
Open Research Online
The Open University’s repository of research publications
and other research outputs

Differentiating noise and modulators in artificial neural
networks
Thesis

How to cite:

Docking, Philip John (1993). Differentiating noise and modulators in artificial neural networks. PhD thesis
The Open University.

For guidance on citations see FAQs.

c© 1991 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

llx 1782,€O

lLNRE~TR\ CTE.J)

Philip John Docking SSc. MSc.

Differentiating Noise and Modulators in Artificial Neural
Networks

Offered for the degree of PhD
at The Open University,

Milton Keynes,
U.K.

In the Discipline of Artificial Intelligence

f:\u'fhDr'!l nutf\b~r: 1Y17063 \17
D June 1992

O •• 'ft fit ~\Abmi5~io(l ~ 2'1 lh J~"t~ \qq 2-

"1CAro a\ o.V'lo.,G\,: \ ~k AF(iL \qq3

EX12

WGBER DEGREES OFFICE

LJBRARY AUTHORISATION FORM

SWDENT: PD eX "Jq I eJ iI.A' SERIAL NO: H ::j-D 6 3, I :r=t-
DEGREE: Pv.- t
1ITLE OFTIiESIS: ___________________ _

\> ~~.e-R.~l A.-"Nq N 0 { <; ~ MY I) k--01) LA c.. Pr-ro-R.. S I J'\.J

I confirm that I am willing that my thesis be made available to readers and maybe
photocopied. subject to the discretion of the Librarian.

SIGNED:_ ~o·6· ttL-DATE: ______ _

Abstract

Research in Computational Neural Networks is currently

taking place at many different levels; from coarse-grain symbolic

models to fine-grain representations of neurons and cell processes.

One feature that the different approaches share, is that they are

all in relative infancy. Thus, most research concentrates on gross

aspects of neural communication and methods of computational

simulation.

Recently, some clues have been found which point to more

subtle mechanisms underlying the information processing

capability of neural 'nodes'. These clues are the improvement in

network operation by the injection of random noise; and the

neurobiological finding that neuropeptides may exist as slower

Signal transmission channels between neurons.

This study concerns the difference between random noise

injection, and directed, low-level, activity injections which are

postulated to be produced by neuromodulators such as

neuropeptides. The findings of this study are that random noise

does, indeed, enhance the operation of coarse-grain neural models;

and that a 'neuropeptidergic' analogue also enhances operation; but

to a different extent, and probably through a different mechanism.

Further testing of a medium-grain computer model gives some

indication of how a neuropeptidergic modulation might affect real

neurons, by extending the time-course of the activation of the

neuron. This appears to be a similar mechanism to that postulated

for the coarse-grain 'neuropeptidergic' simulation model.

Abstract

Given these findings, is it possible that signal transmission

in real nervous systems assume these mechanisms? If so, it may

be possible that a process of concurrent propagation, through

different signal channels, also occurs in real nervous systems,

making the nervous system much more complex than current

models allow.

i i

Acknowledgements

There are many people that I ought to thank for their

time and energy. patience and commitment. encouragement and

support; and. of course. I have already attempted to thank

these people personally. However. some of the most important

of these may not have realised that they were being thanked.

so here I will re-iterate somewhat.

My earlier interests in Artificial Intelligence were

encouraged. perhaps u,:"knowingly, by Charlie Sharp. who has

given me much support throughout the years - from allowing

access to equipment which I needed to both train myself and

perform research. to finding work for me when I needed the

money. (But not actually to the extent of giving me a job

working for him!) Nevertheless. this research is a direct result

of his encouragement, and I would like to take this oppurtunity

to thank him formally.

Longer term support (in many different quantities) has

been furnished by my friends and family. I will not quantify

the support I have gained from these sources. because in many

regards, they are beyond measure. and in dimensions to which I

1--

Foreword

do not have ready access. Many thanks to my family. Many

thanks to all of my friends, for their help.

Finally, and most importantly, my utmost thanks and

gratitude goes to my very own island of sanity and warmth in

an ocean of insecurity - Shehina. - to whom lowe most of all.

i i

Contents

Contents ... i

1. Introduction ... 1

2. Artificial Neural Networks ... 9

History .. 10

McCulloch and Pitts ... 1 1

Hebb .. 14

Minsky,Edmonds,Papert & Rosenblatt 15

After "Perceptrons" , ... , .. 19

Renaissance .. 1 9

General Characteristics of Neural Networks 23

Some Representative Models ... 2 8

Perceptron ... 29

Adaline .. 30

Neocognitron ... 3 2

Self-Organising Map .. 33

Hopfield nets .. 35

Adaptive Resonance Networks .. 3 6

The Boltzmann machine ... 37

Bi-directional Associative memory .. 3 8

CounterPropagation ... 39

Logical Neural Networks ... 40

The principles of Back Propagation ... 42

Multi-layer networks using the generalized delta

rule ... 44

Gradient Descent strategy ... 4 7

Contents

Extensions to the back propagation model.. 51

Solutions to classical problems .. 53

Conclusion ... 58

3. Real Neural Networks and Computational Neuroscience 59

The 'Wetware' .. 60

The Cerebral cortex ... 6 1

Cortical Laminae .. 64

Cortical Columns .. 68

Neuron Microstructure ... 69

Synapses ... 69

Ion Channels .. 73

Electrical characteristics of neurons 74

Synaptic Plasticity ... 78

Short or long tenn? .. · 79

Molecular mechanisms of mind .. 8 1

Computational Neuroscience ... 85

A note on History .. 8 5

Electrical equivalence of the neuron 86

Operational equivalents of neural processes 9 3

Computational Models .. 1 01

Single Neuron model .. 1 02

Small Network models ... 104

Larger Networks ... 1 05

Summary ... 107

4.The Brain, Neuropeptides and Noise ~ : ... 1 09

Neuropeptides - The evidence for neuroactivity 11 0

Distribution of Peptides in the central nervous

system ... 112

i i

Contents

Co-existence of 'Classical' neurotransmitters

with neuropeptides .. 114

Activity of Neuropeptides .. 116

Information transmission in the nervous system 121

A word about noise .. 1 26

Neuropeptide operators ... 129

Why neuropeptides? .. 130

Experimental rationale .. 133

5. Experiments in Back-Propagation .. 1 37

Model Design ... 1 37

Architecture and input/output behaviour 138

Momentum tenn ... 1 41

Addition of noise .. 1 43

Leak activation and the spread of activation in a

network ... 1 45

Representing three dimensions .. 1 49

Measuring network efficiency .. 152

Model ExeCU'tion ... 1 52

Testing the model .. 1 52

Setting optimised parameters ... 154

Running the final model ... 159

A note on Learning Rates .. 160

Results .. 161

Base ·models with no extensions ... 162

Base models with Random noise .. 1 62

Base models with Leak activation .. 1 63

Effects of Momentum .. 164

Comparison of Base models with added Noise and

Momentum .. 165

iii

Contents

Comparison of Base models with Leak activation

and Momentum .. 167

Comparison of Base models with Noise and Leak

activation .. 169

Comparison of Momentum models with Noise and

Leak activation .. 171

Summaf'Y' ... 1 73

6. Medium Grain experiment .. 1 75

Model Design ... 1 77

Architecture and input/output behaviour of the

model ... 178

The Experiment .. 1 82

Results .. 185

Base model .. 1 85

Variations in axonal delay ... 186

Variations in synaptic weight.. .. 1 89

Variations in synaptic time constant. 1 90

Summaf'Y' ... 1 90

7. Discussion .. 1 93

Findings of Back-Propagation modelling ... 194

Findings of Medium Grain modelling .. 198

Discussion of both models ... 1 99

Implications for Signal/Noise dichotomy ~ 20 1

Concurrent propagation? ... 202

Future Researcn .. 203

Conclusion ... 204

Index .. 1 . i

Ust of Figures and Tables .. F.i

iv

Contents

References ... R.i

Appendix A

Program Listings .. A.1

Appendix B

Preliminary Results of Pilot tests .. B.1

Appendix C

Results of Final tests .. C.1

Appendix 0

Full graphs of Back Propagation Data ... 0.0

Appendix E

The GENESIS Neural Simulation Package ... E.1

v

1

Introduction

The Neural Networks field is a multi-disciplinary and

divergent field, characterised by a number of very different

approaches to what is, essentially, the same subject matter. These

approaches share a common ancestry, but having diverged in the

later part of the 20th century, each has begun to have a different

development. Characterisation of these approaches requires a

somewhat false reduction and polarisation of the aims of each sub

field into primary constituents, but such reduction is necessary to

cover the full scope of the field.

One of the sub-fields of the Neural Networks paradigm can be

referred to as the 'classical' neural network field, made up of

researchers whose main aim seems to be the production of an

intelligent system, regardless of the method. This is expected to

be brought about using network systems principles, sometimes

established from the neurosciences, but also often from physics,

and most often using a hybrid of the two. The products of this

group need not have any direct relevance to the architecture of the

living nervous system, and are often coded in mathematical and

engineering terms. This approach merely requires an input/output

transformation path, with a favourable transformation function.

Another sub-field, which works along similar lines, is produced by

more symbolic artificial neural network researchers and

1

1. Introduction

psychologists, and is a largely symbolic approach. This is referred

to as the 'Top-Down' approach, based on its focus of the display of

symbol manipulation as 'intelligent behaviour', as its primary goal.

This approach is also known as 'connectionism', after its theory of

symbols connected by differing weight values. At the other

extreme, a sub-field known as 'Computational Neuroscience',

generally seeks to model the properties of single and combined

neuron groups as accurately as possible, at the lowest tractable

level, in order to characterise the exact workings of the living

nervous system; hence its regard as the "Bottom-Up" approach. The

reliance of this approach on the actual physical parameters of

neural tissue also leads to the labelling of this approach as 'sub

symbolic', assuming that a 'symbol' occurs at a higher level than a

single neuron. It can be said that computational neuroscience is

merely continuing the work of the biological sciences, utilising

modern computational tools where possible. This approach is

relatively recent, hence the reference to the

physics/engineering/symbolic sub-fields as 'classical' neural

networks.

The Classical Neural Networks field has generated many

different designs of systems which are able to learn presented

patterns, auto-associate different patterns and develop

topographical maps of 'concepts'. Computational Neuroscience has

been able to simulate groups of hundreds of neurons, which give

similar patterns of, activity to that found in populations of real

neurons in a particular organism. Both of these approaches rely

heavily on computational power. All networks are designed to

appear to operate in parallel, mimicking the operation of real

nervous systems. The major bottle-neck at this time remains the

2

1. tntroduction

availability of parallel architecture machines capable of running

large scale models in a scientifically feasible time-scale. Many

researchers must rely on networks tailored to run on serial

machines. If the aim is to build networks which can perform as

well as those of the human brain (and thus be 'artificially

intelligent'), then we must build machines which can, in reality,

operate at much faster speeds than the human brain. (Consider how

long it takes a child to acquire efficient language use, and the

ramifications of this on the development time of a human-scale

neural network.) Until such machines are made available, we must

continue to establish the ground rules, by which such systems will

operate.

Despite the advances made in the classical neural networks

field, it seems that any further advances would require a greater

degree of insight or perhaps serendipity. In contrast, at the

moment, neurobiological research seems able to furnish us with

more details of the mechanisms of neural transmission at an

enhanced rate, and in the light of some recent discoveries, we can

further develop the Bottom-Up approach, and, perhaps add some

more tools to the repertoi"re of the Top-Down approach.

The gross organisation of the brain shows that the nervous

system is a complex, interdependent network, even at the highest

level of communication between specific areas of the brain. The

complexity increases as lower levels of· structure are revealed, at

the neuronal level. This gives rise to the theory that intelligent

behaviour can be produced. from networks of artificial neurons.

Historically, similar scientific achievements have inspired

optimists to believe that animals can be fabricated, by mechanical

3

1. Introduction

means, to behave exactly as their real counterparts do (see

Changeux, 1985 for an interesting discussion of these attempts).

At the present time, we are learning that the neuron is not

the end of the chain as far as neural processes are concerned. To

understand the mechanisms of memory, we have to delve deeper

into the biochemistry of the neuron and learn the chemical

mechanisms by which the cell organises its behaviour.

How can such high level models as the engineering neural

networks actually hope to achieve intelligence when the level of

complexity inherent in the nervous system counters such a

reductionistic approach? The answer lies in the expected goals in

the study of this area. The entire neural networks community has

to be satisfied with approximations to reality. In some cases the

approximations are gross, but fast to produce and test, while at

the other extreme the models are too complex to realistically

produce the behaviour of a single neuron in a reasonable time

scale. The engineering neural networks field can test and explore,

on a larger scale, some of the functional behaviours of networks -

with the aim of producing networks which work well as pattern

correlators and differentiators. This practical application of the

behaviours inherent in the lower level biophysical data is an

important sphere of operation. The. computational neuroscientists

must, necessarily, concentrate on smaller models at the sub

neuronal level, their results fuelling the projects of the classical

neural networks field.

One of the themes of this thesis is that both of these

approaches should be interdependent, and sholJld be studied in

parallel. Both of these fields can contribute to an increased

understanding of nervous systems and artificial intelligence. On

4

1. Introduction

the one hand Computational Neuroscience can, as well as

elaborating on the behaviour of nervous systems, uncover

previously unknown methods of network computation for network

theorists; Classical Network theorists can guide computational

neuroscience in looking for specific types of network activity. In

concert, the two approaches should achieve an accelerated

understanding of both network structures and nervous systems.

The main theme of this thesis concerns progress towards a

deeper understanding of factors affecting signal transmission in a

nervous network. The increase in interest of the neuron itself as a

complex computational entity increases the focus of attention on

the more subtle processes of the neuron. We know that not all

neurons exhibit the same, or even particularly similar, behaviour.

Recent neuroscientific research is showing that cellular

communication systems are not limited to the action of the 'fast',

'classical' neurotransmitters; some effects seem to be produced by

slower methods of communication. Some attention is. also being

given to aspects of the cellular environment which may have an

effect on transmission within the nervous system. The nervous

system must be an inherently 'noisy' place. Thermal, chemical, and,

perhaps, electrical 'noise' must be a factor of any nervous system:

How much of a part does this have to play in altering the efficiency

of signal transmission? What is the exact nature of signal

transmission in the nervous system? Is it as straightforward as

the current single-channel theories presume, or do the channels

cross each other to form dual- or multi-channel systems? If more

than one channel is available, this may mean that the 'not so

humble' neuron can manage multiple input and/or output Signalling,

5

1. Introduction

depending on the needs of the system. The answers to many of

these questions are begun (albeit, on a minor scale) in this thesis.

Many fields have been reviewed in the preparation of this

thesis. Some have not made it into this document, not because they

are irrelevant to Neural Network research, but because they are not

contextually relevant. Such ideas as chaos theory and associated

fractal theories are now being assessed for their utility in 'node'

formation stages of network design and operation, but inclusion

here would have made the models over-involved and excessively

slow to run. Many of the lower level compartmental model theories

would also have proved difficult to implement sensibly on the

available equipment. On the other hand, some of the currently

fashionable classical neural network models do not lend

themselves to being placed in three dimensional space - a

requirement for this study - so these were not used.

Obviously, 'classical' neural network theory is of great

importance in a study of this kind so this material is covered in a

detailed manner, as, indeed, is the neuroscientific background.

This thesis is divided into seven chapters. The following

chapter deals with the developmental history of the classical

neural networks field, from the ideas of neuroscience, through the

fallow period, up to the current ideas of the 'renaissance' workers.

The third chapter is ·a parallel history of computational

neuroscience ideas, artificially separated to enable a clearer

discussion of developments in both fields, even though certain

personalities are common to both fields.

The fourth chapter outlines the proposals of this thesis. The

foundations of the theory are discussed, and some preliminary

6

1. Introduction

thoughts about the mechanisms of action are proposed. The fifth

and sixth chapters deal with the experimental phase: The definition

of the models to be used and the results of the experimental phase

and the possible ramifications of the mechanisms under discussion

within the human nervous system and in the neural networks field.

The final chapter presents the findings of this study in

context, and attempts to resolve some of the questions posed

throughout the thesis.

7

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

PAGE HAS NO CONTENT

2

Artificial Neural Networks

The artificial neural networks field is composed of several

different sub-fields. These sub-fields can be broken down on the

basis of the philosophical 'view' taken by the researchers

concerned. The relevant views in neural networks are usually taken

as a 'level' of representation of the real neural environment,

although classification is difficult, because researchers in each

sub-field often indulge in variable levels of representation. At the

highest level of representation (coarsest grain approach) we have

'connectionism', which is based largely on the. work of

psychologists. This approach uses a neural connectivity analogue to

perform operations on symbolic quanta; the symbol being the

lowest level of representation in the network. The 'Neural

Networks' sub-field covers a multitude of approaches. Included in

this sub-field are the mathematical/physical theoretical network

analyses, computational/operational analyses, and other 'medium'

level representations, generally defining 'nodes' or 'neurons' as the

lowest level of representation in a network. The finest grain

representations are those of the 'computational neuroscientists', /

whose field encompasses all neurological and biophysical data

obtained from past neuroscientific research. The aim of

computational neuroscience is to model real neural networks at the

9

2. Artificial Neural Networks

finest level of detail possible; a largely sub-symbolic approach.

Computational neuroscience is described in the next chapter. This

chapter will describe the history of, what is called, 'classical'

neural networks research. It is not appropriate to list all the types

of models that have been developed since the beginning of the field,

but some important representative models will be given. The

second part of this chapter is devoted to a detailed description of

the particular model to be used later in this study, the well known

'Back-propagation' model.

History

Classical Neural Networks is a fairly young field, compared

to the study of neuroscience. As mentioned previously, the 'Neural

networks' level of representation borrows heavily from physical,

computational and mathematical sciences and so the threads are

somewhat interwoven with other paradigms at different times

during the development of the area. The main thrust of neural

network research falls into fairly recent history, although work

was being carried out in the mid-twentieth century, already based

on neurological data, until the 1960's when the progress of the

field was temporarily halted. This is described below. Since much

of the early work has revolved around the contentions of different

researchers, the headings will reflect the importance of these

researchers on the development of the field.

10

2. Artificial Neural Networks

McCulloch and Pitts

The first ventures into neural simulations began with Warren

McCulloch and Walter Pitts in the 1940's, with their modelling of

the theory behind the first primitive networks, consisting of

binary elements (McCulloch and Pitts, 1943). This was more of a

computational/engineering approach to neural modelling, although

the basis of their paper was at the limits of what was known of

the nervous system at the time. It is unfortunate that the only

references given in their paper are for the basis of their logical

symbols, so that it is now unknown from where they took the

biological details upon which their theorems are based. McCulloch

and Pitts attempted to describe the action of their primitive

'neurons' in terms of logical primitives. It must be assumed that

this may have been done in the assumption that the brain works

logically.

Interestingly enough, in their seminal paper, McCulloch and

Pitts began by summarising what they knew about the physical

structure of the nervous system, including, implicitly, the time

variant behaviour of nervous impulses. Unfortunately, they then

continued to propose their logical calculus without reference to

this behaviour. In other words, they excluded the wider behaviour

of the nervous system, seemingly to concentrate on the actual

nervous impulse itself. It is left to the following paper in the

journal (Landahl, McCulloch and Pitts, 1943) to do some kind of

treatment on this. This latter paper deals with the statistics

behind the mean frequencies of impulses impinging on a particular

cell. This paper still deals only in the McCulloch and Pitts logic

which precludes the properties of asynchrony in the nervous

1 1

2. Artificial Neural Networks

system. This may not be an important consideration, if the models

proposed were not intended to be representative of the biological

nervous system.

The importance of McCulloch and Pitts' paper, however, is

that it defines neurons in the logical roles of AND, OR and NOT

functions (See figure 2.1). This means that these logical neurons in

combination should be able to perform any operation which could be

performed by logic gates, or on a higher level, by· modern

computers. A McCulloch-Pitts neural net, with enough nodes and

with enough prior experience, should be on a comparable level with

a serial computer, Conversely, a serial computer large enough and

with enough 'knowledge' at its disposal could show intelligent

behaviour - if the McCulloch-Pitts definition of the neurons'

behaviour is close enough to the way in which real neurons work. It

is largely on this basis that researchers have followed this

approach, even to the present day. This may be a mistake for if the

sub-symbolists are 'correct', then even our symbolic, serial

implementations on modern computing equipment are incapable of

truly intelligent behaviour in human time-scales and spaces.

12

2. Artificial Neural Networks

Figure 2.1 McCulloch and Pitts implementation of the basic

logical functions using binary neural elements. See text for

explanation.

McCulloch and Pitts' model requires that each unit has a

threshold which is exceeded by the summation of the attached

units, in a certain configuration. For example, in the figure above,

each arc represents a value of +1, each arc terminated with a

circle represents an inversion of sign for the arc. If we set the

threshold value for the central unit at +2, any figure equal to or

greater than +2 will 'activate' the central unit. Now, in the case of

the AND unit, when both units A and B are active, this will achieve

the threshold value of +2, and the central unit will become active.

For the OR case, either A or B becoming active will exceed the

threshold value and the central unit will become active. In the NOT

case, . despite the activity if the B unit, the central unit will not be

active if the A unit is active, due to the sign inversion of' the arc

from the A unit.

13

--c

2. Artificial Neural Networks

Hebb

The McCulloch and Pitts approach, however, showed only the

structure required for representing the solution of a logical

proposition. It did not deal with the way in which the network

would acquire such solutions. The work of Donald Hebb (Hebb,

1949), following the general principals of Lashley, Lorente de No

and Cajal, was where work on a necessary theory of learning began

to gain momentum. Hebb's contribution was to propose that

synaptic changes were the basis of learning in the nervous system.

He expressed this generally in his 'Neurophysiological Postulate'

(ibid P. 62):

When an axon of cell A is near enough to

excite a cell B and repeatedly or persistently

takes part in firing it, some growth process or

metabolic change takes place in one or both cells

such that A's efficiency, as one of the cells

firing B, is increased.

This theory has been one of the major contributions to neural

network theory. Most current models use a mechanism of this form,

which allows a net~ork to adapt to experience. There was, at the

time, little evidence for this theory of synaptic change, which had

many opponents. Later in his book (Ibid P .231), Hebb continues

along his line of thought and proposes that synaptic decay occurs

through disuse of a particular junction, although often repeated

14

2. Artificial Neural Networks

activities make such a degeneration a much longer process. This

was the theory he proposed to help explain the process of

forgetting. This theory has, unfortunately, not made it into the

intellectual currency of neural networks, and despite there being,

apparently, no evidence against this theory, seems never to have

been voiced again.

Hebb also noted some other interesting points: He believed

that reverberations around a network were responsible for

attention, and that the firing rate of neurons was an important

factor in recognising such things as brightness in the visual field.

Hebb may have been a man ahead of his time.

Through the late 1940's and early 1950's, work continued in

this field. During this time, Pitts and McCulloch even proposed a

method by which 'universals' might be encoded in the brain. (Pitts

and McCulloch, 1947)

Minsky,Edmonds,Papert & Rosenblatt

In 1951, Marvin Minsky and Dean Edmonds produced a working

'Neural Network' using potentiometers and electronic valves. In a

much quoted interview with New Yorker magazine, Minsky

described the experimental process (Bernstein, 1981). Minsky's PhD

dissertation was also on the subject of neural networks.

Rosenblatt appeared on the scene next, with the publication

of his book "Principles of Neurodynamics" (Rosenblatt, 1962). In

this, Rosenblatt (a Psychologist) summarised the work that he had

been dOing on the Perceptron. This network model assumed almost

15

2. Artificial Neural Networks

mythical proportions, and became a cause celebre, at the root of

most of the argument from 1962 to the present time. The first

Perceptron consisted of an array of photocells connected to an

association area made up of units, whose input arrived from a

random selection of photocells. These inputs were summated and

passed on to 8 response units. The connections between the

associator units and the response units was where the Hebbian

paradigm was used. Each connection was weighted using a

potentiometer positioned by automatic control (as in the Edmonds

and Minsky machine). In addition, each of the response units had

lateral inhibition channels, such that an input pattern would be

discriminated by competitive learning. (See figure 2.2, below)

A

Figure 2.2 A One-layer Perceptron model. Point A is an

associator unit, point B is a weighting unit and point C is the

comparator.

16

2. Artificial Neural Networks

The Perceptron was a basic two dimensional pattern

recognition system, based on Rosenblatts' idea of an approximation

to the brain (Rosenblatt had never intended the Perceptron to be an

analogue of the human brain). In general terms, it was a trainable

feature detector, where arbitrary patterns could be presented

which it would 'learn' to recognise over a number of trials with a

teacher. Its architecture consisted of a digitising 'retina' which

transliterated light intensity on a picture plane into binary digits.

These binary data were passed on to the associator unit or

predicate, using a pre-specified weighting scheme which sampled

the attached inputs, propagating a signal only when the summation

of the number of active units reached a given threshold. A

propagated signal from the associator units was passed on and

multiplied by the weighting system before being compared to a

threshold in a comparator. If the received value was found to be

above the threshold a pattern was said to have been detected -

otherwise, no pattern was detected.

The one-layer perceptron is so called because it only has one

layer of modifiable connections, implemented by the weighting

schemes used between the associator and the response units.

The weighting scheme used was fairly simple. The weights

would be adjusted following an erroneous response in a

proportional incremental manner, subtracting the error factor and

the feature value, using various methods that Rosenblatt devised.

It was very important that these weights should be shown to

actually achieve a stable configuration within a finite time, and

thus the 'Perceptron Convergence Theorem' was born.

Rosenblatt made some rather grand claims about the abilities

of the Perceptron, but later in the sixties it was found to be very

17

2. Artificial Neural Networks

hard to scale the perceptron up to cope with anything other than so

called 'toy' problems.

This early sixties phase of interest in Neural Networks more

or less ended after the publication of Minsky and Papert's book,

"Perceptrons", in 1969, in which the one-layer perceptron was

shown to be unable to perform certain types of operations, such as

Exclusive-Or-ing its inputs in order to perform such functions as

parity checking. and deciding on the connectedness of figures. This

stems from the 'order' of a predicate formed from perceptron

units. A perceptron, they argued, was only capable of forming a

predicate of the first order, whilst the Exclusive-Or function

requires a predicate of the second order. In addition to this, parity

checking (a useful function to have in the computational world,

although not necessarily present in the human nervous system)

requires a non-finite order predicate, to allow for any number of

input units, so that the parity could be computed.

Minsky's criticisms referred only to the one-layer

Perceptron, (Minsky and Papert, 1969) and, as has been proved,

multi-layer Perceptrons are capable of calculating the Exclusive

Or function, and hence, in principle, any calculation that can be

performed by a Von Neumann architecture machine.

There are many authors who attribute the publication of

"Perceptrons" to competition for funds and other political ends,

with the 'advancement of· science' as a by-product. See (Pollack,

1989).

18

2. Artificial Neural Networks

After "Perceptrons"

Work continued in the field throughout the seventies,

although funding was reputedly hard to come by. Most notable

research being done by only a few workers, such as Kohonen,

Grossberg, von der Malsburg, Amari, Anderson, Fukushima,

Aleksander and a few others, (see the Reference section for some

sampled works) but generally from within other fields than

Artificial Intelligence (Psychology, Engineering, Physics).

Much work was done on associative memory models, and the

theoretical basis of network modelling, in particular the

establishment of the mathematics to be used in connection with

such research.

Renaissance

The apparent rebirth of neural network research in the 1980's

has been linked to the work o~ Hopfield (Hopfield, 1982), who, as a

respected physicist, was interested in the collective

computational properties of physical systems. On a physical basis,

any system which exhibits locally stable states according to a

particular attractor can be regarded as an associative memory.

Since then, physics has found what it sees as a parallel between

neural networks and other collective physical systems. In

particular, the Hopfield model of neural networks is similar to the

two-state model of spin glass materials. (Spin glass materials are

19

2. Artificial Neural Networks

molecular materials with magnetic moments on each molecule, On

a material wide scale these moments normally cancel each other,

but on a local level they lead to stable attractor states which show

local magnetic patterning.)

Interesting as it is, this model is not generally held to be

biologically feasible. However, Hopfield's paper was apparently

enough to rekindle interest in the wider community and bring

neural network research back on a wider scale into the artificial

intelligence field.

In 1982, Feldman and Ballard published a paper which

proposed that symbolic Artificial Intelligence was in the throes of

death and that connectionist principles should be the way forward

into the study of intelligent systems. In this paper was one of the

most driving observations in favour of the connectionist approach.

This is, that:

Neurons whose basic computational speed is a

few milliseconds must be made to account for

complex behaviours which are carried out in a few

hundred milliseconds. This. means that entire

complex behaviours 'are carried out in less than a

hundred time steps.

This has become an important consideration in current

research, and has become known as the "1 ~O-step program"

constraint (Feldman, 1985).

'20

2. Artificial Neural Networks

However, a little earlier, in 1981, David Rumelhart and James

McClelland published reports postulating a spreading activation

model of letter and word recognition, implying a connection

between different letter and word combinations. Although these

were psychological reports, it is probably a point which one could

indicate as being the foetal period of the current rebirth in

connectionism.

Later in the eighties, one of the more enthusiastic groups of

workers under the title of the Parallel Distributed Processing

Research Group, published a three volume set sub-titled

"Explorations in the Microstructure of Cognition". (1986-1987)

This group consists mostly of psychologists, under the editorship

of Rumelhart and McClelland, who sought to approach

connectionism from the psychological angle (and of course, other

angles), including in the group some of the more active workers in

the field (Geoffrey Hinton, Paul Smolensky, Terrence Sejnowski)

and a few other famous names (FranciS Crick, Donald Norman).

This 'PDP research group' has- become a basis for a particular

paradigm within connectionism, as has the Hopfield approach.

There are now a number of other researchers working along

different lines throughout the world, as has been noted. The

Physics/Physical systems approach encompasses Hopfield and

those working on 'Spin Glass' type associative networks. The Neo

connectionists, such as the PDP workers, seem to aim at a more

psychological approach. The Engineering approach seems to work

towards practical, immediately implementable goals; and the

Neuroscientists are interested in modelling the biological nervous

system, which is by no means an immediately realisable goal.

21

2. Artificial Neural Networks

These groupings represent the authors' view of polarities in

the field rather than any explicit attribution by the groups

mentioned. There are other groups which encompass more than one

of the above approaches (for example the engineering appro~ch,

which would probably impinge on each of the groupings), and many

other groups which have not been mentioned at all.

22

j

2. Artificial Neural Networks

General Characteristics of Neural Networks

There are several characteristics of current neural networks

that are common to most network models: The assumptions on

which most of the theory and the concrete models are based. A

large majority of these assumptions come mainly from McCulloch

and Pitts, and Hebb. Most researchers make some adjustments to

the implementation of their own models, but generally preserve the

basic structure from these sources.

These common characteristics are:

A set of elementary units - each of which exhibit similar

behaviour, depending on the model in use.

A set of connections between these elementary units - these

may be simple unidirectional, bidirectional or complex additive

connections.

An activation state of a unit - A state of potential energy

for each unit.

An activation equation for each unit - How incoming signals

are interpreted by the unit. Usually an additive function.

An output rule for each unit - How outgoing signals are

produced from each unit.

23

2. Artificial Neural Networks

A propagation system - Defining how activation will be

transferred throughout the system.

A learning system - Defining how the system will learn

representations of input patterns.

An admirable review of how these characteristics are

combined can be found in Rumelhart, Hinton and McClelland

(Rumelhart. Hinton and McClelland, 1986). The general differences

in properties will be outlined in the following paragraphs.

The major differences between network architectures are

highlighted by the way in which the connection topology differs.

However, differences also exist in the methods used to calculate

and control the spread of activation throughout the network. In the

first instance, differences exist in the way a processing element

is allowed to calculate its activation level. Many types of unit will

define their activation level as the sum of all input connections.

multiplied by the weights present on each of these connections.

The activation level of the unit itself will depend on what type of

activation rule is in force. There are three widely used types of

activation rule:

hard limiter - a binary rule which has a discontinuity

threshold. If the value input to this rule exceeds a certain

threshold value the unit is 'turned on'.

-24

j

2. Artificial Neural Networks
,

sigmoid - a non linear activation rule, based on an

exponential function, which allows an analogue activation value,

but is limited between certain values by the exponential function.

Greatest change in activation value occurs at the mid-range of the

input values.

Pseudo-linear - an activation rule which allows analogue

ranges of values but limits the activation value between two

extremes. The activation value corresponds linearly to the input

over this range, however.

The output of the unit will depend on these activation levels,

and will become the basis of the input to another neural unit. The

output function is often combined, in the implementation, with the

activation state calculation. In many cases the output function is

no more than the transmission of the activation state along a

connection, where the output will meet the connection weighting

scheme (theoretically representative of biological synapses).

The weighting scheme is the most important function of the

network. It is on the adjustment of these connection weights, that

the onus of learning falls. The weighting adjustment rule is

generally very similar in most networks - being that of Hebb _

which is that an updated connection weight is the product of the

old connection weight and the state of activation of connected

neurons. That is, if a processing element takes a major part in

activating a second processing element, then the weight between

the two elements will increase proportionately to the part played

in activating the second processing element. The calculation of

how much of a part one unit takes in activating another is often

25

2. Artificial Neural Networks

taken to be 'how much of a part one unit should take in activating

.another', and therefore the calculation of the new updated weights

is based on the calculation of how much the current weight values

are in error, compared with what values they should possess. This

calculation is generally a global process, the error value being

calculated over many units.

In general, processing units are arranged in layers. The

geometry of each layer is unimportant, as each layer can represent

any number of dimensions, depending on its connectivity. Figure 2.3

shows a type of regular lattice structure, similar to the way in

which the innards of a crystal may be imagined. The lattice is only

two dimensional, but gives a good approximation to what a network

of processing units look like with their connections. Different

network models may have different numbers of layers. Very few

have more than three, and quite a few have no more than one layer,

interconnected in such a way that it may as well be a multi

dimensional mode\. The connections between units are quite

variable, as indicated above. In most cases the connections are uni

directional, allowing values to pass only one way, 'forward'

through the network. Other networks, because of their nature

(generally the error propagation networks) require bi-directional

connections between units so that an error value can be passed

'backwards' along a chain of units, in order to modify the

connection weights.

2. Artificial Neural Networks

Input Loyer

'Hi dden'
loyer

output loyer

... -

Figure 2.3 Structure of an imaginary network. Processing

units are shown by circles, connections by lines.

In addition, a network (or its operating environment) must

have some means of accepting input and communicating its output.

These are usually taken care of by presenting input to a speCial

case of processing units, found on an outer surface of the network

(usually known as the first layer or input layer), these units will,

in most cases, not have modifiable activations as this would

change the input pattern (although some models, used to form

generalised representations, are allowed to change the input

pattern). Output is achieved by allowing another 'outer surface' of

the network (the output, or last layer) to propagate out into some

form of sample and hold mechanism. The values obtained may then

be thresholded to obtain a representation of the activation pattern

imposed on the output layer.

Inputs to a network are characterised in two different ways.

They may be binary or analogue, depending on the networks'

activation function. They might also be continuous or discontinuous

27

2. Artificial Neural Networks

- in the temporal sense - and actually be 'presentations' of

patterns for the network to learn, in a discontinuous manner.

A network will have different phases of its operation. The

first phase will be the learning phase. This is characterised _ by

repeated presentation of a stimulus material, usually encoded in a

vector representation. The stimulus pattern is presented until the

network learns to associate the pattern presented with some other

pattern, or just accommodates to the input pattern (shown by some

stability within the network). The first type of network is known

as supervised, (because it has some kind of teacher, which 'tells'

the network to associate an input pattern with an output pattern)

and the second type is known as unsupervised (because it is left to

associate the input pattern in any way it sees fit).

The second phase is the recall stage. This tests the storage

efficiency of the network, and its ability to 'recognise' the input

despite degradation in the input pattern. Performance is typically

measured on an arbitrary scale, although some of the current

networks, as we shall see later, calculate an error term, allowing

some concrete idea of just how 'right' or 'wrong' a network can be.

Some Representative Models

The earliest popular. model was, as previously reviewed, the

Perceptron. Recent work ,has extended this into a multi-layer

device, using many different computational functions, in order to

produce a working, efficient system.

The structure of the Perceptron has already been discussed in

general terms, but for the sake of completeness it will be dealt

2.8

2. Artificial Neural Networks

with in greater detail here, as it is the basis of most other models

in current use. It is interesting to note that in the prologue to the

Extended edition (1988) of Perceptrons, Minsky and Papert relate

that:

-little of significance had changed since 1969-

and that:

MOne reason why progress has been so slow in

this field is that researchers unfamiliar with

its history have continued to make many of the

same mistakes that others have made before them.-

in this case, an exposition of the Perceptron would

seem a good place to start.

Perceptron

Symbolically, .the Perceptron can be represented as in figure

2.2. Each of the 512 Associator units sampled a number of the

photocells from a 20x20 matrix which formed the retina, and

logically combined them, the logical functions used being 'AND' and

'OR'. The output from a particular associator unit would be the

result of this combination (0 or + 1, depending on the function

used), which would be fed into one of the eight response units. Each

of the associator units had a fixed weighting associated with each

input, which could be set at -1,0 or + 1, randomly assigned. The

29

2. Artificial Neural Networks

input to the response units was based on the sum of the outputs

from the associator units, modified by the existing weights of the

connection between the associator unit and the response unit. Thus,

for each response unit:

sum = Li Wi Xi (equation 2.1)

where Wi is the weight on the output from the ith association

unit, and Xi is the output of the ith association unit. The output of

the response unit was based on a comparison of the sum of inputs

and a threshold value, such that the output would be +1 if the sum

was greater than the positive threshold value, -1 if the sum was

less than the negative threshold value and 0 if the sum was

between the two values.

The learning rule which is most cited in connection with the

perceptron (many were tried), is an adjustment of the weights

between the associator and response units according to the degree

of accuracy obtained from the output of the response units. If the

output was correct, no change would be made. If the output was -1

and should have been +1, then the weight would be adjusted to

"plus the value of xi". If the output was + 1 and should have been -1,

then the weight would be adjusted to "minus the weight of xi".

Adaline

The Adaline (for ADAptive LInear NEuron) was developed by

Widrow and Hoff (Widrow and Hoff, 1960). It is an extension of the

Perceptron in that it is intended to model the behaviour a single

30

2. Artificial Neural Networks

neural unit, within a network of such units. In its general layout, it

is similar to the Perceptron, and uses similar summation and

thresholding functions. A single adaline unit consists of several

input lines along which polar values are presented (-1,+ 1). These

are combined using equation' (2.1) above. This sum is compared to

the threshold value, such that if the sum of inputs and weights is

less than 0, the output of the unit is set to -1, otherwise, the

output of the unit is set to + 1.

Probably the most significant advance represented by the

Adaline, however, is the scheme used to perform the learning

function. This has become known as the Delta Rule (or least mean

squared error rule). This is an extension of Hebb's learning

postulate. In this method, the activation value of a unit is

compared to the expected (or target) value of the unit, such that

weight changes initiated by this method take into account the

discrepancy between the actual and target values of a unit so that

the modified weight will reflect the degree of influence of a

particular unit in the overall output pattern, and thus the system

adjusts quickly to its input. The equation is:

(equation 2.2)

where Ie' is a learning constant, Itj' is the target activation

of unit i, laj' is the actual activation 'of unit j, and 'ai' is the

activation of the input node. An extension of this equation is used

to propagate errors through several layers of neural units and is

therefore called, unsurprisingly, error propagation - in this case a

proportion of the error calculated to have derived from a particular

layer is additionally used to modify the weighting delta.

31

2. Artificial Neural Networks

Neocognitron

The Cognitron was developed by Fukushima, who later also

developed the Neocognitron (Fukushima, 1983). These models ~ere

developed specifically for character recognition purposes. They

were developed in order to simulate the process of the human

neural mechanism, providing an orientation insensitive recognition

machine. Their architecture borrows from Hubel and Wiesel (Hubel

and Wiesel, 1965), using a nine layer model in the Neocognitron,

hierarchically organised into simple, complex and hypercomplex

layers. Simple cell layers have a receptive field of photocells from

the 'retinal' layer, and are connected via synapse-like modifiable

structures to complex cells. These complex cells have a large

'innervation' from the simple cells and a smaller number of

outputs. The structure thus resembles a tree of units, each higher

level with a more significant effect on the overall functioning of

the network.

The biological borrowing continues with an analog activation

range which is meant to be analogous to biological neural firing

rates. The Neocognitron has specifically designed inhibitory cells

in the complex layers, which have inputs from previous layers.

These inhibitory cells provide a means of tempering the outputs of

the complex layer units, which have unmodifiable synapses.

Earlier models of the Cognitron and Neocognitron were auto

associative, but later versions, intended for use in hand-written

character recognition applications, are supervised systems. Each

layer is reinforced separately by the tutor mechanism, which

chooses a particular cell which 'should' respond to an input

, pattern, known as the 'representative' cell. The other cells in the

32

2. Artificial Neural Networks

layer then have their synapses updated according to the values

computed for the 'representative' cell.

The basis for the operation of the Neocognitron, as in most

other models, is that the change in weights between simple and

complex cells, and the inhibitory effect of the inhibitory cells on

the complex cells represents the reduction in difference between

the presented input pattern and the required output pattern, such

that the input and output vectors become as close to co-linear as

possible.

Self-Organising Map

Research into self-organising map networks has been going

on for a long time. The major work in this area has been done by

Kohonen (Kohonen, 1989) who currently has an application of self

organising neural networks which can produce written text from

speech (in Finnish and Japanese) at over 90% accuracy.

The architecture of the self-organising map is based on the

known biological facts of the human brain. That is, the cortex of

the brain (when stretched outside its bony prison) seems to be a

two-dimensional sheet of neurons, apparently topologically

organised into different functional areas. Within each of these

areas, further organisation seems to have taken place - so that in

visual areas there is evidence of line segment orientation

speCialised regions - and in auditory areas there appears to be an

auditory frequency analysis region, which itself is mapped out in

order of increasing frequency.

33

2. Artificial Neural Networks

In the network model, the neural units are ordered in a two

dimensional hexagonal grid. In common with the Neocognitron its

control structure selects a unit which it believes to be responding

most to an input pattern, and values are propagated through -the

network on the basis of how physically close the neighbouring

units are to the chosen unit. The weights of the connections

between the units are modifiable and are adjusted according to a

difference measure (how close the unit is to the input pattern) and

according to a temporal measure (a scalar multiplication which

decreases over time, known as the adaptation gain), and as already

stated, by the physical proximity measure. The corresponding

activation over the whole network can be shown, in a three

dimensional representation, as a set of concentric (hexagonal)

rings radiating out of the central chosen unit (looking rather like a

computer generated fried egg, where height corresponds to

activation, and the other two dimensions are the topology of the

network). Over repeated training, each input pattern will come to

be represented inside the topological map, such that a presented

pattern will activate the relevant portion of the network, which

can then be interpreted by a post processor.

The training of the network is a long process, requiring fine

tuning by tutorial systems which analyse the expected response

from the network for a given input and provides the correct

response for the network to follow.

Kohonens' current application uses pre- and post-processing

computational tools to introduce the input into the network and to

interpret the output, but it is nevertheless, an impressive system.

34

2. Artificial Neural Networks

Hopfield nets

Hopfield's most notable contribution to Neural Network

theory, as noted earlier, was to show that fully interconnected

networks of neuron-like cells worked in either a binary or an

analog fashion to produce stable states. The network model with

his name can be said to be a relatively simple one layer system,

each unit being fully connected to the other units in the system. On

the other hand, this full interconnection makes it effectively an n

layer system, where n is the number of units in the network. Each

of his units is defined in terms of electronic circuitry. The neural

unit itself is an operational amplifier, which produces a sigmoid

output for a linear input (these may be either inverting or non

inverting amplifiers). Attached to the unit is a resistor-capacitor

unit which acts as the membrane input capacitance of a biological

neural cell. Resistances form the connections between the outputs

of one unit to the input of another.

Hopfield networks are generally used to solve optimisation

problems. These are problems that are computationally complex,

such as those found in scheduling, where the amount of

computation required corresponds to looking at the entire search

space, before the solution is found (np-complete problems like the

T~avelling Salesman problem). In these cases, for example, one of a

pair of feature sets of the search space "are assigned to one set of

neural elements, while the other set of features are assigned to

another dimension of the neural elements. The interaction of these

feature sets within the network quickly converges to the networks'

stable state, and therefore, the solution of the problem.

35

2. Artificial Neural Networks

Adaptive Resonance Networks

Adaptive resonance theory is the basis of work done by

Grossberg (1976) and Carpenter and Grossberg (1990). This has

resulted in three specific models known as ART1, ART2 and ART3.

ART1 was designed as a self-organising system which responded to

binary input sequence by creating category structures within the

network which characterised the input sequences, without

becoming trapped in local minima (a pitfall explained in the

following section on back-propagation). ART2· was designed as an

enhancement to ART1 - it takes analog values, as input, and self

organises, as in ART1, to find stable categorisations of its input.

Adaptive Resonance networks are interesting in that they

. attempt to maintain some of the basic psychological structures

associated with human cognition: Attention, Orientation, Short

term memory and Long term memory. These form the basis of the

network architecture, including the theoretical method of

rehearsal for maintaining information in short term memory.

ART networks use competitive learning and a mixture of top

down and bottom-up processing in order to classify input patterns.

The long term memory remembers the previous input patterns

already learned and the short term memory holds the current input

pattern, after it ha.s passed through some input filtering to enhance

the contrast of the image. Thus the long term memory supplies the

short term memory with the expected pattern which will be

compared with the input pattern. If the two patterns are similar,

the input pattern is classified with the pattern from the long· term

2. Artificial Neural Networks

memory, otherwise a new classification scheme is established into

which the new input pattern is placed.

The resonance part of adaptive resonance theory comes into

practice when the system has decided that the competitive

learning' process is complete. The representation of the input

pattern is repeatedly cycled through the long term memory from

the short term memory (as in psychological 'rehearsal').

