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ABSTRACT 

This thesis examines the application of a particular neuromorphic computational 

model, the Boltzmann Machine, to the evaluation of laryngeal behaviour using 

parameters derived from the acoustic analysis of irregularities in the periodic 

structures of speech signals. Over the last twenty five years, researchers in 

various fields such as speech science, laryngology, speech pathology and 

phonetics have demonstrated a growing interest in the acoustic characterisation 

of healthy and pathological voices. This research activity has been in response 

to the need for non-invasive and quantitative techniques for the assessment of 

laryngeal function. 

Over the past five years neuromorphic computation has undergone a dramatic 

transformation with the development of powerful learning algorithms and the 

promise of highly parallel implementations taking advantage of developments in 

high density integrated circuit technology. These neuromorphic systems are 

machines that behave in brain-like ways and compute by absorbing experience. 

The Boltzmann Machine learning algorithm provides a formally guaranteed 

procedure for performing gradient descent in a global error measure. This thesis 

presents, for the first time, results which demonstrate the potential of the 

Boltzmann Machine approach to the detection of laryngeal pathologies. 

A simulation environment for Boltzmann Machines was successfully developed 

which provided acceptable speeds of operation for the sizes of network 

investigated, and the quantity of training data used, provided approximations to 

the theoretical Boltzmann Machine were made. Chapter 4 presents details of this 

implementation. 

Experiments using various topologies of Boltzmann Machine made use of ten 

intonation and perturbation parameters, derived from the analysis of waveform 

perturbations of fundamental frequency and amplitude evidenced in samples of 

connected speech from groups of healthy and pathological male speakers. A 

series of experiments are presented in Chapter 6 which evaluate the performance 

of various Boltzmann Machine topologies and data representation formats to the 



differentiation between groups of healthy speakers and speakers with known 

pathological conditions of the larynx. From these experiments it was concluded 

that the intonation and perturbation parameters could be processed using a 

Boltzmann Machine to provide useful differentiation between groups of healthy 

speakers and speakers with known pathological conditions. 

Chapter 7 presents a series of experiments using various topologies of Boltzmann 

Machine to differentiate between broad classes of pathologies using ten 

intonation and perturbation parameters. The experiments showed that it was 

possible for various pathology groups to be differentiated in a training group. 

The successful development of a neuromorphic system for determination of 

laryngeal function associated with healthy and pathological phonation has a 

number of potential applications, including screening, differential diagnosis and 

tracking changes in the condition of laryngeal pathology. 



PRINCIPAL SYMBOLS AND ABBREVIATIONS 

AO Amplitude of fundamental frequency waveform peaks 

CAM Content Addressable Memory 

CPU Central Processing Unit 

CSA Classical Simulated Annealing 

DAP Distributed Array Processor 

DMA Direct Memory Access 

E Energy 

FO Fundamental frequency 

FO-DEV Standard deviation of FO trendline values 

FO-AV Mean value of smoothed FO trendline 

FSA Fast Simulated Annealing 

G An information theoretic distance measure 

Hz Hertz 

J-AVEX Average magnitude of excursions of the raw FO contour from the 

local trendline 

J-DEVEX 	Standard deviation of (signed) excursions of the raw FO contour 

from trendline 

J-DPF Directional Perturbation Factor for FO 

J-RATEX Rate of FO excursions 

LMS Least Mean Square 

LTM Long Term Memory 

MI Memory Interconnect (bus) 

N Total number of units 

N(O,a) Sample from a Gaussian distribution of mean 0 and standard 

deviation 

neti Total input to unit i 

NFS Network File System 

Oj Output of unit  

P Total number of nominated patterns 



Pij Probability of finding units i and / on together at thermal 

equilibrium when the input and output units are clamped 

(input/output model) 

Pij Probability of finding units I and j on together at thermal 

equilibrium when the input units are clamped (Input/output 

model) 

