hopfield approach. 

There are now a number of other researchers working along 

different lines throughout the world, as has been noted. The 

Physics/Physical systems approach encompasses Hopfield and 

those working on 'Spin Glass' type associative networks. The Neo

connectionists, such as the PDP workers, seem to aim at a more 

psychological approach. The Engineering approach seems to work 

towards practical, immediately implementable goals; and the 

Neuroscientists are interested in modelling the biological nervous 

system, which is by no means an immediately realisable goal. 
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These groupings represent the authors' view of polarities in 

the field rather than any explicit attribution by the groups 

mentioned. There are other groups which encompass more than one 

of the above approaches (for example the engineering appro~ch, 

which would probably impinge on each of the groupings), and many 

other groups which have not been mentioned at all. 

22 
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General Characteristics of Neural Networks 

There are several characteristics of current neural networks 

that are common to most network models: The assumptions on 

which most of the theory and the concrete models are based. A 

large majority of these assumptions come mainly from McCulloch 

and Pitts, and Hebb. Most researchers make some adjustments to 

the implementation of their own models, but generally preserve the 

basic structure from these sources. 

These common characteristics are: 

A set of elementary units - each of which exhibit similar 

behaviour, depending on the model in use. 

A set of connections between these elementary units - these 

may be simple unidirectional, bidirectional or complex additive 

connections. 

An activation state of a unit - A state of potential energy 

for each unit. 

An activation equation for each unit - How incoming signals 

are interpreted by the unit. Usually an additive function. 

An output rule for each unit - How outgoing signals are 

produced from each unit. 
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A propagation system - Defining how activation will be 

transferred throughout the system. 

A learning system - Defining how the system will learn 

representations of input patterns. 

An admirable review of how these characteristics are 

combined can be found in Rumelhart, Hinton and McClelland 

(Rumelhart. Hinton and McClelland, 1986). The general differences 

in properties will be outlined in the following paragraphs. 

The major differences between network architectures are 

highlighted by the way in which the connection topology differs. 

However, differences also exist in the methods used to calculate 

and control the spread of activation throughout the network. In the 

first instance, differences exist in the way a processing element 

is allowed to calculate its activation level. Many types of unit will 

define their activation level as the sum of all input connections. 

multiplied by the weights present on each of these connections. 

The activation level of the unit itself will depend on what type of 

activation rule is in force. There are three widely used types of 

activation rule: 

hard limiter - a binary rule which has a discontinuity 

threshold. If the value input to this rule exceeds a certain 

threshold value the unit is 'turned on'. 

-24 
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, 

sigmoid - a non linear activation rule, based on an 

exponential function, which allows an analogue activation value, 

but is limited between certain values by the exponential function. 

Greatest change in activation value occurs at the mid-range of the 

input values. 

Pseudo-linear - an activation rule which allows analogue 

ranges of values but limits the activation value between two 

extremes. The activation value corresponds linearly to the input 

over this range, however. 

The output of the unit will depend on these activation levels, 

and will become the basis of the input to another neural unit. The 

output function is often combined, in the implementation, with the 

activation state calculation. In many cases the output function is 

no more than the transmission of the activation state along a 

connection, where the output will meet the connection weighting 

scheme (theoretically representative of biological synapses). 

The weighting scheme is the most important function of the 

network. It is on the adjustment of these connection weights, that 

the onus of learning falls. The weighting adjustment rule is 

generally very similar in most networks - being that of Hebb _ 

which is that an updated connection weight is the product of the 

old connection weight and the state of activation of connected 

neurons. That is, if a processing element takes a major part in 

activating a second processing element, then the weight between 

the two elements will increase proportionately to the part played 

in activating the second processing element. The calculation of 

how much of a part one unit takes in activating another is often 
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taken to be 'how much of a part one unit should take in activating 

.another', and therefore the calculation of the new updated weights 

is based on the calculation of how much the current weight values 

are in error, compared with what values they should possess. This 

calculation is generally a global process, the error value being 

calculated over many units. 

In general, processing units are arranged in layers. The 

geometry of each layer is unimportant, as each layer can represent 

any number of dimensions, depending on its connectivity. Figure 2.3 

shows a type of regular lattice structure, similar to the way in 

which the innards of a crystal may be imagined. The lattice is only 

two dimensional, but gives a good approximation to what a network 

of processing units look like with their connections. Different 

network models may have different numbers of layers. Very few 

have more than three, and quite a few have no more than one layer, 

interconnected in such a way that it may as well be a multi

dimensional mode\. The connections between units are quite 

variable, as indicated above. In most cases the connections are uni

directional, allowing values to pass only one way, 'forward' 

through the network. Other networks, because of their nature 

(generally the error propagation networks) require bi-directional 

connections between units so that an error value can be passed 

'backwards' along a chain of units, in order to modify the 

connection weights. 
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Input Loyer 

'Hi dden' 
loyer 

output loyer 

... -

Figure 2.3 Structure of an imaginary network. Processing 

units are shown by circles, connections by lines. 

In addition, a network (or its operating environment) must 

have some means of accepting input and communicating its output. 

These are usually taken care of by presenting input to a speCial 

case of processing units, found on an outer surface of the network 

(usually known as the first layer or input layer), these units will, 

in most cases, not have modifiable activations as this would 

change the input pattern (although some models, used to form 

generalised representations, are allowed to change the input 

pattern). Output is achieved by allowing another 'outer surface' of 

the network (the output, or last layer) to propagate out into some 

form of sample and hold mechanism. The values obtained may then 

be thresholded to obtain a representation of the activation pattern 

imposed on the output layer. 

Inputs to a network are characterised in two different ways. 

They may be binary or analogue, depending on the networks' 

activation function. They might also be continuous or discontinuous 

27 



2. Artificial Neural Networks 

- in the temporal sense - and actually be 'presentations' of 

patterns for the network to learn, in a discontinuous manner. 

A network will have different phases of its operation. The 

first phase will be the learning phase. This is characterised _ by 

repeated presentation of a stimulus material, usually encoded in a 

vector representation. The stimulus pattern is presented until the 

network learns to associate the pattern presented with some other 

pattern, or just accommodates to the input pattern (shown by some 

stability within the network). The first type of network is known 

as supervised, (because it has some kind of teacher, which 'tells' 

the network to associate an input pattern with an output pattern) 

and the second type is known as unsupervised (because it is left to 

associate the input pattern in any way it sees fit). 

The second phase is the recall stage. This tests the storage 

efficiency of the network, and its ability to 'recognise' the input 

despite degradation in the input pattern. Performance is typically 

measured on an arbitrary scale, although some of the current 

networks, as we shall see later, calculate an error term, allowing 

some concrete idea of just how 'right' or 'wrong' a network can be. 

Some Representative Models 

The earliest popular. model was, as previously reviewed, the 

Perceptron. Recent work ,has extended this into a multi-layer 

device, using many different computational functions, in order to 

produce a working, efficient system. 

The structure of the Perceptron has already been discussed in 

general terms, but for the sake of completeness it will be dealt 
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with in greater detail here, as it is the basis of most other models 

in current use. It is interesting to note that in the prologue to the 

Extended edition (1988) of Perceptrons, Minsky and Papert relate 

that: 

-little of significance had changed since 1969-

and that: 

MOne reason why progress has been so slow in 

this field is that researchers unfamiliar with 

its history have continued to make many of the 

same mistakes that others have made before them.-

in this case, an exposition of the Perceptron would 

seem a good place to start. 

Perceptron 

Symbolically, .the Perceptron can be represented as in figure 

2.2. Each of the 512 Associator units sampled a number of the 

photocells from a 20x20 matrix which formed the retina, and 

logically combined them, the logical functions used being 'AND' and 

'OR'. The output from a particular associator unit would be the 

result of this combination (0 or + 1, depending on the function 

used), which would be fed into one of the eight response units. Each 

of the associator units had a fixed weighting associated with each 

input, which could be set at -1,0 or + 1, randomly assigned. The 
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input to the response units was based on the sum of the outputs 

from the associator units, modified by the existing weights of the 

connection between the associator unit and the response unit. Thus, 

for each response unit: 

sum = Li Wi Xi (equation 2.1) 

where Wi is the weight on the output from the ith association 

unit, and Xi is the output of the ith association unit. The output of 

the response unit was based on a comparison of the sum of inputs 

and a threshold value, such that the output would be +1 if the sum 

was greater than the positive threshold value, -1 if the sum was 

less than the negative threshold value and 0 if the sum was 

between the two values. 

The learning rule which is most cited in connection with the 

perceptron (many were tried), is an adjustment of the weights 

between the associator and response units according to the degree 

of accuracy obtained from the output of the response units. If the 

output was correct, no change would be made. If the output was -1 

and should have been +1, then the weight would be adjusted to 

"plus the value of xi". If the output was + 1 and should have been -1, 

then the weight would be adjusted to "minus the weight of xi". 

Adaline 

The Adaline (for ADAptive LInear NEuron) was developed by 

Widrow and Hoff (Widrow and Hoff, 1960). It is an extension of the 

Perceptron in that it is intended to model the behaviour a single 
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neural unit, within a network of such units. In its general layout, it 

is similar to the Perceptron, and uses similar summation and 

thresholding functions. A single adaline unit consists of several 

input lines along which polar values are presented (-1,+ 1). These 

are combined using equation' (2.1) above. This sum is compared to 

the threshold value, such that if the sum of inputs and weights is 

less than 0, the output of the unit is set to -1, otherwise, the 

output of the unit is set to + 1. 

Probably the most significant advance represented by the 

Adaline, however, is the scheme used to perform the learning 

function. This has become known as the Delta Rule (or least mean 

squared error rule). This is an extension of Hebb's learning 

postulate. In this method, the activation value of a unit is 

compared to the expected (or target) value of the unit, such that 

weight changes initiated by this method take into account the 

discrepancy between the actual and target values of a unit so that 

the modified weight will reflect the degree of influence of a 

particular unit in the overall output pattern, and thus the system 

adjusts quickly to its input. The equation is: 

(equation 2.2) 

where Ie' is a learning constant, Itj' is the target activation 

of unit i, laj' is the actual activation 'of unit j, and 'ai' is the 

activation of the input node. An extension of this equation is used 

to propagate errors through several layers of neural units and is 

therefore called, unsurprisingly, error propagation - in this case a 

proportion of the error calculated to have derived from a particular 

layer is additionally used to modify the weighting delta. 
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Neocognitron 

The Cognitron was developed by Fukushima, who later also 

developed the Neocognitron (Fukushima, 1983). These models ~ere 

developed specifically for character recognition purposes. They 

were developed in order to simulate the process of the human 

neural mechanism, providing an orientation insensitive recognition 

machine. Their architecture borrows from Hubel and Wiesel (Hubel 

and Wiesel, 1965), using a nine layer model in the Neocognitron, 

hierarchically organised into simple, complex and hypercomplex 

layers. Simple cell layers have a receptive field of photocells from 

the 'retinal' layer, and are connected via synapse-like modifiable 

structures to complex cells. These complex cells have a large 

'innervation' from the simple cells and a smaller number of 

outputs. The structure thus resembles a tree of units, each higher 

level with a more significant effect on the overall functioning of 

the network. 

The biological borrowing continues with an analog activation 

range which is meant to be analogous to biological neural firing 

rates. The Neocognitron has specifically designed inhibitory cells 

in the complex layers, which have inputs from previous layers. 

These inhibitory cells provide a means of tempering the outputs of 

the complex layer units, which have unmodifiable synapses. 

Earlier models of the Cognitron and Neocognitron were auto

associative, but later versions, intended for use in hand-written 

character recognition applications, are supervised systems. Each 

layer is reinforced separately by the tutor mechanism, which 

chooses a particular cell which 'should' respond to an input 

, pattern, known as the 'representative' cell. The other cells in the 

32 



2. Artificial Neural Networks 

layer then have their synapses updated according to the values 

computed for the 'representative' cell. 

The basis for the operation of the Neocognitron, as in most 

other models, is that the change in weights between simple and 

complex cells, and the inhibitory effect of the inhibitory cells on 

the complex cells represents the reduction in difference between 

the presented input pattern and the required output pattern, such 

that the input and output vectors become as close to co-linear as 

possible. 

Self-Organising Map 

Research into self-organising map networks has been going 

on for a long time. The major work in this area has been done by 

Kohonen (Kohonen, 1989) who currently has an application of self

organising neural networks which can produce written text from 

speech (in Finnish and Japanese) at over 90% accuracy. 

The architecture of the self-organising map is based on the 

known biological facts of the human brain. That is, the cortex of 

the brain (when stretched outside its bony prison) seems to be a 

two-dimensional sheet of neurons, apparently topologically 

organised into different functional areas. Within each of these 

areas, further organisation seems to have taken place - so that in 

visual areas there is evidence of line segment orientation 

speCialised regions - and in auditory areas there appears to be an 

auditory frequency analysis region, which itself is mapped out in 

order of increasing frequency. 
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In the network model, the neural units are ordered in a two 

dimensional hexagonal grid. In common with the Neocognitron its 

control structure selects a unit which it believes to be responding 

most to an input pattern, and values are propagated through -the 

network on the basis of how physically close the neighbouring 

units are to the chosen unit. The weights of the connections 

between the units are modifiable and are adjusted according to a 

difference measure (how close the unit is to the input pattern) and 

according to a temporal measure (a scalar multiplication which 

decreases over time, known as the adaptation gain), and as already 

stated, by the physical proximity measure. The corresponding 

activation over the whole network can be shown, in a three 

dimensional representation, as a set of concentric (hexagonal) 

rings radiating out of the central chosen unit (looking rather like a 

computer generated fried egg, where height corresponds to 

activation, and the other two dimensions are the topology of the 

network). Over repeated training, each input pattern will come to 

be represented inside the topological map, such that a presented 

pattern will activate the relevant portion of the network, which 

can then be interpreted by a post processor. 

The training of the network is a long process, requiring fine 

tuning by tutorial systems which analyse the expected response 

from the network for a given input and provides the correct 

response for the network to follow. 

Kohonens' current application uses pre- and post-processing 

computational tools to introduce the input into the network and to 

interpret the output, but it is nevertheless, an impressive system. 
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Hopfield nets 

Hopfield's most notable contribution to Neural Network 

theory, as noted earlier, was to show that fully interconnected 

networks of neuron-like cells worked in either a binary or an 

analog fashion to produce stable states. The network model with 

his name can be said to be a relatively simple one layer system, 

each unit being fully connected to the other units in the system. On 

the other hand, this full interconnection makes it effectively an n

layer system, where n is the number of units in the network. Each 

of his units is defined in terms of electronic circuitry. The neural 

unit itself is an operational amplifier, which produces a sigmoid 

output for a linear input (these may be either inverting or non

inverting amplifiers). Attached to the unit is a resistor-capacitor 

unit which acts as the membrane input capacitance of a biological 

neural cell. Resistances form the connections between the outputs 

of one unit to the input of another. 

Hopfield networks are generally used to solve optimisation 

problems. These are problems that are computationally complex, 

such as those found in scheduling, where the amount of 

computation required corresponds to looking at the entire search 

space, before the solution is found (np-complete problems like the 

T~avelling Salesman problem). In these cases, for example, one of a 

pair of feature sets of the search space "are assigned to one set of 

neural elements, while the other set of features are assigned to 

another dimension of the neural elements. The interaction of these 

feature sets within the network quickly converges to the networks' 

stable state, and therefore, the solution of the problem. 
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Adaptive Resonance Networks 

Adaptive resonance theory is the basis of work done by 

Grossberg (1976) and Carpenter and Grossberg (1990). This has 

resulted in three specific models known as ART1, ART2 and ART3. 

ART1 was designed as a self-organising system which responded to 

binary input sequence by creating category structures within the 

network which characterised the input sequences, without 

becoming trapped in local minima (a pitfall explained in the 

following section on back-propagation). ART2· was designed as an 

enhancement to ART1 - it takes analog values, as input, and self

organises, as in ART1, to find stable categorisations of its input. 

Adaptive Resonance networks are interesting in that they 

. attempt to maintain some of the basic psychological structures 

associated with human cognition: Attention, Orientation, Short 

term memory and Long term memory. These form the basis of the 

network architecture, including the theoretical method of 

rehearsal for maintaining information in short term memory. 

ART networks use competitive learning and a mixture of top

down and bottom-up processing in order to classify input patterns. 

The long term memory remembers the previous input patterns 

already learned and the short term memory holds the current input 

pattern, after it ha.s passed through some input filtering to enhance 

the contrast of the image. Thus the long term memory supplies the 

short term memory with the expected pattern which will be 

compared with the input pattern. If the two patterns are similar, 

the input pattern is classified with the pattern from the long· term 
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memory, otherwise a new classification scheme is established into 

which the new input pattern is placed. 

The resonance part of adaptive resonance theory comes into 

practice when the system has decided that the competitive 

learning' process is complete. The representation of the input 

pattern is repeatedly cycled through the long term memory from 

the short term memory (as in psychological 'rehearsal'). 

ART3 is an extension of ART2, using a chemical 

neurotransmitter analogue system to add pre- and post-synaptic 

realism. (Carpenter & Grossberg, 1990) 

The Boltzmann machine 

Hinton and Sejnowski (1986) developed the Boltzmann 

machine as an extension to the basic Hopfield network 

architecture, in an attempt to circumvent the problem of local 

minima in the solution space trapping the network in a locally 

stable state (Hinton and Sejnowski, 1986). This model is allowed 

layers of neural units rather than one layer as in the original 

Hopfield model, and the neural units are binary threshold units 

with modifiable weights ~hich are updated by a probabilistic 

method. 

One of the major features of the Boltzmann machine is' (as its 

name implies) the use of a 'temperature' lowering process to reach 

a 'thermal' equilibrium using .the process of simulated annealing. It 

is this process which is intended to overcome the problems of 

local minima stability within the solution space. It· does this by 

slowly reducing the value of a global parameter (known as the 
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temperature), which adds 'noise' to the system (as in physical 

systems - temperature adds 'noise', or random energy, to a group of 

atoms allowing them to vibrate more vigorously). The noise allows 

the learning algorithm to escape from small local minima, and, _by 

constantly reducing the value of the 'temperature', allows the 

network to settle into a global minimum. 

The major advantages of the Boltzmann machine are 

therefore, that it can generally reach a solution if there is one to 

be found. It has also been found to be fairly resistant to local 

damage, relearning lost information very quickly. However, the 

major disadvantage is that the initial learning is very slow, as 

learning must include both the stochastic procedures and simulated 

annealing. 

Bi-directional Associative memory 

A Bi-Directional Associative memory is a two layer, fully 

connected network which was developed by Kosko (Kosko, 1987) as 

a cross between Grossberg's ART and a Hopfield network. This 

network has modifiable synapses which. are updated by a Hebbian 

rule. This network is interesting in. that it uses only two layers, 

each of which may be used as an input or output layer. In operation, 

patterns are presented to the first layer which is then allowed to 

resonate between the two layers until a stable pattern is achieved 

on the second layer. During the recall phase, an input pattern can be 

presented to either pf the layers and the output will be read from 

the non-input layer. 
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This model was extended to include competitive learning 

among the units of each layer, analog and binary values and sigmoid 

activation functions on all units. 

Co unterPropaga tion 

Counterpropagation networks were developed by Hecht

Nielsen (Hecht-Nielsen, 1987), and is another hybrid of others' 

ideas - in this case, those of Kohonen and Grossberg. 

A counterpropagation network as set out in Hecht-Nielsen 

(1987) consists of five layers. Two patterns to be associated are 

presented to layers one and five, and are allowed to propagate 

through four layers of the network. Representations of both inputs 

go to layer three and end on the next layer. The third layer is the 

part where most of the work is performed. Layer three learns by 

competitive inhibition, and when equilibrium is reached layers two 

and four will be found to have learned the average of the input 

vectors. 

After learning, if vectors are re-presented at the input 

layers (1 and 5) layer three will be found to output the associative 

result of competitive inhibition and layers two and four will be 

found to contain the average of the input vectors. If a new pattern 
" 

is presented, the· output will show the closest match for the units 

at layer three, and if incomplete vectors are entered at the input 

layers, the network will 'fill-in' the missing elements and return 

the usual layers two, three and four outputs. 

There is another version of the counterpropagation network 

which uses only three layers and is called a 'forward only' 
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counterpropagation network. This network takes inputs on a split 

input layer (ie. one vector will be input on layer 1, units 1-12, and 

the other vector will be input on layer 1, units 13-24, for example) 

and the output will be read from the second layer, which will_ be 

the competitive learning layer, while the third layer yields a 

transformation of the two input vectors. 

Logical Neural Networks 

Logical neural network models are an application oriented 

system devised largely by Aleksander (Aleksander, 1989). Logical 

node neural networks use Random Access Memory (RAM) hardware 

to implement a fast input/output neural network with a pattern 

discriminatory function. There are two versions of logic nodes, bi

state nodes and probabilistic nodes. Bi-state nodes build on the 

binary logic of the neuron as described by McCulloch and Pitts. If 

the 'neural' representation can be encoded using a McCulloch and 

Pitts type network, then it is also translatable into AND and OR 

functions within an electronic component. These logic functions 

are able to be stored as a truth table within a random access 

memory, so that incoming patterns form the input to the truth 

table, and the output of the truth table is the result of the sum of 

truth table operations.' Such a system can be 'taught' to 

discriminate between different patterns, and even generalise 

among similar patterns. The WISARD (see (Aleksander & Morton, 

1991)) is one example of a system built to perform such a task. The 

WISARD takes a digitised video picture as its input, and the 
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network is taught to discriminate between different categories of 

input by activating various output devices. 

An extension of the bi-state logic node is the probabilistic 

logic node, which can assume three states, two known states and 

an indeterminate 'unknown' state. The unknown state defines the 

probability that an input to a particular RAM 'cell' will generate a 

'1' state, and this can be changed, with experience, to the most 

attractive state for the discriminatory operation. This extension 

allows greater generalisability, and introduces a simulated 

annealing function for the learning algorithm. 

Summary 

We have seen that, apart from the middle years of relative 

inactivity, research into neural network architectures has 

progressed steadily, encompassing more complex ideas from other 

disciplines and more efficient implementations. 

In recent years, however, the back-propagation algorithm has 

proved itself as one of the most efficient systems in use, and 

possibly one of the more promising avenues of research - From its 

inception in 1986, extensions to the back-propagation algorithm 

have improved it still further, and in the following discussion we 

will see how thfs method has evolved and outline some of the 

recent improvements that have been made. Since Back Propagation 

will be used as one of the models in later chapters, its mechanism 

will be given a fairly detailed exposition. 
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The principles of Back Propagation 

Back Propagation or back-prop are shortened names for "the 

Back Propagation of errors". This principle was introduced- by 

Rumelhart, Hinton and Williams (Rumelhart, Hinton and Williams, 

1986) of the PDP research group and is based on a variant of the 

Widrow-Hoff Learning Rule (1960). Since 1986, some work has 

been done on attempting to extend this principle, as it has been 

recognised as perhaps one of the more powerful, yet simple, of 

current designs. 

A back propagation network uses a number of layers of units, 

without interconnection along the plane of the layer (in the 

Rumelhart et al model). It does, however, form bi-directional links 

with the previous and next layers. (See figure 2.4) Generally, the 

PDP models of back propagation networks have three layers, so 

that there is at least one layer which can perform intermediate 

computations, such that the network is able to deal effectively 

with the parity and Exclusive-OR problems, as we will see later. 
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feed forward --------~ 

C/) 
~ 
:::J 
a. 
c 

~-------- feed Back 

Figure 2.4 A typical arrangement of the units in a back 

propagation network. Note that the links are bi-directional. 

Another reason for the presence of the intermediate layer is 

to provide an extra computational layer which allows the 

association of widely different input and output patterns. Such a 

system allows for what Rumelhart, Hinton and Williams call an 

"internal representation", this is a representation of the input 

pattern which is a sort of half-way-house between the input and 

output patterns. The intermediate layer is also known as the 

"hidden" layer, as the value of its' inputs and outputs are not 

directly knowable by anything outside the system. 

The generaliz'ed Delta' Rule, as Rumelhart et al have dubbed 

their version of the Widrow-Hoff (or just 'delta') rule, is important 

in a numbe( of respects. Firstly, it is abfe to produce a solution for 

all the problem areas noted by Minsky and Papert, namely, the 

Exclu~ive-OR problem, the Parity problem and the Connectedness 

problem. It does this by the use of hidden units and its method of 

gradient descent into the solution space. Mathematical proofs. for 

the nature of the solution paths of generalized delta rule models 
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are given in Rumelhart, Hinton and Williams (Rumelhart, Hinton and 

Williams, 1986) and McClelland and Rumelhart (McClelland and 

Rumelhart, 1988). In this treatment, we shall only go into the 

details of the network model using multiple layers. 

Multi-layer networks using the generalized delta rule 

Multi-layer networks are a special case of two layer 

networks. Whereas in two layer networks, a linear function can be 

used for activations of units, multi-layer systems gain no benefit 

from having additional layers using a linear activation function, as 

shown in Rumelhart, Hinton and McClelland (Rumelhart, Hinton and 

McClelland, 1986). This, they say, is because the step by step 

activation in linear models is merely the weighted sum of the 

inputs to each unit. Thus, the activation at time t+ 1 is simply a 

function of the weight matrix times the activation at time t. Then, 

with each proceeding step the activation is only a linear function 

of the activation at time zero, and therefore, such a state could 

have been reached at time zero+ 1. 

To overcome this limitation, back propagation models use 

what is known as a semi-linear activation function. This is defined 

as a nondecreasing and differentiable function of the net total 

output, which is the sum of the weights times the activations over 

an exclusive set of units' with a particular input pattern. In this 

case it is also not possible to use linear activations as these are 

not sensibly differentiable. The semi-linear activation function 

used by Rumelhart, Hinton and Williams (1986) uses the reciprocal 

. of a logistic term: 
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1 a ,-----
pi - 1 +e -netpi 

(equation 2.3) 

(where api is the activation of unit i for pattern p, netpi is the 

total input to unit i) 

for which the derivative is: 

da pi 
dnet pi = api (1 - api) (equation 2.4) 

The non-linearity of back propagation models appears to be 

the only major difference between the back propagation model and 

the principle of the original Rosenblatt Perceptron (1962). The 

propagation rule is exactly the same, being the summation of 

inputs multiplied by the weights of the connection links: 

(equation 2.5) 

(where aj is the output activation of a connected unit and 

W ij is the weight of the connection from unit i to unit j) 

In addition, the weight updating function is the same. This is 

shown by equation 2.6 below: 

(equation 2.6) 

(Where Wij is the weight from unit i to unit j, 11 is a constant 

known as the learning constant, aj is the activation value of unit i 

and OJ is the error from unit j.) 
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This brings us to the error value, which is the basic 

mechanism of the back propagation model. The error value is 

calculated from the derivative of the activation function in 

equation 2.4, and is the basic mechanism of gradient descent, as 

discussed later. The value is calculated differently, depending on 

whether the calculation is for the output or hidden units, since the 

output units depend only on themselves and a presented target 

value, the error signal - Opi - for an output unit will be: 

Opi = (tpi - api) api (1 - api) (equation 2.7) 

and for a hidden unit, it will be: 

Opi = api (1 - api) l:k Opk wik (equation 2.8) 

(Where Opi represents the error function on the ith unit for 

input pattern p, tpi is the target value for output unit i, for pattern 

p, api is the activation on unit i for pattern P, Opk is the error 

propagated back from an arbitrary unit k for pattern p and Wik is 

the weights on the connections from the set of k units to the unit 

in question.) 

The back propagation of the error signal is a recursive 

process starting with the output units and progressing backwards 

through the network, through the hidden units and into the first 

layer connections. The equation for the output units (equation 2.7) 

shows that the error term is largely dependent on the derivative 

function api (1 - api), (from equation 2.4) which is largest when api 

has a value midway between its extremes, but is minimal when api 

is at its extremes. 
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Gradient Descent strategy 

The method of gradient descent used in the back propagation 

model can be explained in simple terms. Back propagation is a 

variant of a procedure known as Least Mean Squares (LMS) which 

was proposed by Widrow and Hoff (Widrow and Hoff, 1960). This 

system uses the Widrow-Hoff (delta) rule, the precursor of the 

generalised delta rule, to adjust the weight of connections in a 

network in order to minimise an index of the errors produced by 

comparing the output of the network against a target output 

pattern. The index of errors was taken to be the sum of squares of 

all errors, minimising local variations in the pattern of errors, 

such that: 

(equation 2.9) 

(Where E is the total error of the network, tpi is the target of 

unit i for pattern p and Opi is the actual output of unit i for pattern 

p) 

McClelland and Rumelhart (1988) produced a mapping of the 

solution space for all values of two weights and this type of error 

function, for linear and their own logistic non-linear activation 

functions. The mapping for linear systems resembles a valley, the 

gradient of which gradually gets less steep as the bottom of the 

valley is approached, rather like a three dimensional hyperbolas. 

(See figure 2.5) The minimum error function - the Least Mean 

Square of the system - resides at the very bottom of the valley. 

The gradient descent function is designed so that a solution can be 

reached quickly, (so that the minimum error position is reached 
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quickly) and therefore· requires that when the gradient of the 

weight to error mapping is steepest (which is further away from a 

solution) a larger step can be taken in the solution space 

(hopefully, towards the solution). This means that to take a larger 

step, we must increase or decrease the weight of the connection by 

a larger proportion when the gradient is steep, than when the 

gradient is shallow. As figure 2.5 illustrates only a simple linear 

system with two weights, it is a fairly simple mapping. However, 

it is not always possible, with more weights and with non-linear 

systems to produce a mapping, and therefore, we require a 

mathematical function to calculate gradients local to the units 

when we are attempting to assign a new weight in order to achieve 

a solution. McClelland and Rumelhart (1988) use the negative of the 

error derivative to do this. In the case of the generalised delta rule 

(which is non-linear) the weight of the connection is changed 

according to equation 2.6. 
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Figure 2.5 A map of the solution space produced by a two 

weight system, produces by mapping weights against LMS 

error. An imaginary problem starting at point A, proceeds 

less steeply as a solution is reached. 

It is important to emphasise that the mapping in figure 2.5 is 

of a simple two weight, linear system. The mapping for a two 

weight non-linear system shown in McClelland and Rumelhart 

(1988) resembles a saddle shaped figure, which means that there 

is more than one minimum value for the error measure. This means 

that depending on the starting values of the system, it is possible 

that the system will move towards a local minimum at another 

pOint in the solution space and give the wrong answer! In addition 

to this, the mapping shown in figure 2.5 is actually only a mapping 

for a particular problem - Each new problem has its own different 

solution space mapping. 

The learning rate of the system is also an important factor in 

the gradient descent strategy. Equation 2.6 shows the equation 

used to update the weight of each connection, detailing the effect 
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of the three terms; unit activation, error function (which we have 

just dealt with) and the learning constant 11 . The effect of the 

learning constant is to proportion the changes in connection 

weights which determines how large the steps down into the 

solution space (of, for example, figure 2.5) will be. The learning 

rate is generally a value between zero and one, and is, in general, 

closer to zero than to one, so that changes are as small as 

possible, without leading to a ridiculously long learning time. If 

the learning rate were closer to a value of one, we run the risk of 

producing larger jumps in the solution space than are really safe, 

meaning that the system may find itself in a situation where 

oscillation sets in (perhaps across the bottom of a valley or across 

the peak of a local hillock) - leading to an inability to find a 

solution. In practice, it is tempting to use a large learning constant 

to improve the learning rate of the system. 

A final problem in setting up a gradient descent network 

system is the problem of the initial weights of the network 

connections. In this symmetrical back propagation model, the 

inclusion of the connection weights in the calculation of the error 

term means that if all the connection weights were to begin with 

the same value, all units in a particular layer would receive the 

same error value from the preceding layers' error calculation, and 

the network would fail to develop unequal weights. The solution to 

this problem is to initially· assign random values to the connection 

weights, which starts the. network in a random position in the 

solution space, and is not generally harmful, unless this position is 

close to a local minimum. 
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Extensions to the back propagation model 

Momentum 

The first extension to be made to this model was included in 

Rumelhart and. McCleliands' (1986) original proposal. This is the 

use of a momentum function inside the generalised delta rule. The 

momentum term is used as. an accelerator for the learning rate, 

without causing the problems described earlier, when just 

increasing the learning constant. The momentum function is a kind 

of history mechanism. It remembers the weights from the previous 

error pass of the network, and uses this value to proportion the 

change made to the weight during the current iteration. So the 

extended generalised delta rule (from equation 2.6) looks like this: 

(equation 2.10) 

which just adds in a proportion of the weight from the 

previous iteration, 'depending on the value of a, The effect of 

momentum is to filter out high frequency variations in the solution 

space. These high frequency variations are caused by sharp 

curvatures in shallow trenches within the solution space, which 

cause oscillations across the trench. 

51 



• 

2. Artificial Neural Networks 

Activation range 

A second extension proposed by Dahl (Dahl, 1987) was to 

extend the activation range of the neural unit. Dahl found that -the 

extension from a three point scale used in Rumelhart et· al (1986) 

to a four point scale enhanced the learning rate of the network 

under most conditions. The four point scale used was from -1 to 

+2, essentially widening the discriminability of the network. 

Added noise 

Von Lehman, Peek, Liao, Marrakchi and Patel (Von Lehman, 

Peek, Liao, Marrakchi & Patel, 1988), of Bell Communications 

research proposed the extension of adding noise to the connection 

weights during the update process, and clamping weights at 

extreme values. They found that when noise is added, instead of a 

momentum term, they could build networks (for the XOR problem) 

which had a 100% probability of convergence. The noise term was 

generated randomly and added to the normal calculation of the 

weight at each iteration. Their figures show that a wide range of 

noise values could be used to achieve the 100% convergence rate. 

These researchers also found that the initial weighting of a 

network significantly affe~ted the performance of the network. 

They tested three different ranges of initial weight settings and 

found that although the performance graph produced is grossly 

similar, there are significant deviations in the probability of 

convergence. 
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Calculation of hidden unit numbers and learning rate 

Kung and Hwang (Kung & Hwang, 1988) produced a method of 

determining how many hidden units to use in optimising a network, 

and how the optimal learning rate should be assigned to the 

network. They used simulation methods to prove that the optimal 

number of hidden units is dependent on the regularity of the input 

pattern. They determined that patterns which are entirely irregular 

should use the same number of hidden units to input units, whereas 

patterns with definite regularities could use a lesser amount of 

hidden units, in the same ratio to the input units as the patterns of 

regularity within the input patterns. 

Solutions to classical problems posed to the neural networks 

community 

The XOR probfem 

The Exclusive-OR problem was recognised by Minsky and 

Papert (1969) in relation to the perceptron. The perceptron was 

shown to be able to solve problems of the first order, but not able 

to solve higher order problems. First order problems are those 

where the sum of products for a predicate are not more than 1. 

Needless to say, Exclusive-OR is of second order, ie. it needs a unit 

which combines two predicates in order to decide if the conditions 

of Exclusive-OR are fulfilled. 
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Rumelhart, Hinton and Williams (1986) show a three layer 

back propagation model which solves this problem. They used 

networks with one or two hidden units, as shown in figure 2.6, both 

of which managed to solve the problem with the observed weights 

as shown in the figure. They report that very occasionally -the 

network failed to converge on the correct solution due to finding 

local minima instead of the global minimum. 
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Inputs T Inputs 

Figure 2.6 Rumelhart, Hinton and Williams (1986) solutions 

for the XOR problem, using one and two hidden units. 

Connection weights are written on arrows, negative weights 

are indicated by broken arrows, Unit biases are in the unit 

circles, if a bias is positive the unit will be on unless turned 

off by the weight of the connection. 

Note that in the figure, the network with two hidden units 

gives an indeterminate output. if the right input is on (ie. the input 

is 01), this turns on both of the hidden units, leading to the output 

unit having a net input of zero, and therefore the output will be 0.5, 
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so the configuration shown is not the optimum number of hidden 

units. 

The Parity Problem 

The parity problem is an extension of the XOR problem. Minsky 

and Paperts' analysis show that to determine parity a network is 

needed with at least one term which has the same size as the 

number of inputs to the network, which again was impossible to do 

with the perceptron. Rumelhart, Hinton and Williams solve this 

problem too; but not very elegantly. Their parity checking network 

requires, as in Minsky and Paperts analysis, the same number of 

hidden units as inputs to the network. The hidden units arrange 

themselves in such a way as to count the number of inputs (a 

hidden unit turns on, when another input unit comes on). The output 

unit gets the sum of the positive and negative weights from the 

hidden units, which cancel each other out when there are an even 

number of input units active, and produce a net activation when 

there are an odd number of active input units. (See Figure 2.7) 
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Figure 2.7 Rumelhart, Hinton and Williams (1986) solutions 

for the parity problem, using n input and hidden units. 

Connection weights are not shown , but negative weights are 

shown by broken arrows before the final layer. Unit biases 

are shown in the unit circles. 

The T- C Problem 

The T - C problem stems from the necessity of being able to 

recognise a shape independent of its position or orientation. This 

problem, as formulated in Minsky and Papert (Minsky & Papert, 

1969), is composed of a pair of figures of five connected pixels, 

one in the shape of a 'T' and one in the shape of a 'C'. The difference 

in these figures lies in the position of only one of the pixels (it 

was not actually known as the T - C problem in 'Perceptrons', just 

as a pair of figures that could not be distinguished by a network of 

order 2). 

Rumelhart, Hinton and Williams solution to this problem is 

derived from the configurability of a three layer system. They 
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adjusted the physical structure of a three layer network to produce 

hidden units with a limited set of inputs from the input layer. The 

inputs were localised into a 3x3 grid, or receptive field, while 

there was a single output unit. (see figure 2.8) In addition each 

receptive unit was constrained to change its weights in the same 

way as each of the other units, so that each field learned only the 

main figure and not partial figures. 

They found that a series of templates developed inside the 

network, which discriminated between the two figures, such as a 

diagonal bar detector for detecting T's, and a 'compactness' 

detector for detecting C's. 

Input units Hi dden Units Output Unit 

Figure 2.8 Rumelhart, Hinton and Williams (1986) solution 

to the T - C problem. Each of the hidden units connects to only 

a 3x3 array of input units. The output unit acts as a 

comparator. 
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Conclusion 

We have seen that the back propagation model produces a 

fairly efficient family of pattern recognition systems. It has been 

shown that these types of model can solve many of the problems 

associated with neural network models in the past, and copes (but 

not always elegantly) even with the criticisms levelled in the 

Perceptrons treatment by Minsky and Papert. 

The extensions referred to, in the later part of this chapter, 

will hopefully form the basis of more powerful and efficient 

models, which have been shown to deal more quickly, and without 

structural modifications, with the kinds of problems outlined 

above. The key to the further enhancement of the back propagation 

model probably lies in the continued improvement of the gradient 

descent method as mentioned above. The extensions already shown 

in the sections above are all examples of such enhancements, but 

generally using only one method at a time to produce a more 

efficient implementation. Later in this study, a model will be built 

using the back-propagation model shown here, to explore the 

addition of noise and graded extraneous activation under different 

conditions. These models will be compared to assess the efficiency 

of a method proposed in chapter 4. 
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Real Neural Networks and 
Computational Neuroscience 

Most of the workers in the field of artificial neural networks 

will admit (sometimes grudgingly) that their field is at least 

loosely connected to the study of the behaviour of Real Neural 

Networks. The degree of this connectedness in actual simulations 

is often highly variable, and there are many philosophical 

arguments regarding the 'necessity' of any degree of 

connectedness. Some of these arguments will be touched upon in 

later discussions. One particular branch of 'neural' synthesists, 

known collectively as 'Computational Neuroscientists', are in 

practical terms, at one pole of this argument, whilst the other pole 

is often represented by physical scientists. 