ART3 is an extension of ART2, using a chemical

neurotransmitter analogue system to add pre- and post-synaptic

realism. (Carpenter & Grossberg, 1990)

The Boltzmann machine

Hinton and Sejnowski (1986) developed the Boltzmann

machine as an extension to the basic Hopfield network

architecture, in an attempt to circumvent the problem of local

minima in the solution space trapping the network in a locally

stable state (Hinton and Sejnowski, 1986). This model is allowed

layers of neural units rather than one layer as in the original

Hopfield model, and the neural units are binary threshold units

with modifiable weights ~hich are updated by a probabilistic

method.

One of the major features of the Boltzmann machine is' (as its

name implies) the use of a 'temperature' lowering process to reach

a 'thermal' equilibrium using .the process of simulated annealing. It

is this process which is intended to overcome the problems of

local minima stability within the solution space. It· does this by

slowly reducing the value of a global parameter (known as the

37

2. Artificial Neural Networks

temperature), which adds 'noise' to the system (as in physical

systems - temperature adds 'noise', or random energy, to a group of

atoms allowing them to vibrate more vigorously). The noise allows

the learning algorithm to escape from small local minima, and, _by

constantly reducing the value of the 'temperature', allows the

network to settle into a global minimum.

The major advantages of the Boltzmann machine are

therefore, that it can generally reach a solution if there is one to

be found. It has also been found to be fairly resistant to local

damage, relearning lost information very quickly. However, the

major disadvantage is that the initial learning is very slow, as

learning must include both the stochastic procedures and simulated

annealing.

Bi-directional Associative memory

A Bi-Directional Associative memory is a two layer, fully

connected network which was developed by Kosko (Kosko, 1987) as

a cross between Grossberg's ART and a Hopfield network. This

network has modifiable synapses which. are updated by a Hebbian

rule. This network is interesting in. that it uses only two layers,

each of which may be used as an input or output layer. In operation,

patterns are presented to the first layer which is then allowed to

resonate between the two layers until a stable pattern is achieved

on the second layer. During the recall phase, an input pattern can be

presented to either pf the layers and the output will be read from

the non-input layer.

38

2. Artificial Neural Networks

This model was extended to include competitive learning

among the units of each layer, analog and binary values and sigmoid

activation functions on all units.

Co unterPropaga tion

Counterpropagation networks were developed by Hecht

Nielsen (Hecht-Nielsen, 1987), and is another hybrid of others'

ideas - in this case, those of Kohonen and Grossberg.

A counterpropagation network as set out in Hecht-Nielsen

(1987) consists of five layers. Two patterns to be associated are

presented to layers one and five, and are allowed to propagate

through four layers of the network. Representations of both inputs

go to layer three and end on the next layer. The third layer is the

part where most of the work is performed. Layer three learns by

competitive inhibition, and when equilibrium is reached layers two

and four will be found to have learned the average of the input

vectors.

After learning, if vectors are re-presented at the input

layers (1 and 5) layer three will be found to output the associative

result of competitive inhibition and layers two and four will be

found to contain the average of the input vectors. If a new pattern
"

is presented, the· output will show the closest match for the units

at layer three, and if incomplete vectors are entered at the input

layers, the network will 'fill-in' the missing elements and return

the usual layers two, three and four outputs.

There is another version of the counterpropagation network

which uses only three layers and is called a 'forward only'

39

2. Artificial Neural Networks

counterpropagation network. This network takes inputs on a split

input layer (ie. one vector will be input on layer 1, units 1-12, and

the other vector will be input on layer 1, units 13-24, for example)

and the output will be read from the second layer, which will_ be

the competitive learning layer, while the third layer yields a

transformation of the two input vectors.

Logical Neural Networks

Logical neural network models are an application oriented

system devised largely by Aleksander (Aleksander, 1989). Logical

node neural networks use Random Access Memory (RAM) hardware

to implement a fast input/output neural network with a pattern

discriminatory function. There are two versions of logic nodes, bi

state nodes and probabilistic nodes. Bi-state nodes build on the

binary logic of the neuron as described by McCulloch and Pitts. If

the 'neural' representation can be encoded using a McCulloch and

Pitts type network, then it is also translatable into AND and OR

functions within an electronic component. These logic functions

are able to be stored as a truth table within a random access

memory, so that incoming patterns form the input to the truth

table, and the output of the truth table is the result of the sum of

truth table operations.' Such a system can be 'taught' to

discriminate between different patterns, and even generalise

among similar patterns. The WISARD (see (Aleksander & Morton,

1991)) is one example of a system built to perform such a task. The

WISARD takes a digitised video picture as its input, and the

40

2. Artificial Neural Networks
,

network is taught to discriminate between different categories of

input by activating various output devices.

An extension of the bi-state logic node is the probabilistic

logic node, which can assume three states, two known states and

an indeterminate 'unknown' state. The unknown state defines the

probability that an input to a particular RAM 'cell' will generate a

'1' state, and this can be changed, with experience, to the most

attractive state for the discriminatory operation. This extension

allows greater generalisability, and introduces a simulated

annealing function for the learning algorithm.

Summary

We have seen that, apart from the middle years of relative

inactivity, research into neural network architectures has

progressed steadily, encompassing more complex ideas from other

disciplines and more efficient implementations.

In recent years, however, the back-propagation algorithm has

proved itself as one of the most efficient systems in use, and

possibly one of the more promising avenues of research - From its

inception in 1986, extensions to the back-propagation algorithm

have improved it still further, and in the following discussion we

will see how thfs method has evolved and outline some of the

recent improvements that have been made. Since Back Propagation

will be used as one of the models in later chapters, its mechanism

will be given a fairly detailed exposition.

41

2. Artificial Neural Networks

The principles of Back Propagation

Back Propagation or back-prop are shortened names for "the

Back Propagation of errors". This principle was introduced- by

Rumelhart, Hinton and Williams (Rumelhart, Hinton and Williams,

1986) of the PDP research group and is based on a variant of the

Widrow-Hoff Learning Rule (1960). Since 1986, some work has

been done on attempting to extend this principle, as it has been

recognised as perhaps one of the more powerful, yet simple, of

current designs.

A back propagation network uses a number of layers of units,

without interconnection along the plane of the layer (in the

Rumelhart et al model). It does, however, form bi-directional links

with the previous and next layers. (See figure 2.4) Generally, the

PDP models of back propagation networks have three layers, so

that there is at least one layer which can perform intermediate

computations, such that the network is able to deal effectively

with the parity and Exclusive-OR problems, as we will see later.

42

2. Artificial Neural Networks ,

feed forward --------~

C/)
~
:::J
a.
c

~-------- feed Back

Figure 2.4 A typical arrangement of the units in a back

propagation network. Note that the links are bi-directional.

Another reason for the presence of the intermediate layer is

to provide an extra computational layer which allows the

association of widely different input and output patterns. Such a

system allows for what Rumelhart, Hinton and Williams call an

"internal representation", this is a representation of the input

pattern which is a sort of half-way-house between the input and

output patterns. The intermediate layer is also known as the

"hidden" layer, as the value of its' inputs and outputs are not

directly knowable by anything outside the system.

The generaliz'ed Delta' Rule, as Rumelhart et al have dubbed

their version of the Widrow-Hoff (or just 'delta') rule, is important

in a numbe(of respects. Firstly, it is abfe to produce a solution for

all the problem areas noted by Minsky and Papert, namely, the

Exclu~ive-OR problem, the Parity problem and the Connectedness

problem. It does this by the use of hidden units and its method of

gradient descent into the solution space. Mathematical proofs. for

the nature of the solution paths of generalized delta rule models

43

2. Artificial Neural Networks

are given in Rumelhart, Hinton and Williams (Rumelhart, Hinton and

Williams, 1986) and McClelland and Rumelhart (McClelland and

Rumelhart, 1988). In this treatment, we shall only go into the

details of the network model using multiple layers.

Multi-layer networks using the generalized delta rule

Multi-layer networks are a special case of two layer

networks. Whereas in two layer networks, a linear function can be

used for activations of units, multi-layer systems gain no benefit

from having additional layers using a linear activation function, as

shown in Rumelhart, Hinton and McClelland (Rumelhart, Hinton and

McClelland, 1986). This, they say, is because the step by step

activation in linear models is merely the weighted sum of the

inputs to each unit. Thus, the activation at time t+ 1 is simply a

function of the weight matrix times the activation at time t. Then,

with each proceeding step the activation is only a linear function

of the activation at time zero, and therefore, such a state could

have been reached at time zero+ 1.

To overcome this limitation, back propagation models use

what is known as a semi-linear activation function. This is defined

as a nondecreasing and differentiable function of the net total

output, which is the sum of the weights times the activations over

an exclusive set of units' with a particular input pattern. In this

case it is also not possible to use linear activations as these are

not sensibly differentiable. The semi-linear activation function

used by Rumelhart, Hinton and Williams (1986) uses the reciprocal

. of a logistic term:

44
j

2. Artificial Neural Networks

1 a ,-----
pi - 1 +e -netpi

(equation 2.3)

(where api is the activation of unit i for pattern p, netpi is the

total input to unit i)

for which the derivative is:

da pi
dnet pi = api (1 - api) (equation 2.4)

The non-linearity of back propagation models appears to be

the only major difference between the back propagation model and

the principle of the original Rosenblatt Perceptron (1962). The

propagation rule is exactly the same, being the summation of

inputs multiplied by the weights of the connection links:

(equation 2.5)

(where aj is the output activation of a connected unit and

W ij is the weight of the connection from unit i to unit j)

In addition, the weight updating function is the same. This is

shown by equation 2.6 below:

(equation 2.6)

(Where Wij is the weight from unit i to unit j, 11 is a constant

known as the learning constant, aj is the activation value of unit i

and OJ is the error from unit j.)

45

2. Artificial Neural Networks

This brings us to the error value, which is the basic

mechanism of the back propagation model. The error value is

calculated from the derivative of the activation function in

equation 2.4, and is the basic mechanism of gradient descent, as

discussed later. The value is calculated differently, depending on

whether the calculation is for the output or hidden units, since the

output units depend only on themselves and a presented target

value, the error signal - Opi - for an output unit will be:

Opi = (tpi - api) api (1 - api) (equation 2.7)

and for a hidden unit, it will be:

Opi = api (1 - api) l:k Opk wik (equation 2.8)

(Where Opi represents the error function on the ith unit for

input pattern p, tpi is the target value for output unit i, for pattern

p, api is the activation on unit i for pattern P, Opk is the error

propagated back from an arbitrary unit k for pattern p and Wik is

the weights on the connections from the set of k units to the unit

in question.)

The back propagation of the error signal is a recursive

process starting with the output units and progressing backwards

through the network, through the hidden units and into the first

layer connections. The equation for the output units (equation 2.7)

shows that the error term is largely dependent on the derivative

function api (1 - api), (from equation 2.4) which is largest when api

has a value midway between its extremes, but is minimal when api

is at its extremes.

46

2. Artificial Neural Networks

Gradient Descent strategy

The method of gradient descent used in the back propagation

model can be explained in simple terms. Back propagation is a

variant of a procedure known as Least Mean Squares (LMS) which

was proposed by Widrow and Hoff (Widrow and Hoff, 1960). This

system uses the Widrow-Hoff (delta) rule, the precursor of the

generalised delta rule, to adjust the weight of connections in a

network in order to minimise an index of the errors produced by

comparing the output of the network against a target output

pattern. The index of errors was taken to be the sum of squares of

all errors, minimising local variations in the pattern of errors,

such that:

(equation 2.9)

(Where E is the total error of the network, tpi is the target of

unit i for pattern p and Opi is the actual output of unit i for pattern

p)

McClelland and Rumelhart (1988) produced a mapping of the

solution space for all values of two weights and this type of error

function, for linear and their own logistic non-linear activation

functions. The mapping for linear systems resembles a valley, the

gradient of which gradually gets less steep as the bottom of the

valley is approached, rather like a three dimensional hyperbolas.

(See figure 2.5) The minimum error function - the Least Mean

Square of the system - resides at the very bottom of the valley.

The gradient descent function is designed so that a solution can be

reached quickly, (so that the minimum error position is reached

47

2. Artificial Neural Networks

quickly) and therefore· requires that when the gradient of the

weight to error mapping is steepest (which is further away from a

solution) a larger step can be taken in the solution space

(hopefully, towards the solution). This means that to take a larger

step, we must increase or decrease the weight of the connection by

a larger proportion when the gradient is steep, than when the

gradient is shallow. As figure 2.5 illustrates only a simple linear

system with two weights, it is a fairly simple mapping. However,

it is not always possible, with more weights and with non-linear

systems to produce a mapping, and therefore, we require a

mathematical function to calculate gradients local to the units

when we are attempting to assign a new weight in order to achieve

a solution. McClelland and Rumelhart (1988) use the negative of the

error derivative to do this. In the case of the generalised delta rule

(which is non-linear) the weight of the connection is changed

according to equation 2.6.

48

2. Artificial Neural Networks

Figure 2.5 A map of the solution space produced by a two

weight system, produces by mapping weights against LMS

error. An imaginary problem starting at point A, proceeds

less steeply as a solution is reached.

It is important to emphasise that the mapping in figure 2.5 is

of a simple two weight, linear system. The mapping for a two

weight non-linear system shown in McClelland and Rumelhart

(1988) resembles a saddle shaped figure, which means that there

is more than one minimum value for the error measure. This means

that depending on the starting values of the system, it is possible

that the system will move towards a local minimum at another

pOint in the solution space and give the wrong answer! In addition

to this, the mapping shown in figure 2.5 is actually only a mapping

for a particular problem - Each new problem has its own different

solution space mapping.

The learning rate of the system is also an important factor in

the gradient descent strategy. Equation 2.6 shows the equation

used to update the weight of each connection, detailing the effect

49

2. Artificial Neural Networks

of the three terms; unit activation, error function (which we have

just dealt with) and the learning constant 11 . The effect of the

learning constant is to proportion the changes in connection

weights which determines how large the steps down into the

solution space (of, for example, figure 2.5) will be. The learning

rate is generally a value between zero and one, and is, in general,

closer to zero than to one, so that changes are as small as

possible, without leading to a ridiculously long learning time. If

the learning rate were closer to a value of one, we run the risk of

producing larger jumps in the solution space than are really safe,

meaning that the system may find itself in a situation where

oscillation sets in (perhaps across the bottom of a valley or across

the peak of a local hillock) - leading to an inability to find a

solution. In practice, it is tempting to use a large learning constant

to improve the learning rate of the system.

A final problem in setting up a gradient descent network

system is the problem of the initial weights of the network

connections. In this symmetrical back propagation model, the

inclusion of the connection weights in the calculation of the error

term means that if all the connection weights were to begin with

the same value, all units in a particular layer would receive the

same error value from the preceding layers' error calculation, and

the network would fail to develop unequal weights. The solution to

this problem is to initially· assign random values to the connection

weights, which starts the. network in a random position in the

solution space, and is not generally harmful, unless this position is

close to a local minimum.

50

2. Artificial Neura~' Networks

Extensions to the back propagation model

Momentum

The first extension to be made to this model was included in

Rumelhart and. McCleliands' (1986) original proposal. This is the

use of a momentum function inside the generalised delta rule. The

momentum term is used as. an accelerator for the learning rate,

without causing the problems described earlier, when just

increasing the learning constant. The momentum function is a kind

of history mechanism. It remembers the weights from the previous

error pass of the network, and uses this value to proportion the

change made to the weight during the current iteration. So the

extended generalised delta rule (from equation 2.6) looks like this:

(equation 2.10)

which just adds in a proportion of the weight from the

previous iteration, 'depending on the value of a, The effect of

momentum is to filter out high frequency variations in the solution

space. These high frequency variations are caused by sharp

curvatures in shallow trenches within the solution space, which

cause oscillations across the trench.

51

•

2. Artificial Neural Networks

Activation range

A second extension proposed by Dahl (Dahl, 1987) was to

extend the activation range of the neural unit. Dahl found that -the

extension from a three point scale used in Rumelhart et· al (1986)

to a four point scale enhanced the learning rate of the network

under most conditions. The four point scale used was from -1 to

+2, essentially widening the discriminability of the network.

Added noise

Von Lehman, Peek, Liao, Marrakchi and Patel (Von Lehman,

Peek, Liao, Marrakchi & Patel, 1988), of Bell Communications

research proposed the extension of adding noise to the connection

weights during the update process, and clamping weights at

extreme values. They found that when noise is added, instead of a

momentum term, they could build networks (for the XOR problem)

which had a 100% probability of convergence. The noise term was

generated randomly and added to the normal calculation of the

weight at each iteration. Their figures show that a wide range of

noise values could be used to achieve the 100% convergence rate.

These researchers also found that the initial weighting of a

network significantly affe~ted the performance of the network.

They tested three different ranges of initial weight settings and

found that although the performance graph produced is grossly

similar, there are significant deviations in the probability of

convergence.

.52

2. Artificial Neural,' Networks

Calculation of hidden unit numbers and learning rate

Kung and Hwang (Kung & Hwang, 1988) produced a method of

determining how many hidden units to use in optimising a network,

and how the optimal learning rate should be assigned to the

network. They used simulation methods to prove that the optimal

number of hidden units is dependent on the regularity of the input

pattern. They determined that patterns which are entirely irregular

should use the same number of hidden units to input units, whereas

patterns with definite regularities could use a lesser amount of

hidden units, in the same ratio to the input units as the patterns of

regularity within the input patterns.

Solutions to classical problems posed to the neural networks

community

The XOR probfem

The Exclusive-OR problem was recognised by Minsky and

Papert (1969) in relation to the perceptron. The perceptron was

shown to be able to solve problems of the first order, but not able

to solve higher order problems. First order problems are those

where the sum of products for a predicate are not more than 1.

Needless to say, Exclusive-OR is of second order, ie. it needs a unit

which combines two predicates in order to decide if the conditions

of Exclusive-OR are fulfilled.

53

2. Artificial Neural Networks

Rumelhart, Hinton and Williams (1986) show a three layer

back propagation model which solves this problem. They used

networks with one or two hidden units, as shown in figure 2.6, both

of which managed to solve the problem with the observed weights

as shown in the figure. They report that very occasionally -the

network failed to converge on the correct solution due to finding

local minima instead of the global minimum.

'A output

~
output

-4.5",,'

-4.2 /~9!4 '. -4.2
. I \

/_-~. \,
"-6.4 -6.4f>

Inputs T Inputs

Figure 2.6 Rumelhart, Hinton and Williams (1986) solutions

for the XOR problem, using one and two hidden units.

Connection weights are written on arrows, negative weights

are indicated by broken arrows, Unit biases are in the unit

circles, if a bias is positive the unit will be on unless turned

off by the weight of the connection.

Note that in the figure, the network with two hidden units

gives an indeterminate output. if the right input is on (ie. the input

is 01), this turns on both of the hidden units, leading to the output

unit having a net input of zero, and therefore the output will be 0.5,

54

2. Artificial Neural Networks

so the configuration shown is not the optimum number of hidden

units.

The Parity Problem

The parity problem is an extension of the XOR problem. Minsky

and Paperts' analysis show that to determine parity a network is

needed with at least one term which has the same size as the

number of inputs to the network, which again was impossible to do

with the perceptron. Rumelhart, Hinton and Williams solve this

problem too; but not very elegantly. Their parity checking network

requires, as in Minsky and Paperts analysis, the same number of

hidden units as inputs to the network. The hidden units arrange

themselves in such a way as to count the number of inputs (a

hidden unit turns on, when another input unit comes on). The output

unit gets the sum of the positive and negative weights from the

hidden units, which cancel each other out when there are an even

number of input units active, and produce a net activation when

there are an odd number of active input units. (See Figure 2.7)

55

Output

Inputs

2. Artificial Neural Networks

2 3 4

"" --

n

Figure 2.7 Rumelhart, Hinton and Williams (1986) solutions

for the parity problem, using n input and hidden units.

Connection weights are not shown , but negative weights are

shown by broken arrows before the final layer. Unit biases

are shown in the unit circles.

The T- C Problem

The T - C problem stems from the necessity of being able to

recognise a shape independent of its position or orientation. This

problem, as formulated in Minsky and Papert (Minsky & Papert,

1969), is composed of a pair of figures of five connected pixels,

one in the shape of a 'T' and one in the shape of a 'C'. The difference

in these figures lies in the position of only one of the pixels (it

was not actually known as the T - C problem in 'Perceptrons', just

as a pair of figures that could not be distinguished by a network of

order 2).

Rumelhart, Hinton and Williams solution to this problem is

derived from the configurability of a three layer system. They

56

2. Artificial Neural Networks

adjusted the physical structure of a three layer network to produce

hidden units with a limited set of inputs from the input layer. The

inputs were localised into a 3x3 grid, or receptive field, while

there was a single output unit. (see figure 2.8) In addition each

receptive unit was constrained to change its weights in the same

way as each of the other units, so that each field learned only the

main figure and not partial figures.

They found that a series of templates developed inside the

network, which discriminated between the two figures, such as a

diagonal bar detector for detecting T's, and a 'compactness'

detector for detecting C's.

Input units Hi dden Units Output Unit

Figure 2.8 Rumelhart, Hinton and Williams (1986) solution

to the T - C problem. Each of the hidden units connects to only

a 3x3 array of input units. The output unit acts as a

comparator.

57

2. Artificial Neural Networks

Conclusion

We have seen that the back propagation model produces a

fairly efficient family of pattern recognition systems. It has been

shown that these types of model can solve many of the problems

associated with neural network models in the past, and copes (but

not always elegantly) even with the criticisms levelled in the

Perceptrons treatment by Minsky and Papert.

The extensions referred to, in the later part of this chapter,

will hopefully form the basis of more powerful and efficient

models, which have been shown to deal more quickly, and without

structural modifications, with the kinds of problems outlined

above. The key to the further enhancement of the back propagation

model probably lies in the continued improvement of the gradient

descent method as mentioned above. The extensions already shown

in the sections above are all examples of such enhancements, but

generally using only one method at a time to produce a more

efficient implementation. Later in this study, a model will be built

using the back-propagation model shown here, to explore the

addition of noise and graded extraneous activation under different

conditions. These models will be compared to assess the efficiency

of a method proposed in chapter 4.

58

3

Real Neural Networks and
Computational Neuroscience

Most of the workers in the field of artificial neural networks

will admit (sometimes grudgingly) that their field is at least

loosely connected to the study of the behaviour of Real Neural

Networks. The degree of this connectedness in actual simulations

is often highly variable, and there are many philosophical

arguments regarding the 'necessity' of any degree of

connectedness. Some of these arguments will be touched upon in

later discussions. One particular branch of 'neural' synthesists,

known collectively as 'Computational Neuroscientists', are in

practical terms, at one pole of this argument, whilst the other pole

is often represented by physical scientists.

The current trend in the work of computational

neuroscientists is to produce simulations which are based, as

closely as possible, on the known behaviour of living nervous

tissue. This stands on the traditional scientific method of

reductionism followed by synthesis. In this manner, they hope to

gain an insight into the actual operation of living neural systems,

which, if studied in great enough detail, should yield at least a

working model of a correctly functioning neural circuit, if not an

understanding of the principles behind the operation of the circuit.

The aim of this chapter is to detail some of the foundations

and behaviour of real nervous systems in a way that is amenable to

59

3. Real Neural Networks

a quantitative simulation in computational terms. This exposition

will in no sense be complete, as many of the fundamental

principles of operation of even the simplest neural systems are

still under investigation. Thus we must, for the moment, be content

with a partial description of the known parameters of neural

membranes, ion channels and neurotransmitter behaviour.

The second part of this chapter deals with the ways in which

the knowledge of detailed behaviour of the actions of real nervous

tissue· have been used in low-level simulations of neural circuits

by computational neuroscientists. Most of these simulations are

still at the level of single cell models, while some deal with the

interconnections in small-scale circuits in simpler life forms.

The 'Wetware'

This section forms an introduction to neural tissue from

gross organisation to molecular level structure. There is little

contextual relevance in describing the overall physical

organisation of the entire nervous system, but some description of

the immediately relevant (to Neural Network researchers) areas

will be attempted. The organisation is taken from the human brain,

since producing an intelligence on a par with the human system is

the implicit goal of artificial intelligence. Later, obviously, some

of the behavioural parameters referred to will be from

experimental preparations of simpler life forms. These will be

indicated where appropriate.

60

3. Real Neural Networks

The human nervous system is an extremely complex network

of many different varieties of neural elements. The basic element

is often considered to be the neuron, which is a protoplasmic body

surrounded by a lipid bi-Iayer membrane. There are approximately

10-50 Billion neurons in the human brain (depending on the

information source) - with more located in the peripheral nervous

system and ganglia. Neurons can be differentiated into several

different varieties. The distribution of neuron types is often highly

organised, depending on both regional and local factors. Some types

of neurons are found only in specific areas, while others appear to

be widely distributed. (Only one area will be studied in this

section: The Cerebral cortex (assumed to be the seat of cognition»

The Cerebral cortex

The Cerebral cortex consists of the 'grey' matter of the

cerebral hemispheres. It is only a few millimetres thick, but is

heavily convoluted into well-recognised patterns, dipping into

many fissures and bulging into gyri.

The cortex is thought to be separable into three phylogenetic

regions. These are the Neocortex, the Mesocortex and the

Allocortex. The· Allocortex represents the oldest formations,

making up the Hippocampus and olfactory regions of the cortex. The

Hippocampus is a particularly interesting region which is receiving

much attention in current research, as a major functional region in

memory formation. This is significant on an evolutionary scale. The

Mesocortex is represented by the Cingulate gyrus, which is a

61

3. Real Neural Networks

structure overlying the Corpus Callosum in both hemispheres (see

Figure 3.1) This structure has many connections with the

Hippocampus and other areas of the limbic system. The Neocortex

covers the major part of each cerebral hemisphere, where it is

assumed to take part in a large variety of higher sensory and motor

processing .

Parietal
Lobe

Ci ngul ate Gyrus
Corp usC a 11 0 s u

Hypothalamus
Pituitary
Thalamus

Occipital
Lobe

Pons
Medull a

~- Cerebellu

Figure 3.1. General view of hemisphere showing major structures.

(adapted from Kupfermann. 1985)

Each type of cortex has been studied extensively and shown

to exhibit a stratified pattern of cell distribution. Allocortex and

Mesocortex appear to show segmentation into 3 layers, whilst

Neocortex seems to have a 6 layer structure. Other levels of

organisation have also been postulated within the cortex. Recent

research has also offered columnar and mini-columnar theories of

neuronal organisation. These organisational structures will be

62

3. Real Neural Networks

described after an exposition of the types of cell to be found in the

cortex.

There are five basic varieties of cell types found within the

cortex (see Figure 3.2):

Pyramidal cells are about 10-50Jlm in size and have a roughly

conical shape characterised by dendrites at both the upper and

lower extremities of the cone. Axons usually leave the cell body at

the base of the cone, acting as association (within the same

hemisphere) or commisural (across hemisphere) connections. These

types of cell can be described as 'communicators' as their axons

are generally those which connect different regions together,

although many pyramidal neurons also connect locally.

Stellate cells are about 4-8Jlm in size, and as the name

implies, are star-shaped, with extensively branched short

dendrites projecting from almost any part of the cell surface.

Their axons may project to the local area or other cortical layers

in the vicinity.

Spindle cells are small elongated bipolar neurons, oriented

vertically with short basal dendrites and longer apical dendrites.

The axons of these cells usually project into the white matter

underlying the cortical laminations. A variety of spindle cells,

oriented horizontally are found in newly-born infants. These

disappear in the early stages of post-natal life. These are known as

Horizontal cells of Cajal.

Martinotti cells are small multipolar cells with short

branching dendrites clustering around the cell body. The axon

ascends vertically to more superficial layers of cortex, with

horizontal branches being produced en route.

63

3. Real Neural Networks

Glial cells are often forgotten in descriptions of cell types,

but they do seem to play a major support role in the life of the

axonic neurons. At the least, they support other cells in a matrix of

their cell processes, possibly providing a pathway for metabolic

processes. At the most, they may provide a pathway for slower

forms of local Signal transmission in the nervous system.

Bipoler
or Fusiform Stellete

~-' Recurr. collet

Pyremid

Mort i nott i

Figure 3.2. Cortical Cell types 1·4.

Cortical Laminae

The cortex has been stratified horizontally into various

layers, depending on the distribution of cells and myelinated

fibres. It is usually agreed that the Allocortex and Mesocortex

appear to have 3 layers of cells. The lamination of the Allocortex

is most easily demonstrated in the Hippocampus (Figure 3.3) The

Hippocampus has three obvious layers based on cell distributions,

64

3. Real Neural Networks ,

although other stratifications have been proposed. The three layers

are made up of the molecular layer, pyramidal layer and the

polymorphic layer.

The Molecular layer is seen as a communication layer, being

made up of a dense collection of cell processes, interspersed with

few neuroglia.

The pyramidal layer is composed mainly of pyramidal cells,

the axons of which are thought to be the only ones to leave the

Hippocampus. The cells in the pyramidal layer are more compact in

the superior region than in the inferior region, although the cells in

the inferior region are larger. The apical dendrites of this layer

generally form in the molecular layer, where much branching takes

place. The axons, too, branch off recurrent collaterals in the

polymorphic layer. Pyramidal neurons are known as the principal

cells of the Hippocampus.

The Polymorphic layer is composed of cells of many forms.

Their axons generally remain inside the Hippocampus, connecting in

a highly branched 'basket' to pyramidal cells of the pyramidal

layer, where they appear to exhibit an inhibitory influence.

The Hippocampus is a highly connected area, which studies

have shown to have a high activity rate and metabolism.

Experimental work on the Hippocampus continues to associate this

area with the formation of memory.

65

3. Real Neural Networks

Lateral Ventri cl e

CA4

Dentate Gyrus

Subiculum --""'>:
Parahi ppocampal
Gyrus

Pyramidal
Layer

Mol ecul ar
Layer

Figure 3.3. Hippocampus, Laminae and sections (adapted from Afifi &

Bergman , 1986).

The layers of the neocortex vary from region to region. In the

motor cortex region, for example, several layers appear to be

missing. This is thought to be a result of specialisation in this

area. In general, six layers are agreed to be present. (see Figure

3.4 .) The top layer (layer 1) is a molecular layer, as in the

Hippocampal description above, consisting of nerve fibres, with

sparse glial cells . It is here that incoming axons terminate on the

apical processes of cells in deeper layers . The second layer is

known as the external granular layer (in Brodmann classification)

which contains small pyramidal and stellate neurons. This is a

dense region with incoming axons from other cortical regions. The

third layer is known as the pyramidal layer, which contains mostly

pyramidal neurons, with apical dendrites extending into the first

layer. The axons of these cells connect to other cortical and sub

cortical areas. Layer four appears to be a local processing zone

containing small stellate cells with cell processes which do not

66

3. Real Neural Networks

leave the layer. Axons from other areas, however, do pass through

this layer in both vertical and horizontal planes, allowing for some

extraneous modulation. This layer is known as the internal granular

layer. The fifth layer is known as the Ganglionic layer, having

larger pyramidal and stellate neurons. This layer also contains

some Martinotti cells. The dendrites from the principal cells pass

to the upper layers, whilst their axons pass mainly to sub-cortical

regions. Layer six consists of many different varieties and sizes of

cell, hence, it is known as the Multiform layer. This layer appears

to contain more Martinotti cells than other layers. The

ramification of cell processes tends to follow the trend of size and

type of the cell in their extent.

67

"
III

IV

v

VI

3. Real Neural Networks

Thel emocort 1 cel

S 'f' input N 'f' peCl lC onspeCl lC

Associ et i on and
Commissural input

from Ventral.1s anterior
Ventrali~ 1eteralis and
Ventralis posterior etc.

from i ntralami nar from other regions
midli ne and reticular of the cortex
nucleii

Figure 3.4 Layers of the Neocortex (adapted from Afifi & Bergman,

1986)

Cortical Columns

In addition to the horizontal stratification of the cerebral

cortex, many researchers' have postulated a vertical structure in

the cortex, progressing towards theories of modular processing

units within cortical columns. It is of great interest to the

neuroscientific community to propose working functional circuits

within the nervous system. Many researchers see the emergence of

68

3. Real Neural Networks

a functional description of neuronal circuitry as the only

progression towards an information theory of neural networks.

The cortical macro-column is assumed to have a diameter of

approximately 300~m, which would contain about 4,000 neurons,

of which half would be pyramidal cells. Over a surface of the

cortex of about 2.Sft2 , this would correspond to around 3 million

cortical modules. Each of these modules is said to inhibit

surrounding modules (Mountcastle, 1978). The cortical mini-column

is an additional structure imposed on the cortex under the macro

column, with a diameter of 11 O~m, containing just over 1,000

neurons (Peters A & Kara D, 1987). However the existence of either

of these structural modules is doubtful (Swindale, 1990).

Neuron Microstructure

Synapses

Synapses are the connection units of the neuron. The term

'synapse' is often applied to the entire structure of the signal

transference unit, although, in a more rigorous interpretation the

'synapse' applies only to the junction between two neural cell

processes, and is, in fact, a gap of some description.

There are two major types of synapse structures. The least

numerous of these are the gap junction or electrical synapse. The

gap junction is a region of cytoplasmic continuity between two

neurons. This is achieved by a reduction of the distance between

69

3. Real Neural Networks

the two cells, and allowing bridging molecules in the cell

membranes to line up on either side of the junction. These bridging

molecules are known as connexons. Connexons are annular proteins

with a central channel of about 2nm diameter, through which the

cytoplasm of adjacent cells can be linked, allowing the transfer of

small molecules. Simple ions pass easily through these pores, and

thus electrical continuity is maintained. Gap junctions allow an

almost simultaneous transfer of electrical activity between two

neurons .. This also means that gap junctions can allow bi

directional electrical propagation.

Chemical synapses are cytoplasmically non-contiguous. The

structure of these junctions is variable, but conforms to the

general prinCiple of a narrowed extracellular space, with an

outgrowth of one cell process towards the membrane of a second

cell. The outgrowth is known as the pre-synaptic bouton, the target

membrane is referred to as the post-synaptic membrane, and the

gap in extracellular space between these two elements is referred

to as the synaptic cleft (See Figure 3.5.) Electrical continuity is

not achieved in this case. Signal transmission is accomplished by

the secretion of chemical messengers from the pre-synaptic bouton

diffusing across the synaptic cleft to target sites on the post

synaptic membrane. As the chemical messenger is usually only

found in the pre-synaptic bouton, signal transmission is a one-way

process. This diffusion method also involves a time delay. The

target of the chemical messenger is an ionic channel in the post

synaptic membrane, which allows electrical activity to be induced

in the target neuron.

70

3. Real Neural Networks

Gop (El ectri col) Juncti on Introcell ulor spoce
c::>

/~ fi
Cell Extrocellulor spoce

Memb~~ R
Connexon

Chemicol Junction

Synopt i c Yes; cl es

Pre-Synoptic
Bouton

Syno p ti c Cl eft -,..,-1 ______ _

Post -Synept f c
Receptors

Figure 3.5. Gap junctions and Chemical synapses.

Post -Synopt; c
Spine

The synaptic transmitter chemicals are stored in vesicles in

the pre-synaptic bouton. There are two major classes of

transmitter, those which excite the target neuron and those which

produce an inhibitory effect. Different amounts of transmitter may

be released for different levels of pre-synaptic signal, and

transmitters are released in quanta dictated by the nature of their

storage in vesicles. Many different transmitters exist. Some of the

more common transmitters are listed in Table 3.1 below.

71

3. Real Neural Networks

Transmitter ~

Acetylcholine (ACh) Molecular
Norepinephrine
Dopamine
Serotonin (5-Hydroxytryptamine)
Histamine

Aspartate Excitatory Amino acids
Glutamate
N-Methyl-D-Aspartate

Gamma-aminobutyric acid Inhibitory Amino acids
Glycine
Taurine

Table 3.1 A subset of known neural transmitter substances.

The table shows that there are many neural transmitter

substances involved in signal transmission within the nervous

system. This is not an exhaustive list of substances known to be

transmitters. Current research i~ continuously expanding the list

of possible transmitters. In the past twenty years or so, research

has been focussed on the existence of several neural peptides

which appear to be neuro-active. The description and implications

of these neuro-active peptides will be dealt with in the following

chapters.

The character of neurotransmitters is determined by the type

of receptor upon which it binds. Some neurotransmitters bind to a

number of different receptor types and therefore have different

characteristics. For example, Acetylcholine binds to two types of

receptor, named 'Nicotinic' and 'Muscarinic' after the types of

72

3. Real Neural Networks

chemicals which also excite activity in these particular receptors.

Muscarinic receptors allow a much slower time course than the

Nicotinic receptors, and the activity of the target cell is therefore

dependent on the type of receptor at the active sites of the cell.

Ion Channels

All signalling activity in the nervous system is completely

dependent on the presence of ion channels in the membrane of the

neuron: Ion channels are often passive (non-gated) or are modulated

by an exogenous substance which enables or disables the ion

channel (gated). The electrical activity of a cell is governed by

these ion channels. (Electrical activity of the neuron is dealt with

below.) In essence, each ion channel allows the transmission of a

small number of ionic species through the membrane of the cell, in

most cases, only one ion type can be passed, due to the specificity

of the ion channel.

The structure of generalised ion channels is shown in figure

3.6. The non-gated variety allows ions to pass according to the

concentration gradient on either side of the cell membrane. The

speed of ionic passage is determined by the size and transfer

mechanism of the channel. Gated channels are more complex. Gated

channels can be opened or closed by the presence of particular

substances or electrical potentials. At a chemical synapse, the ion

channels are opened by the excitatory transmitters (ligand gated)

or by a voltage difference (voltage gated). The presence of a

neurotransmitter molecule is thought to produce a conformational

change in the ion channel 'gate' molecule, bought about by the

73

3. Real Neural Networks

polarity of the molecule. This opens the gate and allows a

particular type of ion to cross the membrane. Voltage gated

channels are thought to function in a similar manner.

Non-Geted ion Chennel

Geted jon Chennel
in closed end open
positi ons

Figure 3.6. Generalised Ion Channels: Non-Gated and Gated.

Electrical characteristics of neurons.

Signal transmission in the nervous system is entirely reliant

on electrical properties of the neuron. More specifically, the

activity of the cell is dependent on the electrical properties of the

ionic species in very close proximity to the cell membrane. The

cell membrane represents a barrier to current flow which is

breached by the ion channels referred to above. The ion channels

allow current to flow (ie. ions) in specific amounts depending on

the number of channels which are open at any time.

In the normal (resting) state of the cell membrane, a voltage

difference can be measured across the membrane. The difference

74

3. Real Neural Networks

for the 'average' neuron is approximately -50mV, this is due to the

presence of the non-gated (or passive) ion channels. These are in a

constantly open state, allowing ions to enter and leave the cell

according to the concentration gradient present on either side.

Additionally, an active 'ion-pump' exists within neural cells which

expels Sodium ions and draws Potassium ions into the cell. Without

going into an extensively detailed account, the resting membrane

potential reflects the equilibrium state of the ionic species on

either side, plus the action of the 'ion-pump'.

The membrane is vulnerable to changes in potential very

quickly, due to the thinness of the charged region on either side of

the membrane. This means that it takes very few ions to break the

equilibrium imposed by the normal mechanisms of the cell

membrane. Signal transmission is based on the fluctuations of

charge produced around the membrane, by the action of concerted

changes in the state of the ion channels, mediated by the voltage

difference and the binding of neurotransmitter to ligand gated

channels. Two antagonistic fluctuations of the membrane potential

are responsible for the signalling properties of the cell.

Depolarization produces the 'action potential', the driving force of

neural circuitry. Hyperpolarization limits the cells' ability to

produce action potentials.

Depolarization of the membrane is a cascade process, which

occurs in the following sequence. Small changes in the voltage

across the membrane, from the resting potential, cause voltage

gated ion channels to open, allowing Sodium ions to flow into the

cell. The change in voltage caused by the Sodium ion flow, opens

more voltage gated ion channels, allowing more Sodium ions to

flow into the cell. This positive feedback system quickly produces

75

3. Real Neural Networks

a large depolarization of the membrane, which is transmitted along

the membrane in the same way - Ion movement causes voltage

difference along the membrane, opening voltage gated ion channels

along the membrane. The cascade effect begins at about -45mV.

The maximum likely extent of a depolarization is to a value of

about +55mV. In most cells, there is a particular zone of the neuron

which responds to changes in membrane voltage preferentially,

known as the 'trigger zone', this zone can usually be located at the

initial segment of the cell's axon. Recovery from the depolarization

of the membrane involves a delayed outflow of Potassium ions

through voltage gated channels, and a closing of the Sodium inflow

voltage gated channels. This allows the membrane to recover its

negative potential. Sodium and Potassium ions are then pumped in

opposite directions to restore the chemical balance of the resting

state, ready for the next depolarization.

Hyperpolarization of the membrane results in a decreased

susceptibility of the membrane to depolarization. This is produced

by allowing Chloride ions into the cell, or allowing more Potassium

ions out of the cell. The movement of these ions produces an even

more negative potential difference across the cell membrane, of up

to -70mV. This voltage level means that a possible depolarizing

influence has a greater voltage difference to overcome, and hence a

larger amount of ions to move, before the voltage gated ion

channels will open to begin producing the depolarization.

At the synapse, neurotransmitter is released as a result of

electrical activity, propagated along the axon to the pre-synaptic

bouton. Sodium and Potassium ions act in a similar way at the pre

synaptic bouton, as in the rest of the cell membrane, although an

additional component is necessary for the release of

76

3. Real Neural Networks

neurotransmitter substances. The depolarization of the pre

synaptic bouton results in the inflow of Calcium ions, into the

interior of the bouton. Calcium ion influx has been shown to be

necessary for the release of transmitter, and to determine the

amount of transmitter released. The mechanism of action of the

Calcium ions is thought to involve a secondary messenger inside

the cell. The reliance on Calcium ions for the release of

neurotransmitter, means that modulation of the signal can be

achieved at the synapse itself, from outside influences such as

inhibitory synapses on the axon, near the pre-synaptic bouton.

The Excitatory post-synaptic potential (E PSP) is the

potential induced in the post-synaptic receptor of the target cell.

The intensity of this potential is dependent on the degree of

transmitter released by the pre-synaptic bouton. The length of the

signal is also reliant on the speed at which the transmitter is

removed from the synaptic cleft. This potential makes up the

dendritic potential which adds to other potentials arriving at the

trigger zone of the cell, which may induce an action potential in

this cel/.

Inhibitory Post-synaptic potentials (IPSP) can also be

generated by inhibitory neurons synapsing onto a cell. Inhibitory

neurons release transmitters which bind to inhibitory receptors on

the target cell. These receptors often allow Chloride or Potassium

ions to flow into the post-synaptic cell giving hyperpolarising

effects, as outlined above. This membrane hyperpolarisation can be

summated at trigger zones in a similar way to excitatory

potentials

Other factors may modulate the strength of the signal before

it reaches the trigger zone of the cell. In the case of post-synaptic

77

3. Real Neural Networks

potentials in dendritic trees, the resistance of the electrical

pathway to the trigger zone has a large part to play in attenuating

the signal before it can be summated. Where a pathway is long, an

enormous amount of potential can be lost on the way to the trigger

zone. Cell membranes have a certain amount of capacitance that

must be overcome for any charge movements to occur, as well as

the ordinary resistance encountered in moving a current along a

cell membrane. Neurons are thought to use this attenuation to their

advantage. In the Hippocampus several different synapse zones are

thought to occur on the major neurons of the region, characterised

by particular positions on the dendritic tree, in a graded fashion

from the cell body. In this case, a zone of the dendritic tree at a

particular distance from the cell body receives synaptic contact

from specific types of cells. This implies that the neuron is using

the attenuation inherent in the dendritic pathway as a pre-wired

means of selectively responding to different cell types (Gershon,

Schwartz & Kandel, 1985).

Synaptic Plasticity

The heart of the adaptive process within the neural system

lies in the long-term modulation of signals at the junctions of

neurons. This is 'memory'. Without the ability to vary the

modulation of signals, we would be incapable of learning anything

new. Neural systems would be pre-wired behavioural patterns

which adapt very little to the circumstances of their application in

different situations.

78

3. Real Neural Networks

It is thought that most adaptation, in the sense of signal

modulation, occurs at the synaptic junction as a response to

correlated activity conditions within the pre-synaptic and post

synaptic parts of the cell. The changes brought about by these

correlations are simplified as changes in the 'strength' of a

synaptic connection, implying that varying amounts of 'signal' are

passed across a synapse as a result of the adaptive process. This is

not strictly true, as certain neurons change the character of their

signals as a result of synaptic 'strength' modulation, as well as an

apparent change in magnitude of the signal passed. (Llinas, 1991)

The correlational idea of synaptic plasticity is attributed to

Hebb (Hebb, 1949) as stated in the chapter 1. Correlation of

activity in pre- and post-synaptic parts of cells produce (in time) a

change in the parameters of the synapse, enabling positively

correlated junctions and disabling negatively correlated synapses.

The temporal aspect is thought to be composed of a short term

memory system, which is then transferred into another form for

longer term storage.

Short or long term?

Short term storage of information can be achieved in several

different ways, . spread across a number of synapses. Some

candidates for storage can be studied directly, where simple

synaptic effects give rise to short-term changes in the behaviour

of the synapse. Other mechanisms must be theoretically proposed

on the basis of expected behaviour in larger scale models of

several neurons.

79

3. Real Neural Networks

Simple synaptic effects have been studied extensively, and

include Potentiation and Depression effects. These have both been

found in the Hippocampus, which has been a focus for these studies.