RTL Run-Time Library 

RTU Real-Time Unix 

S-AVEX Average magnitude of excursions of the raw AO contour from the 

local trendline 

S-DEVEX Standard deviation of (signed) excursions of the raw AO contour 

from trendline 

S-DPF Directional Perturbation Factor for AO 

S-RATEX Rate of AO excursions 

SD Standard Deviation 

si State of activation of unit i 

SIMD Single Instruction Multiple Data 

STM Short Term Memory 

T Temperature 

TLU Threshold Logic Unit 

ui ith unit 

VLSI Very Large Scale Integration 

w1 connection strength and sense from unit uj to unit u, 

XOR Exclusive-OR 
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1 INTRODUCTION 

1.1 INTRODUCTION 

The aims of this thesis are to assess a neuromorphic computational approach, 

based on the Boltzmann Machine model, to the processing of acoustic 

parameters for screening voices for the presence of laryngeal pathologies, and 

for the differentiation of such pathologies. 

Deviant laryngeal behaviour associated with pathology of the larynx is assessed 

and quantified by taryngologists. Their chief concerns are the medical diagnosis 

and treatment of laryngeal pathologies. Two of the basic techniques used by the 

laryngologist to diagnose the various disorders of the laryngeal mechanism are 

visual examination of the larynx and auditory evaluation of the voice. 

Visual laryngeal examination is usually completed by indirect laryngoscopy in 

which a mirror is placed in the patient's throat in order to observe the vocal folds 

and surrounding tissues. This visual assessment technique however, only 

provides a restricted supralaryngeal view of the larynx under static conditions. 

Other instruments such as the direct laryngoscope can be used for improved 

visual examination of the larynx, but all these techniques are invasive and may 

not be readily accepted by certain patients. Both the indirect and direct methods 

may be combined with stroboscopic illumination techniques to provide a more 

dynamic view of vocal fold activity. Auditory appraisal of the phonatory quality of 

a patient's voice suffers from non-pertinent factors, with the differences between 

individual's perceptions being the greatest problem. 

Although there are alternative methods (such as stroboscopy, glottography, 

electrolaryngography, electromyography and laryngoscopy) widely available for 

quantitative laryngeal research and diagnosis, an acoustic technique has the 

distinct benefit of being non-invasive, and also produces objective quantitative 

measures of dynamic laryngeal behaviour. 
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The non-invasive nature also makes it suitable for routine clinical assessment of 

laryngeal function and, in particular, for screening populations for the presence 

of laryngeal pathologies. Voice samples may be collected using standard digital 

tape recording procedures, which are simple and highly portable. These may be 

operated by non-medical personnel in any relatively quiet situation in clinics, 

factories and schools. This technique also ensures that speakers are only 

subjected to minimal distress. 

An automatic acoustic system which can detect laryngeal pathology therefore 

has several potential applications. These include screening of populations; 

allowing assessment of priorities among a pre-selected population of patients 

already complaining of voice problems; diagnostic support where a particular 

laryngeal pathology is already suspected; longitudinal monitoring to assess 

change in phonatory efficiency in patients undergoing surgery, speech therapy, 

radiotherapy or chemotherapy; or to track deterioration in progressive disease. 

However the validity of acoustic assessment procedures is dependent on the 

complex relationship between the vibrating source function and the resultant 

speech signal output by the production system. Davis (1979) summarises the 

nature of this complex relationship in the following way:- 

In general, asymmetrical changes in the mass and elastic properties 

of the vocal folds are created by the presence of laryngeal pathology. 

These asymmetrical changes result in modulation of the subglottal 

airstream by unbalanced vocal fold movement. 

Irregular air pulses are emitted by the larynx into the supraglottal 

structures which are then radiated at the lips and nose. 

The resultant acoustic signal is therefore affected by a disturbance 

of the vocal folds -- and the acoustic speech signal can be used to 

quantify the disturbance. 