The current trend in the work of computational 

neuroscientists is to produce simulations which are based, as 

closely as possible, on the known behaviour of living nervous 

tissue. This stands on the traditional scientific method of 

reductionism followed by synthesis. In this manner, they hope to 

gain an insight into the actual operation of living neural systems, 

which, if studied in great enough detail, should yield at least a 

working model of a correctly functioning neural circuit, if not an 

understanding of the principles behind the operation of the circuit. 

The aim of this chapter is to detail some of the foundations 

and behaviour of real nervous systems in a way that is amenable to 
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a quantitative simulation in computational terms. This exposition 

will in no sense be complete, as many of the fundamental 

principles of operation of even the simplest neural systems are 

still under investigation. Thus we must, for the moment, be content 

with a partial description of the known parameters of neural 

membranes, ion channels and neurotransmitter behaviour. 

The second part of this chapter deals with the ways in which 

the knowledge of detailed behaviour of the actions of real nervous 

tissue· have been used in low-level simulations of neural circuits 

by computational neuroscientists. Most of these simulations are 

still at the level of single cell models, while some deal with the 

interconnections in small-scale circuits in simpler life forms. 

The 'Wetware' 

This section forms an introduction to neural tissue from 

gross organisation to molecular level structure. There is little 

contextual relevance in describing the overall physical 

organisation of the entire nervous system, but some description of 

the immediately relevant (to Neural Network researchers) areas 

will be attempted. The organisation is taken from the human brain, 

since producing an intelligence on a par with the human system is 

the implicit goal of artificial intelligence. Later, obviously, some 

of the behavioural parameters referred to will be from 

experimental preparations of simpler life forms. These will be 

indicated where appropriate. 
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The human nervous system is an extremely complex network 

of many different varieties of neural elements. The basic element 

is often considered to be the neuron, which is a protoplasmic body 

surrounded by a lipid bi-Iayer membrane. There are approximately 

10-50 Billion neurons in the human brain (depending on the 

information source) - with more located in the peripheral nervous 

system and ganglia. Neurons can be differentiated into several 

different varieties. The distribution of neuron types is often highly 

organised, depending on both regional and local factors. Some types 

of neurons are found only in specific areas, while others appear to 

be widely distributed. (Only one area will be studied in this 

section: The Cerebral cortex (assumed to be the seat of cognition» 

The Cerebral cortex 

The Cerebral cortex consists of the 'grey' matter of the 

cerebral hemispheres. It is only a few millimetres thick, but is 

heavily convoluted into well-recognised patterns, dipping into 

many fissures and bulging into gyri. 

The cortex is thought to be separable into three phylogenetic 

regions. These are the Neocortex, the Mesocortex and the 

Allocortex. The· Allocortex represents the oldest formations, 

making up the Hippocampus and olfactory regions of the cortex. The 

Hippocampus is a particularly interesting region which is receiving 

much attention in current research, as a major functional region in 

memory formation. This is significant on an evolutionary scale. The 

Mesocortex is represented by the Cingulate gyrus, which is a 
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structure overlying the Corpus Callosum in both hemispheres (see 

Figure 3.1) This structure has many connections with the 

Hippocampus and other areas of the limbic system. The Neocortex 

covers the major part of each cerebral hemisphere, where it is 

assumed to take part in a large variety of higher sensory and motor 

processing . 

Parietal 
Lobe 
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Medull a 

~- Cerebellu 

Figure 3.1. General view of hemisphere showing major structures. 

(adapted from Kupfermann. 1985) 

Each type of cortex has been studied extensively and shown 

to exhibit a stratified pattern of cell distribution. Allocortex and 

Mesocortex appear to show segmentation into 3 layers, whilst 

Neocortex seems to have a 6 layer structure. Other levels of 

organisation have also been postulated within the cortex. Recent 

research has also offered columnar and mini-columnar theories of 

neuronal organisation. These organisational structures will be 
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described after an exposition of the types of cell to be found in the 

cortex. 

There are five basic varieties of cell types found within the 

cortex (see Figure 3.2): 

Pyramidal cells are about 10-50Jlm in size and have a roughly 

conical shape characterised by dendrites at both the upper and 

lower extremities of the cone. Axons usually leave the cell body at 

the base of the cone, acting as association (within the same 

hemisphere) or commisural (across hemisphere) connections. These 

types of cell can be described as 'communicators' as their axons 

are generally those which connect different regions together, 

although many pyramidal neurons also connect locally. 

Stellate cells are about 4-8Jlm in size, and as the name 

implies, are star-shaped, with extensively branched short 

dendrites projecting from almost any part of the cell surface. 

Their axons may project to the local area or other cortical layers 

in the vicinity. 

Spindle cells are small elongated bipolar neurons, oriented 

vertically with short basal dendrites and longer apical dendrites. 

The axons of these cells usually project into the white matter 

underlying the cortical laminations. A variety of spindle cells, 

oriented horizontally are found in newly-born infants. These 

disappear in the early stages of post-natal life. These are known as 

Horizontal cells of Cajal. 

Martinotti cells are small multipolar cells with short 

branching dendrites clustering around the cell body. The axon 

ascends vertically to more superficial layers of cortex, with 

horizontal branches being produced en route. 
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Glial cells are often forgotten in descriptions of cell types, 

but they do seem to play a major support role in the life of the 

axonic neurons. At the least, they support other cells in a matrix of 

their cell processes, possibly providing a pathway for metabolic 

processes. At the most, they may provide a pathway for slower 

forms of local Signal transmission in the nervous system. 

Bipoler 
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Figure 3.2. Cortical Cell types 1·4. 

Cortical Laminae 

The cortex has been stratified horizontally into various 

layers, depending on the distribution of cells and myelinated 

fibres. It is usually agreed that the Allocortex and Mesocortex 

appear to have 3 layers of cells. The lamination of the Allocortex 

is most easily demonstrated in the Hippocampus (Figure 3.3) The 

Hippocampus has three obvious layers based on cell distributions, 
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although other stratifications have been proposed. The three layers 

are made up of the molecular layer, pyramidal layer and the 

polymorphic layer. 

The Molecular layer is seen as a communication layer, being 

made up of a dense collection of cell processes, interspersed with 

few neuroglia. 

The pyramidal layer is composed mainly of pyramidal cells, 

the axons of which are thought to be the only ones to leave the 

Hippocampus. The cells in the pyramidal layer are more compact in 

the superior region than in the inferior region, although the cells in 

the inferior region are larger. The apical dendrites of this layer 

generally form in the molecular layer, where much branching takes 

place. The axons, too, branch off recurrent collaterals in the 

polymorphic layer. Pyramidal neurons are known as the principal 

cells of the Hippocampus. 

The Polymorphic layer is composed of cells of many forms. 

Their axons generally remain inside the Hippocampus, connecting in 

a highly branched 'basket' to pyramidal cells of the pyramidal 

layer, where they appear to exhibit an inhibitory influence. 

The Hippocampus is a highly connected area, which studies 

have shown to have a high activity rate and metabolism. 

Experimental work on the Hippocampus continues to associate this 

area with the formation of memory. 
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Figure 3.3. Hippocampus, Laminae and sections (adapted from Afifi & 

Bergman , 1986). 

The layers of the neocortex vary from region to region. In the 

motor cortex region, for example, several layers appear to be 

missing. This is thought to be a result of specialisation in this 

area. In general, six layers are agreed to be present. (see Figure 

3.4 .) The top layer (layer 1) is a molecular layer, as in the 

Hippocampal description above, consisting of nerve fibres, with 

sparse glial cells . It is here that incoming axons terminate on the 

apical processes of cells in deeper layers . The second layer is 

known as the external granular layer (in Brodmann classification) 

which contains small pyramidal and stellate neurons. This is a 

dense region with incoming axons from other cortical regions. The 

third layer is known as the pyramidal layer, which contains mostly 

pyramidal neurons, with apical dendrites extending into the first 

layer. The axons of these cells connect to other cortical and sub

cortical areas. Layer four appears to be a local processing zone 

containing small stellate cells with cell processes which do not 
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leave the layer. Axons from other areas, however, do pass through 

this layer in both vertical and horizontal planes, allowing for some 

extraneous modulation. This layer is known as the internal granular 

layer. The fifth layer is known as the Ganglionic layer, having 

larger pyramidal and stellate neurons. This layer also contains 

some Martinotti cells. The dendrites from the principal cells pass 

to the upper layers, whilst their axons pass mainly to sub-cortical 

regions. Layer six consists of many different varieties and sizes of 

cell, hence, it is known as the Multiform layer. This layer appears 

to contain more Martinotti cells than other layers. The 

ramification of cell processes tends to follow the trend of size and 

type of the cell in their extent. 
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Figure 3.4 Layers of the Neocortex (adapted from Afifi & Bergman, 

1986) 

Cortical Columns 

In addition to the horizontal stratification of the cerebral 

cortex, many researchers' have postulated a vertical structure in 

the cortex, progressing towards theories of modular processing 

units within cortical columns. It is of great interest to the 

neuroscientific community to propose working functional circuits 

within the nervous system. Many researchers see the emergence of 
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a functional description of neuronal circuitry as the only 

progression towards an information theory of neural networks. 

The cortical macro-column is assumed to have a diameter of 

approximately 300~m, which would contain about 4,000 neurons, 

of which half would be pyramidal cells. Over a surface of the 

cortex of about 2.Sft2 , this would correspond to around 3 million 

cortical modules. Each of these modules is said to inhibit 

surrounding modules (Mountcastle, 1978). The cortical mini-column 

is an additional structure imposed on the cortex under the macro

column, with a diameter of 11 O~m, containing just over 1,000 

neurons (Peters A & Kara D, 1987). However the existence of either 

of these structural modules is doubtful (Swindale, 1990). 

Neuron Microstructure 

Synapses 

Synapses are the connection units of the neuron. The term 

'synapse' is often applied to the entire structure of the signal 

transference unit, although, in a more rigorous interpretation the 

'synapse' applies only to the junction between two neural cell 

processes, and is, in fact, a gap of some description. 

There are two major types of synapse structures. The least 

numerous of these are the gap junction or electrical synapse. The 

gap junction is a region of cytoplasmic continuity between two 

neurons. This is achieved by a reduction of the distance between 
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the two cells, and allowing bridging molecules in the cell 

membranes to line up on either side of the junction. These bridging 

molecules are known as connexons. Connexons are annular proteins 

with a central channel of about 2nm diameter, through which the 

cytoplasm of adjacent cells can be linked, allowing the transfer of 

small molecules. Simple ions pass easily through these pores, and 

thus electrical continuity is maintained. Gap junctions allow an 

almost simultaneous transfer of electrical activity between two 

neurons .. This also means that gap junctions can allow bi

directional electrical propagation. 

Chemical synapses are cytoplasmically non-contiguous. The 

structure of these junctions is variable, but conforms to the 

general prinCiple of a narrowed extracellular space, with an 

outgrowth of one cell process towards the membrane of a second 

cell. The outgrowth is known as the pre-synaptic bouton, the target 

membrane is referred to as the post-synaptic membrane, and the 

gap in extracellular space between these two elements is referred 

to as the synaptic cleft (See Figure 3.5.) Electrical continuity is 

not achieved in this case. Signal transmission is accomplished by 

the secretion of chemical messengers from the pre-synaptic bouton 

diffusing across the synaptic cleft to target sites on the post

synaptic membrane. As the chemical messenger is usually only 

found in the pre-synaptic bouton, signal transmission is a one-way 

process. This diffusion method also involves a time delay. The 

target of the chemical messenger is an ionic channel in the post

synaptic membrane, which allows electrical activity to be induced 

in the target neuron. 
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The synaptic transmitter chemicals are stored in vesicles in 

the pre-synaptic bouton. There are two major classes of 

transmitter, those which excite the target neuron and those which 

produce an inhibitory effect. Different amounts of transmitter may 

be released for different levels of pre-synaptic signal, and 

transmitters are released in quanta dictated by the nature of their 

storage in vesicles. Many different transmitters exist. Some of the 

more common transmitters are listed in Table 3.1 below. 
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Transmitter ~ 

Acetylcholine (ACh) Molecular 
Norepinephrine 
Dopamine 
Serotonin (5-Hydroxytryptamine) 
Histamine 

Aspartate Excitatory Amino acids 
Glutamate 
N-Methyl-D-Aspartate 

Gamma-aminobutyric acid Inhibitory Amino acids 
Glycine 
Taurine 

Table 3.1 A subset of known neural transmitter substances. 

The table shows that there are many neural transmitter 

substances involved in signal transmission within the nervous 

system. This is not an exhaustive list of substances known to be 

transmitters. Current research i~ continuously expanding the list 

of possible transmitters. In the past twenty years or so, research 

has been focussed on the existence of several neural peptides 

which appear to be neuro-active. The description and implications 

of these neuro-active peptides will be dealt with in the following 

chapters. 

The character of neurotransmitters is determined by the type 

of receptor upon which it binds. Some neurotransmitters bind to a 

number of different receptor types and therefore have different 

characteristics. For example, Acetylcholine binds to two types of 

receptor, named 'Nicotinic' and 'Muscarinic' after the types of 

72 



3. Real Neural Networks 

chemicals which also excite activity in these particular receptors. 

Muscarinic receptors allow a much slower time course than the 

Nicotinic receptors, and the activity of the target cell is therefore 

dependent on the type of receptor at the active sites of the cell. 

Ion Channels 

All signalling activity in the nervous system is completely 

dependent on the presence of ion channels in the membrane of the 

neuron: Ion channels are often passive (non-gated) or are modulated 

by an exogenous substance which enables or disables the ion 

channel (gated). The electrical activity of a cell is governed by 

these ion channels. (Electrical activity of the neuron is dealt with 

below.) In essence, each ion channel allows the transmission of a 

small number of ionic species through the membrane of the cell, in 

most cases, only one ion type can be passed, due to the specificity 

of the ion channel. 

The structure of generalised ion channels is shown in figure 

3.6. The non-gated variety allows ions to pass according to the 

concentration gradient on either side of the cell membrane. The 

speed of ionic passage is determined by the size and transfer 

mechanism of the channel. Gated channels are more complex. Gated 

channels can be opened or closed by the presence of particular 

substances or electrical potentials. At a chemical synapse, the ion 

channels are opened by the excitatory transmitters (ligand gated) 

or by a voltage difference (voltage gated). The presence of a 

neurotransmitter molecule is thought to produce a conformational 

change in the ion channel 'gate' molecule, bought about by the 
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polarity of the molecule. This opens the gate and allows a 

particular type of ion to cross the membrane. Voltage gated 

channels are thought to function in a similar manner. 

Non-Geted ion Chennel 

Geted jon Chennel 
in closed end open 
positi ons 

Figure 3.6. Generalised Ion Channels: Non-Gated and Gated. 

Electrical characteristics of neurons. 

Signal transmission in the nervous system is entirely reliant 

on electrical properties of the neuron. More specifically, the 

activity of the cell is dependent on the electrical properties of the 

ionic species in very close proximity to the cell membrane. The 

cell membrane represents a barrier to current flow which is 

breached by the ion channels referred to above. The ion channels 

allow current to flow (ie. ions) in specific amounts depending on 

the number of channels which are open at any time. 

In the normal (resting) state of the cell membrane, a voltage 

difference can be measured across the membrane. The difference 
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for the 'average' neuron is approximately -50mV, this is due to the 

presence of the non-gated (or passive) ion channels. These are in a 

constantly open state, allowing ions to enter and leave the cell 

according to the concentration gradient present on either side. 

Additionally, an active 'ion-pump' exists within neural cells which 

expels Sodium ions and draws Potassium ions into the cell. Without 

going into an extensively detailed account, the resting membrane 

potential reflects the equilibrium state of the ionic species on 

either side, plus the action of the 'ion-pump'. 

The membrane is vulnerable to changes in potential very 

quickly, due to the thinness of the charged region on either side of 

the membrane. This means that it takes very few ions to break the 

equilibrium imposed by the normal mechanisms of the cell 

membrane. Signal transmission is based on the fluctuations of 

charge produced around the membrane, by the action of concerted 

changes in the state of the ion channels, mediated by the voltage 

difference and the binding of neurotransmitter to ligand gated 

channels. Two antagonistic fluctuations of the membrane potential 

are responsible for the signalling properties of the cell. 

Depolarization produces the 'action potential', the driving force of 

neural circuitry. Hyperpolarization limits the cells' ability to 

produce action potentials. 

Depolarization of the membrane is a cascade process, which 

occurs in the following sequence. Small changes in the voltage 

across the membrane, from the resting potential, cause voltage 

gated ion channels to open, allowing Sodium ions to flow into the 

cell. The change in voltage caused by the Sodium ion flow, opens 

more voltage gated ion channels, allowing more Sodium ions to 

flow into the cell. This positive feedback system quickly produces 
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a large depolarization of the membrane, which is transmitted along 

the membrane in the same way - Ion movement causes voltage 

difference along the membrane, opening voltage gated ion channels 

along the membrane. The cascade effect begins at about -45mV. 

The maximum likely extent of a depolarization is to a value of 

about +55mV. In most cells, there is a particular zone of the neuron 

which responds to changes in membrane voltage preferentially, 

known as the 'trigger zone', this zone can usually be located at the 

initial segment of the cell's axon. Recovery from the depolarization 

of the membrane involves a delayed outflow of Potassium ions 

through voltage gated channels, and a closing of the Sodium inflow 

voltage gated channels. This allows the membrane to recover its 

negative potential. Sodium and Potassium ions are then pumped in 

opposite directions to restore the chemical balance of the resting 

state, ready for the next depolarization. 

Hyperpolarization of the membrane results in a decreased 

susceptibility of the membrane to depolarization. This is produced 

by allowing Chloride ions into the cell, or allowing more Potassium 

ions out of the cell. The movement of these ions produces an even 

more negative potential difference across the cell membrane, of up 

to -70mV. This voltage level means that a possible depolarizing 

influence has a greater voltage difference to overcome, and hence a 

larger amount of ions to move, before the voltage gated ion 

channels will open to begin producing the depolarization. 

At the synapse, neurotransmitter is released as a result of 

electrical activity, propagated along the axon to the pre-synaptic 

bouton. Sodium and Potassium ions act in a similar way at the pre

synaptic bouton, as in the rest of the cell membrane, although an 

additional component is necessary for the release of 
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neurotransmitter substances. The depolarization of the pre

synaptic bouton results in the inflow of Calcium ions, into the 

interior of the bouton. Calcium ion influx has been shown to be 

necessary for the release of transmitter, and to determine the 

amount of transmitter released. The mechanism of action of the 

Calcium ions is thought to involve a secondary messenger inside 

the cell. The reliance on Calcium ions for the release of 

neurotransmitter, means that modulation of the signal can be 

achieved at the synapse itself, from outside influences such as 

inhibitory synapses on the axon, near the pre-synaptic bouton. 

The Excitatory post-synaptic potential (E PSP) is the 

potential induced in the post-synaptic receptor of the target cell. 

The intensity of this potential is dependent on the degree of 

transmitter released by the pre-synaptic bouton. The length of the 

signal is also reliant on the speed at which the transmitter is 

removed from the synaptic cleft. This potential makes up the 

dendritic potential which adds to other potentials arriving at the 

trigger zone of the cell, which may induce an action potential in 

this cel/. 

Inhibitory Post-synaptic potentials (IPSP) can also be 

generated by inhibitory neurons synapsing onto a cell. Inhibitory 

neurons release transmitters which bind to inhibitory receptors on 

the target cell. These receptors often allow Chloride or Potassium 

ions to flow into the post-synaptic cell giving hyperpolarising 

effects, as outlined above. This membrane hyperpolarisation can be 

summated at trigger zones in a similar way to excitatory 

potentials 

Other factors may modulate the strength of the signal before 

it reaches the trigger zone of the cell. In the case of post-synaptic 
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potentials in dendritic trees, the resistance of the electrical 

pathway to the trigger zone has a large part to play in attenuating 

the signal before it can be summated. Where a pathway is long, an 

enormous amount of potential can be lost on the way to the trigger 

zone. Cell membranes have a certain amount of capacitance that 

must be overcome for any charge movements to occur, as well as 

the ordinary resistance encountered in moving a current along a 

cell membrane. Neurons are thought to use this attenuation to their 

advantage. In the Hippocampus several different synapse zones are 

thought to occur on the major neurons of the region, characterised 

by particular positions on the dendritic tree, in a graded fashion 

from the cell body. In this case, a zone of the dendritic tree at a 

particular distance from the cell body receives synaptic contact 

from specific types of cells. This implies that the neuron is using 

the attenuation inherent in the dendritic pathway as a pre-wired 

means of selectively responding to different cell types (Gershon, 

Schwartz & Kandel, 1985). 

Synaptic Plasticity 

The heart of the adaptive process within the neural system 

lies in the long-term modulation of signals at the junctions of 

neurons. This is 'memory'. Without the ability to vary the 

modulation of signals, we would be incapable of learning anything 

new. Neural systems would be pre-wired behavioural patterns 

which adapt very little to the circumstances of their application in 

different situations. 
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It is thought that most adaptation, in the sense of signal 

modulation, occurs at the synaptic junction as a response to 

correlated activity conditions within the pre-synaptic and post

synaptic parts of the cell. The changes brought about by these 

correlations are simplified as changes in the 'strength' of a 

synaptic connection, implying that varying amounts of 'signal' are 

passed across a synapse as a result of the adaptive process. This is 

not strictly true, as certain neurons change the character of their 

signals as a result of synaptic 'strength' modulation, as well as an 

apparent change in magnitude of the signal passed. (Llinas, 1991) 

The correlational idea of synaptic plasticity is attributed to 

Hebb (Hebb, 1949) as stated in the chapter 1. Correlation of 

activity in pre- and post-synaptic parts of cells produce (in time) a 

change in the parameters of the synapse, enabling positively 

correlated junctions and disabling negatively correlated synapses. 

The temporal aspect is thought to be composed of a short term 

memory system, which is then transferred into another form for 

longer term storage. 

Short or long term? 

Short term storage of information can be achieved in several 

different ways, . spread across a number of synapses. Some 

candidates for storage can be studied directly, where simple 

synaptic effects give rise to short-term changes in the behaviour 

of the synapse. Other mechanisms must be theoretically proposed 

on the basis of expected behaviour in larger scale models of 

several neurons. 
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Simple synaptic effects have been studied extensively, and 

include Potentiation and Depression effects. These have both been 

found in the Hippocampus, which has been a focus for these studies. 

Long-Term Potentiation takes the form of an increased sensitivity 

to pre-synaptic input, after high frequency activation by the pre

synaptic terminal (Bliss & Lomo 1973). Sejnowski, Chattarji and 

Stanton (Sejnowski, Chattarji and Stanton, 1989) outline a further 

type of L TP known as associative L TP, taking place when different 

inputs to a neuron are stimulated in phase. They also introduced a 

form of Post-synaptic depression known as Associative LTD. This 

is an effect which occurs only when the dual excitation of pre- and 

post-synaptic cells are out of phase. This produces a post-synaptic 

depression in sensitivity to pre-synaptic activity. 

L TP is usually associated with Hebbian plasticity, but it was 

found that Associative L TP would occur even when depolarisation 

is prevented in the post-synaptic cell. Sejnowski, Chattarji and 

Stanton (1989) regard this is a kind of pseudo-Hebbian process. The 

implication in this latter work is that the effect is produced in the 

pre-synaptic terminal. Another type of pseudo-Hebbian process is 

Post-tetanic Potentiation, also found in the Hippocampus. This is a 

result of a high frequency tetanus of the synapse and can last for 

many minutes - producing an elevation of the synaptic strength, 

without a change in post-synaptic sensitivity (Katz & Miledi, 1968) 

Heterosynaptic Depression occurs where a weakly stimulated 

pathway converges on the same neuron as a path which 

occasionally carries strong stimulation. The weak pathway 

experiences a depression in transmittivity after high frequency 

stimulation of the strong pathway. The effect is known to last for 

a shorter duration than the effect of L TP (Levy & Seward, 1979) 
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On a higher level, short-term memory has been thought to be 

encoded in· the activity of reverberatory circuits between neurons. 

This theory proposes that a circular pathway of activation is 

formed in a neural sub-system, which continuously cycles around 

the loop until the longer-term system has had time to encode the 

pattern of activity. This theory is based on a form of a 'rehearsal' 

idiom, and is not likely to be a major part of short-term memory. 

Longer duration storage is thought to be a result of encoding 

the shorter term changes into a more permanent form. Accelerated 

Protein synthesis in stimulated cells has been taken as an 

indication that long-term memory is laid down in a protein base, 

but the mechanisms of this process are little understood. Research 

is continuing in this area, both in local ising such changes and in 

mapping the functional changes in neuron structure. 

Molecular mechanisms of mind 

Each part of a cell's membrane can be thought of as a 

relatively complex ·computational circuit (Matsumoto, 1988). This 

is due to the molecular nature of the processes underlying the 

operation of the neuron at specific local areas. Many of the effects 

of neurotransmitter molecules are defined by their shape and 

dipole moments. At a molecular level, these properties are easily 

changed by the effects of enzymes and other binding molecules, 

which deform the shape of the target molecules (allostery), 

altering their electropolar properties at the same time. The effect 

of neurotransmitters on particular receptors is generally the 

production of a conformational change within the receptor 
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. molecule, which alters its own binding with sub-membrane 

proteins, producing a change in the biochemistry of the internal 

environment of the cell. 

Molecular 'computation' takes place both pre- and post-
-

synaptically. As an example, in the process of pre-synaptic 

sensitization, a serotonergic axo-axonic connection to' the pre

synaptic terminal produces a conformational change in the receptor 

protein. The receptor protein is normally bound to a protein known 

as a 'G-Protein', which is partially released by the 

neurotransmitter binding process. The G-protein activates a 

membrane bound adenylate-cyclase enzyme, which catalyses the 

formation of the secondary messenger Cyclic AMP, from Adenosine 

Tri-phosphate. The Cyclic AMP activates a protein kinase (a protein 

phosphorylation enzyme), which phosphorylates a component of a 

serotonin modulated Potassium channel. This reduces the recovery 

rate of the Potassium current, thereby extending the action 

potential, which allows a greater influx of Calcium to trigger 

exocytosis of neurotransmitter vesicles. (Kandel, 1985) Figure 3.7 

shows a representation of this process. Similar processes account 

for the short-term modulati"on of most neurons. There is some 

evidence that the intracellular concentration of Calcium is 

important in synaptic plasticity, as high concentrations of Calcium 

are accrued by small sacs in dendritic spine heads. (Fifkova, 

Markham and Delay, 1983) 

Longer term changes must be brought about in a similar 

manner to short-term changes, perhaps through a cell metabolism 

modulated by slow enzymatic changes based on secondary 

transmitters such as Cyclic AMP, or the presence or absence of 

particular ions. 
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Figure 3.7. Molecular process of pre-synaptic sensitization (adapted 

from Kandel, 1985) 

Summary 

The nervous system has a gross organisation which is 

extremely complex. This complexity is manifested at every 

physical level from the ramifications and connections of the 

neurons within the cortical sheet down to the difference in 
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neurotransmitter chemicals used at the synapses, and the 

electrical behaviour of single ion channels. 

This section has shown that the complexity of the nervous 

system has to be reduced to the molecular level to understand 
-

some of the processes which occur at higher levels. We still do not 

have a complete understanding of the processes of short- and long

term memory. The mechanisms of memory, particularly of long

term and the encoding of long-term from short-term memory, are 

vital components for the correct artificial modelling of any sort of 

working neural mode/. At the moment neural models must work in 

an environment of artificial long-term memory production, which 

has a dubious connection to the real processes merely due to the 

absence of data on the production of real long-term memory. 
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Computational Neuroscience 

A note on History 

Computational Neuroscience does not have much of a history. 

In essence, the field termed 'Computational Neuroscience' was born 

with the paper 'Computational Neuroscience' in 'Science' Volume 

241 pp. 1299-1306 of September 1988. (Sejnowski, Koch & 

Churchland, 1988). Work had been done in this field under various 

guises for many years before this paper. One of the first notable 

contributions to functional analysis of neural system was the 

Hodgkin and Huxley characterisation of electrical signal 

propagation in the squid axon in 1952 (Hodgkin & Huxley, 1952); 

Since then much work has been done on the functional 

characteristics of neural tissue. 

Computational Neuroscience is based on the preceding 

neuroscientific research, but its goals are to 

• ... explain how electrical and chemical 

signals are used in the brain to represent and 

process information.- (Sejnowski, Koch & 

Churchlarid, 1988). 

In order to reach this goal, Computational Neuroscientists 

expect to produce detailed models of neural function, based on 

known neuroscientific data, together with some extrapolations 

from other neural network fields (called simplifying brain models _ 
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referring to connectionism, parallel distributed processing, etc}. It 

is intended that many different models will be built on different 

levels between the simplifying brain models and real neural 

networks, each designed to test possible mechanisms of action 

inside the natural nervous system. 

In the major sense, Computational Neuroscience is an 

'information processing' field, even though it takes advantage of 

biological data to produce models in which to investigate this 

. information processing. The field deals with the physics of living 

systems generally bounded by the nervous tissue of living 

organisms. Philosophically, the core interest of computational 

neuroscience is in the way in which the human brain processes 

information. Ultimately, the unspoken aim of the field is to 

understand the processes of higher cognition, such as motivation 

and abstract thought, as patterns of base level activity within a 

nervous system. 

Electrical equivalence of the neuron 

Computational Neuroscience deals with the modelling of 

neural systems in as concise a manner as possible. This requires 

the use of mathematical models, often culled from other fields, 

which describe the behaviour of low-level neural elements as 

closely as possible. Much of. the characterisation of neural tissue 

is reduced to electrical properties and equivalent electrical 

circuits, which allows an easier modelling route to computational 

studies. This is the method employed in this section to describe 

the properties of neural tissue. 
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The electrical properties of neural axons and dendrites can be 

modelled using a technique developed in the mid-nineteenth century 

by Lord Kelvin to model the characteristics of transatlantic 

telegraph cables. This 'Cable theory' is now the basis of 

calculations performed to measure the conduction characteristics 

ofaxons and dendrites. This is possible because these cell 

processes are tubes of cytoplasm assumed to have uniform 

electrical properties. The cytoplasm is surrounded by a membrane, 

which generally has a higher electrical resistance than the 

cytoplasmic interior and the extracellular environment. This sort 

of structure is known as a 'core conductor', which allows current 

to flow along the cytoplasm in a direction dictated by the 

boundaries of the membrane. 

Cable theory assumes that a conductor has uniform 

properties, such as diameter, resistance and capacitance. This 

leads to inaccuracies in the. application of cable theory to neural 

processes, as neural processes are usually not uniform in their 

properties. These inaccuracies must be tolerated, as exact models 

of a neural process would have to take all variations in geometry 

and electrical properties into account. This would be too 

computationally expensive to model, and would also lead to non

reducible properties. To reduce these inaccuracies, neural cell 

processes are modelled as short stretches of 'ideal' cables, 

attaching a set of uniform properties to each 'compartment' of the 

cable. This is shown in Figure 3.8. In this way, a cell model can be 

built with realistic overall properties from a number of combined 

cable 'compartments', each with a different set of electrical 

properties. Models built using this method are known as 
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'compartmental models'. These were introduced by Rail (Rail, 

1964). 

Collate ra13 

Soma 

Dendritic 
Tree 

Figure 3.8. Compartmental model of a neuron. 

Compartmental modelling is a useful tool. It allows the 

neuron to be broken down into an arbitrary number of 

compartments, depending on the level of detail required. Some 

studies use one compartment for an entire dendritic branch, while 

others model each dendritic component separately. The modelling 

of entire branches in one compartment is justified if the aim of 

modelling is to test the operation of the entire neuron, or a 

network of neurons. Modelling each dendritic branch as a separate 

compartment, or even a very short part of a dendrite as a 

compartment, is useful for comparing a model to a real neuron, but 

the amount of computational power involved precludes such a 

detailed model's use in network analysis. 

Compartments are modelled on an equivalent electrical 

circuit based on the core conduction path and the membrane of the 

cell process (Figure 3.9). The equivalent circuit shows the core 
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conduction path as equivalent to a resistance along the cytoplasm, 

and the membrane as a resistance in series with a battery 

(representing the resting potential of the membrane) with a 

capacitance in parallel to the membrane resistance. The 

extracellular space is equated to a 'sink' or ground state, which is 

isopotential. 

Cytoplesm 

Figure 3.9. Equivalent circuit of a cell process. (adapted from W. Rail, 

1989) 

The current flow through each compartment can be calculated 

by differential equations based on the equivalent circuit. The 

gradient of the current through one compartment is calculated as: 

(equation 3.1) 

(where ii is the core current and ri is the intracellular 

resistance, Vi is intracellular voltage and x is distance along the 

cell process) 
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because the membrane is a constituent of the compartment 

the current flow across the membrane must also be taken into. 

account. Adding the necessary current inflow and outflow across 

the membrane component (without modelling the membrane) 

produces: 

(
rm) (02V) . f; ox2 = Imrm (equation 3.2) 

(where rm is the resistance of the membrane, ri, is the 

resistance of the intracellular space, im is the membrane current 

and the differential part is the rate of the gradient change of 

Voltage over distance along the cell process) 

the membrane properties include the membrane capacitance 

as a conjugate with the resistance as a time constant (tm) giving: 

(equation 

3.3) 

(where rm is the resistance of the membrane, im is the 

membrane current, tm is the time constant of the membrane and the . 

differential part is the rate of change of Voltage over time) 

Before amalgamating the previous equations into a 

complete definition of the compartmental current activity, we 

must define a length constant, which defines the relationship 

between the membrane resistance and the intracellular resistance 

over distance: 
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(equation 3.4) 

then, the final equation (the cable equation) for a 

compartment is: 

A,2 - - V - 'tm -- = 0 (8
2V) (8V ) 

8x2 8t 
(equation 3.5) 

(Rail, 1989) 

This is a partial differential equation which reduces to 

differing ordinary differential equation under direct and 

alternating current conditions, allowing the calculation of input 

resistance, voltage attenuation and AC impedance. 

Patches of membrane which include receptor channels are 

modelled in a similar fashion, but include active gated resistances 

and batteries for the receptor (syn) and action potential (act) 

components. (Figure 3.10) The membrane current in this instance is 

specified by: 

im = em (~~) + 9leak(V • Eleak) + 9syn(V • Esyn) 

+ gact(V - Eact} 

(equation 3.6) 

(where g refers to conductance, V is voltage and E is the 

Battery (Nernst) potential, for each of the three components; Cm is 

the membrane capacitance and im is the membrane current) 
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Extrecell uler spece 

Active 
Membrene 

~--------~----~----~--------~ 
\ 

I ntrecell ul er cytoplesm -=-
Membrene 
Cepecl tence 

Figure 3.10 Equivalent circuit for a patch of active membrane. (Adapted 

from Segev, Fleshman & Burke, 1989) 

Ionic channels conductance in a membrane, can be modelled 

as a population by taking the maximal conductance for an ionic 

species and modulating this by known activating and inactivating 

parameters, such as Voltage, ionic concentration and time, all 

three of which affect the state of an ion channel. Yamada Koch and 

Adams (Yamada Koch and Adams, 1989) model seven ionic currents 

of a Bullfrog ganglion cell separately and then integrate each of 

these into a model of neuron activation. The models apparently give 

an accurate prediction as to the actual behaviour of the neuron 

under patch-clamp conditions. Their model for Voltage change in 

the soma of the ~ell is given as: 

(
dV) . . 

eN dt + linput + INa + ICa + IK + 1M + IA + Ic + 

IAHP + Ileak + Isyn = 0 

(equation 3.7) 
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(where CN is the Capacitance, V is voltage, t is time, linput refers 

to the input current injection, INa is the inward Sodium current, IC a 

is the inward Calcium current, IK is the net outward Potassium 

current, 1M is the slow muscarinic Potassium current, IA is the 

hyperpolarisation activated current, Ic is a Calcium sensitive 

outward current, as is IA H p, which is a slower 

AfterHyperPolarisation Potassium current. Ileak is the leakage 

current through the membrane, and Isyn is the synaptic input 

current.) 

Operational equivalents of neural processes 

The previous section gives the electrical properties of the 

·neural computation substrate, from which we can extrapolate to 

the actual computations performed by neural tissue. Most of these 

extrapolations are based on actual physical observations of the 

neural tissue under experimental conditions. In information 

processing terms, only a subset of neural operations is required to 

produce a usable digital computer on a par with current computer 

technology, so that a proportion of neural operations offer an 

additional processing layer which adds to the complexity of. neural 

operations. 
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Operator: Action potential production 

Input: Graded membrane voltage change 

Output: single activation spike 

The action potential of a neural impulse is an example of an 

all-or-nothing action. The input to the action potential is a graded 

build up of voltage leading to a threshold event, generating the 

. action potential. The action potential functions as an analog-to

digital conversion function, as well as an AND gate, depending on 

the relative strengths of the incoming multiple inputs. It can act 

as an OR gate, if each incoming input is strong enough to overcome 

the threshold function. The action potential generator is also a 

variable gated device which is dependent on the previous activity 

of the generator. It can be thought of as a variable trigger switch 

with automatic biasing. 

Operator: Repetitive spiking activity 

Input: Graded membrane voltage change or current injection 

Output: multiple. activation spikes 

Repetitive spiking occurs in some neurons as a result of 

prolonged synaptic input· or current injection. There is often a 

linear relationship between the. incoming current and the frequency 

of firing (Schwindt & Crill, 1982). which implies that an analog 

input current is being modulated into a frequency modulated 

domain. In this case a change is being made to the method of 

information representation, allowing for the possibility of 
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multiple channels of information in one physical channel within the 

nervous system. 

Operator: Impulse Conduction 

Input: Action potential 

Output: single Action potential (variable attenuation) 

Conduction of the action potential is a variable process, 

depending on the parameters of the axon itself, the action potential 

source and the frequency of action potentials. If the diameter of an 

axon is small, the impedance generated by a high spiking frequency 

may attenuate the signal drastically. In branching axons, these 

characteristics may allow signals to pass branching points without 

propagating the signal into one of the branches. This produces a 

filtering effect, propagating signals into the branch only when the 

impedance allows, possibly at a different ratio to the incoming 

activation. In physical terms, the fan out of an axon allows a wider 

distribution of signal transmission - the opposite of the fan-in 

implied by action potential production. 