Long-Term Potentiation takes the form of an increased sensitivity

to pre-synaptic input, after high frequency activation by the pre

synaptic terminal (Bliss & Lomo 1973). Sejnowski, Chattarji and

Stanton (Sejnowski, Chattarji and Stanton, 1989) outline a further

type of L TP known as associative L TP, taking place when different

inputs to a neuron are stimulated in phase. They also introduced a

form of Post-synaptic depression known as Associative LTD. This

is an effect which occurs only when the dual excitation of pre- and

post-synaptic cells are out of phase. This produces a post-synaptic

depression in sensitivity to pre-synaptic activity.

L TP is usually associated with Hebbian plasticity, but it was

found that Associative L TP would occur even when depolarisation

is prevented in the post-synaptic cell. Sejnowski, Chattarji and

Stanton (1989) regard this is a kind of pseudo-Hebbian process. The

implication in this latter work is that the effect is produced in the

pre-synaptic terminal. Another type of pseudo-Hebbian process is

Post-tetanic Potentiation, also found in the Hippocampus. This is a

result of a high frequency tetanus of the synapse and can last for

many minutes - producing an elevation of the synaptic strength,

without a change in post-synaptic sensitivity (Katz & Miledi, 1968)

Heterosynaptic Depression occurs where a weakly stimulated

pathway converges on the same neuron as a path which

occasionally carries strong stimulation. The weak pathway

experiences a depression in transmittivity after high frequency

stimulation of the strong pathway. The effect is known to last for

a shorter duration than the effect of L TP (Levy & Seward, 1979)

80

3. Real Neural' Networks

On a higher level, short-term memory has been thought to be

encoded in· the activity of reverberatory circuits between neurons.

This theory proposes that a circular pathway of activation is

formed in a neural sub-system, which continuously cycles around

the loop until the longer-term system has had time to encode the

pattern of activity. This theory is based on a form of a 'rehearsal'

idiom, and is not likely to be a major part of short-term memory.

Longer duration storage is thought to be a result of encoding

the shorter term changes into a more permanent form. Accelerated

Protein synthesis in stimulated cells has been taken as an

indication that long-term memory is laid down in a protein base,

but the mechanisms of this process are little understood. Research

is continuing in this area, both in local ising such changes and in

mapping the functional changes in neuron structure.

Molecular mechanisms of mind

Each part of a cell's membrane can be thought of as a

relatively complex ·computational circuit (Matsumoto, 1988). This

is due to the molecular nature of the processes underlying the

operation of the neuron at specific local areas. Many of the effects

of neurotransmitter molecules are defined by their shape and

dipole moments. At a molecular level, these properties are easily

changed by the effects of enzymes and other binding molecules,

which deform the shape of the target molecules (allostery),

altering their electropolar properties at the same time. The effect

of neurotransmitters on particular receptors is generally the

production of a conformational change within the receptor

81

3. Real Neural Networks .

. molecule, which alters its own binding with sub-membrane

proteins, producing a change in the biochemistry of the internal

environment of the cell.

Molecular 'computation' takes place both pre- and post-
-

synaptically. As an example, in the process of pre-synaptic

sensitization, a serotonergic axo-axonic connection to' the pre

synaptic terminal produces a conformational change in the receptor

protein. The receptor protein is normally bound to a protein known

as a 'G-Protein', which is partially released by the

neurotransmitter binding process. The G-protein activates a

membrane bound adenylate-cyclase enzyme, which catalyses the

formation of the secondary messenger Cyclic AMP, from Adenosine

Tri-phosphate. The Cyclic AMP activates a protein kinase (a protein

phosphorylation enzyme), which phosphorylates a component of a

serotonin modulated Potassium channel. This reduces the recovery

rate of the Potassium current, thereby extending the action

potential, which allows a greater influx of Calcium to trigger

exocytosis of neurotransmitter vesicles. (Kandel, 1985) Figure 3.7

shows a representation of this process. Similar processes account

for the short-term modulati"on of most neurons. There is some

evidence that the intracellular concentration of Calcium is

important in synaptic plasticity, as high concentrations of Calcium

are accrued by small sacs in dendritic spine heads. (Fifkova,

Markham and Delay, 1983)

Longer term changes must be brought about in a similar

manner to short-term changes, perhaps through a cell metabolism

modulated by slow enzymatic changes based on secondary

transmitters such as Cyclic AMP, or the presence or absence of

particular ions.

82

3. Real Neural Networks

Receptor

G-Protein

Adenylate Cyclase

Synaptic
Vesi cl e

Active
zone

K+

Channel

Ca++
Channel

(J Post Synepttc
. . Membrane ---------------------------

Figure 3.7. Molecular process of pre-synaptic sensitization (adapted

from Kandel, 1985)

Summary

The nervous system has a gross organisation which is

extremely complex. This complexity is manifested at every

physical level from the ramifications and connections of the

neurons within the cortical sheet down to the difference in

83

3. Real Neural Networks

neurotransmitter chemicals used at the synapses, and the

electrical behaviour of single ion channels.

This section has shown that the complexity of the nervous

system has to be reduced to the molecular level to understand
-

some of the processes which occur at higher levels. We still do not

have a complete understanding of the processes of short- and long

term memory. The mechanisms of memory, particularly of long

term and the encoding of long-term from short-term memory, are

vital components for the correct artificial modelling of any sort of

working neural mode/. At the moment neural models must work in

an environment of artificial long-term memory production, which

has a dubious connection to the real processes merely due to the

absence of data on the production of real long-term memory.

84

3. Real Neural Networks

Computational Neuroscience

A note on History

Computational Neuroscience does not have much of a history.

In essence, the field termed 'Computational Neuroscience' was born

with the paper 'Computational Neuroscience' in 'Science' Volume

241 pp. 1299-1306 of September 1988. (Sejnowski, Koch &

Churchland, 1988). Work had been done in this field under various

guises for many years before this paper. One of the first notable

contributions to functional analysis of neural system was the

Hodgkin and Huxley characterisation of electrical signal

propagation in the squid axon in 1952 (Hodgkin & Huxley, 1952);

Since then much work has been done on the functional

characteristics of neural tissue.

Computational Neuroscience is based on the preceding

neuroscientific research, but its goals are to

• ... explain how electrical and chemical

signals are used in the brain to represent and

process information.- (Sejnowski, Koch &

Churchlarid, 1988).

In order to reach this goal, Computational Neuroscientists

expect to produce detailed models of neural function, based on

known neuroscientific data, together with some extrapolations

from other neural network fields (called simplifying brain models _

85

3. Real Neural Networks

referring to connectionism, parallel distributed processing, etc}. It

is intended that many different models will be built on different

levels between the simplifying brain models and real neural

networks, each designed to test possible mechanisms of action

inside the natural nervous system.

In the major sense, Computational Neuroscience is an

'information processing' field, even though it takes advantage of

biological data to produce models in which to investigate this

. information processing. The field deals with the physics of living

systems generally bounded by the nervous tissue of living

organisms. Philosophically, the core interest of computational

neuroscience is in the way in which the human brain processes

information. Ultimately, the unspoken aim of the field is to

understand the processes of higher cognition, such as motivation

and abstract thought, as patterns of base level activity within a

nervous system.

Electrical equivalence of the neuron

Computational Neuroscience deals with the modelling of

neural systems in as concise a manner as possible. This requires

the use of mathematical models, often culled from other fields,

which describe the behaviour of low-level neural elements as

closely as possible. Much of. the characterisation of neural tissue

is reduced to electrical properties and equivalent electrical

circuits, which allows an easier modelling route to computational

studies. This is the method employed in this section to describe

the properties of neural tissue.

86

3. Real Neural Networks

The electrical properties of neural axons and dendrites can be

modelled using a technique developed in the mid-nineteenth century

by Lord Kelvin to model the characteristics of transatlantic

telegraph cables. This 'Cable theory' is now the basis of

calculations performed to measure the conduction characteristics

ofaxons and dendrites. This is possible because these cell

processes are tubes of cytoplasm assumed to have uniform

electrical properties. The cytoplasm is surrounded by a membrane,

which generally has a higher electrical resistance than the

cytoplasmic interior and the extracellular environment. This sort

of structure is known as a 'core conductor', which allows current

to flow along the cytoplasm in a direction dictated by the

boundaries of the membrane.

Cable theory assumes that a conductor has uniform

properties, such as diameter, resistance and capacitance. This

leads to inaccuracies in the. application of cable theory to neural

processes, as neural processes are usually not uniform in their

properties. These inaccuracies must be tolerated, as exact models

of a neural process would have to take all variations in geometry

and electrical properties into account. This would be too

computationally expensive to model, and would also lead to non

reducible properties. To reduce these inaccuracies, neural cell

processes are modelled as short stretches of 'ideal' cables,

attaching a set of uniform properties to each 'compartment' of the

cable. This is shown in Figure 3.8. In this way, a cell model can be

built with realistic overall properties from a number of combined

cable 'compartments', each with a different set of electrical

properties. Models built using this method are known as

87

3. Real Neural Networks

'compartmental models'. These were introduced by Rail (Rail,

1964).

Collate ra13

Soma

Dendritic
Tree

Figure 3.8. Compartmental model of a neuron.

Compartmental modelling is a useful tool. It allows the

neuron to be broken down into an arbitrary number of

compartments, depending on the level of detail required. Some

studies use one compartment for an entire dendritic branch, while

others model each dendritic component separately. The modelling

of entire branches in one compartment is justified if the aim of

modelling is to test the operation of the entire neuron, or a

network of neurons. Modelling each dendritic branch as a separate

compartment, or even a very short part of a dendrite as a

compartment, is useful for comparing a model to a real neuron, but

the amount of computational power involved precludes such a

detailed model's use in network analysis.

Compartments are modelled on an equivalent electrical

circuit based on the core conduction path and the membrane of the

cell process (Figure 3.9). The equivalent circuit shows the core

88 I
I
j

3. Real Neural Networks

conduction path as equivalent to a resistance along the cytoplasm,

and the membrane as a resistance in series with a battery

(representing the resting potential of the membrane) with a

capacitance in parallel to the membrane resistance. The

extracellular space is equated to a 'sink' or ground state, which is

isopotential.

Cytoplesm

Figure 3.9. Equivalent circuit of a cell process. (adapted from W. Rail,

1989)

The current flow through each compartment can be calculated

by differential equations based on the equivalent circuit. The

gradient of the current through one compartment is calculated as:

(equation 3.1)

(where ii is the core current and ri is the intracellular

resistance, Vi is intracellular voltage and x is distance along the

cell process)

89

3. Real Neural Networks

because the membrane is a constituent of the compartment

the current flow across the membrane must also be taken into.

account. Adding the necessary current inflow and outflow across

the membrane component (without modelling the membrane)

produces:

(
rm) (02V) . f; ox2 = Imrm (equation 3.2)

(where rm is the resistance of the membrane, ri, is the

resistance of the intracellular space, im is the membrane current

and the differential part is the rate of the gradient change of

Voltage over distance along the cell process)

the membrane properties include the membrane capacitance

as a conjugate with the resistance as a time constant (tm) giving:

(equation

3.3)

(where rm is the resistance of the membrane, im is the

membrane current, tm is the time constant of the membrane and the .

differential part is the rate of change of Voltage over time)

Before amalgamating the previous equations into a

complete definition of the compartmental current activity, we

must define a length constant, which defines the relationship

between the membrane resistance and the intracellular resistance

over distance:

90

3. Real Neural Networks

(equation 3.4)

then, the final equation (the cable equation) for a

compartment is:

A,2 - - V - 'tm -- = 0 (8
2V) (8V)

8x2 8t
(equation 3.5)

(Rail, 1989)

This is a partial differential equation which reduces to

differing ordinary differential equation under direct and

alternating current conditions, allowing the calculation of input

resistance, voltage attenuation and AC impedance.

Patches of membrane which include receptor channels are

modelled in a similar fashion, but include active gated resistances

and batteries for the receptor (syn) and action potential (act)

components. (Figure 3.10) The membrane current in this instance is

specified by:

im = em (~~) + 9leak(V • Eleak) + 9syn(V • Esyn)

+ gact(V - Eact}

(equation 3.6)

(where g refers to conductance, V is voltage and E is the

Battery (Nernst) potential, for each of the three components; Cm is

the membrane capacitance and im is the membrane current)

91

3. Real Neural Networks

Extrecell uler spece

Active
Membrene

~--------~----~----~--------~
\

I ntrecell ul er cytoplesm -=-
Membrene
Cepecl tence

Figure 3.10 Equivalent circuit for a patch of active membrane. (Adapted

from Segev, Fleshman & Burke, 1989)

Ionic channels conductance in a membrane, can be modelled

as a population by taking the maximal conductance for an ionic

species and modulating this by known activating and inactivating

parameters, such as Voltage, ionic concentration and time, all

three of which affect the state of an ion channel. Yamada Koch and

Adams (Yamada Koch and Adams, 1989) model seven ionic currents

of a Bullfrog ganglion cell separately and then integrate each of

these into a model of neuron activation. The models apparently give

an accurate prediction as to the actual behaviour of the neuron

under patch-clamp conditions. Their model for Voltage change in

the soma of the ~ell is given as:

(
dV) . .

eN dt + linput + INa + ICa + IK + 1M + IA + Ic +

IAHP + Ileak + Isyn = 0

(equation 3.7)

92 .-

3. Real Neural Networks ,

(where CN is the Capacitance, V is voltage, t is time, linput refers

to the input current injection, INa is the inward Sodium current, IC a

is the inward Calcium current, IK is the net outward Potassium

current, 1M is the slow muscarinic Potassium current, IA is the

hyperpolarisation activated current, Ic is a Calcium sensitive

outward current, as is IA H p, which is a slower

AfterHyperPolarisation Potassium current. Ileak is the leakage

current through the membrane, and Isyn is the synaptic input

current.)

Operational equivalents of neural processes

The previous section gives the electrical properties of the

·neural computation substrate, from which we can extrapolate to

the actual computations performed by neural tissue. Most of these

extrapolations are based on actual physical observations of the

neural tissue under experimental conditions. In information

processing terms, only a subset of neural operations is required to

produce a usable digital computer on a par with current computer

technology, so that a proportion of neural operations offer an

additional processing layer which adds to the complexity of. neural

operations.

93

3. Real Neural Networks

Operator: Action potential production

Input: Graded membrane voltage change

Output: single activation spike

The action potential of a neural impulse is an example of an

all-or-nothing action. The input to the action potential is a graded

build up of voltage leading to a threshold event, generating the

. action potential. The action potential functions as an analog-to

digital conversion function, as well as an AND gate, depending on

the relative strengths of the incoming multiple inputs. It can act

as an OR gate, if each incoming input is strong enough to overcome

the threshold function. The action potential generator is also a

variable gated device which is dependent on the previous activity

of the generator. It can be thought of as a variable trigger switch

with automatic biasing.

Operator: Repetitive spiking activity

Input: Graded membrane voltage change or current injection

Output: multiple. activation spikes

Repetitive spiking occurs in some neurons as a result of

prolonged synaptic input· or current injection. There is often a

linear relationship between the. incoming current and the frequency

of firing (Schwindt & Crill, 1982). which implies that an analog

input current is being modulated into a frequency modulated

domain. In this case a change is being made to the method of

information representation, allowing for the possibility of

94

3. Real Neural Networks
,

multiple channels of information in one physical channel within the

nervous system.

Operator: Impulse Conduction

Input: Action potential

Output: single Action potential (variable attenuation)

Conduction of the action potential is a variable process,

depending on the parameters of the axon itself, the action potential

source and the frequency of action potentials. If the diameter of an

axon is small, the impedance generated by a high spiking frequency

may attenuate the signal drastically. In branching axons, these

characteristics may allow signals to pass branching points without

propagating the signal into one of the branches. This produces a

filtering effect, propagating signals into the branch only when the

impedance allows, possibly at a different ratio to the incoming

activation. In physical terms, the fan out of an axon allows a wider

distribution of signal transmission - the opposite of the fan-in

implied by action potential production.

Operator: Chemical synapses

Input: pre-synaptic voltage

Output: post-synaptic voltage (non-linear)

The chemical synapse of a spiking neuron produces a non

linear output which appears very similar to that of a transistor

device, sigmoidal, with an approximately linear section in the

95

3. Real Neural Networks

center. (Katz & Miledi, 1967) This means that small variations in

input voltage can act as a transistor, amplifying variations in

output voltage if the input voltage is in the linear range. The gain

of this amplifier is not necessarily above unity. (Martin & Ringham,

1975) The chemical synapse is defined as a non-reciprocal two

port in informational terms. Communication is one-way only,

although reciprocal synapses have been found (Shepherd, 1979) The

properties of the chemical synapse imply that it can act as either

an analog amplifier, a digital switch or a digital to analog

converter.

Operator: Electrical synapses (Gap junctions)

Input: pre-synaptic voltage

Output: post-synaptic voltage

Electrical synapses are a form of direct coupling between

neural cells. The cell cytoplasm is almost continuous through a

pore which connects the membranes of two cells. This pathway

presents a low resistance to signals originating in a source cell,

although the input resistance to a specific cell may be higher than

its neighbour, giving a directionality to the junction. The

transmission properties of these junctions show similarities to

those of chemical synapses, depending on the electrical parameters

of the cells on either side of the junction. The largest operational

difference between electrical and chemical synapses, is that there

is a lesser delay in signal transmission in electrical synapses. Gap

junctions can behave in a similar manner to diodes, rectifying the

96

3. Real Neural Networks

incoming signal through half of a sine cycle. (Furshpan & Potter,

1959)

Operator: Synaptic interaction

Input: Multiple pre-synaptic voltages

Output: Modulated post-synaptic voltage

The action of multiple synaptic inputs along a dendritic

branch can produce many different effects. In some cases, additive

excitatory inputs will produce a summated dendritic current. In

other cases excitatory synaptic activity, coupled with inhibitory

synaptic activity along a length of dendrite will produce complex

effects, depending on the relative positions of the synapses and the

timing of the synaptic activity. In a well-studied interaction, an

excitatory pre-synaptic signal can be nullified by an inhibitory pre

synaptic signal on the dendrite at a more proxtmal position to the

soma. (Koch et ai, 1983) This is known as silent inhibition when

the inhibitory synaptic reversal voltage is near Omv. This produces

no change in the dendritic voltage on its own, but will veto

excitatory inputs on more distal parts of the dendrite.

Hyperpolarising inhibitory inputs exert a different effect. These

are summated with excitatory inputs to form the general

excitation level· of the cell. Operationally, the most important

function appears to be the 'veto' or silent inhibition effect

obtained by the inhibitory (Omv reversal potential) synapse on

proximal parts of the dendrite. This forms an AND-NOT logical

circuit which is important for direction selectivity in the visual

97

3. Real Neural Networks

system (Hubel & Wiesel, 1959). Other forms of synaptic interaction

operate as a form of analog summation.

Operator: Dendritic Spines

Input: post-synaptic voltage

Output: Modulated post-synaptic voltage

The post-synaptic output of synapses on dendritic spines is

dependent on the properties of the spine. In particular, diameter

and length of the spine are of importance, due to the differential

impedance of the spine to input signals and the electrical

saturation of the spine. As the spine neck is generally smaller than

the dendrite and the spine membrane is assumed to be passive, then

a general attenuation is expected to occur between the spine head

and the dendrite. Where the membrane is active, the spine can act

as an amplifier. if the number of active channels on the membrane

is sufficient to produce a greater effect. It has been postulated

that synapse weights can be altered by the change in length of the

spine brought about by the contraction of filamentous proteins

found in the spine neck (Actin, Fodrin, Tubulin. See (Crick, 1982)).

This is assumed to occur in response to the concentration of

Calcium in the spine head.

98

3. Real Neural Networks

Operator: Quasi-active membranes

Input: Axonal current

Output: Modulated axonal current

Quasi-active membranes are membranes which display a

variable output to differing inputs. In particular, some membranes

may act as filters by virtue of their resonant frequency properties.

Such membranes usually have a large proportion of secondary

activation ion channels, such as voltage, time or ionic species

concentration activated channels. These exert their effects by

showing a peak conductance at a certain time after the onset of

stimulation, these are then inactivated, and after a refractory

delay, are ready to be activated again. Different membranes show

different resonant frequency tuning and are likely to be used in

sound transduction, but can be used in other filtering situations

(Koch, 1984).

Operator: Transmitter regulation of voltage-dependent channels

Input: Presence of neurotransmitter and voltage-regulated ion

channels

Output: Modulated ionic channel current

Neurotransmitter regulated ion channels have been found

recently in many cells (Siegelbaum & Tsien, 1983). The modulation

of the ion channel is a slow process, thought to take place as a

result of secondary messenger action. The incoming

neurotransmitter is bound to the membrane where it activates an

99

3. Real Neural Networks

intracellular transmitter such as cyclic AMP, which determines the

phosphorylation of ion channels. This modulation leaves the

membrane in a heightened state of excitability for a long duration.

This mechanism is similar to a variable biasing mechanism on a

transistor, allowing control of the gain of the component.

Most of these operational functions are summarised in the

. table below, including some examples of the computation which

may be performed by the particular structures under consideration.

Biophysical Mechanism

Action potential Initiation

Repetitive spiking activity
Action potential conduction

Conduction failure at axonal
branch points
Chemically mediated synaptic
conduction
Electrically mediated synaptic
transduction
Distributed excitatory synapses in
dendritic tree
Interaction between excitatory and
(silent) inhibitory conductance
inputs
Excitatory synapse on dendritic
spine with Calcium channels
Excitatory and Inhibitory synapses
on dendritic spine
Quasi-active membranes

Transmitter regulation if voltage
dependent channels (M-current
inhibition)
Calcium sensitivity of cAMP
dependent phosphorylation of
Potassium channel protein
Long distance action of
neurotransmi tter

Neural Qperation

Analog OR! AND one-bit analog
to-digital
Current-to-freguency transducer
Impulse transmission

Temporal/spatial filtering of
impulses
Nonreciprocal tw<r-port ''negative''
resistance. Sigmoid "threshold".
Reciprocal one-port resistance

Linear addition

Analog AND-NOT, veto
operation

Postsynaptic modification in
functional connectivity
Local AND-NOT "presynaptic
inhibition"
Electrical resonant filter analog.
Differentiation delay
Gain control

Functional connectivity

Modulating and routing
transmission of information

Examvle of Comvutation

Long-distance communication in
axons
Opener muscle in Crayfish

Coupling of rod photoreceptors to
enhance detection of signals
a, ~ cat retinal ganglion cells,
Bipolar cells
Directional-selective retinal
ganglion cells. Disparity-selective
cortical cells.
Short- and Long-term
information storage
Enabling/disabling retinal input to
geniculate X-cells
Hair cells in lower vertebrates

Midbrain sites controlling gain of
retin<r-geniculate transmission

Adaptation and storage of
information in Aplysia

Table 3.2 Some Neuronal Operations and the Underlying Biophysical

Mechanisms (From Koch and Poggio, 1987)

100

3. Real Neural Networks ,

Computational Models

With these characterisations of the neuronal substrate shown

above, it is possible to model a single neuron in very great detail,

as well as larger networks of neurons. Low level models of single

neurons are useful for testing theories of single neuron behaviour.

Such models are at a stage where a computer model can accurately

represent the properties of a neuron under different input

conditions. Much work has been done on some of the properties of

smaller networks, which underlie the greater processing power of

a nervous system, such as the oscillatory networks and Central

Pattern Generators (CPG's). In simpler animals, these CPG's

operate specific parts of the organism, allowing models to test

actual physical operations.

Many methods exist for the simulation of neural circuits.

These methods vary from the cable theoretical systems given

above to simulation by specific electrical components. In the

component oriented models, as usual, some of the lower level

details are omitted in order to present a model which exhibits

behaviour in reasonable computational time. In most cases,

different models are tested to assess their viability for the

specific circuit under investigation, and modifications are made to

make the model type fit the behaviour of the real neural circuit.

This means that each new simulation will be a hybrid of various

modelling types, making studies of previously modelled systems

only partially relevant to new studies. These facts make it

difficult to report the results of modelling experiments in· a

101

3. Real Neural Networks

shorter form than was given in the original publications, so this

section serves merely to indicate the areas in which work has been

done, and give references for further reading.

Single Neuron model

Stratford et al (Stratford et ai, 1989) produced a model of a

cortical pyramidal neuron, from layer 5 of the visual cortex. This

was based on their own analysis of the cell type involved. They

evaluated three general modelling methods for these cells,

including equivalent cylinder analysis, segmental cable models and

compartmental modelling. The equivalent cylinder method (Rail,

1977) attempts to collapse dendritic branches into a single

cylinder The pyramidal neuron is question did not meet the

geometrical criteria for equivalent cylinder models, so this method

could not be used. The segmental cable model (Koch & Poggio, 1985)

was found to be too mathematically complex for a reasonable

computational solution, so the compartmental modelling method

was used.

The compartmental modelling method involved the

assumption of isopotential compartments over the neuron and the

simplification of the structures involved. Here, Stratford et al.

attempted a simplification of the apical and basal dendrite

structure. They used two methods; Dendritic profiles and dendrite

cartoons. Dendritic profiles are a one-dimensional summative

measure of a single equivalent dendrite, if all dendrites at a

specific distance were collapsed into one dendrite. The measure

used is the diameter of the equivalent dendrite and calculations

102

3. Real Neural Networks

are based on this measure and the distance from the soma. The

Cartoon method is a two dimensional compartmental model, which

preserves the characteristics of distance from the dendrite axis,

as well as distance from the soma. Figure 3.11 is adapted from the

original figure from Stratford et al. comparing these two methods.

Profile

A
r 0

e m
a a

Basal Dendri tes Soma Apical Processes

/

Cartoon

Figure 3.11 Comparison of the profile and Cartoon representations of

dendritic geometry. (Adapted from Stratford et ai, 1989)

Running the computational models of the neuron showed that

the cartoon method closely mimics the output characteristics of

the real neuron, when the model parameters were· set to

biophysically plausible values.

103

3. Real Neural Networks

Small Network models

Selverston and Mazzoni (Selverston & Mazzoni, 1989)

modelled the Central Pattern Generator of the pyloric sub-network

of the lobster stomatogastric ganglion. This is a three neuron

oscillating network operating within the ganglion, which generates

an oscillatory output when isolated (see Figure 3.12). This

. oscillator controls some of the events in the lobster stomach

system, and shows a particular phase relationship, necessary to

the correct treatment of food in the stomach region. Selverston and

Mazzoni use a coarse grain electrical model to simulate the

physiological mechanism. Their modelling system is derived from

the work of Hopfield and Tank, (Hopfield & Tank, 1986) which uses

operational amplifiers to simulate the action of the neuron. In

order to approximate biophysical detail, gap junction components

were added, simulated by specific resistances, and chemical

synapses were modelled with a sigmoidal input-output function.

The model is shown in figure 3.12.

Selverston and Mazzoni found a high degree of similarity

between the biophysical data and their electrical model, both in

output functions and, more importantly to the correct operation of

the stomatogastric system, in phase relationship.

104

3. Real Neural Networks ,

B.

Figure 3.12 Lobster pyloric sub-network. A. is the connectivity of the

network in the ganglion • black circles represent inhibitory synapses,

the resistance component represents a gap junction connection. B is the

electrically modelled version. (Adapted from Selverston and Mazzoni,

1989).

Larger Networks

Clark, Chen and Kurten (Clark, Chen and Kurten, 1989)

modelled a sub-circuit of the olfactory cortex, based on the

structure of the olfactory cortex, as described by Shepherd

(Shepherd, 1979) . They use a coarse-grain model, which represents

neuronal activity .as mean spike frequencies in the analog domain.

They found that this approximation technique gave good results

when the model was compared with the output of the biological

system. The input from the olfactory receptor cells is known to be

a frequency coded function of stimulant concentration. For each

neuron, the firing rate is determined as the sum of external and

105

3. Real Neural Networks

internal (synaptic) stimuli, with any accommodation to firing

frequency, minus a neuron threshold variable. The synaptic inputs

are weighted, determining the sign of the synapse, and a fatigue

factor scales the synaptic input. The output of the neuron is the

sum of this function, which is sigmoidally scaled, with additional

rate factors added in as the last step to account for synaptic delay

and neuron component 'warm-up' factors.

The olfactory cortex for this model consists of three major

cell types. The Mitral cell is the cell which receives the sensory

input and transmits the output to other brain areas, while the

periglomerular . neurons and granule cells are interneurons,

modulating the computations of the mitral cell. (see Figure 3.13)

The 'tufted' cell, also present in the olfactory bulb, was not used in

this model. The functional equivalent circuit is given in figure

3.13b, and consists of mitral cell models with input modulation

performed by the periglomerular cell model, output being

modulated by the granule cell. The connectivity allows a 'spreading

activation' input function mediated by the periglomerular cell and

a 'lateral inhibition' output function mediated by the granule cell.

The published results of this model show a sustained 20Hz

oscillation in the circuit which is not dependent on the frequency

of stimulation, as long as the stimulation frequency is within a

certain range. This is said to correspond to the phenomenological

measurement of EEG in animals.

106

3. Real Neural Networks ,

I---+.----l---...:=::--- Receptors

Peri
Glomerular
Cell

--.+-- Mitrel Cell

--\--+--- Granule Cell-r-'-~:=~~

_ Exci tatory Synapse = Feedback connections

Figure 3.13 Olfactory cortex, A. representation of a local circuit and B.

model circuit (Adapted from Clark, Chen and Kurten 1989).

Summary

Real neural networks are many orders of complexity above

the representations that researchers can possibly create in

reasonable computational spaces and time-scales, at present. The

variation of membrane resistance along a cell process, alone, is

computationally complex enough to require the fastest parallel

processors to be anywhere near an accurate representation of the

actual process of electrical propagation. Despite this, many

researchers feel ~hat a good enough model of real networks can be

built with composite components, such that input/output mappings

can be accurately followed from the measured characteristics of

real neurons. This should allow neural circuits to be built which

can imitate their real counterparts to a reasonable degree of

107

3. Real Neural Networks

accuracy. The latter examples in this chapter show that this

approach appears to work.

108

4

The Brain,
Neuropeptides and noise:

Theory of signal transmission

involving neuropeptide substances.

A great deal of work has been done on neurotransmitters

within the last 30 years. Beginning with the 'classic' transmitters,

such as Serotonin, Acetylcholine and Norepinephrine, and now

heading towards the characterisation of so-called retrograde

transmitters, candidates for which were Arachidonic acid and now

Nitric Oxide, theoretically used in synaptic update mechan"isms

(Garthwaite, 1991). In the space between these two classes are a

wealth of substances which have been shown to be neuro-active,

some of which are simple molecules, fatty acids (Ordway et aI.,

1991), steroids (Joels & de Kloet, 1992) and others which are

peptide-based and may be fairly large scale molecules. There are

now well over 50 possible neurotransmitting substances to be

found in the nervous system, and an increasing focus of research is

the operational reason for the existence of so many possible

transmitters.

Some researchers assume that the large number of putative

transmitters is a relic of evolutionary history. Rossier (1985)

gives the example of the neuropeptide, a-MSH (alpha-Melanocyte

109

4. Neuropeptides and Noise

Stimulating Hormone), which darkens the skin in amphibians, but

which also exists in higher vertebrates without an apparent

biological function. It has been suggested that neuropeptides may

modulate the action of 'classical' transmitters, but the majority of
-

researchers appear to feel that neuropeptides can be transmitters

in their own right.

In general, it is expected that only a few of these possible

transmitters will be operational in one specific area: But if all the

transmitters are conveying information at the same time, it may

be difficult to separate the effects of some of the channels, using

the same transmitter, and 'noise' may occur as a result of Signals

crossing channels. This may, in fact, be an enhancement, as

described Jater. The crossing of Signals using different

transmitters may be a method of signal propagation which allows

multiple signals to act effectively in a limited space. This is the

basis of concurrent propagation, which would allow multiple

signalling activities to continue uninterrupted in the nervous

system

Neuropeptides - The evidence for neuroactivity

The exposure of neuropeptides to the neuroscientific

community occurred between the late 1970's and the present day,

although some of the preliminary work on certain peptides goes

back as far as the 1930's. The genesis of the idea of neuropeptides

as transmitting molecules goes back to the work on hormones and

neurohypophyseal peptides, and a particular peptide known as

Substance P (studied by von Euler, see (von Euler, 1985» In

110

4. Neuropeptides and Noise

general, the term 'neuropeptide' is applied to a peptide which has

been shown, immunochemically, to be present in the brain, and as

this work was not carried out until the late 1970's, the history of

this field is not long.

The class of 'peptides' encompasses a variety of functional

molecular structures, in fact, anything which is built of non

simple amino-acids. Thus, it is expected that a wide variety of

such substances will occur in a . living organism. If we pause for

thought for a moment, one might find it rather surprising to find

that peptides, given their numbers and distributions in living

organisms, were not thought to take part in the signalling activity

of the organism, even at only a low-level or slow time scale.

There are several classes of neuropeptides. The Opioids

appear to have been most studied, and have been split into three

groups, based on their precursor molecules - enkephalins,

dynorphins and endorphins (Hughes, 1985). The Opioids appear to

modulate sensory input. Other broad classes of neuropeptides are

based on their somatic activities, of which the two main classes

are gastro-active and vaso-active. Some peptides do not readily

fall into neat categories, and tend to regulate specific functions

(such as Oxytocin's regulation of uterine contraction and milk

ejection), but within their regulatory function they can be defined

as either releasing or inhibiting peptides. However, it is not

intended to detail the somatic activity of particular peptides here,

unless it is found to be particularly relevant to their neural

activities. The purpose of this discussion is to elaborate on the

occurrence and possible signalling activity of peptides in the

nervous system, and as such, discussions will be limited to the

111

4. Neuropeptides and Noise'

. central nervous system and ganglia without too detailed a

description of the somatic function of the ganglia, where possible.

Distribution of Peptides in the central nervous system

The occurrence of neuropeptides in the central nervous

system is of greater importance in this treatment, because here, it

. can be argued, there will be a limited variety of functional

importance attached to a particular species of molecule. A

chemical may be an evolutionary residue as Rossier (1985) says, or

it may take part in the functional life of the neural system. In

external ganglia, the neuro-functional properties of the molecule

may be confused with the somatic-functional properties, denying

the assumption of a specific role. Unfortunately, difficulty in

studying the central nervous system and the ease of study of

peripheral ganglia, in situ, and with all connections intact, means

that the central nervous system is rarely extensively studiable

except in fixed preparations. Thus, most evidence comes from

studies of peripheral gangfia. However, table 4.1 shows some

peptides which have been localised to the mammalian cerebral

cortex by immunochemical methods.

Three of the most widely studied peptides have also been

localised to particular cell types. Vaso-active Intestinal Peptide

(VIP) has been shown to exis~ in bipolar neurons with cell bodies in

cortical layers II and III, which receive input from thalamocortical

neurons and synapse onto the apical dendrites of pyramidal cells.

(Morrison & Magistretti, 1985) Cholecystokinin (CCK) tends to

occur over a wider range of cell types, as well as in bipolar

112.

4. Neuropeptides and Noise

neurons, again in cortical layers II and III. Somatostatin (SS)

appears in a heterogenous population of cells, mostly multipolar

and modified pyramidal cells, with cell bodies distributed between

cortical layers II-III, and V-VI.

Other peptides have not been localised as effectively as

these major peptides but Substance P (SP) has been found in

cortical cells, as well as in the widely documented peripheral

unmyelinated sensory neurons (Kelly, 1985). Oxytocin and

Vasopressin have been extensively studied, with indications that

these peptides are widely distributed through basal nuclei and

limbic system and are functional in a neuromodulatory capacity.

(Sofroniew, 1985)

Neuropeptide Y (NPY) is one of a group of pancreatic peptides

which can be found in the cerebral cortex, mostly in interneurons.

This peptide also exists in the basal nuclei and limbic structures

such as the hippocampus and amygdala (Emson & De Quidt, 1985).

NPY can also be found in some central adrenergic neurons, in the

locus coeruleus.

Angiotensin IT
Avian pancreatic peptide (APP)
Bradykinin
Bombesin
Corticotropin releasing factor (CRF)
Cholecystokinin (CCK8 - refers to 8 base molecule)
Enkephalin
Molluscan cardio-excitatory peptide (FMRF-NH2)
Neurotensin
Somatostatin (different versions)
Substance P
Vasoactive intestinal peptide (VIP)

Table 4.1 Peptide-like immunoreactivities identified in mammalian

cerebral cortex. Many more can be found in peripheral tissues (see

Schwartz, 1985) (table adapted from Morrison and Magistretti, 1985)

113

4. Neuropeptides and Noise

Co-existence of IClassical' neurotransmitters with

neuropeptides

Much of the work on Neuropeptides concentrates on the role

of peptides as co-existent and co-released substances with

conventional neurotransmitters. In some cases several peptides co

exist in the same terminal with a 'classic' neurotransmitter (See

Table 4.2 for some known co-existence sites). Some researchers

theorise that this co-existence acts to co-ordinate events in the

nervous system (shown in Aplysia by Scheller et ai, 1985). Other

work shows that peptides can produce long lasting discharge

activity which is interrupted by the release of 'classic'

neurotransmitters (Horn & Dodd, 1985). An example of co-existence

facilitating a response is the action of Acetylcholine (ACh) and VIP

(Vasoactive Intestinal Peptide) in the sub-mandibular salivary

gland of the cat. Here, VIP does not cause salivation on its own, but

facilitates the action of Acetylcholine to produce salivation,

possibly by increasing the affinity of Muscarinic receptors for

Acetylcholine: ACh, on its own, produces a lesser salivation

response (Lundberg & H6kfelt, 1985). VIP is not solely found in

intestinally related areas, but is also present in cerebral cortex

interneurones where it is thought to play a role in enhancing local

blood flow (Morrison & Magistretti, 1985). Other neuropeptides

seem to be even more important in the nervous system.

Cholecystokinin (CCK), along with Neurotensin, is thought to play a

role in regulating the release of dopamine in cortical dopaminergic

neurons (which apparently have no pre-synaptic autoreceptors). The

114

4. Neuropeptides and Noise
,

release of CCK in this case, inhibits the release of dopamine, and is

antagonistic to neurotensin which facilitates dopamine release

(see Emson, 1985).

Classical transmitter Peptide

Dopamine

Noradrenaline

Adrenaline

5-HI (Serotonin)

ACh

GABA

Enkephalin
CCK
Somatostatin

Enkephalin

Neurotensin
APPIBPPINPY

Enkephalin
APP/BPPINPY
Substance P
IRH
Substance PffRH
Enkephalin
VIP
Enkephalin

Neurotensin
LHRH
Somatostatin
Substance P and
Enkephalin
Somatostatin
Moti1in

Iissuelre~ion (species)

Carotid Body (Cat)
Ventral tegmental area (Man)
Sympathetic ganglion (G-pig)
SIP cells (Cat)
Sympathetic ganglia (Cat)
Adrenal Medulla (Several)
SIP cells (G-pig)
Locus Coeruleus (Cat)
Adrenal Medulla (Cat)
Sympathetic ganglia (Man)
Medulla Oblongata (Man)
Locus Coeruleus (Rat)
Adrenal Medulla (Several)
Medulla Oblongata (Rat)
Medulla Oblongata (Rat)
Medulla Oblongata (Rat)
Medulla Oblongata (Rat)
Medulla Oblongata (Rat)
Autonomic ganglia (Cat)
Preganglionic nerves (Cat)
Cochlear nerves (G-pig)
Preganglionic nerves (Cat)
Sympathetic Ganglion (Frog)
Heart (Toad)
Ciliary Ganglion (Avian)

Thalamus (Cat)
Cerebellum (Rat)

Table 4.2. From Lundberg and H6kfelt (1985) showing co-existence of

classic neurotransmitters with neuropeptides. Abbreviations are: 5-HT

= 5-Hydroxytryptamine, ACh = Acetylcholine, GABA = y-aminobutyric

acid, CCK = Cholecystokinin, TRH = Thyrotropin ReleaSing Hormone, VIP

= Vasoactive intestinal polypeptide, LHRH = Luteinizing hormone

releasing hormone, NPV = Neuropeptide V, APP = Avian Pancreatic

Polypeptide, BPP = Bovine Pancreatic Polypeptide. Lundberg and H6kfelt

make a number of reservation regarding the specificity of

immunohistochemical techniques employed in the formation of this table.

115

4. Neuropeptides and Noise

Activity of Neuropeptides

Luteinizing-hormone-releasing-hormone (LHRH) has been

studied in the Frog sympathetic ganglia by Jan and Jan. (Jan & Jan,

1985) The above table shows that LHRH is a co-transmitter with

ACh in this ganglion. Jan and Jan studied the effect of blocking

, transmitter responses with specific chemical antagonists, on the

excitatory post synaptic potential (EPSP). Their work was based on

the presence of a long-term EPSP (termed the Late Slow EPSP)

which was unaffected by ACh antagonists. They found that they

could isolate the LHRH-like peptide in the terminals by

immunohistochemistry and radioimmunoassays. They found greater

concentrations of extracellular peptide after electrical

stimulation of the peptide containing cells, and they found that

they could mimic the late slow EPSP by applying a synthetic LHRH

like peptide to the sympathetic neurons connected to the peptide

containing cells. Further, they found that LHRH antagonists applied

directly before stimulation resulted in the absence of the late

slow EPSP. Additionally, their evidence suggests that the activity

of the LHRH-like peptide was extra-synaptic and effective over a

distance of several tens of micrometers and a time-course of

several minutes.

Scheller et al studied the bag-cell neurons of the abdominal

ganglion of Ap/ysia Californica. Their work concentrates on three

peptides which trigger egg-laying in the snail, of which the

apparent hormone (due to its actual physiological spread and

116

4. Neuropeptides and Noise

slowness of action) is known as Egg-laying hormone (ELH), and the

peptides were named ex and B bag-cell peptide (ex- and 13- BCP).

(Scheller,Rothman & Mayeri, 1985) The bag-cells of the abdominal

ganglion are generally thought to be the trigger for egg-laying in

Ap/ysia, as these cells are active before egg-laying occurs, and

artificial stimulation of these cells induces egg-laying behaviour.

The bag-cells produce ELH, ex- and 13- BCP, when stimulated by the

application of peptides A and B, which originate from the Atrial

gland some distance away. The activity of the bursting response

from the bag-cells lasts for 20-30 minutes, allowing a

considerable amount of peptide to be released into the abdominal

ganglion. Specific target cells in the ganglion respond to the ex- and

B- BCP, augmenting the activity of some and inhibiting others, and

each of these activities can be mimicked by the external

application of collected peptides. The activity of ex- and B- BCP is

relatively short-lasting, being degraded within ten minutes, and

these peptides have a locus of activity entirely within the

abdominal ganglion, strengthening their roles as local

transmitters, rather than global hormones.

Work on Substance P (SP) has concentrated on its action in

the dorsal root ganglion of the spinal cord, where it apparently

modulates the activity of sensory interneurons (Otsuka & Konishi,

1985). It has been localised in these areas by immunohistochemical

and radioimmunoassay studies in Guinea-pigs, along with the

primary transmitter Acetylcholine. The dorsal root ganglion

connects the skin nociceptors and other peripheral ganglia to the

CNS. Substance P is assumed to take part in a slow EPSP produced

in inferior mesenteric ganglion cells, which is not blocked by

117

4. Neuropeptides and Noise'

. Acetylcholine antagonists, and can be mimicked by the external

application of SP to the ganglion. The response to external

application lasts from 20 seconds to 4 minutes, but repeated

application within this time appears to saturate the receptor, such

that the SP induced activity is dampened. Treatment of the

ganglion with Capsaicin depletes the Substance P (Nagy, 1985) and

abolishes the slow EPSP. There is also evidence that Substance P

has some part to play in the transmission of painful external

stimuli. Substance P antagonists appear to have analgesic effects

when injected into an animal - injecting Substance P itself, elicits

behaviour associated with painful stimuli.

. The Opioid peptides are some of the most widely studied

groups of peptides. They mediate action which is readily seen in

behavioural change of the organism concerned. There are, in fact,

three families of opioid peptides (Hollt, 1985), eighteen specific

peptides, manufactured from three different precursors. These are

Pro-opiomelanocortin (POMC), pro-enkephalin-A and pro

enkephalin-B. POMC-based peptides are known to be released from

the pituitary, but also can' be found in neurons of the arcuate

nucleus, which project to the amygdala. Pro-enkephalin-A and -8

derived peptides are found in the nucleus accumbens, hippocampus

and spinal cord. It is known that there are three receptors with

rather strange selectivities. (Weber et ai, 1985) The receptors are

classed as Jl, K and 0, an~ the strange receptor selectivity

behaviour is seen as a switching of receptor preference, as

intermediate peptides are processed into end products. This leads

Weber et al. to suggest that the processing of the precursor

molecules may also be modulated in some way to produce different

118.

4. Neuropeptide~ and Noise

effects on the organism, by producing differences in the

concentrations of particular intermediate peptides. A fourth

receptor type (0) is postulated, but is not accepted as an opiate

receptor by all researchers, as it is apparently not affected by

classic opiate blockers. (Zukin & Zukin, 1985) Opiates are most

widely known with respect to their modulation of painful stimuli.

This is a part of a proposed linkage with the substance P peptide in

pain reception. Specifically, enkephalins are thought to inhibit

Calcium influx into pre-synaptic terminals of substance P

containing nociceptive neurons. The dearth of Calcium in the pre

synaptic terminal, inhibits the release of substance P (and other

messengers), which decreases the reception of painful stimuli.

(Kelly, 1985)

Neuropeptide Y (NPY) and Somatostatin (SS) appear to be

closely linked, particularly in results of studies on rats. (Emson &

De Quidt, 1985) These peptides are thought to be co-existent in

non-pyramidal cells in cerebral cortex and basal ganglia, and make

up 2%-3% of the neurons within the rat visual cortex. NPY has a

profound, but Calcium dependent, effect on vascular smooth

muscle, inducing a slow contraction of cat gut and arteries.

NPY also seems to have a linkage with the adrenergic system

in the rat, which appears to be concerned with the control of blood

pressure. This would seem to be consistent with the vaso-active

properties of NPY. The linkage may be due to a similar action of the

NPY to the catecholamine, but other studies have shown that NPY

may increase the number of active adrenergic receptors on a

prepared membrane (Emson & De Quidt, 1985).