-2- 



Studies by Hitler (1985) and Beck (1988) using long-term intonational and 

perturbation parameters to discriminate speakers as either belonging to a control 

group or to a pathological group have been based on bivariate plot, linear 

discriminate analysis or maximum likelihood estimation techniques. From these 

studies it has emerged that many of the parameters studied represent redundant 

information and that no single parameter is sufficient for satisfactory 

discrimination between the two groups. If these parameters are indeed capable 

of providing an adequately robust and reliable discrimination system, then the 

problem of determining which features of the individual parameters or groups of 

parameters are pertinent to this process ensue. Neuromorphic models offer an 

alternative approach to the above mentioned techniques. 

Many problems cannot be assessed in terms of isolated facts or even in terms 

of a body of isolated facts. Rather, there is a need to describe situations in terms 

of patterns of interrelated facts. Sometimes, the interrelation is implicit, in the 

sense that we know that all those facts pertain to the same object or situation. In 

other cases a pattern may be meaningful only because of explicit relationships 

among the various features of the pattern. Our perceptive powers seem to be 

well adapted to such pattern-processing tasks. Neuromorphic computational 

systems are machines that are able to process pattern-information in neurally 

inspired ways. 

"Neural computing is .... concerned with a class of machines that compute by 
absorbing experience, and in that sense is a class which includes the brain, 

but may include other forms with similar properties." (Aleksander, 1989). 

The architecture of these systems differs radically from that of the Von Neumann 

machine. In neuromorphic systems the processing takes place in memory, and 

is distributed over many elements operating in parallel. These elements are 

arranged in patterns similar to those found in biological systems, and connected 

to each other by adaptive weights. Knowledge is acquired through training rather 

than programming and is retained using interconnection weights. In the operation 
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of the net, the knowledge takes the form of stable states or cycles of states. A 

key property of such nets is to recall these states or cycles in response to the 

presentation of input stimuli. 

Aleksander (1989) neatly summarises the promise that neuromorphic computing 

systems hold as follows:- 

They are computationally complete, meaning that, given an 

appropriate neural structure, and appropriate training, there are no 

computational tasks that are not available to neuromorphic systems. 

The ability to perform functions beyond the capability of rule-based, 

conventional systems by functional use of experiential knowledge. 

This also includes the ability to generalise, without requiring any 

special generalisation formation mechanisms. 

Rapid solutions to problems which in conventional computers would 

take a long time. 

Insights into the computational characteristics of the brain. 

This thesis is an attempt to develop a neuromorphic computational approach 

to the processing of acoustic perturbations found in the speech signals produced 

by pathological speakers as well as healthy speakers. It presents for the first 

time, results which demonstrate the potential of this approach to the detection 

and differentiation of laryngeal pathologies using intonation and perturbation 

parameters. 

The neuromorphic systems described in this work attempt to implement 

approximations of the useful computational properties exhibited by neuronal 

systems. The Boltzmann Machine may be regarded as a special case of the 

Gaussian Machine (Akiyama et al., 1989). The software simulations undertaken 

in this study are in fact close approximations to the Boltzmann Machine model, 

as Gaussian rather than logistic noise has been used. One may therefore argue 

that the network models described in the following chapters should be referred 

to as Gaussian Machines. However, the Gaussian Machine should be regarded 
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as the general model, with models such as the McCulloch-Pitts, Hopfield and 

Boltzmann Machine being special cases. Where relevant, the network models 

described in this work are referred to as Boltzmann Machines. 

The Boltzmann Machine structure requires symmetric links, an appropriate 

decision rule and the absence of connections from a unit to itself, but makes no 

other restrictions on the topology of the network employed. Units directly affected 

by the environment may be connected to each other, or not. Hidden units can 

be connected to each other, or not. Units can be arranged in layers or not. The 

formal proof of the Boltzmann Machine learning algorithm is particularly elegant 

and is completely insensitive to such issues. 

1.2 OVERVIEW OF REMAINING CHAPTERS 

The opportunity is taken in Chapter 2 to present an introduction to neuromorphic 

systems, which as the name implies are largely based on our knowledge of the 

nervous system. A brief historical development of significant neurophysiological 

milestones is presented from the time of the ancient Greeks to the demonstration 

of the ionic workings of the nerve impulse by Hodgkin and Huxley in 1952. An 

outline of the basic mechanisms of operation of the neuron, which is essentially 

a communications device, and the basic element of the nervous system, is then 

discussed. A general framework for describing neuromorphic models is then 

presented along with a brief history of the development of these models. 