Operator: Chemical synapses 

Input: pre-synaptic voltage 

Output: post-synaptic voltage (non-linear) 

The chemical synapse of a spiking neuron produces a non

linear output which appears very similar to that of a transistor 

device, sigmoidal, with an approximately linear section in the 
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center. (Katz & Miledi, 1967) This means that small variations in 

input voltage can act as a transistor, amplifying variations in 

output voltage if the input voltage is in the linear range. The gain 

of this amplifier is not necessarily above unity. (Martin & Ringham, 

1975) The chemical synapse is defined as a non-reciprocal two

port in informational terms. Communication is one-way only, 

although reciprocal synapses have been found (Shepherd, 1979) The 

properties of the chemical synapse imply that it can act as either 

an analog amplifier, a digital switch or a digital to analog 

converter. 

Operator: Electrical synapses (Gap junctions) 

Input: pre-synaptic voltage 

Output: post-synaptic voltage 

Electrical synapses are a form of direct coupling between 

neural cells. The cell cytoplasm is almost continuous through a 

pore which connects the membranes of two cells. This pathway 

presents a low resistance to signals originating in a source cell, 

although the input resistance to a specific cell may be higher than 

its neighbour, giving a directionality to the junction. The 

transmission properties of these junctions show similarities to 

those of chemical synapses, depending on the electrical parameters 

of the cells on either side of the junction. The largest operational 

difference between electrical and chemical synapses, is that there 

is a lesser delay in signal transmission in electrical synapses. Gap 

junctions can behave in a similar manner to diodes, rectifying the 
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incoming signal through half of a sine cycle. (Furshpan & Potter, 

1959) 

Operator: Synaptic interaction 

Input: Multiple pre-synaptic voltages 

Output: Modulated post-synaptic voltage 

The action of multiple synaptic inputs along a dendritic 

branch can produce many different effects. In some cases, additive 

excitatory inputs will produce a summated dendritic current. In 

other cases excitatory synaptic activity, coupled with inhibitory 

synaptic activity along a length of dendrite will produce complex 

effects, depending on the relative positions of the synapses and the 

timing of the synaptic activity. In a well-studied interaction, an 

excitatory pre-synaptic signal can be nullified by an inhibitory pre

synaptic signal on the dendrite at a more proxtmal position to the 

soma. (Koch et ai, 1983) This is known as silent inhibition when 

the inhibitory synaptic reversal voltage is near Omv. This produces 

no change in the dendritic voltage on its own, but will veto 

excitatory inputs on more distal parts of the dendrite. 

Hyperpolarising inhibitory inputs exert a different effect. These 

are summated with excitatory inputs to form the general 

excitation level· of the cell. Operationally, the most important 

function appears to be the 'veto' or silent inhibition effect 

obtained by the inhibitory (Omv reversal potential) synapse on 

proximal parts of the dendrite. This forms an AND-NOT logical 

circuit which is important for direction selectivity in the visual 
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system (Hubel & Wiesel, 1959). Other forms of synaptic interaction 

operate as a form of analog summation. 

Operator: Dendritic Spines 

Input: post-synaptic voltage 

Output: Modulated post-synaptic voltage 

The post-synaptic output of synapses on dendritic spines is 

dependent on the properties of the spine. In particular, diameter 

and length of the spine are of importance, due to the differential 

impedance of the spine to input signals and the electrical 

saturation of the spine. As the spine neck is generally smaller than 

the dendrite and the spine membrane is assumed to be passive, then 

a general attenuation is expected to occur between the spine head 

and the dendrite. Where the membrane is active, the spine can act 

as an amplifier. if the number of active channels on the membrane 

is sufficient to produce a greater effect. It has been postulated 

that synapse weights can be altered by the change in length of the 

spine brought about by the contraction of filamentous proteins 

found in the spine neck (Actin, Fodrin, Tubulin. See (Crick, 1982)). 

This is assumed to occur in response to the concentration of 

Calcium in the spine head. 
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Operator: Quasi-active membranes 

Input: Axonal current 

Output: Modulated axonal current 

Quasi-active membranes are membranes which display a 

variable output to differing inputs. In particular, some membranes 

may act as filters by virtue of their resonant frequency properties. 

Such membranes usually have a large proportion of secondary 

activation ion channels, such as voltage, time or ionic species 

concentration activated channels. These exert their effects by 

showing a peak conductance at a certain time after the onset of 

stimulation, these are then inactivated, and after a refractory 

delay, are ready to be activated again. Different membranes show 

different resonant frequency tuning and are likely to be used in 

sound transduction, but can be used in other filtering situations 

(Koch, 1984). 

Operator: Transmitter regulation of voltage-dependent channels 

Input: Presence of neurotransmitter and voltage-regulated ion 

channels 

Output: Modulated ionic channel current 

Neurotransmitter regulated ion channels have been found 

recently in many cells (Siegelbaum & Tsien, 1983). The modulation 

of the ion channel is a slow process, thought to take place as a 

result of secondary messenger action. The incoming 

neurotransmitter is bound to the membrane where it activates an 
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intracellular transmitter such as cyclic AMP, which determines the 

phosphorylation of ion channels. This modulation leaves the 

membrane in a heightened state of excitability for a long duration. 

This mechanism is similar to a variable biasing mechanism on a 

transistor, allowing control of the gain of the component. 

Most of these operational functions are summarised in the 

. table below, including some examples of the computation which 

may be performed by the particular structures under consideration. 

Biophysical Mechanism 

Action potential Initiation 

Repetitive spiking activity 
Action potential conduction 

Conduction failure at axonal 
branch points 
Chemically mediated synaptic 
conduction 
Electrically mediated synaptic 
transduction 
Distributed excitatory synapses in 
dendritic tree 
Interaction between excitatory and 
(silent) inhibitory conductance 
inputs 
Excitatory synapse on dendritic 
spine with Calcium channels 
Excitatory and Inhibitory synapses 
on dendritic spine 
Quasi-active membranes 

Transmitter regulation if voltage
dependent channels (M-current 
inhibition) 
Calcium sensitivity of cAMP
dependent phosphorylation of 
Potassium channel protein 
Long distance action of 
neurotransmi tter 

Neural Qperation 

Analog OR! AND one-bit analog
to-digital 
Current-to-freguency transducer 
Impulse transmission 

Temporal/spatial filtering of 
impulses 
Nonreciprocal tw<r-port ''negative'' 
resistance. Sigmoid "threshold". 
Reciprocal one-port resistance 

Linear addition 

Analog AND-NOT, veto 
operation 

Postsynaptic modification in 
functional connectivity 
Local AND-NOT "presynaptic 
inhibition" 
Electrical resonant filter analog. 
Differentiation delay 
Gain control 

Functional connectivity 

Modulating and routing 
transmission of information 

Examvle of Comvutation 

Long-distance communication in 
axons 
Opener muscle in Crayfish 

Coupling of rod photoreceptors to 
enhance detection of signals 
a, ~ cat retinal ganglion cells, 
Bipolar cells 
Directional-selective retinal 
ganglion cells. Disparity-selective 
cortical cells. 
Short- and Long-term 
information storage 
Enabling/disabling retinal input to 
geniculate X-cells 
Hair cells in lower vertebrates 

Midbrain sites controlling gain of 
retin<r-geniculate transmission 

Adaptation and storage of 
information in Aplysia 

Table 3.2 Some Neuronal Operations and the Underlying Biophysical 

Mechanisms (From Koch and Poggio, 1987) 
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Computational Models 

With these characterisations of the neuronal substrate shown 

above, it is possible to model a single neuron in very great detail, 

as well as larger networks of neurons. Low level models of single 

neurons are useful for testing theories of single neuron behaviour. 

Such models are at a stage where a computer model can accurately 

represent the properties of a neuron under different input 

conditions. Much work has been done on some of the properties of 

smaller networks, which underlie the greater processing power of 

a nervous system, such as the oscillatory networks and Central 

Pattern Generators (CPG's). In simpler animals, these CPG's 

operate specific parts of the organism, allowing models to test 

actual physical operations. 

Many methods exist for the simulation of neural circuits. 

These methods vary from the cable theoretical systems given 

above to simulation by specific electrical components. In the 

component oriented models, as usual, some of the lower level 

details are omitted in order to present a model which exhibits 

behaviour in reasonable computational time. In most cases, 

different models are tested to assess their viability for the 

specific circuit under investigation, and modifications are made to 

make the model type fit the behaviour of the real neural circuit. 

This means that each new simulation will be a hybrid of various 

modelling types, making studies of previously modelled systems 

only partially relevant to new studies. These facts make it 

difficult to report the results of modelling experiments in· a 
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shorter form than was given in the original publications, so this 

section serves merely to indicate the areas in which work has been 

done, and give references for further reading. 

Single Neuron model 

Stratford et al (Stratford et ai, 1989) produced a model of a 

cortical pyramidal neuron, from layer 5 of the visual cortex. This 

was based on their own analysis of the cell type involved. They 

evaluated three general modelling methods for these cells, 

including equivalent cylinder analysis, segmental cable models and 

compartmental modelling. The equivalent cylinder method (Rail, 

1977) attempts to collapse dendritic branches into a single 

cylinder The pyramidal neuron is question did not meet the 

geometrical criteria for equivalent cylinder models, so this method 

could not be used. The segmental cable model (Koch & Poggio, 1985) 

was found to be too mathematically complex for a reasonable 

computational solution, so the compartmental modelling method 

was used. 

The compartmental modelling method involved the 

assumption of isopotential compartments over the neuron and the 

simplification of the structures involved. Here, Stratford et al. 

attempted a simplification of the apical and basal dendrite 

structure. They used two methods; Dendritic profiles and dendrite 

cartoons. Dendritic profiles are a one-dimensional summative 

measure of a single equivalent dendrite, if all dendrites at a 

specific distance were collapsed into one dendrite. The measure 

used is the diameter of the equivalent dendrite and calculations 
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are based on this measure and the distance from the soma. The 

Cartoon method is a two dimensional compartmental model, which 

preserves the characteristics of distance from the dendrite axis, 

as well as distance from the soma. Figure 3.11 is adapted from the 

original figure from Stratford et al. comparing these two methods. 

Profile 

A 
r 0 

e m 
a a 

Basal Dendri tes Soma Apical Processes 

/ 

Cartoon 

Figure 3.11 Comparison of the profile and Cartoon representations of 

dendritic geometry. (Adapted from Stratford et ai, 1989) 

Running the computational models of the neuron showed that 

the cartoon method closely mimics the output characteristics of 

the real neuron, when the model parameters were· set to 

biophysically plausible values. 
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Small Network models 

Selverston and Mazzoni (Selverston & Mazzoni, 1989) 

modelled the Central Pattern Generator of the pyloric sub-network 

of the lobster stomatogastric ganglion. This is a three neuron 

oscillating network operating within the ganglion, which generates 

an oscillatory output when isolated (see Figure 3.12). This 

. oscillator controls some of the events in the lobster stomach 

system, and shows a particular phase relationship, necessary to 

the correct treatment of food in the stomach region. Selverston and 

Mazzoni use a coarse grain electrical model to simulate the 

physiological mechanism. Their modelling system is derived from 

the work of Hopfield and Tank, (Hopfield & Tank, 1986) which uses 

operational amplifiers to simulate the action of the neuron. In 

order to approximate biophysical detail, gap junction components 

were added, simulated by specific resistances, and chemical 

synapses were modelled with a sigmoidal input-output function. 

The model is shown in figure 3.12. 

Selverston and Mazzoni found a high degree of similarity 

between the biophysical data and their electrical model, both in 

output functions and, more importantly to the correct operation of 

the stomatogastric system, in phase relationship. 
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B. 

Figure 3.12 Lobster pyloric sub-network. A. is the connectivity of the 

network in the ganglion • black circles represent inhibitory synapses, 

the resistance component represents a gap junction connection. B is the 

electrically modelled version. (Adapted from Selverston and Mazzoni, 

1989). 

Larger Networks 

Clark, Chen and Kurten (Clark, Chen and Kurten, 1989) 

modelled a sub-circuit of the olfactory cortex, based on the 

structure of the olfactory cortex, as described by Shepherd 

(Shepherd, 1979) . They use a coarse-grain model, which represents 

neuronal activity .as mean spike frequencies in the analog domain. 

They found that this approximation technique gave good results 

when the model was compared with the output of the biological 

system. The input from the olfactory receptor cells is known to be 

a frequency coded function of stimulant concentration. For each 

neuron, the firing rate is determined as the sum of external and 
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internal (synaptic) stimuli, with any accommodation to firing 

frequency, minus a neuron threshold variable. The synaptic inputs 

are weighted, determining the sign of the synapse, and a fatigue 

factor scales the synaptic input. The output of the neuron is the 

sum of this function, which is sigmoidally scaled, with additional 

rate factors added in as the last step to account for synaptic delay 

and neuron component 'warm-up' factors. 

The olfactory cortex for this model consists of three major 

cell types. The Mitral cell is the cell which receives the sensory 

input and transmits the output to other brain areas, while the 

periglomerular . neurons and granule cells are interneurons, 

modulating the computations of the mitral cell. (see Figure 3.13) 

The 'tufted' cell, also present in the olfactory bulb, was not used in 

this model. The functional equivalent circuit is given in figure 

3.13b, and consists of mitral cell models with input modulation 

performed by the periglomerular cell model, output being 

modulated by the granule cell. The connectivity allows a 'spreading 

activation' input function mediated by the periglomerular cell and 

a 'lateral inhibition' output function mediated by the granule cell. 

The published results of this model show a sustained 20Hz 

oscillation in the circuit which is not dependent on the frequency 

of stimulation, as long as the stimulation frequency is within a 

certain range. This is said to correspond to the phenomenological 

measurement of EEG in animals. 
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Peri
Glomerular 
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_ Exci tatory Synapse = Feedback connections 

Figure 3.13 Olfactory cortex, A. representation of a local circuit and B. 

model circuit (Adapted from Clark, Chen and Kurten 1989). 

Summary 

Real neural networks are many orders of complexity above 

the representations that researchers can possibly create in 

reasonable computational spaces and time-scales, at present. The 

variation of membrane resistance along a cell process, alone, is 

computationally complex enough to require the fastest parallel 

processors to be anywhere near an accurate representation of the 

actual process of electrical propagation. Despite this, many 

researchers feel ~hat a good enough model of real networks can be 

built with composite components, such that input/output mappings 

can be accurately followed from the measured characteristics of 

real neurons. This should allow neural circuits to be built which 

can imitate their real counterparts to a reasonable degree of 
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accuracy. The latter examples in this chapter show that this 

approach appears to work. 
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The Brain, 
Neuropeptides and noise: 

Theory of signal transmission 

involving neuropeptide substances. 

A great deal of work has been done on neurotransmitters 

within the last 30 years. Beginning with the 'classic' transmitters, 

such as Serotonin, Acetylcholine and Norepinephrine, and now 

heading towards the characterisation of so-called retrograde 

transmitters, candidates for which were Arachidonic acid and now 

Nitric Oxide, theoretically used in synaptic update mechan"isms 

(Garthwaite, 1991). In the space between these two classes are a 

wealth of substances which have been shown to be neuro-active, 

some of which are simple molecules, fatty acids (Ordway et aI., 

1991), steroids (Joels & de Kloet, 1992) and others which are 

peptide-based and may be fairly large scale molecules. There are 

now well over 50 possible neurotransmitting substances to be 

found in the nervous system, and an increasing focus of research is 

the operational reason for the existence of so many possible 

transmitters. 

Some researchers assume that the large number of putative 

transmitters is a relic of evolutionary history. Rossier (1985) 

gives the example of the neuropeptide, a-MSH (alpha-Melanocyte 
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Stimulating Hormone), which darkens the skin in amphibians, but 

which also exists in higher vertebrates without an apparent 

biological function. It has been suggested that neuropeptides may 

modulate the action of 'classical' transmitters, but the majority of 
-

researchers appear to feel that neuropeptides can be transmitters 

in their own right. 

In general, it is expected that only a few of these possible 

transmitters will be operational in one specific area: But if all the 

transmitters are conveying information at the same time, it may 

be difficult to separate the effects of some of the channels, using 

the same transmitter, and 'noise' may occur as a result of Signals 

crossing channels. This may, in fact, be an enhancement, as 

described Jater. The crossing of Signals using different 

transmitters may be a method of signal propagation which allows 

multiple signals to act effectively in a limited space. This is the 

basis of concurrent propagation, which would allow multiple 

signalling activities to continue uninterrupted in the nervous 

system 

Neuropeptides - The evidence for neuroactivity 

The exposure of neuropeptides to the neuroscientific 

community occurred between the late 1970's and the present day, 

although some of the preliminary work on certain peptides goes 

back as far as the 1930's. The genesis of the idea of neuropeptides 

as transmitting molecules goes back to the work on hormones and 

neurohypophyseal peptides, and a particular peptide known as 

Substance P (studied by von Euler, see (von Euler, 1985» In 
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general, the term 'neuropeptide' is applied to a peptide which has 

been shown, immunochemically, to be present in the brain, and as 

this work was not carried out until the late 1970's, the history of 

this field is not long. 

The class of 'peptides' encompasses a variety of functional 

molecular structures, in fact, anything which is built of non

simple amino-acids. Thus, it is expected that a wide variety of 

such substances will occur in a . living organism. If we pause for 

thought for a moment, one might find it rather surprising to find 

that peptides, given their numbers and distributions in living 

organisms, were not thought to take part in the signalling activity 

of the organism, even at only a low-level or slow time scale. 

There are several classes of neuropeptides. The Opioids 

appear to have been most studied, and have been split into three 

groups, based on their precursor molecules - enkephalins, 

dynorphins and endorphins (Hughes, 1985). The Opioids appear to 

modulate sensory input. Other broad classes of neuropeptides are 

based on their somatic activities, of which the two main classes 

are gastro-active and vaso-active. Some peptides do not readily 

fall into neat categories, and tend to regulate specific functions 

(such as Oxytocin's regulation of uterine contraction and milk 

ejection), but within their regulatory function they can be defined 

as either releasing or inhibiting peptides. However, it is not 

intended to detail the somatic activity of particular peptides here, 

unless it is found to be particularly relevant to their neural 

activities. The purpose of this discussion is to elaborate on the 

occurrence and possible signalling activity of peptides in the 

nervous system, and as such, discussions will be limited to the 
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. central nervous system and ganglia without too detailed a 

description of the somatic function of the ganglia, where possible. 

Distribution of Peptides in the central nervous system 

The occurrence of neuropeptides in the central nervous 

system is of greater importance in this treatment, because here, it 

. can be argued, there will be a limited variety of functional 

importance attached to a particular species of molecule. A 

chemical may be an evolutionary residue as Rossier (1985) says, or 

it may take part in the functional life of the neural system. In 

external ganglia, the neuro-functional properties of the molecule 

may be confused with the somatic-functional properties, denying 

the assumption of a specific role. Unfortunately, difficulty in 

studying the central nervous system and the ease of study of 

peripheral ganglia, in situ, and with all connections intact, means 

that the central nervous system is rarely extensively studiable 

except in fixed preparations. Thus, most evidence comes from 

studies of peripheral gangfia. However, table 4.1 shows some 

peptides which have been localised to the mammalian cerebral 

cortex by immunochemical methods. 

Three of the most widely studied peptides have also been 

localised to particular cell types. Vaso-active Intestinal Peptide 

(VIP) has been shown to exis~ in bipolar neurons with cell bodies in 

cortical layers II and III, which receive input from thalamocortical 

neurons and synapse onto the apical dendrites of pyramidal cells. 

(Morrison & Magistretti, 1985) Cholecystokinin (CCK) tends to 

occur over a wider range of cell types, as well as in bipolar 
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neurons, again in cortical layers II and III. Somatostatin (SS) 

appears in a heterogenous population of cells, mostly multipolar 

and modified pyramidal cells, with cell bodies distributed between 

cortical layers II-III, and V-VI. 

Other peptides have not been localised as effectively as 

these major peptides but Substance P (SP) has been found in 

cortical cells, as well as in the widely documented peripheral 

unmyelinated sensory neurons (Kelly, 1985). Oxytocin and 

Vasopressin have been extensively studied, with indications that 

these peptides are widely distributed through basal nuclei and 

limbic system and are functional in a neuromodulatory capacity. 

(Sofroniew, 1985) 

Neuropeptide Y (NPY) is one of a group of pancreatic peptides 

which can be found in the cerebral cortex, mostly in interneurons. 

This peptide also exists in the basal nuclei and limbic structures 

such as the hippocampus and amygdala (Emson & De Quidt, 1985). 

NPY can also be found in some central adrenergic neurons, in the 

locus coeruleus. 

Angiotensin IT 
Avian pancreatic peptide (APP) 
Bradykinin 
Bombesin 
Corticotropin releasing factor (CRF) 
Cholecystokinin (CCK8 - refers to 8 base molecule) 
Enkephalin 
Molluscan cardio-excitatory peptide (FMRF-NH2) 
Neurotensin 
Somatostatin (different versions) 
Substance P 
Vasoactive intestinal peptide (VIP) 

Table 4.1 Peptide-like immunoreactivities identified in mammalian 

cerebral cortex. Many more can be found in peripheral tissues (see 

Schwartz, 1985) (table adapted from Morrison and Magistretti, 1985) 

113 



4. Neuropeptides and Noise 

Co-existence of IClassical' neurotransmitters with 

neuropeptides 

Much of the work on Neuropeptides concentrates on the role 

of peptides as co-existent and co-released substances with 

conventional neurotransmitters. In some cases several peptides co

exist in the same terminal with a 'classic' neurotransmitter (See 

Table 4.2 for some known co-existence sites). Some researchers 

theorise that this co-existence acts to co-ordinate events in the 

nervous system (shown in Aplysia by Scheller et ai, 1985). Other 

work shows that peptides can produce long lasting discharge 

activity which is interrupted by the release of 'classic' 

neurotransmitters (Horn & Dodd, 1985). An example of co-existence 

facilitating a response is the action of Acetylcholine (ACh) and VIP 

(Vasoactive Intestinal Peptide) in the sub-mandibular salivary 

gland of the cat. Here, VIP does not cause salivation on its own, but 

facilitates the action of Acetylcholine to produce salivation, 

possibly by increasing the affinity of Muscarinic receptors for 

Acetylcholine: ACh, on its own, produces a lesser salivation 

response (Lundberg & H6kfelt, 1985). VIP is not solely found in 

intestinally related areas, but is also present in cerebral cortex 

interneurones where it is thought to play a role in enhancing local 

blood flow (Morrison & Magistretti, 1985). Other neuropeptides 

seem to be even more important in the nervous system. 

Cholecystokinin (CCK), along with Neurotensin, is thought to play a 

role in regulating the release of dopamine in cortical dopaminergic 

neurons (which apparently have no pre-synaptic autoreceptors). The 
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, 

release of CCK in this case, inhibits the release of dopamine, and is 

antagonistic to neurotensin which facilitates dopamine release 

(see Emson, 1985). 

Classical transmitter Peptide 

Dopamine 

Noradrenaline 

Adrenaline 

5-HI (Serotonin) 

ACh 

GABA 

Enkephalin 
CCK 
Somatostatin 

Enkephalin 

Neurotensin 
APPIBPPINPY 

Enkephalin 
APP/BPPINPY 
Substance P 
IRH 
Substance PffRH 
Enkephalin 
VIP 
Enkephalin 

Neurotensin 
LHRH 
Somatostatin 
Substance P and 
Enkephalin 
Somatostatin 
Moti1in 

Iissuelre~ion (species) 

Carotid Body (Cat) 
Ventral tegmental area (Man) 
Sympathetic ganglion (G-pig) 
SIP cells (Cat) 
Sympathetic ganglia (Cat) 
Adrenal Medulla (Several) 
SIP cells (G-pig) 
Locus Coeruleus (Cat) 
Adrenal Medulla (Cat) 
Sympathetic ganglia (Man) 
Medulla Oblongata (Man) 
Locus Coeruleus (Rat) 
Adrenal Medulla (Several) 
Medulla Oblongata (Rat) 
Medulla Oblongata (Rat) 
Medulla Oblongata (Rat) 
Medulla Oblongata (Rat) 
Medulla Oblongata (Rat) 
Autonomic ganglia (Cat) 
Preganglionic nerves (Cat) 
Cochlear nerves (G-pig) 
Preganglionic nerves (Cat) 
Sympathetic Ganglion (Frog) 
Heart (Toad) 
Ciliary Ganglion (Avian) 

Thalamus (Cat) 
Cerebellum (Rat) 

Table 4.2. From Lundberg and H6kfelt (1985) showing co-existence of 

classic neurotransmitters with neuropeptides. Abbreviations are: 5-HT 

= 5-Hydroxytryptamine, ACh = Acetylcholine, GABA = y-aminobutyric 

acid, CCK = Cholecystokinin, TRH = Thyrotropin ReleaSing Hormone, VIP 

= Vasoactive intestinal polypeptide, LHRH = Luteinizing hormone 

releasing hormone, NPV = Neuropeptide V, APP = Avian Pancreatic 

Polypeptide, BPP = Bovine Pancreatic Polypeptide. Lundberg and H6kfelt 

make a number of reservation regarding the specificity of 

immunohistochemical techniques employed in the formation of this table. 
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Activity of Neuropeptides 

Luteinizing-hormone-releasing-hormone (LHRH) has been 

studied in the Frog sympathetic ganglia by Jan and Jan. (Jan & Jan, 

1985) The above table shows that LHRH is a co-transmitter with 

ACh in this ganglion. Jan and Jan studied the effect of blocking 

, transmitter responses with specific chemical antagonists, on the 

excitatory post synaptic potential (EPSP). Their work was based on 

the presence of a long-term EPSP (termed the Late Slow EPSP) 

which was unaffected by ACh antagonists. They found that they 

could isolate the LHRH-like peptide in the terminals by 

immunohistochemistry and radioimmunoassays. They found greater 

concentrations of extracellular peptide after electrical 

stimulation of the peptide containing cells, and they found that 

they could mimic the late slow EPSP by applying a synthetic LHRH

like peptide to the sympathetic neurons connected to the peptide 

containing cells. Further, they found that LHRH antagonists applied 

directly before stimulation resulted in the absence of the late 

slow EPSP. Additionally, their evidence suggests that the activity 

of the LHRH-like peptide was extra-synaptic and effective over a 

distance of several tens of micrometers and a time-course of 

several minutes. 

Scheller et al studied the bag-cell neurons of the abdominal 

ganglion of Ap/ysia Californica. Their work concentrates on three 

peptides which trigger egg-laying in the snail, of which the 

apparent hormone (due to its actual physiological spread and 
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slowness of action) is known as Egg-laying hormone (ELH), and the 

peptides were named ex and B bag-cell peptide ( ex- and 13- BCP). 

(Scheller,Rothman & Mayeri, 1985) The bag-cells of the abdominal 

ganglion are generally thought to be the trigger for egg-laying in 

Ap/ysia, as these cells are active before egg-laying occurs, and 

artificial stimulation of these cells induces egg-laying behaviour. 

The bag-cells produce ELH, ex- and 13- BCP, when stimulated by the 

application of peptides A and B, which originate from the Atrial 

gland some distance away. The activity of the bursting response 

from the bag-cells lasts for 20-30 minutes, allowing a 

considerable amount of peptide to be released into the abdominal 

ganglion. Specific target cells in the ganglion respond to the ex- and 

B- BCP, augmenting the activity of some and inhibiting others, and 

each of these activities can be mimicked by the external 

application of collected peptides. The activity of ex- and B- BCP is 

relatively short-lasting, being degraded within ten minutes, and 

these peptides have a locus of activity entirely within the 

abdominal ganglion, strengthening their roles as local 

transmitters, rather than global hormones. 

Work on Substance P (SP) has concentrated on its action in 

the dorsal root ganglion of the spinal cord, where it apparently 

modulates the activity of sensory interneurons (Otsuka & Konishi, 

1985). It has been localised in these areas by immunohistochemical 

and radioimmunoassay studies in Guinea-pigs, along with the 

primary transmitter Acetylcholine. The dorsal root ganglion 

connects the skin nociceptors and other peripheral ganglia to the 

CNS. Substance P is assumed to take part in a slow EPSP produced 

in inferior mesenteric ganglion cells, which is not blocked by 
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. Acetylcholine antagonists, and can be mimicked by the external 

application of SP to the ganglion. The response to external 

application lasts from 20 seconds to 4 minutes, but repeated 

application within this time appears to saturate the receptor, such 

that the SP induced activity is dampened. Treatment of the 

ganglion with Capsaicin depletes the Substance P (Nagy, 1985) and 

abolishes the slow EPSP. There is also evidence that Substance P 

has some part to play in the transmission of painful external 

stimuli. Substance P antagonists appear to have analgesic effects 

when injected into an animal - injecting Substance P itself, elicits 

behaviour associated with painful stimuli. 

. The Opioid peptides are some of the most widely studied 

groups of peptides. They mediate action which is readily seen in 

behavioural change of the organism concerned. There are, in fact, 

three families of opioid peptides (Hollt, 1985), eighteen specific 

peptides, manufactured from three different precursors. These are 

Pro-opiomelanocortin (POMC), pro-enkephalin-A and pro

enkephalin-B. POMC-based peptides are known to be released from 

the pituitary, but also can' be found in neurons of the arcuate 

nucleus, which project to the amygdala. Pro-enkephalin-A and -8 

derived peptides are found in the nucleus accumbens, hippocampus 

and spinal cord. It is known that there are three receptors with 

rather strange selectivities. (Weber et ai, 1985) The receptors are 

classed as Jl, K and 0, an~ the strange receptor selectivity 

behaviour is seen as a switching of receptor preference, as 

intermediate peptides are processed into end products. This leads 

Weber et al. to suggest that the processing of the precursor 

molecules may also be modulated in some way to produce different 
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effects on the organism, by producing differences in the 

concentrations of particular intermediate peptides. A fourth 

receptor type (0) is postulated, but is not accepted as an opiate 

receptor by all researchers, as it is apparently not affected by 

classic opiate blockers. (Zukin & Zukin, 1985) Opiates are most 

widely known with respect to their modulation of painful stimuli. 

This is a part of a proposed linkage with the substance P peptide in 

pain reception. Specifically, enkephalins are thought to inhibit 

Calcium influx into pre-synaptic terminals of substance P 

containing nociceptive neurons. The dearth of Calcium in the pre

synaptic terminal, inhibits the release of substance P (and other 

messengers), which decreases the reception of painful stimuli. 

(Kelly, 1985) 

Neuropeptide Y (NPY) and Somatostatin (SS) appear to be 

closely linked, particularly in results of studies on rats. (Emson & 

De Quidt, 1985) These peptides are thought to be co-existent in 

non-pyramidal cells in cerebral cortex and basal ganglia, and make 

up 2%-3% of the neurons within the rat visual cortex. NPY has a 

profound, but Calcium dependent, effect on vascular smooth 

muscle, inducing a slow contraction of cat gut and arteries. 

NPY also seems to have a linkage with the adrenergic system 

in the rat, which appears to be concerned with the control of blood 

pressure. This would seem to be consistent with the vaso-active 

properties of NPY. The linkage may be due to a similar action of the 

NPY to the catecholamine, but other studies have shown that NPY 

may increase the number of active adrenergic receptors on a 

prepared membrane (Emson & De Quidt, 1985). 
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Overview 

The action of neuropeptides on the nervous system is unclear 

at the moment. It seems likely that the activity of neuropeptides is 

mediated through secondary intracellular messengers such as 

cyclic-AMP (see figure 3.7 and surrounding text) and certain 

lipids, or by altering the concentration of ionic species such as 

Calcium, thereby directly altering the exocytotic process in the 

pre-synaptic terminal. The evidence for the action of the opiates is 

in favour of the regulation of ionic species (Miller, 1985), but the 

activity of other peptides has not been sufficiently studied to give 

definitive actions for them. It does seem certain that peptides will 

have a slower time course than primary chemical messengers, in 

both release and de-activation. Many neuropeptide receptors are 

likely to be outside the synaptic cleft, which means that a slower 

diffusion process must take the peptide to the receptor (Jan & Jan, 

1985). It does appear that peptides do have a de-activating 

peptidase system which will speed removal of the peptide from the 

extracellular space (SChwartz, 1985) rather than just allowing the 

concentration to fall to negligible levels by further diffusion. Such 

a de-activation system would appear to emphasise the action of 

neuropeptides as transmitters rather than irrelevant products of 

cellular metabolism, unless the de-activation mechanism is merely 

a metabolic waste removal prC?cess. 

Other factors which may have to be considered are the site 

and rate of peptide production, the transportation of peptides to 

neural terminals and exocytotic fatigue, but these factors are 
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unlikely to play a large part in the availability of peptides to the 

normally stimulated neuron. 

Information transmission in the nervous system 

The evidence above implies that neurotransmitters can be 

classed as information transmitters: But what is the nature of the 

information that they transmit, and what constitutes a 'signal' in 

the nervous system? What is a meaningful grain size of 

information in the nervous system? Are there several levels at 

which information is meaningful? At the moment, we can only 

guess at the answer to some of these questions, but the following 

discussion attempts to propose some of the possibilities in this 

area. 

Should we assume that the 'signal' in the nervous system is 

the separate depolarisation of a cell, which is then propagated 

along the axon; or is it the succession of depolarisations of an 

axon, bringing in the notion of frequency modulation as the 'Signal'; 

or, perhaps, is it the concerted firing of a group of neurons which 

acts as the signal; or, in fact, are all of these characteristics 

inseparable parts of 'the signal'? The majority of current 

researchers appear to favour the frequency modulation schema for 

most signal propagation, but do not fully discuss the possible 

'meaning' of such a signal type. This 'meaning of a signal' will not 

be discussed here either, as it is outside the scope of this 

functional analysis. 

We can look at a few ways in which 'information' can be 

propagated, in order to clear the path for later analyses: 
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1. Information (in the true sense) - 'Figure' in the 

figure/ground dichotomy - a 'bit' of information is propagated to 

form an internal representation, and thence to the output processes 

or brain state. Propagation is assumed to be accompanied by a rise 

or fall in the firing frequency of neurons and is consistent with 

activation propagation theories. 

2. 'Anti-information' (as in NOT('information'))- 'Ground' in 

the figure/ground dichotomy - can also be propagated, aiding the 

formation of the output/brain state. Propagation of 'Anti

information' is marked by a fall or rise of firing rate brought about 

by either excitation or inhibition propagation .. 

3. 'Constraint' propagation. - Information may be inverted at 

some stage in processing - The 'invert' is propagated, reaching an 

output state which defines the set of non-classes of responses to a 

stimulus. In an object identification context, this means that the 

output state defines the set of classes to which the object does 

not belong. Thus, by elimination, this method defines the object 

class .. 

Using these three possibilities we can construct some ideas 

about information processing and learning: 

1. In the 'Informant' propagation model, the routing of neural 

units, and thus the representation of a symbol could be partially 

serial, and it may be possible that to reach a particular sub-state 

of the entire representational brain-state, routing must occur 
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through another sub-node of the network (as would, perhaps occur 

in analogical learning - before strengths of connections had 

enabled an easier route to be followed), thus lengthening the neural 

pathway required to be traversed before a decision can be made as 

to the classification of the object. In this instance a system which 

propagates constraints could be more efficient and faster than the 

ordinary information propagation approach, as the path of 

constraints would be more direct than those of 'informants'. 

2. Psychologists have shown that it is possible to recognise 

'what objects are not', before recognising 'what they are' in 

cognitive psychology experiments (from Neisser onwards (Neisser, 

1967; Nickerson, 1972; Marcel, 1977)). In such a system, it is 

possible that parallel exploration of object attributes, as 

represented in memory, reject non-fitting cases before producing 

the fitting case by default. This strategy may be echoed by the 

brains' mechanism of propagation, whereby the propagation of 

constraints rules out entire classes of objects before settling into 

a state which recognises an object by the lack of activity in the 

'memory trace' of the particular object. 

3. Theories of template matching in cognitive psychology are 

supported by several reaction time experiments, but also 

confounded by others. (Again, see Neisser 1967 for early examples 

of the type of study discussed in this paragraph.) In these cases it 

is shown that where objects are drawn from only one of a number 

of congruent sets (numbers, friends' faces, geometriC figures) 

reaction time is not affected, however, when presentations can be 

from many of these sets, reaction time increases proportionally 
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with the number of sets. Constraint propagation allows for these 

observations. Expectation of a particular set of symbols sets up a 

'mode' of thinking, where the constraints are already set -

recognition of the class of symbol is unnecessary, and processing 

requires only the recognition of the particular instance of the set. 

On the other hand, expectation can not work in a situation where 

multiple classes of objects are to be presented, and recognition of 

the instance of the object takes longer, as it also requires 

recognition of the class of objects. Constraint propagation would 

be a more efficient strategy in this case. 

It is not known which, if any, of these propagation schemes 

are used in human information processing, but the existence of the 

large number of neurotransmitters found, seems to imply that 

! .there is a more complicated mechanism than simple· informant 

propagation at work in this system. McBurney (McBurney, 1985) 

suggests that: 

'If Different transmitter molecules generate 

different post-synaptic effects, not just in 

terms of excitation and inhibition but in terms 

of the duration of the post-synaptic conductance 

change per released quantum, they will contribute 

different characteristics to the input-output 

function of neuronal networks' 

McBurney uses this as the basis of allowing different 

'weights' in a network, formed from differing signal sources, and 

hence, concurrent propagation of signals. 
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In the primary nociceptive system we may have a prime 

example of antagonistic peptide action between the enkephalins 

and substance P (see above reference to Kelly, 1985). This would be 

mediated by pre-synaptic Calcium concentration (which could also 

be considered as a signal messenger in this case, as it determines 

the amount of transmitter released into the synaptic space: Any 

other substance which modulates the concentration of Calcium 

within the pre-synaptic terminal must also be recognised as a 

signal transmitter). In this system, therefore, we can count at 

least four substances, without going into too much detail, which 

may have an effect on the degree of pain felt as a result of noxious 

stimuli - these are Substance P, enkephalins (eg. dopamine), 

Calcium concentration and the primary messengers of nociceptive 

neurons (5-HT). This process can be likened to an active biasing of 

the key components in the pain receptor mechanism, and is not a 

simple signal propagation. 

Jan & Jan (Jan & Jan, 1985) hypothesise that the emergence 

of peptides as neurotransmitters falls between 'classic' neuro

transmitters and paracrine hormones - to give a continuous range 

of secretory products, which act as fast transmitters in the case 

of 'classic' neurotransmitters, or slower more diffusible and 

widely-acting transmitters further into the more recently 

discovered large molecule transmitters. Their theory is that: 

• ... in situations where the speed of action 

is not crucial, or perhaps a slower and more 

prolonged influence is more desirable, 

conceivably the presynaptic neurons may terminate 
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in the vicinity of the postsynaptic neurons 

without making synaptic contacts with them.' 

ill • •• Selective communication may be achieved 

if different neurons in a given region express 

different subsets of receptors, so that a 

transmitter released from a presynaptic neuron 

influences only those neurons nearby which have 

the right receptors on their surface. ... For 

this type of interneuronal communication to be 

used extensively in the nervous system without 

cross-talk between parallel pathways, a necessa~ 

requirement is that many different molecules are 

used as transmitters. Perhaps this is one reason 

for the multiplicity of peptides that are 

implicated as transmitters.' 

This selective communication would allow complex 

signalling methods to be continuous in the nervous system, giving a 

mode of communication with facets of each of the three methods 

mentioned above. 