119

4. Neuropeptides and Noise

Overview

The action of neuropeptides on the nervous system is unclear

at the moment. It seems likely that the activity of neuropeptides is

mediated through secondary intracellular messengers such as

cyclic-AMP (see figure 3.7 and surrounding text) and certain

lipids, or by altering the concentration of ionic species such as

Calcium, thereby directly altering the exocytotic process in the

pre-synaptic terminal. The evidence for the action of the opiates is

in favour of the regulation of ionic species (Miller, 1985), but the

activity of other peptides has not been sufficiently studied to give

definitive actions for them. It does seem certain that peptides will

have a slower time course than primary chemical messengers, in

both release and de-activation. Many neuropeptide receptors are

likely to be outside the synaptic cleft, which means that a slower

diffusion process must take the peptide to the receptor (Jan & Jan,

1985). It does appear that peptides do have a de-activating

peptidase system which will speed removal of the peptide from the

extracellular space (SChwartz, 1985) rather than just allowing the

concentration to fall to negligible levels by further diffusion. Such

a de-activation system would appear to emphasise the action of

neuropeptides as transmitters rather than irrelevant products of

cellular metabolism, unless the de-activation mechanism is merely

a metabolic waste removal prC?cess.

Other factors which may have to be considered are the site

and rate of peptide production, the transportation of peptides to

neural terminals and exocytotic fatigue, but these factors are

120

4. Neuropeptid~s and Noise

unlikely to play a large part in the availability of peptides to the

normally stimulated neuron.

Information transmission in the nervous system

The evidence above implies that neurotransmitters can be

classed as information transmitters: But what is the nature of the

information that they transmit, and what constitutes a 'signal' in

the nervous system? What is a meaningful grain size of

information in the nervous system? Are there several levels at

which information is meaningful? At the moment, we can only

guess at the answer to some of these questions, but the following

discussion attempts to propose some of the possibilities in this

area.

Should we assume that the 'signal' in the nervous system is

the separate depolarisation of a cell, which is then propagated

along the axon; or is it the succession of depolarisations of an

axon, bringing in the notion of frequency modulation as the 'Signal';

or, perhaps, is it the concerted firing of a group of neurons which

acts as the signal; or, in fact, are all of these characteristics

inseparable parts of 'the signal'? The majority of current

researchers appear to favour the frequency modulation schema for

most signal propagation, but do not fully discuss the possible

'meaning' of such a signal type. This 'meaning of a signal' will not

be discussed here either, as it is outside the scope of this

functional analysis.

We can look at a few ways in which 'information' can be

propagated, in order to clear the path for later analyses:

121

4. Neuropeptides and Noise

1. Information (in the true sense) - 'Figure' in the

figure/ground dichotomy - a 'bit' of information is propagated to

form an internal representation, and thence to the output processes

or brain state. Propagation is assumed to be accompanied by a rise

or fall in the firing frequency of neurons and is consistent with

activation propagation theories.

2. 'Anti-information' (as in NOT('information'))- 'Ground' in

the figure/ground dichotomy - can also be propagated, aiding the

formation of the output/brain state. Propagation of 'Anti

information' is marked by a fall or rise of firing rate brought about

by either excitation or inhibition propagation ..

3. 'Constraint' propagation. - Information may be inverted at

some stage in processing - The 'invert' is propagated, reaching an

output state which defines the set of non-classes of responses to a

stimulus. In an object identification context, this means that the

output state defines the set of classes to which the object does

not belong. Thus, by elimination, this method defines the object

class ..

Using these three possibilities we can construct some ideas

about information processing and learning:

1. In the 'Informant' propagation model, the routing of neural

units, and thus the representation of a symbol could be partially

serial, and it may be possible that to reach a particular sub-state

of the entire representational brain-state, routing must occur

122

4. Neuropeptide~ and Noise

through another sub-node of the network (as would, perhaps occur

in analogical learning - before strengths of connections had

enabled an easier route to be followed), thus lengthening the neural

pathway required to be traversed before a decision can be made as

to the classification of the object. In this instance a system which

propagates constraints could be more efficient and faster than the

ordinary information propagation approach, as the path of

constraints would be more direct than those of 'informants'.

2. Psychologists have shown that it is possible to recognise

'what objects are not', before recognising 'what they are' in

cognitive psychology experiments (from Neisser onwards (Neisser,

1967; Nickerson, 1972; Marcel, 1977)). In such a system, it is

possible that parallel exploration of object attributes, as

represented in memory, reject non-fitting cases before producing

the fitting case by default. This strategy may be echoed by the

brains' mechanism of propagation, whereby the propagation of

constraints rules out entire classes of objects before settling into

a state which recognises an object by the lack of activity in the

'memory trace' of the particular object.

3. Theories of template matching in cognitive psychology are

supported by several reaction time experiments, but also

confounded by others. (Again, see Neisser 1967 for early examples

of the type of study discussed in this paragraph.) In these cases it

is shown that where objects are drawn from only one of a number

of congruent sets (numbers, friends' faces, geometriC figures)

reaction time is not affected, however, when presentations can be

from many of these sets, reaction time increases proportionally

123

4. Neuropeptides and Noise

with the number of sets. Constraint propagation allows for these

observations. Expectation of a particular set of symbols sets up a

'mode' of thinking, where the constraints are already set -

recognition of the class of symbol is unnecessary, and processing

requires only the recognition of the particular instance of the set.

On the other hand, expectation can not work in a situation where

multiple classes of objects are to be presented, and recognition of

the instance of the object takes longer, as it also requires

recognition of the class of objects. Constraint propagation would

be a more efficient strategy in this case.

It is not known which, if any, of these propagation schemes

are used in human information processing, but the existence of the

large number of neurotransmitters found, seems to imply that

! .there is a more complicated mechanism than simple· informant

propagation at work in this system. McBurney (McBurney, 1985)

suggests that:

'If Different transmitter molecules generate

different post-synaptic effects, not just in

terms of excitation and inhibition but in terms

of the duration of the post-synaptic conductance

change per released quantum, they will contribute

different characteristics to the input-output

function of neuronal networks'

McBurney uses this as the basis of allowing different

'weights' in a network, formed from differing signal sources, and

hence, concurrent propagation of signals.

124

4. Neuropeptides and Noise

In the primary nociceptive system we may have a prime

example of antagonistic peptide action between the enkephalins

and substance P (see above reference to Kelly, 1985). This would be

mediated by pre-synaptic Calcium concentration (which could also

be considered as a signal messenger in this case, as it determines

the amount of transmitter released into the synaptic space: Any

other substance which modulates the concentration of Calcium

within the pre-synaptic terminal must also be recognised as a

signal transmitter). In this system, therefore, we can count at

least four substances, without going into too much detail, which

may have an effect on the degree of pain felt as a result of noxious

stimuli - these are Substance P, enkephalins (eg. dopamine),

Calcium concentration and the primary messengers of nociceptive

neurons (5-HT). This process can be likened to an active biasing of

the key components in the pain receptor mechanism, and is not a

simple signal propagation.

Jan & Jan (Jan & Jan, 1985) hypothesise that the emergence

of peptides as neurotransmitters falls between 'classic' neuro

transmitters and paracrine hormones - to give a continuous range

of secretory products, which act as fast transmitters in the case

of 'classic' neurotransmitters, or slower more diffusible and

widely-acting transmitters further into the more recently

discovered large molecule transmitters. Their theory is that:

• ... in situations where the speed of action

is not crucial, or perhaps a slower and more

prolonged influence is more desirable,

conceivably the presynaptic neurons may terminate

125

4. Neuropeptides and Noise

in the vicinity of the postsynaptic neurons

without making synaptic contacts with them.'

ill • •• Selective communication may be achieved

if different neurons in a given region express

different subsets of receptors, so that a

transmitter released from a presynaptic neuron

influences only those neurons nearby which have

the right receptors on their surface. ... For

this type of interneuronal communication to be

used extensively in the nervous system without

cross-talk between parallel pathways, a necessa~

requirement is that many different molecules are

used as transmitters. Perhaps this is one reason

for the multiplicity of peptides that are

implicated as transmitters.'

This selective communication would allow complex

signalling methods to be continuous in the nervous system, giving a

mode of communication with facets of each of the three methods

mentioned above.

A word about noise

The term 'Noise' can be used in any signalling system to refer

to that part of a communication medium which arrives at a

reception point, without having been an intended characteristic of

the signal at the source point. In many cases noise must be

removed, at least partially, in order to make the original message

126

)
)

I
,\

I

II
\1

j'

,

I
I
i,

4. Neuropeptides and Noise

intelligible. Noise is a fact in most of our electronic

communication systems, but does the term have any meaning in

reference to a nervous system? A nervous system must be an

inherently noisy environment. Thermal, chemical and

electromagnetic 'noise' must be a part of any nervous system, but

is it regarded as noise by the nervous system? In many cases, what

may be referred to as noise can be a necessary part of the signal,

supplying a context for the proper decoding of the signal. Silence

may also be a part of a signal, for example, in Morse code.

In a nervous system, we assume that signal propagation must

take place, and we ascribe signal-like properties to what appear to

be obvious communication processes, such as the faster electrical

and chemical translocations. Generally, at some level, we place a

cut-off and expect any translocation process beneath a certain

chemical concentration or electrical voltage value or time-scale to

be irrelevant to the 'meaning' of the 'signal', and it will, therefore,

become 'noise' in our terms: But is this a valid strategy for the

nervous system? The field of artificial neural networks operates

upon the previous assumptions, and yet evidence has been found

that randomly injected activation of a low order, which

corresponds to what would be called 'noise', actually improves the

performance of a basic networks' learning cycle (Von Lehman et ai,

1987) (Docking, 1989). The phenomenological conclusion is that

'noise' aids the learning process; But the action of the 'noise' is a

statistical process. Injected noise may aid the learning cycle by

essentially broadening the number of activation points in a finite

point system, which allows the gradient descent strategy to run

more efficiently (See chapter 2 for a description of gradient

descent strategy); alternatively, it may appear to allow faster

127

4. Neuropeptides and Noise

learning, through a process of random search through the solution

space.

In the living nervous system neuropeptides may be considered

as 'noise', because they may appear to act slowly, and in

diminished concentrations - but if noise helps the system to

converge more quickly, then this form of noise may actually be part

of the 'signal', and the definitions of signal and noise become

blurred. In this instance it is possible for the actions of the noise

to become indistinguishable from the actions of the signal, because

the signal requires the noise to speed the formation of a desirable

'brain state'.

This 'noise yet signal' problem can be illustrated by a simple,

roughly similar human example. A 'wink' is a signal to a human

observer that information provided by a spoken message is meant

to be interpreted in a special way by the observer. In the absence

of a 'wink', the message may be interpreted in a normal manner. In

another setting, the 'wink' might be considered to be a nervous 'tic'

and be ignored by the observer, leaving the meaning of the spoken

message unchanged. In a final setting, the 'wink' may be received

by an observer who was not the intended recipient, and the

message will be interpreted in another manner. In this way, the

same overt signal has acquired three different meanings in the

presence or absence of a physical movement which can be

considered as either 'signal' or 'noise'. For the purposes of this

study we can call a single 'n~ise' modulation event of' this type a

'Modulum'. (Plural - Modulae)

128

4. Neuropeptides and Noise

. Neuropeptide operators

Neuropeptides might act as relatively long term operators,

perhaps with graded on- and off-set. The action of a peptide may be

to modulate the excitability of a neuron, without necessarily

producing a threshold event, unless the cell is already in a highly

excited state. The sourc~ of· the excitatory (or inhibitory)

neuropeptide need not be in contact with the target cell, and the

effect of the neuropeptide would diminish with distance from the

source cell, through a process of diffusion and enzymatic

degradation. This would act as a variable 'biasing' element in an

electronic circuit, the value of which would be dependent on the

excitatory parameters of the source neuron and transmitter

concentration, and therefore the distance from the biasing source.

(See figure 4.1) In multiple neurotransmitter biasing situ~tions,

such as the proposed antagonistic effects of Substance P and

enkephalins in the primary afferent C-fibres of the nociceptive

system, the operator would conform to the parameters of an

electronic differenfial active biasing system. This allows the

concentration of all peptide-biasing elements to control the bias of

the target cell.

It may be possible that different cells within a local neural

cluster could express different neuropeptide receptor types on the

cell membrane (Koch & Poggio, 1987), or this may occur even on

different parts of the same cell. Such a system would indicate that

differential activation biases could be applied to the cells of a

cluster, or to different sections of dendrite, by diffusion of

different peptides into the cluster from internal or external

129

4. Neuropeptides and Noise'

. sources. In a situation where many neuropeptides are in use, this

differential 'addressing' ability can result in the formation of

extremely complex computational circuits.

A. c.
Bias

In In

B. % Bias

~utp1t In Ou tp..1t
Y---

Figure 4.1 Electronic circuit equivalences of neuropeptide transmission

systems. A. a normal non-variable biased transistor circuit

representing the input and output characteristics of a simple neural

cell. B. Variable bias produced by a one peptide system. C. Variable bias

produced by a two peptide differential amplifier system.

Why neuropeptides?

What is the role of neuropeptides in the nervous system?

Peptides certainly exist in the nervous system, and the evidence

seems to show that they possess the ability to modulate the

operation of some types of neurons.

130,

4. Neuropeptid~s and Noise

What is the level of operation of these peptides? At the

lowest possible functional level, peptides may modulate only very

few neurons, and have so little effect that they cause no noticeable

difference in the real operation of the network. In this case, they

can be ignored and treated as either a developing concurrent

propagation strategy, or the relic of a past transmission system

which has been replaced by the current system.

At a higher level, peptides may modulate networks by greater

or lesser degrees of 'noise' production. Noise has been shown to

increase the learning efficiency of some limited neural network

models, so it is possible that 'noise' will produce similar effects

in real nervous systems. In this case, the use of noise in a real

nervous system would imply that the signal to noise differential is

fairly high, as coherent thought is usually maintained. In addition,

the degree of accuracy required in the achieved excitation levels of

individual neurons may be minimal, because of the presence of the

'noise'. A further implication is that the lowest meaningful

'informational atom' of a nervous system will be a number of

neurons, in a certain configuration. rather than a single neuron. In

this case, with the addition of noise at this level, the degree of

accuracy of a single neurons' excitatory activity may not be

sufficient to reliably represent a particular atom.

The use of peptides at this level ambiguates the use of the

term 'noise', as the action of peptides need not be global

phenomenon. Directional release of peptides from specific source

cells or their processes, may produce 'directed noise' in a local

cluster of cells around the release site. This directional use of

'noise' implies that the release of the peptide is a 'signalling'

131

4. Neuropeptides and Noise

process, but that the effect of this process is to add 'noise' to a

specific part of the system.

At the next level, peptides may act as limited true

information carriers, serving a local population of neurons,

immediately adjacent to the source cell or axonal process.

Peptides would produce an excitatory or inhibitory deflection in

the excitability level of a target cell, allowing the target cell to

be triggered by 'classical' transmitters, in lesser quantities than

is usual for a 'classical' transmitter 'threshold' event. Peptides

would act as a variable gain control in the mechanism of the target

cells, allowing sensitivity adjustments, of particular circuits, to

be made by other neuronal circuits. This level of operation

increases the perceived complexity of the nervous system by many

degrees. It could be argued that the number of peptides present

within a given area, corresponds to the number of variable gain

controls operating within that area. The connectivities of these

controls determine the number of operational circuits in this area,

and the concentrations at specific release times determine the

gain.

The next level of possible peptide action, sees peptides as

true neurotransmitters. These precipitate 'threshold' events in

specific neurons, or groups of neurons, if the concentrations at

distant sites allow. In the single neuron case, this would bring the

possible grain size of the 'informational atom' back down to the

single neuron level. All other details would be as for 'classical'

transmitters, except for the vagaries of diffusion operation and

the removal of the peptide from the active sites. There is little

doubt that the modulation due to peptide transmitters would have a

longer time course.

132

4. Neuropeptides and Noise

At this level, there is a possibility that peptides could be a

'sure' method of firing a neuron. This would occur by the release of

a peptide within the dendritic tree of a specific neuron. The diffuse

nature of the subsequent excitation would not allow veto

operations, as apparently occurs for the 'classical' transmitters.

Such a method ensures a binary response to stimulation.

At any of these levels, differential receptor placement

becomes an important issue. If different peptide receptors are

located on the same portion of a dendritic tree, antagonistic

effects of different peptides are possible, similar to those of

'classical' neurotransmitters. If different regions of a dendritic

tree manifest receptors for different peptides, different response

properties can be elicited from the cell, because of the individual

dynamics of the specific dendritic branches, imposed by this

method of peptidergic modulation.

Experimental rationale

The purpose of the following study is to test the viability of

some of the possible mechanisms of action of neuropeptides. This

will be done by computational modelling of two different types of

'network. The first is a popular coarse grain model known as a

back-propagation' network, as defined in chapter 2. The second

network is a medium grain model designed on the standard network

simulator 'GENESIS', from the California Institute of Technology.

These network models are being used to ensure repeatability of

results and a standard 'form' for the experiments.

133

4. Neuropeptides and Noise

The coarse grain back-propagation scheme will be the major

focus of the experimental section, as the low level of

representation gives the model a more computationally amenable

nature. This allows the model network to perform as a learning

machine in a computationally feasible time-scale. Incorporating a

learning system in the medium grain model would lengthen the

project considerably. The back-propagation model can be executed

many times in the time taken for the execution of a single

contextually relevant medium grain model, so a greater range of

results for the back-propagation model can be produced. In the case

of the medium grain model, only· a qualitative description can be

produced, due to the small number of data pOints that can be

generated in a reasonable time. Additionally, the back-propagation

model is easily understood by most researchers, and is readily

available in most artificial intelligence laboratories for repetition

of these results.

The models will be executed under different conditions to

simulate the diffusion of neuropeptides in different 'strengths', in

an attempt to cover the different levels of possible action, as

indicated above. This will not require structural modifications, as

differing 'strengths' can be simulated by varying the efficacy of

the peptidergic signal on the target site. The models must first be

executed with no extensions to their structure, and then with

progressively greater 'strength' values to the neuropeptide

parameters. In addition, a model must also be executed with

completely random noise characteristics in order to compare the

action of random noise and the neuropeptide simulation results.

The efficiency of these networks will be measured according to the

length of learning time, in the case of the back-propagation

134

4. Neuropeptide,s and Noise

network, and the characteristic of the neuron output stage in the

case of the GENESIS simulation.

It is hoped that these tests will enable a tentative

proposition of the role of peptides (within current knowledge

limitations) to be founded. It may be possible to differentiate

between the effects of random noise on the network, and the

effects of a messenger system based on the diffusion of

messengers (a local, broadcast mechanism) between neurons. It is

unlikely that these tests will be able to distinguish the level of

the action of peptides in a nervous system, until a reference level

can be found in the nervous system with which to compare the

'strengths' used in these tests. It may be possible to place a crude

measure on the basis of relative degrees of activation by classical

transmitters and neuropeptides, but this approach also suffers

from a lack of biological reference levels.

135

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

PAGE HAS NO CONTENT

5

Experiments in Back-Propagation.

This section reports on the design, execution and results of

the Back-Propagation model used in this study. The rationale for

these tests is described in the previous chapter. The back

propagation model used here is based on the original paper by

Rumelhart et at. (Rumelhart, Hinton and Williams, 1986), and, to

re-iterate, this type of network is used in preference to any other

model because of its accessibility as a standard network model,

rather than· for any other reason.

This back-propagation model is described in detail in chapter

2, which eliminates the need for a detailed treatment here. The

major focus of the design section is to present the differences in

design required by the nature of the addition of a ·peptidergic'

modulum characteristic to the back-propagation network. This

characteristic will be referred to as ·Peptidergic leak' or just

'Leak' activation from this point onwards.

Model Design

The design of the back-propagation model to be used has to be

reviewed from the original design, for the purposes of this study.

The classical architectures of these models are usually fully

137

5. Experiments in Back Propagation

interconnected between layers, but unconnected within layers. This

makes the virtual structure of a network two-dimensional at an

abstract level. The model required for this study must be three

dimensional, as the additional 'leak' level must be added with _a

representation of distance between all nodes of the network. This

adds connections between each node, producing an entirely fully

connected network with the original connection structure

maintained at the original level, plus the 'leak' connections which

interconnect each node, albeit, at a weaker connection strength.

Architecture and input/output behaviour

The architectural design for the model to be used, came from

Colvin (Colvin, 1989). This treats each layer of 'synapses' as a

separate entity. Since each unit of each layer is fully

interconnected, it is only necessary to provide a set of inputs and

outputs to each layer of 'synapses', so that it is not necessary to

equate a particular input with a particular input cell. The inputs

are only recognised as such by implication. The same is true of the

weight matrix. All entities are treated as vectors with an implicit

positioning only. The calculation of the sigmOid activation

function, gradient and weight updates were taken from Rumelhart,

Hinton and Williams (1986) and amended as suggested in

McClelland and Rumelhart (1988) to operate within the confines of

a limited bit precision computer system.

After some experimentation, it was decided for speed of

operation to use a network with only 38 nodes in total. The

network to be used is a three layer system with 15 input nodes, a ,

138.

5. Experiments in t;3ack Propagation

hidden layer of 15 nodes and an output layer of 8 nodes. The input

vector is arranged as a 5x3 matrix, representing a letter of the

alphabet. In total only the first three letters of the alphabet are to

be used. These are coded as in figure 5.1.

Each layer of the network is fully interconnected with the

previous and subsequent layers. There are no connections in the

plane of the layer. The output units are to be trained to represent

each of the input patterns in terms of its ASCII code. "A" will

output a value of (decimal) 65 in binary code, "B" will output 66,

and "CH will output a value of 67. These are also shown in figure

5.1.

Inputs 2 3

A B c

1111111 1IIIIIt 11IIIII
outputs

Figure 5.1 Network input and output patterns. The input vector

represents a character, while the output vector represents the ASCII

code for the character. Black squares represent activations of near 1.0,

white squares represent near 0.0 activation values.

All networks will use the same physical architecture as

described above and in chapter 2. Each model will differ,

139

5. Experiments in Back Propagation

functionally, only in the weight updating formulae, the assignment

of random number starting values, and with the addition of some

extra code for the latency effect of diffusion.

Initialisation of the network is by pseudo-random number.

The pseudo-random number generator was taken from Colvin

(1989). Both the weight matrices and unit biases are supplied by

this method. The range of number generation for both biases and

weights is ±3.0. In the case of the noise addition back propagation

model, the "random" noise is also generated from this source, with

a range of ±0.3, developed as a standard value from pilot studies.

The pseudo-random number generator is seeded with the same

value at the beginning of each different model test, thus each

model begins with the same initial weight and bias values. In

addition, all weight and bias values are constrained to be within

the range ±20.0 in order to be consistent throughout the

experimental sessions.

Input patterns will be presented to the first layer as a vector

of floating point numbers in the range 0.0 to 1.0. The value 0.0 will

correspond to a white pixel on the hypothetical retina of the

network under test, whilst a value of 1.0 will correspond to a black

pixel. Black pixels are intended to be interpreted as "figure" in the

figure/ground dichotomy. Target patterns for the network will also

be in the 0.0 to 1.0 range. Each target will be initialised to a value

of 0.0 or 1.0, with the same interpretations as for input patterns.

Output nodes of the network, will be artificially thresholded for the

purpose of presenting a binary output to a hypothetical post

processor. The threshold values will be ±1 % of the range limits _

0.01 and 0.99 - representing a binary 0 and 1 respectively.

140

5. Experiments in Back Propagation

Training of the ordinary network will consist of presenting

the input pattern, and its associated output pattern, to the input

and output layers of the network, respectively. The network will

then feed forward the activations relevant to the activation

patterns and weight matrices.· The feed back phase will calculate

the errors found between the output pattern and the target pattern,

and the previous layers will have their error coefficients

calculated. The gradient will be calculated from the error

coefficients, and the weights updated according to the gradient

terms (one update for every "batch"). This procedure is exactly as

stated in Rumelhart, Hinton and Williams (1986).

In the case of the noise-enhanced back propagation model, as

described below, the only difference will be the addition of a

random noise factor at the weight updating stage. All networks

will use the batching (learning by "epoch") method of learning, as

described in chapter 2. The full listing of the programs involved

are shown in Appendix A.

Momentum term

The Momentum factor was introduced in the original paper of

. Rumelhart, Hinton and Williams (1986). Algorithmically, it

consists of the· addition of a proportion of the immediately

preceding calculated gradient, requiring that each calculated

gradient is saved in temporary storage until the next iteration,

where it will be used. Momentum is added at the weight update

stage, as in the equation:

141

5. Experiments in Back Propagation

Wij(k+1) = Wij(k) + 11 dW ij(k+1)+ exdWij(k) (equation 5.1)

(Where Wij(k+1) is the weight for the ijth interconnection at

iteration k+ 1, Wij(k) is the weight for the same interconnection at

the kth iteration, 11 is the learning rate parameter, and dWij(k+1) is

the adjustment parameter, or gradient, derived from the error

functions calculated in iteration k+ 1. ex is the momentum rate, and

d Wii(k) is the gradient saved from the previous iteration.)

The momentum rate, ex is generally set in the original

literature to a value of 0.9, such that a large proportion of the

previous gradient term is introduced into the current weight

update calculation. Watrous (1987), points out that the momentum

term acts to force the movement of the system downwards in the

weight/error space, as the effect of adding in momentum tends to

average oscillations in gradient calculations, leading to a stabler

gradient direction indicator. He also states that the momentum

term is not very efficient in aiding the crossing of plateau regions

in the weight/error space, as, when the gradient is small, little

momentum is added to the update equation and many more steps are

needed to traverse the plateau, whereas in steep gradient regions,

the momentum term effectively increases the step size, allowing a

faster descent in the weighVerror space.

In this study, the momentum term will be used as an added .
variable in the study of the model, such that models will be run

with and without the addition of the momentum term (at a level of

0.9) in an attempt to view the effect of the momentum term on the

results of both random noise and 'directed' or 'peptidergic' noise.

It could be argued that the momentum term acts as a form of

p~tentiation in the back-propagation network, as an analogue of

142,

5. Experiments in BacK Propagation

long term potentiation in real neuron circuits. It is not the aim of

this' study to go into the details of this relationship.

Addition of noise

This extension sounds rather like a continuation of the

principle of the Boltzmann machine. The reference to the addition

of noise, in the paper by Von Lehmen et al (1987), is regarded as an

analogue to the temperature of the noise system. This is a concept

which was used by Hinton and Sejnowski (1986) in their exposition

of the Boltzmann machine. However, the major difference is that in

the Von Lehmen et .al. system, temperature is a fixed constant

which does not decrease over time. This means that this is not a

simulated annealing strategy, but merely a way of decreasing the

likelihood of the system finding a local minimum and staying

within that minimum. It could be argued that with simulated

annealing, there is a greater probability that a local minimum will

be found as the temperature of the noise added to the system is

decreased depending on the gradient of the descent, rather than

over time, allowing the search to fall into, and remain inside, local

minima. In the Von Lehmen et al extension, this is not a problem.

The apparent behaviour of a network using this extension will be to

find a global minimum and then oscillate endlessly with a mean

error proportional to the temperature of the noise constant being

used. This point would be computationally easy to find. In addition

such a procedure would appear to be implementable in a network

requiring less human intervention (such as the setting of time or

gradient based annealing parameters).

143

5. Experiments in Back Propagation

The method of noise addition described in Von Lehmen et ai,

requires that "the noise is added to the network weights at the time

of weight updating, after the errors and activations have been

calculated. The noise component is, therefore, easy to implement

as it requires just one change to the formulae required for the back

propagation algorithm." In the ordinary case for basic back

propagation the weight update equation is:

(equation 5.2)

(Where Wij(k+1) is the weight for the ijth interconnection at

iteration k+1, Wij(k) is the weight for the same interconnection at

the kth iteration, 11 is the learning rate parameter, and Ll w ij(k+ 1) is

the adjustment parameter, or gradient, derived from the error

functions calculated in iteration k+ 1.)

In the Von Lehmen et al. case the weight update function

becomes:

Wij(k+1) = Wij(k) + 11d Wij(k+1) + random(±nmax) (equation 5.3)

(Using the same notation as equation 5.2, with the addition of

the term random(±nmax), which introduces a random number with

the range ±nmax , where nmax is set to a constant before execution,

usually at values between 0.0 and 1.0.)

Von Lehmen et al experimented with several values of nmax in

both analog and discrete network activation functions, and with

several different ranges for the initialisation of the network

weights. They found that, using a network to test the learning of

144

,

5. Experiments in Back Propagation

the XOR problem, the addition of noise had little effect on the

probability of convergence, whereas the initial network weight

assignments had a significant effect (up to 10% in certain cases).

However, they found that in weight limited networks. (where

weight values are limited to a certain range) the addition of noise

improved the probability of convergence to 1000/0· over a wide range

of nmax values (0.2 - 1.0). They explain these results as follows:

" ... clamping the maximum weight value

essentially limits the weight space that can be

explored by the network; the presence of noise

encourages the system to thoroughly explore the

restricted weight space and reduces the chance of

trapping in local minima." (Von Lehman et aI,

1987)

It seems, then, that the addition of noise within the 100%

convergence range of Von Lehmen et ai, should help to produce

networks which are very stable under different initial weight

conditions. Unfortunately they do not present figures for the

convergence rate of these added noise networks. This will be a sub

task of this study.

Leak activation and the spread of activation in a network

The focus of this study is the addition of a 'peptidergic'

activation factor, which is responsive to source cell activation,

145

,
5. Experiments in Back Propagation

diffusion distance and the activating nature (or strength) of the transmission
-

itself. This is a theoretical study, in the sense that neuropeptides have not

been proved, in a living system, to diffuse locally in nervous tissue. The

existence and release of neuropeptides has been shown (see chapter 4) from

source synapses, and they have been shown to modulate the responses of

target cells. The nature of the linkage between these two points has not been

explicitly formed, so the foundations of this study require several

assumptions as to the nature and parameters of'peptidergic' transmission.

If we begin with an assumption that a transmitter derives from

synapses related to the main axon of a source cell, and that a large

proportion of this transmitter is of a classic type, which is taken up in the

synaptic cleft, then there is a continuing possibility that some transmission

occurs outside the cleft, which will relate to the generally activity related

'noise' or 'Leakage'.

This means that, at a target cell (j), activity will be defined as:

(equation 5.4)

(where aj is 'classic' activation of a node, Wij is the weight

between nodes i and j and ai is the activation of the input node)

(equation 5.5)

(where lj is the pe,tidergic leakage from synapses local to nodej

and J3 is a constant peptide strength factor)

(equation 5.6)

(where aSj is activation from synaptic messengers)

146

5. Experiments in Back Propagation

alJ = Lk 3.dk(t-d). f(d) (equation 5.7)

(where alJ is the total activation of node j from

extrasynaptic sources. 3.dk is the activation diffusion from node k

" at time t minus the distance. d. of node k from node j. and f(d) is

a function of distance from node k. k = 1 .. n. where n = the total

number of nodes in the network)

In this model it is assumed that 'synaptic' transmission is

complete within a very short period of time. too small to be

modelled precisely in a model of this coarseness. Diffusible

transmitters. though. will involve some form of lag. which should

be distance related. but again in a fashion relevant to the grain

size of the model. Latency in diffusion can be modelled by using a

round, linked list. which pOints to at least 3 vectors (with the

number of nodes in the network as elements) so that. at each

Iteration of the network, the diffused activation is added in from

further elements. Thus, Intra-layer activation reaches the target

node after one iteration, activation from the next layer reaches the

target node after a delay of two iterations, and so on. We Simulate

this delay by offsetting the calculated activation according to the

layer in question. ie. the activation to a particular node is

calculated separately and stored in a vector. based on its distance

from the current layer. so that this vector is only used to Simulate

the activation on a node when its tum comes around.

At each iteration. the activation reaching a target node is

calculated for each cell in the network. but values calculated for

different layers are stored in different vectors; such that by the

time a vector comes to be used in peptidergic activation calculation

it has an inherent delay. There is some difficulty in this. in that

147

5. Experiments in Back Propagation

peptidergic activation comes from both the synaptic termination

on a target cell and (roughly) the soma of the source cell. Therefore

the same level of activation has to be used in calculating the

activation values for 2 different layers. It can be argued that in a_

completely connected network (like this one), the peptidergic

activation reaching the target cells is completely correlated with

the activation from classic transmitters over the entire layer. and

can therefore be ignored as a factor of activation of the cell itself.

But it must be taken into account that this peptidergic signal

leaks into the surrounding space and contributes to the activation

appearing to come from the target cell - Therefore the peptidergic

activation must be calculated at the peptide strength rate from the

source cell, and must also be added to the target cells' diffusible

peptidergic activation value. as a function of the remaining

peptides after proteolysis - we can probably make a rough guess at

about 30% of the peptidergic activation leaking from synaptic

junctions - and this makes a calculation of input activation of a

target cell:

(equation 5.8)

(where a is the total activation of node j, from all sources.)

and the diffusible activation from this cell will be:

(equation 5.9)

(where dj Is the total peptidergic activation appearing

to emanate from node j. This factor is the single node component

of the activation component (Cldk) in equation 5.7)

So, the calculation of local and diffusion transmitter

activation is a largely linked interdependent process, which is

difficult to model.

148

,

5. Experiments in Back Propagation.

In the case of this model, it means that we must calculate the outgoing

diffusion activation (D-activation) on the the basis of a normal 30% somatic

secretion, plus 30% of the incoming synaptic activation from 'Peptidergic'

transmission.

,

Representing three dimenswns

Adding a three-dimensional mapping to the network is a relatively

easy process. Classical back-propagation networks can be thought of, in

abstract terms, as dimensionless entities, because the 'distance between

elements' is not a concern. The network is usually presented as having a flat

two-dimensional topology (as in figure 2.4 of chapter 2) with equal distances

between the nodes of the network. Input and output are taken as vectors to

be applied and read in a linear fashion at the two ends of the network. In

effect, the dimensionality of the network is usually imposed by the researcher

and their ideas of segmentation in these vectors. Figure 5.1 is an example of

this. The charactera are represented on a two-dimensional plane as

recognisable letters of the alphabet in a 3x5 matrix, but are fed into a two

dimensional network as a 15 element vector. This study requires that we

arrange the input nodes to represent a 3x5 matrix as in figure 5.1.

Subsequent layers of the matrix may take any form, but it was decided to

arrange these nodes in a similar manner. The final network was given a

three-dimensional structure as represented in figure 5.2.

149

.
5. Experiments in Back Propagation

1

• •

• •
1

,
• • •

1

Figure 5.2. Network design for a three-dimensional model. All single lines

are of unit length. Black dots represent nodes. The left side corresponds to

the input plane, the right side to output. Vertical node displacement is 0.25

units, horizontal displacement is 0.5 units.

The distances between the nodes can be calculated by the two

dimensional Pythagorean equation, as inter-plane distances are of 1 unit:

(equation 5.10)

As these values will be invariant, they are stored as a set of matrices

encoded in diffusion constant/distance format. This also eliminates the need

to recalculate distances and diffusion constant/distances during execution

and speeds the execution of the network. These matrices can be examined in

AppendixA.

The diffusion constant was chosen as a standard inverse exponential

function:

5. Experiments in Back Propagation

The diffusion constant was chosen as a standard inverse

exponential function:

1
c= eel (equation 5.11)

(where c is the diffusion constant and d is the distance

between nodes)

This gives a maximum output at unit distance of .368. roughly

corresponding to the most effective 'noise' levels in random noise

experiments. The maximum achievable level is .779 for the

smallest inter-node distance (0.25u) and the minimum level is .086

at the largest inter-node distance (2.45u). The diffusion

constant/distance measure is scaled with a 'peptide strength'

factor and the output activation of the source node to determine

the activation value to be applied to a target node. after the delay

imposed on it by the node-node distance:

(equation 5.12)

(where Ati is the activation of the target node. ASi is the

activation at the source node. c is the constant calculated in

equation 5.11 above and P is the 'peptidergic' strength factor)

In practice. the delay is simulated by an array of additive

vectors. one element of the vector for each node in the network.

and one element of the array for each time-delay period simulated.

which is updated during each iteration of the network to

correspond to the activation reaching a particular node during the

151

5. Experiments in Back Propagation

foregoing time period. The array is 'looped' to maintain the

continuity of the time delay.

Measuring network efficiency

It was decided that the most important measure of efficiency

would be the convergence rate - this is a measure of how many

iterations the model requires to reach a stable output state, with a

mean square error of 0.0001. This translates to an error of 0.01

per output unit, or 1 % of the activation range.

Model Execution

Testing the model

Choosing standard settings for several of the parameters

involved in running the back-propagation network required several

preliminary studies. Many of the parameters are taken as a

standard in the back-propagation methodology, while others are

varied to suit the requirements of the study. The parameters

available are often too numerous for anyone study to produce

detailed descriptions of the network behaviour whilst varying all

parameter conditions, so it was decided to use three levels of

parameter settings for this study. Some variables were to remain

at 'standard' settings, as defined in the first back-propagation

152

5. Experiments in Back Propagation

research papers. Other settings would be optimised, based on

investigations of varying parameters in the pilot studies. The final

parameters which were deemed more important for the

understanding of transmission within the system, were varied in

the final models. In 'classic' network models, the most variable of

all parameters is taken to be the 'Learning Rate' parameter, a

precedent which this study has adopted.

Fixed parameters in the study models are:

• Use of Unit Bias value

• Activation Momentum value

Unit bias is a parameter which represents a symmetry

breaking variable. This is set to a random value before the network

is executed, with an update mechanism which allows the bias to

vary in conjunction with the activation of the node. This is not a

requirement for a back-propagation network, but usually leads to

more stable network behaviour.

The momentum value in models with added momentum is

generally set at a value of 0.9 times the previous value of a

particular weight (Rumelhart, Hinton & Williams, 1986). This value

of the momentum term has not been varied in these tests. The use

of the momentum term has been varied, as this parameter can

produce wide variation in the efficacy of networks

153

5. Experiments in Back Propagation

Setting optimised parameters

In the first experiments, which were executed in order to set

the optimised parameters, a total of 4,800 models were run under

different conditions, of which 2,215 converged within 20,000

iterations, although not all remained in a stable state. The

optimised parameters are those which are set to a fixed value, for

the entire length of the final set of experiments.

Optimised parameters are:

• Noise Range

• 'Leakage' Auto-Activation

• 'Leakage' Plane-Activation

• 'Leakage' scaling factor

Von Lehman et al (Von Lehman et ai, 1987) found that random

'noise', introduced into the node update mechanism is effective

over a wide range of maximum values. As 'noise' values will be

fixed at a standard level in the final set of experiments, tests

were performed to determine the optimal setting for the random

noise variable over 5 Learning Rate intervals of 0.5 to 1.5, in 0.25

unit intervals. A summary' of . the results of some of these tests is

shown in figure 5.3. The data pertaining to this figure, and further

results can be found in Appendix B. On the basis of these results, it

was decided to set the random noise value to a maximum value of

154

5. Experiments in BacK Propagation

±O.3; a pOint at which the network appears to reach stability at a

faster rate.

20000~--------------------------~
--0-- with Noise
--0-- with Noise and Momentum

Iterations

10000

O~~~ocQ~~~~~--~~~~~

o 1
Noise level

2

Figure 5.3. Random noise plotted against the number of iterations to

convergence.

The 'Leakage' model in this study presents a fully connected

sub-channel for signal transmission for each of the nodes. The

model allows direct transmission (in the leakage domain) from a

node to every other node, including nodes with a separation of more

than one layer, and 'also to those in the same layer. 'Leakage' auto

activation refers to the phenomenon of allowing a feedback loop to

exist between the activation function of a target node and the

'peptidergic' leakage function at the same node. If this is allowed,

'leakage' activation from a node will be added to the activation

level of the same node. A pilot test was undertaken to discover if

auto-activation had any effect on network behaviour. In practice,

allowing or disallowing auto-activation produces no detectable

effect, as shown in figure 5.4. This method of assessment was

155

5. Experiments in Back Propagation

-abandoned for the remainder of the programme of study. All

subsequent models studied have auto-activation enabled.

20000~--------------------------~

Iteration

10000 -
)(wi th Leek only

--tl-with Leek and no auto-e.ctivation
-is-with Leak and Momentum
--<>- with l..cak, Momentum- and

no au to-e.ctlvatlOn

T
..... A

o ""'" ~ A A ~ ~ A ... --A I
I I

0.0 0.1 0.2 0.3 0.4 0.5

Noise Level

Figure 5.4. Number of iterations to convergence over noise level. .Auto-

activation of a back-propagation network under the 'leakage' activation

model. No detectable effect can be found.

'Leakage' plane-activation is a variant of the model to design

which switches off intra-layer 'leakage' activation calculation. In

this model, 'peptidergic' activation reaches only nodes in layers

not belonging to the normal plane of the source node. This

represents a parallel to the normal working of the back

propagation algorithm, which connects only along inter-layer arcs.

Testing the switching of intra-layer 'leakage' activations gives

contradictory results, appearing to depend on the initial settings

of the weight values. This is show in figure 5.5. As the setting of

initial weight values is a random process, it was decided to

continue with a fully connected (with intra-layer activation

calculation) network for the remaining models.

156

5. Experiments in Back Propagation

a.
20000~----------------------------~

-a-- with Plane interaction
• without Plane interaction

Iteration

10000

ot=~*=~~~~~~~~
0.0 0.1 0.2 0.3 0.4 O.S

Noise Level

b.
20000~----------------------------~

-a-- with Plane interaction
• wi thou t Plane interaction

Iteration

10000

o~~~~~~~~~J
0.0 0.1 0.2 0.3 0.4 O.S

Noise Level

Figure 5.5. Two graphs showing the contradictory nature of intra-layer

activation switching, with the number of iterations to convergence over

noise level. Graph (a) shows little change in the rate of convergence

with intra-layer activation turned off; while graph (b) shows a lack of

efficiency with intra-layer activation turned off, for the same network

under different initial conditions.

157

5. Experiments in Back Propagation

The 'Leakage' scaling factor is described earlier as a variable

which determines. the perceived 'strength' of 'peptidergic'

activation to each node of the network. In this study, such a factor

must be represented by an arbitrary value, as there is noway of

selecting a realistic setting from a 'live' network - particularly as

the back-propagation network is nothing like a 'Jive' network. It

was decided to perform a series of tests, similar to the random

noise range setting tests, in order to find an optimal setting for

the 'leakage' factor. The summary results (figure 5.6) show that

the efficacy of 'leakage' activation increases over a range of 0.2 to

0.4. It was decided to select a value of 0.35 for the final

experiments, as an arbitrary value within this range.

20000..,-.--------------------------~

Iteration

10000

--0-- Leek only
• Leek and Momentum

O+--T~r-~~~~~--~-r--~~

0.0 0.2 0.4 0.6 0.8 1.0
Noise IereJ.

Figure 5.6. Number of iterations to convergence over 'leakage' scaling

factor. Lower levels of scaling factor appear to give better network

performance.

158

5. Experiments in Back Propagation

. Running the final model

Having set the optimised parameters for the test, it was

decided to compare the execution of the model over various run

time parameters, These were, in order of increasing importance:

• Learning Rate

• Type of 'Noise' (including 'peptidergic' leakage)

• Effect of the use of Momentum

• Effect of Initial weight settings

A total of 3,600 models were executed, of which 2510

converged within 20,000 iterations. Each model was tested with a

range of Learning Rates, from 0.05 to 10.00, with intervals of 0.05

units. Two types of 'Noise' function were used. 'Peptidergic

Leakage' activation was applied to one third of the models

executed, and 'Random Noise' functions were applied to another

third of the models. Momentum was added as a binary function over

the range of 'Noise-type' tests. Other parameters were fixed as

stated above, with Random noise at a level of ±0.3, and 'Leakage'

activation strength as a factor of 0.35.

There were three initial weight settings, designated by the

random 'seed' used in the model. Seed settings of '43', '67' and '89'

were used. Producing more models based on initial 'seed' settings

would have allowed a 'mean' behaviour to be calculated, but this

would have required many more model executions than was feasible

in the time allowed. Results are, therefore, shown for all initial

159

5. Experiments in Back Propagation

. settings, and conclusions must be drawn based on all three

behaviours. .

A note on Learning Rates

It must be noted that, in these experiments, learning rates of

up to 10 have been used. This extended range of learning rate is

used as a means of covering an entire range of possible learning

rate values, and is not intended to represent a set of realistically

reasonable learning rates. In practice, it has been found that

learning rates are reasonably set to a value of about 0.5.

(Rumelhart, Hinton & Williams,1986) Such a setting increases the

learning time, as can be seen from these data, but it also increases

the stability of the resulting networks.

It is a normal practice for a network to be allowed continual

learning, in the expectation that learning can be continued if new

objects are added to the stimulus/response set. In the case of the

lower learning rates, this is feasible, as stimulus/response items

are stabilised upon having c·onverged. Correct responses to stimuli

occur indefinitely once the stimulus/response associations have

been learned. This is not the case in higher learning rates, however.

There is no obvious cut-off point of learning rate values, but in

general, as the learning rate approaches a value of 1.0, the

resulting network fails to 'remember' a stimulus/response pair,

even though it appears to have 'remembered' on one or more

occasions. This is not 'convergent' behaviour, where the

stimulus/response items are correctly matched in perpetuity, but

may be a 'one-off' occurrence, which demonstrates a 'lucky' finding

160

5. Experiments in Back Propagation

of the correct weighting scheme to achieve pairing. A consequent

change of, the weighting may, and usually does, alter the

associations, so that the correct responses are no longer obtained.