The Boltzmann Machine may be described as a thermodynamic model because 

it allows a rigorous mathematical description using statistical mechanics 

techniques. Chapter 3 presents details of the development of the Boltzmann 

Machine, starting with the Hopfield model. The analogy with Ising spin systems 

and a biological interpretation of this model are also discussed. A modification 

to the Hopfield updating rule by Hinton, Sejnowski and Ackley (1984) resulted in 

the Boltzmann Machine. This is discussed along with the technique of simulated 

annealing which allows the Boltzmann Machine to find its global minimum. A brief 

review of the Harmony Machine, which is rather similar to the Boltzmann Machine 
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is also presented before detailing the general class of machines known as 

Gaussian Machines. A deterministic model, the Multi-layer Perceptron, is also 

capable of learning with hidden units using the back propagation algorithm and 

is also discussed for completeness. 

The Boltzmann Machine simulation environment using a Masscomp MC5700 1  

and vector accelerator platform is described in Chapter 4. This includes details 

of the implementation of the learning algorithm and an overview of the functional 

elements of the software developed. The graphical weight display routines and 

interpretation of the weight maps are also discussed before presenting two simple 

but explanatory learning examples. The first example is that of the classic logical 

exclusive-or (XOR) learning problem and the other the 4-2-4 encoder problem. 

Both these problems depict the ability of the Boltzmann Machine to use hidden 

units in determining the general underlying features of its environment. 

Chapter 5 provides an introduction to laryngeal pathology and waveform 

perturbations. Details of the larynx and vocal folds are discussed together with 

the acoustic significance of various laryngeal pathologies. A brief review of 

perturbation analysis is presented together with details of the Hiller (1985) 

Perturbation Measurement System. This system provided the acoustic parameter 

data which was made available to the Research Group in which the various 

Boltzmann Machine studies were made. Finally, detail of the subjects and speech 

samples which were used in creating this data are provided. 

The use of the Boltzmann Machine model to estimate whether speakers have 

healthy or pathological voices as evidenced by intonational and perturbation 

parameters is described in Chapter 6. The ability of networks with and without 

hidden units is discussed along with the difficulties associated in using a small 

data sample and achieving good generalisation. Architectural constraints using 

restricted receptive fields for the intonation, shimmer and jitter parameters are 

also investigated. In addition, the use of restricted receptive fields confined to 

1 Masscomp and MC5700 are trademarks of Massachusetts Computer 
Corporation. 



each of the ten intonation and perturbation parameters is presented. A 

comparison of Boltzmann Machine results to the results obtained in other studies 

is also made. 

The differentiation of laryngeal pathologies using acoustic intonation and 

perturbation parameters with different architectures of Boltzmann Machines is 

discussed in Chapter 7. Comparisons to findings produced in previous studies 

are also made. Finally, Chapter 8 presents the conclusions. Published papers 

that have appeared in relation to this thesis are to be found in the Appendices. 
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2 NEUROMORPHIC SYSTEMS 

2.1 INTRODUCTION 

The origins of neuromorphic models stem from insights gained into the workings 

of the brain. These findings reveal three main points where the perceived 

operation of the brain differs radically from that of the conventional Von Neumann 

architecture machine. These differences: parallel rather than serial processing; 

distributed rather than local representation; and stochastic rather than 

deterministic algorithms; have deep implications for the solving of perceptual 

problems. 

Neuromorphic systems attempt to implement approximations of useful 

computational properties exhibited by the brain. In this chapter the opportunity 

is therefore taken to acquaint the reader with the historical development of 

neurophysiology and to outline the basic mechanisms of operation of the nervous 

system. Following this, a general framework for describing neuromorphic models 

is presented along with an interpretation of neural variables. Finally, a brief history 

of the development of various significant neuromorphic models is presented. 