A word about noise 

The term 'Noise' can be used in any signalling system to refer 

to that part of a communication medium which arrives at a 

reception point, without having been an intended characteristic of 

the signal at the source point. In many cases noise must be 

removed, at least partially, in order to make the original message 
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intelligible. Noise is a fact in most of our electronic 

communication systems, but does the term have any meaning in 

reference to a nervous system? A nervous system must be an 

inherently noisy environment. Thermal, chemical and 

electromagnetic 'noise' must be a part of any nervous system, but 

is it regarded as noise by the nervous system? In many cases, what 

may be referred to as noise can be a necessary part of the signal, 

supplying a context for the proper decoding of the signal. Silence 

may also be a part of a signal, for example, in Morse code. 

In a nervous system, we assume that signal propagation must 

take place, and we ascribe signal-like properties to what appear to 

be obvious communication processes, such as the faster electrical 

and chemical translocations. Generally, at some level, we place a 

cut-off and expect any translocation process beneath a certain 

chemical concentration or electrical voltage value or time-scale to 

be irrelevant to the 'meaning' of the 'signal', and it will, therefore, 

become 'noise' in our terms: But is this a valid strategy for the 

nervous system? The field of artificial neural networks operates 

upon the previous assumptions, and yet evidence has been found 

that randomly injected activation of a low order, which 

corresponds to what would be called 'noise', actually improves the 

performance of a basic networks' learning cycle (Von Lehman et ai, 

1987) (Docking, 1989). The phenomenological conclusion is that 

'noise' aids the learning process; But the action of the 'noise' is a 

statistical process. Injected noise may aid the learning cycle by 

essentially broadening the number of activation points in a finite 

point system, which allows the gradient descent strategy to run 

more efficiently (See chapter 2 for a description of gradient 

descent strategy); alternatively, it may appear to allow faster 
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learning, through a process of random search through the solution 

space. 

In the living nervous system neuropeptides may be considered 

as 'noise', because they may appear to act slowly, and in 

diminished concentrations - but if noise helps the system to 

converge more quickly, then this form of noise may actually be part 

of the 'signal', and the definitions of signal and noise become 

blurred. In this instance it is possible for the actions of the noise 

to become indistinguishable from the actions of the signal, because 

the signal requires the noise to speed the formation of a desirable 

'brain state'. 

This 'noise yet signal' problem can be illustrated by a simple, 

roughly similar human example. A 'wink' is a signal to a human 

observer that information provided by a spoken message is meant 

to be interpreted in a special way by the observer. In the absence 

of a 'wink', the message may be interpreted in a normal manner. In 

another setting, the 'wink' might be considered to be a nervous 'tic' 

and be ignored by the observer, leaving the meaning of the spoken 

message unchanged. In a final setting, the 'wink' may be received 

by an observer who was not the intended recipient, and the 

message will be interpreted in another manner. In this way, the 

same overt signal has acquired three different meanings in the 

presence or absence of a physical movement which can be 

considered as either 'signal' or 'noise'. For the purposes of this 

study we can call a single 'n~ise' modulation event of' this type a 

'Modulum'. (Plural - Modulae) 
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. Neuropeptide operators 

Neuropeptides might act as relatively long ..... term operators, 

perhaps with graded on- and off-set. The action of a peptide may be 

to modulate the excitability of a neuron, without necessarily 

producing a threshold event, unless the cell is already in a highly 

excited state. The sourc~ of· the excitatory (or inhibitory) 

neuropeptide need not be in contact with the target cell, and the 

effect of the neuropeptide would diminish with distance from the 

source cell, through a process of diffusion and enzymatic 

degradation. This would act as a variable 'biasing' element in an 

electronic circuit, the value of which would be dependent on the 

excitatory parameters of the source neuron and transmitter 

concentration, and therefore the distance from the biasing source. 

(See figure 4.1) In multiple neurotransmitter biasing situ~tions, 

such as the proposed antagonistic effects of Substance P and 

enkephalins in the primary afferent C-fibres of the nociceptive 

system, the operator would conform to the parameters of an 

electronic differenfial active biasing system. This allows the 

concentration of all peptide-biasing elements to control the bias of 

the target cell. 

It may be possible that different cells within a local neural 

cluster could express different neuropeptide receptor types on the 

cell membrane (Koch & Poggio, 1987), or this may occur even on 

different parts of the same cell. Such a system would indicate that 

differential activation biases could be applied to the cells of a 

cluster, or to different sections of dendrite, by diffusion of 

different peptides into the cluster from internal or external 
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. sources. In a situation where many neuropeptides are in use, this 

differential 'addressing' ability can result in the formation of 

extremely complex computational circuits. 

A. c. 
Bias 

In In 

B. % Bias 

~utp1t In Ou tp..1t 
Y---

Figure 4.1 Electronic circuit equivalences of neuropeptide transmission 

systems. A. a normal non-variable biased transistor circuit 

representing the input and output characteristics of a simple neural 

cell. B. Variable bias produced by a one peptide system. C. Variable bias 

produced by a two peptide differential amplifier system. 

Why neuropeptides? 

What is the role of neuropeptides in the nervous system? 

Peptides certainly exist in the nervous system, and the evidence 

seems to show that they possess the ability to modulate the 

operation of some types of neurons. 
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What is the level of operation of these peptides? At the 

lowest possible functional level, peptides may modulate only very 

few neurons, and have so little effect that they cause no noticeable 

difference in the real operation of the network. In this case, they 

can be ignored and treated as either a developing concurrent 

propagation strategy, or the relic of a past transmission system 

which has been replaced by the current system. 

At a higher level, peptides may modulate networks by greater 

or lesser degrees of 'noise' production. Noise has been shown to 

increase the learning efficiency of some limited neural network 

models, so it is possible that 'noise' will produce similar effects 

in real nervous systems. In this case, the use of noise in a real 

nervous system would imply that the signal to noise differential is 

fairly high, as coherent thought is usually maintained. In addition, 

the degree of accuracy required in the achieved excitation levels of 

individual neurons may be minimal, because of the presence of the 

'noise'. A further implication is that the lowest meaningful 

'informational atom' of a nervous system will be a number of 

neurons, in a certain configuration. rather than a single neuron. In 

this case, with the addition of noise at this level, the degree of 

accuracy of a single neurons' excitatory activity may not be 

sufficient to reliably represent a particular atom. 

The use of peptides at this level ambiguates the use of the 

term 'noise', as the action of peptides need not be global 

phenomenon. Directional release of peptides from specific source 

cells or their processes, may produce 'directed noise' in a local 

cluster of cells around the release site. This directional use of 

'noise' implies that the release of the peptide is a 'signalling' 
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process, but that the effect of this process is to add 'noise' to a 

specific part of the system. 

At the next level, peptides may act as limited true 

information carriers, serving a local population of neurons, 

immediately adjacent to the source cell or axonal process. 

Peptides would produce an excitatory or inhibitory deflection in 

the excitability level of a target cell, allowing the target cell to 

be triggered by 'classical' transmitters, in lesser quantities than 

is usual for a 'classical' transmitter 'threshold' event. Peptides 

would act as a variable gain control in the mechanism of the target 

cells, allowing sensitivity adjustments, of particular circuits, to 

be made by other neuronal circuits. This level of operation 

increases the perceived complexity of the nervous system by many 

degrees. It could be argued that the number of peptides present 

within a given area, corresponds to the number of variable gain 

controls operating within that area. The connectivities of these 

controls determine the number of operational circuits in this area, 

and the concentrations at specific release times determine the 

gain. 

The next level of possible peptide action, sees peptides as 

true neurotransmitters. These precipitate 'threshold' events in 

specific neurons, or groups of neurons, if the concentrations at 

distant sites allow. In the single neuron case, this would bring the 

possible grain size of the 'informational atom' back down to the 

single neuron level. All other details would be as for 'classical' 

transmitters, except for the vagaries of diffusion operation and 

the removal of the peptide from the active sites. There is little 

doubt that the modulation due to peptide transmitters would have a 

longer time course. 
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At this level, there is a possibility that peptides could be a 

'sure' method of firing a neuron. This would occur by the release of 

a peptide within the dendritic tree of a specific neuron. The diffuse 

nature of the subsequent excitation would not allow veto 

operations, as apparently occurs for the 'classical' transmitters. 

Such a method ensures a binary response to stimulation. 

At any of these levels, differential receptor placement 

becomes an important issue. If different peptide receptors are 

located on the same portion of a dendritic tree, antagonistic 

effects of different peptides are possible, similar to those of 

'classical' neurotransmitters. If different regions of a dendritic 

tree manifest receptors for different peptides, different response 

properties can be elicited from the cell, because of the individual 

dynamics of the specific dendritic branches, imposed by this 

method of peptidergic modulation. 

Experimental rationale 

The purpose of the following study is to test the viability of 

some of the possible mechanisms of action of neuropeptides. This 

will be done by computational modelling of two different types of 

'network. The first is a popular coarse grain model known as a 

back-propagation' network, as defined in chapter 2. The second 

network is a medium grain model designed on the standard network 

simulator 'GENESIS', from the California Institute of Technology. 

These network models are being used to ensure repeatability of 

results and a standard 'form' for the experiments. 

133 



4. Neuropeptides and Noise 

The coarse grain back-propagation scheme will be the major 

focus of the experimental section, as the low level of 

representation gives the model a more computationally amenable 

nature. This allows the model network to perform as a learning 

machine in a computationally feasible time-scale. Incorporating a 

learning system in the medium grain model would lengthen the 

project considerably. The back-propagation model can be executed 

many times in the time taken for the execution of a single 

contextually relevant medium grain model, so a greater range of 

results for the back-propagation model can be produced. In the case 

of the medium grain model, only· a qualitative description can be 

produced, due to the small number of data pOints that can be 

generated in a reasonable time. Additionally, the back-propagation 

model is easily understood by most researchers, and is readily 

available in most artificial intelligence laboratories for repetition 

of these results. 

The models will be executed under different conditions to 

simulate the diffusion of neuropeptides in different 'strengths', in 

an attempt to cover the different levels of possible action, as 

indicated above. This will not require structural modifications, as 

differing 'strengths' can be simulated by varying the efficacy of 

the peptidergic signal on the target site. The models must first be 

executed with no extensions to their structure, and then with 

progressively greater 'strength' values to the neuropeptide 

parameters. In addition, a model must also be executed with 

completely random noise characteristics in order to compare the 

action of random noise and the neuropeptide simulation results. 

The efficiency of these networks will be measured according to the 

length of learning time, in the case of the back-propagation 
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network, and the characteristic of the neuron output stage in the 

case of the GENESIS simulation. 

It is hoped that these tests will enable a tentative 

proposition of the role of peptides (within current knowledge 

limitations) to be founded. It may be possible to differentiate 

between the effects of random noise on the network, and the 

effects of a messenger system based on the diffusion of 

messengers (a local, broadcast mechanism) between neurons. It is 

unlikely that these tests will be able to distinguish the level of 

the action of peptides in a nervous system, until a reference level 

can be found in the nervous system with which to compare the 

'strengths' used in these tests. It may be possible to place a crude 

measure on the basis of relative degrees of activation by classical 

transmitters and neuropeptides, but this approach also suffers 

from a lack of biological reference levels. 
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5 

Experiments in Back-Propagation. 

This section reports on the design, execution and results of 

the Back-Propagation model used in this study. The rationale for 

these tests is described in the previous chapter. The back 

propagation model used here is based on the original paper by 

Rumelhart et at. (Rumelhart, Hinton and Williams, 1986), and, to 

re-iterate, this type of network is used in preference to any other 

model because of its accessibility as a standard network model, 

rather than· for any other reason. 

This back-propagation model is described in detail in chapter 

2, which eliminates the need for a detailed treatment here. The 

major focus of the design section is to present the differences in 

design required by the nature of the addition of a ·peptidergic' 

modulum characteristic to the back-propagation network. This 

characteristic will be referred to as ·Peptidergic leak' or just 

'Leak' activation from this point onwards. 

Model Design 

The design of the back-propagation model to be used has to be 

reviewed from the original design, for the purposes of this study. 

The classical architectures of these models are usually fully 
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interconnected between layers, but unconnected within layers. This 

makes the virtual structure of a network two-dimensional at an 

abstract level. The model required for this study must be three 

dimensional, as the additional 'leak' level must be added with _a 

representation of distance between all nodes of the network. This 

adds connections between each node, producing an entirely fully 

connected network with the original connection structure 

maintained at the original level, plus the 'leak' connections which 

interconnect each node, albeit, at a weaker connection strength. 

Architecture and input/output behaviour 

The architectural design for the model to be used, came from 

Colvin (Colvin, 1989). This treats each layer of 'synapses' as a 

separate entity. Since each unit of each layer is fully 

interconnected, it is only necessary to provide a set of inputs and 

outputs to each layer of 'synapses', so that it is not necessary to 

equate a particular input with a particular input cell. The inputs 

are only recognised as such by implication. The same is true of the 

weight matrix. All entities are treated as vectors with an implicit 

positioning only. The calculation of the sigmOid activation 

function, gradient and weight updates were taken from Rumelhart, 

Hinton and Williams (1986) and amended as suggested in 

McClelland and Rumelhart (1988) to operate within the confines of 

a limited bit precision computer system. 

After some experimentation, it was decided for speed of 

operation to use a network with only 38 nodes in total. The 

network to be used is a three layer system with 15 input nodes, a , 
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hidden layer of 15 nodes and an output layer of 8 nodes. The input 

vector is arranged as a 5x3 matrix, representing a letter of the 

alphabet. In total only the first three letters of the alphabet are to 

be used. These are coded as in figure 5.1. 

Each layer of the network is fully interconnected with the 

previous and subsequent layers. There are no connections in the 

plane of the layer. The output units are to be trained to represent 

each of the input patterns in terms of its ASCII code. "A" will 

output a value of (decimal) 65 in binary code, "B" will output 66, 

and "CH will output a value of 67. These are also shown in figure 

5.1. 

Inputs 2 3 

A B c 

1111111 1IIIIIt 11IIIII 
outputs 

Figure 5.1 Network input and output patterns. The input vector 

represents a character, while the output vector represents the ASCII 

code for the character. Black squares represent activations of near 1.0, 

white squares represent near 0.0 activation values. 

All networks will use the same physical architecture as 

described above and in chapter 2. Each model will differ, 
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functionally, only in the weight updating formulae, the assignment 

of random number starting values, and with the addition of some 

extra code for the latency effect of diffusion. 

Initialisation of the network is by pseudo-random number. 

The pseudo-random number generator was taken from Colvin 

(1989). Both the weight matrices and unit biases are supplied by 

this method. The range of number generation for both biases and 

weights is ±3.0. In the case of the noise addition back propagation 

model, the "random" noise is also generated from this source, with 

a range of ±0.3, developed as a standard value from pilot studies. 

The pseudo-random number generator is seeded with the same 

value at the beginning of each different model test, thus each 

model begins with the same initial weight and bias values. In 

addition, all weight and bias values are constrained to be within 

the range ±20.0 in order to be consistent throughout the 

experimental sessions. 

Input patterns will be presented to the first layer as a vector 

of floating point numbers in the range 0.0 to 1.0. The value 0.0 will 

correspond to a white pixel on the hypothetical retina of the 

network under test, whilst a value of 1.0 will correspond to a black 

pixel. Black pixels are intended to be interpreted as "figure" in the 

figure/ground dichotomy. Target patterns for the network will also 

be in the 0.0 to 1.0 range. Each target will be initialised to a value 

of 0.0 or 1.0, with the same interpretations as for input patterns. 

Output nodes of the network, will be artificially thresholded for the 

purpose of presenting a binary output to a hypothetical post

processor. The threshold values will be ±1 % of the range limits _ 

0.01 and 0.99 - representing a binary 0 and 1 respectively. 
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Training of the ordinary network will consist of presenting 

the input pattern, and its associated output pattern, to the input 

and output layers of the network, respectively. The network will 

then feed forward the activations relevant to the activation 

patterns and weight matrices.· The feed back phase will calculate 

the errors found between the output pattern and the target pattern, 

and the previous layers will have their error coefficients 

calculated. The gradient will be calculated from the error 

coefficients, and the weights updated according to the gradient 

terms (one update for every "batch"). This procedure is exactly as 

stated in Rumelhart, Hinton and Williams (1986). 

In the case of the noise-enhanced back propagation model, as 

described below, the only difference will be the addition of a 

random noise factor at the weight updating stage. All networks 

will use the batching (learning by "epoch") method of learning, as 

described in chapter 2. The full listing of the programs involved 

are shown in Appendix A. 

Momentum term 

The Momentum factor was introduced in the original paper of 

. Rumelhart, Hinton and Williams (1986). Algorithmically, it 

consists of the· addition of a proportion of the immediately 

preceding calculated gradient, requiring that each calculated 

gradient is saved in temporary storage until the next iteration, 

where it will be used. Momentum is added at the weight update 

stage, as in the equation: 
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Wij(k+1) = Wij(k) + 11 dW ij(k+1)+ exdWij(k) (equation 5.1) 

(Where Wij(k+1) is the weight for the ijth interconnection at 

iteration k+ 1, Wij(k) is the weight for the same interconnection at 

the kth iteration, 11 is the learning rate parameter, and dWij(k+1) is 

the adjustment parameter, or gradient, derived from the error 

functions calculated in iteration k+ 1. ex is the momentum rate, and 

d Wii(k) is the gradient saved from the previous iteration.) 

The momentum rate, ex is generally set in the original 

literature to a value of 0.9, such that a large proportion of the 

previous gradient term is introduced into the current weight 

update calculation. Watrous (1987), points out that the momentum 

term acts to force the movement of the system downwards in the 

weight/error space, as the effect of adding in momentum tends to 

average oscillations in gradient calculations, leading to a stabler 

gradient direction indicator. He also states that the momentum 

term is not very efficient in aiding the crossing of plateau regions 

in the weight/error space, as, when the gradient is small, little 

momentum is added to the update equation and many more steps are 

needed to traverse the plateau, whereas in steep gradient regions, 

the momentum term effectively increases the step size, allowing a 

faster descent in the weighVerror space. 

In this study, the momentum term will be used as an added . 
variable in the study of the model, such that models will be run 

with and without the addition of the momentum term (at a level of 

0.9) in an attempt to view the effect of the momentum term on the 

results of both random noise and 'directed' or 'peptidergic' noise. 

It could be argued that the momentum term acts as a form of 

p~tentiation in the back-propagation network, as an analogue of 
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long term potentiation in real neuron circuits. It is not the aim of 

this' study to go into the details of this relationship. 

Addition of noise 

This extension sounds rather like a continuation of the 

principle of the Boltzmann machine. The reference to the addition 

of noise, in the paper by Von Lehmen et al (1987), is regarded as an 

analogue to the temperature of the noise system. This is a concept 

which was used by Hinton and Sejnowski (1986) in their exposition 

of the Boltzmann machine. However, the major difference is that in 

the Von Lehmen et .al. system, temperature is a fixed constant 

which does not decrease over time. This means that this is not a 

simulated annealing strategy, but merely a way of decreasing the 

likelihood of the system finding a local minimum and staying 

within that minimum. It could be argued that with simulated 

annealing, there is a greater probability that a local minimum will 

be found as the temperature of the noise added to the system is 

decreased depending on the gradient of the descent, rather than 

over time, allowing the search to fall into, and remain inside, local 

minima. In the Von Lehmen et al extension, this is not a problem. 

The apparent behaviour of a network using this extension will be to 

find a global minimum and then oscillate endlessly with a mean 

error proportional to the temperature of the noise constant being 

used. This point would be computationally easy to find. In addition 

such a procedure would appear to be implementable in a network 

requiring less human intervention (such as the setting of time or 

gradient based annealing parameters). 
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The method of noise addition described in Von Lehmen et ai, 

requires that "the noise is added to the network weights at the time 

of weight updating, after the errors and activations have been 

calculated. The noise component is, therefore, easy to implement 

as it requires just one change to the formulae required for the back 

propagation algorithm." In the ordinary case for basic back 

propagation the weight update equation is: 

(equation 5.2) 

(Where Wij(k+1) is the weight for the ijth interconnection at 

iteration k+1, Wij(k) is the weight for the same interconnection at 

the kth iteration, 11 is the learning rate parameter, and Ll w ij(k+ 1) is 

the adjustment parameter, or gradient, derived from the error 

functions calculated in iteration k+ 1.) 

In the Von Lehmen et al. case the weight update function 

becomes: 

Wij(k+1) = Wij(k) + 11d Wij(k+1) + random(±nmax) (equation 5.3) 

(Using the same notation as equation 5.2, with the addition of 

the term random(±nmax), which introduces a random number with 

the range ±nmax , where nmax is set to a constant before execution, 

usually at values between 0.0 and 1.0.) 

Von Lehmen et al experimented with several values of nmax in 

both analog and discrete network activation functions, and with 

several different ranges for the initialisation of the network 

weights. They found that, using a network to test the learning of 

144 



, 

5. Experiments in Back Propagation 

the XOR problem, the addition of noise had little effect on the 

probability of convergence, whereas the initial network weight 

assignments had a significant effect (up to 10% in certain cases). 

However, they found that in weight limited networks. (where 

weight values are limited to a certain range) the addition of noise 

improved the probability of convergence to 1000/0· over a wide range 

of nmax values (0.2 - 1.0). They explain these results as follows: 

" ... clamping the maximum weight value 

essentially limits the weight space that can be 

explored by the network; the presence of noise 

encourages the system to thoroughly explore the 

restricted weight space and reduces the chance of 

trapping in local minima." (Von Lehman et aI, 

1987) 

It seems, then, that the addition of noise within the 100% 

convergence range of Von Lehmen et ai, should help to produce 

networks which are very stable under different initial weight 

conditions. Unfortunately they do not present figures for the 

convergence rate of these added noise networks. This will be a sub

task of this study. 

Leak activation and the spread of activation in a network 

The focus of this study is the addition of a 'peptidergic' 

activation factor, which is responsive to source cell activation, 
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diffusion distance and the activating nature (or strength) of the transmission 
-

itself. This is a theoretical study, in the sense that neuropeptides have not 

been proved, in a living system, to diffuse locally in nervous tissue. The 

existence and release of neuropeptides has been shown (see chapter 4) from 

source synapses, and they have been shown to modulate the responses of 

target cells. The nature of the linkage between these two points has not been 

explicitly formed, so the foundations of this study require several 

assumptions as to the nature and parameters of'peptidergic' transmission. 

If we begin with an assumption that a transmitter derives from 

synapses related to the main axon of a source cell, and that a large 

proportion of this transmitter is of a classic type, which is taken up in the 

synaptic cleft, then there is a continuing possibility that some transmission 

occurs outside the cleft, which will relate to the generally activity related 

'noise' or 'Leakage'. 

This means that, at a target cell (j), activity will be defined as: 

(equation 5.4) 

(where aj is 'classic' activation of a node, Wij is the weight 

between nodes i and j and ai is the activation of the input node) 

(equation 5.5) 

(where lj is the pe,tidergic leakage from synapses local to nodej 

and J3 is a constant peptide strength factor) 

(equation 5.6) 

(where aSj is activation from synaptic messengers) 
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alJ = Lk 3.dk(t-d). f(d) (equation 5.7) 

(where alJ is the total activation of node j from 

extrasynaptic sources. 3.dk is the activation diffusion from node k 

" at time t minus the distance. d. of node k from node j. and f(d) is 

a function of distance from node k. k = 1 .. n. where n = the total 

number of nodes in the network) 

In this model it is assumed that 'synaptic' transmission is 

complete within a very short period of time. too small to be 

modelled precisely in a model of this coarseness. Diffusible 

transmitters. though. will involve some form of lag. which should 

be distance related. but again in a fashion relevant to the grain 

size of the model. Latency in diffusion can be modelled by using a 

round, linked list. which pOints to at least 3 vectors (with the 

number of nodes in the network as elements) so that. at each 

Iteration of the network, the diffused activation is added in from 

further elements. Thus, Intra-layer activation reaches the target 

node after one iteration, activation from the next layer reaches the 

target node after a delay of two iterations, and so on. We Simulate 

this delay by offsetting the calculated activation according to the 

layer in question. ie. the activation to a particular node is 

calculated separately and stored in a vector. based on its distance 

from the current layer. so that this vector is only used to Simulate 

the activation on a node when its tum comes around. 

At each iteration. the activation reaching a target node is 

calculated for each cell in the network. but values calculated for 

different layers are stored in different vectors; such that by the 

time a vector comes to be used in peptidergic activation calculation 

it has an inherent delay. There is some difficulty in this. in that 
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peptidergic activation comes from both the synaptic termination 

on a target cell and (roughly) the soma of the source cell. Therefore 

the same level of activation has to be used in calculating the 

activation values for 2 different layers. It can be argued that in a_ 

completely connected network (like this one), the peptidergic 

activation reaching the target cells is completely correlated with 

the activation from classic transmitters over the entire layer. and 

can therefore be ignored as a factor of activation of the cell itself. 

But it must be taken into account that this peptidergic signal 

leaks into the surrounding space and contributes to the activation 

appearing to come from the target cell - Therefore the peptidergic 

activation must be calculated at the peptide strength rate from the 

source cell, and must also be added to the target cells' diffusible 

peptidergic activation value. as a function of the remaining 

peptides after proteolysis - we can probably make a rough guess at 

about 30% of the peptidergic activation leaking from synaptic 

junctions - and this makes a calculation of input activation of a 

target cell: 

(equation 5.8) 

(where a is the total activation of node j, from all sources.) 

and the diffusible activation from this cell will be: 

(equation 5.9) 

(where dj Is the total peptidergic activation appearing 

to emanate from node j. This factor is the single node component 

of the activation component ( Cldk) in equation 5.7) 

So, the calculation of local and diffusion transmitter 

activation is a largely linked interdependent process, which is 

difficult to model. 
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In the case of this model, it means that we must calculate the outgoing 

diffusion activation (D-activation) on the the basis of a normal 30% somatic 

secretion, plus 30% of the incoming synaptic activation from 'Peptidergic' 

transmission. 

, 

Representing three dimenswns 

Adding a three-dimensional mapping to the network is a relatively 

easy process. Classical back-propagation networks can be thought of, in 

abstract terms, as dimensionless entities, because the 'distance between 

elements' is not a concern. The network is usually presented as having a flat 

two-dimensional topology (as in figure 2.4 of chapter 2) with equal distances 

between the nodes of the network. Input and output are taken as vectors to 

be applied and read in a linear fashion at the two ends of the network. In 

effect, the dimensionality of the network is usually imposed by the researcher 

and their ideas of segmentation in these vectors. Figure 5.1 is an example of 

this. The charactera are represented on a two-dimensional plane as 

recognisable letters of the alphabet in a 3x5 matrix, but are fed into a two

dimensional network as a 15 element vector. This study requires that we 

arrange the input nodes to represent a 3x5 matrix as in figure 5.1. 

Subsequent layers of the matrix may take any form, but it was decided to 

arrange these nodes in a similar manner. The final network was given a 

three-dimensional structure as represented in figure 5.2. 
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Figure 5.2. Network design for a three-dimensional model. All single lines 

are of unit length. Black dots represent nodes. The left side corresponds to 

the input plane, the right side to output. Vertical node displacement is 0.25 

units, horizontal displacement is 0.5 units. 

The distances between the nodes can be calculated by the two

dimensional Pythagorean equation, as inter-plane distances are of 1 unit: 

(equation 5.10) 

As these values will be invariant, they are stored as a set of matrices 

encoded in diffusion constant/distance format. This also eliminates the need 

to recalculate distances and diffusion constant/distances during execution 

and speeds the execution of the network. These matrices can be examined in 

AppendixA. 

The diffusion constant was chosen as a standard inverse exponential 

function: 
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The diffusion constant was chosen as a standard inverse 

exponential function: 

1 
c= eel (equation 5.11) 

(where c is the diffusion constant and d is the distance 

between nodes) 

This gives a maximum output at unit distance of .368. roughly 

corresponding to the most effective 'noise' levels in random noise 

experiments. The maximum achievable level is .779 for the 

smallest inter-node distance (0.25u) and the minimum level is .086 

at the largest inter-node distance (2.45u). The diffusion 

constant/distance measure is scaled with a 'peptide strength' 

factor and the output activation of the source node to determine 

the activation value to be applied to a target node. after the delay 

imposed on it by the node-node distance: 

(equation 5.12) 

(where Ati is the activation of the target node. ASi is the 

activation at the source node. c is the constant calculated in 

equation 5.11 above and P is the 'peptidergic' strength factor) 

In practice. the delay is simulated by an array of additive 

vectors. one element of the vector for each node in the network. 

and one element of the array for each time-delay period simulated. 

which is updated during each iteration of the network to 

correspond to the activation reaching a particular node during the 
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foregoing time period. The array is 'looped' to maintain the 

continuity of the time delay. 

Measuring network efficiency 

It was decided that the most important measure of efficiency 

would be the convergence rate - this is a measure of how many 

iterations the model requires to reach a stable output state, with a 

mean square error of 0.0001. This translates to an error of 0.01 

per output unit, or 1 % of the activation range. 

Model Execution 

Testing the model 

Choosing standard settings for several of the parameters 

involved in running the back-propagation network required several 

preliminary studies. Many of the parameters are taken as a 

standard in the back-propagation methodology, while others are 

varied to suit the requirements of the study. The parameters 

available are often too numerous for anyone study to produce 

detailed descriptions of the network behaviour whilst varying all 

parameter conditions, so it was decided to use three levels of 

parameter settings for this study. Some variables were to remain 

at 'standard' settings, as defined in the first back-propagation 
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research papers. Other settings would be optimised, based on 

investigations of varying parameters in the pilot studies. The final 

parameters which were deemed more important for the 

understanding of transmission within the system, were varied in 

the final models. In 'classic' network models, the most variable of 

all parameters is taken to be the 'Learning Rate' parameter, a 

precedent which this study has adopted. 

Fixed parameters in the study models are: 

• Use of Unit Bias value 

• Activation Momentum value 

Unit bias is a parameter which represents a symmetry 

breaking variable. This is set to a random value before the network 

is executed, with an update mechanism which allows the bias to 

vary in conjunction with the activation of the node. This is not a 

requirement for a back-propagation network, but usually leads to 

more stable network behaviour. 

The momentum value in models with added momentum is 

generally set at a value of 0.9 times the previous value of a 

particular weight (Rumelhart, Hinton & Williams, 1986). This value 

of the momentum term has not been varied in these tests. The use 

of the momentum term has been varied, as this parameter can 

produce wide variation in the efficacy of networks 
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Setting optimised parameters 

In the first experiments, which were executed in order to set 

the optimised parameters, a total of 4,800 models were run under 

different conditions, of which 2,215 converged within 20,000 

iterations, although not all remained in a stable state. The 

optimised parameters are those which are set to a fixed value, for 

the entire length of the final set of experiments. 

Optimised parameters are: 

• Noise Range 

• 'Leakage' Auto-Activation 

• 'Leakage' Plane-Activation 

• 'Leakage' scaling factor 

Von Lehman et al (Von Lehman et ai, 1987) found that random 

'noise', introduced into the node update mechanism is effective 

over a wide range of maximum values. As 'noise' values will be 

fixed at a standard level in the final set of experiments, tests 

were performed to determine the optimal setting for the random 

noise variable over 5 Learning Rate intervals of 0.5 to 1.5, in 0.25 

unit intervals. A summary' of . the results of some of these tests is 

shown in figure 5.3. The data pertaining to this figure, and further 

results can be found in Appendix B. On the basis of these results, it 

was decided to set the random noise value to a maximum value of 
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±O.3; a pOint at which the network appears to reach stability at a 

faster rate. 
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Figure 5.3. Random noise plotted against the number of iterations to 

convergence. 

The 'Leakage' model in this study presents a fully connected 

sub-channel for signal transmission for each of the nodes. The 

model allows direct transmission (in the leakage domain) from a 

node to every other node, including nodes with a separation of more 

than one layer, and 'also to those in the same layer. 'Leakage' auto

activation refers to the phenomenon of allowing a feedback loop to 

exist between the activation function of a target node and the 

'peptidergic' leakage function at the same node. If this is allowed, 

'leakage' activation from a node will be added to the activation 

level of the same node. A pilot test was undertaken to discover if 

auto-activation had any effect on network behaviour. In practice, 

allowing or disallowing auto-activation produces no detectable 

effect, as shown in figure 5.4. This method of assessment was 
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-abandoned for the remainder of the programme of study. All 

subsequent models studied have auto-activation enabled. 

20000~--------------------------~ 

Iteration 

10000 -
)( wi th Leek only 

--tl-with Leek and no auto-e.ctivation 
-is-with Leak and Momentum 
--<>- with l..cak, Momentum- and 

no au to-e.ctlvatlOn 

T 
..... A 

o ""'" ~ A A ~ ~ A ... --A I 
I I 

0.0 0.1 0.2 0.3 0.4 0.5 

Noise Level 

Figure 5.4. Number of iterations to convergence over noise level. .Auto-

activation of a back-propagation network under the 'leakage' activation 

model. No detectable effect can be found. 

'Leakage' plane-activation is a variant of the model to design 

which switches off intra-layer 'leakage' activation calculation. In 

this model, 'peptidergic' activation reaches only nodes in layers 

not belonging to the normal plane of the source node. This 

represents a parallel to the normal working of the back

propagation algorithm, which connects only along inter-layer arcs. 

Testing the switching of intra-layer 'leakage' activations gives 

contradictory results, appearing to depend on the initial settings 

of the weight values. This is show in figure 5.5. As the setting of 

initial weight values is a random process, it was decided to 

continue with a fully connected (with intra-layer activation 

calculation) network for the remaining models. 
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a. 
20000~----------------------------~ 
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b. 
20000~----------------------------~ 
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Figure 5.5. Two graphs showing the contradictory nature of intra-layer 

activation switching, with the number of iterations to convergence over 

noise level. Graph (a) shows little change in the rate of convergence 

with intra-layer activation turned off; while graph (b) shows a lack of 

efficiency with intra-layer activation turned off, for the same network 

under different initial conditions. 
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The 'Leakage' scaling factor is described earlier as a variable 

which determines. the perceived 'strength' of 'peptidergic' 

activation to each node of the network. In this study, such a factor 

must be represented by an arbitrary value, as there is noway of 

selecting a realistic setting from a 'live' network - particularly as 

the back-propagation network is nothing like a 'Jive' network. It 

was decided to perform a series of tests, similar to the random 

noise range setting tests, in order to find an optimal setting for 

the 'leakage' factor. The summary results (figure 5.6) show that 

the efficacy of 'leakage' activation increases over a range of 0.2 to 

0.4. It was decided to select a value of 0.35 for the final 

experiments, as an arbitrary value within this range. 

20000..,-.--------------------------~ 

Iteration 

10000 

--0-- Leek only 
• Leek and Momentum 

O+--T~r-~~~~~--~-r--~~ 

0.0 0.2 0.4 0.6 0.8 1.0 
Noise IereJ. 

Figure 5.6. Number of iterations to convergence over 'leakage' scaling 

factor. Lower levels of scaling factor appear to give better network 

performance. 
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. Running the final model 

Having set the optimised parameters for the test, it was 

decided to compare the execution of the model over various run

time parameters, These were, in order of increasing importance: 

• Learning Rate 

• Type of 'Noise' (including 'peptidergic' leakage) 

• Effect of the use of Momentum 

• Effect of Initial weight settings 

A total of 3,600 models were executed, of which 2510 

converged within 20,000 iterations. Each model was tested with a 

range of Learning Rates, from 0.05 to 10.00, with intervals of 0.05 

units. Two types of 'Noise' function were used. 'Peptidergic 

Leakage' activation was applied to one third of the models 

executed, and 'Random Noise' functions were applied to another 

third of the models. Momentum was added as a binary function over 

the range of 'Noise-type' tests. Other parameters were fixed as 

stated above, with Random noise at a level of ±0.3, and 'Leakage' 

activation strength as a factor of 0.35. 

There were three initial weight settings, designated by the 

random 'seed' used in the model. Seed settings of '43', '67' and '89' 

were used. Producing more models based on initial 'seed' settings 

would have allowed a 'mean' behaviour to be calculated, but this 

would have required many more model executions than was feasible 

in the time allowed. Results are, therefore, shown for all initial 
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. settings, and conclusions must be drawn based on all three 

behaviours. . 

A note on Learning Rates 

It must be noted that, in these experiments, learning rates of 

up to 10 have been used. This extended range of learning rate is 

used as a means of covering an entire range of possible learning 

rate values, and is not intended to represent a set of realistically 

reasonable learning rates. In practice, it has been found that 

learning rates are reasonably set to a value of about 0.5. 

(Rumelhart, Hinton & Williams,1986) Such a setting increases the 

learning time, as can be seen from these data, but it also increases 

the stability of the resulting networks. 

It is a normal practice for a network to be allowed continual 

learning, in the expectation that learning can be continued if new 

objects are added to the stimulus/response set. In the case of the 

lower learning rates, this is feasible, as stimulus/response items 

are stabilised upon having c·onverged. Correct responses to stimuli 

occur indefinitely once the stimulus/response associations have 

been learned. This is not the case in higher learning rates, however. 

There is no obvious cut-off point of learning rate values, but in 

general, as the learning rate approaches a value of 1.0, the 

resulting network fails to 'remember' a stimulus/response pair, 

even though it appears to have 'remembered' on one or more 

occasions. This is not 'convergent' behaviour, where the 

stimulus/response items are correctly matched in perpetuity, but 

may be a 'one-off' occurrence, which demonstrates a 'lucky' finding 
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of the correct weighting scheme to achieve pairing. A consequent 

change of, the weighting may, and usually does, alter the 

associations, so that the correct responses are no longer obtained. 

In this study, one occurrence of a correct stimulus/response 

pairing, for all pairs, has been used as a trigger for recording the 

number of iterations to the correct response. This has been done to 

create a result set which covers a broad spectrum of behaviour. In 

all cases, actual convergen,ce was recorded, but has not been 

displayed in the results. In general, spurious convergences can be 

implied by the increaSingly erratic behaviour of the results, as 

learning rate is increased. This can be extended to the higher 

random noise and 'peptidergic activation' values, each of which 

become more erratic as values are increased. Interpretation of the 

following results, then, is a matter of assessing the gradient of 

the graph section, before assessing the relationship between the 

different operational conditions. 

Results 

All results shown in graph form in this section are sub-sets 

of the full data. This represents the authors' view of a 'reasonable' 

range of data for display, based on the above information about 

'convergence' over higher ranges of Learning Rate parameters. The 

full data is available in numerical form in Appendix C, and in graph 

form in Appendix D. 

161 



5. Experiments in Back Propagation 

Base models with no extensions 

Executing the base models under the three initial conditions 

used in this study shows that the initial conditions imposed by the 

random seeds differ markedly, particularly in the seed(89) 

condition. This condition fails to converge in under 20,000 

iterations under 'normal conditions', in the terms of back 

propagation models this is a learning rate of between 0.0 and 1.0. 

The behaviour of the seed(43) and seed(69) are very similar except 

when the learning rate reaches a value of over 10 times the normal 

values. 

Iteration 

20000~--------------------~----~ 

-----a- see::l 43 
--+.- see::l 89 

a see::l 67 

10000 

O+---~~--~--~--~--r-~--~ 

a 50 100 150 
Leeming Rate (x 100) 

200 

Figure 5.7. Back Propagation model using three different initial random 

seed settings. Number of iterations to convergence over learning rate . 