In this study, one occurrence of a correct stimulus/response

pairing, for all pairs, has been used as a trigger for recording the

number of iterations to the correct response. This has been done to

create a result set which covers a broad spectrum of behaviour. In

all cases, actual convergen,ce was recorded, but has not been

displayed in the results. In general, spurious convergences can be

implied by the increaSingly erratic behaviour of the results, as

learning rate is increased. This can be extended to the higher

random noise and 'peptidergic activation' values, each of which

become more erratic as values are increased. Interpretation of the

following results, then, is a matter of assessing the gradient of

the graph section, before assessing the relationship between the

different operational conditions.

Results

All results shown in graph form in this section are sub-sets

of the full data. This represents the authors' view of a 'reasonable'

range of data for display, based on the above information about

'convergence' over higher ranges of Learning Rate parameters. The

full data is available in numerical form in Appendix C, and in graph

form in Appendix D.

161

5. Experiments in Back Propagation

Base models with no extensions

Executing the base models under the three initial conditions

used in this study shows that the initial conditions imposed by the

random seeds differ markedly, particularly in the seed(89)

condition. This condition fails to converge in under 20,000

iterations under 'normal conditions', in the terms of back

propagation models this is a learning rate of between 0.0 and 1.0.

The behaviour of the seed(43) and seed(69) are very similar except

when the learning rate reaches a value of over 10 times the normal

values.

Iteration

20000~--------------------~----~

-----a- see::l 43
--+.- see::l 89

a see::l 67

10000

O+---~~--~--~--~--r-~--~

a 50 100 150
Leeming Rate (x 100)

200

Figure 5.7. Back Propagation model using three different initial random

seed settings. Number of iterations to convergence over learning rate .

Base models with Random noise

Random noise models show a remarkable stability across the

range of initial seed settings, and also across the range of learning

162

5. Experiments in Back Propagation

rates. In this case, the seed(67) model is the least efficient at low

noise learning rates, but then drops to remain similar to the

seed(89) model. The seed(43) model shows an apparent

improvement on the behaviour of both seed(89) and seed(67)

models.

15000

-----a-- seed. 43
• seed. 89
a seed. 67

10000

Iteration

5000

O+-~~~--~--~~--~--~-;

o SO tOO 150 200
Leeming Re. te (x 100)

Figure 5.S. Back Propagation model with random noise added, using

three different initial random seed settings. Number of iterations to

convergence over learning rate.

Base models ,with Leak activation

Leak activation models show, as before, the similarity

imposed on the models by the initial conditions. Seed(43) and

seed(67) models follow almost the same trajectory in figure 5.9,

leaving the seed(89) model displaying abnormal behaviour and

instability after a learning rate of approximately 5.0 (shown in

Appendix D).

163

5. Experiments in Back Propagation

20000~----------------------------~

---0- seed 43
• seed 89
a seed 67

Iteration

10000

o +---~--.---~--r---~-.~~--~
o 50 100 150 200

Learning Rate (x 100)

Figure 5.9. Back Propagation model with 'Leak' activation added, using

three different initial random seed settings. Number of iterations to

convergence over learning rate.

Effects of Momentum

Momentum imparts a high degree of stability on the back

propagation model only in the lower ranges of the learning rate

parameter settings. This is one reason for the reference to the

range of 0.0 to 1.0 as being 'normal conditions' for the back

propagation model. At learning rates of 0.5 to 1.5 all networks

converge in a very short time, and the traces of the graph are

largely indistinguishable in figure 5.10

164

5. Experiments in Back Propagation

20000~ .. --------------------------~
---0-- seed 43
--+--- seed 89

a seed 67

Iteration

10000

ot-~~~~~~ .. ~~~
o 50 100 150 200

Learning Rate (x 100)

Figure 5.10. Back Propagation model with Momentum added, using three

different initial random seed settings. Number of iterations to

convergence over learning rate.

Comparison of Base models with added Noise and Momentum

Noise adds a greater degree of convergence speed to the

ordinary back propagation model. Coupled with momentum, noise

adds even more speed and stability to the behaviour of the network.

This occurs over a large range of learning rates, except in the

seed(67) initial condition of figure 5.13. The most stable ranges of

noise and momentum are in the ranges of 0.0 to 2.0, with the

. exception of the seed(89) model, showing a great stability across

the entire range tested.

165

5. Experiments in Back Propagation

20000~------------------------------~

--0-- Base model
• with noise
a with noise

Iteration +mornentum

10000

o SO 100 1 SO 200
Leeming Rate (x 100)

Figure 5.11. Back Propagation model with Random noise and Momentum

added, using a single initial random seed setting (43). Number of

iterations to convergence over learning rate.

:20000 ..,--------------;:;------,

--0-- Base model
• with noise
a with noise

+ momentum
Iteration

10000

O-t---r-----r----r----,---r----.--~-__l

o SO 100 1 SO 200
Leeming Rate (x 100)

Figure 5.12. Back Propagation model with Random noise and Momentum

added, using a single initial random seed setting (89) . Number of

iterations to convergence over learning rate .

166

5. Experiments in Bacl< Propagation

20000~--------------------------~

--0-- Base model
- - with noise

a with noise
+ momentum

Iteration

10000

O~~~~~~RD~~~~~~~
o 50 100 150 200

Learning Rate (x 100)

Figure 5.13. Back Propagation model with Random noise and Momentum

added, using a single initial random seed setting (67). Number of

iterations to convergence over learning rate.

Comparison of Base models with Leak activation and

Momentum

Leak models show a small improvement on the ordinary back

propagation model, but the greatest improvement is shown when

momentum is added. Leak activation is unstable at higher learning

rates in the seed(67) and seed(89) conditions, but shows great

stability in the seed(43) conditions. Adding momentum improves

the convergence speed and stability over a short range of learning

rates in all models from approximately 0.25 to 2.0, where the

behaviour of the model shows as an almost flat trace in figures

5.14 to 5.16.

167

5. Experiments in Back Propagation

20000 .-------------------------------~
-0-- Base model

• with Leek
a with Leek

+ momentum
Iteration

10000

o 50 100 150 200

Leeming Rate (x 100)

Figure 5.14. Back Propagation model with 'Leak' activation and

Momentum added, using a single initial random seed setting (43) .

Number of iterations to convergence over learning rate.

20000 .-------------------------~----_.

Iteration

10000

o

a

Base model
with Leek
with Leek

+ momentum

50 100 150
I...ea.ming Rate (x 100)

200

Figure 5.15. Back Propagation model with 'Leak' activation and

Momentum added, using a single initial random seed setting (89).

Number of iterations to convergence over learning rate.

168

5. Experiments in Back Propagation

20000~-----------------------------.

Iteration

10000

-G-- Base moclel
with Leak

a with Leak
+ momentum

o 50 100 150 200

Learning Rate (x 100)

Figure 5.16. Back Propagation model with 'Leak' activation and

Momentum added, using a single initial random seed setting (67).

Number of iterations to convergence over learning rate.

Comparison of Base models with Noise and Leak activation

The following figures (figures 5.17 to 5.19) show that

random noise is a more effective method of improving convergence

speed and stability 'than using a bare 'Leakage' activation function,

in networks without momentum functions. This result is shown in

all initial condition settings. To reiterate, stability is good in the

seed(43) and seed(89) cases, with a more haphazard 'stability' in

the case of the seed(67) initial setting.

169

5. Experiments in Back Propagation

20000.-----------------------------~

Iteration

10000

o

-0-- Base model
• wi. th noise
a wi. th leak

50 100 150
l.a3.ming Ra te (x 100)

200

Figure 5.17. Back Propagation model comparing random noise and 'Leak'

activation, using a single initial random seed setting (43). Number of

iterations to convergence over learning rate.

20000 ~------------------------=------.

Iteration
-0-- Base model

• wi. th noise
a wi. th leak

10000

o ~--~---r---r---.--~--_.--_,--~
o 50 100 150 200

l.a3.ming Rate (x 100)

Figure 5.18. Back Propagation model comparing random noise and 'Leak'

activation, using a single initial random seed setting (89). Number of

iterations to convergence over learning rate.

170

5. Experiments in BacK Propagation

20000~----------------------------~

~ Base model
• with noise
a with leek

Iteration

10000

O+---~--~~--~--~--~--~--~

o 50 100 150 200
Leeming Rate (x 100)

Figure 5.19. Back Propagation model comparing random noise and 'Leak'

activation, using a single initial random seed setting (67). Number of

iterations to convergence over learning rate.

Comparison of Momentum models with Noise and Leak

activation

The results of this category are harder to distinguish on a

gross level. In the seed(89) case, 'Leakage' activation seems to

give a better account of itself than the base model with either

momentum or momentum with noise. This is contradicted by the

seed(43) model, but only by a small factor, giving a convergence

disparity of approximately 150 iterations between · the random

noise and leak models, with random noise showing the better

convergence rate in 'normal conditions'. In the seed(67) condition,

the leakage and noise model results cross each other under 'normal

conditions', but with a small advantage to the noise model.

171

5. Experiments in Back Propagation

10000~----------------------------~

Iteration

5000

o

-o--Base + momentum
• with noise
a with leek

50 100 150 200

Lalming Ra te (x 100)

Figure 5.20. Back Propagation model comparing random noise and 'Leak'

activation with added momentum, using a single initial random seed

setting (43). Number of iterations to convergence over learning rate.

20000,-~------------------------------~

Iteration

10000

o

-0-- Base + momentum
• with noise
a with look

50 100 150
Lalming Rate (x 100)

200

Figure 5.21. Back Propagation model comparing random noise and 'Leak'

activation with added momentum, using a single initial random seed

setting (89). Number of iterations to convergence over learning rate.

172

5. Experiments in Back Propagation

10000~----------------------------~

Iteration

5000

o

---0-- Base + momentum
• with noise
a with leek

50 100 150
Lelming Rate (x 100)

200

Figure 5.22. Back Propagation model comparing random noise and 'Leak'

activation with added momentum, using a single initial random seed

setting (67). Number of iterations to convergence over learning rate.

Summary

The implications of these results are discussed in detail in

chapter 7, where they will be compared to the results of the

following chapter. In summary, the results of the Back Propagation

model given in this chapter, show that under conditions of random

noise, the network learns more effectively (ie. at a faster rate)

than in the base level model. In a further modified network model

incorporating a possible analogue of peptidergic activation,

learning rates are marginally better than the unmodified network,

but not as good as the network under random noise conditions.

Adding momentum to each of the networks makes a great

difference to their behaviour. Base level networks perform at a

much improved level, while the 'peptidergic activation' model

173

5. Experiments in Back Propagation

. performance is enhanced, sometimes to a degree which exceeds the

absolute iteration value of the random noise model results. The

random noise model is enhanced by a momentum factor, but not by

as much as the base level and 'peptidergic' models. The random

noise model is still, on average, the most effective network in the

study.

174

6

Medium Grain experiment

Simulating peptidergic propagation in a realistic neural

model is a complex process. As discussed in the previous chapter,

the inclusion of a peptidergic factor in neural models requires that

the network be placed in three dimensions, with the means

available for calculating the peptidergic component reaching a

particular point in three dimensional space from moment to

moment. The complexity of this operation grows with the size of

the network. While this task is not so daunting in a simplistic

'nodal' representation, a proper rendition of a peptidergic network,

at even a medium grain size, requires that the peptidergic factor

be calculated at al/ points on a cell surface, or at least, at all ion

channel positions likely to be affected by peptides. This is a

ridiculously complex expectation for any model, which no

modelling package has yet provided, even in ordinary transmitter

conditions. (But the case for ordinary transmitters can be much

simpler than for neuropeptides, a concept which will not be

discussed here.) A more practical method involves the averaging of

peptidergic concentrations over a reasonably small area of cell

surface, which should give a fair degree of accuracy in obtained

results.

175

6. Medium Grain Experiment

In this study, these ideals have been heavily compromised. In

order to reduce complexity, and computational time, the model

used has only two 'neurons'. Using only two neurons allows the

peptidergic delay and concentration factors to be 'hard-wired' into

the model at the outset of the experiment. Such 'hard-wiring'

means that, in fact, only one point per cell is used in the

calculation of the peptidergic concentration. Even so, the

complexity of the modelled system requires several tens of

seconds to simulate half a second of 'neural time'.

This study makes no attempt to investigate the possibilities

of inhibitory peptidergic transmission, or of the properties of

randomly injected noise. The main reason for the omission of a

treatment of inhibitory transmission is that it would be expected,

in a 'positive-signal' circuit, that inhibitory peptidergic

transmission would merely delete events in the target cell, if the

peptide strength and delay parameters were set at an effective

value. While this would be a valuable finding, it is largely a

complementary process to the use of peptidergic excitation in a

'positive-signal' circuit, which is what this experiment is intended

to study. In the case of random noise injection, it is not expected

that random injection will produce patterned responses in the

simulation. Again, while spurious spiking events would be

important in a nervous system, the results of noise injection in

this model are entirely predictable as an event somewhere along

the time-line, which mayor may not effect the behaviour of the

connected cell, depending on the time of onset of the event. It is

therefore deemed an unnecessary experiment.

. 176

6. Medium Grain Experiment

Model Design

The medium grain model used in the following experiments is

an adaptation of a model supplied with the GENESIS neural

simulator from the California Institute of Technology (Wilson &

Bower, 1989). The GENESIS system is an electrical equivalent

computational modelling system, which models at the level of

membrane and ion channel conductance and capacitance, with

current sources acting as ion reservoirs, incorporating analogues

of neurotransmitter time constants. Appendix E gives a description

of the software package and its specifics of use in the following

experiments.

The model used, known as the "MultiCell" simulation,

consists of a pair of neurons represented at a medium level of

detail as in (Wilson, 1989 • a paper provided with the GENESIS

modelling package). Each cell has only two compartments, which

represent the soma and dendritic arbour. The cells are connected in

a feedback arrangement (Figure 6.1). The first cell provides an

excitatory connection to the second cell, which feeds back via an

inhibitory connection. All connections are simulated by an axonic

delay with realistic conductance parameters and a weighting

system.

177

Axon '"

6. Medium Grain Experiment

"'-----iSoma 1

Dendrite
Compartment

Soma 2

-cJ- Delay and weighting component

Figure 6.1 Two neuron feedback system supplied with the GENESIS

simulation package.

Architecture and input/output behaviour of the model

Each cell of the model is represented as two compartments,

shown in figure 6.1. The dendritic compartment carries the active

Sodium and Potassium channels which are activated by changes in

synaptic conditions, as well as incorporating conductance channels

for resting potential and membrane leakage. The somatic

compartment contains voltage controlled (Hodgkin-Huxley) Sodium

and Potassium channels, which are triggered by changes in

potential entering from the dendritic compartment. (see figure 6.2

and 6.3 for electrical characteristics) The apparent voltage in this

compartment triggers the attached axonal element, which is set to

produce a spike event at a particular potential. The spike event

reaches the target compartment after a preset delay, and after

being weighted by a preset weight. The weighting of the synaptic

connection is a fixed parameter which is scaled by a maximum

, 178

6. Medium Grain Experiment

conductance parameter to produce the final output of the synapse.

The' output is tempered by a function controlling the time course of

the conductance changes at the synapse. This is composed of two

fixed parameters which impose an exponential rise' and fall on the

output.

Membrane
Resistance

Vo 1 tag e -P- r-------J
Axi al Resi stance

to
and \
Rest
Equilib

\
Na
Conduct
ance -...

and
Equi 11 b. '"
Constant

K
Conduct
ance -po

and

Constant

Soma

Equilib.... \

~------r---'---'--+----'

Membrane
I ntracell ul ar cytoplasm _ I nj ect ion Capaci tance

Figure 6.2. Electrical characteristics of the dendritic compartment in

the two neuron model.

Membrane
Resistence

Vol tege ,.-...- From Dendrites

:~~t \ ~--------~----~----~----~----~--~
Equilib

\

HodgKi n-Huxl ey Chennel s
Ne K
Conduct
ance -...

Conduct
ance -po

To
Axon

and and

Equil1b. - \
Constant

~------r---'---'--f----.J

Current Membrane
I ntrecell ular cytoplasm I nj ect i on Capacitance

Figure 6.3. Electrical characteristics of the somatic compartment in the

two neuron model.

The cells are arranged such that the first cell - the cell with

an outgoing excitatory axon and an incoming inhibitory axon (known

179

6. Medium Grain Experiment'

. as cell 1, hereafter) - is excited by a constant current injection.

After a summation delay, this produces a spike event in the axon

which is synaptically connected to cell 2. (The mechanics of these

events follows the procedure outlined for real neurons in chapter

3.) Cell 2 is excited by the event and produces a spike event in its

own axon, which is connected via inhibitory channels to cell 1. This

may inhibit cell 1 if the timing of the spike event is coincident

with the summation of current inje~tion . in cell 1. (The normal

behaviour of both cells is shown in figure 6.4 and 6.5)

Intrece 11 ul er po tent j e 1
Vm (mV)

sOllla

-30.0

-50.0

-70.0 dend

Cell 1
100 .. 00 200 .. 00 300 .. 00 400 .. 00 m/sec

Figure 6.4. Normal behaviour of cell 1 in the model, as supplied with

the GENESIS software.

180

6. Medium Grain Experiment

Intrecell ul er potent i e1
Vm(mV)~ __ ~ ____ ~ ____ -+ ____ -+ ____ __

soma

-30.0

-50.0

-70.0
dend

100 .. 00 200 .. 00 300 .. 00 400 .. 00 m/sec
Cell 2

Figure 6.5. Normal behaviour of cell 2 in the model, as supplied with

the GENESIS software.

The parameters used for the electrical characteristics of the

cell membranes and ion channels are fixed in the parameter input

to the GENESIS program. All the electrical parameters are taken

from experimental papers which measure the conductances of

specific ion channels, resistance and capacitance of cell

membranes and ion channel densities. The sources for these data

are catalogued in other simulations provided with the GENESIS

package. Some of the model parameters are arbitrary. These are

generally variables such as synaptic weight, axonal delay and spike

generation thresholds.

181

6. Medium Grain Experiment

Parameters relevant to this study are the synaptic weights,

axonal delays and synaptic time constants, as these can be varied

in a modified model to simulate a simplistic version of peptidergic

transmission. Table 6.1 shows the values used in the simulations

of figures 6.4 and 6.5.

Excitatory connection Inhibitory connection
(Cell 1 -> Cell 2) (Cell 2 -> Cell 1)

Axonal delay 5 msec 5 msec
Synaptic weight 30 300
synaptic time 3/3 10/10
constants (tau 1 /tau2)
(msec)

Table 6.1 Parameters relevant to this study, as used in the unmodified

MultiCell simulation.

The Experiment

The experiment modifies the existing two neuron system to

incorporate a simplistic peptidergic component. This is

represented by a further pair ofaxons with modified delay and

weighting parameters, connecting each of the two cells as in

figure 6.6. (See Appendix E for the GENESIS script modifications

required.) This is only just feasible in a two neuron model, as

complex three dimensional calculations of time and

diffusion/concentration coefficients can be avoided by pre-setting

these characteristics; assuming that the ion channels responsible

for neuropeptidergic activity cover a small area of the dendritic

membrane. This is not a particularly useful assumption, but it does

182

,
6. Medium Grain Experiment

negate the need for complex run-time calculation of these

variables. .

A)(On~

L...-~Some

-c:J- Deley end weighting component

Dendrite
Compertment

-{~"""4· Peptl dergi c del ey end wei ght i ng component

Figure 6.6. Modified MultiCell simulation. The additional axons simulate

a peptidergic input to the dendritic compartment of both cells.

The modified connections should attempt to simulate a

possible peptidergic signal arriving at a neighbouring neuron. Such

an effect can be produced by lowering the synaptic weight to a

fraction of that for normal transmission, increasing the

transmission delay between signal source and reception, and

increasing the time course of the effect on the target cell,

allowing for a longer effect caused by slower removal of peptide

transmitters. These factors are represented by the parameters

displayed in table 6.1.

The major concern in this modification is the application of

realistic values to these parameters. Representative data was not

available, so it was decided to use a set of values relative to the

existing values used in the normal transmission simulation, and to

modify these values during different simulations to test the

behaviour of the model.

183

6. Medium Grain Experiment'

Initially, it was decided to set the value of the synaptic

weight to a tenth of the lowest value used in the existing model,

and then to vary the weight to assess the effects of weight on the

model. The axonal delay was set to 6 times longer than the 'existing

axonal delay and varied in a similar manner. The synaptic time

course parameters were· set to twice the value of the longest time

course in the existing model and then varied. These values are

shown in table 6.2.

Existing Existing New Peptidergic
Excitatory Inhibitory connection
connection connecti on. (Cell 1 = Cell 2)
(Cell 1 -> Cell 2) (Cell 2 -> Cell 1)

Axonal delay 5 msec 5 msec 30 msec
Synaptic 30 300 3
weight
synaptic time 3/3 10/10 20/20
constants
(tau 1/tau2)
(msec)

Table 6.2 Modified MultiCe" simulation using modified axonal

connections to represent peptidergic transmission.

184

6. Medium Grain Experiment

Results

Base model

The Base model is defined as the model with the settings

shown in table 6.2. Running this simulation has no apparent effect

on the behaviour of cell 1, but a marked effect on the behaviour of

cell 2. (as shown in figure 6.7) Cell 2 produces the normal spikes

associated with stimulation by cell 1, but then produces three

more spikes, as the peptidergic emulation produces an enhanced

excitation state. Theoretically, the enhanced excitation of cell 2

should produce a consequent inhibition of cell 1, but as the

summated current injection into cell 1 is insufficient to fire cell 1

again, after the first spike train, no reduction of activity is seen in

cell 1. Note that the addition of the second part ofaxons has

increased the number of spiking events from two in the unmodified

model, to three in the modified model.

185

6. Medium Grain Experiment

Transduction delay of 30 m/secs
I ntracellul ar potent i al
Vm (mV)

-30.0

-70.0

Cell 2
100.00 200.00 300.00 400.00 m/sec

Figure 6.7. Using the values in table 6.2 for the modified axonal

connections produces an additional spike train in the peptidergic

transmission model of cell 2.

Variations in axonal delay

Increasing the axonal delay setting has the effect of

lengthening the time between the primary spike duo and the

following spike train. This occurs for all delays upwards of 30

msecs. Below 30 msecs the secondary spike train is not produced,

resulting in a primary spike train with a potentiation of excited

activity within cell 2. (Figure 6.8)

186

6. Medium Grain Experiment

Trensduct10n del ey of 20 m/secs

I ntrece 11 u1 er potent 1 e 1
Vm (mV)

soma

10.0

-10.0

-30.0

-50.0

-70.0
dend

Cell 2
100 .. 00 200 .. 00 300 .. 00 400 .. 00 m/sec

Figure 6.S. Reducing the axonal delay to 20 msecs for the modified

axonal connections produces an additional excitation, but no spike train

in the peptidergic transmission model of cell 2.

As the delay in the axonal link becomes longer, approaching

the onset of a new spiking event, the inhibition from cell 2 begins

to show an effect on the behaviour of cell 1. Finally, at a delay

corresponding to the onset of spiking events in cell 1, the

inhibition from cell 2 cuts off the response from cell 1, producing

a different pattern of firing from both cells 1 and 2 (Figures 6.9

and 6.10)

187

6. Medium Grain Experiment'

Transduction delay of 150 m/secs
Intracell u1ar potential
Vm (mV)

110.0

90.0

70.0

50.0

30.0

10.0

-10.0

-30.0

-50.0

-70.0

Cell 1

dend

100.00 200.00 300.00 400.00 ml sec

Figure 6.9. A delay of 150 msecs imposes inhibition on cell 1, when a

spiking event is imminent.

188

· 6. Medium Grain Experiment

Trensduction deley of 150 m/secs
I n t ra c e 11 u 1 a r pot e n t i a 1
Vm (mV)

1~O.O

170.0

130.0

110.0

30.0

10.0

-10.0

-30.0

-50.0

-70.0

sOl'l\a

dend

Cell 2 100.00 200.00 300.00 400.00 m/sec

Figure 6.10. A delay of 150 msecs causes inhibition on cell 1 as a result

of the excitation in cell 2.

Variations in synaptic weight

Variations in synaptic weight have a pronounced effect on the

output of the peptidergic transmission system, due to the length of

the time constant associated with the peptidergic stimulation.

Setting the synaptic weight to values of less than 3 produces no

secondary spiking events in either cell. At a value of 2, a small

potentiation effect appears to take place in cell 2, without a

corresponding spiking event. Setting the weight to values greater

189

~c~ ______________ _

6. Medium Grain Experiment

. than 3 produces a larger number of spikes in the secondary spike

train, until, at a value of about 10, the secondary spike train in cell

2 appears to go into tetanus, giving a continual spike train in cell 2

and the extinction of any responses in cell 1.

Variations in synaptic time constant

Variations in the synaptic time constant have a similar

effect to the changes in synaptic weight shown above. Setting the

time constant to values lower than 20 produce a smaller number of

spikes in the secondary spike train of cell 2. This has little effect

on cell 1. Setting the time constant to higher values increases the

number of spikes in the secondary spike train, until at much higher

values the response of cell 2 goes into tetanic behaviour with a

corresponding extinction of responses in cell 1.

Summary

The results of the simple compartmental model in this

chapter, show that a peptidergic link may have a neurally

reasonable effect on signal transmission quality, if the parameters

of peptidergic strength, delay and time constants are within the

bounds specified below. In general, varying the weighting strength

parameter varies the number of spikes in a 'peptidergic' spike

train. Varying the time constant of the synaptic 'peptidergic'

effect produces similar results to the variation of weighting

strength. Varying the transmission delay of the 'peptidergic' effect

190

6. Medium Grain Experiment

produces a change in the timing of the response of the target cell

to the 'peptidergic' stimulation.

Changes in transmission quality. from the characteristics of

the base model, require that the lower bounds of signal strength be

no less than 10% of the classical transmission strength, if spiking

activity is to be invoked by the peptidergic component of cell

activation. The lowest delay which produces spiking under the

same strength conditions is 30 milliseconds, which allows the

refractory period (10 milliseconds) of the spiking module to

elapse, and the build up of charge within the soma to be unaffected

by the latent hyperpolarisation of the Potassium channels of the

target cell. The time constant lower bounds are defined by similar

criteria when delays are low, but are also determined by the length

of time required for a critical charge to build up within the soma

of the target cell. When the time constant is low, fewer

'peptidergic' spikes are seen in the output of the cell.

The upper bounds of the above constants are imposed by

qualitative changes in the output of the target cell. Obviously a

stronger 'peptidergic' Signal and/or a greater time constant

invokes an enhanced spiking behaviour. The upper limits for these

parameters are interdependent, and could be fixed at the point

where the target' cell exhibits tetanic behaviour. Varying the

reception delay of the 'peptidergic' signal imposes a different

pattern' of behaviour than the strength or time constant

parameters. There are no obvious upper bounds on this parameter,

except those imposed by diffusion calculation limits, as the effect

of varying this parameter merely time-shifts the 'peptidergic'

response spiking behaviour.

191

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl,uk

PAGE HAS NO CONTENT

7

Discussion

The results in the previous two chapters reflect a positive

difference in outcome of the operation of two types of neural

network, under the conditions of random noise and what can be

termed a weak, directed signal (the 'peptidergic' signal) or

modulum, as proposed in chapter four. The direction and quality of

the difference in the operation of the models under these

conditions, is the subject of this chapter.

It is important to attempt a detailed analysis of the

mechanisms underlying the operation of each category of signal

propagation used in the preceding chapters, although the results of

the experiments do not give an indication of the actual

mechanisms, but rather suggest that the mechanisms may be

different. The questions which will be attempted in this chapter

are those relating to the theoretical operation of both the random

and 'peptidergic' functions. The most interesting of these

questions are those concerning the possible differences and

parallels between the two types of network modulation; whether

(they act along similar lines or are part of a different mechanism.

The primary aim of this work is to assess the contributions

of random noise and 'peptidergic' Signal to network performance,

with a view to extending neural computation theory into these

193

7. Discussion

domains. The results of the previous chapters have shown that

these two factors behaviourally affect two different types of

network, and should therefore be incorporated into network theory.

Findings of Back-Propagation modelling

The Back-Propagation models show that a 'peptidergic

leakage' activation inclusion produces a learning enhancement on a

similar scale to that of random noise. The characteristic graphs of

this enhancement are different, however, in that the random noise

models tend to produce a less incremental change in convergence

rates than the other categories of model. Random noise produces

plateau-like regions (see figures' 5.11 onwards) with abrupt

changes in gradient between learning rate settings. Base models

and, Peptidergic leak models, on the other hand, produce low second

order gradient changes between learning rate increments. These

shallow gradients indicate that the network is more stable than

the random noise model.

In a comparison of the methods used in this study, the

random noise model presents little correlation between initial

setting parameters, indicating that initial 'synaptic' weights are

extremely important in the subsequent behaviour of the network. In

contrast, the 'peptidergic' leak model produces a greater

correlation across initial setting modes than the base models. (See

Table 7.1) This indicates that the result obtained is less dependent

on the initial state of the network than even the ordinary back

propagation algorithm. This implies that the 'peptidergic' leak

model is a slightly stabler model than the base model.

194

7. Discussion

seed 43 seed 89 seed 67
seed 43 1.000
seed 89 0.992 1.000
seed 67 0.980 0.994 1.000

Back Propagation only

seed 43 seed 89 seed 67
seed 43 1.000
seed 89 0.947 1.000
seed 67 0.953 0.923 1.000

Back Propagation with momentum

seed 43 seed 89 seed 67
seed 43 1.000
seed 89 0.086 1.000
seed 67 0.720 -0.017 1.000

Back Propagation with Noise & Momentum

seed 43 seed 89 seed 67
seed 43 1.000
seed 89 0.992 1.000
seed 67 0.995 0.997 1.000

Back Propagation with 'Peptidergic' Leak & Momentum

Table 7.1 A comparison of the correlation within conditions across

random seeding categories. (Learning rates 0.05 to 2.00)

The high correlation shown for the 'peptidergic' leakage

(function in the above table implies that perhaps a stronger

activation cross-correlation method is being used in the

'peptidergic' leakage model, which is absent in the random noise

195

7. Discussion

model. From this data, we can conclude that the methods of

convergence occurring in the random noise model and the leakage

model are quite different.

The results of the random noise model give the appearance

that the random noise model uses a "lucky" paradigm, which works

in this study particularly because of the limited range of

activation and weight spaces allowed in the computational model

of the network. Clamping the weight values of the network to

values of ±20.0, means that the range of noise allowed is a

considerable proportion (up to 6%) of the weight space. In a

network with a larger range of activation and weight space, or

requiring a more complex transformation, it is likely that the

random noise model would produce less useful results. However,

the injection of random noise may also 'serve to 'broaden' the

activation range of the network, by allowing access to particular

activation states within one iteration, which would otherwise take

several iterations to achieve, thus cutting down on computational

time.

The 'peptidergic' leakage model appears to use a method of

activation correlation within the network, which may be similar to

methods used in Kohonen's self-organising map models (see chapter

2). In this case a weak spreading activation function is occurring

within a local area, with an even weaker spreading activation

function occurring on a global scale. The overriding method in use,

however, is still the back-propagation algorithm that must, in

some way, benefit from the additional activation obtained from the

'peptidergic' leakage function. This may be due to the extension of

the nodal activation range, with the added activation provided by

, the leakage function.

'196

7. Discussion

A further difference existing between the two methods is the

input characteristics of each method. The injection of random

noise is theoretically a stochastic process with a final net input of

zero, given that the noise parameter is set up as an even

distribution about the zero point. This contrasts with the

'peptidergic' leakage model, which has a definite net input into the

network over its operation cycle, which in this study was usually

positive, with an approximate scaling over the random noise input

of 104. This additional input strengthens the case for the theory

that leak activation extends the range of activation of the network.

The effect of momentum on the operation of these models

would be to keep the gradient descent strategy on course, as it was

originally intended to. do. This is achieved through the 'history'

mechanism of the momentum function which adds 90% of the

previous error function to the upcoming weighting event. In the

case of random noise, this would enhance the effect of

continuously polar series, and negate the effect of opposite random

assignments. Peptidergic leakage on the other hand, will produce a

smoothly varying activation addition, generally at much lower

absolute values (ie. less extreme values) than that produced by

random noise. The action of momentum will not enhance the

operation of the network to such a degree as that achieved in

random noise models. In addition, changes of activation polarity

(where they occur) would be highly smoothed by the momentum

term.

-(The contextually relevant findings are that the peptidergic

leakage activation appears to act as cross-association function.

This leakage appears to extend the activation range of already

activated nodes, allowing the back-propagation algorithm to

197

7. Discussion

converge at a faster rate. Noise appears to broaden the activation

scale, by allowing a larger number of available activation points

within a network. Noise models give a plateau-like characteristic
-

curve, whereas base-level and leak curves look more 'inverse-

exponential' in nature. Leak curves (of all seeds) appear close

together in graphs, with a high correlation across all initial

conditions, indicating that initial conditions are less important

than in models using noise, leading to stabler networks.

Findings of Medium Grain modelling

The GENESIS model uses only a very limited 'peptidergic'

simulation, which accounts for only pOint-to-point peptidergic

propagation from the synapse to the dendritic processes of the

target cell. The viability of this model rests on the fact that it is

only a two-neuron system, so that inter-cell distances are not

complex, and peptidergic diffusion can be modelled as a lengthened

period of contact with the target cell. The exact concentrations of

peptides across the cell cannot be simulated at present, without

much additional programming work.

The results of this study show that the 'peptidergic' effect

(as defined in this study). produces a significant behavioural change

in the output of the two cells. At the lowest level of operation, the

peptidergic component produces a potentiation effect on the output

of the second cell, whilst at the highest level it can produce

sustained oscillations. At (for want of a better description)

reasonable biological levels, the peptidergic component lengthens

198

7. Discussion

the spike train of a stimulus from the source cell, and can cancel

spikes in a source cell via feedback connections, if the onset delay

is correlated with the normal spiking behaviour.

It appears that the peptidergic component in this study

produces a lengthening of the apparent activation of a target cell,

at least to the point where potentiation occurs (see figure 6.8). In

more complex systems this would be available to modulate signals

arriving from other components of the system, producing an effect

greater than that with simple classical transmission events.

Extending the potentiation effect to a cluster of cells, would allow

peptidergic activation to maintain a general level of excitation in

the cluster, for a specific time after the onset of a peptidergic

signal. This may act as a cluster 'biasing' system - a 'priming' or

'expectation' system.

In a neural system with a greater peptidergic component, to a

degree which prolongs the activation of a cell (see figure 6.7), we

can expect the peptidergic component to modify the behaviour of

the network to a considerable extent; single activation signals will

lengthen and the length of the propagation chain will, unless

modified by other events, also lengthen.

Discussion of both models

One of the aims of this study was to decide whether random

noise and peptidergic activation, which was originally described

as a form of 'directed noise' has any ability to influence the

outcome of neural network operation. In Back-Propagation

networks, noise and 'peptidergic' leakage activation seem to have a

199

7. Discussion

positive effect - and it seems that the mechanism of operation is

different for the two activation methods tested. In the medium

grain model, again, peptidergic operation produces an additional

effect on the excitation of the ce\l; but can we say that this

mechanism is functionally similar to the mechanism involved in

the back-propagation model?

It was stated that the mechanism of operation of the

peptidergic factor in the back-propagation model was thought to be

akin to an extension of the activation range of each node, which

allows a larger signal to be propagated, correlated with the signals

of the surrounding nodes. In the medium-grain model, the effect of

a peptidergic factor is an extension of the signal length. This can

be construed as an extension of the activation range of a node; but

only if it is possible to propagate a signal without the associated

peptidergic signal, or with an attenuated, peptidergic component.

This was not tested in this study, but is a result of several studies

of neuropeptides (Lundberg & H6kfelt, 1985; Horn and Dodd, 1985).

We can conclude that the mechanism of action under both network

models is very similar, given that a low-level model can be

constructed with a variable peptidergic component.

This study has not only shown that excitatory peptidergic

factors can lengthen the response of target cells, but has also

shown that an inhibitory feedback connection of a peptidergic

nature, can veto the firin'g (and thus signalling) of a source cell

(see figure 6.9). This type of signalling falls into the category of

an antagonistic neuropeptide (see Emson, 1985, and chapter 4) The

veto action of a peptidergic connection is highly dependent on the

distance between nodes, the period of peptidergic stimulation and

the concentration of peptides at the receptors.

200

7. Discussion

Implications for Signal/Noise dichotomy

The results of this study seem to show that neuropeptides

may affect the components of a nervous system, if the assumptions

made about the nature of a peptidergic factor are close to

biological levels. In this case, it cannot be possible to assign

definite boundaries to signal and noise in the nervous system. It is

unlikely that such assignments are the current practice, but

perhaps the subtler modulation brought about by low-level signals

may now be studied in greater depth.

There are still some questions to ask about the role of noise

in the nervous system. For example, noise may still be a factor in

neural circuits, but when does 'noise' become a signal, and when

does 'Signal' become noise? It is unlikely that these events occur

at exactly the same point along a chemical transmitter

concentration gradient, for example. ·

It has been proposed earlier that it is possible that random

noise broadens the number of activation points in a finite point

system in artificial neural networks. This would mean that noise

would become less effective as the number of activation points

available grew; ie. a growth in either the size of the network or the

number of digits ·in the mantissa, and moving towards an analogue

implementation. This could mean that noise may not be useful as an

< operational enhancer (as in the Back-Propagation study) in the

human brain, leading to the proposition that perhaps the human

brain exhibits its degree of intelligence because we have exceeded

some critical size for the reduction of the influence of noise on the

201

l - -----

7. Discussion

content of signal transmission within the brain. Does the

complexity of the human nervous system mean that it is the first

to overcome the problem of noise; ie. Is it possible that the Homo

species are the first species with a large enough nervous system

to ward off the adverse effects of an inherently noisy

environment?

Concurrent propagation'?

In chapter 4. it was argued that the action of neuropeptides

could produce the mechanism for a system of concurrent

propagation within a neural system. This proposal is still valid, as

it has been demonstrated that neuropeptides may have some

effects within a neural system. In chapter six. it was shown that

the neuropeptidergic signal. at various parameter settings, was

able to induce time-shifted spiking activity in a target neuron.

Such a finding is one of the requirements for a concurrent

propagation scheme. The results shown are ambiguous. however.

The temporal difference of the spiking event in the medium-grain

model is related to the setting of the peptidergic activity time

constant. If the time-constant is very low. no extra activity

appears. If the time-constant is a little higher. the activity that

appears may be seen to be coupled to the primary activation of the

neuron - producing a mere extension of the excitation; which is not

independent. The independence required for true concurrent

propagation requires a parallel peptidergic and classical signal.

The major problems in interpreting the results as showing

, that concurrent propagation exists. are firstly, that many of the

202

7. Dis'cussion

experimental parameter settings were fabricated, due to lack of

data, and secondly, that the neural model used was small,

fabricated, and still a fairly coarse-grain representation, not

subject to many of the processes which are present in the neural

environment. One of the major factors required for demonstrating

concurrent propagation is the independent release of both

peptidergic and classical transmitters, a process which could not

be studied in this model. A resolution of this question lies largely

in future research within the biological sphere.

Future Research

The best possible direction for future research in this area,

lies in the establishment of a multi-disciplinary project focussing

on the aspects of neuropeptides which could be studied from two

angles; biological and computational.

Computational modelling of peptidergic systems can be

preferable to neurobiological investigation for a number of

reasons. Investigating neuropeptidergic transmission requires that

the relative distances between neural elements remain fixed,

which is not easy to maintain in biological preparations. In vivo

tests are difficult to execute in conditions requiring no cell

displacement and continuity of the extracellular medium, and

repeatable impalement of a single cell is difficult in in vivo

(conditions, across preparations. Recording from many cells at the

same time is also difficult. Damage is also caused by impaling

neural tissue, which can allow current leakage through the

membrane, and leads to inaccurate results. Computational

203

7. Discussion

modelling suffers from none of these drawbacks, and has many

advantages. The major difficulty lies in obtaining accurate

parameters for the model from neuroscience research. The

establishment of a multi-disciplinary project should eliminate this

limitation.

The execution of such a project would require the

characterisation of a particular real neural system in a

neurobiological preparation, with an attempt to derive

concentration, weighting and periodic behaviour parameters. These

could be installed in a computational model, built at as fine a grain

size as possible, which should behave in a similar manner to the

biological network. The parameters of the computational network

could then be varied to assess the effects of removing any

peptidergic components from the system, and comparing the

behaviour obtained with the real neural system.

A project such as this should be a valuable contribution to

knowledge in this area, providing us with fairly reliable proof of

the contribution of neuropeptides to the specific neural circuit.

Conclusion

This study has pursued the theory that neuropeptides can be a

complementary system of· signal propagation in a nervous system.

At the highest level, the' proposal is that neuropeptides can act as

additional signal channels in a neural circuit, providing a parallel

and concurrent system of signal propagation. At a lower level,

neuropeptides may act as signal modulators, providing an extension

of the activation produced by classical transmitters. At an even

·204

7. Discussion

lower level, neuropeptides can be considered as noise, which may,

or may not influence signal propagation. Finally, the possibility

exists that neuropeptides serve no useful purpose in the nervous

system.

This study has begun to address the question of which level

neuropeptides inhabit by testing the behaviour of two artificial

neural networks. at very different levels of neural representation.

The Back-propagation model used in this study. showed that random

noise injected into the network enhanced the rate of learning to a

greater extent than a fabricated 'peptidergic' leakage signal

injection. However. the 'peptidergic' leakage signal injection did

show an enhanced rate of learning over the basic back-propagation

algorithm. The medium grain model. at a lower level of neural

representation, showed that the addition of a 'peptidergic' factor

extended the normal activation of the target by a factor of 2.5.

The assumptions made about these results are that the

'peptidergic' factor extends the activation range of the network

nodes in both models, whilst the 'noise' factor broadens the

activation range in the back-propagation model, as well as adding a

chance element to the convergence process.

The assignment of peptidergic activity level depends largely

on the independence of the 'peptidergic' signal. If the signal can be

classed as independent, then concurrent propagation can be said to

occur. If the signal always occurs at. or around, the normal

excitation time of the cell, then the peptidergic component is a

(mere extension of the ordinary activation of the cell. The

activation extensions produced. in the back-propagation model with

the 'peptidergic' component. cannot be classified according to their

dependence. because the activations produced in this model are

205

---_-" __ • __ c~~. _______________ _

7. Discussion

largely interdependent. The activation extension produced by the

medium-grain model depends, primarily, on the setting of the

'peptidergic' activity strengths and time-constants, which was not

based on biological data, as none was available. This model -does

seem to show depolarisations produced by the peptidergic factor

acting as independent of the primary 'classical' depolarisations,

but only to the extent that they are time-shifted by variations in

'diffusion' delays. For these reasons, it is impossible to extend the

results of this study into an assumption about the dependence level

of peptidergic activity.

It is possible to state that it is unlikely that the

'peptidergic' factor in this study, was acting as a "noise"

phenomenon. This result may be due to incorrect assumptions about

the levels at which peptides operate in the nervous system, but

invalidation of these results lies in a closer, and hopefully multi

disciplinary, examination of the parameters of peptidergic function

in a neural system. It is therefore, possible to conclude that

'peptidergic' factors in artificial neural networks appear to

enhance the operation of the network through a process of signal

modulation, which appears to extend the activation range of

network nodes. Extending these results to a biological nervous

system is inappropriate, at the moment, due to the lack of verite in

the parameters of the model systems; but it is hoped that this

study provides a reasonable basis for the further examination of

peptidergic functions in real neural systems.

206

Index

100-step program 20

Action potential production 94

Activation range 52

activation rules 24

ADAptive Linear NEuron 30

Adaptive resonance theory 36

AND, OR and NOT functions 12

ART (Adaptive Resonance Theory) networks 36

Associative LTD 80

associative L TP 80

Back Propagation 42

Back-Propagation 137

Bi-Directional Associative memory 38

Boltzmann machine 37

Bottom-Up 2

Cable theory 87

Cartoon representations of dendritic geometry 103

Central Pattern Generator 104

cerebral cortex

organisation of cells 63

overview 61

Cholecystokinin (CCK) 112

Cognitron 32

I.i

Index

common characteristics of neural networks 23

compartmental models 88, 178

Computational Neuroscience 2, 59, 85

concurrent propagation 202

connectionism 9

Connexons 70

Counterpropagation networks 39

cross-correlation 195

Cyclic AMP 82

Delta Rule 31

Dendritic profiles 102

Dendritic Spines 98

Depolarization 75

electrical properties of neurons 74

equivalent electrical circuit 88

Excitatory post-synaptic potential (EPSP) 77

Experimental rationale 133

gap junction 69

generalized Delta Rule 43

GENESIS neural simulator 177

G-protein 82

Heterosynaptic Depression 80

hidden units 46

history of Classical neural networks 10

Hopfield 19

Hopfield networks 35

human nervous system 61

Hyperpolarization 75, 76

Impulse Conduction 95

. I. i i

(

information propagation

anti-informant 122

constraint 122

informant 122

Index

Inhibitory Post-synaptic potentials (IPSP) 77

ion channels 73

Late Slow EPSP 116

leak activation 137

learning rate 49

logical calculus 11

Logical neural network models 40

Long-Term Potentiation 80

Luteinizing-hormone-releasing-hormone (LHRH) 116

McCulloch-Pitts neural net 12

Modulum 128

Momentum 51

Momentum factor 141

Neocognitron 32

Neocortex 61

Neuropeptide Y 113

Neuropeptides 109

levels of operation 131

Neurophysiological Postulate 14

neurotransmitter. 76

noise 52, 126

addition of 143

noise-enhanced back propagation 141

olfactory cortex

model 105

I. iii

Index

Opioid peptides 118

Parallel Distributed Processing 21

Parity Problem 55

peptidergic activation factor 145

peptidergic propagation 175

Perceptron 16, 29

Perceptron Convergence Theorem 17

Principles of Neurodynamics 15

pyramidal neuron

model 102

Quasi-active membranes 99

Repetitive spiking activity 94

self-organising map 33

self-organising map 196

short-term memory 81

Somatostatin (SS) 113

spin glass materials 19

Substance P 110

sub-symbolic 2

synapse

chemical 70, 95

electrical 69, 96

Synapses 69

Synaptic interaction 97

synaptic plasticity 79

T- C Problem 56

thermal equilibrium 37

three-dimensional mapping 149

, Top-Down 2

·I.iv

Index

Transmitter regulation of voltage-dependent channels 99

trigger zone 76

Unit bias 153

Vaso-active Intestinal Peptide (VIP) 112

weighting scheme 25

XOR problem 53

I.v

(

List of Figures and Tables

Chapter 2

Figures

Figure 2.1 McCulloch and Pitts implementation of the basic logical

functions using binary neural elements.