2.2 HISTORY OF NEUROPHYSIOLOGY 

Neuromorphic computational systems are, as the name implies, largely based 

on our knowledge of the nervous system. Inquiries into improving our 

understanding of the nervous system have a history that stretches back to ancient 

times. The considerable extent of this research is such that only the more 

significant episodes in the history of the subject have been selected. For a more 

extensive background see Clarke & O'Malley, (1968). 

2.2.1 Early Work 

The ancient Eygptians, Mesopotamians and Hebrews regarded the heart as the 

source of life. Homer wrote that the heart harboured intelligence and emotion. 

Greek medicine however, based on the work of Democritus and later Hippocrates 
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and his colleagues believed that the intellect and emotions were to be found within 

the brain. It was Hippocrates and his colleagues, who while making clinical studies 

of head injuries, showed that they could cause motor impairments. Moreover, 

they made the further discovery that these impairments were on the right when 

the left hand side of the brain was involved. Aristotle however revived the 

cardiocentric ideas of Homer and the Hebrews because the exposed brain was 

not sensitive to mechanical stimulation, while the heart was, and furthermore 

there was nothing resembling the vertebrate brain in such animals as worms, 

insects and shellfish. 

The ancient Greeks, Herophilus and Erasistratus (3rd century BC) were probably 

the first to dissect the human body. Celsus wrote 

"the Kings removed from the prisons to give to them, and they examined 
them while they were still breathing". 

This rather unsavoury enterprise led to the distinction of the cerebellum from the 

brain and the spinal chord. They showed that the brain contained ventricles, that 

the cortex was folded into convolutions and that nerves were different from blood 

vessels, that they originated not in the heart as Aristotle thought, but in the brain 

orthe spinal column. They also distinguished between motor and sensory nerves. 

Thus, by the time of Galen a Greek anatomist and physician (200 BC), a good 

deal of the naked eye anatomy of the nervous system had been discovered. 

Galen was able to demonstrate that the brain played a principle role in controlling 

bodily and mental activity. These experiments should have dealt a fatal blow to 

the cardiocentric theorems. 

Anatomical data alone, however, was not enough to undermine Aristotle's thesis 

that the heart was the seat of sensations, passions and the intellect. Medieval 

scholars forgot the work of Herophilus and Erasistratus, and this erroneous 

opinion survived until the eighteenth century. The Renaissance brought about 

the rediscovery of the ancient Greek observations and further advances were 

made as the dissection of animals, and above all the human body began again. 

WIN 



2.2.2 Microscopic Anatomy 

The surface of the brain was first observed through a magnifying glass in 1685 

by Marcello Malpighi. However, it was not until about 1718 , when the Dutch 

scientist Anton van Leeuwenhoek made the first faithful study of the microscopic 

organisation of the nervous system, observing long nerve fibres, we now know 

as axons. 

Little significant progress was made until 1824 when René Dutrochet described 

and drew the nerve cells of snails and slugs. His descriptions resulted in the nerve 

cell making its first appearance in scientific literature. Shortly after this, Gabriel 

Valentin noted that some of these cells in the cerebellum possessed tails. These 

were later recognised as multiple and widely ramified like the branches of a tree, 

and hence came to be known as dendrites. 

In order to observe the basic structure of the nervous system, a staining method 

was required that would allow a single cell to be viewed in its entirety. Camillo 

Golgi (1843-1926) developed a new staining technique using silver, which 

selectively stained only a few cells in the tissue examined (1-10%). Of those 

selected, it impregnated the soma, dendrites and axons, and thus meant that for 

the first time researchers could observe the fundamental nervous unit, (Figure 

2.1). 