Base models with Random noise 

Random noise models show a remarkable stability across the 

range of initial seed settings, and also across the range of learning 
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rates. In this case, the seed(67) model is the least efficient at low 

noise learning rates, but then drops to remain similar to the 

seed(89) model. The seed(43) model shows an apparent 

improvement on the behaviour of both seed(89) and seed(67) 

models. 

15000 

-----a-- seed. 43 
• seed. 89 
a seed. 67 

10000 

Iteration 

5000 

O+-~~~--~--~~--~--~-; 

o SO tOO 150 200 
Leeming Re. te (x 100) 

Figure 5.S. Back Propagation model with random noise added, using 

three different initial random seed settings. Number of iterations to 

convergence over learning rate. 

Base models ,with Leak activation 

Leak activation models show, as before, the similarity 

imposed on the models by the initial conditions. Seed(43) and 

seed(67) models follow almost the same trajectory in figure 5.9, 

leaving the seed(89) model displaying abnormal behaviour and 

instability after a learning rate of approximately 5.0 (shown in 

Appendix D). 
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20000~----------------------------~ 

---0- seed 43 
• seed 89 
a seed 67 

Iteration 

10000 

o +---~--.---~--r---~-.~~--~ 
o 50 100 150 200 

Learning Rate (x 100) 

Figure 5.9. Back Propagation model with 'Leak' activation added, using 

three different initial random seed settings. Number of iterations to 

convergence over learning rate. 

Effects of Momentum 

Momentum imparts a high degree of stability on the back 

propagation model only in the lower ranges of the learning rate 

parameter settings. This is one reason for the reference to the 

range of 0.0 to 1.0 as being 'normal conditions' for the back 

propagation model. At learning rates of 0.5 to 1.5 all networks 

converge in a very short time, and the traces of the graph are 

largely indistinguishable in figure 5.10 
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20000~ .. --------------------------~ 
---0-- seed 43 
--+--- seed 89 

a seed 67 

Iteration 

10000 

ot-~~~~~~ .. ~~~ 
o 50 100 150 200 

Learning Rate (x 100) 

Figure 5.10. Back Propagation model with Momentum added, using three 

different initial random seed settings. Number of iterations to 

convergence over learning rate. 

Comparison of Base models with added Noise and Momentum 

Noise adds a greater degree of convergence speed to the 

ordinary back propagation model. Coupled with momentum, noise 

adds even more speed and stability to the behaviour of the network. 

This occurs over a large range of learning rates, except in the 

seed(67) initial condition of figure 5.13. The most stable ranges of 

noise and momentum are in the ranges of 0.0 to 2.0, with the 

. exception of the seed(89) model, showing a great stability across 

the entire range tested. 
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20000~------------------------------~ 

--0-- Base model 
• with noise 
a with noise 

Iteration +mornentum 

10000 

o SO 100 1 SO 200 
Leeming Rate (x 100) 

Figure 5.11. Back Propagation model with Random noise and Momentum 

added, using a single initial random seed setting (43). Number of 

iterations to convergence over learning rate. 

:20000 ..,--------------;:;------, 

--0-- Base model 
• with noise 
a with noise 

+ momentum 
Iteration 

10000 

O-t---r-----r----r----,---r----.--~-__l 

o SO 100 1 SO 200 
Leeming Rate (x 100) 

Figure 5.12. Back Propagation model with Random noise and Momentum 

added, using a single initial random seed setting (89) . Number of 

iterations to convergence over learning rate . 
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20000~--------------------------~ 

--0-- Base model 
- ...... - with noise 

a with noise 
+ momentum 

Iteration 

10000 

O~~~~~~RD~~~~~~~ 
o 50 100 150 200 

Learning Rate (x 100) 

Figure 5.13. Back Propagation model with Random noise and Momentum 

added, using a single initial random seed setting (67). Number of 

iterations to convergence over learning rate. 

Comparison of Base models with Leak activation and 

Momentum 

Leak models show a small improvement on the ordinary back 

propagation model, but the greatest improvement is shown when 

momentum is added. Leak activation is unstable at higher learning 

rates in the seed(67) and seed(89) conditions, but shows great 

stability in the seed(43) conditions. Adding momentum improves 

the convergence speed and stability over a short range of learning 

rates in all models from approximately 0.25 to 2.0, where the 

behaviour of the model shows as an almost flat trace in figures 

5.14 to 5.16. 
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20000 .-------------------------------~ 
-0-- Base model 

• with Leek 
a with Leek 

+ momentum 
Iteration 

10000 

o 50 100 150 200 

Leeming Rate (x 100) 

Figure 5.14. Back Propagation model with 'Leak' activation and 

Momentum added, using a single initial random seed setting (43) . 

Number of iterations to convergence over learning rate. 

20000 .-------------------------~----_. 
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Figure 5.15. Back Propagation model with 'Leak' activation and 

Momentum added, using a single initial random seed setting (89). 

Number of iterations to convergence over learning rate. 
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20000~-----------------------------. 

Iteration 

10000 

-G-- Base moclel 
with Leak 

a with Leak 
+ momentum 

o 50 100 150 200 

Learning Rate (x 100) 

Figure 5.16. Back Propagation model with 'Leak' activation and 

Momentum added, using a single initial random seed setting (67). 

Number of iterations to convergence over learning rate. 

Comparison of Base models with Noise and Leak activation 

The following figures (figures 5.17 to 5.19) show that 

random noise is a more effective method of improving convergence 

speed and stability 'than using a bare 'Leakage' activation function, 

in networks without momentum functions. This result is shown in 

all initial condition settings. To reiterate, stability is good in the 

seed(43) and seed(89) cases, with a more haphazard 'stability' in 

the case of the seed(67) initial setting. 
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20000.-----------------------------~ 

Iteration 
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-0-- Base model 
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a wi. th leak 
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200 

Figure 5.17. Back Propagation model comparing random noise and 'Leak' 

activation, using a single initial random seed setting (43). Number of 

iterations to convergence over learning rate. 

20000 ~------------------------=------. 
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l.a3.ming Rate (x 100) 

Figure 5.18. Back Propagation model comparing random noise and 'Leak' 

activation, using a single initial random seed setting (89). Number of 

iterations to convergence over learning rate. 
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20000~----------------------------~ 

~ Base model 
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Figure 5.19. Back Propagation model comparing random noise and 'Leak' 

activation, using a single initial random seed setting (67). Number of 

iterations to convergence over learning rate. 

Comparison of Momentum models with Noise and Leak 

activation 

The results of this category are harder to distinguish on a 

gross level. In the seed(89) case, 'Leakage' activation seems to 

give a better account of itself than the base model with either 

momentum or momentum with noise. This is contradicted by the 

seed(43) model, but only by a small factor, giving a convergence 

disparity of approximately 150 iterations between · the random 

noise and leak models, with random noise showing the better 

convergence rate in 'normal conditions'. In the seed(67) condition, 

the leakage and noise model results cross each other under 'normal 

conditions', but with a small advantage to the noise model. 
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10000~----------------------------~ 
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Figure 5.20. Back Propagation model comparing random noise and 'Leak' 

activation with added momentum, using a single initial random seed 

setting (43). Number of iterations to convergence over learning rate. 

20000,-~------------------------------~ 

Iteration 

10000 

o 

-0-- Base + momentum 
• with noise 
a with look 

50 100 150 
Lalming Rate (x 100) 

200 

Figure 5.21. Back Propagation model comparing random noise and 'Leak' 

activation with added momentum, using a single initial random seed 

setting (89). Number of iterations to convergence over learning rate. 
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Figure 5.22. Back Propagation model comparing random noise and 'Leak' 

activation with added momentum, using a single initial random seed 

setting (67). Number of iterations to convergence over learning rate. 

Summary 

The implications of these results are discussed in detail in 

chapter 7, where they will be compared to the results of the 

following chapter. In summary, the results of the Back Propagation 

model given in this chapter, show that under conditions of random 

noise, the network learns more effectively (ie. at a faster rate) 

than in the base level model. In a further modified network model 

incorporating a possible analogue of peptidergic activation, 

learning rates are marginally better than the unmodified network, 

but not as good as the network under random noise conditions. 

Adding momentum to each of the networks makes a great 

difference to their behaviour. Base level networks perform at a 

much improved level, while the 'peptidergic activation' model 
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. performance is enhanced, sometimes to a degree which exceeds the 

absolute iteration value of the random noise model results. The 

random noise model is enhanced by a momentum factor, but not by 

as much as the base level and 'peptidergic' models. The random 

noise model is still, on average, the most effective network in the 

study. 
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Medium Grain experiment 

Simulating peptidergic propagation in a realistic neural 

model is a complex process. As discussed in the previous chapter, 

the inclusion of a peptidergic factor in neural models requires that 

the network be placed in three dimensions, with the means 

available for calculating the peptidergic component reaching a 

particular point in three dimensional space from moment to 

moment. The complexity of this operation grows with the size of 

the network. While this task is not so daunting in a simplistic 

'nodal' representation, a proper rendition of a peptidergic network, 

at even a medium grain size, requires that the peptidergic factor 

be calculated at al/ points on a cell surface, or at least, at all ion 

channel positions likely to be affected by peptides. This is a 

ridiculously complex expectation for any model, which no 

modelling package has yet provided, even in ordinary transmitter 

conditions. (But the case for ordinary transmitters can be much 

simpler than for neuropeptides, a concept which will not be 

discussed here.) A more practical method involves the averaging of 

peptidergic concentrations over a reasonably small area of cell 

surface, which should give a fair degree of accuracy in obtained 

results. 
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In this study, these ideals have been heavily compromised. In 

order to reduce complexity, and computational time, the model 

used has only two 'neurons'. Using only two neurons allows the 

peptidergic delay and concentration factors to be 'hard-wired' into 

the model at the outset of the experiment. Such 'hard-wiring' 

means that, in fact, only one point per cell is used in the 

calculation of the peptidergic concentration. Even so, the 

complexity of the modelled system requires several tens of 

seconds to simulate half a second of 'neural time'. 

This study makes no attempt to investigate the possibilities 

of inhibitory peptidergic transmission, or of the properties of 

randomly injected noise. The main reason for the omission of a 

treatment of inhibitory transmission is that it would be expected, 

in a 'positive-signal' circuit, that inhibitory peptidergic 

transmission would merely delete events in the target cell, if the 

peptide strength and delay parameters were set at an effective 

value. While this would be a valuable finding, it is largely a 

complementary process to the use of peptidergic excitation in a 

'positive-signal' circuit, which is what this experiment is intended 

to study. In the case of random noise injection, it is not expected 

that random injection will produce patterned responses in the 

simulation. Again, while spurious spiking events would be 

important in a nervous system, the results of noise injection in 

this model are entirely predictable as an event somewhere along 

the time-line, which mayor may not effect the behaviour of the 

connected cell, depending on the time of onset of the event. It is 

therefore deemed an unnecessary experiment. 
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Model Design 

The medium grain model used in the following experiments is 

an adaptation of a model supplied with the GENESIS neural 

simulator from the California Institute of Technology (Wilson & 

Bower, 1989). The GENESIS system is an electrical equivalent 

computational modelling system, which models at the level of 

membrane and ion channel conductance and capacitance, with 

current sources acting as ion reservoirs, incorporating analogues 

of neurotransmitter time constants. Appendix E gives a description 

of the software package and its specifics of use in the following 

experiments. 

The model used, known as the "MultiCell" simulation, 

consists of a pair of neurons represented at a medium level of 

detail as in (Wilson, 1989 • a paper provided with the GENESIS 

modelling package). Each cell has only two compartments, which 

represent the soma and dendritic arbour. The cells are connected in 

a feedback arrangement (Figure 6.1). The first cell provides an 

excitatory connection to the second cell, which feeds back via an 

inhibitory connection. All connections are simulated by an axonic 

delay with realistic conductance parameters and a weighting 

system. 
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"'-----iSoma 1 

Dendrite 
Compartment 

Soma 2 

-cJ- Delay and weighting component 

Figure 6.1 Two neuron feedback system supplied with the GENESIS 

simulation package. 

Architecture and input/output behaviour of the model 

Each cell of the model is represented as two compartments, 

shown in figure 6.1. The dendritic compartment carries the active 

Sodium and Potassium channels which are activated by changes in 

synaptic conditions, as well as incorporating conductance channels 

for resting potential and membrane leakage. The somatic 

compartment contains voltage controlled (Hodgkin-Huxley) Sodium 

and Potassium channels, which are triggered by changes in 

potential entering from the dendritic compartment. (see figure 6.2 

and 6.3 for electrical characteristics) The apparent voltage in this 

compartment triggers the attached axonal element, which is set to 

produce a spike event at a particular potential. The spike event 

reaches the target compartment after a preset delay, and after 

being weighted by a preset weight. The weighting of the synaptic 

connection is a fixed parameter which is scaled by a maximum 
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conductance parameter to produce the final output of the synapse. 

The' output is tempered by a function controlling the time course of 

the conductance changes at the synapse. This is composed of two 

fixed parameters which impose an exponential rise' and fall on the 

output. 
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Figure 6.2. Electrical characteristics of the dendritic compartment in 

the two neuron model. 
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Figure 6.3. Electrical characteristics of the somatic compartment in the 

two neuron model. 

The cells are arranged such that the first cell - the cell with 

an outgoing excitatory axon and an incoming inhibitory axon (known 
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. as cell 1, hereafter) - is excited by a constant current injection. 

After a summation delay, this produces a spike event in the axon 

which is synaptically connected to cell 2. (The mechanics of these 

events follows the procedure outlined for real neurons in chapter 

3.) Cell 2 is excited by the event and produces a spike event in its 

own axon, which is connected via inhibitory channels to cell 1. This 

may inhibit cell 1 if the timing of the spike event is coincident 

with the summation of current inje~tion . in cell 1. (The normal 

behaviour of both cells is shown in figure 6.4 and 6.5) 

Intrece 11 ul er po tent j e 1 
Vm (mV) 

sOllla 

-30.0 

-50.0 

-70.0 dend 

Cell 1 
100 .. 00 200 .. 00 300 .. 00 400 .. 00 m/sec 

Figure 6.4. Normal behaviour of cell 1 in the model, as supplied with 

the GENESIS software. 
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Cell 2 

Figure 6.5. Normal behaviour of cell 2 in the model, as supplied with 

the GENESIS software. 

The parameters used for the electrical characteristics of the 

cell membranes and ion channels are fixed in the parameter input 

to the GENESIS program. All the electrical parameters are taken 

from experimental papers which measure the conductances of 

specific ion channels, resistance and capacitance of cell 

membranes and ion channel densities. The sources for these data 

are catalogued in other simulations provided with the GENESIS 

package. Some of the model parameters are arbitrary. These are 

generally variables such as synaptic weight, axonal delay and spike 

generation thresholds. 
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Parameters relevant to this study are the synaptic weights, 

axonal delays and synaptic time constants, as these can be varied 

in a modified model to simulate a simplistic version of peptidergic 

transmission. Table 6.1 shows the values used in the simulations 

of figures 6.4 and 6.5. 

Excitatory connection Inhibitory connection 
(Cell 1 -> Cell 2) (Cell 2 -> Cell 1) 

Axonal delay 5 msec 5 msec 
Synaptic weight 30 300 
synaptic time 3/3 10/10 
constants (tau 1 /tau2) 
(msec) 

Table 6.1 Parameters relevant to this study, as used in the unmodified 

MultiCell simulation. 

The Experiment 

The experiment modifies the existing two neuron system to 

incorporate a simplistic peptidergic component. This is 

represented by a further pair ofaxons with modified delay and 

weighting parameters, connecting each of the two cells as in 

figure 6.6. (See Appendix E for the GENESIS script modifications 

required.) This is only just feasible in a two neuron model, as 

complex three dimensional calculations of time and 

diffusion/concentration coefficients can be avoided by pre-setting 

these characteristics; assuming that the ion channels responsible 

for neuropeptidergic activity cover a small area of the dendritic 

membrane. This is not a particularly useful assumption, but it does 
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negate the need for complex run-time calculation of these 

variables. . 

A)(On~ 

L...-~Some 

-c:J- Deley end weighting component 

Dendrite 
Compertment 

-{~"""4· Peptl dergi c del ey end wei ght i ng component 

Figure 6.6. Modified MultiCell simulation. The additional axons simulate 

a peptidergic input to the dendritic compartment of both cells. 

The modified connections should attempt to simulate a 

possible peptidergic signal arriving at a neighbouring neuron. Such 

an effect can be produced by lowering the synaptic weight to a 

fraction of that for normal transmission, increasing the 

transmission delay between signal source and reception, and 

increasing the time course of the effect on the target cell, 

allowing for a longer effect caused by slower removal of peptide 

transmitters. These factors are represented by the parameters 

displayed in table 6.1. 

The major concern in this modification is the application of 

realistic values to these parameters. Representative data was not 

available, so it was decided to use a set of values relative to the 

existing values used in the normal transmission simulation, and to 

modify these values during different simulations to test the 

behaviour of the model. 
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6. Medium Grain Experiment' 

Initially, it was decided to set the value of the synaptic 

weight to a tenth of the lowest value used in the existing model, 

and then to vary the weight to assess the effects of weight on the 

model. The axonal delay was set to 6 times longer than the 'existing 

axonal delay and varied in a similar manner. The synaptic time 

course parameters were· set to twice the value of the longest time 

course in the existing model and then varied. These values are 

shown in table 6.2. 

Existing Existing New Peptidergic 
Excitatory Inhibitory connection 
connection connecti on. (Cell 1 = Cell 2) 
(Cell 1 -> Cell 2) (Cell 2 -> Cell 1) 

Axonal delay 5 msec 5 msec 30 msec 
Synaptic 30 300 3 
weight 
synaptic time 3/3 10/10 20/20 
constants 
(tau 1/tau2) 
(msec) 

Table 6.2 Modified MultiCe" simulation using modified axonal 

connections to represent peptidergic transmission. 
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Results 

Base model 

The Base model is defined as the model with the settings 

shown in table 6.2. Running this simulation has no apparent effect 

on the behaviour of cell 1, but a marked effect on the behaviour of 

cell 2. (as shown in figure 6.7) Cell 2 produces the normal spikes 

associated with stimulation by cell 1, but then produces three 

more spikes, as the peptidergic emulation produces an enhanced 

excitation state. Theoretically, the enhanced excitation of cell 2 

should produce a consequent inhibition of cell 1, but as the 

summated current injection into cell 1 is insufficient to fire cell 1 

again, after the first spike train, no reduction of activity is seen in 

cell 1. Note that the addition of the second part ofaxons has 

increased the number of spiking events from two in the unmodified 

model, to three in the modified model. 
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Transduction delay of 30 m/secs 
I ntracellul ar potent i al 
Vm (mV) 

-30.0 

-70.0 

Cell 2 
100.00 200.00 300.00 400.00 m/sec 

Figure 6.7. Using the values in table 6.2 for the modified axonal 

connections produces an additional spike train in the peptidergic 

transmission model of cell 2. 

Variations in axonal delay 

Increasing the axonal delay setting has the effect of 

lengthening the time between the primary spike duo and the 

following spike train. This occurs for all delays upwards of 30 

msecs. Below 30 msecs the secondary spike train is not produced, 

resulting in a primary spike train with a potentiation of excited 

activity within cell 2. (Figure 6.8) 
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Trensduct10n del ey of 20 m/secs 

I ntrece 11 u1 er potent 1 e 1 
Vm (mV) 

soma 

10.0 

-10.0 

-30.0 

-50.0 

-70.0 
dend 

Cell 2 
100 .. 00 200 .. 00 300 .. 00 400 .. 00 m/sec 

Figure 6.S. Reducing the axonal delay to 20 msecs for the modified 

axonal connections produces an additional excitation, but no spike train 

in the peptidergic transmission model of cell 2. 

As the delay in the axonal link becomes longer, approaching 

the onset of a new spiking event, the inhibition from cell 2 begins 

to show an effect on the behaviour of cell 1. Finally, at a delay 

corresponding to the onset of spiking events in cell 1, the 

inhibition from cell 2 cuts off the response from cell 1, producing 

a different pattern of firing from both cells 1 and 2 (Figures 6.9 

and 6.10) 
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Transduction delay of 150 m/secs 
Intracell u1ar potential 
Vm (mV) 

110.0 

90.0 

70.0 

50.0 

30.0 

10.0 

-10.0 

-30.0 

-50.0 

-70.0 

Cell 1 

dend 

100.00 200.00 300.00 400.00 ml sec 

Figure 6.9. A delay of 150 msecs imposes inhibition on cell 1, when a 

spiking event is imminent. 
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Trensduction deley of 150 m/secs 
I n t ra c e 11 u 1 a r pot e n t i a 1 
Vm (mV) 

1~O.O 

170.0 

130.0 

110.0 

30.0 

10.0 

-10.0 

-30.0 

-50.0 

-70.0 

sOl'l\a 

dend 

Cell 2 100.00 200.00 300.00 400.00 m/sec 

Figure 6.10. A delay of 150 msecs causes inhibition on cell 1 as a result 

of the excitation in cell 2. 

Variations in synaptic weight 

Variations in synaptic weight have a pronounced effect on the 

output of the peptidergic transmission system, due to the length of 

the time constant associated with the peptidergic stimulation. 

Setting the synaptic weight to values of less than 3 produces no 

secondary spiking events in either cell. At a value of 2, a small 

potentiation effect appears to take place in cell 2, without a 

corresponding spiking event. Setting the weight to values greater 
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6. Medium Grain Experiment 

. than 3 produces a larger number of spikes in the secondary spike 

train, until, at a value of about 10, the secondary spike train in cell 

2 appears to go into tetanus, giving a continual spike train in cell 2 

and the extinction of any responses in cell 1. 

Variations in synaptic time constant 

Variations in the synaptic time constant have a similar 

effect to the changes in synaptic weight shown above. Setting the 

time constant to values lower than 20 produce a smaller number of 

spikes in the secondary spike train of cell 2. This has little effect 

on cell 1. Setting the time constant to higher values increases the 

number of spikes in the secondary spike train, until at much higher 

values the response of cell 2 goes into tetanic behaviour with a 

corresponding extinction of responses in cell 1. 

Summary 

The results of the simple compartmental model in this 

chapter, show that a peptidergic link may have a neurally 

reasonable effect on signal transmission quality, if the parameters 

of peptidergic strength, delay and time constants are within the 

bounds specified below. In general, varying the weighting strength 

parameter varies the number of spikes in a 'peptidergic' spike 

train. Varying the time constant of the synaptic 'peptidergic' 

effect produces similar results to the variation of weighting 

strength. Varying the transmission delay of the 'peptidergic' effect 
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6. Medium Grain Experiment 

produces a change in the timing of the response of the target cell 

to the 'peptidergic' stimulation. 

Changes in transmission quality. from the characteristics of 

the base model, require that the lower bounds of signal strength be 

no less than 10% of the classical transmission strength, if spiking 

activity is to be invoked by the peptidergic component of cell 

activation. The lowest delay which produces spiking under the 

same strength conditions is 30 milliseconds, which allows the 

refractory period (10 milliseconds) of the spiking module to 

elapse, and the build up of charge within the soma to be unaffected 

by the latent hyperpolarisation of the Potassium channels of the 

target cell. The time constant lower bounds are defined by similar 

criteria when delays are low, but are also determined by the length 

of time required for a critical charge to build up within the soma 

of the target cell. When the time constant is low, fewer 

'peptidergic' spikes are seen in the output of the cell. 

The upper bounds of the above constants are imposed by 

qualitative changes in the output of the target cell. Obviously a 

stronger 'peptidergic' Signal and/or a greater time constant 

invokes an enhanced spiking behaviour. The upper limits for these 

parameters are interdependent, and could be fixed at the point 

where the target' cell exhibits tetanic behaviour. Varying the 

reception delay of the 'peptidergic' signal imposes a different 

pattern' of behaviour than the strength or time constant 

parameters. There are no obvious upper bounds on this parameter, 

except those imposed by diffusion calculation limits, as the effect 

of varying this parameter merely time-shifts the 'peptidergic' 

response spiking behaviour. 
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7 

Discussion 

The results in the previous two chapters reflect a positive 

difference in outcome of the operation of two types of neural 

network, under the conditions of random noise and what can be 

termed a weak, directed signal (the 'peptidergic' signal) or 

modulum, as proposed in chapter four. The direction and quality of 

the difference in the operation of the models under these 

conditions, is the subject of this chapter. 

It is important to attempt a detailed analysis of the 

mechanisms underlying the operation of each category of signal 

propagation used in the preceding chapters, although the results of 

the experiments do not give an indication of the actual 

mechanisms, but rather suggest that the mechanisms may be 

different. The questions which will be attempted in this chapter 

are those relating to the theoretical operation of both the random 

and 'peptidergic' functions. The most interesting of these 

questions are those concerning the possible differences and 

parallels between the two types of network modulation; whether 

( they act along similar lines or are part of a different mechanism. 

The primary aim of this work is to assess the contributions 

of random noise and 'peptidergic' Signal to network performance, 

with a view to extending neural computation theory into these 
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domains. The results of the previous chapters have shown that 

these two factors behaviourally affect two different types of 

network, and should therefore be incorporated into network theory. 

Findings of Back-Propagation modelling 

The Back-Propagation models show that a 'peptidergic 

leakage' activation inclusion produces a learning enhancement on a 

similar scale to that of random noise. The characteristic graphs of 

this enhancement are different, however, in that the random noise 

models tend to produce a less incremental change in convergence 

rates than the other categories of model. Random noise produces 

plateau-like regions (see figures' 5.11 onwards) with abrupt 

changes in gradient between learning rate settings. Base models 

and, Peptidergic leak models, on the other hand, produce low second 

order gradient changes between learning rate increments. These 

shallow gradients indicate that the network is more stable than 

the random noise model. 

In a comparison of the methods used in this study, the 

random noise model presents little correlation between initial 

setting parameters, indicating that initial 'synaptic' weights are 

extremely important in the subsequent behaviour of the network. In 

contrast, the 'peptidergic' leak model produces a greater 

correlation across initial setting modes than the base models. (See 

Table 7.1) This indicates that the result obtained is less dependent 

on the initial state of the network than even the ordinary back

propagation algorithm. This implies that the 'peptidergic' leak 

model is a slightly stabler model than the base model. 
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7. Discussion 

seed 43 seed 89 seed 67 
seed 43 1.000 
seed 89 0.992 1.000 
seed 67 0.980 0.994 1.000 

Back Propagation only 

seed 43 seed 89 seed 67 
seed 43 1.000 
seed 89 0.947 1.000 
seed 67 0.953 0.923 1.000 

Back Propagation with momentum 

seed 43 seed 89 seed 67 
seed 43 1.000 
seed 89 0.086 1.000 
seed 67 0.720 -0.017 1.000 

Back Propagation with Noise & Momentum 

seed 43 seed 89 seed 67 
seed 43 1.000 
seed 89 0.992 1.000 
seed 67 0.995 0.997 1.000 

Back Propagation with 'Peptidergic' Leak & Momentum 

Table 7.1 A comparison of the correlation within conditions across 

random seeding categories. (Learning rates 0.05 to 2.00) 

The high correlation shown for the 'peptidergic' leakage 

(function in the above table implies that perhaps a stronger 

activation cross-correlation method is being used in the 

'peptidergic' leakage model, which is absent in the random noise 
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model. From this data, we can conclude that the methods of 

convergence occurring in the random noise model and the leakage 

model are quite different. 

The results of the random noise model give the appearance 

that the random noise model uses a "lucky" paradigm, which works 

in this study particularly because of the limited range of 

activation and weight spaces allowed in the computational model 

of the network. Clamping the weight values of the network to 

values of ±20.0, means that the range of noise allowed is a 

considerable proportion (up to 6%) of the weight space. In a 

network with a larger range of activation and weight space, or 

requiring a more complex transformation, it is likely that the 

random noise model would produce less useful results. However, 

the injection of random noise may also 'serve to 'broaden' the 

activation range of the network, by allowing access to particular 

activation states within one iteration, which would otherwise take 

several iterations to achieve, thus cutting down on computational 

time. 

The 'peptidergic' leakage model appears to use a method of 

activation correlation within the network, which may be similar to 

methods used in Kohonen's self-organising map models (see chapter 

2). In this case a weak spreading activation function is occurring 

within a local area, with an even weaker spreading activation 

function occurring on a global scale. The overriding method in use, 

however, is still the back-propagation algorithm that must, in 

some way, benefit from the additional activation obtained from the 

'peptidergic' leakage function. This may be due to the extension of 

the nodal activation range, with the added activation provided by 

, the leakage function. 
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A further difference existing between the two methods is the 

input characteristics of each method. The injection of random 

noise is theoretically a stochastic process with a final net input of 

zero, given that the noise parameter is set up as an even 

distribution about the zero point. This contrasts with the 

'peptidergic' leakage model, which has a definite net input into the 

network over its operation cycle, which in this study was usually 

positive, with an approximate scaling over the random noise input 

of 104. This additional input strengthens the case for the theory 

that leak activation extends the range of activation of the network. 

The effect of momentum on the operation of these models 

would be to keep the gradient descent strategy on course, as it was 

originally intended to. do. This is achieved through the 'history' 

mechanism of the momentum function which adds 90% of the 

previous error function to the upcoming weighting event. In the 

case of random noise, this would enhance the effect of 

continuously polar series, and negate the effect of opposite random 

assignments. Peptidergic leakage on the other hand, will produce a 

smoothly varying activation addition, generally at much lower 

absolute values (ie. less extreme values) than that produced by 

random noise. The action of momentum will not enhance the 

operation of the network to such a degree as that achieved in 

random noise models. In addition, changes of activation polarity 

(where they occur) would be highly smoothed by the momentum 

term. 

-( The contextually relevant findings are that the peptidergic 

leakage activation appears to act as cross-association function. 

This leakage appears to extend the activation range of already 

activated nodes, allowing the back-propagation algorithm to 
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converge at a faster rate. Noise appears to broaden the activation 

scale, by allowing a larger number of available activation points 

within a network. Noise models give a plateau-like characteristic 
-

curve, whereas base-level and leak curves look more 'inverse-

exponential' in nature. Leak curves (of all seeds) appear close 

together in graphs, with a high correlation across all initial 

conditions, indicating that initial conditions are less important 

than in models using noise, leading to stabler networks. 

Findings of Medium Grain modelling 

The GENESIS model uses only a very limited 'peptidergic' 

simulation, which accounts for only pOint-to-point peptidergic 

propagation from the synapse to the dendritic processes of the 

target cell. The viability of this model rests on the fact that it is 

only a two-neuron system, so that inter-cell distances are not 

complex, and peptidergic diffusion can be modelled as a lengthened 

period of contact with the target cell. The exact concentrations of 

peptides across the cell cannot be simulated at present, without 

much additional programming work. 

The results of this study show that the 'peptidergic' effect 

(as defined in this study). produces a significant behavioural change 

in the output of the two cells. At the lowest level of operation, the 

peptidergic component produces a potentiation effect on the output 

of the second cell, whilst at the highest level it can produce 

sustained oscillations. At (for want of a better description) 

reasonable biological levels, the peptidergic component lengthens 
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the spike train of a stimulus from the source cell, and can cancel 

spikes in a source cell via feedback connections, if the onset delay 

is correlated with the normal spiking behaviour. 

It appears that the peptidergic component in this study 

produces a lengthening of the apparent activation of a target cell, 

at least to the point where potentiation occurs (see figure 6.8). In 

more complex systems this would be available to modulate signals 

arriving from other components of the system, producing an effect 

greater than that with simple classical transmission events. 

Extending the potentiation effect to a cluster of cells, would allow 

peptidergic activation to maintain a general level of excitation in 

the cluster, for a specific time after the onset of a peptidergic 

signal. This may act as a cluster 'biasing' system - a 'priming' or 

'expectation' system. 

In a neural system with a greater peptidergic component, to a 

degree which prolongs the activation of a cell (see figure 6.7), we 

can expect the peptidergic component to modify the behaviour of 

the network to a considerable extent; single activation signals will 

lengthen and the length of the propagation chain will, unless 

modified by other events, also lengthen. 

Discussion of both models 

One of the aims of this study was to decide whether random 

noise and peptidergic activation, which was originally described 

as a form of 'directed noise' has any ability to influence the 

outcome of neural network operation. In Back-Propagation 

networks, noise and 'peptidergic' leakage activation seem to have a 
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positive effect - and it seems that the mechanism of operation is 

different for the two activation methods tested. In the medium 

grain model, again, peptidergic operation produces an additional 

effect on the excitation of the ce\l; but can we say that this 

mechanism is functionally similar to the mechanism involved in 

the back-propagation model? 

It was stated that the mechanism of operation of the 

peptidergic factor in the back-propagation model was thought to be 

akin to an extension of the activation range of each node, which 

allows a larger signal to be propagated, correlated with the signals 

of the surrounding nodes. In the medium-grain model, the effect of 

a peptidergic factor is an extension of the signal length. This can 

be construed as an extension of the activation range of a node; but 

only if it is possible to propagate a signal without the associated 

peptidergic signal, or with an attenuated, peptidergic component. 

This was not tested in this study, but is a result of several studies 

of neuropeptides (Lundberg & H6kfelt, 1985; Horn and Dodd, 1985). 

We can conclude that the mechanism of action under both network 

models is very similar, given that a low-level model can be 

constructed with a variable peptidergic component. 

This study has not only shown that excitatory peptidergic 

factors can lengthen the response of target cells, but has also 

shown that an inhibitory feedback connection of a peptidergic 

nature, can veto the firin'g (and thus signalling) of a source cell 

(see figure 6.9). This type of signalling falls into the category of 

an antagonistic neuropeptide (see Emson, 1985, and chapter 4) The 

veto action of a peptidergic connection is highly dependent on the 

distance between nodes, the period of peptidergic stimulation and 

the concentration of peptides at the receptors. 
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Implications for Signal/Noise dichotomy 

The results of this study seem to show that neuropeptides 

may affect the components of a nervous system, if the assumptions 

made about the nature of a peptidergic factor are close to 

biological levels. In this case, it cannot be possible to assign 

definite boundaries to signal and noise in the nervous system. It is 

unlikely that such assignments are the current practice, but 

perhaps the subtler modulation brought about by low-level signals 

may now be studied in greater depth. 

There are still some questions to ask about the role of noise 

in the nervous system. For example, noise may still be a factor in 

neural circuits, but when does 'noise' become a signal, and when 

does 'Signal' become noise? It is unlikely that these events occur 

at exactly the same point along a chemical transmitter 

concentration gradient, for example. · 

It has been proposed earlier that it is possible that random 

noise broadens the number of activation points in a finite point 

system in artificial neural networks. This would mean that noise 

would become less effective as the number of activation points 

available grew; ie. a growth in either the size of the network or the 

number of digits ·in the mantissa, and moving towards an analogue 

implementation. This could mean that noise may not be useful as an 

< operational enhancer (as in the Back-Propagation study) in the 

human brain, leading to the proposition that perhaps the human 

brain exhibits its degree of intelligence because we have exceeded 

some critical size for the reduction of the influence of noise on the 
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content of signal transmission within the brain. Does the 

complexity of the human nervous system mean that it is the first 

to overcome the problem of noise; ie. Is it possible that the Homo 

species are the first species with a large enough nervous system 

to ward off the adverse effects of an inherently noisy 

environment? 

Concurrent propagation'? 

In chapter 4. it was argued that the action of neuropeptides 

could produce the mechanism for a system of concurrent 

propagation within a neural system. This proposal is still valid, as 

it has been demonstrated that neuropeptides may have some 

effects within a neural system. In chapter six. it was shown that 

the neuropeptidergic signal. at various parameter settings, was 

able to induce time-shifted spiking activity in a target neuron. 

Such a finding is one of the requirements for a concurrent 

propagation scheme. The results shown are ambiguous. however. 

The temporal difference of the spiking event in the medium-grain 

model is related to the setting of the peptidergic activity time

constant. If the time-constant is very low. no extra activity 

appears. If the time-constant is a little higher. the activity that 

appears may be seen to be coupled to the primary activation of the 

neuron - producing a mere extension of the excitation; which is not 

independent. The independence required for true concurrent 

propagation requires a parallel peptidergic and classical signal. 

The major problems in interpreting the results as showing 

, that concurrent propagation exists. are firstly, that many of the 
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experimental parameter settings were fabricated, due to lack of 

data, and secondly, that the neural model used was small, 

fabricated, and still a fairly coarse-grain representation, not 

subject to many of the processes which are present in the neural 

environment. One of the major factors required for demonstrating 

concurrent propagation is the independent release of both 

peptidergic and classical transmitters, a process which could not 

be studied in this model. A resolution of this question lies largely 

in future research within the biological sphere. 

Future Research 

The best possible direction for future research in this area, 

lies in the establishment of a multi-disciplinary project focussing 

on the aspects of neuropeptides which could be studied from two 

angles; biological and computational. 

Computational modelling of peptidergic systems can be 

preferable to neurobiological investigation for a number of 

reasons. Investigating neuropeptidergic transmission requires that 

the relative distances between neural elements remain fixed, 

which is not easy to maintain in biological preparations. In vivo 

tests are difficult to execute in conditions requiring no cell 

displacement and continuity of the extracellular medium, and 

repeatable impalement of a single cell is difficult in in vivo 

( conditions, across preparations. Recording from many cells at the 

same time is also difficult. Damage is also caused by impaling 

neural tissue, which can allow current leakage through the 

membrane, and leads to inaccurate results. Computational 
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modelling suffers from none of these drawbacks, and has many 

advantages. The major difficulty lies in obtaining accurate 

parameters for the model from neuroscience research. The 

establishment of a multi-disciplinary project should eliminate this 

limitation. 

The execution of such a project would require the 

characterisation of a particular real neural system in a 

neurobiological preparation, with an attempt to derive 

concentration, weighting and periodic behaviour parameters. These 

could be installed in a computational model, built at as fine a grain 

size as possible, which should behave in a similar manner to the 

biological network. The parameters of the computational network 

could then be varied to assess the effects of removing any 

peptidergic components from the system, and comparing the 

behaviour obtained with the real neural system. 

A project such as this should be a valuable contribution to 

knowledge in this area, providing us with fairly reliable proof of 

the contribution of neuropeptides to the specific neural circuit. 

Conclusion 

This study has pursued the theory that neuropeptides can be a 

complementary system of· signal propagation in a nervous system. 

At the highest level, the' proposal is that neuropeptides can act as 

additional signal channels in a neural circuit, providing a parallel 

and concurrent system of signal propagation. At a lower level, 

neuropeptides may act as signal modulators, providing an extension 

of the activation produced by classical transmitters. At an even 
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lower level, neuropeptides can be considered as noise, which may, 

or may not influence signal propagation. Finally, the possibility 

exists that neuropeptides serve no useful purpose in the nervous 

system. 

This study has begun to address the question of which level 

neuropeptides inhabit by testing the behaviour of two artificial 

neural networks. at very different levels of neural representation. 