Figure 2.2 A One-layer Perceptron model.

Figure 2.3 Structure of an imaginary network.

Figure 2.4 A typical arrangement of the units in a back propagation

network.

Figure 2.5 A map of the solution space produced by a two weight system,

produces by mapping weights against LMS error.

Figure 2.6 Rumelhart, Hinton and Williams (1986) solutions for the

XOR problem, using one and two hidden units.

Figure 2.7 Rumelhart, Hinton and Williams (1986) solutions for the

parity problem, using n input and hidden units.

Figure 2.8 Rumelhart, Hinton and Williams (1986) solution to the T -

C problem.

F.i

Figures and Tables

Chapter 3

Figures

Figure 3.1. General view of hemisphere showing major structures.

(adapted from Kupfermann, 1985)

Figure 3.2. Cortical Cell types 1-4.

Figure 3.3. Hippocampus, Laminae and sections (adapted from Afifi &

Bergman, 1986).

Figure 3.4 Layers of the Neocortex (adapted from Afifi & Bergman,

1986)

Figure 3.5. Gap junctions and Chemical synapses.

Figure 3.6. Generalised Ion Channels: Non-Gated and Gated.

Figure 3.7. Molecular process of pre-synaptic sensitization (adapted

from Kandel ,1985)

Figure 3.8. Compartmental model of a neuron.

Figure 3.9. Equivalent circuit of a cell process. (adapted from W. Rail,

1989)

Figure 3.10 Equivalent circuit for a patch of active membrane. (Adapted

from Segev, Fleshman & Burke, 1989)

Figure 3.11 Comparison of the profile and Cartoon representations of

dendritic geometry. (Adapted from Stratford et ai, 1989)

Figure 3.12 Lobster pyloric sub-network. (Adapted from Selverston and

Mazzoni, 1989).

Figure 3.13 Olfactory cortex, A. representation of a local circuit and B.

model circuit (Adapted from Clark, Chen and Kurten 1989) .

. F.ii

Figures and Tables

Tables

Table 3.1 A subset of known neural transmitter substances.

Table 3.2 Some Neuronal Operations and the Underlying Biophysical

Mechanisms (From Koch and Poggio, 1987)

Chapter 4

Figures

Figure 4.1 Electronic circuit equivalences of neuropeptide transmission

systems.

Tables

Table 4.1 Peptide-like immunoreactivities identified in mammalian

cerebral cortex. (table adapted from Morrison and Magistretti, 1985)

Table 4.2. From Lundberg and H6kfelt (1985) showing co-existence of

classic neurotransmitters with neuropeptides.

Chapter 5

Figures

Figure 5.1 Network input and output patterns.

Figure 5.2. Network design for a three-dimensional model.

F.iii

Figures and Tables

Figure 5.3. Random noise plotted against the number of iterations to

convergence.

Figure 5.4. Auto-activation of a back-propagation network under the

'leakage' activation model.

Figure 5.5. Two graphs showing the contradictory nature of intra-layer

activation switching.

Figure 5.6. 'Leakage' scaling factor against iteration of convergence.

Figure 5.7. Back Propagation model using three different initial random

seed settings.

Figure 5.8. Back Propagation model with random noise added, using

three different initial random seed settings.

Figure 5.9. Back Propagation model with 'Leak' activation added, using

three different initial random seed settings.

Figure 5.10. Back Propagation model with Momentum added, using three

different initial random seed settings.

Figure 5.11. Back Propagation model with Random noise and Momentum

added, using a single initial random seed setting (43).

Figure 5.12. Back Propagation model with Random noise and Momentum

added, using a single initial random seed setting (89).

Figure 5.13. Back Propagation model with Random noise and Momentum

added, using a single initial random seed setting (67).

Figure 5.14. Back Propagation model with 'Leak' activation and

Momentum added, using a single initial random seed setting (43).

Figure 5.15. Back Propagation model with 'Leak' activation and

Momentum added, using a single initial random seed setting (89).

Figure 5.16. Back Propagation model with 'Leak' activation and

Momentum added, using a single initial random seed setting (67).

Figure 5.17. Back Propagation model comparing random noise and 'Leak'

activation, using a single initial random seed setting (43) .

. F.iv

Figures ~nd Tables

Figure 5.18. Back Propagation model comparing random noise and 'Leak'

activation, using a single initial random seed setting (89).

Figure 5.19. Back Propagation model comparing random noise and 'Leak'

activation, using a single initial random seed setting (67).

Figure 5.20. Back Propagation model comparing random noise and 'Leak'

activation with added momentum, using a single initial random seed

setting (43).

Figure 5.21. Back Propagation model comparing random noise and 'Leak'

activation with added momentum, using a single initial random seed

setting (89).

Figure 5.22. Back Propagation model comparing random noise and 'Leak'

activation with added momentum, using a single initial random seed

setting (67).

Chapter 6

Figures

Figure 6.1 Two neuron feedback system supplied with the GENESIS

simulation package.

Figure 6.2. Electrical characteristics of the dendritic compartment in

the two neuron model.

Figure 6.3. Electrical characteristics of the somatic compartment in the

two neuron model.

Figure 6.4. Normal behaviour of cell 1 in the model, as supplied with

the GENESIS software.

Figure 6.5. Normal behaviour of cell 2 in the model, as supplied with

the GENESIS software.

F.v

Figures and Tables

Figure 6.6. Modified MultiCell simulation.

Figure 6.7. Using the values in table 6.2 for the modified axonal

connections produces an additional spike train in the peptidergic

transmission model of cell 2.

Figure 6.8. Reducing the axonal delay to 20 msecs for the modified

axonal connections produces an additional excitation, but no spike train

in the peptidergic transmission model of cell 2.

Figure 6.9. A delay of 150 msecs imposes inhibition on cell 1, when a

spiking event is imminent.

Figure 6.10. A delay of 150 msecs causes inhibition on cell 1 as a result

of the excitation in cell 2.

Tables

Table 6.1 Parameters relevant to this study, as used in the unmodified

MultiCe" simulation.

Table 6.2 Modified MultiCe" simulation using modified axonal

connections to represent peptidergic transmission.

Chapter 7

Tables

Table 7.1 A comparison of the correlation within conditions across

random seeding categories.

'F.vi

References

Aleksander I & Morton H. An Introduction to Neural Computing: North Oxford

Academic Press; 1991.

Aleksander I. (ed). Neural Computing architectures: The design of brain like machines:

North Oxford Academic; 1989b.

Bernstein 1. Profiles: AI, Marvin Minsky. The New Yorker; 1981; December 14.: 50-

126.

Bliss T.V.P., Lomo T. Long lasting Potentiation of synaptic transmission in the dentate

area of the anaesthetized rabbit following stimulation of the perforant path. Journal

of Physiology (London); 1973; 232: p331-356.

Cajal S. The structure and connections of neurons. In Nobel Lectures: Physiology or

Medicine 1901-1921.: Elsevier; 1967.

Carpenter G.A., & Grossberg S. ART3 hierarchical search: Chemical transmitters in

self-organizing pattern recognition architectures. International Joint Conference on

Neural Networks (Washington DC): Erlbaum; 1990; II: 30-33.

Changeux J-P. Neuronal Man: Pantheon Books; 1985.

Clark 1.W., Chen J-W., Kurten K.E. Analog simulation of circuits in the olfactory

bulb .. Cotterill R.MJ. Models of Brain Function: Cambridge University Press;

1989: 327-347.

Colvin G. Synapsis: A Neural Network. The C users Journal; April 1989.

Crick F. Do dendritic spines twitch? Trends in Neurosciences; 1982; 5: 44-46.

Dahl E. Accelerated learning using the generalised delta rule. Proc IEEE First

International conference on Neural Networks.; 1987.

R.i

References

Docking P. Back propagation in neural networks: A comparative test of some recent

extensions: MSc Dissertation Kingston Polytechnic, Surrey; 1989.

Emson. Neurotransmitter systems. Bousfield D. Neurotransmitters in Action.: Elsevier;

1985: 6-9 ..

Emson PC, De Quidt M E. NPY - a new member of the pancreatic polypeptide family.

Bousfield D. Neurotransmitters ~ action: Elsevier; 1985: 338-346.

Feldman J.A. & Ballard D.H. Connectionist models and their properties. Cognitive

science; 1982; Vol 6: 205-254.

Feldman lA. Connectionist models and their applications: Introduction. Cognitive

science; 1985; Vol 9: 1-2.

Fifkova E., Markham J.A., Delay R. Calcium in the spine apparatus of dendritic spines

in the dentate molecular layer. Brain Research; 1983; 266: 163-168.

Fukushima K., Miyake S. & Ito T. Neocognitron: A Neural Network Model for a

Mechanism of Visual Pattern Recognition. IEEE Transactions on Systems, Man and

Cubernetics.; 1983; Vol SMC-13(No. 5).

Furshpan E.J., Potter D.D. Transmissionat the giant motor synapses of crayfish.

Journal of Physiology (London); 1959; 145: 289-325.

Garthwaite J. Glutamate, Nitric Oxide and cell-cell signalling in the nervous system.

Trends in Neurosciences; 1991; 14(2): 60-67.

Gershon M. D., Schwartz J. H. & Kandel E. R. Morphology of Chemical Synapses

and Patterns of Interconnection. Kandel E. R. & Schwartz J. H. (eds). Principles of

Neural Science (2nd Ed): Elsevier; 1985: Pp 132-147.

Grossberg S. Adaptive pattern classificationand universal recoding: Part 1, parallel

development and coding of neural feature detectors. Biological Cybernetics; 1976;

23: 121-134.

Hebb D.O. Organization of Behavior: Wiley; 1949.

Hecht-Nielsen R. Counterpropagation Networks. Proc IEEE First International

conference on Neural Networks; 1987; Vol 2.

R.ii

References '

Hinton G.E. & Sejnowski T.J. Learning and Relearning in Boltzmann Machines ..

Rumelhart D.E. & McClelland J.L. Parallel Distributed processing Volume 1.;

1986.

Hodgkin A L, Huxley A F. A quantitative description of membrane current and its

application to conduction and excitation in nerve. Journal of Physiology, London;

1952; 117: 500-544.

Hollt V. Multiple endogenous opioid peptides. Bousfield D. Neurotransmitters in

action: Elsevier; 1985: 188-193. .

Hopfield J.J. & Tank D.W. Computing with neural circuits: A model. Science; 1986;

233(4764): 625-633.

Hopfield J.J. Neural Networks and physical systems with emergent collective

computational abilities. Poceedings of the National Academy of Sciences, USA;

1982; 79: p 2553-2558.

Horn J.P., Dodd J. Inhibitory cholinergic synapses in autonomic ganglia. Bousfield D.

Neurotransmitters in Action.: Elsevier; 1985.

Hubel D H, Wiesel TN. Binocular interaction in striate cortex of kittens reared with

artificial squint. Journal of Neurophysiology; 1965; 28: 1041-1059.

Hubel D.H., Wiesel T.N. Receptive fields of single neurons in the cat's striate cortex.

Journal of Physiology. (London); 1959; 148: 574-591.

Hughes J. Opioid peptides - families of receptors and neurotransmitters. Bousfield D.

Neurotransmitters in action: Elsevier; 1985: 13-16.

Jan Y N, Jan L Y. A LHRH-like peptidergic neurotransmitter capable of "action at a

distance" in autonomic ganglia. Bousfield D. Neurotransmitters in Action.: Elsevier;

1985: 94-103.

(Joels M, de Kloet E R. Control of neuronal excitability by corticosteriod honnones.

Trends in Neurosciences; 1992; 15(1): 25-29.

Kandel E R. Factors controlling transmitter release .. Kandel E R, Schwartz J H.

Principles of neural science (2nd ed.): Elsevier; 1985: 120-131.

R.iii

References

Katz B., Miledi R. A study of synaptic transmission in the absense of nerve impulses.

Journal of Physiology (London); 1967; 192: 407-436.

Katz B., Miledi R. The role of Calcium in Neuromuscular facilitation. Journal of

Physiology (London); 1968; 195: p481-492.

Kelly D O. Central representations of pain and analgesia. Kandel E R, Schwartz J H.

Principles of neural science (2nd. ed.): Elsevier; 1985: 331-341.

Koch C, Poggio T. Biophysics of Computation: Neurons, Synapses, and Membranes.

Feldman G M, Ball W E, Cowan W M (eds). Synaptic Function. New York: Wiley;

1987: 637-697.

Koch C. Cable theory in neurons with active, linearized membranes. Biological

Cybernetics; 1984; 50: 15-33.

Koch C., Poggio T. A simple algorithm for solving the cable equation in dendritic trees

of arbitrary geometry. Journal of Neuroscience Methods; 1985; 12: 303-315.

Koch C., Poggio T., Torre V. Nonlinear interaction in a dendritic tree: Localization,

timing and role in information processing. Proceedings of the National Academy of

Sciences (USA); 1983; 80: 2799-2802.

Kohonen T. Speech recognition based on topology-preserving neural maps. Aleksander

I. Neural Computing Architectures: The design of brain-like machines: North

Oxford Academic; 1989: 26-40.

Kosko B. Competitive Adaptive Bidirectional Associative Memories. Proc IEEE First

International conference on Neural Networks.; 1987; Vol 2: 759-766.

Kung I, Hwang U. An algebraic projection analysis for optimal hidden units size and

learning rates in back propagation learning. Proc IEEE International conference on

Neural Networks.; 1988.

Landahl H 0, McCulloch W S, Pitts W. A statistical consequence of the logical calculus

of nervous nets. Bull of Mathematical Biophysics; 1943; 5: 135-137.

Lashley K.S. In search of the engram. Soc. of Experimental Biology Symposium No.

4: Psy. Mechanism in animal behav.: Cambridge University Press; 1950: 478-505.

R.iv

(

References

Levy W.B., Seward O. Synapses as associative memory elements in the Hippocampal

formation. Brain Research; 1979; 175: p233-245.

Llinas R. Biological Neural Networks Seminar. Kings College, London; 1991: (April

11).

Lorente de No. Anatomy of the eighth nerve. Laryngoscope; 1933; 43: 327-350.

Lundberg J.M., Hokfelt T. Coexistence of Pep tides and Classical neurotransmitters.

Bousfield D. Neurotransmitters in Action.: Elsevier; 1985.

Marcel A. Negative set effects in character classification: A response retrieval view of

Reaction Time. Q.J Experimental Psychology; 1977; Vol 29: 31-48.

Martin A.R., Ringham G.L. Synaptic tranfer at a vertebrate central nervous system

synapse. Journal of Physiology (London); 1975; 251: 409-426.

Matsumoto G. Neurocomputing - Neurons as Microcomputers. Future Generations of

Computer Systems; 1988; Vol 4: 39-51.

McBurney R.N. New approaches to the study of rapid events underlying

neurotransmitter release .. Bousfield D. Neurotransmitters in Action.: Elsevier

Biomedical Press; 1985.

McClelland J.L. & Rumelhart D.E. Explorations in Parallel Distributed Processing:

Bradford - MIT Press; 1988.

McCulloch W.S. & Pitts W. A logical calculus of the ideas immanent in nervous

activity. Bull. of Mathematical Biophysics; 1943; Vol 5: 115-133.

Miller R. How do opiates act? Bousfield D. Neurotransmitters in action: Elsevier;

1985: 216-219.

Minsky M.L. & Papert S.A. Perceptrons: Expanded Edition: MIT Press; 1969,1988.

Morrison J H, Magistretti P J. Monoamines and peptides in cerebral cortex: contrasting

principles of cortical organisation. Bousfield D. Neurotransmitters in Action.:

Elsevier; 1985: 319-328.

R.v

References

Mountcastle V. B. An organising principle for cerebral function: The unit module and

the distributed system. Edelman G. M. & Mountcastle V. B. The Mindful Brain:

MIT Press; 1978: Pp 7-50.

Nagy J I. Capsaicin's action on the nervous system .. Bousfield D. Neurotransmitters in

action: Elsevier; 1985.

Neisser U. Cognitive Psychology: Prentice Hall; 1967.

Nickerson R.S. Binary classification Reaction Time: A review of some studies of

human information processing capabilities. Psychonomic Monographs; 1972; Vol

4«17)): 275-318.

Ordway R W, Singer J J, Walsh J V. Direct regulation of ion channels by fatty acids.

Trends in Neurosciences; 1991; 14(3): 96-100.

Otsuka M, Konishi S. Substance P - the first peptide neurotransmitter? Bousfield D.

Neurotransmitters in Action.: Elsevier; 1985: 163-169.

Peters A. & Kara D.A. Dendritic bundles in the cortex. 1. of Comparitive Neurology;

1987; Vol 260(No. 4).

Pollack J. B. Connectionism: Past, Present and Future. Artificial Intelligence Review;

1989; Vol 3: 3-20.

RaIl W. Core conductor theory and cable properties of neurons. Kandel E.R. Handbook

of Physiology: American Physiological Society; 1977; Volume 1: Section 1.

Rall W. Theoretical significance of dendritic tree for input-output relation. Reiss R F.

Neural theory and modeling: Stanford university press; 1964: 73-97.

Rall w. Cable Theory. Koch C,. Segev I. Methods in Neuronal Modelling: MIT Press;

1989.

Rossier 1. The peptide explosion and the new genetics. Bousfield D. Neurotransmitters

in Action.: Elsevier; 1985.

Rumelhart D, McClelland 1. Interactive processing through spreading activation ..

Lesgold A, Perfetti C. Interactive processes in reading: Erlbaum; 1981.

R.vi

References '

Rumelhart D.E., Hinton G.E. & McClelland I.L. A General Framework for Parallel

Distributed Processing. Rumelhart D.E. & McClelland I.L. Parallel Distributed

processing Volume 1: MIT Press; 1986.

Rumelhart D.E., Hinton G.E. & Williams R.I. Learning Internal Representations by

Error Propagation. Rumelhart D.E. & McClelland I.L. Parallel Distributed

processing Volume 1: MIT Press; 1986.

Scheller RH., Rothman B.S., Mayeri E. A single gene encodes multiple peptide

transmitter candidates involved in a stereotyp~d behaviour. Bousfield D.

Neurotransmitters in Action .. : Elsevier; 1985.

Schwartz I H. Molecular steps in synaptic transmission .. Kandel E R, Schwartz I H.

Principles of neural science (2nd ed.): Elsevier; 1985: 169-175.

Schwindt P.C., Crill W.E. Factors influencing motoneuron rhythmic firing: Results

from a voltage clamp study. Iournal of Neurophysiology; 1982; 48: 875-890 ..

Segev I, Fleshman I, Burke R Compartmental Models of Complex Neurons. Koch C,

Segev 1. Methods in Neuronal Modeling: MIT Press; 1989.

Sejnowski T, Koch C, Churchland P. Computational Neuroscience. Science; 1988;

241: 1299-1306.

Sejnowski T. Chattarji S. & Stanton P. Induction of Synaptic Plasticity by Hebbian

Covariance in the Hippocampus. Durbin R, Miall C and Mitchison G. The

Computing Neuron.: Addison Wesley; 1989.

Selverston A., Mazzoni P. Flexibility of computational units in invertebrate CPOs ..

Durbin R., Miall C., Mitchison G. The Computing Neuron: Addison Wesley; 1989:

205-228.

Shepherd G.M. Synaptic and impulse loci in olfactory buld dendritic circuits .. Roberts

(A., Bush B.M.B. Neurones without impUlses.: Cambridge University Press; 1979:

255-267.

Siegelbaum S.A., Tsien RW. Modulation of gated ion channels as a mode of

transmitter action. Trends in Neurosciences; 1983; 6: 307-313.

Rvii

References

Sofroniew M V. Vasopressin and oxytocin in the mammalian brain and spinal cord.

Bousfield D. Neurotransmitters in action: Elsevier; 1985: 329-337.

Stratford K, Mason A, Larkman A, Major G, Jack J. The modelling of pyramidal

neorones in the visual cortex. Durbin R, Miall C, Mitchison G. The Computing

Neuron: Addison Wesley; 1989: 296-321.

Swindale N. V. Is the Cerebral Cortex modular? Trends in Neurosciences; 1990;

13(12): 487-492.

Von Lehman A., Paek E.G., Liao P.F., Marrakchi A., Patel J.S .. Factors Influencing

learning by Back Propagation. Proc IEEE First International conference on Neural

Networks.; 1987.

von Euler US. The history of substance P. Bousfield D. Neurotransmitters in action:

Elsevier; 1985: 143-150.

Watrous R Learning algorithms for connectionist networks: Applied gradient methods

of nonlinear optimization. Proc IEEE First International conference on Neural

Networks.; 1987.

Weber E, Evans C J, Barchas J D. Multiple endogenous ligands for opioid receptors ..

Bousfield D. Neurotransmitters in action: Elsevier; 1985: 194-200.

Widrow G, Hoff M E. Adaptive switching circuits. Institute of Radio Engineers.

Western Electronic Show and Convention, Convention Record; 1960; 4: 96-104.

Wilson M A, Bower J M. The simulation of large scale networks. Koch C, Segev I.

Methods in Neuronal Modeling: BradfordIMIT; 1989: 291-334.

Yamada W M, Koch C, Adams P R. Multiple channels and Calcium dynamics. Koch

C, Segev I. Methods in neuronal modeling: MIT Press; 1989: 97-135.

Zukin R S, Zukin S R. The case for multiple opiate receptors. Bousfield D.

Neurotransmitters in action: Elsevier; 1985: 201-208.

R.viii

Appendix A: Program Listings

/* **************** Program alpha.c
********************/

#define YES 1
#define NO 0
#define ONLINE NO

#define DEBUG NO
#define D_DEBUG NO
#define N_DEBUG NO
#define BIG_DEBUG NO
#define OUTPUT NO
#define RESULTS YES

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <CursorCtl.h>
#include <OSUtils.h>
#include -matrix.h
#include -NNf.h
#include -alpha.h-

1* global variable - display converged message only once * /
int onceOnly = 0;
int lastone = 0; 1* and write a check of the outputs */
float TotFact;

mainO

{
char line[81],fname[81];
float *op_char, *ip_char,real_op[8],error;
int i,j,n_otJayers,neurons_ip[3],neurons_op[3],
rate[3] ,crit, batch_size, finish;
int binary_op[8],q,c,re_use_rate;
long n,n_of_inputs,n_of_outputs;
float mean_err,batch_err,old_batch_err,
crit_error, m_crit_error, frateSave;
NETWORK *network;
NEURON *inputs, *outputs;
FILE *fp, *fr;

A.1

Appendix A: Program Listings

extern int update,useMomentum,useBias,useNoise;
extern float PepLeak,PepStrength,PepFactor,TotFact;
extern DelayLinePtr DPtr;

TotFact = 0;

1* Assign initial parameters */
1* Number of layers refers to 'layers of modifible

connections', and is therefore
'number of layers of nodes' - 1 */

I*if (ONLINE)
printf(·enter No. of iterations/batches:\n·);

gets(line) ;
n=atoi(line); */
n = 20000; 1* We're going for convergence here! */

if (ONLINE)
printf(·enter Log filename:\n·);

gets(fname) ;

1* assign batch size */
batCh_size = 3;

1* input connections */
n_of_inputs=15;
neurons_ip[0]=15;
neurons_ip[1]=15;

1* output connections */
neurons_op[0]=15;
neurons_op[1]=8;
n_of_outputs=8;

1* Learning rate */
if (ONLINE)

printf(·enter learning rate (0.0 to 1.0):\n·);
gets(line);
frate = atof(line);
frate 1= 100;
frateSave = frate;

'A.2

Appendix A: P,rogram Listings

fprintf(stdout, -Learning Rate = %-1.8g\n" frate);
fflush(stdout);

/* Learning momentum */
if (ONLINE)

printf(-Use momentum? (0 or 1):\n-);
useMomentum = atoi(gets(line));

/* Unit bias */
if (ONLINE)

printf(-Use bias? (0 or 1):\n-);
use Bias = atoi(gets(line));

if (ONLINE) 1* NOISE factor gathered here; I'm lazy */
printf(-Enter Noise Factor:\n l

);

PepFactor = atof(gets(line)):
PepFactor /= 100;

1* if (ONLINE)
printf(-Enter Peptide Strength:\n-);
PepStrength = 0.0; I*PepStrength = atof(gets(line)); */

I*if (ONLINE)
printf(IEnter Peptide Leak Factor:\n-):
PepLeak = atof(gets(line)):
PepLeak /= 100;*/

/* Pre-Factor for calculation */
1* PepFactor = PepStrength * PepLeak; */

/*if (ONLINE)
{ * /
fprintf(stdout, -Noise Factor = %-1.8g\n-, PepFactor);
fflush(st90ut);
/ *} * /

1* Use Noise addition */
/* printf(-Use Noise? (0 or 1):\nl); */

useNoise = 1; 1* always in this case */
/* atoi(gets(line)); */

/* set ctitical error for convergence indicator */
crit_error = 0.01;

A.3

Appendix A: Program Listings

1* Init finish counter - net will exit after convergence + 200
iterations * /

finish = 0;

1* create the network, randomise synapses */

network =
new_network(&n_of_layers,neurons_ip,neurons_op);

if (!network)
printf(·out of memory\n·), exit(O);

1* Create the Delay List for p-activation */
if (use Noise)

DPtr = DCreate(DELAYNO); 1* create
DelayLineNO DelayLine lists *'

1* Set pointers to first and last layers of the network *'
inputs=netwo rk->fi rst_laye r->inputs;
outputs=network->last_layer->outputs;

1* Randomise the synapse weights: specify the random
number generator seed */

randomise(network, 300.0, 89L);

1* Init network */

for (j=O; j<n_of_inputs; j++)
inputs[j].activation = 0.0;

feedforward(network); 1* a null feedforward cycle *'
/* Open log file if output is specified */
if (OUTPUT)
(

}

if«fp = fopen(fname,·w·)) == NULL)
{

}

fprintf(stderr,·Cant open the logfile\n·);
exit(1);

if (RESULTS)
{

. A.4

}

Appendix A: Program Listings

if((fr = fopeneResults·,·a·» == NULL)
{

}

fprintf(stderr,·Cant open the Results file\n·);
exit(1);

InitCursorCtI;

1* For each iteration */
for (i=O; i<n; i++)
{

1* for each input pattern */
for(batch_err = 0, c=O ,crit=O; c < batch_size; c++)
{

1* Don't update weight values inside this loop */
update = 0;

1* Assign input and output vectors */
ip_char = ip_array[c];
op_char = op_array[c];

if(BIG_DEBUG)
printf(Mc = O/Od\n·,c);

if(BIG_DEBUG)
{

printf(·ip_char = \n·);
for (j=O; j < n_of_inputs; j++)

printf(·O/Of%c·,ip_char[j],(U+ 1)%batch_size == 0 II j -
n_of_inputs-1) ? '\n' : • ');

printf(·op_char = \n·);
for (j=O; j < n_of_outputs; j++)

printf(·%f%c·,op_char[j],(j --
n_of_outputs-1) ? '\n' : ' ');

}
1* end DEBUG */

A.5

header file*'

iteration*'

Appendix A: Program Listings

1* initialise the input vector from the -alphabet-

for (j=O; j<n_of_inputs; j++)
inputs[j].activation = ip_char[j];

1* Feed forward through the network *'
feedforward(network) ;

1* Make calculations of peptidergic noise for each

1* Not the usual method *'
I*if (use Noise)

nOise_calc(network); *'

1* calc errors and assign output figures *'
for (mean_err = 0, j=O; j<n_of_outputs; j++,

mean_err += error)
{

1* calculate errors *'
error = outputs[j].errors = (op_char[j] -

outputs[j]. activati on);

}

1* count number of OK errors *'
if(fabs(error) < crit_error) crit++;

if(DEBUG "i>(n-50) "finish> 195)
{

}

1* Assign Real Values *'
real_op[j]=outputs[j] .activation;

if(lIastone && onceOnly)
{

}

1* Assign Real Values *'
real_op[j]=outputs[j] .activation;

·A.6

Appendix A: PJogram Listings

if (DEBUG II i>(n-5) II (llastone && onceOnly) II
finish > 195)

{
1* Report the error indicator, and outputs

(Binary and Real)*/

if (OUTPUT)
{

fprintf(fp, -%f, -, real_op[j]);

}
if(i == (n-1) II finish == 200)
{

fprintf(stdout, -Final Condition\n-);
for(j=O;j<n_of_outputs;j++)

fprintf(stdout, -%f, -, real_op[j]);
fprintf(std out, -\n -);

}

}
1* if the net has just converged , give the state of

the outputs * /
if(lIastone && onceOnly)
{

for(j=O;j<n_of_outputs;j++)
fprintf(stdout, -%f, -, real_op[j]);

}

fprintf(stdout, -\n-);
fflush(stdout);

1* update the weight error derivatives here but
don't change weights */

* /
1* weight change is done after each batch (later)

1* If end of batch don't do feedback here! */
if(c != batch_size-1)

feedback(network);

} 1* end -for each input pattern- */

1* set the converged state if converged */

A.7

Appendix A: Program Listings

lastone = onceOnly;

1* report if network has converged *1
if(crit == (n_of_outputs*batch_size) && !onceOnly)
{

if (OUTPUT)
fprintf(fp,u**** iteration %d, network

converged *****\n·,i);

fprintf(stdout, u**** iteration %d, network
converged *****\n·,i);

if (RESULTS)

fprintf(fr, ·%f\t%d\t%s\n· ,PepFactor ,i, fname);

onceOnly = 1;
}

if(OUTPUT)
{

if (DEBUG II i>(n-5) II finish> 195)
fprintf(fp, -iteration %d mean error

%f\n· ,i,batch_err/batch_size);

fprintf(fp, ·%f\n· ,batch_err/batch_size);
}

1* Do P-activation calculation here if batch method
selected *1

method *1

I*if (use Noise)
noise_calc(network); *1

1* Feed errors back through the network - batch

update = 1;
feedback(network) ;

if (onceOnly)
{

finish++;
if (finish > 200)

break;
}
RotateCursor(i) ;

A.S

Appendix A: Program Listings

} 1* end -for each iteration- */

if (OUTPUT)
{

fclose(fp) ;

}

if (RESULTS)
{

fclose(fr);
}

fprintf(stdout,U**** Finished ***** Tot Fact =
%f\n- ,TotFact);

}

if (ONLINE)
{

}

SysBeep(200);
SysBeep(200);

1* end of test * /
return(O);

A.9

Appendix A: Program Listings

1* Matrix.h Header File - for use with NN.h and alpha.c
* This file defines the Inter- and Intra-layer distances between

nodes
*1

#define _MATRIX_

1* DELA YNO defines the number of lists in use
*1

#define DELA YNO 4

1* Extra-Layer (Inter-layer) distances: Vertical, Horizontal and
Offset *1
/* The Pythagorean distances are :

* 1

V 1 1.030776406
V2 1.118033989
V3 1.25
V4 1.414213562
H1 V2
H2 V4
011 1.145643924
012 1.224744871
013 1.346291202
014 1.5
021 1.436140662
022 014
023 1.600781059
024 1.732050808

/* Translated to l/exp(distance) (for speed of execution) this is:
* 1
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Vl 0.3567298857980956
V2 0.3269218952699931
V3 0.2865047968601901
V4 0.2431167345249198
Hl 0.3269218952699931
H2 0.2431167345249198
011 0.3180190717321045
012 0.2938326559931346
013 0.2602035155609003
014 0.2231301601484298
021 0.2378439097155739
022 0.2231301601484298
023 0.2017388864699812
024 0.1769212062414894

A.l0

<

Appendix A: Program Listings

1* Intra-layer distances: Vertical, Horizontal and Offset *1
1* The Pythagorean distances are :

* 1

V1 0.25
V2 0.5
V3 0.75
V4 1.0
H1 IV2
H2 IV4
11 0.559016994
12 0.707106781
13 0.901387818
14 1.118033989
21 1.030776406
22 114
23 1.25
24 1.414213562

1* Translated to 1/exp(distance) (for speed of execution) this is:
* 1
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

V1 0.7788007830714049
V2 0.6065306597126334
V3 0.4723665527410147
V4 0.3678794411714423
H1 0.6065306597126334
H2 0.3678794411714423
11 0.5717708418561713
12 0.4930686914872205
1 3 0.4060058064019639
14 0.3269218952699931
21 0.3567298857980956
22 0.3269218952699931
23 0.2865047968601901
24 0.2431167345249198

1* Extra-Layer (Inter-layer) (2nd Order) distances: Vertical,
Horizontal and Offset */
1* The Pythagorean distances are :

EV1 2.015564437
EV2 2.061552813
EV3 2.136000936
EV4 2.236067977
EH1 EV2
EH2 EV4
E11 2.076655966

A.11

* 1

Appendix A: Program Listings

E12 2.121320344
E13 2.193741097
E14 2.291287847
E21 2.25
E22 E14
E23 2.358495283
E24 2.449489743

1* Translated to 1/exp(distance) (for speed of execution) this is:
* 1
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EV1 0.1332451736306551
EV2 0.1272562112942661
EV3 0.1181262943225883
EV4 0.1068779257138023
EH1 0.1272562112942661
EH2 0.1068779257138023
E11 0.1253486823750868
E12 0.1198732500509750
E13 0.1114988394116792
E14 0.1011361300864856
E21 0.1053992245618643
E22 0.1011361300864856
E23 0.0945624058567956
E24 0.0863376296416422

1* Node Number for continued peptidergic activation calculation
* 1
int nodeno = 0;

1* Distance Matrices (1/exp(distance)) : extra-layer (Inter-layer)
* 1
1* Dummy elements allow us to forget that C arrays start at zero
* 1

float eMatrix[16][16] =
{

{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
}
{

0,1 ,V1 ,V2,V3,V4,H1 ,011 ,012,013,014,H2,021 ,022,023,024
}
{

, 0,V1, 1 ,V1 ,V2,V3,011,H 1,011,012,013,021 ,H2,021,022,023

A.12

}
{

Appendix A: Program Listings

0,V2,V1,1 ,V1 ,V2,012,011 ,H1 ,011 ,012,022,021 ,H2,021 ,022
}
{

0,V3,V2,V1,1 ,V1 ,013,012,011 ,H1 ,011 ,023,022,021 ,H2,021
}
{

0,V4,V3,V2,V1,1 ,014,013,012,011,H 1,024,023,022,021 ,H2
}
{

0,H1 ,011 ,012,013,014,1 ,V1 ,V2,V3,V4,H 1 ,011 ,012,013,014
}
{

0,011 ,H1 ,011 ,012,013,V1, 1 ,V1 ,V2,V3,011 ,H1 ,011 ,012,013
}

£.
0,012,011 ,H1 ,011 ,012,V2,V1, 1 ,V1 ,V2,012,011 ,H1 ,011 ,012

}
{

0,013,012,011 ,H1 ,011 ,V3,V2,V1, 1 ,V1 ,013,012,011 ,H1 ,011
}
{

0,014,013,012,011 ,H1 ,V4,V3,V2,V1, 1,014,013,012,011 ,H1
}
{

0,H2,021 ,022,023,024,H1 ,011 ,012,013,014,1 ,V1 ,V2,V3,V4
}
{

0,021 ,H2,021 ,022,023,011 ,H1 ,011 ,021 ,022,V1, 1 ,V1 ,V2,V3
}
{

0,022,021 ,H2,021 ,022,012,011 ,H1 ,011 ,012,V2,V1, 1 ,V1 ,V2
}
{

0,023,022,021 ,H2,021 ,013,012,011 ,H1 ,011~V3,V2,V1, 1 ,V1
}
{ .

0,024,023,022,021 ,H2,014,013,012,011 ,H1 ,V4,V3,V2,V1, 1
}

}

1* Distance Matrices (1/exp(distance)): Intra-layer *1
1* Dummy elements allow us to forget that C arrays start at zero
* 1

A.13

Appendix A: Program Listings

float iMatrix[16][16] =
. {

{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
}
{

O,O,IV1,IV2,IV3,IV4,IH1,111,112,113,114,IH2,121 ,122,123,124
}
{

0,IV1,O,IV1 ,IV2,IV3,111,IH1 ,111 ,112,113,121,IH2,121 ,122,123
}
{

O,IV2,IV1,O,IV1,IV2,112,111 ,IH1 ,111 ,112,122,121 ,IH2,121 ,122
}
{

0,IV3,IV2,IV1 ,0,IV1,113,112,111 ,IH1 ,111 ,123,122,121 ,IH2,121
}
{

0,IV4,IV3,IV2,IV1 ,0,114,113,112,111 ,IH1 ,124,123,122,121 ,IH2
}
{

0,IH1,111,112,113,114,O,IV1,IV2,IV3,IV4,IH1 ,111 ,112,113,114
}
{

0,111, IH 1,111,112,113, IV1 ,0, IV1 ,IV2, IV3, 111, I H 1,111,112,113
}
{

0,112,111 ,IH1 ,111 ,112,IV2,IV1 ,0,IV1 ,IV2,112,111 ,IH1 ,111 ,112
}
{

0,113,112,111, IH 1,111, IV3, IV2, IV1 ,0, IV1 ,113,112,111,1 H 1,111
}
{

0,114,113,112,111, IH 1 ,IV4, IV3,IV2, IV1 ,0,114,113,112,111, IH 1
}
{

O,IH2,I21,I22,I23,I24,IH1,I11 ,112,113,114,0, IV1 ,IV2,IV3,IV4
}
{

0,121,IH2,121 ,122,123,111 ,IH1 ,111 ,121 ,122,IV1 ,0,IV1 ,IV2,IV3
}
{

0,122,121 ,IH2,121,122,112,111 ,IH1 ,111 ,I12,IV2,IV1 ,O,IV1 ,IV2
}
{

0,123,122,121 ,IH2,121 ,113,112,111 ,IH1 ,111 ,IV3,IV2,IV1 ,O,IV1

A.14

Appendix A: Program Listings

}
{

O,I24,I23,I22,I21,IH2,I14,I13,I12,I11,IH1,IV4,IV3,IV2,IV1,O
}

}

1* Distance Matrices (1/exp(distance»: 2nd order Inter-layer *1
1* Dummy elements allow us to forget that C arrays start at zero
* I

float exMatrix[16][16] =
{

{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
}
{

O,O,EV1,EV2,EV3,EV4,EH1,E11,E12,E13,E14,EH2,E21,E22,E23,E24
}
{

O,EV1,O,EV1,EV2,EV3,E11,EH1,E11,E12,E13,E21,EH2,E21,E22,E23
}
{

O,EV2,EV1,O,EV1,EV2,E12,E11,EH1,E11,E12,E22,E21,EH2,E21,E22
}
{

O,EV3,EV2,EV1,O,EV1,E13,E12,E11,EH1,E11,E23,E22,E21,EH2,E21
}
{

O,EV4,EV3,EV2,EV1,O,E14,E13,E12,E11,EH1,E24,E23,E22,E21,EH2
}
{

O,EH1,E11,E12,E13,E14,O,EV1,EV2,EV3,EV4,EH1,E11,E12,E13,E14
}
{

O,E11 ,EH1 ,E11 ,E12,E13,EV1 ,O,EV1,EV2,EV3,E11 ,EH1 ,E11 ,E12,E13
}
{

O,E12,E11 ,EH1,E11,E12,EV2,EV1,O,EV1,EV2,E12,E11,EH1,E11,E12
}
{

0,E13,E12,E11 ,EH1 ,E11 ,EV3,EV2,EV1,O,EV1,E13,E12,E11,EH1 ,E11
}
{

0,E14,E13,E12,E11,EH1,EV4,EV3,EV2,EV1,O,E14,E13,E12,E11,EH1
}
{

O,EH2,E21,E22,E23,E24,EH1,E11,E12,E13,E14,O,EV1,EV2,EV3,EV4

A.15

Appendix A: Program Listings

}
{

, 0,E21 ,EH2,E21 ,E22,E23,E11 ,EH1 ,E11 ,E21 ,E22,EV1 ,0,EV1 ,EV2,EV3
}
{

0,E22,E21 ,EH2,E21 ,E22,E12,E11 ,EH1 ,E11 ,E12,EV2,EV1 ,0,EV1 ,EV2
}
{

0,E23,E22,E21 ,EH2,E21 ,E13,E12,E11 ,EH1 ,E11 ,EV3,EV2,EV1 ,0,EV1
}
{

0,E24,E23,E22,E21 ,EH2,E14,E13,E12,E11 ,EH1 ,EV4,EV3,EV2,EV1 ,0
}

}

1* The output layer requires a lookup table for distance calculation
* /

int OLindex[9] =
{ 0,2,3,4,7,9,12,13,14
}

1* The 4th Dimension - Time; a round linked list that can grow to
represent
* varying delays - one storage unit needed for each node
*/

struct delayline
{

struct delayline *nextPtr;
list */

float dlist[39];
one longer, as usual for above reasons */

struct delayline *prevPtr;
}

typedef struct delayline DelayLine;
typedef DelayLine *DelayLinePtr;

DelayLinePtr DPtr;
necessary Ptr * /

A.16

/* Ptr to next

/* list array •

1* Create the

(

Appendix A: Program Listings

1* PEP_STRENGTH is the binding strength of peptides relative to
* classic transmitters and is used as a factor in the calulation of

* activation */

1* PEP_LEAK is the amount of peptidergic signal leaked from
* a synapse on a target cell • this goes to make up the diffusible
* peptidergic signal */

float PepLeak,PepStrength,PepFactor;

A.17

Appendix A: Program Listings

1* Alpha.h - defines global inputs and outputs for each character
, * /

I*lnputs are 3xS matries ofaJpha chars */

float ip_array[3][1S] =
{
1* -A- */

{ 0.0,1.0,0.0,
1.0,0.0,1.0,
1.0,1.0,1.0,
1.0,0.0,1.0,
1.0,0.0,1.0

}
1* -8- */

{ 1.0,1.0,0.0,
1.0,0.0,1.0,
1.0,1.0,0.0,
1.0,0.0,1.0,
1.0,1.0,0.0

}
1* -C- */

{ 0.0,1.0,0.0,
1.0,0.0,1.0,
1.0,0.0,0.0,
1.0,0.0,1.0,
0.0,1.0,0.0

}
}

float op_array[3][8]=
{

{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
} ,/* ASCII -A- */
{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0
} ,/* ASCII -8- */
{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0
} 1* ASCII -C· */

}

A.18

(

Appendix A: Program Listings

/********** Neural Nets include file : -NN.h- ************/
1* now needs matrix header file to be loaded previously */

#ifndef _MATRIX_
#include -matrix.h
#endif _MATRIX_

#define MAX_SYNAPSE 20.0
#define MAX_BIAS 20.0

1* Random number generator: period 4286449341. */
1* Result is unsigned short with uniform distribution: range 0-
65535 */
1* Seeds the same * /

#define U2RAND(seed1,seed2) \
(((seed1)*=65421,++(seed1))+((seed2)*=65521 ,++(seed2)))

1* Random Noise maker for the noisy back prop model - uses
U2RAND to produce */
/* 0-65535 number, shifts range to -32767 to +32768, and divides
by */
/* 54613.3- to produce range of -0.6 to + 0.6 */
/* 65536 to produce range of -0.5 to + 0.5 */
1* 81920 to produce range of -0.4 to + 0.4 */
1* 109226.6667 to produce range of -0.3 to 0.3 */
1* 163840 to produce range of -0.2 to 0.2 */
1* 218453.3333 to produce range of -0.15 to 0.15 */
/* 436906.6667 to produce range of -0.075 to 0.075 --
etc,etc,etc*/

#define NOISE(seed1,seed2,Factor) \
((float)((short)(((long)U2 RAND(seed 1,seed2))-
32768)))/(32768/F actor)

I

typedef struct .
{ float activation;1* activation of neuron for feed
forward */

float errors;1* sum of errors from feedback */
float bias;1* activation bias */
float bed;1* bias error derivative for batching */
float olddbias;1* old delta bias for bias updating */
float sumsyn;1* Sum of noise affecting this node */
float rawact; 1* Raw activation of a node */

A.19

Appendix A: Program Listings

short number;/* index for debugging */
} NEURON;

typedef float SYNAPSE;

typedef struct layer
{ struct layer *prev_layer;/* ptr to prev layer */

int n_inputs;/* No. of input neurons */
NEURON *inputs;/* same address as o/p of prev layer */
SYNAPSE *synapses;/* synapses[n_inputs][n-outputs] */
SYNAPSE *history;/* prev vals for use in learning */
SYNAPSE *weds;/* weight error derivatives for batching */
int number;1* Layer number for debugging */
int n_outputs;1* No. of output neurons */
NEURON *outputs;/* same address as i/p of next layer */
struct layer *next_layer;/* ptr to next layer */

} LAYER;

typedef struct
{ LAYER *first_layer;

LAYER *last_layer;
} NETWORK;

/* Glabal variables - for convenience rather than elegance */

1* Random number seed placeholders */
static unsigned short ranSeed1,ranSeed2;

/* option flags - for features and each extension in this model */
int
useBias,useMomentum, use Noise ,useG RA, updateG RA, update, useCGA;

/* floating point learning rate */
float frate;

/* *******************/

. DelayLinePtr DCreate(int);

A.20

Appendix A: Program Listings

void DFree(void);
void noise_calc(NETWORK *);
void npcalc(int,NETWORK *);
void noise_add(NETWORK *);
void zerosyn(NETWORK *);

/*********** Addition of Peptidergic noise section
***************/

1* Function DCreate: Create the DelayLineLine list
* with a size of n structures
* returns a Ptr to the start of the list or 0 on error
*/

DelayLinePtr DCreate(n)
int n;
{

int i,j;
DelayLinePtr StartPtr, DelayLineList;

extern char *cal/ocO;

if (n < 4) 1* It's rather pointless coming here so bail out */
{

fprintf(stderr, ·DCreate: Sorry you've got to have at
least 4 lists\n·);

return(O);
}

DelayLineList = (DelayLinePtr) cal/oc(1 ,sizeof(DelayLine));
/* Create first structure */

if (IDelayLineList) 1* Problems with memory */
(

fprintf(stderr,·DCreate: Trouble allocating memory for
the DelayLine List\n·);

return(O);
}
StartPtr = DelayLineList;

for(i=1; i< n ; i++)
{

1* Keep its address */

1* Create the rest and link */

A.21

Appendix A: Program Listings

DelayLineList->nextPtr = (DelayLinePtr)
calloc(1,sizeof(DelayLine));

if (!DelayLineList->nextPtr) 1* Problems
with memory */

{
fprintf(stderr, -DCreate: Trouble allocating

memory for the DelayLine List\nU
);

return(O):
}
DelayLineList->nextPtr->prevPtr = DelayLineList; 1*

Point back * /

}

}

DelayLineList = DelayLineList->nextPtr;

1* Initialise each List to zero */
for O=O;j < 39 ; j++)

DelayLineList->dlist[j] = 0;

DelayLineList->nextPtr = StartPtr:
1* Round off the list */
StartPtr->prevPtr = DelayLineList;
1* and point back */

return(StartPtr) :
1* And return the Ptr */

1* DFreeO - Free's the allocation for the delay list */
1* This is a round, linked list so as long as nothing naughty has
been going
* on, the external DPtr should hold a valid address which we can

use to free
* all elements */

void DFreeO
{

, }

DelayLinePtr NPtr,SPtr;
extern DelayLinePtr DPtr;

SPtr = DPtr;

do
{

NPtr = DPtr->nextPtr :
free(DPtr);

} while(NPtr != SPtr);

A.22

Appendix A: Program Listings

1* Sum effects of secondary messengers for the network*/
/* Stored in DPtr for use in activ_calcO */

void noise_calc(network)
NETWORK *network;
{

register int i,n_inputs;
register NEURON *output, *end;
LAYER *Iayer;

extern DelayLinePtr DPtr;

if (!DPtr) 1* First Time here & no Delay list? */
DPtr = DCreate(DELA YNO); 1* create

DelayLineNO DelayLine lists */

I*loop forward through all layers */
for (i=1,layer=' network->first_layer; layer layer= layer-

>next_layer)
{

for(; --n_inputs >= 0; i++)
each node */

{
npcalc(i,network); 1* Calculate all the

permutations */
Ipcalc(i ,network);

}
}

1* For

1* Last layer only ---- calc for the outputs as well*/
layer = network->Iast_'ayer;
output = layer->outputs;
end = layer->n_outputs + output;
for (; output < end; output++,i++) 1* Do last layer */
{

}

npcalc(i ,network);
Ipcalc(i,network) ;

A.23

Appendix A: Program Listings

1* Decrement the DelayLine Pointer for addition into the
activation function */

if (D_DEBUG)
{

}

for(i=O;i < 39;i++)
printf(-%f, -,DPtr->dlist[i]);

printfC\n-);

DPtr = DPtr->prevPtr;

1* Zero the synapse sums through the net here */
zerosyn(network);

1* call the noise distibutor here */
1* Noise distrib now moved to function: activ_calcO */
1* nOise_add(network); */

}

void npcalc(ucnt,network) 1* */
int ucnt;
NETWORK *network;
{

int i,il ,n,cur_layer,layer_num ,Iayer_diff;
int n_inputs;
register int nips;
SYNAPSE *synapses;
register SYNAPSE *syn;
register float iactive,sum;
NEURON *inputs,*output, *end;
register NEURON *ips;
LAYER *Iayer;
float sumsynapse;

extern int OLlndex[];,
for output nodes */

extern float PepStrength;
extern DelayLinePtr DPtr;

1* conversion array

1* This routine is called by nOise_calcO - once for each node
in each

* layer of the network.