Golgi was an advocate of the reticular hypothesis in which the nerve cells form 

a continuous network or reticulum, and rather than working individually, the cells 

act together. The alternative view was known as the neuron hypothesis, where 

the nerve cells were independent but contiguous units. Ramón y Cajal 

(1852-1934) announced an end to the reticular theory by making use of the Golgi 

method of staining. He discovered that axons had endbulbs that came very close 

to the membranes of other cells, but did not actually fuse with them. Observation 

of nerve terminal contacts finally became possible by means of the electron 

microscope in the 1950's. The junction was named a synapse by C. S. Sherrington 
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Figure 2.1 Neurons stained by the Golgi method 
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in 1897, who interestingly did not base his claim that the nervous system 

contained synapses on the direct observation of synaptic junctions, but a study 

of simple reflexes in dogs. 

2.2.3 Electrical Properties 

In 1780 Luigi Galvani observed that muscles contracted when subjected to 

discharges of static electricity from Leyden jars. Later in 1786 Galvani and his 

wife observed that a frog's leg contracted spontaneously when the preparation 

was suspended from an iron bar with a copper hook implanted in the spinal cord. 

This was in fact due to the rudimentary electrical battery that had been set u, 

rather than the production of current by the muscle as Galvani concluded. This 

principle was in fact later used by Volta, a fierce critic of Galvani, in developing 

a storage cell. 

The development of the galvanometer allowed Carlo Matteucci in 1838 to record 

(for the first time) the production of an electric current by a muscle. In 1843 Du 

Bois-Reymond demonstrated that the contraction of a muscle was an electrical 

phenomenon and that a wave of electrical negativity or an action potential 

passes down the nerve. Thus electricity was established as the basis of normal 

nerve function. 

Most of the early work on animal electricity was performed on dissected frogs. 

However in 1870 Gustav Fritsch and Edward Hitzig, who were both German 

physicians, demonstrated using dogs that certain areas of the cerebral cortex 

are sensitive to electrical stimulation, producing contractions of specific muscle 

groups. However they did not demonstrate that the cortex produces electricity. 

What they did do was to corroborate the views of Hughlings Jackson 

(1869/1958), an English neurologist who was one of the first to argue for 

distributed rather than local processing of complex mental functions. His 

hypothesis was based on his astute observations of many epileptic patients. He 

noted that patient's symptoms could be confined to a particular body area, and 
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that the surgical removal of a section of the cortex might yield no discernible 

effects. In fact on the subject of the relationship between brain lesions and speech 

he was able to write:- 

'To locate the damage which destroys speech and to localise speech 
are two different things". 

From experiments with rabbits Richard Caton in 1875 was able to show that the 

cortex itself produces electricity. He wrote:- 

"In every brain hitherto examined, the galvanometer has indicated the 
existence of electric currents"; moreover "the electric currents of the 
grey matter appear to have a relation to its function", (Caton, 1875). 

Caton had thus discovered the technique of electroencephalography and the 

concept of evoked potentials, although it was not until 1929 that Hans Berger 

discovered a recording technique that did not require the opening of the skull. 

Instead electrodes were applied to the surface skin of the head and variations 

in electrical potential were recorded. This technique has enabled many 

subsequent discoveries to be made about the nature of the brain. 

2.2.4 Functional Organisation 

The French anatomist Pierre-Paul Broca was able to show that complex mental 

functions were localised in a particular area of the cortex, and that there are 

radical differences of function between the left and right cerebral hemispheres 

(Broca, 1863). His results were based on clinical fact, unlike the postulations of 

Franz Gall's phrenology. Gall's work was based on the assumption that the 

exterior features of the skull were a faithful representation of the surface of the 

cortex, and that these features corresponded to faculties that were particularly 

well developed in his subjects. Thus it was either by luck or deep intuition that 

Gall placed verbal memory and language in the frontal region where we accept 

them today (see Figure 2.2). 

The Iocationist doctrine persisted with the belief that memory could be stored at 

specific locations, until questioned by Karl Lashley (1924,1950). Lashley 
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performed many experiments with rats, removing parts of their cortex to 

determine which part was responsible for a previously trained 

brightness-discrimination or maze habit. These experiments failed to locate an 

area responsible for the habit. Lashley concluded that a memory is probably 

established diffusely throughout all regions of the cortex (or maybe subcortex), 

and that it is multiply duplicated elsewhere involving huge numbers of neurons. 