The Back-propagation model used in this study. showed that random 

noise injected into the network enhanced the rate of learning to a 

greater extent than a fabricated 'peptidergic' leakage signal 

injection. However. the 'peptidergic' leakage signal injection did 

show an enhanced rate of learning over the basic back-propagation 

algorithm. The medium grain model. at a lower level of neural 

representation, showed that the addition of a 'peptidergic' factor 

extended the normal activation of the target by a factor of 2.5. 

The assumptions made about these results are that the 

'peptidergic' factor extends the activation range of the network 

nodes in both models, whilst the 'noise' factor broadens the 

activation range in the back-propagation model, as well as adding a 

chance element to the convergence process. 

The assignment of peptidergic activity level depends largely 

on the independence of the 'peptidergic' signal. If the signal can be 

classed as independent, then concurrent propagation can be said to 

occur. If the signal always occurs at. or around, the normal 

excitation time of the cell, then the peptidergic component is a 

( mere extension of the ordinary activation of the cell. The 

activation extensions produced. in the back-propagation model with 

the 'peptidergic' component. cannot be classified according to their 

dependence. because the activations produced in this model are 
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largely interdependent. The activation extension produced by the 

medium-grain model depends, primarily, on the setting of the 

'peptidergic' activity strengths and time-constants, which was not 

based on biological data, as none was available. This model -does 

seem to show depolarisations produced by the peptidergic factor 

acting as independent of the primary 'classical' depolarisations, 

but only to the extent that they are time-shifted by variations in 

'diffusion' delays. For these reasons, it is impossible to extend the 

results of this study into an assumption about the dependence level 

of peptidergic activity. 

It is possible to state that it is unlikely that the 

'peptidergic' factor in this study, was acting as a "noise" 

phenomenon. This result may be due to incorrect assumptions about 

the levels at which peptides operate in the nervous system, but 

invalidation of these results lies in a closer, and hopefully multi

disciplinary, examination of the parameters of peptidergic function 

in a neural system. It is therefore, possible to conclude that 

'peptidergic' factors in artificial neural networks appear to 

enhance the operation of the network through a process of signal 

modulation, which appears to extend the activation range of 

network nodes. Extending these results to a biological nervous 

system is inappropriate, at the moment, due to the lack of verite in 

the parameters of the model systems; but it is hoped that this 

study provides a reasonable basis for the further examination of 

peptidergic functions in real neural systems. 
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Appendix A: Program Listings 

/* **************** Program alpha.c 
********************/ 

#define YES 1 
#define NO 0 
#define ONLINE NO 

#define DEBUG NO 
#define D_DEBUG NO 
#define N_DEBUG NO 
#define BIG_DEBUG NO 
#define OUTPUT NO 
#define RESULTS YES 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <CursorCtl.h> 
#include <OSUtils.h> 
#include -matrix.h
#include -NNf.h
#include -alpha.h-

1* global variable - display converged message only once * / 
int onceOnly = 0; 
int lastone = 0; 1* and write a check of the outputs */ 
float TotFact; 

mainO 

{ 
char line[81],fname[81]; 
float *op_char, *ip_char,real_op[8],error; 
int i,j,n_otJayers,neurons_ip[3],neurons_op[3], 
rate[3] ,crit, batch_size, finish; 
int binary_op[8],q,c,re_use_rate; 
long n,n_of_inputs,n_of_outputs; 
float mean_err,batch_err,old_batch_err, 
crit_error, m_crit_error, frateSave; 
NETWORK *network; 
NEURON *inputs, *outputs; 
FILE *fp, *fr; 
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Appendix A: Program Listings 

extern int update,useMomentum,useBias,useNoise; 
extern float PepLeak,PepStrength,PepFactor,TotFact; 
extern DelayLinePtr DPtr; 

TotFact = 0; 

1* Assign initial parameters */ 
1* Number of layers refers to 'layers of modifible 

connections', and is therefore 
'number of layers of nodes' - 1 */ 

I*if (ONLINE) 
printf(·enter No. of iterations/batches:\n·); 

gets(line) ; 
n=atoi(line); */ 
n = 20000; 1* We're going for convergence here! */ 

if (ONLINE) 
printf(·enter Log filename:\n·); 

gets(fname) ; 

1* assign batch size */ 
batCh_size = 3; 

1* input connections */ 
n_of_inputs=15; 
neurons_ip[0]=15; 
neurons_ip[1 ]=15; 

1* output connections */ 
neurons_op[0]=15; 
neurons_op[1 ]=8; 
n_of_outputs=8; 

1* Learning rate */ 
if (ONLINE) 

printf(·enter learning rate ( 0.0 to 1.0 ):\n·); 
gets(line); 
frate = atof(line); 
frate 1= 100; 
frateSave = frate; 
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fprintf(stdout, -Learning Rate = %-1.8g\n" frate); 
fflush(stdout); 

/* Learning momentum */ 
if (ONLINE) 

printf(-Use momentum? ( 0 or 1 ):\n-); 
useMomentum = atoi(gets(line)); 

/* Unit bias */ 
if (ONLINE) 

printf(-Use bias? ( 0 or 1 ):\n-); 
use Bias = atoi(gets(line)); 

if (ONLINE) 1* NOISE factor gathered here; I'm lazy */ 
printf(-Enter Noise Factor:\n l

); 

PepFactor = atof(gets(line)): 
PepFactor /= 100; 

1* if (ONLINE) 
printf(-Enter Peptide Strength:\n-); 
PepStrength = 0.0; I*PepStrength = atof(gets(line)); */ 

I*if (ONLINE) 
printf(IEnter Peptide Leak Factor:\n-): 
PepLeak = atof(gets(line)): 
PepLeak /= 100;*/ 

/* Pre-Factor for calculation */ 
1* PepFactor = PepStrength * PepLeak; */ 

/*if (ONLINE) 
{ * / 
fprintf(stdout, -Noise Factor = %-1.8g\n-, PepFactor); 
fflush(st90ut); 
/ *} * / 

1* Use Noise addition */ 
/* printf(-Use Noise? ( 0 or 1 ):\nl); */ 

useNoise = 1; 1* always in this case */ 
/* atoi(gets(line)); */ 

/* set ctitical error for convergence indicator */ 
crit_error = 0.01; 
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1* Init finish counter - net will exit after convergence + 200 
iterations * / 

finish = 0; 

1* create the network, randomise synapses */ 

network = 
new_network(&n_of_layers,neurons_ip,neurons_op); 

if (!network) 
printf(·out of memory\n·), exit(O); 

1* Create the Delay List for p-activation */ 
if (use Noise) 

DPtr = DCreate(DELAYNO); 1* create 
DelayLineNO DelayLine lists *' 

1* Set pointers to first and last layers of the network *' 
inputs=netwo rk->fi rst_laye r->inputs; 
outputs=network->last_layer->outputs; 

1* Randomise the synapse weights: specify the random 
number generator seed */ 

randomise(network, 300.0, 89L); 

1* Init network */ 

for ( j=O; j<n_of_inputs; j++) 
inputs[j].activation = 0.0; 

feedforward(network); 1* a null feedforward cycle *' 
/* Open log file if output is specified */ 
if (OUTPUT) 
( 

} 

if«fp = fopen(fname,·w·)) == NULL) 
{ 

} 

fprintf(stderr,·Cant open the logfile\n·); 
exit(1); 

if (RESULTS) 
{ 
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if((fr = fopeneResults·,·a·» == NULL) 
{ 

} 

fprintf(stderr,·Cant open the Results file\n·); 
exit(1); 

InitCursorCtI; 

1* For each iteration ........... */ 
for (i=O; i<n; i++) 
{ 

1* for each input pattern ......... */ 
for(batch_err = 0, c=O ,crit=O; c < batch_size; c++ ) 
{ 

1* Don't update weight values inside this loop */ 
update = 0; 

1* Assign input and output vectors */ 
ip_char = ip_array[c]; 
op_char = op_array[c]; 

if(BIG_DEBUG) 
printf(Mc = O/Od\n·,c); 

if(BIG_DEBUG) 
{ 

printf(·ip_char = \n·); 
for ( j=O; j < n_of_inputs; j++) 

printf(·O/Of%c·,ip_char[j],(U+ 1 )%batch_size == 0 II j -
n_of_inputs-1) ? '\n' : • '); 

printf(·op_char = \n·); 
for ( j=O; j < n_of_outputs; j++) 

printf(·%f%c·,op_char[j],(j --
n_of_outputs-1) ? '\n' : ' '); 

} 
1* end DEBUG */ 
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1* initialise the input vector from the -alphabet-

for ( j=O; j<n_of_inputs; j++) 
inputs[j].activation = ip_char[j]; 

1* Feed forward through the network *' 
feedforward(network) ; 

1* Make calculations of peptidergic noise for each 

1* Not the usual method *' 
I*if (use Noise) 

nOise_calc(network); *' 

1* calc errors and assign output figures *' 
for ( mean_err = 0, j=O; j<n_of_outputs; j++, 

mean_err += error) 
{ 

1* calculate errors *' 
error = outputs[j].errors = (op_char[j] -

outputs[j]. activati on); 

} 

1* count number of OK errors *' 
if(fabs(error) < crit_error) crit++; 

if(DEBUG "i>(n-50) "finish> 195 ) 
{ 

} 

1* Assign Real Values *' 
real_op[j]=outputs[j] .activation; 

if(lIastone && onceOnly) 
{ 

} 

1* Assign Real Values *' 
real_op[j]=outputs[j] .activation; 
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if (DEBUG II i>(n-5) II (llastone && onceOnly) II 
finish > 195 ) 

{ 
1* Report the error indicator, and outputs 

(Binary and Real)*/ 

if (OUTPUT) 
{ 

fprintf(fp, -%f, -, real_op[j]); 

} 
if(i == (n-1) II finish == 200 ) 
{ 

fprintf(stdout, -Final Condition\n-); 
for(j=O;j<n_of_outputs;j++ ) 

fprintf(stdout, -%f, -, real_op[j]); 
fprintf( std out, -\n -); 

} 

} 
1* if the net has just converged , give the state of 

the outputs * / 
if(lIastone && onceOnly ) 
{ 

for(j=O;j<n_of_outputs;j++ ) 
fprintf(stdout, -%f, -, real_op[j]); 

} 

fprintf(stdout, -\n-); 
fflush(stdout); 

1* update the weight error derivatives here but 
don't change weights */ 

* / 
1* weight change is done after each batch (later) 

1* If end of batch don't do feedback here! */ 
if( c != batch_size-1 ) 

feedback(network); 

} 1* end -for each input pattern- */ 

1* set the converged state if converged */ 

A.7 



Appendix A: Program Listings 

lastone = onceOnly; 

1* report if network has converged *1 
if(crit == (n_of_outputs*batch_size) && !onceOnly) 
{ 

if (OUTPUT) 
fprintf(fp,u**** iteration %d, network 

converged *****\n·,i); 

fprintf(stdout, u**** iteration %d, network 
converged *****\n·,i); 

if (RESULTS) 

fprintf(fr, ·%f\t%d\t%s\n· ,PepFactor ,i, fname); 

onceOnly = 1; 
} 

if(OUTPUT) 
{ 

if (DEBUG II i>(n-5) II finish> 195) 
fprintf(fp, -iteration %d mean error 

%f\n· ,i,batch_err/batch_size); 

fprintf(fp, ·%f\n· ,batch_err/batch_size); 
} 

1* Do P-activation calculation here if batch method 
selected *1 

method *1 

I*if (use Noise) 
noise_calc(network); *1 

1* Feed errors back through the network - batch 

update = 1; 
feedback(network) ; 

if (onceOnly) 
{ 

finish++; 
if (finish > 200) 

break; 
} 
RotateCursor(i) ; 
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} 1* end -for each iteration- */ 

if (OUTPUT) 
{ 

fclose(fp) ; 

} 

if (RESULTS) 
{ 

fclose(fr); 
} 

fprintf(stdout,U**** Finished ***** Tot Fact = 
%f\n- ,TotFact); 

} 

if (ONLINE) 
{ 

} 

SysBeep(200); 
SysBeep(200); 

1* end of test * / 
return(O); 
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1* Matrix.h Header File - for use with NN.h and alpha.c 
* This file defines the Inter- and Intra-layer distances between 

nodes 
*1 

#define _MATRIX_ 

1* DELA YNO defines the number of lists in use 
*1 

#define DELA YNO 4 

1* Extra-Layer (Inter-layer) distances: Vertical, Horizontal and 
Offset *1 
/* The Pythagorean distances are : 

* 1 

V 1 1.030776406 
V2 1.118033989 
V3 1.25 
V4 1.414213562 
H1 V2 
H2 V4 
011 1.145643924 
012 1.224744871 
013 1.346291202 
014 1.5 
021 1.436140662 
022 014 
023 1.600781059 
024 1.732050808 

/* Translated to l/exp(distance) (for speed of execution) this is: 
* 1 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

Vl 0.3567298857980956 
V2 0.3269218952699931 
V3 0.2865047968601901 
V4 0.2431167345249198 
Hl 0.3269218952699931 
H2 0.2431167345249198 
011 0.3180190717321045 
012 0.2938326559931346 
013 0.2602035155609003 
014 0.2231301601484298 
021 0.2378439097155739 
022 0.2231301601484298 
023 0.2017388864699812 
024 0.1769212062414894 
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1* Intra-layer distances: Vertical, Horizontal and Offset *1 
1* The Pythagorean distances are : 

* 1 

V1 0.25 
V2 0.5 
V3 0.75 
V4 1.0 
H1 IV2 
H2 IV4 
11 0.559016994 
12 0.707106781 
13 0.901387818 
14 1.118033989 
21 1.030776406 
22 114 
23 1.25 
24 1.414213562 

1* Translated to 1/exp(distance) (for speed of execution) this is: 
* 1 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

V1 0.7788007830714049 
V2 0.6065306597126334 
V3 0.4723665527410147 
V4 0.3678794411714423 
H1 0.6065306597126334 
H2 0.3678794411714423 
11 0.5717708418561713 
12 0.4930686914872205 
1 3 0.4060058064019639 
14 0.3269218952699931 
21 0.3567298857980956 
22 0.3269218952699931 
23 0.2865047968601901 
24 0.2431167345249198 

1* Extra-Layer (Inter-layer) (2nd Order) distances: Vertical, 
Horizontal and Offset */ 
1* The Pythagorean distances are : 

EV1 2.015564437 
EV2 2.061552813 
EV3 2.136000936 
EV4 2.236067977 
EH1 EV2 
EH2 EV4 
E11 2.076655966 
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E12 2.121320344 
E13 2.193741097 
E14 2.291287847 
E21 2.25 
E22 E14 
E23 2.358495283 
E24 2.449489743 

1* Translated to 1/exp(distance) (for speed of execution) this is: 
* 1 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

EV1 0.1332451736306551 
EV2 0.1272562112942661 
EV3 0.1181262943225883 
EV4 0.1068779257138023 
EH1 0.1272562112942661 
EH2 0.1068779257138023 
E11 0.1253486823750868 
E12 0.1198732500509750 
E13 0.1114988394116792 
E14 0.1011361300864856 
E21 0.1053992245618643 
E22 0.1011361300864856 
E23 0.0945624058567956 
E24 0.0863376296416422 

1* Node Number for continued peptidergic activation calculation 
* 1 
int nodeno = 0; 

1* Distance Matrices (1/exp(distance)) : extra-layer (Inter-layer) 
* 1 
1* Dummy elements allow us to forget that C arrays start at zero 
* 1 

float eMatrix[16][16] = 
{ 

{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
} 
{ 

0,1 ,V1 ,V2,V3,V4,H1 ,011 ,012,013,014,H2,021 ,022,023,024 
} 
{ 

, 0,V1, 1 ,V1 ,V2,V3,011,H 1,011,012,013,021 ,H2,021,022,023 
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0,V2,V1,1 ,V1 ,V2,012,011 ,H1 ,011 ,012,022,021 ,H2,021 ,022 
} 
{ 

0,V3,V2,V1,1 ,V1 ,013,012,011 ,H1 ,011 ,023,022,021 ,H2,021 
} 
{ 

0,V4,V3,V2,V1,1 ,014,013,012,011,H 1,024,023,022,021 ,H2 
} 
{ 

0,H1 ,011 ,012,013,014,1 ,V1 ,V2,V3,V4,H 1 ,011 ,012,013,014 
} 
{ 

0,011 ,H1 ,011 ,012,013,V1, 1 ,V1 ,V2,V3,011 ,H1 ,011 ,012,013 
} 

£. 
0,012,011 ,H1 ,011 ,012,V2,V1, 1 ,V1 ,V2,012,011 ,H1 ,011 ,012 

} 
{ 

0,013,012,011 ,H1 ,011 ,V3,V2,V1, 1 ,V1 ,013,012,011 ,H1 ,011 
} 
{ 

0,014,013,012,011 ,H1 ,V4,V3,V2,V1, 1,014,013,012,011 ,H1 
} 
{ 

0,H2,021 ,022,023,024,H1 ,011 ,012,013,014,1 ,V1 ,V2,V3,V4 
} 
{ 

0,021 ,H2,021 ,022,023,011 ,H1 ,011 ,021 ,022,V1, 1 ,V1 ,V2,V3 
} 
{ 

0,022,021 ,H2,021 ,022,012,011 ,H1 ,011 ,012,V2,V1, 1 ,V1 ,V2 
} 
{ 

0,023,022,021 ,H2,021 ,013,012,011 ,H1 ,011~V3,V2,V1, 1 ,V1 
} 
{ . 

0,024,023,022,021 ,H2,014,013,012,011 ,H1 ,V4,V3,V2,V1, 1 
} 

} 

1* Distance Matrices (1/exp(distance)): Intra-layer *1 
1* Dummy elements allow us to forget that C arrays start at zero 
* 1 
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float iMatrix[16][16] = 
. { 

{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
} 
{ 

O,O,IV1,IV2,IV3,IV4,IH1,111,112,113,114,IH2,121 ,122,123,124 
} 
{ 

0,IV1,O,IV1 ,IV2,IV3,111,IH1 ,111 ,112,113,121,IH2,121 ,122,123 
} 
{ 

O,IV2,IV1,O,IV1,IV2,112,111 ,IH1 ,111 ,112,122,121 ,IH2,121 ,122 
} 
{ 

0,IV3,IV2,IV1 ,0,IV1,113,112,111 ,IH1 ,111 ,123,122,121 ,IH2,121 
} 
{ 

0,IV4,IV3,IV2,IV1 ,0,114,113,112,111 ,IH1 ,124,123,122,121 ,IH2 
} 
{ 

0,IH1,111,112,113,114,O,IV1,IV2,IV3,IV4,IH1 ,111 ,112,113,114 
} 
{ 

0,111, IH 1,111,112,113, IV1 ,0, IV1 ,IV2, IV3, 111, I H 1,111,112,113 
} 
{ 

0,112,111 ,IH1 ,111 ,112,IV2,IV1 ,0,IV1 ,IV2,112,111 ,IH1 ,111 ,112 
} 
{ 

0,113,112,111, IH 1,111, IV3, IV2, IV1 ,0, IV1 ,113,112,111,1 H 1,111 
} 
{ 

0,114,113,112,111, IH 1 ,IV4, IV3,IV2, IV1 ,0,114,113,112,111, IH 1 
} 
{ 

O,IH2,I21,I22,I23,I24,IH1,I11 ,112,113,114,0, IV1 ,IV2,IV3,IV4 
} 
{ 

0,121,IH2,121 ,122,123,111 ,IH1 ,111 ,121 ,122,IV1 ,0,IV1 ,IV2,IV3 
} 
{ 

0,122,121 ,IH2,121,122,112,111 ,IH1 ,111 ,I12,IV2,IV1 ,O,IV1 ,IV2 
} 
{ 

0,123,122,121 ,IH2,121 ,113,112,111 ,IH1 ,111 ,IV3,IV2,IV1 ,O,IV1 

A.14 



Appendix A: Program Listings 

} 
{ 

O,I24,I23,I22,I21,IH2,I14,I13,I12,I11,IH1,IV4,IV3,IV2,IV1,O 
} 

} 

1* Distance Matrices (1/exp(distance»: 2nd order Inter-layer *1 
1* Dummy elements allow us to forget that C arrays start at zero 
* I 

float exMatrix[16][16] = 
{ 

{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
} 
{ 

O,O,EV1,EV2,EV3,EV4,EH1,E11,E12,E13,E14,EH2,E21,E22,E23,E24 
} 
{ 

O,EV1,O,EV1,EV2,EV3,E11,EH1,E11,E12,E13,E21,EH2,E21,E22,E23 
} 
{ 

O,EV2,EV1,O,EV1,EV2,E12,E11,EH1,E11,E12,E22,E21,EH2,E21,E22 
} 
{ 

O,EV3,EV2,EV1,O,EV1,E13,E12,E11,EH1,E11,E23,E22,E21,EH2,E21 
} 
{ 

O,EV4,EV3,EV2,EV1,O,E14,E13,E12,E11,EH1,E24,E23,E22,E21,EH2 
} 
{ 

O,EH1,E11,E12,E13,E14,O,EV1,EV2,EV3,EV4,EH1,E11,E12,E13,E14 
} 
{ 

O,E11 ,EH1 ,E11 ,E12,E13,EV1 ,O,EV1,EV2,EV3,E11 ,EH1 ,E11 ,E12,E13 
} 
{ 

O,E12,E11 ,EH1,E11,E12,EV2,EV1,O,EV1,EV2,E12,E11,EH1,E11,E12 
} 
{ 

0,E13,E12,E11 ,EH1 ,E11 ,EV3,EV2,EV1,O,EV1,E13,E12,E11,EH1 ,E11 
} 
{ 

0,E14,E13,E12,E11,EH1,EV4,EV3,EV2,EV1,O,E14,E13,E12,E11,EH1 
} 
{ 

O,EH2,E21,E22,E23,E24,EH1,E11,E12,E13,E14,O,EV1,EV2,EV3,EV4 

A.15 



Appendix A: Program Listings 

} 
{ 

, 0,E21 ,EH2,E21 ,E22,E23,E11 ,EH1 ,E11 ,E21 ,E22,EV1 ,0,EV1 ,EV2,EV3 
} 
{ 

0,E22,E21 ,EH2,E21 ,E22,E12,E11 ,EH1 ,E11 ,E12,EV2,EV1 ,0,EV1 ,EV2 
} 
{ 

0,E23,E22,E21 ,EH2,E21 ,E13,E12,E11 ,EH1 ,E11 ,EV3,EV2,EV1 ,0,EV1 
} 
{ 

0,E24,E23,E22,E21 ,EH2,E14,E13,E12,E11 ,EH1 ,EV4,EV3,EV2,EV1 ,0 
} 

} 

1* The output layer requires a lookup table for distance calculation 
* / 

int OLindex[9] = 
{ 0,2,3,4,7,9,12,13,14 
} 

1* The 4th Dimension - Time; a round linked list that can grow to 
represent 
* varying delays - one storage unit needed for each node 
*/ 

struct delayline 
{ 

struct delayline *nextPtr; 
list */ 

float dlist[39]; 
one longer, as usual for above reasons */ 

struct delayline *prevPtr; 
} 

typedef struct delayline DelayLine; 
typedef DelayLine *DelayLinePtr; 

DelayLinePtr DPtr; 
necessary Ptr * / 
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1* PEP_STRENGTH is the binding strength of peptides relative to 
* classic transmitters and is used as a factor in the calulation of 

* activation */ 

1* PEP_LEAK is the amount of peptidergic signal leaked from 
* a synapse on a target cell • this goes to make up the diffusible 
* peptidergic signal */ 

float PepLeak,PepStrength,PepFactor; 
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1* Alpha.h - defines global inputs and outputs for each character 
, * / 

I*lnputs are 3xS matries ofaJpha chars */ 

float ip_array[3][1S] = 
{ 
1* -A- */ 

{ 0.0,1.0,0.0, 
1.0,0.0,1.0, 
1.0,1.0,1.0, 
1.0,0.0,1.0, 
1.0,0.0,1.0 

} 
1* -8- */ 

{ 1.0,1.0,0.0, 
1.0,0.0,1.0, 
1.0,1.0,0.0, 
1.0,0.0,1.0, 
1.0,1.0,0.0 

} 
1* -C- */ 

{ 0.0,1.0,0.0, 
1.0,0.0,1.0, 
1.0,0.0,0.0, 
1.0,0.0,1.0, 
0.0,1.0,0.0 

} 
} 

float op_array[3][8]= 
{ 

{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 
} ,/* ASCII -A- */ 
{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 
} ,/* ASCII -8- */ 
{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0 
} 1* ASCII -C· */ 

} 
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/********** Neural Nets include file : -NN.h- ************/ 
1* now needs matrix header file to be loaded previously */ 

#ifndef _MATRIX_ 
#include -matrix.h
#endif _MATRIX_ 

#define MAX_SYNAPSE 20.0 
#define MAX_BIAS 20.0 

1* Random number generator: period 4286449341. */ 
1* Result is unsigned short with uniform distribution: range 0-
65535 */ 
1* Seeds the same * / 

#define U2RAND(seed1,seed2) \ 
(((seed1 )*=65421,++(seed1 ))+((seed2)*=65521 ,++(seed2))) 

1* Random Noise maker for the noisy back prop model - uses 
U2RAND to produce */ 
/* 0-65535 number, shifts range to -32767 to +32768, and divides 
by */ 
/* 54613.3- to produce range of -0.6 to + 0.6 */ 
/* 65536 to produce range of -0.5 to + 0.5 */ 
1* 81920 to produce range of -0.4 to + 0.4 */ 
1* 109226.6667 to produce range of -0.3 to 0.3 */ 
1* 163840 to produce range of -0.2 to 0.2 */ 
1* 218453.3333 to produce range of -0.15 to 0.15 */ 
/* 436906.6667 to produce range of -0.075 to 0.075 --
etc,etc,etc*/ 

#define NOISE(seed1,seed2,Factor) \ 
((float)( (short)(( (long)U2 RAND(seed 1,seed2))-
32768)) )/(32768/F actor) 

I 

typedef struct . 
{ float activation;1* activation of neuron for feed 
forward */ 

float errors;1* sum of errors from feedback */ 
float bias;1* activation bias */ 
float bed;1* bias error derivative for batching */ 
float olddbias;1* old delta bias for bias updating */ 
float sumsyn;1* Sum of noise affecting this node */ 
float rawact; 1* Raw activation of a node */ 
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short number;/* index for debugging */ 
} NEURON; 

typedef float SYNAPSE; 

typedef struct layer 
{ struct layer *prev_layer;/* ptr to prev layer */ 

int n_inputs;/* No. of input neurons */ 
NEURON *inputs;/* same address as o/p of prev layer */ 
SYNAPSE *synapses;/* synapses[n_inputs][n-outputs] */ 
SYNAPSE *history;/* prev vals for use in learning */ 
SYNAPSE *weds;/* weight error derivatives for batching */ 
int number;1* Layer number for debugging */ 
int n_outputs;1* No. of output neurons */ 
NEURON *outputs;/* same address as i/p of next layer */ 
struct layer *next_layer;/* ptr to next layer */ 

} LAYER; 

typedef struct 
{ LAYER *first_layer; 

LAYER *last_layer; 
} NETWORK; 

/* Glabal variables - for convenience rather than elegance */ 

1* Random number seed placeholders */ 
static unsigned short ranSeed1,ranSeed2; 

/* option flags - for features and each extension in this model */ 
int 
useBias,useMomentum, use Noise ,useG RA, updateG RA, update, useCGA; 

/* floating point learning rate */ 
float frate; 

/* *******************/ 

. DelayLinePtr DCreate(int); 
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void DFree(void); 
void noise_calc(NETWORK *); 
void npcalc(int,NETWORK *); 
void noise_add(NETWORK *); 
void zerosyn(NETWORK *); 

/*********** Addition of Peptidergic noise section 
***************/ 

1* Function DCreate: Create the DelayLineLine list 
* with a size of n structures 
* returns a Ptr to the start of the list or 0 on error 
*/ 

DelayLinePtr DCreate(n) 
int n; 
{ 

int i,j; 
DelayLinePtr StartPtr, DelayLineList; 

extern char *cal/ocO; 

if (n < 4) 1* It's rather pointless coming here so bail out */ 
{ 

fprintf(stderr, ·DCreate: Sorry you've got to have at 
least 4 lists\n·); 

return(O); 
} 

DelayLineList = (DelayLinePtr) cal/oc( 1 ,sizeof(DelayLine)); 
/* Create first structure */ 

if ( IDelayLineList ) 1* Problems with memory */ 
( 

fprintf(stderr,·DCreate: Trouble allocating memory for 
the DelayLine List\n·); 

return(O); 
} 
StartPtr = DelayLineList; 

for( i=1; i< n ; i++) 
{ 

1* Keep its address */ 

1* Create the rest and link */ 
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DelayLineList->nextPtr = (DelayLinePtr) 
calloc(1,sizeof(DelayLine)); 

if ( !DelayLineList->nextPtr ) 1* Problems 
with memory */ 

{ 
fprintf(stderr, -DCreate: Trouble allocating 

memory for the DelayLine List\nU
); 

return(O): 
} 
DelayLineList->nextPtr->prevPtr = DelayLineList; 1* 

Point back * / 

} 

} 

DelayLineList = DelayLineList->nextPtr; 

1* Initialise each List to zero */ 
for O=O;j < 39 ; j++) 

DelayLineList->dlist[j] = 0; 

DelayLineList->nextPtr = StartPtr: 
1* Round off the list */ 
StartPtr->prevPtr = DelayLineList; 
1* and point back */ 

return(StartPtr) : 
1* And return the Ptr */ 

1* DFreeO - Free's the allocation for the delay list */ 
1* This is a round, linked list so as long as nothing naughty has 
been going 
* on, the external DPtr should hold a valid address which we can 

use to free 
* all elements */ 

void DFreeO 
{ 

, } 

DelayLinePtr NPtr,SPtr; 
extern DelayLinePtr DPtr; 

SPtr = DPtr; 

do 
{ 

NPtr = DPtr->nextPtr : 
free(DPtr); 

} while( NPtr != SPtr); 
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1* Sum effects of secondary messengers for the network*/ 
/* Stored in DPtr for use in activ_calcO */ 

void noise_calc(network) 
NETWORK *network; 
{ 

register int i,n_inputs; 
register NEURON *output, *end; 
LAYER *Iayer; 

extern DelayLinePtr DPtr; 

if ( !DPtr ) 1* First Time here & no Delay list? */ 
DPtr = DCreate(DELA YNO); 1* create 

DelayLineNO DelayLine lists */ 

I*loop forward through all layers */ 
for ( i=1,layer=' network->first_layer; layer layer= layer-

>next_layer) 
{ 

for(; --n_inputs >= 0; i++) 
each node */ 

{ 
npcalc(i,network); 1* Calculate all the 

permutations */ 
Ipcalc(i ,network); 

} 
} 

1* For 

1* Last layer only ---- calc for the outputs as well*/ 
layer = network->Iast_'ayer; 
output = layer->outputs; 
end = layer->n_outputs + output; 
for ( ; output < end; output++,i++) 1* Do last layer */ 
{ 

} 

npcalc(i ,network); 
Ipcalc(i,network) ; 
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1* Decrement the DelayLine Pointer for addition into the 
activation function */ 

if (D_DEBUG) 
{ 

} 

for(i=O;i < 39;i++) 
printf(-%f, -,DPtr->dlist[i]); 

printfC\n-); 

DPtr = DPtr->prevPtr; 

1* Zero the synapse sums through the net here */ 
zerosyn(network); 

1* call the noise distibutor here */ 
1* Noise distrib now moved to function: activ_calcO */ 
1* nOise_add(network); */ 

} 

void npcalc(ucnt,network) 1* */ 
int ucnt; 
NETWORK *network; 
{ 

int i,il ,n,cur_layer,layer_num ,Iayer_diff; 
int n_inputs; 
register int nips; 
SYNAPSE *synapses; 
register SYNAPSE *syn; 
register float iactive,sum; 
NEURON *inputs,*output, *end; 
register NEURON *ips; 
LAYER *Iayer; 
float sumsynapse; 

extern int OLlndex[];, 
for output nodes */ 

extern float PepStrength; 
extern DelayLinePtr DPtr; 

1* conversion array 

1* This routine is called by nOise_calcO - once for each node 
in each 

* layer of the network. 
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* Here we have to calculate the Inoise' reaching the node 
from the rest of 

* the network - comprised of all the somatic propagations 
of all other nodes 

* plus the synaptic leakage of all other nodes 
*/ 

if (N_DEBUG) printf(·Strength = %-1.8f, Node 
%d·,PepStrength,ucnt): 

if ( ucnt < 16) 
First Layer */ 

{ 

1. 

n=ucnt: 
cur_layer=1 : 

if ( ucnt > 15 && ucnt < 31) 
{ 

} 

n=ucnt-15: 
cur_layer=2: 

1* Second Layer */ 

/ * 

if ( ucnt > 30 && ucnt < 39) 1* Output Layer - use index 
* / 

{ 

} 

n=OLlndex[ucnt-30]: 
cur_layer=3; 

if (N_DEBUG) printf(", node index = %d, layer = 
%d\n·,n,cur_layer): 

1* n is the node index inside the layer and tells us which 
matrix element to use. 

* ie. it's the index number of the current node to be 
computed in the layer */ 

1* Start off the P activation at zero for this node in the 
delay list */ 

DPtr->prevPtr->prevPtr->prevPtr->dlist[ucnt] = 0; 

1* Here we begin to collect P-activations from each node: 
* First we get the Somatic P-activation, calculating it as 

the 
* output-activation * av. of its output weights * 

Peptidergic factor 
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* This is derived from the node in question. 
* Then we get the leakage activation which is calculated 

,from the 
* nodes' input activation * input weights * Peptidergic 

factor. 
* Note: LEAKAGE will merely be a proportion of the o/p _ 

activation 
* as ordinarily calulated in back prop. Therefore, Leak is 

defined 

in the 
* as o/p activation * Leak factor. This can be incorporated 

* model simply 
* Remember - leakage occurs at TARGET nodes 
* LEAK is calculated in function IpcalcO 
*/ 

1* REMEMBER - WE MUST DO ALL NODES */ 
1* loop forward through a" layers */ 
for ( layer= network->first_layer, layer_num= 1; layer 

layer= layer->next_layer,layer_num++) 
{ 

synapses = layer->synapses; 
n_inputs = layer->n_inputs; 
inputs = layer->inputs; 
layer_diff = abs(layer_num - cur_layer); 1* layer 

differential * / 
sum = 0; 1* Start sum off at a reasonable 

number */ 

if(N_DEBUG) printf(-Layer Differential = 
%d\n·.layer_diff); 

1* USE INPUT NODES - for first layers */ 
for(i=1 ;--n_inputs >= O;i++,inputs++) 
{ 

sumsynapse ; 

/* Get the 'sign' & magnitude of the activation */ 
sumsynapse = inputs->sumsynllayer->n_outputs ; 

1* Get the somatic activation for a node */ 
iactive = 'inputs->activation * PepStrength * 

if (N_DEBUG) printf(-input %d - activ %f, 
sumsynapse %f\n-,n_inputs,inputs->activation,sumsynapse); 
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1* we get matrix references to layer 3 
transformed here */ 

if ( layer_num == 3) 
iI = OLlndex[i]; 

else 
iI = i; 

1* Mult by the distance between the node 
and this one */ 

1* and store, delayed by the 
distance/diffusion analogy * / 

switch(layer_diff) 
{ 
case (0): /* do intra-layer activations */ 

DPtr->prevPtr->dlist[ucnt] += iactive * 
iMatrix[n][iI]; 

/* delay list */ 
break; 

case (1): 1* do 1 st order extra-layer activation */ 
DPtr->prevPtr->prevPtr->dlist[ucnt] += 

iactive * eMatrix[n][iI]; 

1* delay list */ 
break; 

case (2): 1* do 2nd order extra-layer activation 
* I 

DPtr->prevPtr->prevPtr->prevPtr
>dlist[ucnt] += iactive * exMatrix[n][iI]; 

1* delay list */ 
break; 

} 
} 1* End for all inputs */ 

1* For the output layer */ 
if (layer == network->last_layer) 
{ 

output = layer->outputs; 
end = layer->n_outputs + output; 
layer_num++: 
layer_diff = abs(layer_num - cur_layer); 1* 

layer differential */ 
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if(N_DEBUG) printf("Layer Differential = 
%d\n·,layer_diff); 

1* for each node in the output layer */ 
for( i=1; output < end; output++,i++, synapses 

{ 
1* We have to assume that the sign of the 

activation in output 
* nodes is positive, after all, there would 

be no output if they weren't, 
* They can't be calculated anyway; and we 

can simplify things 
* by leaving it out as it will only be a 

factor of 1 anyway 
* 
* output->sumsyn = 1.0 ; 
* iactive = output->activation * 

PepStrength * output->sumsyn ; 
* -- see what I mean 
*/ 

/* Get the somatic activation for a node */ 
iactive = output->activation * PepStrength 

if (N_DEBUG) printf{"output %d - activ %f, 
pos sumsyn \n·,i,output->activation); 

emulation * / 

transformed here */ 

and this one * / 

1* ADD section here for Model 3 - - better 

1* we get matrix references to layer 3 

if ( layecnum == 3) 
iI = OLlndex[i]; 

else 
iI = i; 

1* Mult by the distance between the node 

1* and store, delayed by the 
distance/diffusion analogy */ 

switch(layer _diff) 
{ 
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case (0): 1* do intra-layer activations */ 
DPtr->prevPtr->dlist[ucnt] += iactive 

* iMatrix[n][iJ]; 

1* delay list */ 
break; 

case (1): /* do 1 st order extra-layer 
activation */ 

D Ptr->p revPtr-> p revPt r->dl ist[ucnt] 
'+= iactive * eMatrix[n][iJ]; 

1* delay list */ 
break; 

case (2): 1* do 2nd order extra-layer 
activation */ 

DPtr->prevPtr->prevPtr->prevPtr
>dlist[ucnt] += iactive * exMatrix[n][iJ]; 

1* delay list */ 
break; 

} 
} 1* End for each node in the output layer */ 

} /* End for the output layer */ 
} 1* End for each layer */ 

} 1* exit */ 

Ipcalc(ucnt,network) 1* */ 
int ucnt; 
NETWORK *network; 
{ 

int i,iI,n,cur_layer,layer _num ,layer _diff; 
int n_inputs; 
register int nips; 
SYNAPSE *synapses; 
register SYNAPSE *syn; 
register float iactive,sum; 
NEURON *inputs,*output, *end_out; 
register NEURON *ips; 
LA YEA *Iayer; 
float sumsynapse; 

extern int OUndex[]; 
for output nodes */ 
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extern float PepLeak; 
extern DelayLinePtr DPtr; 

1* This routine is called by noise_calcO - once for each node 
in the network. 

* Here we have to calculate the 'noise' reaching the node 
from the rest of 

* the network - comprised of the synaptic leakage of all 
other nodes 

*/ 

if (N_DEBUG) printf(·Leak = %-1.8f, Node %dU,PepLeak,ucnt); 

if ( ucnt < 16) 
First Layer */ 

{ 

} 

n=ucnt; 
cur_layer=1 ; 

if ( ucnt > 15 && ucnt < 31) 
{ 

} 

n=ucnt-15; 
cur_layer=2; 

/ * 

1* Second Layer */ 

if ( ucnt > 30 && ucnt < 39) 1* Output Layer - use index 
* / 

{ 

} 

n=OLlndex[ucnt-30]; 
cur_layer=3; 

if (N_DEBUG) printf(·, node index = %d, layer = 
%d\n· ,n,cur_layer); 

1* n is the node index inside the layer and tells us which 
matrix element to use. . 