A.24

(

Appendix A: Program Listings

* Here we have to calculate the Inoise' reaching the node
from the rest of

* the network - comprised of all the somatic propagations
of all other nodes

* plus the synaptic leakage of all other nodes
*/

if (N_DEBUG) printf(·Strength = %-1.8f, Node
%d·,PepStrength,ucnt):

if (ucnt < 16)
First Layer */

{

1.

n=ucnt:
cur_layer=1 :

if (ucnt > 15 && ucnt < 31)
{

}

n=ucnt-15:
cur_layer=2:

1* Second Layer */

/ *

if (ucnt > 30 && ucnt < 39) 1* Output Layer - use index
* /

{

}

n=OLlndex[ucnt-30]:
cur_layer=3;

if (N_DEBUG) printf(", node index = %d, layer =
%d\n·,n,cur_layer):

1* n is the node index inside the layer and tells us which
matrix element to use.

* ie. it's the index number of the current node to be
computed in the layer */

1* Start off the P activation at zero for this node in the
delay list */

DPtr->prevPtr->prevPtr->prevPtr->dlist[ucnt] = 0;

1* Here we begin to collect P-activations from each node:
* First we get the Somatic P-activation, calculating it as

the
* output-activation * av. of its output weights *

Peptidergic factor

A.25

Appendix A: Program Listings

* This is derived from the node in question.
* Then we get the leakage activation which is calculated

,from the
* nodes' input activation * input weights * Peptidergic

factor.
* Note: LEAKAGE will merely be a proportion of the o/p _

activation
* as ordinarily calulated in back prop. Therefore, Leak is

defined

in the
* as o/p activation * Leak factor. This can be incorporated

* model simply
* Remember - leakage occurs at TARGET nodes
* LEAK is calculated in function IpcalcO
*/

1* REMEMBER - WE MUST DO ALL NODES */
1* loop forward through a" layers */
for (layer= network->first_layer, layer_num= 1; layer

layer= layer->next_layer,layer_num++)
{

synapses = layer->synapses;
n_inputs = layer->n_inputs;
inputs = layer->inputs;
layer_diff = abs(layer_num - cur_layer); 1* layer

differential * /
sum = 0; 1* Start sum off at a reasonable

number */

if(N_DEBUG) printf(-Layer Differential =
%d\n·.layer_diff);

1* USE INPUT NODES - for first layers */
for(i=1 ;--n_inputs >= O;i++,inputs++)
{

sumsynapse ;

/* Get the 'sign' & magnitude of the activation */
sumsynapse = inputs->sumsynllayer->n_outputs ;

1* Get the somatic activation for a node */
iactive = 'inputs->activation * PepStrength *

if (N_DEBUG) printf(-input %d - activ %f,
sumsynapse %f\n-,n_inputs,inputs->activation,sumsynapse);

A.26

Appendix A: Program Listings

1* we get matrix references to layer 3
transformed here */

if (layer_num == 3)
iI = OLlndex[i];

else
iI = i;

1* Mult by the distance between the node
and this one */

1* and store, delayed by the
distance/diffusion analogy * /

switch(layer_diff)
{
case (0): /* do intra-layer activations */

DPtr->prevPtr->dlist[ucnt] += iactive *
iMatrix[n][iI];

/* delay list */
break;

case (1): 1* do 1 st order extra-layer activation */
DPtr->prevPtr->prevPtr->dlist[ucnt] +=

iactive * eMatrix[n][iI];

1* delay list */
break;

case (2): 1* do 2nd order extra-layer activation
* I

DPtr->prevPtr->prevPtr->prevPtr
>dlist[ucnt] += iactive * exMatrix[n][iI];

1* delay list */
break;

}
} 1* End for all inputs */

1* For the output layer */
if (layer == network->last_layer)
{

output = layer->outputs;
end = layer->n_outputs + output;
layer_num++:
layer_diff = abs(layer_num - cur_layer); 1*

layer differential */

A.27

Appendix A: Program Listings

if(N_DEBUG) printf("Layer Differential =
%d\n·,layer_diff);

1* for each node in the output layer */
for(i=1; output < end; output++,i++, synapses

{
1* We have to assume that the sign of the

activation in output
* nodes is positive, after all, there would

be no output if they weren't,
* They can't be calculated anyway; and we

can simplify things
* by leaving it out as it will only be a

factor of 1 anyway
*
* output->sumsyn = 1.0 ;
* iactive = output->activation *

PepStrength * output->sumsyn ;
* -- see what I mean
*/

/* Get the somatic activation for a node */
iactive = output->activation * PepStrength

if (N_DEBUG) printf{"output %d - activ %f,
pos sumsyn \n·,i,output->activation);

emulation * /

transformed here */

and this one * /

1* ADD section here for Model 3 - - better

1* we get matrix references to layer 3

if (layecnum == 3)
iI = OLlndex[i];

else
iI = i;

1* Mult by the distance between the node

1* and store, delayed by the
distance/diffusion analogy */

switch(layer _diff)
{

A.28

Appendix A: Program Listings

case (0): 1* do intra-layer activations */
DPtr->prevPtr->dlist[ucnt] += iactive

* iMatrix[n][iJ];

1* delay list */
break;

case (1): /* do 1 st order extra-layer
activation */

D Ptr->p revPtr-> p revPt r->dl ist[ucnt]
'+= iactive * eMatrix[n][iJ];

1* delay list */
break;

case (2): 1* do 2nd order extra-layer
activation */

DPtr->prevPtr->prevPtr->prevPtr
>dlist[ucnt] += iactive * exMatrix[n][iJ];

1* delay list */
break;

}
} 1* End for each node in the output layer */

} /* End for the output layer */
} 1* End for each layer */

} 1* exit */

Ipcalc(ucnt,network) 1* */
int ucnt;
NETWORK *network;
{

int i,iI,n,cur_layer,layer _num ,layer _diff;
int n_inputs;
register int nips;
SYNAPSE *synapses;
register SYNAPSE *syn;
register float iactive,sum;
NEURON *inputs,*output, *end_out;
register NEURON *ips;
LA YEA *Iayer;
float sumsynapse;

extern int OUndex[];
for output nodes */

A.29

1* conversion array

Appendix A: Program Listings

extern float PepLeak;
extern DelayLinePtr DPtr;

1* This routine is called by noise_calcO - once for each node
in the network.

* Here we have to calculate the 'noise' reaching the node
from the rest of

* the network - comprised of the synaptic leakage of all
other nodes

*/

if (N_DEBUG) printf(·Leak = %-1.8f, Node %dU,PepLeak,ucnt);

if (ucnt < 16)
First Layer */

{

}

n=ucnt;
cur_layer=1 ;

if (ucnt > 15 && ucnt < 31)
{

}

n=ucnt-15;
cur_layer=2;

/ *

1* Second Layer */

if (ucnt > 30 && ucnt < 39) 1* Output Layer - use index
* /

{

}

n=OLlndex[ucnt-30];
cur_layer=3;

if (N_DEBUG) printf(·, node index = %d, layer =
%d\n· ,n,cur_layer);

1* n is the node index inside the layer and tells us which
matrix element to use. .

* ie. it's the index number of the current node to be
computed in the layer * /

1* Here's where we get the 'Leakage' activation from each
node */

1* Start at layer 2 (of nodes) as there won't be any -Leakage
from */

Appendix A:, Program Listings

1* input nodes */
for (layer_num=2,layer= network->first_layer; layer layer=

layer->next_layer,layer_num++)
{

synapses = layer->synapses;
n_inputs = layer->n_inputs;
inputs = layer->inputs;
output = layer->outputs;
end_out = layer->n_outputs + output;
layer_diff = abs(layer_num - cur_layer); 1* layer

differential */

if(N_DEBUG) printf(·Layer Differential =
%d\n- ,Iayer_diff);

I*calc p-Ieak through this layer */
for(i=1; output < end_out; output++,i++)
{

1* all secondary msger activation in this
part emanates from synapses!!!!! */ .

. 1* PEP _LEAK% is leaked from synapses of
the target cell */

/* and is related to the binding of peptides
by PEP_STRENGTH */

/* This obviously only works for the last 2
layers */

iactive = output->rawact * PepLeak;

if (N_DEBUG) printf(·rawact = %f\n- ,output-
>rawact);

1* we get matrix references to layer 3
transformed here */

iMatrix[n][il];

if (layer_num == 3)
if = OLlndex[i];

else
if = i;

switch(layer _diff)
{
case (0): 1* do intra-layer activations */

DPtr->prevPtr->dlist[ucnt] += iactive *

1* delay list */

A.31

Appendix A: Program Listings

break;

case (1): /* do 1 st order extra-layer activation */
DPtr->prevPtr->prevPtr->dlist[ucnt] +=

iactive * eMatrix[n][il];

/* delay list */
break;

case (2): /* do 2nd order extra-layer activation
* /

DPtr->prevPtr->prevPtr->prevPtr
>dlist[ucnt] += iactive * exMatrix[n][il];

/* delay list */
break;

}
}

}
/* and exit */

}

1* Zero the synapse sums throughout the net * /
void zerosyn(network)
NETWORK *network;
{

int n_inputs;
NEURON *inputs;
LAYER * layer;

I*loop forward through all layers */
for (Iayer= network->first_layer; layer layer= layer-

>next_layer)
{

n_inputs = layer->n_inputs;
inputs = layer->inputs;

for(; --n_inputs, >= 0;)
each node */

(inputs++)->sumsyn = 0;
)

}

A.32

1* For

Appendix A:' Program Listings

1* Add the noise produced by P-activation to the nodes of the
network */
void noise_add(network)
NETWORK * network;
{

/* For each value in DPtr->dlist[i], add in to the activation
cycle of the

* relevant node in the network. This can be done either by
adding into

* the actual activation, or by adding a factor to the weights
*/

int n_inputs,i;
SYNAPSE *synapses;
NEURON *inputs,*output,*end;
LAYER *Iayer;

if(N_DEBUG) printf(Madding noise\nM);

. /*Ioop forward through all layers */
for (i=1,layer= network->first_layer; layer ; layer= layer

>next_layer)
{

n_inputs = layer->n_inputs;
inputs = layer->inputs;

for(; --n_inputs >= 0; i++,inputs++)
1* For each node */

{
inputs->activation += DPtr->dlist[i]; / *

Add P-activation */
if(N_DEBUG) printf(·node %d - noise %f\n·,i,DPtr-

>dlist[i]);
}

}
/* Last layer only ---- calc for the
layer = network->last_layer;

outputs as well*/

output = layer->outputs;
end = layer->n_outputs + output;
for (: output < end; output++,i++)

layer */
{

activation
output->activation += DPtr->dlist[i];
*/

1* Do last

1* Add P-

if(N_DEBUG) printf(·node %d - noise %f\n·,i,DPtr-
>dlist[i]) ;

A.33

Appendix A: Program Listings

}
}

/****** end of peptidergic addition *************/

1* Logistic function for back prop model */

float logistic(x)
float x :
{

extern float expO;

1* Find out if it's over the capabilities of the system */

if (x > 11.5129)
return(.99999);

else
if (x < -11.5129)

return(.00001);

1* or otherwise */
/* Calculate logistic */

return«(1.0/(1.0 + (float) exp«double) «-1.0) * x» »»;

}

1* Create a new network of n_layer synapse layers with
n_neurons_ip[i] input neurons and
n_neurons_op[i] output neurons
for each layer.
returns ptr to network or 0 if out of memory
* /

NETWORK *new_network(n_layer,neurons_ip,neurons_op)
int n_layer[], neu rons_i p[], neu rons_op[];

, {

Appendix A:, Program Listings

NETWORK *network;
int i,j,n_inputs;
LAYER *Iayer, *prev_layer=O;
extern char *callocO;
NEURON *inputs;

network = (NETWORK *)calloc(1,sizeof(NETWORK));
if (! network)

return 0 ;

for (i=O; i < n_layer[O]; i++, prev_layer=layer)
{

layer = (LAYER *)calloc(1,sizeof(LAYER));
if(! layer)

return 0;

layer->n_inputs = neurons_ip[i];
layer->n_outputs = neurons_op[i];
layer->number = i+ 1 ;
if (BIG_DEBUG) printf(lI layer %d allocating ... \n-,i+1);
layer->inputs = (NEURON *)calloc(layer-

>n_inputs,sizeof(NEURON));
if(! layer->inputs)

return 0;

n_inputs = layer->n_inputs;
inputs = layer->inputs;
for(j=1;j <= n_inputs;j++)
{

(inputs++)->number = ((i+1)*100)+j;
if (BIG_DEBUG) printf(1I Input cell %d

allocated \nll,j) ;
}

if(prev _layer)
{

}
else

layer->prev_layer = prev_layer;
layer->prev _layer->next_layer = layer;
°layer->prev_layer->outputs = layer->inputs;

network->first_layer = layer;

layer->synapses =
(SYNAPSE *)calloc(layer->n_inputs*layer

>n_outputs,sizeof(SYNAPSE));

A.35

Appendix A: Program Listings

if(I layer->synapses)
return 0;

if(useMomentum II useGRA)
{

layer->history =
(SYNAPSE *)calloc(layer->n_inputs*layer-

>n_outputs,sizeof(SYNAPSE));

}
else

if(l layer->history)
return 0;

layer->history = 0;

layer->weds =
(SYNAPSE *)calloc(layer->n_inputs*layer

>n_outputs,sizeof(SYNAPSE)):
if(I layer->weds)

return 0;

}

layer->outputs = (NEURON *)calloc(layer
>n_outputs,sizeof(NEURON));

}

if(! layer->outputs)
return 0;

n_inputs = layer->n_outputs;
inputs = layer->outputs;
for(j=1;j <= n_inputs;j++)
{

(inputs++)->number = 900+j;
if (BIG_DEBUG) printf(· output cell %d a"ocated \n· ,j);

}

network->last_layer = layer;
return network;

1* Feed activation forward through the network */

A.36

Appendix A:, Program Listings

feedforward(network) 1* *1
NETWORK *network;

{
int n_inputs,i;
SYNAPSE *synapses;
NEURON *inputs, *output, *end_out;
LAYER *Iayer;

1* loop forward through all layers *1
for (i=16,layer= network->first_layer; layer layer= layer-

>next_layer)
{

synapses = layer->synapses;
n_inputs = layer->n_inputs;
inputs = layer->inputs;
output = layer->outputs;
end_out = layer->n_outputs + output;

I*feed activation forward through this layer */
fore ; output < end_out; output++, synapses

+=n_inputs,i++)
activ_calc(n_inputs,inputs,output,synapses,i);

}
}

1* calculate activation for feedforward *1
activ _calc(n_inputs,inputs,output,synapses,i) 1* */

register int n_inputs;1* No. of i/p neurons *1
register NEURON *inputs;1* vect of i/p neurons *1
NEURON *output;1* o/p neuron */
register SYNAPSE *synapses;1* vect of synapses on o/p */
int i;

{

register float sum = 0;

r Here we assume that the unit has an intrinsic *1
I * -will- to communicate despite whether the */
r node will be allowed to learn bias or not *1

sum = output->bias; 1* Delete for a test sometimes */

A.3?

Appendix A: Program Listings

1* feed i/p activation forward by accumulating products */
while (--n_inputs >= 0)
{

1* This bit is for P-activation gathering, and is here
because 11m

lazy.
* trying to save some time, rather than because 11m

* This variable is zeroed in function: npcalcO
*/

/* inputs->sumsyn += *synapses;*/

if (BIG_DEBUG)
printf(Usynapses %f i/p activation

%f\n-, *synapses ,inputs->activation);

sum += «*synapses++) * (inputs++)->activation)

}
1* save raw activation for leak calculation */
output->rawact = sum;

I*if (use Noise)
sum += DPtr->dlist[i];*/

I*if (N_DEBUG) printf(-noise was %1\n- ,DPtr->dlist[i]);*/

output->activation = logistic(sum);
if (BIG_DEBUG) printf(lIcelJ %d bias %f, calc activation as

%f\n- ,output->number ,output->bi as ,output->activation);

}

1* feed errors back through all layers of the network* /
feedback(network) /* */,'
NETWORK *network;

{
int n_inputs;
SYNAPSE *synapses, *history, *weds;
NEURON *inputs l *output, *end;
LAYER *Iayer;

'A.38

Appendix A:' Program Listings

I*loop back through all layers */
for(layer = network->last_layer; layer; layer = layer

>prev_layer)
{

1* clear prev errors * /
n_inputs = layer->n_inputs;
inputs = layer->inputs;
while(--n_inputs >= 0)

(inputs++)->errors = 0.0;

1* feed errors back through this layer */
n_inputs = layer->n_inputs;
inputs = layer->inputs;
output = layer->outputs;
synapses = layer->synapses;
weds = layer->weds;
history = layer->history;
end = output + layer->n_outputs;

for(; output < end; output++,synapses += n_inputs,
history +=n_inputs, weds +=n_inputs)

}

del t a_ ca I c (n_i n puts, i n puts, 0 u t p ut, sy nap s e s, hi st 0 ry ,wed s) ;
}

1* Calculate delta and errors for feedback */

delta_calc(n_inputs,inputs,output,synapses,history ,weds) 1* */
register int n_inputs;1* No. of i/p neurons */
register NEURON *inputs;/* vect of i/p neurons */
NEURON *output;1* o/p neuron *1
register SYNAPSE *synapses;1* vect of synapses on o/p */
SYNAPSE *history;1* vect of synapse history */
SYNAPSE *weds;1* weight error derivatives */

{
float weight,noise;1* synapse weight */
float error,delta;1* unit error and delta terms */
float dbias,bias;/* for bias calculation */
float fback,x;1* for feedback */

A.39

Appendix A: Program Listings

extern float frate,PepFactor,TotFact;1* Learning rate *1
extern unsigned short ranSeed1,ranSeed2; 1* Random

number placeholders *1
extern int update,updateGRA,useGRA; 1* indicators for

extensions *1
extern DelayLinePtr DPtr;

1* calculate delta for this unit *1
delta = output->errors * output->activation *
(1.0 - output->activation);

if (BIG_DEBUG) printf(·cell %d calcd delta %f prev error %f
o/p activation %f\n·,output->number,delta,output->errors,output
>activation);

1* For all input units connecting to this layer *1
while(--n_inputs >= 0)
{

1* Continue Calc of previous layer errors *1
fback = delta * (*synapses);
inputs->errors += fback;

if(BIG_DEBUG)
printf(Nn_inputs %d *synapse %f delta %f ip.err %f

\nfedback %f ip.activ %f\nN,n_inputs, *synapses,delta,inputs
>errors, fback,inputs->activation);

if(BIG_DEBUG) printf(Aweds was %f ·"weds);

1* save the weight error deriv for batching *1
*weds += (SYNAPSE) (delta * inputs->activation);

if(BIG_DEBUG) printf(Nis now %f\nN,*weds);

1* If update flag is set - do all the gradient calcs *1
if(update)

. A.40

(

Appendix A: Program Listings

{

/* calc new weight : delta-weight = learning rate
* delta * input * /

weight = (*weds * frate);

if(BIG_DEBUG)
printf(lInew delta %f i/p activation %f rate

%f\n·, weight,inputs->activation, frate):
if (BIG_DEBUG && error != 0)

printf(lI%d,%d old weight %f \n·,inputs
>number,output->number, *synapses);

} /* end if (update)*/

/* common code for update operations */
if(update)
{

/* Add momentum if turned on */

if (useMomentum)
{

weight += (0.9 * (*history));/* add
momentum to error */

if(BIG_DEBUG) printf(Hold hist is %f new
hist is %f\nll,*history,weight);

history = (SYNAPSE)weight; / save error
for next cycle */

}

/* zero the weight error derivative for next batch
if update only *1

if(update) *weds = 0;

A.41

Appendix A: Program Listings

1* If weights plus random noise are required -
add in here * /

if (useNoise)
{

1* add noise to new weight * /
noise =

NOISE(ranSeed1,ranSeed2,PepFactor); 1* Add total noise */
weight += noise;
TotFact += noise;
if(N_DEBUG) printf(·noise was %f\n·,noise);

}

1* put weight into synapse */
*synapses += (SYNAPSE) weight;

. if(BIG_DEBUG) printf(UNew synapse is
%f\n·, *synapses);

1* Check for over or underflow of synapse value
range */

if (*synapses > MAX_SYNAPSE)
synapses = MAX_SYNAPSE;/ Limit weight

in case of overflow */
else if (*synapses < -MAX_SYNAPSE)

synapses = -MAX_SYNAPSE; 1 Same for
underflow */

}

} 1* end if (update) */

1* increment weights synapse pointer */
synapses++;
1* increment weight error derivative pOinter */
weds++;
/* increment inputs index */
inputs++:
1* increment history if necessary * /
if(useMomentum) history++;

1* Calculate the unit bias if turned on */

A.42

.,

* /

Appendix A:, Program Listings

if (use Bias)
{

1* calculate bias term */
1* save bias error derivative for batching */
output->bed += delta;
if (update)
{

dbias = (frate*delta)
if (useMomentum)
{

}

dbias += 0.9*output->0Iddbias;
output->olddbias = dbias;

bias = dbias + output->bias;

1* zero the bias error derivative for next batch */
output->bed = 0;

1* Check for over or underflow of bias value range

if (bias> MAX_BIAS)
bias = MAX_BIAS;/* Limit bias in case of

overflow */
else if (bias < -MAX_BIAS)

bias = -MAX_BIAS; 1* Same for underflow
* /

if (BIG_DEBUG)
printf(lI%d old bias %f, new bias

%f\nll ,output->number,output->bias,bias);

output->bias = bias;

} /* end if update * /

}

}

A.43

Appendix A: Program Listings

/* add a signed pseudo random value to all weights of a network */
1* ditto the bias values of all units */
/* also zeros the network weds and beds */
1* Returns a floating point number from -maxl100 to +maxl100 *1

randomise(network,max,seed)
NETWORK *network;
float max;
long seed;

{
static unsigned short seed1,seed2 = 65535;
float div = 32768.0/max;
register SYNAPSE *weight, *end, *wed, *history;
LAYER *Iayer = network->first_layer;
NEURON *output;
int n_outputs;
extern unsigned short ranSeed 1, ranSeed2;

seed1 = seed;
do
{

weight = layer->synapses;
wed = layer->weds;
if(useMomentum) history = layer->history;
if (weight)
{

end = weight + layer->n_inputs * layer-

do
{

*weight
=(((short)((long)((U2RAND(seed1 ,seed2»-32768»)/div)/1 00.0;

if (useMomentum) *history++ = 0;
*wed++ = 0;
if (BIG_DEBUG) printf{-weight

%f\n-, *weight);
welght++;

}
while(weight < end);

}

output = layer->outputs;
n_outputs = layer->n_outputs;
while(--n_outputs >= 0)

·A.44

,

Appendix A: Program Listings

{
output->bias =

«(short)((long)((U2RAND(seed 1 ,seed2))-32768)))/div)/1 00.0;
output->olddbias = 0;
(output++)->bed = 0;

}
}
while (layer = layer->next_layer);

if (BIG_DEBUG)
printf(·Example random number

%f\n· ,(((short)((Iong)((U2RAND(seed 1 ,seed2))-
32768)))/div)/100.0);

}

ranSeed 1 = seed 1 ;
ranSeed2 = seed2;

/*********** END of include file ·NN.h· *************/

A.4S

Appendix B: Preliminary Results of Pilot tests

Noise seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML BPPML
0.00 Learnina 1608 1608
0.05 Rate 0.5 1087 2865 356 1087 1315
0.10 990 1750 393 990 1250
0.15 452 1703 372 452 1305
0.20 1979 11444 715 289 11444 715 1727
0.25 2275 1469 12535 662 152 12535 662 2168
0.30 2237 1491 13506 835 189 13506 835 4709
0.35 2237 1428 13703 558 643 3924 13703 558 13097
0.40 1915 286 11401 383 583 1980 11401 383
0.45 1438 305 854 1560 854
0.50 1428 371 1559 1468
0.55 654 373 1563 139
0.60 820 396 1 121 2331
0.65 511 296 1598 303
0.70 473 283 1010 972
0.75 473 321 962
0.80 529 220 1250
0.85 505 445 961
0.90 472 1018 3479
0.95 437 522
1.00 4148 537
1.05 4174 1136
1.10 4169 175
1.15 11559 1000
1.20 1121
1.25 11574 160
1.30 475
1.35 1184
1.40 208
1.45 3448
1.50 2088
1.55 409

1.60 1058
1.65 1204
1.70 2571
1.75 457
1.80 431
1.85 1194
1.90 1519
1.95 963
2.00 .

Data from Prellmmary tests on NOise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.1

Appendix B: Preliminary Results of Pilot tests

Noise seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML BPPML
0.00 Learning 8713 789 8713 789
0.05 Rate 0.5 9720 415 9316 977 2529 119 9316 977 986
0.10 2923 423 9340 533 80 9340 533 1000
0.15 2671 164 9033 712 259 9033 712 995
0.20 3575 168 7866 998 102 7866 998 960
0.25 12740 163 6764 1832 273 6764 1832 963

r-Q.~..Q. _§"~~1. 801 7196 360 342 262 7196 360 939 ft ___ ~_ ---_ ... -----r----- ... --- ---------..... ----- -----0.35 4343 520 8037 309 339 68 8037 309 962
0.40 1969 457 7199 532 342 72 7199 532 1028
0.45 10558 354 12155 763 12155 763 1009
0.50 1118 427 7942 1499 7942 1499 791
0.55 952 330 8683 6921 8683 6921 564
0.60 952 473 19137 19137 739
0.65 948 324 14450 14450 557
0.70 320 412
0.75 166
0.80 224 9839 9839
0.85 450
0.90 224

Q.&..e ---- .. ---- 355 -----r---- ~---. ---_ ... r----- -----" ----~ -----1.00 523
1.05 232
1.10 1134
1.15 3139
1.20 987
1.25 2981
1.30 1179
1.35 579
1.40 1066
1.45 285
1.50 312
1.55 1313
1.60 309 r.---- ---------- -----r----- ---_ . . ---~- ---------- r-.----1.65 312
1.70 459
1.75 486
1.80 195
1.85 1542
1.90 297
1.95 729
2.00

Data from Preliminary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-x =
-p =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.2

Appendix 8: Preliminary Results of Pilot tests

Noise seed 43 BPN BPMN BPL BPML BPXL BPXML BPNL BPNML
0.00 Learning 10784 378 10784 378
0.05 Rate 0.5 13362 1118 10617 888 10617 888 1848 84
0.10 5508 709 9822 423 9822 423 1888 130
0.15 2909 353 8352 543 8352 543 794 100
0.20 2741 277 6596 513 6596 513 836 77
0.25 1809 320 6181 231 6181 231 1733 35
0.30 1842 107 6539 649 6539 649 1712 212
0.35 804 78 7500 248 7500 248 1021 212
0.40 1039 77 10117 250 10117 250 684 350
0.45 1453 127 8759 575 8759 575 637 112
0.50 910 77 8531 344 8531 344 612 96
0.55 1023 77 9444 862 9444 862 877 108
0.60 53 8164 242 8164 242 640 104
0.65 5599 462 10247 57 10247 57 1198 2599
0.70 5926 129 9446 1140 9446 1140 963 1637
0.75 9978 50 12154 17288 12154 17288 1022 1163
0.80 5579 54 6458 199 6458 199 1074 1563
0.85 3568 86 11592 6473 11592 6473 838 767
0.90 5603 2029 17692 17692 858 2801
0.95 1071 1761 964
1.00 15610 1432 1761
1.05 109
1.10 2218
1.15 721
1.20 2041
1.25 1001
1.30 1384

1.35 1417
1.40 3516
1.45 1393

1.50 1124

1.55 2474

1.60 463

1.65 1018

1.70 1527
1.75 484
1.80 416
1.85 1900
1.90 548

1.95 4121

2.00
Data from Prellmmary tests on NOise parameters effect on
network performance, number represents iteration of convergence.

8P =
-M =
-N =
-L =
-x =
-P =

KEY:

8ack Propagation base model
Momentum term added
Random Noise added
Leak (,peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

8.3

Appendix B: Preliminary Results of Pilot tests

Noise seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 LearninQ
0.05 Rate 0.75 553 1598 341 553
0.10 478 1071 388 478
0.15 4080 150 1615 74 150
0.20 1981 1420 7656 184 697 148 7656 184
0.25 1858 1445 8322 201 545 214 8322 20-1

J>...:~Q. !------_,g1,Q,1 ... J~~..z. ~~~'! 288 678 49 r~~§"1 288
----~ i----- ~----.;.. -----;;.

0.35 2186 285 8776 95 554 8776 95
0.40 1799 253 7298 290 569 2040 7298 290
0.45 1651 280 727 1550 1431 727
0.50 547 391 1379 546 230 1379
0.55 455 254 1549 301
0.60 440 1418 1589 833
0.65 437 271 1612 2326
0.70 440 250 1010 3427
0.75 581 298 9401 1679 9401
0.80 539 182 1556
0.85 473 349 1587
0.90 475 213 1689

rQ.:~§' 480 556 _!~i.I ------------;...---- r---- ----- ~-----r---- ----_
1.00 472 175
1.05 731 1033
1.10 4130 270
1.15 4174 1179
1.20 2643 1128
1.25 8652 1181
1.30 11568 564
1.35 4181 1182
1.40 11641 950
1.45 11593 1120
1.50 1311
1.55 1183

i-1...:~Q ------- i----- 499 --------- -----i-----fr-----------------
1.65 16288 1328
1.70 3506
1.75 929
1.80 2833
1.85 2011
1.90 2056
1.95
2.00

Data from Preliminary tests on NOise parameters effect on
network performance. number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.4

Appendix B: Preliminary Results of Pilot tests

Noise seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 0.75 3773 347 6199 600 2528 97 6199 600
0.10 2670 186 6218 669 80 6218 669
0.15 2664 163 6006 362 57 6006 362
0.20 3568 164 5350 698 2061 94 5350 698
0.25 1582 127 4640 410 82 410 410
0.30 1557 153 4948 199 341 38 199 199
0.35 1562 69 4922 148 338 56 148 148
0.40 1123 133 4596 159 337 51 159 159
0.45 1123 507 9795 343 826 343 343
0.50 1122 460 4620 1040 1040 1040
0.55 975 463 5472 1767 1767 1767
0.60 931 1008 19272 19272 19272
0.65 339 1016 16577 16577 16577
0.70 339 605 11307 11307 11307
0.75 338 394
0.80 1444 217
0.85 965 463
0.90 1662 1056
0.95 960 473
1.00 298 1026
1.05 1046
1.10 1026
1.15 333 1013
1.20 219
1.25 472
1.30 197
1.35 1324
1.40 11670 193
1.45 1179
1.50 3762
1.55 224
1.60 1310
1.65 2102
1.70 321
1.75 834
1.80 292
1.85 405
1.90 2566
1.95 188
2.00

Data from Preliminary tests on NOise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
- L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.5

Appendix B: Preliminary Results of Pilot tests

Noise seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 0.75 6053 177 7070 348 1740 99 7070 348
0.10 4952 351 6616 488 711 35 6616 488
0.15 2907 330 5656 198 704 42 5656 198
0.20 1837 216 4484 193 1731 68 4484 193
0.25 1981 101 4118 58 706 38 4118 58

q.30 820 76 iiL~ 147 705 68 4411 147 --- !"'---:- ----~ r-1404 i------------- ...
0.35 903 78 5016 190 54 5016 190
0.40 1311 42 6547 185 639 63 6547 185
0.45 903 94 6108 1094 591 77 6108 1094
0.50 823 73 5757 783 595 49 5757 783
0.55 910 47 6392 86 674 51 6392 86
0.60 1437 62 5005 294 608 112 5005 294
0.65 1027 70 6355 44 617 690 6355 44
0.70 1055 78 6437 161 1568 3382 6437 161
0.75 5602 69 8129 1601 12482 8129
0.80 3558 72 4534 1409 1645 969 4534 1409
0.85 1342 2445 7691 389 763 3638 7691 389
0.90 3568 54 1394 922 1394

J>~~~ 5533 1091 2442 933 232 ----- 2442 ------ ---------- ----- -----r----------- -----";;,
1.00 3551 1000 338 338
1.05 326
1.10 11263 357
1.15 5164 2176
1.20 389
1.25 361
1.30 1334
1.35 995
1.40 1872
1.45 996
1.50 1051
1.55 2003

994 r-~~Q -- --- ~------. 1----- ----- '-----------------------1.65 1082
1.70 999
1.75 2456
1.80 2082
1.85 979
1.90 1908
1.95 3459
2.00

Data from Preliminary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.6

.(

Appendix B: Preliminary Results of Pilot tests

Noise seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 LearninQ
0.05 Rate 1.0 1471 280 1880 396 280
0.10 3944 218 1942 338 218
0.15 2036 101 2750 64 101
0.20 1872 1959 5742 51 566 214 5742 51
0.25 1731 2038 6187 139 527 67 6187 139

.Q.:..~ ---- r-~.Q2,g ~J_4.1~. §"~!!.1 203 f--~~§. 64 !-2.§..~1 20.~ ----;;;. i----
0.35 1938 558 6380 77 547 1422 6380 77
0.40 1799 1433 5293 105 440 1985 5293 105
0.45 1800 447 8181 521 1410 8181
0.50 455 543 825 1425 1695 825
0.55 455 307 1502 1122
0.60 454 238 903
0.65 637 210 2801 2751
0.70 580 369 2105 2803 3918 2105
0.75 510 1186 5998 5998
0.80 425 250 887 1579 887
0.85 510 643 1127
0.90 1192 173

.Q.:..~ ------ r-l~2,g 1199 ---...;. ---- ---------10----1----- --
1.00 429 351
1.05 431 175
1.10 234 348
1.15 554 929
1.20 2647 911
1.25 268 1678
1.30 267 255
1.35 6876 1083
1.40 2040 1167
1.45 385 552
1.50 11574 1181
1.55 19032 1506
, .60 ------ r-~~2Z 353 ---- ~---- ---- -----!-----1------!----
1.65 11647 1024
, .70 4976 1194
1.75 1460
1.80 1741
1.85 3483
, .90 1103
1.95
2.00

Data from Preliminary tests on Noise parameters effect on
network performa,nce, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-x =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.7

Appendix B: Preliminary Results of Pilot tests

Noise seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 1.0 3768 264 4656 348 92 4656 348
0.10 2669 162 4660 333 68 4660 333
0.15 2611 150 4487 298 165 4487 298
0.20 2986 102 4003 80 2062 53 4003 80
0.25 1582 102 3428 108 342 68 3428 108
0.30 1558 104 3473 36 339 77 3473 36
0.35 1551 167 3484 32 338 23 3484 32
0.40 1123 132 3337 158 84 3337 158
0.45 336 203 5319 276 706 5319 276
0.50 336 930 3465 2171 3465 2171
0.55 336 442 4072 3460 4072 3460
0.60 910 451 5754 5754
0.65 329 1009 8999 8999
0.70 260 982
0.75 329 298 19751
0.80 338 1014 10649 10649
0.85 3157 1017 5690
0.90 928 289 9775
0.95 302 1004
1.00 1151 1074
1.05 341 984
1.10 1562 325
1.15 316 442
1.20 335 97
1.25 1173
1.30 1168
1.35 296
1.40 1578 141
1.45 949
1.50 569
1.55 282
1.60 363
1.65 235
1.70 207
1.75 931
1.80 1121
1.85 1262
1.90 975
1.95 405
2.00

Data from Preliminary tests on Noise parameters effect on
network performance. number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.8

Appendix B: Preliminary Results of Pilot tests

Noise seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 1.0 5166 330 5255 114 1749 129 5255 114
0.10 3179 130 4995 204 1664 135 4995 204
0.15 1743 74 4337 226 1290 33 4337 226
0.20 3153 44 3519 82 707 60 3519 82
0.25 1982 53 3143 121 709 26 3143 121
0.30 872 44 ~1..f!.~ 76 r--?.lQ 33 r-~i~2 ~ft~ ----- 1----- ----~ 1-----0.35 1034 45 3911 88 670 127 3911
0.40 508 200 4834 52 579 33 4834 52
0.45 877 38 5010 708 600 80 5010 708
0.50 895 45 4424 120 549 64 4424 120
0.55 1055 75 4975 118 580 55 4975 118
0.60 1767 92 3780 169 245 63 3780 169
0.65 878 486 4604 1372 590 363 4604 1372
0.70 953 77 4912 539 511 4912 539
0.75 3568 48 6214 19756 212 6214 19756
0.80 2812 85 8882 3176 1125 1017 8882 3176
0.85 9981 340 5690 377 763 3633 5690 377
0.90 1337 47 9775 868 1777 9775
..Q.:..~ 891 ~J..9~~ 813 r--2.Q.§. 813 ------ r----- ---- ----~ 1----- ---1.00 3564 1452
1.05 3635 2150
1.10 1975 78
1.15 11702 2013
1.20 10527 1883
1.25 2458
1.30 1893
1.35 13214 540
1.40 1207
1.45 6228 948
1.50 1465
1.55 2778

"!.:..~Q. ------1----- 1419
~----. ---- -----1-----1------1--

1.65 966
1.70 983
1.75 1204
1.80 527
1.85 359
1.90 1120
1.95 1875
2.00

Data from Prellmmary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
- L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.9

Appendix B: Preliminary Results of Pilot tests

Noise Seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 1.25 518 17962 205 1741 148 17962 205
0.10 18353 387 1596 232 18353 387
0.15 3840 58 1729 46 58
0.20 1872 3767 4615 104 1711 53 4615 104
0.25 1868 1655 4897 43 545 52 4897 43

..Q~~C2 154.~ ~..1'§~ ~"?..9.J"?_ 217 569 56 -§'Q.~~ 217 - ---.-;- ---~~ -----;.. ~-----0.35 1427 2066 4982 191 521 1536 4982 191
0.40 1440 383 4119 4018 613 4119 4018
0.45 1421 537 9930 492 3789 9930
0.50 1617 319 6201 459 6201
0.55 455 480 1347
0.60 454 365
0.65 637 332 12491 1538 2342 12491
0.70 523 1185 1026
0.75 524 110 1639
0.80 542 132 10750 1505 10750
0.85 1192 195 2041 541
0.90 609 177 6233

..Q~~~ -----_ .. _1.~~ -~.§.!?.§ ------ ----- ---- ------ -----~-----1.00 1699 908 10643
1.05 436 5001
1.10 436 1113
1.15 1188 206
1.20 2609 1199
1.25 230 1175
1.30 268 393
1.35 2197 3405
1.40 381 219
1.45 2600 236
1.50 224 3322
1.55 2834 1179

1752 j~~C2 ------- --_ ... r-j~~.Q ~---- ----- ----~ ------ -----r------1.65 726 1758
1.70 4983 997
1.75 1091
1.80 2845
1.85 3247
1.90 1120
1.95 2848
2.00

Data from Preliminary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-x =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.10

Appendix B: Preliminary Results of Pilot tests

Noise Seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 1.25 3752 160 3720 223 63 3720 223
0.10 2635 181 3743 300 2601 74 3743 300
0.15 2554 122 3563 138 44 3563 138
0.20 1159 114 3230 98 2062 120 3230 98
0.25 1558 112 2629 88 342 30 2629 88
0.30 3962 143 2731 85 329 64 2731 85
0.35 1057 85 2707 162 349 34 2707 162
0.40 335 152 3268 142 1423 34 3268 142
0.45 334 59 3144 399 3144 399
0.50 321 98 2938 6156 366 2938 6156
0.55 329 456 3145 7987 3145 7987
0.60 328 986 18248 10555 18248 10555
0.65 137 321 8342 8342
0.70 279 267 14532 14532
0.75 339 1007 18239 4418 18239 4418
0.80 136 1012
0.85 399 419
0.90 1593 1000
0.95 1736 249
1.00 298 209
1.05 339 164
1.10 682 1930
1.15 298 155
1.20 338 225
1.25 312 390
1.30 7350 655 .
1.35 958 523
1.40 1153
1.45 11671 419
1.50 1548 227
1.55 1527 533
1.60 279
1.65 337 204
1.70 805
1.75 564
1.80 205
1.85 1273
1.90 280
1.95 254
2.00

Data from Prellmmary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
- L =
-X =
.p =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.11

Appendix B: Preliminary Results of Pilot tests

Noise Seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning
0.05 Rate 1.25 4928 211 4201 196 1021 46 4201 196
0.10 2607 129 4053 403 1740 83 4053 403
0.15 1745 72 3555 228 881 112 3555 228
0.20 2466 68 2849 88 709 45 2849 88
0.25 1872 41 2580 38 707 26 2580 38
0.30 605 43 2905 79 642 32 2905 79
0.35 809 41 3317 124 701 66 3317 124
0.40 749 37 3883 53 599 79 3883 53
0.45 878 38 3940 83 610 45 3940 83
0.50 507 36 2987 230 548 38 2987 230
0.55 953 33 4654 77 541 3148 4654 77
0.60 1025 3013 79 253 197 3013 79
0.65 787 360 3808 81 708 697 3808 81
0.70 605 72 3945 75 1174 605 3945 75
0.75 3586 59 4768 8244 369 207 4768 8244
0.80 508 42 2623 11495 1666 282 2623 11495
0.85 508 107 4338 1003 763 6961 3E 1003
0.90 6921 337 11484 8644 517 1029 11484 8644
0.95 3478 95 186 916 133 186
1.00 3498 3538 750
1.05 1443 4295
1.10 2364 68
1.15 2759 82
1.20 9865 960
1.25 3363 1907
1.30 13586 1455
1.35 13577 986
1.40 5154 2524
1.45 5365 1074
1.50 1194
1.55 11256 1410
1.60 11259 3366
1.65 964
1.70 2116
1.75 1210
1.80 11258 1 1 1 4
1.85 1967
1.90 1114
1.95 2718
2.00

Data from Preliminary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.12

(

Appendix B: Preliminary Results of Pilot tests

Noise Seed 89 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning 289 289
0.05 Rate 1.5 1577 15138 101 1588 73 15138 101
0.10 16004 141 1596 150 16004 141
0.15 2015 16744 31 1797 64 16744 31
0.20 1872 1535 3771 38 1707 169 3771 38
0.25 2185 1530 4044 63 418 49 4044 63
0.30 1618 1433 4177 5697 421 38 4177 5697
0.35 1547 1436 4054 308 440 244 4054 308
0.40 1420 349 3306 3714 545 3306 3714
0.45 1421 143 3772 1422 1697 3772
0.50 683 128 1229 1385 1444 1229
0.55 454 288 1386 2396
0.60 424 268 1612 3345
0.65 453 251 1774
0.70 519 287 282 1085 282
0.75 510 126 11229 11229
0.80 426 82 993
0.85 475 737 1370
0.90 436 445
0.95 527 449 1507
1.00 482 471
1.05 1192 942
1.10 231 1165
1.15 436 1101
1.20 253 912
1.25 566 3479
1.30 528 1138
1.35 1127 354
1.40 327 1135
1.45 1033 2515
1.50 338 1084
1.55 3220 2310
1.60 1921 1177
1.65 2704 2500
1.70 2012 1110
1.75 8755 520
1.80 4982 1360
1.85 19602 1090
1.90 139
1.95 4980 1179
2.00 947

Data from Prellmmary tests on Noise parameters effect on
network perform~nce, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-p =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak (,peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.13

Appendix B: Preliminary Results of Pilot tests

Noise Seed 67 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 LearninQ 2945 90 2945 90
0.05 Rate 1.5 3752 133 3096 80 2446 185 3096 80
0.10 2635 148 3121 181 972 75 3121 181
0.15 2609 301 2979 192 2062 163 2979 192
0.20 1537 291 2677 34 339 109 2677 34
0.25 1554 259 2175 88 338 68 2175 88
0.30 1548 163 2187 79 340 35 2187 79
0.35 1954 163 2945 252 461 99 2945 252
0.40 335 51 2875 887 75 2875 887
0.45 219 102 2938 1040 727 2938 1040
0.50 320 1240 2365 9934 2365 9934
0.55 320 277 3028 3028
0.60 87 1028 16350 8317 16350 8317
0.65 311 450 5213 5213
0.70 261 289
0.75 160 1031 7027 7027
0.80 162 1465
0.85 327 999
0.90 264 308
0.95 337 434
1.00 766 1255
1.05 320 420
1.10 320 1039
1.15 284 1036
1.20 304 261
1.25 1561 208
1.30 12834 220
1.35 5855 309
1.40 1153 406
1.45 1062 208
1.50 716
1.55 1133 406
1.60 9482 417
1.65 236
1.70 524
1.75 695
1.80 208
1.85 246
1.90 2845
1.95 2391
2.00

Data from Preliminary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
-L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

8.14

(

Appendix B: Preliminary Results of Pilot tests

Noise Seed 43 BPN BPMN BPL BPML BPNL BPNML BPXL BPXML
0.00 Learning 3236 184 3236 184
0.05 Rate 1.5 4925 141 3596 246 1019 35 3596 246
0.10 2604 64 3356 458 794 112 3356 458
0.15 1747 53 2971 105 880 48 2971 105
0.20 1769 84 2401 47 709 45 2401 47
0.25 1238 163 2250 346 719 31 2250 346
0.30 ---f--!29 50 ~_3...?.! 91 668 39 ~. 2328 91 ----1-----1----- P -

0.35 639 43 2804 75 642 50 2804 75
0.40 691 30 3278 60 580 24 3278 60
0.45 708 35 3459 55 627 157 3459 55
0.50 327 37 2398 350 545 32 2398 350
0.55 594 33 2945 41 614 33 2945 41
0.60 504 40 2418 47 624 47 2418 47
0.65 418 2789 3182 210 237 219 3182 210
0.70 600 77 3353 2973 237 3353 2973
0.75 923 54 4277 10003 338 612 4277 10003
0.80 3508 47 5526 113 761 633 5526 113
0.85 14283 38 5675 846 5675 15242
0.90 1455 75 12284 15242 3184 361 12284
0.95 f-§'§'§'§ 2576 107 __ JOl

~----- f------ >-____ ft ----- r------ ~----- '----
1.00 2221 5905 883
1.05 2414 1329
1.10 1080 4721
1.15 2117 2152
1.20 2760 524
1.25 1299 2621
1.30 2761 1034
1.35 5167 1121
1.40 10511 2756
1.45 7037 1473
1.50 4170 1047
1.55 8820 2206
1.60 t-.1.1'§~ 2802 --- ------ f------ ----'" ----1-----..... ---- -----1.65 5342 3437
1.70 6230 1369
1.75 11259 1263
1.80 6228 534
1.85 11260 1957
1.90 1982
1.95 11258 1094
2.00

Data from Preliminary tests on Noise parameters effect on
network performance, number represents iteration of convergence.

BP =
-M =
-N =
- L =
-X =
-P =

KEY:

Back Propagation base model
Momentum term added
Random Noise added
Leak· ('peptidergic') added
Without Auto-Activation of node in Leak mode
Without Inter-Activation of the Node Plane in Leak Mode

B.15

Appendix C: Results of Final tests

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML
5 9540 1693 6617
10 6400 510 2822
15 4527 777 2275
20 3611 361 18748 1827
25 3020 1740 330 15001 1320
30 18090 2486 1868 313 12505 481
35 15487 2079 1738 96 10721 310
40 13534 1754 1918 77 9379 273
45 12010 859 1842 77 8334 284
50 10784 378 1842 107 7500 248
55 9779 571 1844 95 6816 266
60 8944 504 879 61 6249 295
65 8231 820 879 44 5775 206
70 7611 268 1726 44 5367 154
75 7062 514 820 76 5016 190
80 6579 197 1709 75 4715 159
85 6145 182 943 53 4450 136
90 5758 257 891 67 4260 181
95 5406 315 866 53 4088 196

100 5072 291 872 44 3911 88
105 4769 241 866 45 3783 65
110 4504 205 1286 47 3683 37
115 4262 240 797 43 3562 40
120 4040 229 829 43 3423 114
125 3845 180 605 43 3317 124
130 3683 210 605 60 3269 120
135 3555 192 819 54 3155 97
140 3447 220 836 86 3032 84
145 3344 243 866 53 2918 54
150 3236 184 829 50 2804 75
155 3124 58 832 51 2667 39
160 3024 176 797 34 2511 39
165 2965 40 642 38 2505 45
170 2925 48 640 18 2434 49
175 2868 57 866 27 2360 64
180 2792 112 866 98 2321 70
185 2708 137 835 60 2289 65
190 2626 159 835 59 2256 68
195 2545 119 835 59 2212 177
200 2465 306 835 67 2172 156

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
- L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.1

Appendix C: Results of Final tests

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML
205 2385 545 835 86 2137 67
210 2303 1412 835 37 2058 34
215 2233 2378 835 1990 46
220 2221 2892 834 1324 1909 65
225 2307 2753 636 2548 1827 48
230 2270 4446 691 1768 51
235 4624 691 1716 65 1-------- ---r--~~1~ i----- ----,...--- -----r---240 2165 4331 688 1668 80
245 2097 2698 633 73 1618 146
250 2003 31 637 31 1583 111
255 1980 34 637 32 1563 71
260 1941 26 636 30 1531 40
265 1898 1654 706 43 1480 79
270 1848 5667 1010 30 1432 142
275 1867 8371 618 26 1419 55
280 1805 10643 831 32 1350 82
285 1801 10428 692 34 1385 195
290 1670 10007 695 23 1384 223
295 1630 8343 '689 47 1373 383
300 I-!.~~~ r~.Q.§'§' 831 51 1348 34

~------- ---- ----:------ -----r-----~
305 1558 3400 693 19 1290 49
310 1660 64 831 1155 30
315 1559 47 830 1241 28
320 1534 38 689 1170 23
325 1621 25 796 1175 35
330 1514 34 804 1198 53
335 1399 111 831 1260 23
340 1512 1215 830 1100 41
345 1450 2643 830 1149 15110
350 1330 3701 804 968
355 1303 5900 690 860
360 1551 5846 796 844 7192
365 ...1?.z..~ .. §§.§.~ 831 865 40

~-------- ----- ---------- ----:--r----" 370 1267 7852 804 787 3518
375 1361 8832 906 947 49
380 1250 9789 638 965 11458
385 1193 641 912 3127
390 1372 638 1000 25
395 1180 322 892 3096
400 1042 611 814

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

8P =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.2

Appendix C: Results of Final tests

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML
405 1298 794 864
410 1008 640 918
415 1108 797 1034
420 1170 794 922
425 1043 796 870
430 1291 699 846
435 991 797 783
440 1182 508 828
445 953 507 817
450 929 624 774
455 1243 833 715
460 1204 800 748
465 874 512 923
470 1118 826 583
475 1106 881 551
480 888 1022 760
485 865 665 901
490 1011 794 876
495 846 925 894
500 1035 507 867
505 953 508 876
510 1096 1031 866
515 1118 796 957
520 924 323 957
525 1017 323 892
530 1093 614 893
535 923 635 545
540 1054 833 545
545 1343 625 538
550 951 507 465
555 978 323 526
560 1019 814 584
565 928 605 754
570 918 323 679
575 950 606 867
580 1052 505 894
585 1055 322 880
590 832 545 865
595 1039 640 873
600 924 786 894

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence,

(BP =
-M =
-N =
- L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0,3 level)
Leak ('peptidergic') added (at 0.35 level)

C,3

Appendix C: Results of Final tests

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML
605 1012 540 899
610 1026 413 871
615 932 796 823
620 966 323 780
625 939 796 755
630 801 641 633
635 861 322 588 1-------- ---r.----- ---- _ _-r.------ -----1----640 881 613 496
645 1004 817 682
650 789 322 668
655 1819 604 248
660 872 322 428
665 1101 323 728
670 1620 636 723
675 1553 323 604
680 1244 605 153
685 1176 94
690 1205 227 487
695 1636 689 450
700 1571 249 515 r-----~------.... - -----1-----r----- ----1------ -----705 1670 475 520
710 1565 552 471
715 1558 599 480
720 1510 598 116
725 1576 122
730 1502 599 433
735 1426 755 740
740 1190 249 27
745 1 117 822 460
750 1368 225 164
755 676 601 501
760 738 752 497
765 r----- 265 ----- 322 i------ 677 -------... ----- _-- -----.... ----770 634 499 629
775 1547 506 623
780 744 96
785 1012 505 264
790 1140 802 261
795 1382 669 471
800 898 702 139

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum te rm added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.4

Appendix C: Results of Final tests

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML
805 971 412
810 1289 607 359
815 1369 604 58
820 1273 317 433
825 1850 344 487
830 1307 593 394
835 531 613 416
840 1442 1309 541
845 850 583 856
850 815 469
855 1331 301 1139
860 1073 695 166
865 2694 "552 306
870 1369 621 579
875 1370 297
880 1084 92
885 1352 299
890 1174 536
895 1131 480
900 1245 705 271
905 1012 435
910 1694 507 27
915 742 153
920 1043 550 55
925 1666 411
930 2263 1320 187
935 2083 844
940 2392 40
945 2189 960 56
950 2102 323 143
955 2809 817 719
960 5053 270
965 2406 108
970 2686 775
975 3215 318
980 7913 2120
985 13646 101
990 2483 511
995 3956 3504
1000 3472

Data from Fmal tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

(BP =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.5

Appendix C: Results of Final tests

Learning Rate Seed 43 BP BPM BPN BPMN BPL BPML
1005 3614
1010 6896
1015 3807
1020 4373
1025 4747
1030 4924
1035 4671

i------- . -1-----!--- ---- ---- ----" 1040 5677
1045 6029
1050 6457
1055 6445
1060 10075
1065 6775
1070 7030
1075 6791
1080 7198
1085 7341
1090 7564
1095 7590
1100 t-~Q.!!'!!' r-.----. ~----- ----- t-----" --- ----- ----
1105 7372
1110 7840
1115 10539
1120 10718
1125 7990
1130 6585
1135 8214
1140 8432
1145 6632
1150 6087
1155 8606
1160 8819
1165 7224 ---- ---1-.... _-- 1----- ----1----- ----------" 1170 9007
1175 9022
1180 8510
1185 9180
1190 10446

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.6

Appendix C: Results of Final tests

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML
5 1623 10691
10 1716 4984
15 19708 1994 1438 3245
20 14480 2024 1513 2432
25 9953 2773 1427 1818
30 6179 2276 1466 1427
35 4123 J..?..?.2- 1469 .. :!'9~L ----- - - ---- ----- ----- ---40 2507 2102 1447 17447 879
45 2211 2276 1490 15366 721
50 1608 2237 1491 13703 558
55 1441 2276 1430 12348 463
60 1245 2102 1414 11223 388
65 1058 2101 1437 10274 251
70 969 2102 1429 9467 210
75 865 2101 1445 8776 95
80 719 2101 2059 8170 113
85 622 2101 1535 7636 97
90 568 2101 1522 7167 99
95 544 2091 2042 6750 108

100 ;...----- ---- 582 J..9.J"?- 2038 "~~~.Q. 2J._ .. -------- ----- _ _--
105 636 2092 1525 6056 77
110 588 2092 1401 5755 111
115 446 2092 1430 5460 141
120 378 2102 1430 5229 181
125 352 1547 1454 4982 191
130 341 1649 1403 4777 194
135 329 1635 1506 4560 193
140 322 1681 1456 4395 207
145 292 1680 2017 4184 258
150 289 1618 1433 4054 308
155 19525 32_L 1581 1390 3879 433
160 18933 467 1616 1357 3706 178
165 1------ 1.~;!'fl.Q. _1..Q.L1. J.2J.2. 1418 ~~~i. 85 --------- ----- --...;;-
170 17858 1680 1621 1480 3445 117
175 17377 1629 1620 1378 3290 96
180 16917 1587 1634 1442 3178 98
185 16471 1401 1621 1393 3126 97
190 16051 1198 1617 1374 3042 112
195 15578 1078 1578 1375 2935 189
200 15146 941 1575 1388 2858 278

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
(-M =

-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.7

Appendix C: Results of Final tests

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML
205 14748 1064 1575 1985 2819 625
210 14368 490 1716 1461 2701 782
215 14003 265 1577 1472 2591 930
220 13658 194 1700 1385 2493 996
225 13330 186 1436 1467 2402 1169
230 13025 334 1436 1367 2321 1387
235 188 1588 2261 -------- ---- ~..?.11'§ ----" ---- f-l.1~~-1'-----_liiL
240 12456 184 1552 1425 2256 1729
245 12213 210 1575 1368 2316 1489
250 11964 182 1575 1370 2257 1664
255 11743 199 1597 2093 2036
260 11521 250 1460 2000 2122
265 11317 512 1489 1968 1980 1937
270 11107 790 1964 1925 1994 1613
275 10910 376 1828 1373 1973 1365
280 10742 174 1548 1459 1915 1193
285 10556 192 1579 2005 1977 1 1 1 8
290 10371 2263 1617 1347 1747 1143
295 10204 5349 1578 1415 1692 1457
300 J..9..91..1 '§.Q.11~ 1434 1460 ~L~~IL ~1~~?. 1'--------- ----- ---- ------305 9863 6980 1679 1464 1735 1799
310 9729 5379 1470 1460 1957 3899
315 9604 3575 1711 1366 1804 1724
320 9428 987 1430 1320 1742 1482
325 9230 92 1423 1365 1740 7510
330 9039 72 1496 1493 349
335 8991 3107 1547 1934 1630 85
340 8807 5224 1547 1471 1555 2811
345 8731 5542 1426 1809 1608
350 8547 9537 1929 1409 1578 51
355 8349 10742 2172 1987 1542 85
360 8376 12497 1431 1244 46
365 r-~!§'1 L~_4...4.. 1432 290 1340 41 1'--------------- ---"-~---------- ... ----370 8057 13637 1432 1199 1976 23
375 7985 326 1644 1372 60
380 7747 173 1742 1212 1095 67
385 7835 220 1443 1355 1389 27
390 7553 673 1741 1442 4015 39
395 7547 812 1934 2904 1437 16751
400 7484 2105 1621 1403

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak (,peptidergic') added (at 0.35 level)

c.a

Appendix C: Results of Final tests

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML
405 7336 6254 1608 3023
410 7242 7881 1846 2016
415 7018 8057 1936 855
420 6927 825
425 6836 5013 1456
430 6816 190 1935 1432
435 6695 6685 1547 1624
440 6573 617 1549 2199
445 6511 1426 2681
450 6516 1545 2402
455 6441 1934 3179
460 6381 1577 5196
465 6331 11164 1934 2443
470 6099 577 1934 3602
475 6157 9733 1428 3796
480 6175 1538 5105
485 6191 15824 1497 5863
490 6005 198 1435 9577
495 5775 192 1538 7222
500 5708 1479 17429
505 6088 9760 1491 12405
510 5852 18230
515 5609 6227 1915
520 5601 1472
525 5559 1491
530 5735 1418
535 5584 1619
540 5455 1488
545 5382 1491
550 5264 1414
555 5352 2103
560 5104 1522
565 5070 1419 -570 5109 1492
575 5050 1491
580 4847 1473
585 4854 1635
590 4596 1934
595 4787 1468
600 4887 1418

Data from Fmal tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

~P =
-M =
-N =
- L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.g

Appendix C: Results of Final tests

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML
605 4942 1934
610 4718 1657
615 4776 1543
620 4376 1545
625 4547 1414
630 4701 1491
635 1543 -------- r-±§'Q.1.

----~ ---!---------------640 4398 1543
645 4507 1543
650 4448 1414
655 4446 1425
660 4472 1550
665 4162 1642
670 4410 1518
675 4337 1506
680 4203 1489
685 4119 1479
690 4343 1491
695 4696 1521
700 . r--1Q.~1 1543

~--------.. ----- ---- ----r------ -----~----705 4779 1468
710 4539 1544
715 4093
720 4385 1441
725 5321 1518
730 4743 1715
735 4096 1469
740 4709 1421
745 4066 1467
750 4498 1418
755 5526 1436
760 4038 1545
765 5181 3927 -------- ----- r----- ----- _- ------r----1-----770 3909 1458
775 5566 1641
780 6283 1715
785 6188 1451
790 5557 1405
795 5464 2105
800 5245 1435

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.10

Appendix C: Results of Final tests

Learning Rate seed 89 BP BPM BPN BPMN BPL BPML
805 10190
810 6913 1549
815 5882 1470
820 4241 1540
825 4053 1414
830 7493 1491
835 8824 1461
840 3989 1414
845 4837 1548
850 18045 1499
855 11898 1471
860 8025 1468
865 3239 5000
870 7024 1518
875 3911 1426
880 4819 1415
885 4939 1474
890 5007 1491
895 3015 1418
900 4187 1593
905 2708 1938
910 7814 1544
915 6756 1485
920 19554 1416
925 6533 1472
930 9608 1915
935 6203 3787
940 12840 1431
945 9552 2117
950 18464 1539
955 3134 1420
960 4696 1606
965 11207 1475
970 2294 1418
975 11806 1469
980 13389 2015
985 11538 1520
990 4567 1469
995 1457
1000

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
·M =
·N =
• L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.11

Appendix C: Results of Final tests

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML
5 9005 1970 9379
10 4642 275 4028
15 3015 202 2792
20 2096 -7279 275 18322 2031
25 17527 1512 12762 263 14917 1475
30 14587 1230 6675 119 12653 1030
35 12489 1082 6675 160 11043 723
40 10915 1076 6667 166 9842 542
45 9692 917 6643 166 8886 406
50 8713 789 5994 801 8037 309
55 7910 775 3932 705 7233 231
60 7241 743 5917 160 6503 174
65 6677 680 1554 60 5887 216
70 6195 610 1554 104 5361 202
75 5779 537 1557 153 4922 148
80 5414 458 1558 153 4576 189
85 5090 379 1555 127 4240 182
90 4803 324 1554 168 -.~-~ 199 --95 4551 307 1558 153 3683 180

100 4327 293 1558 104 3484 32
105 4124 279 4795 127 3254 32
110 3940 253 1558 127 3092 138
115 3775 223 1558 142 2946 206
120 3630 190 1551 126 2926 222
125 3488 162 3962 143 2707 162
130 3352 146 1554 126 2846 418
135 3244 130 6017 99 2971 159
140 3134 116 2016 210 2700 98
145 3032 103 1558 163 2550 44
150 2945 90 1548 163 2945 252
155 2855 81 1550 165 2996 35
160 2732 78 1596 102 2997 62
165 2691 79 3933 90 2903 125
170 2580 83 1543 219 2845 78
175 2505 85 5024 322 2864 131
180 2485 85 1990 276 2872 131
185 2433 82 2953 267 2828 56
190 2374 81 5023 283 2533 34
195 2318 79 1488 1026 2542 33
200 2251 69 336 319 2547 28

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
-L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.12

Appendix C: Results of Final tests

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML
205 2174 55 1188 343 1724 28
210 2138 50 336 320 1638 30
215 2103 48 336 597 1576 19
220 2041 51 1964 1110 1518 17
225 1957 48· 336 1113 1563 19
230 1948 46 336 323 1856 23
235 1888 44 337 320 2650 30
240 1855 41 334 585 2395 15
245 1808 48 348 390 2170 5899
250 1751 37 1519 1252 2030 3713
255 1690 46 1548 1031 1357 5314
260 1686 23 1156 1103 1333 7390
265 1686 30 334 965 1329 6909
270 1688 35 1064 1015 1293 10444
275 1664 35 334 1262 1207 15985
280 1636 44 337 1022 1205 10423
285 1610 50 335 653 2702 16607
290 1599 75 838 413 2629 9602
295 1572 437 785 1346 2214 9715
300 1551 787 1154 85 1904 9326
305 1539 1041 1543 3578 1380 8089
310 1496 1338 336 798 2117 9749
315 1518 1624 723 1075 1952 7937
320 1501 1917 849 1057 2059 6919
325 1496 1414 321 1527 2189 13009
330 1421 1017 1517 466 1735
335 1391 1707 243 1063 1919 16933
340 1366 3052 633 773 1326 25
345 1349 3259 930 790 1104 25
350 1334 3611 236 1042 1359 7671
355 1319 3717 704 976 1 181
360 1285 3909 236 648 989 2872
365 1280 4099 1309 847 1334 934
370 1218 4300 201 2321 1282 8678
375 1235 4475 245 1013 1704
380 1225 4612 165 2472 1701
385 1229 2631 335 1542 2197
390 1208 4915 268 964 992 9085
395 1205 5491 329 1053 1501 16564
400 1170 3320 235 1160 550 9982

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

J3P =
-M =
-N =
• L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.13

Appendix C: Results of Final tests

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML
405 1182 6901 277 1164 521 1074
410 1051 6144 262 2163 569 1815
415 1135 5544 261 1032 735 12150
420 1114 13943 292 2050 671 1018
425 1092 235 1199 431 8661
430 1071 19519 236 1479 587 9165
435 1063 273 1187 723 12399
440 1042 9005 235 2267 601 5093
445 1018 5876 334 1057 632 10463
450 1008 5909 276 1043 887 6477
455 990 7868 275 1912 1523
460 1066 8626 334 1928 1509 12624
465 974 322 1516 1445 2188
470 1005 237 1388 474 9649
475 1061 4078 337 1350 1523 584
480 1119 337 2409 1277 14129
485 1115 262 757 616 14988
490 1004 235 5950 792 ~.1.~
495 1063 333 19512 746 3159
500 1035 9332 235 8000 541 254 ""-50S 1046 192 4415 524 14133
510 1179 5789 256 3470 911 19007
515 1026 7746 320 1132 998 16101
520 916 718 2389 928 16523
525 1299 340 4768 847 15298
530 746 269 1031 1289
535 915 581 1470
540 752 9603 1027 2102 1324
545 790 379 9670 455
550 725 735 1376
555 788 12543 950 3424 710
560 962 509 896
565 886 5709 1139 3872 520
570 790 962 1468 755
575 939 722 2274 742
580 861 357 540
585 939 827 4686 761
590 643 733 2096 618
595 1051 510 5009 690
600 708 384 538

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
·M =
·N =
·L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.14

Appendix C: Results of Final tests

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML
605 822 113 4244 429
610 687 1103 6496 771
615 752 722 747
620 1901 304 1168
625 241 960 1262
630 807 237 4490 1024
635 717 J'§~.Q_ ------ 230 1---------- ----------1---
640 1041 362 4708 219
645 2033 648 5424 315
650 956 327 675
655 4563 950 6671 126
660 5491 270 1641 139
665 1885 358 4482 797
670 598 754 330
675 7507 936 4196 492
680 739 956 5920 243
685 4149 830 319
690 625 1363 3916 702
695 1130 1259 301
700 1694 J~..Q'§_ 5517 186 -------- ---- ... ---- ~----" ----_. ---- - ---
705 2312 950 947
710 2213 835 6971 1235
715 2782 957 12915 389
720 2953 343 948 520
725 470 322 581
730 750 708 1000 626
735 1414 425 5569 530
740 687 957 13712 697
745 2753 211 8969 848
750 2444 1171 18363 486
755 1291 992 ~?90 610
760 2605 932 13417 592
765 562 950 4514 1257 ro--------- -----1----- :-..----.. ----- ----- ---- --770 2400 1181 1260
775 1344 957 18359 660
780 882 508 922
785 4588 1066 748 514
790 3748 327 4711 541
795 3568 708 11521 210
800 2613 473 12644 850

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
-M =
-N =
- L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.15

Appendix C: Results of Final tests

Learning Rate seed 67 BP BPM BPN BPMN BPL BPML
805 1552 704 10124 704
810 2665 910 10500 294
815 6248 237 14862 493
820 3272 713 438
825 4297 722 19663 250
830 4719 628 3836 170
835 4011 479 95
840 2861 2054 122
845 6441 712 8212 452
850 5335 332 150
855 7502 666 6429 165
860 2644 194 832 156
865 11513 1200 1534 326
870 11259 228 423
875 3768 1170 417
880 1358 931 589
885 1713 909 6375 1250
890 9154 798 428
895 5974 530 119
900 7223 764 1768 278
905 5796 321 8849 668
910 9530 931 2939 480
915 5049 838 6031 158
920 1824 1026 594
925 321 667 515
930 5709 961 4152
935 645 2115 12328 516
940 6805 731 10532 335
945 6008 795 2581
950 12100 1124 11345 4896
955 4633 909 1055
960 12888 466 980
965 1432 321 1917 1519
970 360 666
975 14511 948 2915
980 6870 667 219
985 5602 935 1094
990 8430 479 694
995 14149 700 8905 1236
1000

Data from Final tests on effect of Learning Rate on Noise
parameters, number represents iteration of convergence.

BP =
·M =
·N =
·L =

KEY:

Back Propagation base model
Momentum term added
Random Noise added (at 0.3 level)
Leak ('peptidergic') added (at 0.35 level)

C.16

Appendix D:
Full graphs of Back Propagation Data

The following graphs are full representations of those shown
abbreviated in Chapter 5. These are based directly on the data in
Appendix C.

The figures shown in this appendix are as follows:

Figure 0.1. Back Propagation model using three different initial random
seed settings.
Figure 0.2. Back Propagation model with random noise added, using
three different initial random seed settings.
Figure 0.3 Back Propagation model with 'Leak' activation added, using
three different initial random seed settings.
Figure 0.4. Back Propagation model with Momentum added, using three
different initial random seed settings.
Figure 0.5 Back Propagation model with Random noise and Momentum
added, using a single initial random seed setting (43).
Figure 0.6 Back Propagation model with Random noise and Momentum
added, using a single initial random seed setting (89).
Figure 0.7. Back Propagation model with Random noise and Momentum
added, using a single initial random seed setting (67).
Figure 0.8 Back Propagation model with 'Leak' activation and Momentum
added, using a single initial random seed setting (43).
Figure 0.9. Back Propagation model with 'Leak' activation and
Momentum added, using a single initial random seed setting (89).
Figure 0.10. Back Propagation model with 'Leak' activation and
Momentum added, using a single initial random seed setting (67).
Figure 0.11. Back Propagation model comparing random noise and 'Leak'
activation, using a single initial random seed setting (43).
Figure 0.12. Back Propagation model comparing random noise and 'Leak'
activation, using a single initial random seed setting (89).
Figure 0.13 Back Propagation model comparing random noise and 'Leak'
activation, using a single initial random seed setting (67).
Figure 0.14. Back Propagation model comparing random noise and 'Leak'
activation with added momentum, using a single initial random seed
setting (43).
Figure 0.15. Back Propagation model comparing random noise and 'Leak'
activation with added momentum, using a single initial random seed
setting (89).
Figure 0.16 Back Propagation model comparing random noise and 'Leak'
activation with added momentum, using a single initial random seed
setting (67).

0.0

Appendix D: Full Back-Propagation graphs

20000,---~

Iteration

10000

O;I--~--~--~--~--~~--~--~~r_--~--~--~~

o 200 400 600 900 1000 1200

Lee.ming Rate (x 100)

-0-- Seed 43
Seed 89
Seed 67

Fi~re D.l. Base Back Propigation model using three differe:nt initial random sa:rl settin~.

D.1

Iteration

Appendix D: Full Back-Propagation graphs

15000,--,

10000

5000

o 1
o 200 400 600 900 1000

Leeming Rate (x 100)

Fi~re 0.2. Back Prop1gation model with random noise add.ed,
using three diffulent initial random seed. settings.

D.2

-a- Seed43
Seed 89
Seed 67

Appendix 0: Full Back-Propagation graphs

20000~--~

Iteration

10000

01 --
o 200 400 600 800 1000

Learning Rate (x 100)

Figure 0.3. Back Propagation model with 'Leak' activation added,
using three diffeteut initial random seed settings.

0.3

--a-- Seed 43
Seed 89
Seed 67

Iteration

Appendix 0: Full Back-Propagation graphs

20000~i~~---'

10000

O! $±M: ;1 ¢tn' t'Nt;bW, Vi ~.,. ~
100 200 400 500 300 600

Lee.ming Rate (x 100)

Fi~re D.4. Back Prop:1gation model with MOmentum addect
using three diffe:tellt initial random seed settings.

0.4

--0-- Seed 43
Seed 89
Seed 67

Appendix 0: Full Back-Propagation graphs

20000,---~

Iteration

--G- Back Prof8gation
10000 -~.~ with noise

--1."- with noise
+ momentum

O(!;:~'
o 200 400 600 900 1000 1200

Learning Rate (x 100)
Fi~re D. 6. Back Prof8gation model with Random noise and Momentum added,

using a single initial random see:! setting (43).

0.5

Appendix 0: Full Back-Propagation graphs

20000~--~--,

Iteration

---a- Back Prof6gation
10000 --+- with noise

__ with noise
+ momentum

O~I--~--~r---~~.---~--'---~---r--~--~
o 200 400 600 800 1000

Learning Rate (x 100)

Fi~re D.B. Back Prof6gation model with Random noise and Momentum adda:i,
u sing a single initial random seed setting (89).

0.6

Appendix 0: Full Back-Propagation graphs

20000------------------------~------------~._----~

Iteration

-0- Back Propiga tion
10000 -+- with noise

____ with noise
+ momentum

200 400 600 BOO 1000

Learning Rate (x 100)

Fi~u-e D. 7. Back ProFBgation model with Random noise and Momentum added,
using a single initial random seed setting (67).

0.7

Appendix 0: Full Back-Propagation graphs

20000.--,

Iteration

--G- Back Prof8ga tion
10000 --+- with leak

--- with leak
+ momentum

o 1".7 ? ;.:r~'i~
o 200 400 600 800 1000 1200

Learning Rate (x 100)

Fi~re D.B. Back Prof8gation model with 'Leak' activation and Momentum adda:i,
using a single initial random seed setting (43).

0.8

Appendix 0: Full Back-Propagation graphs

20000~--~

Iteration

--a- Back Prop:tgation
10000 -+- with leak

--- with leak
+ momentum

0 1"" 74 "z! e i i

o 200 400 600 900 1000

Learning Rate (x 100)

Fi~re 0,9, Back Prop:tgation model with Leak' activation and Momentum addect
using a single initial random seed setting (89),

0.9

Appendix 0: Full Back-Propagation graphs

20000,--,

Iteration

-0- Back ProF8gation
10000 -+- with leak

-- with leak
+ momentum

I' o NIl ,---_ • r o ,-~.M"l
200 400 600 900 1000

Learning Rate (x 100)

FigJ.re 0.10. Back Propagation model with Leak' activation and Momentum added,
using a single initial random seed setting (67).

0.10

Appendix 0: Full Back-Propagation graphs

20000~--~

Iteration

-a- Back Prof8gation
10000 -+- with noise

--- with leak

o I .. i ~ ~ I n -Uf-
O 200 400 600 800 1000 1200

Leeming Rate (x 100)

Fi~re 0,11. Back Propigation model oomplring random noise and Leak' activation,
u sing a single initial random seed setting (43),

0.11

Appendix 0: Full Back-Propagation graphs

20000.--,

Iteration

-0- Back ProFBga tion
10000 -+- with noise

-- with leak

0~1----~--~--~----r_--~--_,----~--_r--~--__4

o 200 400 600 800 1000

Learning Rate (x 100)

Fi~re D.12. Back ProPlgation model oompuing random noise and 'Leak' activation I
using a single initial random seed setting (89).

0.12

Appendix D: Full Back-Propagation graphs

20000.---~

Iteration

-a- Back ProfBga tion
10000 -+- with noise

---- with leak

o I 'lWw~gWr·l""l1 o I i~
800 200 400 600 1000

Learning Rate (x 100)

Figure D.13. Back ProfBgation model oomfBring random noise and 1.ee.k' activation,
using a single initial random seed setting (67).

D.13

Appendix 0: Full Back-Propagation graphs

20000,---~

Iteration

10000

o I ...-..' 'iIBQ 1 ill , 11' kM('colt\\ol n8, • II. ~ I
o 100 200 300 400

Learning Rate (x 100)

-0- Back ProJEgation
+ momentum

-+- with noise

-II- with leak

Fi~re 0.14. Back Propigation model with momentum, oompiring random noise and 'Leak' activation
with adda:i momentum, using a single initial random seed setting (43).

0.14

Appendix D: Full Back-Propagation graphs

20000~1~~~--------------------------------------~

Iteration

10000

o I ~ syn * L ~qg I 1lII1 WI m~ ... «I.
o 100 200 300 400 500 600

Learning Rate (x 100)

--a-- Back Prop;.ga tion
+ momentum

-+- with noise

--- with leak

Fig.Ire D.15. Back Propigation model with momentum, compiring random noise and 'Leak' activation
with ac:ld.a:i momentum, using a single initial random seed setting (89).

D.15

Appendix 0: Full Back-Propagation graphs

20000
I-

I~ I~ ~

~
Iteration

~ !- ~

I
I

....

~ II

J ~ a N~~ ~ -

10000

I ,
~. ~ ~ ~-IL ~M1 .. n 1 . o

o 200 400 600 800

Learning Rate (x 100)

~

1000

--e- Back Prop:iga tion
+ momentum

-+- with noise

--- with leak

Fi~re D.16. Back Prop1gation model with momentum, oomp1ring random noise and 'Leak' activation
with added momentum, using a single initial random seed. setting (67).

0.16

Appendix E

The GENESIS Neural Simulation Package

The GENESIS (GEneral NEtwork Simulation System) package

was designed specifically as a neural simulator. rather than a

general purpose electrical simulator such as SPICE. which was

used for earlier neural simulation work. GENESIS was written by a

team under James Bower at the California Institute of Technology.

with most notable contributions by Matt Wilson. John Uhley and Upi

Bhalla {Wilson & Bower. 1989}. GENESIS is available from the user

group. Babel (at babel@babel.cns.caltech.edu)

GENESIS was designed and built as an object-oriented

software package which eases the expansion of the package to

include new discoveries in the neurological field. The basic system

includes a library of object modules which support functions

analogous to those found in current knowledge of neural reality.

The level of simulation is variable. consistent with the tenets of

compartmental modelling theory. and may extend from modelling at

a single neuron level down to the modelling of a single ion channel.

Unfortunately. the level of documentation currently available. is a

poor indication of the abilities of the software.

Each object-oriented module has an associated computational

function. which is activated by a message passing system. The

function operates on the provided parameters and sets its own

parameters based on the results of the calculation. The module may

E.1

Appendix E: The GENESIS Neural Simulation Package

be queried at any time, by any other element, to determine the

values of its associated parameters. The five most important

modules are the 'Compartment', 'ChanneIC2', 'hh_Channel', 'Spike',
-

and 'Axon' modules. The former four are referred to as elements,

and the final module is a connection module.

Compartment

A compartment is the basic unit capable of charge capacity in

the model, which simulates a section of passive membrane. The

Compartment element includes Membrane resistance and

capacitance with a resting equilibrium capacitance, and a potential

Axial resistance component for linkage to other compartments. A

direct path is allowed in the calculation mechanisms for the

introduction of channel conductances, discussed in the next

section. Finally, a current injection component allows constant or

periodic current injection for network input and testing purposes.

(see figure 01)

The Compartment element calculates the voltage across the

simulated membrane using an integrative function of the form:

dVm/dt = \f(\f«Em - Vm),Rm) + l:\f«Vm' - Vm),Ra') + \f«Vm" -

Vm),Ra) + l:«Ea - Vm)*Ga + inject),Cm)

(Equation D 1)

(Where Em is the Equilibrium constant of the membrane, Vm

is the voltage across the membrane, Rm is the membrane

'resistance, Ra is the axial resistance, Ea is the equilibrium

E.2

Appendix E: The GENESIS Neural Simulation Package

constant of active channels, Ga is the conductance value of active

channels, 'inject' is the current injected into the compartment and

em is the membrane capacitance; time-steps are usually in msecs)

Different integrative methods can be used, chosen from

Forward Euler, Exponential, Gear 2nd order, Adams-Bashforth (2 or

3 step) and Trapezoidal.

Axial 44,H~ V It
Resistanc£{'.",'Pr'- i 0 age

Membrane
Resistance
and
Rest
EQuili b

Channel!
Path ':~~

<')'0-

"r.:o·
r:."" -,

I
I

__ .I. •••
.-~-• · •

-L

Current
Injection

Membrane
Capacitance

I ntracellular cytoplasm

Figure 01. Compartment module of the GENESIS package.

ChannelC2

The channel element simulates a time dependent ionic

channel, activated by a synaptic element with a particular weight.

The channel element calculates the conductance of a particular

. channel based on the incoming activation, maximum possible

activation and the supplied activity time constants. The channel

conductance is calculated:

.. 2 (tau1 + tau2) * 1 *
activation = d Y/dt2 + (tau1 *tau2) dY/dt + (tau1 *tau2) y

Gk = gmax* A *y

(Equation 02)

E.3

Appendix E: The GENESIS Neural Simulation Package

(where Gk is the channel conductance, gmax is the maximum

possible conductance and A is a normalization factor. Tau1 and
-

tau2 are time constant factors which allows 'activation' to impose

a damped second order time course on the conductance)

Channel
Conductance

T lon1c equ1l1br1um
Battery

Figure 02. Ionic channel element of the GENESIS package.

hh_Channel

The hh_Channel element is analogous to the Hodgkin-Huxley,

or voltage dependent, ion channels found in a cell membrane. These

channels are operated by the voltage along the membrane of a

compartment. These are characterised, in the model, by four sets

of time constants which control the operation of the voltage gated

channels at different voltage differential levels. The actions of

these channels feed directly· into the compartment in which they

reside.

E.4

Appendix E: The GENESIS Neural Simulation Package

Spike

A spike event is generated by the spike element. This element

produces a spike of pre-defined amplitude if the input voltage from

the connected compartment is above a pre-defined threshold, as

long as a pre-defined 'refractory' period has elapsed since the last

spike. The spike element is usually coupled to an axonal element,

for which it includes a timed buffer to store the spike event. When

the timer on a particular buffer has elapsed the spike is delivered

to the axon target.

Axon

An axon connection element interacts with the spike element

to produce a delay between the onset of a spike in the somatic end

of the axon and the delivery of the spike to the target cell process.

During delivery of the spike, the activation provided to the target

is scaled by an axonic weight, analogous of a connection weight in

an artificial neural network.

The MultiCell Example

The MultiCell example is supplied with the GENESIS software

as a set of five script files. Each is arranged to correspond to the

building of a particular set of modules. The five script files are:

E.5

Appendix E: The GENESIS Neural Simulation Package

MultiCell.g

constants.g

channel.g

compartment.g

cells.g

The MultiCell.g file is a startup file which "includes" the

other files, as part of the execution cycle. The process of building

the simulation is split amongst the five files, beginning with the

definition of constants and functions to be used in later parts of

the script.

The constants are read in first from the constants.g script

file. These include the equilibrium constants for membrane resting

and leakage states, and for active Sodium and Potassium channels.

Peak conductances for the active channels are also defined here.

The channel creation functions are located in the channel.g

fife, which is the next to be processed. One function is defined for

the creation of active Sodium and Potassium channels. A further

two functions are defined to create Hodgkin-Huxley Sodium and

Potassium channels.

The general syntax for the creation of an active channel is:

create ChannelC2 {compartment/channel}

where {compartment/channel} are supplied parameters used

to localise the channel in a compartment. The channel parameters

must then be set. These include the channel Equilibrium constant,

the channel time constants and the peak conductance associated

E.6

Appendix E: The GENESIS Neural Simulation Package

with the channel. The syntax for the setting of these parameters is

as follows:

set "'\ II set parameters of the above element

Ek {Ek} \11 Equilibrium constant

taul {taul} \11 Time constant 1

tau2 {tau2} \11 Time constant 2

gmax {gmax} II Peak conductance value

Hodgkin-Huxley channels require a more detailed set of

parameters, including the active area of the channels, in order to

calculate the mean conductance, and several rate constants used to

control the output of the channels at particular voltage values.

Hodgkin-Huxley channels will not be altered in the modified model

so they will not be described more fully here.

The compartment.g script file contains a function for

creating a compartment within the GENESIS system. Parameters

required for this function include the length and diameter of the

compartment, from which the area and cross-sectional areas are

calculated. These are then used with the resistive and capacitive

constants to set membrane resistance, capacitance and axial

resistance. Other required parameters are the resting equilibrium

constant, and unitary measures of resistance and capacitance. A

compartment is created in the following manner:

create

object

set

compartment {path} I I location of

{path} \

Em {Erest} \11 Rest Equilibrium

E.7

Appendix E: The GENESIS Neural Simulation Package

Rm {rm/area} \11 Membrane resistance

em {cm*area} \11 Membrane capacitance

Ra {ra*l/xarea}11 Axial resistance

The Cell.g script file contains a function which creates an

entire cell. This function calls the compartment and channel

creation functions defined previously. The spike element for cell

output is also created in this script; this is created and set in the

following manner:

create spike spike

set spike \

thresh 0 \11 Spike threshold

abs_refract 10 \11 Refractory period

output_amp 1 II Output amplitude

Also in the cell.g script, the axon is created, and the message

passing system is defined to link the soma with the spike element

and the spike element with the axon. The final parameters define

what type of message to send and the source of the value to send

with the message:

create axon axon

sendmsg soma spike INPUT Vm

sendmsg spike axon BUFFER name

E.8

Appendix E: The GENESIS Neural Simulation Package

Finally, the remainder of the MultiCell.g script is executed

which calls the creation routines for the two cells, positions them

in three dimensional space and connects the axons to specific

targets. The axon from cell 1 is connected to the Sodium channels

of cell 2, and the axon parameters are set:

connect Icelll/axon Icell2/soma/dend/Na_channel \

with synapse II Use synapse function to

modify axonic spikes

set Icelll/axon:O \

delay

weight

5

30

\11 5 msecs transmission delay

II synapse weight

connect Icell2/axon Icelll/soma/dend/K_channel \

with synapse II Use synapse function to

modify axonic spikes

set Icelll/axon:O \

delay

weight

5 \11 5 msecs transmission delay

300 II synapse weight

As a source of excitation a current injection is supplied to

cell 1, which should trigger the cell into spiking behaviour after a

summation delay:

set Icelll/soma inject 3e-4 II microArnps

E.g

Appendix E: The GENESIS Neural Simulation Package

The Experimental modifications

The experiment requires few modifications, since there are

only two cells to modify. As was explained in chapter six, the

existence of only two cells negates the requirements for run-time

calculations of point-to-point peptidergic concentrations in three

dimensional space, because the only relevant measure becomes the

distance between the two cells. In this case, we can simulate a

basic peptidergic system by adding an extra axon from each cell .
and using the delay, time constant and weighting parameters to

simulate peptidergic activity.

The modifications require only the definition of two new

axons and their parameters, with added connections between the

cells and a new message for each axon to link the spike element to

the axon.

The new axons are defined and set as:

create

create

axon

axon

connect Icelll/axon2

/cell1 /axo n2

Icell2/axon2

Icel12/soma/dend/Na_channe12 \

with synapse II Use synapse function to

modify axonic spikes

set Icelll/axon2:0 \

connect

delay

weight

30

3

Icel12/axon2

\11 5 msecs transmission delay

II synapse weight

Icell1/soma/dend/Na_channe12 \

E.10

Appendix E: The GENESIS Neural Simulation Package

with synapse II Use synapse function to

modify axonic spikes

set Icel12/axon2:0 \

delay

weight

sendmsg spike

sendmsg spike

30

3

\11 5 msecs transmission delay

II synapse weight

Icell1/axon2

Icell2/axon2

BUFFER name

BUFFER name

The weight parameters are set to 3 in order to emulate a

weak connection. The delay is set to six times the 'normal'

transmission rate in order to simulate a diffusional process. This

is aided by setting the time constants of the receiving active

channels to a value of 20 milliseconds, which is done at run-time

in a channel control window.

E.11