* ie. it's the index number of the current node to be 
computed in the layer * / 

1* Here's where we get the 'Leakage' activation from each 
node */ 

1* Start at layer 2 (of nodes) as there won't be any -Leakage
from */ 
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1* input nodes */ 
for (layer_num=2,layer= network->first_layer; layer layer= 

layer->next_layer,layer_num++ ) 
{ 

synapses = layer->synapses; 
n_inputs = layer->n_inputs; 
inputs = layer->inputs; 
output = layer->outputs; 
end_out = layer->n_outputs + output; 
layer_diff = abs(layer_num - cur_layer); 1* layer 

differential */ 

if(N_DEBUG) printf(·Layer Differential = 
%d\n- ,Iayer_diff); 

I*calc p-Ieak through this layer */ 
for( i=1; output < end_out; output++,i++) 
{ 

1* all secondary msger activation in this 
part emanates from synapses!!!!! */ . 

. 1* PEP _LEAK% is leaked from synapses of 
the target cell */ 

/* and is related to the binding of peptides 
by PEP_STRENGTH */ 

/* This obviously only works for the last 2 
layers */ 

iactive = output->rawact * PepLeak; 

if (N_DEBUG) printf(·rawact = %f\n- ,output-
>rawact); 

1* we get matrix references to layer 3 
transformed here */ 

iMatrix[n][il]; 

if ( layer_num == 3) 
if = OLlndex[i]; 

else 
if = i; 

switch(layer _diff) 
{ 
case (0): 1* do intra-layer activations */ 

DPtr->prevPtr->dlist[ucnt] += iactive * 

1* delay list */ 
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break; 

case (1): /* do 1 st order extra-layer activation */ 
DPtr->prevPtr->prevPtr->dlist[ucnt] += 

iactive * eMatrix[n][il]; 

/* delay list */ 
break; 

case (2): /* do 2nd order extra-layer activation 
* / 

DPtr->prevPtr->prevPtr->prevPtr
>dlist[ucnt] += iactive * exMatrix[n][il]; 

/* delay list */ 
break; 

} 
} 

} 
/* and exit */ 

} 

1* Zero the synapse sums throughout the net * / 
void zerosyn(network) 
NETWORK *network; 
{ 

int n_inputs; 
NEURON *inputs; 
LAYER * layer; 

I*loop forward through all layers */ 
for (Iayer= network->first_layer; layer layer= layer-

>next_layer) 
{ 

n_inputs = layer->n_inputs; 
inputs = layer->inputs; 

for(; --n_inputs, >= 0; ) 
each node */ 

(inputs++ )->sumsyn = 0; 
) 

} 
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1* Add the noise produced by P-activation to the nodes of the 
network */ 
void noise_add(network) 
NETWORK * network; 
{ 

/* For each value in DPtr->dlist[i], add in to the activation 
cycle of the 

* relevant node in the network. This can be done either by 
adding into 

* the actual activation, or by adding a factor to the weights 
*/ 

int n_inputs,i; 
SYNAPSE *synapses; 
NEURON *inputs,*output,*end; 
LAYER *Iayer; 

if(N_DEBUG) printf(Madding noise\nM); 

. /*Ioop forward through all layers */ 
for ( i=1,layer= network->first_layer; layer ; layer= layer

>next_layer) 
{ 

n_inputs = layer->n_inputs; 
inputs = layer->inputs; 

for(; --n_inputs >= 0; i++,inputs++) 
1* For each node */ 

{ 
inputs->activation += DPtr->dlist[i]; / * 

Add P-activation */ 
if(N_DEBUG) printf(·node %d - noise %f\n·,i,DPtr-

>dlist[i]); 
} 

} 
/* Last layer only ---- calc for the 
layer = network->last_layer; 

outputs as well*/ 

output = layer->outputs; 
end = layer->n_outputs + output; 
for ( : output < end; output++,i++) 

layer */ 
{ 

activation 
output->activation += DPtr->dlist[i]; 
*/ 

1* Do last 

1* Add P-

if(N_DEBUG) printf(·node %d - noise %f\n·,i,DPtr-
>dlist[i]) ; 
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} 
} 

/****** end of peptidergic addition *************/ 

1* Logistic function for back prop model */ 

float logistic(x) 
float x : 
{ 

extern float expO; 

1* Find out if it's over the capabilities of the system */ 

if (x > 11.5129) 
return(.99999); 

else 
if (x < -11.5129) 

return(.00001 ); 

1* or otherwise */ 
/* Calculate logistic */ 

return«(1.0/(1.0 + (float) exp«double) «-1.0) * x» »»; 

} 

1* Create a new network of n_layer synapse layers with 
n_neurons_ip[i] input neurons and 
n_neurons_op[i] output neurons 
for each layer. 
returns ptr to network or 0 if out of memory 
* / 

NETWORK *new_network(n_layer,neurons_ip,neurons_op) 
int n_layer[], neu rons_i p[], neu rons_op[]; 

, { 
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NETWORK *network; 
int i,j,n_inputs; 
LAYER *Iayer, *prev_layer=O; 
extern char *callocO; 
NEURON *inputs; 

network = (NETWORK *)calloc(1,sizeof(NETWORK)); 
if (! network) 

return 0 ; 

for ( i=O; i < n_layer[O]; i++, prev_layer=layer) 
{ 

layer = (LAYER *)calloc(1,sizeof(LAYER)); 
if(! layer) 

return 0; 

layer->n_inputs = neurons_ip[i]; 
layer->n_outputs = neurons_op[i]; 
layer->number = i+ 1 ; 
if (BIG_DEBUG) printf(lI layer %d allocating ... \n-,i+1); 
layer->inputs = (NEURON *)calloc(layer-

>n_inputs,sizeof(NEURON)); 
if(! layer->inputs) 

return 0; 

n_inputs = layer->n_inputs; 
inputs = layer->inputs; 
for(j=1;j <= n_inputs;j++) 
{ 

(inputs++)->number = ((i+1)*100)+j; 
if (BIG_DEBUG) printf(1I Input cell %d 

allocated .... \nll,j) ; 
} 

if(prev _layer) 
{ 

} 
else 

layer->prev_layer = prev_layer; 
layer->prev _layer->next_layer = layer; 
°layer->prev_layer->outputs = layer->inputs; 

network->first_layer = layer; 

layer->synapses = 
(SYNAPSE *)calloc(layer->n_inputs*layer

>n_outputs,sizeof(SYNAPSE)); 
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if( I layer->synapses) 
return 0; 

if(useMomentum II useGRA) 
{ 

layer->history = 
(SYNAPSE *)calloc(layer->n_inputs*layer-

>n_outputs,sizeof(SYNAPSE)); 

} 
else 

if(l layer->history) 
return 0; 

layer->history = 0; 

layer->weds = 
(SYNAPSE *)calloc(layer->n_inputs*layer

>n_outputs,sizeof(SYNAPSE)): 
if( I layer->weds) 

return 0; 

} 

layer->outputs = (NEURON *)calloc(layer
>n_outputs,sizeof(NEURON)); 

} 

if(! layer->outputs) 
return 0; 

n_inputs = layer->n_outputs; 
inputs = layer->outputs; 
for(j=1;j <= n_inputs;j++) 
{ 

(inputs++)->number = 900+j; 
if (BIG_DEBUG) printf(· output cell %d a"ocated .... \n· ,j); 

} 

network->last_layer = layer; 
return network; 

1* Feed activation forward through the network */ 
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feedforward(network) 1* *1 
NETWORK *network; 

{ 
int n_inputs,i; 
SYNAPSE *synapses; 
NEURON *inputs, *output, *end_out; 
LAYER *Iayer; 

1* loop forward through all layers *1 
for ( i=16,layer= network->first_layer; layer layer= layer-

>next_layer) 
{ 

synapses = layer->synapses; 
n_inputs = layer->n_inputs; 
inputs = layer->inputs; 
output = layer->outputs; 
end_out = layer->n_outputs + output; 

I*feed activation forward through this layer */ 
fore ; output < end_out; output++, synapses 

+=n_inputs,i++) 
activ_calc(n_inputs,inputs,output,synapses,i); 

} 
} 

1* calculate activation for feedforward *1 
activ _calc(n_inputs,inputs,output,synapses,i) 1* */ 

register int n_inputs;1* No. of i/p neurons *1 
register NEURON *inputs;1* vect of i/p neurons *1 
NEURON *output;1* o/p neuron */ 
register SYNAPSE *synapses;1* vect of synapses on o/p */ 
int i; 

{ 

register float sum = 0; 

r Here we assume that the unit has an intrinsic *1 
I * -will- to communicate despite whether the */ 
r node will be allowed to learn bias or not *1 

sum = output->bias; 1* Delete for a test sometimes */ 
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1* feed i/p activation forward by accumulating products */ 
while (--n_inputs >= 0) 
{ 

1* This bit is for P-activation gathering, and is here 
because 11m 

lazy. 
* trying to save some time, rather than because 11m 

* This variable is zeroed in function: npcalcO 
*/ 

/* inputs->sumsyn += *synapses;*/ 

if (BIG_DEBUG) 
printf(Usynapses %f i/p activation 

%f\n-, *synapses ,inputs->activation); 

sum += «*synapses++) * (inputs++)->activation) 

} 
1* save raw activation for leak calculation */ 
output->rawact = sum; 

I*if (use Noise) 
sum += DPtr->dlist[i];*/ 

I*if (N_DEBUG) printf(-noise was %1\n- ,DPtr->dlist[i]);*/ 

output->activation = logistic(sum); 
if (BIG_DEBUG) printf(lIcelJ %d bias %f, calc activation as 

%f\n- ,output->number ,output->bi as ,output->activation); 

} 

1* feed errors back through all layers of the network* / 
feedback(network) /* */,' 
NETWORK *network; 

{ 
int n_inputs; 
SYNAPSE *synapses, *history, *weds; 
NEURON *inputs l *output, *end; 
LAYER *Iayer; 
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I*loop back through all layers */ 
for(layer = network->last_layer; layer; layer = layer

>prev_layer) 
{ 

1* clear prev errors * / 
n_inputs = layer->n_inputs; 
inputs = layer->inputs; 
while(--n_inputs >= 0) 

(inputs++)->errors = 0.0; 

1* feed errors back through this layer */ 
n_inputs = layer->n_inputs; 
inputs = layer->inputs; 
output = layer->outputs; 
synapses = layer->synapses; 
weds = layer->weds; 
history = layer->history; 
end = output + layer->n_outputs; 

for(; output < end; output++,synapses += n_inputs, 
history +=n_inputs, weds +=n_inputs) 

} 

del t a_ ca I c (n_i n puts, i n puts, 0 u t p ut, sy nap s e s, hi st 0 ry ,wed s) ; 
} 

1* Calculate delta and errors for feedback */ 

delta_calc(n_inputs,inputs,output,synapses,history ,weds) 1* */ 
register int n_inputs;1* No. of i/p neurons */ 
register NEURON *inputs;/* vect of i/p neurons */ 
NEURON *output;1* o/p neuron *1 
register SYNAPSE *synapses;1* vect of synapses on o/p */ 
SYNAPSE *history;1* vect of synapse history */ 
SYNAPSE *weds;1* weight error derivatives */ 

{ 
float weight,noise;1* synapse weight */ 
float error,delta;1* unit error and delta terms */ 
float dbias,bias;/* for bias calculation */ 
float fback,x;1* for feedback */ 
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extern float frate,PepFactor,TotFact;1* Learning rate *1 
extern unsigned short ranSeed1,ranSeed2; 1* Random 

number placeholders *1 
extern int update,updateGRA,useGRA; 1* indicators for 

extensions *1 
extern DelayLinePtr DPtr; 

1* calculate delta for this unit *1 
delta = output->errors * output->activation * 
(1.0 - output->activation); 

if (BIG_DEBUG) printf(·cell %d calcd delta %f prev error %f 
o/p activation %f\n·,output->number,delta,output->errors,output
>activation); 

1* For all input units connecting to this layer *1 
while(--n_inputs >= 0 ) 
{ 

1* Continue Calc of previous layer errors *1 
fback = delta * (*synapses); 
inputs->errors += fback; 

if(BIG_DEBUG) 
printf(Nn_inputs %d *synapse %f delta %f ip.err %f 

\nfedback %f ip.activ %f\nN,n_inputs, *synapses,delta,inputs
>errors, fback,inputs->activation); 

if(BIG_DEBUG) printf(Aweds was %f ·"weds); 

1* save the weight error deriv for batching *1 
*weds += (SYNAPSE) (delta * inputs->activation); 

if(BIG_DEBUG) printf(Nis now %f\nN,*weds); 

1* If update flag is set - do all the gradient calcs *1 
if( update) 
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{ 

/* calc new weight : delta-weight = learning rate 
* delta * input * / 

weight = (*weds * frate); 

if(BIG_DEBUG) 
printf(lInew delta %f i/p activation %f rate 

%f\n·, weight,inputs->activation, frate): 
if (BIG_DEBUG && error != 0) 

printf(lI%d,%d old weight %f \n·,inputs
>number,output->number, *synapses); 

} /* end if ( update )*/ 

/* common code for update operations */ 
if( update) 
{ 

/* Add momentum if turned on */ 

if (useMomentum) 
{ 

weight += (0.9 * (*history));/* add 
momentum to error */ 

if(BIG_DEBUG) printf(Hold hist is %f new 
hist is %f\nll,*history,weight); 

*history = (SYNAPSE)weight; /* save error 
for next cycle */ 

} 

/* zero the weight error derivative for next batch 
if update only *1 

if( update) *weds = 0; 
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1* If weights plus random noise are required -
add in here * / 

if (useNoise) 
{ 

1* add noise to new weight * / 
noise = 

NOISE(ranSeed1,ranSeed2,PepFactor); 1* Add total noise */ 
weight += noise; 
TotFact += noise; 
if(N_DEBUG) printf(·noise was %f\n·,noise); 

} 

1* put weight into synapse */ 
*synapses += (SYNAPSE) weight; 

. if(BIG_DEBUG) printf(UNew synapse is 
%f\n·, *synapses); 

1* Check for over or underflow of synapse value 
range */ 

if (*synapses > MAX_SYNAPSE ) 
*synapses = MAX_SYNAPSE;/* Limit weight 

in case of overflow */ 
else if (*synapses < -MAX_SYNAPSE) 

*synapses = -MAX_SYNAPSE; 1* Same for 
underflow */ 

} 

} 1* end if (update ) */ 

1* increment weights synapse pointer */ 
synapses++; 
1* increment weight error derivative pOinter */ 
weds++; 
/* increment inputs index */ 
inputs++: 
1* increment history if necessary * / 
if(useMomentum) history++; 

1* Calculate the unit bias if turned on */ 
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if ( use Bias ) 
{ 

1* calculate bias term */ 
1* save bias error derivative for batching */ 
output->bed += delta; 
if (update) 
{ 

dbias = (frate*delta) 
if (useMomentum) 
{ 

} 

dbias += 0.9*output->0Iddbias; 
output->olddbias = dbias; 

bias = dbias + output->bias; 

1* zero the bias error derivative for next batch */ 
output->bed = 0; 

1* Check for over or underflow of bias value range 

if (bias> MAX_BIAS) 
bias = MAX_BIAS;/* Limit bias in case of 

overflow */ 
else if (bias < -MAX_BIAS) 

bias = -MAX_BIAS; 1* Same for underflow 
* / 

if (BIG_DEBUG) 
printf(lI%d old bias %f, new bias 

%f\nll ,output->number,output->bias,bias); 

output->bias = bias; 

} /* end if update * / 

} 

} 
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Appendix A: Program Listings 

/* add a signed pseudo random value to all weights of a network */ 
1* ditto the bias values of all units */ 
/* also zeros the network weds and beds */ 
1* Returns a floating point number from -maxl100 to +maxl100 *1 

randomise(network,max,seed) 
NETWORK *network; 
float max; 
long seed; 

{ 
static unsigned short seed1,seed2 = 65535; 
float div = 32768.0/max; 
register SYNAPSE *weight, *end, *wed, *history; 
LAYER *Iayer = network->first_layer; 
NEURON *output; 
int n_outputs; 
extern unsigned short ranSeed 1, ranSeed2; 

seed1 = seed; 
do 
{ 

weight = layer->synapses; 
wed = layer->weds; 
if(useMomentum) history = layer->history; 
if (weight) 
{ 

end = weight + layer->n_inputs * layer-

do 
{ 

*weight 
=(((short)((long)((U2RAND(seed1 ,seed2»-32768»)/div)/1 00.0; 

if (useMomentum) *history++ = 0; 
*wed++ = 0; 
if (BIG_DEBUG) printf{-weight 

%f\n-, *weight); 
welght++; 

} 
while(weight < end); 

} 

output = layer->outputs; 
n_outputs = layer->n_outputs; 
while(--n_outputs >= 0) 
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{ 
output->bias = 

«(short)((long)((U2RAND(seed 1 ,seed2))-32768)))/div)/1 00.0; 
output->olddbias = 0; 
(output++)->bed = 0; 

} 
} 
while (layer = layer->next_layer); 

if (BIG_DEBUG) 
printf(·Example random number 

%f\n· ,(((short)( (Iong)( (U2RAND(seed 1 ,seed2))-
32768)))/div)/100.0); 

} 

ranSeed 1 = seed 1 ; 
ranSeed2 = seed2; 

/*********** END of include file ·NN.h· *************/ 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML BPPML 
0.00 Learnina 1608 1608 
0.05 Rate 0.5 1087 2865 356 1087 1315 
0.10 990 1750 393 990 1250 
0.15 452 1703 372 452 1305 
0.20 1979 11444 715 289 11444 715 1727 
0.25 2275 1469 12535 662 152 12535 662 2168 
0.30 2237 1491 13506 835 189 13506 835 4709 
0.35 2237 1428 13703 558 643 3924 13703 558 13097 
0.40 1915 286 11401 383 583 1980 11401 383 
0.45 1438 305 854 1560 854 
0.50 1428 371 1559 1468 
0.55 654 373 1563 139 
0.60 820 396 1 121 2331 
0.65 511 296 1598 303 
0.70 473 283 1010 972 
0.75 473 321 962 
0.80 529 220 1250 
0.85 505 445 961 
0.90 472 1018 3479 
0.95 437 522 
1.00 4148 537 
1.05 4174 1136 
1.10 4169 175 
1.15 11559 1000 
1.20 1121 
1.25 11574 160 
1.30 475 
1.35 1184 
1.40 208 
1.45 3448 
1.50 2088 
1.55 409 

1.60 1058 
1.65 1204 
1.70 2571 
1.75 457 
1.80 431 
1.85 1194 
1.90 1519 
1.95 963 
2.00 . 

Data from Prellmmary tests on NOise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML BPPML 
0.00 Learning 8713 789 8713 789 
0.05 Rate 0.5 9720 415 9316 977 2529 119 9316 977 986 
0.10 2923 423 9340 533 80 9340 533 1000 
0.15 2671 164 9033 712 259 9033 712 995 
0.20 3575 168 7866 998 102 7866 998 960 
0.25 12740 163 6764 1832 273 6764 1832 963 

r-Q.~..Q. _§"~~1. 801 7196 360 342 262 7196 360 939 ft ___ ~_ ---_ ... -----r----- ... --- ---------..... ----- -----0.35 4343 520 8037 309 339 68 8037 309 962 
0.40 1969 457 7199 532 342 72 7199 532 1028 
0.45 10558 354 12155 763 12155 763 1009 
0.50 1118 427 7942 1499 7942 1499 791 
0.55 952 330 8683 6921 8683 6921 564 
0.60 952 473 19137 19137 739 
0.65 948 324 14450 14450 557 
0.70 320 412 
0.75 166 
0.80 224 9839 9839 
0.85 450 
0.90 224 

_Q.&..e ----_ .. ---- 355 -----r---- ~---. ---_ ... r----- -----" ----~ -----1.00 523 
1.05 232 
1.10 1134 
1.15 3139 
1.20 987 
1.25 2981 
1.30 1179 
1.35 579 
1.40 1066 
1.45 285 
1.50 312 
1.55 1313 
1.60 309 r.---- ---------- -----r----- ---_ . . ---~- ---------- r-.----1.65 312 
1.70 459 
1.75 486 
1.80 195 
1.85 1542 
1.90 297 
1.95 729 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-x = 
-p = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix 8: Preliminary Results of Pilot tests 

Noise seed 43 BPN BPMN BPL BPML BPXL BPXML BPNL BPNML 
0.00 Learning 10784 378 10784 378 
0.05 Rate 0.5 13362 1118 10617 888 10617 888 1848 84 
0.10 5508 709 9822 423 9822 423 1888 130 
0.15 2909 353 8352 543 8352 543 794 100 
0.20 2741 277 6596 513 6596 513 836 77 
0.25 1809 320 6181 231 6181 231 1733 35 
0.30 1842 107 6539 649 6539 649 1712 212 
0.35 804 78 7500 248 7500 248 1021 212 
0.40 1039 77 10117 250 10117 250 684 350 
0.45 1453 127 8759 575 8759 575 637 112 
0.50 910 77 8531 344 8531 344 612 96 
0.55 1023 77 9444 862 9444 862 877 108 
0.60 53 8164 242 8164 242 640 104 
0.65 5599 462 10247 57 10247 57 1198 2599 
0.70 5926 129 9446 1140 9446 1140 963 1637 
0.75 9978 50 12154 17288 12154 17288 1022 1163 
0.80 5579 54 6458 199 6458 199 1074 1563 
0.85 3568 86 11592 6473 11592 6473 838 767 
0.90 5603 2029 17692 17692 858 2801 
0.95 1071 1761 964 
1.00 15610 1432 1761 
1.05 109 
1.10 2218 
1.15 721 
1.20 2041 
1.25 1001 
1.30 1384 

1.35 1417 
1.40 3516 
1.45 1393 

1.50 1124 

1.55 2474 

1.60 463 

1.65 1018 

1.70 1527 
1.75 484 
1.80 416 
1.85 1900 
1.90 548 

1.95 4121 

2.00 
Data from Prellmmary tests on NOise parameters effect on 
network performance, number represents iteration of convergence. 

8P = 
-M = 
-N = 
-L = 
-x = 
-P = 

KEY: 

8ack Propagation base model 
Momentum term added 
Random Noise added 
Leak (,peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 LearninQ 
0.05 Rate 0.75 553 1598 341 553 
0.10 478 1071 388 478 
0.15 4080 150 1615 74 150 
0.20 1981 1420 7656 184 697 148 7656 184 
0.25 1858 1445 8322 201 545 214 8322 20-1 

J>...:~Q. !------_,g1,Q,1 ... J~~..z. ~~~'! 288 678 49 r~~§"1 288 
----~ i----- ~----.;.. -----;;. 

0.35 2186 285 8776 95 554 8776 95 
0.40 1799 253 7298 290 569 2040 7298 290 
0.45 1651 280 727 1550 1431 727 
0.50 547 391 1379 546 230 1379 
0.55 455 254 1549 301 
0.60 440 1418 1589 833 
0.65 437 271 1612 2326 
0.70 440 250 1010 3427 
0.75 581 298 9401 1679 9401 
0.80 539 182 1556 
0.85 473 349 1587 
0.90 475 213 1689 

rQ.:~§' 480 556 _!~i.I ------------;...---- r---- ----- ~-----r---- ----_ .... 
1.00 472 175 
1.05 731 1033 
1.10 4130 270 
1.15 4174 1179 
1.20 2643 1128 
1.25 8652 1181 
1.30 11568 564 
1.35 4181 1182 
1.40 11641 950 
1.45 11593 1120 
1.50 1311 
1.55 1183 

i-1...:~Q ------- i----- 499 --------- -----i-----fr-----------------
1.65 16288 1328 
1.70 3506 
1.75 929 
1.80 2833 
1.85 2011 
1.90 2056 
1.95 
2.00 

Data from Preliminary tests on NOise parameters effect on 
network performance. number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 0.75 3773 347 6199 600 2528 97 6199 600 
0.10 2670 186 6218 669 80 6218 669 
0.15 2664 163 6006 362 57 6006 362 
0.20 3568 164 5350 698 2061 94 5350 698 
0.25 1582 127 4640 410 82 410 410 
0.30 1557 153 4948 199 341 38 199 199 
0.35 1562 69 4922 148 338 56 148 148 
0.40 1123 133 4596 159 337 51 159 159 
0.45 1123 507 9795 343 826 343 343 
0.50 1122 460 4620 1040 1040 1040 
0.55 975 463 5472 1767 1767 1767 
0.60 931 1008 19272 19272 19272 
0.65 339 1016 16577 16577 16577 
0.70 339 605 11307 11307 11307 
0.75 338 394 
0.80 1444 217 
0.85 965 463 
0.90 1662 1056 
0.95 960 473 
1.00 298 1026 
1.05 1046 
1.10 1026 
1.15 333 1013 
1.20 219 
1.25 472 
1.30 197 
1.35 1324 
1.40 11670 193 
1.45 1179 
1.50 3762 
1.55 224 
1.60 1310 
1.65 2102 
1.70 321 
1.75 834 
1.80 292 
1.85 405 
1.90 2566 
1.95 188 
2.00 

Data from Preliminary tests on NOise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
- L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 0.75 6053 177 7070 348 1740 99 7070 348 
0.10 4952 351 6616 488 711 35 6616 488 
0.15 2907 330 5656 198 704 42 5656 198 
0.20 1837 216 4484 193 1731 68 4484 193 
0.25 1981 101 4118 58 706 38 4118 58 

_q.30 820 76 iiL~ 147 705 68 4411 147 --- !"'---:- ----~ r-1404 i-------------_ ... 
0.35 903 78 5016 190 54 5016 190 
0.40 1311 42 6547 185 639 63 6547 185 
0.45 903 94 6108 1094 591 77 6108 1094 
0.50 823 73 5757 783 595 49 5757 783 
0.55 910 47 6392 86 674 51 6392 86 
0.60 1437 62 5005 294 608 112 5005 294 
0.65 1027 70 6355 44 617 690 6355 44 
0.70 1055 78 6437 161 1568 3382 6437 161 
0.75 5602 69 8129 1601 12482 8129 
0.80 3558 72 4534 1409 1645 969 4534 1409 
0.85 1342 2445 7691 389 763 3638 7691 389 
0.90 3568 54 1394 922 1394 

J>~~~ 5533 1091 2442 933 232 ----- 2442 ------ ---------- ----- -----r----------- -----";;, 
1.00 3551 1000 338 338 
1.05 326 
1.10 11263 357 
1.15 5164 2176 
1.20 389 
1.25 361 
1.30 1334 
1.35 995 
1.40 1872 
1.45 996 
1.50 1051 
1.55 2003 

994 r-~~Q -- --- ~------. 1----- ----- '-----------------------1.65 1082 
1.70 999 
1.75 2456 
1.80 2082 
1.85 979 
1.90 1908 
1.95 3459 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 LearninQ 
0.05 Rate 1.0 1471 280 1880 396 280 
0.10 3944 218 1942 338 218 
0.15 2036 101 2750 64 101 
0.20 1872 1959 5742 51 566 214 5742 51 
0.25 1731 2038 6187 139 527 67 6187 139 

.Q.:..~ ---- r-~.Q2,g ~J_4.1~. §"~!!.1 203 f--~~§. 64 !-2.§..~1 20.~ ----;;;. i----
0.35 1938 558 6380 77 547 1422 6380 77 
0.40 1799 1433 5293 105 440 1985 5293 105 
0.45 1800 447 8181 521 1410 8181 
0.50 455 543 825 1425 1695 825 
0.55 455 307 1502 1122 
0.60 454 238 903 
0.65 637 210 2801 2751 
0.70 580 369 2105 2803 3918 2105 
0.75 510 1186 5998 5998 
0.80 425 250 887 1579 887 
0.85 510 643 1127 
0.90 1192 173 

.Q.:..~ ------ r-l~2,g 1199 .... ---...;. ---- ---------10----1----- ..... --
1.00 429 351 
1.05 431 175 
1.10 234 348 
1.15 554 929 
1.20 2647 911 
1.25 268 1678 
1.30 267 255 
1.35 6876 1083 
1.40 2040 1167 
1.45 385 552 
1.50 11574 1181 
1.55 19032 1506 
, .60 ------ r-~~2Z 353 ---- ~---- ---- -----!-----1------!----
1.65 11647 1024 
, .70 4976 1194 
1.75 1460 
1.80 1741 
1.85 3483 
, .90 1103 
1.95 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performa,nce, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-x = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 1.0 3768 264 4656 348 92 4656 348 
0.10 2669 162 4660 333 68 4660 333 
0.15 2611 150 4487 298 165 4487 298 
0.20 2986 102 4003 80 2062 53 4003 80 
0.25 1582 102 3428 108 342 68 3428 108 
0.30 1558 104 3473 36 339 77 3473 36 
0.35 1551 167 3484 32 338 23 3484 32 
0.40 1123 132 3337 158 84 3337 158 
0.45 336 203 5319 276 706 5319 276 
0.50 336 930 3465 2171 3465 2171 
0.55 336 442 4072 3460 4072 3460 
0.60 910 451 5754 5754 
0.65 329 1009 8999 8999 
0.70 260 982 
0.75 329 298 19751 
0.80 338 1014 10649 10649 
0.85 3157 1017 5690 
0.90 928 289 9775 
0.95 302 1004 
1.00 1151 1074 
1.05 341 984 
1.10 1562 325 
1.15 316 442 
1.20 335 97 
1.25 1173 
1.30 1168 
1.35 296 
1.40 1578 141 
1.45 949 
1.50 569 
1.55 282 
1.60 363 
1.65 235 
1.70 207 
1.75 931 
1.80 1121 
1.85 1262 
1.90 975 
1.95 405 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance. number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 1.0 5166 330 5255 114 1749 129 5255 114 
0.10 3179 130 4995 204 1664 135 4995 204 
0.15 1743 74 4337 226 1290 33 4337 226 
0.20 3153 44 3519 82 707 60 3519 82 
0.25 1982 53 3143 121 709 26 3143 121 
0.30 872 44 ~1..f!.~ 76 r--?.lQ 33 r-~i~2 ~ft~ ----- 1----- ----~ 1-----0.35 1034 45 3911 88 670 127 3911 
0.40 508 200 4834 52 579 33 4834 52 
0.45 877 38 5010 708 600 80 5010 708 
0.50 895 45 4424 120 549 64 4424 120 
0.55 1055 75 4975 118 580 55 4975 118 
0.60 1767 92 3780 169 245 63 3780 169 
0.65 878 486 4604 1372 590 363 4604 1372 
0.70 953 77 4912 539 511 4912 539 
0.75 3568 48 6214 19756 212 6214 19756 
0.80 2812 85 8882 3176 1125 1017 8882 3176 
0.85 9981 340 5690 377 763 3633 5690 377 
0.90 1337 47 9775 868 1777 9775 
..Q.:..~ 891 ~J..9~~ 813 r--2.Q.§. 813 ------ r----- ---- ----~ 1----- ---1.00 3564 1452 
1.05 3635 2150 
1.10 1975 78 
1.15 11702 2013 
1.20 10527 1883 
1.25 2458 
1.30 1893 
1.35 13214 540 
1.40 1207 
1.45 6228 948 
1.50 1465 
1.55 2778 

"!.:..~Q. ------1----- 1419 
~----. ---- -----1-----1------1--

1.65 966 
1.70 983 
1.75 1204 
1.80 527 
1.85 359 
1.90 1120 
1.95 1875 
2.00 

Data from Prellmmary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
- L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise Seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 1.25 518 17962 205 1741 148 17962 205 
0.10 18353 387 1596 232 18353 387 
0.15 3840 58 1729 46 58 
0.20 1872 3767 4615 104 1711 53 4615 104 
0.25 1868 1655 4897 43 545 52 4897 43 

..Q~~C2 154.~ ~..1'§~ ~"?..9.J"?_ 217 569 56 -§'Q.~~ 217 - ---.-;- ---~~ -----;.. ~-----0.35 1427 2066 4982 191 521 1536 4982 191 
0.40 1440 383 4119 4018 613 4119 4018 
0.45 1421 537 9930 492 3789 9930 
0.50 1617 319 6201 459 6201 
0.55 455 480 1347 
0.60 454 365 
0.65 637 332 12491 1538 2342 12491 
0.70 523 1185 1026 
0.75 524 110 1639 
0.80 542 132 10750 1505 10750 
0.85 1192 195 2041 541 
0.90 609 177 6233 

..Q~~~ -----_ .. _1.~~ -~.§.!?.§ ------ ----- ---- ------ -----~-----1.00 1699 908 10643 
1.05 436 5001 
1.10 436 1113 
1.15 1188 206 
1.20 2609 1199 
1.25 230 1175 
1.30 268 393 
1.35 2197 3405 
1.40 381 219 
1.45 2600 236 
1.50 224 3322 
1.55 2834 1179 

1752 j~~C2 ------- --_ ... r-j~~.Q ~---- ----- ----~ ------ -----r------1.65 726 1758 
1.70 4983 997 
1.75 1091 
1.80 2845 
1.85 3247 
1.90 1120 
1.95 2848 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-x = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise Seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 1.25 3752 160 3720 223 63 3720 223 
0.10 2635 181 3743 300 2601 74 3743 300 
0.15 2554 122 3563 138 44 3563 138 
0.20 1159 114 3230 98 2062 120 3230 98 
0.25 1558 112 2629 88 342 30 2629 88 
0.30 3962 143 2731 85 329 64 2731 85 
0.35 1057 85 2707 162 349 34 2707 162 
0.40 335 152 3268 142 1423 34 3268 142 
0.45 334 59 3144 399 3144 399 
0.50 321 98 2938 6156 366 2938 6156 
0.55 329 456 3145 7987 3145 7987 
0.60 328 986 18248 10555 18248 10555 
0.65 137 321 8342 8342 
0.70 279 267 14532 14532 
0.75 339 1007 18239 4418 18239 4418 
0.80 136 1012 
0.85 399 419 
0.90 1593 1000 
0.95 1736 249 
1.00 298 209 
1.05 339 164 
1.10 682 1930 
1.15 298 155 
1.20 338 225 
1.25 312 390 
1.30 7350 655 . 
1.35 958 523 
1.40 1153 
1.45 11671 419 
1.50 1548 227 
1.55 1527 533 
1.60 279 
1.65 337 204 
1.70 805 
1.75 564 
1.80 205 
1.85 1273 
1.90 280 
1.95 254 
2.00 

Data from Prellmmary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
- L = 
-X = 
.p = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 
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Appendix B: Preliminary Results of Pilot tests 

Noise Seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 
0.05 Rate 1.25 4928 211 4201 196 1021 46 4201 196 
0.10 2607 129 4053 403 1740 83 4053 403 
0.15 1745 72 3555 228 881 112 3555 228 
0.20 2466 68 2849 88 709 45 2849 88 
0.25 1872 41 2580 38 707 26 2580 38 
0.30 605 43 2905 79 642 32 2905 79 
0.35 809 41 3317 124 701 66 3317 124 
0.40 749 37 3883 53 599 79 3883 53 
0.45 878 38 3940 83 610 45 3940 83 
0.50 507 36 2987 230 548 38 2987 230 
0.55 953 33 4654 77 541 3148 4654 77 
0.60 1025 3013 79 253 197 3013 79 
0.65 787 360 3808 81 708 697 3808 81 
0.70 605 72 3945 75 1174 605 3945 75 
0.75 3586 59 4768 8244 369 207 4768 8244 
0.80 508 42 2623 11495 1666 282 2623 11495 
0.85 508 107 4338 1003 763 696 .....1 3E 1003 
0.90 6921 337 11484 8644 517 1029 11484 8644 
0.95 3478 95 186 916 133 186 
1.00 3498 3538 750 
1.05 1443 4295 
1.10 2364 68 
1.15 2759 82 
1.20 9865 960 
1.25 3363 1907 
1.30 13586 1455 
1.35 13577 986 
1.40 5154 2524 
1.45 5365 1074 
1.50 1194 
1.55 11256 1410 
1.60 11259 3366 
1.65 964 
1.70 2116 
1.75 1210 
1.80 11258 1 1 1 4 
1.85 1967 
1.90 1114 
1.95 2718 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 

B.12 
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Appendix B: Preliminary Results of Pilot tests 

Noise Seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 289 289 
0.05 Rate 1.5 1577 15138 101 1588 73 15138 101 
0.10 16004 141 1596 150 16004 141 
0.15 2015 16744 31 1797 64 16744 31 
0.20 1872 1535 3771 38 1707 169 3771 38 
0.25 2185 1530 4044 63 418 49 4044 63 
0.30 1618 1433 4177 5697 421 38 4177 5697 
0.35 1547 1436 4054 308 440 244 4054 308 
0.40 1420 349 3306 3714 545 3306 3714 
0.45 1421 143 3772 1422 1697 3772 
0.50 683 128 1229 1385 1444 1229 
0.55 454 288 1386 2396 
0.60 424 268 1612 3345 
0.65 453 251 1774 
0.70 519 287 282 1085 282 
0.75 510 126 11229 11229 
0.80 426 82 993 
0.85 475 737 1370 
0.90 436 445 
0.95 527 449 1507 
1.00 482 471 
1.05 1192 942 
1.10 231 1165 
1.15 436 1101 
1.20 253 912 
1.25 566 3479 
1.30 528 1138 
1.35 1127 354 
1.40 327 1135 
1.45 1033 2515 
1.50 338 1084 
1.55 3220 2310 
1.60 1921 1177 
1.65 2704 2500 
1.70 2012 1110 
1.75 8755 520 
1.80 4982 1360 
1.85 19602 1090 
1.90 139 
1.95 4980 1179 
2.00 947 

Data from Prellmmary tests on Noise parameters effect on 
network perform~nce, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-p = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak (,peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 

B.13 



Appendix B: Preliminary Results of Pilot tests 

Noise Seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 LearninQ 2945 90 2945 90 
0.05 Rate 1.5 3752 133 3096 80 2446 185 3096 80 
0.10 2635 148 3121 181 972 75 3121 181 
0.15 2609 301 2979 192 2062 163 2979 192 
0.20 1537 291 2677 34 339 109 2677 34 
0.25 1554 259 2175 88 338 68 2175 88 
0.30 1548 163 2187 79 340 35 2187 79 
0.35 1954 163 2945 252 461 99 2945 252 
0.40 335 51 2875 887 75 2875 887 
0.45 219 102 2938 1040 727 2938 1040 
0.50 320 1240 2365 9934 2365 9934 
0.55 320 277 3028 3028 
0.60 87 1028 16350 8317 16350 8317 
0.65 311 450 5213 5213 
0.70 261 289 
0.75 160 1031 7027 7027 
0.80 162 1465 
0.85 327 999 
0.90 264 308 
0.95 337 434 
1.00 766 1255 
1.05 320 420 
1.10 320 1039 
1.15 284 1036 
1.20 304 261 
1.25 1561 208 
1.30 12834 220 
1.35 5855 309 
1.40 1153 406 
1.45 1062 208 
1.50 716 
1.55 1133 406 
1.60 9482 417 
1.65 236 
1.70 524 
1.75 695 
1.80 208 
1.85 246 
1.90 2845 
1.95 2391 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 

8.14 
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Appendix B: Preliminary Results of Pilot tests 

Noise Seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML 
0.00 Learning 3236 184 3236 184 
0.05 Rate 1.5 4925 141 3596 246 1019 35 3596 246 
0.10 2604 64 3356 458 794 112 3356 458 
0.15 1747 53 2971 105 880 48 2971 105 
0.20 1769 84 2401 47 709 45 2401 47 
0.25 1238 163 2250 346 719 31 2250 346 
0.30 ---f--!29 50 ~_3...?.! 91 668 39 ~. 2328 91 ----1-----1----- P ..... -

0.35 639 43 2804 75 642 50 2804 75 
0.40 691 30 3278 60 580 24 3278 60 
0.45 708 35 3459 55 627 157 3459 55 
0.50 327 37 2398 350 545 32 2398 350 
0.55 594 33 2945 41 614 33 2945 41 
0.60 504 40 2418 47 624 47 2418 47 
0.65 418 2789 3182 210 237 219 3182 210 
0.70 600 77 3353 2973 237 3353 2973 
0.75 923 54 4277 10003 338 612 4277 10003 
0.80 3508 47 5526 113 761 633 5526 113 
0.85 14283 38 5675 846 5675 15242 
0.90 1455 75 12284 15242 3184 361 12284 
0.95 f-§'§'§'§ 2576 107 __ JOl 

~----- f------ >-____ ft ----- r------ ~----- '----
1.00 2221 5905 883 
1.05 2414 1329 
1.10 1080 4721 
1.15 2117 2152 
1.20 2760 524 
1.25 1299 2621 
1.30 2761 1034 
1.35 5167 1121 
1.40 10511 2756 
1.45 7037 1473 
1.50 4170 1047 
1.55 8820 2206 
1.60 t-.1.1'§~ 2802 --- ------ f------ ----'" ----1-----..... ---- -----1.65 5342 3437 
1.70 6230 1369 
1.75 11259 1263 
1.80 6228 534 
1.85 11260 1957 
1.90 1982 
1.95 11258 1094 
2.00 

Data from Preliminary tests on Noise parameters effect on 
network performance, number represents iteration of convergence. 

BP = 
-M = 
-N = 
- L = 
-X = 
-P = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added 
Leak· ('peptidergic') added 
Without Auto-Activation of node in Leak mode 
Without Inter-Activation of the Node Plane in Leak Mode 

B.15 



Appendix C: Results of Final tests 

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML 
5 9540 1693 6617 
10 6400 510 2822 
15 4527 777 2275 
20 3611 361 18748 1827 
25 3020 1740 330 15001 1320 
30 18090 2486 1868 313 12505 481 
35 15487 2079 1738 96 10721 310 
40 13534 1754 1918 77 9379 273 
45 12010 859 1842 77 8334 284 
50 10784 378 1842 107 7500 248 
55 9779 571 1844 95 6816 266 
60 8944 504 879 61 6249 295 
65 8231 820 879 44 5775 206 
70 7611 268 1726 44 5367 154 
75 7062 514 820 76 5016 190 
80 6579 197 1709 75 4715 159 
85 6145 182 943 53 4450 136 
90 5758 257 891 67 4260 181 
95 5406 315 866 53 4088 196 

100 5072 291 872 44 3911 88 
105 4769 241 866 45 3783 65 
110 4504 205 1286 47 3683 37 
115 4262 240 797 43 3562 40 
120 4040 229 829 43 3423 114 
125 3845 180 605 43 3317 124 
130 3683 210 605 60 3269 120 
135 3555 192 819 54 3155 97 
140 3447 220 836 86 3032 84 
145 3344 243 866 53 2918 54 
150 3236 184 829 50 2804 75 
155 3124 58 832 51 2667 39 
160 3024 176 797 34 2511 39 
165 2965 40 642 38 2505 45 
170 2925 48 640 18 2434 49 
175 2868 57 866 27 2360 64 
180 2792 112 866 98 2321 70 
185 2708 137 835 60 2289 65 
190 2626 159 835 59 2256 68 
195 2545 119 835 59 2212 177 
200 2465 306 835 67 2172 156 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
- L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.1 



Appendix C: Results of Final tests 

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML 
205 2385 545 835 86 2137 67 
210 2303 1412 835 37 2058 34 
215 2233 2378 835 1990 46 
220 2221 2892 834 1324 1909 65 
225 2307 2753 636 2548 1827 48 
230 2270 4446 691 1768 51 
235 4624 691 1716 65 1-------- ---r--~~1~ i----- ----,...--- -----r---240 2165 4331 688 1668 80 
245 2097 2698 633 73 1618 146 
250 2003 31 637 31 1583 111 
255 1980 34 637 32 1563 71 
260 1941 26 636 30 1531 40 
265 1898 1654 706 43 1480 79 
270 1848 5667 1010 30 1432 142 
275 1867 8371 618 26 1419 55 
280 1805 10643 831 32 1350 82 
285 1801 10428 692 34 1385 195 
290 1670 10007 695 23 1384 223 
295 1630 8343 '689 47 1373 383 
300 I-!.~~~ r~.Q.§'§' 831 51 1348 34 

~------- ---- ----:------ -----r-----~ 
305 1558 3400 693 19 1290 49 
310 1660 64 831 1155 30 
315 1559 47 830 1241 28 
320 1534 38 689 1170 23 
325 1621 25 796 1175 35 
330 1514 34 804 1198 53 
335 1399 111 831 1260 23 
340 1512 1215 830 1100 41 
345 1450 2643 830 1149 15110 
350 1330 3701 804 968 
355 1303 5900 690 860 
360 1551 5846 796 844 7192 
365 ...1?.z..~ .. §§.§.~ 831 865 40 

~-------- ----- ---------- ----:--r----" 370 1267 7852 804 787 3518 
375 1361 8832 906 947 49 
380 1250 9789 638 965 11458 
385 1193 641 912 3127 
390 1372 638 1000 25 
395 1180 322 892 3096 
400 1042 611 814 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

8P = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.2 



Appendix C: Results of Final tests 

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML 
405 1298 794 864 
410 1008 640 918 
415 1108 797 1034 
420 1170 794 922 
425 1043 796 870 
430 1291 699 846 
435 991 797 783 
440 1182 508 828 
445 953 507 817 
450 929 624 774 
455 1243 833 715 
460 1204 800 748 
465 874 512 923 
470 1118 826 583 
475 1106 881 551 
480 888 1022 760 
485 865 665 901 
490 1011 794 876 
495 846 925 894 
500 1035 507 867 
505 953 508 876 
510 1096 1031 866 
515 1118 796 957 
520 924 323 957 
525 1017 323 892 
530 1093 614 893 
535 923 635 545 
540 1054 833 545 
545 1343 625 538 
550 951 507 465 
555 978 323 526 
560 1019 814 584 
565 928 605 754 
570 918 323 679 
575 950 606 867 
580 1052 505 894 
585 1055 322 880 
590 832 545 865 
595 1039 640 873 
600 924 786 894 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence, 

(BP = 
-M = 
-N = 
- L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0,3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C,3 



Appendix C: Results of Final tests 

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML 
605 1012 540 899 
610 1026 413 871 
615 932 796 823 
620 966 323 780 
625 939 796 755 
630 801 641 633 
635 861 322 588 1-------- ---r.----- ---- _ ..... _-r.------ -----1----640 881 613 496 
645 1004 817 682 
650 789 322 668 
655 1819 604 248 
660 872 322 428 
665 1101 323 728 
670 1620 636 723 
675 1553 323 604 
680 1244 605 153 
685 1176 94 
690 1205 227 487 
695 1636 689 450 
700 1571 249 515 r-----~------.... - -----1-----r----- ----1------ -----705 1670 475 520 
710 1565 552 471 
715 1558 599 480 
720 1510 598 116 
725 1576 122 
730 1502 599 433 
735 1426 755 740 
740 1190 249 27 
745 1 117 822 460 
750 1368 225 164 
755 676 601 501 
760 738 752 497 
765 r----- 265 ----- 322 i------ 677 .... -------... ----- ..... _-- -----.... ----770 634 499 629 
775 1547 506 623 
780 744 96 
785 1012 505 264 
790 1140 802 261 
795 1382 669 471 
800 898 702 139 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum te rm added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.4 



Appendix C: Results of Final tests 

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML 
805 971 412 
810 1289 607 359 
815 1369 604 58 
820 1273 317 433 
825 1850 344 487 
830 1307 593 394 
835 531 613 416 
840 1442 1309 541 
845 850 583 856 
850 815 469 
855 1331 301 1139 
860 1073 695 166 
865 2694 "552 306 
870 1369 621 579 
875 1370 297 
880 1084 92 
885 1352 299 
890 1174 536 
895 1131 480 
900 1245 705 271 
905 1012 435 
910 1694 507 27 
915 742 153 
920 1043 550 55 
925 1666 411 
930 2263 1320 187 
935 2083 844 
940 2392 40 
945 2189 960 56 
950 2102 323 143 
955 2809 817 719 
960 5053 270 
965 2406 108 
970 2686 775 
975 3215 318 
980 7913 2120 
985 13646 101 
990 2483 511 
995 3956 3504 
1000 3472 

Data from Fmal tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

(BP = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix C: Results of Final tests 

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML 
1005 3614 
1010 6896 
1015 3807 
1020 4373 
1025 4747 
1030 4924 
1035 4671 

i------- . -1-----!--- ---- ---- ----" 1040 5677 
1045 6029 
1050 6457 
1055 6445 
1060 10075 
1065 6775 
1070 7030 
1075 6791 
1080 7198 
1085 7341 
1090 7564 
1095 7590 
1100 t-~Q.!!'!!' r-.----. ~----- ----- t-----" --- ----- ----
1105 7372 
1110 7840 
1115 10539 
1120 10718 
1125 7990 
1130 6585 
1135 8214 
1140 8432 
1145 6632 
1150 6087 
1155 8606 
1160 8819 
1165 7224 ---- ---1-.... _-- 1----- ----1----- ----------" 1170 9007 
1175 9022 
1180 8510 
1185 9180 
1190 10446 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix C: Results of Final tests 

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML 
5 1623 10691 
10 1716 4984 
15 19708 1994 1438 3245 
20 14480 2024 1513 2432 
25 9953 2773 1427 1818 
30 6179 2276 1466 1427 
35 4123 J..?..?.2- 1469 .. :!'9~L ----- - - ---- ----- ----- ---40 2507 2102 1447 17447 879 
45 2211 2276 1490 15366 721 
50 1608 2237 1491 13703 558 
55 1441 2276 1430 12348 463 
60 1245 2102 1414 11223 388 
65 1058 2101 1437 10274 251 
70 969 2102 1429 9467 210 
75 865 2101 1445 8776 95 
80 719 2101 2059 8170 113 
85 622 2101 1535 7636 97 
90 568 2101 1522 7167 99 
95 544 2091 2042 6750 108 

100 ;...----- ---- 582 J..9.J"?- 2038 "~~~.Q. 2J._ .. -------- ----- _ ..... _--
105 636 2092 1525 6056 77 
110 588 2092 1401 5755 111 
115 446 2092 1430 5460 141 
120 378 2102 1430 5229 181 
125 352 1547 1454 4982 191 
130 341 1649 1403 4777 194 
135 329 1635 1506 4560 193 
140 322 1681 1456 4395 207 
145 292 1680 2017 4184 258 
150 289 1618 1433 4054 308 
155 19525 32_L 1581 1390 3879 433 
160 18933 467 1616 1357 3706 178 
165 1------ 1.~;!'fl.Q. _1..Q.L1. J.2J.2. 1418 ~~~i. 85 --------- ----- --...;;-
170 17858 1680 1621 1480 3445 117 
175 17377 1629 1620 1378 3290 96 
180 16917 1587 1634 1442 3178 98 
185 16471 1401 1621 1393 3126 97 
190 16051 1198 1617 1374 3042 112 
195 15578 1078 1578 1375 2935 189 
200 15146 941 1575 1388 2858 278 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
( -M = 

-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.7 



Appendix C: Results of Final tests 

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML 
205 14748 1064 1575 1985 2819 625 
210 14368 490 1716 1461 2701 782 
215 14003 265 1577 1472 2591 930 
220 13658 194 1700 1385 2493 996 
225 13330 186 1436 1467 2402 1169 
230 13025 334 1436 1367 2321 1387 
235 188 1588 2261 -------- ---- ~..?.11'§ ----" ---- f-l.1~~-1'-----_liiL 
240 12456 184 1552 1425 2256 1729 
245 12213 210 1575 1368 2316 1489 
250 11964 182 1575 1370 2257 1664 
255 11743 199 1597 2093 2036 
260 11521 250 1460 2000 2122 
265 11317 512 1489 1968 1980 1937 
270 11107 790 1964 1925 1994 1613 
275 10910 376 1828 1373 1973 1365 
280 10742 174 1548 1459 1915 1193 
285 10556 192 1579 2005 1977 1 1 1 8 
290 10371 2263 1617 1347 1747 1143 
295 10204 5349 1578 1415 1692 1457 
300 J..9..91..1 '§.Q.11~ 1434 1460 ~L~~IL ~1~~?. 1'--------- ----- ---- ------305 9863 6980 1679 1464 1735 1799 
310 9729 5379 1470 1460 1957 3899 
315 9604 3575 1711 1366 1804 1724 
320 9428 987 1430 1320 1742 1482 
325 9230 92 1423 1365 1740 7510 
330 9039 72 1496 1493 349 
335 8991 3107 1547 1934 1630 85 
340 8807 5224 1547 1471 1555 2811 
345 8731 5542 1426 1809 1608 
350 8547 9537 1929 1409 1578 51 
355 8349 10742 2172 1987 1542 85 . . .. 
360 8376 12497 1431 1244 46 
365 r-~!§'1 L~_4...4.. 1432 290 1340 41 1'--------------- ---"-~---------- ... ----370 8057 13637 1432 1199 1976 23 
375 7985 326 1644 1372 60 
380 7747 173 1742 1212 1095 67 
385 7835 220 1443 1355 1389 27 
390 7553 673 1741 1442 4015 39 
395 7547 812 1934 2904 1437 16751 
400 7484 2105 1621 1403 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak (,peptidergic') added (at 0.35 level) 

c.a 



Appendix C: Results of Final tests 

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML 
405 7336 6254 1608 3023 
410 7242 7881 1846 2016 
415 7018 8057 1936 855 
420 6927 825 
425 6836 5013 1456 
430 6816 190 1935 1432 
435 6695 6685 1547 1624 
440 6573 617 1549 2199 
445 6511 1426 2681 
450 6516 1545 2402 
455 6441 1934 3179 
460 6381 1577 5196 
465 6331 11164 1934 2443 
470 6099 577 1934 3602 
475 6157 9733 1428 3796 
480 6175 1538 5105 
485 6191 15824 1497 5863 
490 6005 198 1435 9577 
495 5775 192 1538 7222 
500 5708 1479 17429 
505 6088 9760 1491 12405 
510 5852 18230 
515 5609 6227 1915 
520 5601 1472 
525 5559 1491 
530 5735 1418 
535 5584 1619 
540 5455 1488 
545 5382 1491 
550 5264 1414 
555 5352 2103 
560 5104 1522 
565 5070 1419 -570 5109 1492 
575 5050 1491 
580 4847 1473 
585 4854 1635 
590 4596 1934 
595 4787 1468 
600 4887 1418 

Data from Fmal tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

~P = 
-M = 
-N = 
- L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.g 



Appendix C: Results of Final tests 

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML 
605 4942 1934 
610 4718 1657 
615 4776 1543 
620 4376 1545 
625 4547 1414 
630 4701 1491 
635 1543 -------- r-±§'Q.1. 

----~ ....... ---!---------------640 4398 1543 
645 4507 1543 
650 4448 1414 
655 4446 1425 
660 4472 1550 
665 4162 1642 
670 4410 1518 
675 4337 1506 
680 4203 1489 
685 4119 1479 
690 4343 1491 
695 4696 1521 
700 . r--1Q.~1 1543 

~--------.. ----- ---- ----r------ -----~----705 4779 1468 
710 4539 1544 
715 4093 
720 4385 1441 
725 5321 1518 
730 4743 1715 
735 4096 1469 
740 4709 1421 
745 4066 1467 
750 4498 1418 
755 5526 1436 
760 4038 1545 
765 5181 3927 -------- ----- r----- ----- ........... _- ------r----1-----770 3909 1458 
775 5566 1641 
780 6283 1715 
785 6188 1451 
790 5557 1405 
795 5464 2105 
800 5245 1435 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.10 



Appendix C: Results of Final tests 

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML 
805 10190 
810 6913 1549 
815 5882 1470 
820 4241 1540 
825 4053 1414 
830 7493 1491 
835 8824 1461 
840 3989 1414 
845 4837 1548 
850 18045 1499 
855 11898 1471 
860 8025 1468 
865 3239 5000 
870 7024 1518 
875 3911 1426 
880 4819 1415 
885 4939 1474 
890 5007 1491 
895 3015 1418 
900 4187 1593 
905 2708 1938 
910 7814 1544 
915 6756 1485 
920 19554 1416 
925 6533 1472 
930 9608 1915 
935 6203 3787 
940 12840 1431 
945 9552 2117 
950 18464 1539 
955 3134 1420 
960 4696 1606 
965 11207 1475 
970 2294 1418 
975 11806 1469 
980 13389 2015 
985 11538 1520 
990 4567 1469 
995 1457 
1000 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
·M = 
·N = 
• L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 

C.11 



Appendix C: Results of Final tests 

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML 
5 9005 1970 9379 
10 4642 275 4028 
15 3015 202 2792 
20 2096 -7279 275 18322 2031 
25 17527 1512 12762 263 14917 1475 
30 14587 1230 6675 119 12653 1030 
35 12489 1082 6675 160 11043 723 
40 10915 1076 6667 166 9842 542 
45 9692 917 6643 166 8886 406 
50 8713 789 5994 801 8037 309 
55 7910 775 3932 705 7233 231 
60 7241 743 5917 160 6503 174 
65 6677 680 1554 60 5887 216 
70 6195 610 1554 104 5361 202 
75 5779 537 1557 153 4922 148 
80 5414 458 1558 153 4576 189 
85 5090 379 1555 127 4240 182 
90 4803 324 1554 168 -.~-~ 199 --95 4551 307 1558 153 3683 180 

100 4327 293 1558 104 3484 32 
105 4124 279 4795 127 3254 32 
110 3940 253 1558 127 3092 138 
115 3775 223 1558 142 2946 206 
120 3630 190 1551 126 2926 222 
125 3488 162 3962 143 2707 162 
130 3352 146 1554 126 2846 418 
135 3244 130 6017 99 2971 159 
140 3134 116 2016 210 2700 98 
145 3032 103 1558 163 2550 44 
150 2945 90 1548 163 2945 252 
155 2855 81 1550 165 2996 35 
160 2732 78 1596 102 2997 62 
165 2691 79 3933 90 2903 125 
170 2580 83 1543 219 2845 78 
175 2505 85 5024 322 2864 131 
180 2485 85 1990 276 2872 131 
185 2433 82 2953 267 2828 56 
190 2374 81 5023 283 2533 34 
195 2318 79 1488 1026 2542 33 
200 2251 69 336 319 2547 28 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
-L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix C: Results of Final tests 

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML 
205 2174 55 1188 343 1724 28 
210 2138 50 336 320 1638 30 
215 2103 48 336 597 1576 19 
220 2041 51 1964 1110 1518 17 
225 1957 48· 336 1113 1563 19 
230 1948 46 336 323 1856 23 
235 1888 44 337 320 2650 30 
240 1855 41 334 585 2395 15 
245 1808 48 348 390 2170 5899 
250 1751 37 1519 1252 2030 3713 
255 1690 46 1548 1031 1357 5314 
260 1686 23 1156 1103 1333 7390 
265 1686 30 334 965 1329 6909 
270 1688 35 1064 1015 1293 10444 
275 1664 35 334 1262 1207 15985 
280 1636 44 337 1022 1205 10423 
285 1610 50 335 653 2702 16607 
290 1599 75 838 413 2629 9602 
295 1572 437 785 1346 2214 9715 
300 1551 787 1154 85 1904 9326 
305 1539 1041 1543 3578 1380 8089 
310 1496 1338 336 798 2117 9749 
315 1518 1624 723 1075 1952 7937 
320 1501 1917 849 1057 2059 6919 
325 1496 1414 321 1527 2189 13009 
330 1421 1017 1517 466 1735 
335 1391 1707 243 1063 1919 16933 
340 1366 3052 633 773 1326 25 
345 1349 3259 930 790 1104 25 
350 1334 3611 236 1042 1359 7671 
355 1319 3717 704 976 1 181 
360 1285 3909 236 648 989 2872 
365 1280 4099 1309 847 1334 934 
370 1218 4300 201 2321 1282 8678 
375 1235 4475 245 1013 1704 
380 1225 4612 165 2472 1701 
385 1229 2631 335 1542 2197 
390 1208 4915 268 964 992 9085 
395 1205 5491 329 1053 1501 16564 
400 1170 3320 235 1160 550 9982 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

J3P = 
-M = 
-N = 
• L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix C: Results of Final tests 

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML 
405 1182 6901 277 1164 521 1074 
410 1051 6144 262 2163 569 1815 
415 1135 5544 261 1032 735 12150 
420 1114 13943 292 2050 671 1018 
425 1092 235 1199 431 8661 
430 1071 19519 236 1479 587 9165 
435 1063 273 1187 723 12399 
440 1042 9005 235 2267 601 5093 
445 1018 5876 334 1057 632 10463 
450 1008 5909 276 1043 887 6477 
455 990 7868 275 1912 1523 
460 1066 8626 334 1928 1509 12624 
465 974 322 1516 1445 2188 
470 1005 237 1388 474 9649 
475 1061 4078 337 1350 1523 584 
480 1119 337 2409 1277 14129 
485 1115 262 757 616 14988 
490 1004 235 5950 792 ~.1.~ 
495 1063 333 19512 746 3159 
500 1035 9332 235 8000 541 254 ""-50S 1046 192 4415 524 14133 
510 1179 5789 256 3470 911 19007 
515 1026 7746 320 1132 998 16101 
520 916 718 2389 928 16523 
525 1299 340 4768 847 15298 
530 746 269 1031 1289 
535 915 581 1470 
540 752 9603 1027 2102 1324 
545 790 379 9670 455 
550 725 735 1376 
555 788 12543 950 3424 710 
560 962 509 896 
565 886 5709 1139 3872 520 
570 790 962 1468 755 
575 939 722 2274 742 
580 861 357 540 
585 939 827 4686 761 
590 643 733 2096 618 
595 1051 510 5009 690 
600 708 384 538 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
·M = 
·N = 
·L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix C: Results of Final tests 

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML 
605 822 113 4244 429 
610 687 1103 6496 771 
615 752 722 747 
620 1901 304 1168 
625 241 960 1262 
630 807 237 4490 1024 
635 717 J'§~.Q_ ------ 230 1---------- ----------1---
640 1041 362 4708 219 
645 2033 648 5424 315 
650 956 327 675 
655 4563 950 6671 126 
660 5491 270 1641 139 
665 1885 358 4482 797 
670 598 754 330 
675 7507 936 4196 492 
680 739 956 5920 243 
685 4149 830 319 
690 625 1363 3916 702 
695 1130 1259 301 
700 1694 J~..Q'§_ 5517 186 -------- ---- ... ---- ~----" ----_. ---- - ---
705 2312 950 947 
710 2213 835 6971 1235 
715 2782 957 12915 389 
720 2953 343 948 520 
725 470 322 581 
730 750 708 1000 626 
735 1414 425 5569 530 
740 687 957 13712 697 
745 2753 211 8969 848 
750 2444 1171 18363 486 
755 1291 992 ~?90 610 
760 2605 932 13417 592 
765 562 950 4514 1257 ro--------- -----1----- :-..----.. ----- ----- ---- --770 2400 1181 1260 
775 1344 957 18359 660 
780 882 508 922 
785 4588 1066 748 514 
790 3748 327 4711 541 
795 3568 708 11521 210 
800 2613 473 12644 850 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
-M = 
-N = 
- L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix C: Results of Final tests 

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML 
805 1552 704 10124 704 
810 2665 910 10500 294 
815 6248 237 14862 493 
820 3272 713 438 
825 4297 722 19663 250 
830 4719 628 3836 170 
835 4011 479 95 
840 2861 2054 122 
845 6441 712 8212 452 
850 5335 332 150 
855 7502 666 6429 165 
860 2644 194 832 156 
865 11513 1200 1534 326 
870 11259 228 423 
875 3768 1170 417 
880 1358 931 589 
885 1713 909 6375 1250 
890 9154 798 428 
895 5974 530 119 
900 7223 764 1768 278 
905 5796 321 8849 668 
910 9530 931 2939 480 
915 5049 838 6031 158 
920 1824 1026 594 
925 321 667 515 
930 5709 961 4152 
935 645 2115 12328 516 
940 6805 731 10532 335 
945 6008 795 2581 
950 12100 1124 11345 4896 
955 4633 909 1055 
960 12888 466 980 
965 1432 321 1917 1519 
970 360 666 
975 14511 948 2915 
980 6870 667 219 
985 5602 935 1094 
990 8430 479 694 
995 14149 700 8905 1236 
1000 

Data from Final tests on effect of Learning Rate on Noise 
parameters, number represents iteration of convergence. 

BP = 
·M = 
·N = 
·L = 

KEY: 

Back Propagation base model 
Momentum term added 
Random Noise added (at 0.3 level) 
Leak ('peptidergic') added (at 0.35 level) 
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Appendix D: 
Full graphs of Back Propagation Data 

The following graphs are full representations of those shown 
abbreviated in Chapter 5. These are based directly on the data in 
Appendix C. 

The figures shown in this appendix are as follows: 

Figure 0.1. Back Propagation model using three different initial random 
seed settings. 
Figure 0.2. Back Propagation model with random noise added, using 
three different initial random seed settings. 
Figure 0.3 Back Propagation model with 'Leak' activation added, using 
three different initial random seed settings. 
Figure 0.4. Back Propagation model with Momentum added, using three 
different initial random seed settings. 
Figure 0.5 Back Propagation model with Random noise and Momentum 
added, using a single initial random seed setting (43). 
Figure 0.6 Back Propagation model with Random noise and Momentum 
added, using a single initial random seed setting (89). 
Figure 0.7. Back Propagation model with Random noise and Momentum 
added, using a single initial random seed setting (67). 
Figure 0.8 Back Propagation model with 'Leak' activation and Momentum 
added, using a single initial random seed setting (43). 
Figure 0.9. Back Propagation model with 'Leak' activation and 
Momentum added, using a single initial random seed setting (89). 
Figure 0.10. Back Propagation model with 'Leak' activation and 
Momentum added, using a single initial random seed setting (67). 
Figure 0.11. Back Propagation model comparing random noise and 'Leak' 
activation, using a single initial random seed setting (43). 
Figure 0.12. Back Propagation model comparing random noise and 'Leak' 
activation, using a single initial random seed setting (89). 
Figure 0.13 Back Propagation model comparing random noise and 'Leak' 
activation, using a single initial random seed setting (67). 
Figure 0.14. Back Propagation model comparing random noise and 'Leak' 
activation with added momentum, using a single initial random seed 
setting (43). 
Figure 0.15. Back Propagation model comparing random noise and 'Leak' 
activation with added momentum, using a single initial random seed 
setting (89). 
Figure 0.16 Back Propagation model comparing random noise and 'Leak' 
activation with added momentum, using a single initial random seed 
setting (67). 
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Appendix D: Full Back-Propagation graphs 
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Appendix D: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Figure 0.3. Back Propagation model with 'Leak' activation added, 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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FigJ.re 0.10. Back Propagation model with Leak' activation and Momentum added, 
using a single initial random seed setting (67). 
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Appendix 0: Full Back-Propagation graphs 
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Appendix 0: Full Back-Propagation graphs 
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Appendix D: Full Back-Propagation graphs 
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Figure D.13. Back ProfBgation model oomfBring random noise and 1.ee.k' activation, 
using a single initial random seed setting (67). 
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Appendix E 

The GENESIS Neural Simulation Package 

The GENESIS (GEneral NEtwork Simulation System) package 

was designed specifically as a neural simulator. rather than a 

general purpose electrical simulator such as SPICE. which was 

used for earlier neural simulation work. GENESIS was written by a 

team under James Bower at the California Institute of Technology. 

with most notable contributions by Matt Wilson. John Uhley and Upi 

Bhalla {Wilson & Bower. 1989}. GENESIS is available from the user 

group. Babel (at babel@babel.cns.caltech.edu) 

GENESIS was designed and built as an object-oriented 

software package which eases the expansion of the package to 

include new discoveries in the neurological field. The basic system 

includes a library of object modules which support functions 

analogous to those found in current knowledge of neural reality. 

The level of simulation is variable. consistent with the tenets of 

compartmental modelling theory. and may extend from modelling at 

a single neuron level down to the modelling of a single ion channel. 

Unfortunately. the level of documentation currently available. is a 

poor indication of the abilities of the software. 

Each object-oriented module has an associated computational 

function. which is activated by a message passing system. The 

function operates on the provided parameters and sets its own 

parameters based on the results of the calculation. The module may 
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Appendix E: The GENESIS Neural Simulation Package 

be queried at any time, by any other element, to determine the 

values of its associated parameters. The five most important 

modules are the 'Compartment', 'ChanneIC2', 'hh_Channel', 'Spike', 
-

and 'Axon' modules. The former four are referred to as elements, 

and the final module is a connection module. 

Compartment 

A compartment is the basic unit capable of charge capacity in 

the model, which simulates a section of passive membrane. The 

Compartment element includes Membrane resistance and 

capacitance with a resting equilibrium capacitance, and a potential 

Axial resistance component for linkage to other compartments. A 

direct path is allowed in the calculation mechanisms for the 

introduction of channel conductances, discussed in the next 

section. Finally, a current injection component allows constant or 

periodic current injection for network input and testing purposes. 

(see figure 01) 

The Compartment element calculates the voltage across the 

simulated membrane using an integrative function of the form: 

dVm/dt = \f(\f«Em - Vm),Rm) + l:\f«Vm' - Vm),Ra') + \f«Vm" -

Vm),Ra) + l:«Ea - Vm)*Ga + inject),Cm) 

(Equation D 1) 

(Where Em is the Equilibrium constant of the membrane, Vm 

is the voltage across the membrane, Rm is the membrane 

'resistance, Ra is the axial resistance, Ea is the equilibrium 
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Appendix E: The GENESIS Neural Simulation Package 

constant of active channels, Ga is the conductance value of active 

channels, 'inject' is the current injected into the compartment and 

em is the membrane capacitance; time-steps are usually in msecs) 

Different integrative methods can be used, chosen from 

Forward Euler, Exponential, Gear 2nd order, Adams-Bashforth (2 or 

3 step) and Trapezoidal. 

Axial 44,H~ V It 
Resistanc£{'.",'Pr'- i 0 age 

Membrane 
Resistance 
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Rest 
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Channel! 
Path ':~~ 
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.-~-• · • 
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Current 
Injection 

Membrane 
Capacitance 

I ntracellular cytoplasm 

Figure 01. Compartment module of the GENESIS package. 

ChannelC2 

The channel element simulates a time dependent ionic 

channel, activated by a synaptic element with a particular weight. 

The channel element calculates the conductance of a particular 

. channel based on the incoming activation, maximum possible 

activation and the supplied activity time constants. The channel 

conductance is calculated: 

.. 2 (tau1 + tau2) * 1 * 
activation = d Y/dt2 + (tau1 *tau2) dY/dt + (tau1 *tau2) y 

Gk = gmax* A *y 

(Equation 02) 
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Appendix E: The GENESIS Neural Simulation Package 

(where Gk is the channel conductance, gmax is the maximum 

possible conductance and A is a normalization factor. Tau1 and 
-

tau2 are time constant factors which allows 'activation' to impose 

a damped second order time course on the conductance) 

Channel 
Conductance 

T lon1c equ1l1br1um 
Battery 

Figure 02. Ionic channel element of the GENESIS package. 

hh_Channel 

The hh_Channel element is analogous to the Hodgkin-Huxley, 

or voltage dependent, ion channels found in a cell membrane. These 

channels are operated by the voltage along the membrane of a 

compartment. These are characterised, in the model, by four sets 

of time constants which control the operation of the voltage gated 

channels at different voltage differential levels. The actions of 

these channels feed directly· into the compartment in which they 

reside. 
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Appendix E: The GENESIS Neural Simulation Package 

Spike 

A spike event is generated by the spike element. This element 

produces a spike of pre-defined amplitude if the input voltage from 

the connected compartment is above a pre-defined threshold, as 

long as a pre-defined 'refractory' period has elapsed since the last 

spike. The spike element is usually coupled to an axonal element, 

for which it includes a timed buffer to store the spike event. When 

the timer on a particular buffer has elapsed the spike is delivered 

to the axon target. 

Axon 

An axon connection element interacts with the spike element 

to produce a delay between the onset of a spike in the somatic end 

of the axon and the delivery of the spike to the target cell process. 

During delivery of the spike, the activation provided to the target 

is scaled by an axonic weight, analogous of a connection weight in 

an artificial neural network. 

The MultiCell Example 

The MultiCell example is supplied with the GENESIS software 

as a set of five script files. Each is arranged to correspond to the 

building of a particular set of modules. The five script files are: 
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Appendix E: The GENESIS Neural Simulation Package 

MultiCell.g 

constants.g 

channel.g 

compartment.g 

cells.g 

The MultiCell.g file is a startup file which "includes" the 

other files, as part of the execution cycle. The process of building 

the simulation is split amongst the five files, beginning with the 

definition of constants and functions to be used in later parts of 

the script. 

The constants are read in first from the constants.g script 

file. These include the equilibrium constants for membrane resting 

and leakage states, and for active Sodium and Potassium channels. 

Peak conductances for the active channels are also defined here. 

The channel creation functions are located in the channel.g 

fife, which is the next to be processed. One function is defined for 

the creation of active Sodium and Potassium channels. A further 

two functions are defined to create Hodgkin-Huxley Sodium and 

Potassium channels. 

The general syntax for the creation of an active channel is: 

create ChannelC2 {compartment/channel} 

where {compartment/channel} are supplied parameters used 

to localise the channel in a compartment. The channel parameters 

must then be set. These include the channel Equilibrium constant, 

the channel time constants and the peak conductance associated 
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Appendix E: The GENESIS Neural Simulation Package 

with the channel. The syntax for the setting of these parameters is 

as follows: 

set "'\ II set parameters of the above element 

Ek {Ek} \11 Equilibrium constant 

taul {taul} \11 Time constant 1 

tau2 {tau2} \11 Time constant 2 

gmax {gmax} II Peak conductance value 

Hodgkin-Huxley channels require a more detailed set of 

parameters, including the active area of the channels, in order to 

calculate the mean conductance, and several rate constants used to 

control the output of the channels at particular voltage values. 

Hodgkin-Huxley channels will not be altered in the modified model 

so they will not be described more fully here. 

The compartment.g script file contains a function for 

creating a compartment within the GENESIS system. Parameters 

required for this function include the length and diameter of the 

compartment, from which the area and cross-sectional areas are 

calculated. These are then used with the resistive and capacitive 

constants to set membrane resistance, capacitance and axial 

resistance. Other required parameters are the resting equilibrium 

constant, and unitary measures of resistance and capacitance. A 

compartment is created in the following manner: 

create 

object 

set 

compartment {path} I I location of 

{path} \ 

Em {Erest} \11 Rest Equilibrium 
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Appendix E: The GENESIS Neural Simulation Package 

Rm {rm/area} \11 Membrane resistance 

em {cm*area} \11 Membrane capacitance 

Ra {ra*l/xarea}11 Axial resistance 

The Cell.g script file contains a function which creates an 

entire cell. This function calls the compartment and channel 

creation functions defined previously. The spike element for cell 

output is also created in this script; this is created and set in the 

following manner: 

create spike spike 

set spike \ 

thresh 0 \11 Spike threshold 

abs_refract 10 \11 Refractory period 

output_amp 1 II Output amplitude 

Also in the cell.g script, the axon is created, and the message 

passing system is defined to link the soma with the spike element 

and the spike element with the axon. The final parameters define 

what type of message to send and the source of the value to send 

with the message: 

create axon axon 

sendmsg soma spike INPUT Vm 

sendmsg spike axon BUFFER name 
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Finally, the remainder of the MultiCell.g script is executed 

which calls the creation routines for the two cells, positions them 

in three dimensional space and connects the axons to specific 

targets. The axon from cell 1 is connected to the Sodium channels 

of cell 2, and the axon parameters are set: 

connect Icelll/axon Icell2/soma/dend/Na_channel \ 

with synapse II Use synapse function to 

modify axonic spikes 

set Icelll/axon:O \ 

delay 

weight 

5 

30 

\11 5 msecs transmission delay 

II synapse weight 

connect Icell2/axon Icelll/soma/dend/K_channel \ 

with synapse II Use synapse function to 

modify axonic spikes 

set Icelll/axon:O \ 

delay 

weight 

5 \11 5 msecs transmission delay 

300 II synapse weight 

As a source of excitation a current injection is supplied to 

cell 1, which should trigger the cell into spiking behaviour after a 

summation delay: 

set Icelll/soma inject 3e-4 II microArnps 
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The Experimental modifications 

The experiment requires few modifications, since there are 

only two cells to modify. As was explained in chapter six, the 

existence of only two cells negates the requirements for run-time 

calculations of point-to-point peptidergic concentrations in three 

dimensional space, because the only relevant measure becomes the 

distance between the two cells. In this case, we can simulate a 

basic peptidergic system by adding an extra axon from each cell . 
and using the delay, time constant and weighting parameters to 

simulate peptidergic activity. 

The modifications require only the definition of two new 

axons and their parameters, with added connections between the 

cells and a new message for each axon to link the spike element to 

the axon. 

The new axons are defined and set as: 

create 

create 

axon 

axon 

connect Icelll/axon2 

/cell1 /axo n2 

Icell2/axon2 

Icel12/soma/dend/Na_channe12 \ 

with synapse II Use synapse function to 

modify axonic spikes 

set Icelll/axon2:0 \ 

connect 

delay 

weight 

30 

3 

Icel12/axon2 

\11 5 msecs transmission delay 

II synapse weight 

Icell1/soma/dend/Na_channe12 \ 
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with synapse II Use synapse function to 

modify axonic spikes 

set Icel12/axon2:0 \ 

delay 

weight 

sendmsg spike 

sendmsg spike 

30 

3 

\11 5 msecs transmission delay 

II synapse weight 

Icell1/axon2 

Icell2/axon2 

BUFFER name 

BUFFER name 

The weight parameters are set to 3 in order to emulate a 

weak connection. The delay is set to six times the 'normal' 

transmission rate in order to simulate a diffusional process. This 

is aided by setting the time constants of the receiving active 

channels to a value of 20 milliseconds, which is done at run-time 

in a channel control window. 
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