Thus a single neuron would be involved in thousands of memories, with a memory 

being represented by a particular pattern of cortical excitation. Lashley's 

insistence that:- 

"there are no special cells reserved for special memories" (Lashley, 
1950). 

captures the idea of distributed representations perfectly. 

2.2.5 Ionic Workings of Neurons 

In the nineteenth century German physiologists elaborated and refined the notion 

that the nervous system transmitted electrical messages. With the advent of 

electronic measuring instruments in the early part of this century, the 

all-or-nothing principle of nervous transmission was established, i.e. if a nerve is 

stimulated either all of the impulse occurs, or if the stimulus is not strong enough 

to reach a threshold then nothing occurs. However, it was not until 1952, that 

Hodgkin and Huxley were able to give a complete demonstration of the ionic 

workings of the nerve impulse, based on a series of remarkable experiments 

recording electrical changes from inside the squid's giant axon (Hodgkin & 

Huxley, 1952). Their findings had a tremendous impact, especially as to their 

universal nature. This allowed the propagation of the nerve impulse, whether in 

a squid's giant axon, a rats sciatic nerve, or a neuron of the cerebral cortex to 

be explained by similar, if not identical basic mechanisms. 
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2.3 THE NEURON 

The basic element of the nervous system is the neuron, which is essentially a 

communications device, receiving, integrating and sending signals. There are 

about 1000 types of neuron, but most have certain general signal processing 

characteristics in common which are represented in the classical neuron model. 

A classical neuron as depicted in Figure 2.3, consists of a cell body, or soma, 

and projections extending Out from the soma. 

The soma contains the genetic and metabolic machinery that is necessary to 

keep the cell alive, and possesses the ability to generate electrical activity, usually 

in the form of a voltage pulse (action potential). The projections are usually 

distinguished as dendrites, or axons. The dendrites, which are usually branched, 

receive signals from impinging axons. The axon is the principle output channel 

of the cell, and carries an action potential from the soma to the synapse. This 

potential is then transmitted either chemically or electrically across the synaptic 

gap to the dendrites of other cells. Eventually, this either causes the impinged 

cell body to fire (i.e. creates an action potential) or inhibits it from firing. Exactly 

how neurons communicate is a particularly complex process and only a brief 

summary is given here. For a more extensive background see Junge, (1981); 

Kuffler, Nicholls & Martin, (1984); Kandel & Schwartz, (1981). 

Across each cell membrane there is a potential difference of about 50-90m V. This 

is known as the resting potential, and is due to differing concentrations of sodium 

Na + and potassium K+  ions on each side of the membrane. On one side of the 

membrane there is an excess of Na + and on the other side an excess of K+.  If 

the membrane allowed them to pass freely, the electrical currents created by 

their movements in opposite directions would cancel each other out. But the 

membrane acts as a selective filter. At rest only K+  ions can pass, and not Na + 

ions. Thus, an electromotive force develops, directly related in value and sign 

(negative inside) to the ratio of K+  concentrations on each side of the membrane. 
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These differences in ion concentration are maintained by a protein referred to 

as an enzyme pump, which crosses the membrane, captures ions on one side 

and transports them back to the other. This transfer is accomplished against a 

gradient with energy harnessed from ATP (adenosinetriphosphate), a substance 

produced by cell metabolism. The enzyme pump or ATPase, breaks down the 

ATP molecules and uses the energy so released to transport Na + and K+  across 

the membrane. Hence ATP provides the energy needed to form a difference in 

ion concentrations across the membrane, and the membrane spontaneously 

converts this charge gradient into an electrical potential. At rest the enzyme pump 

and cell metabolism maintains a permanent electrochemical potential, and this 

potential can be used freely to produce action potentials. 

The initiation of a nerve impulse occurs when an incoming signal depolarises 

(reduces the membrane potential from its resting value towards zero) the 

membrane of the axon hillock (the region of the neuron where the axon emanates 

from the soma). When it reaches a threshold value, (about +lOmV ), 
voltage-sensitive Na + channels in the axon membrane open, allowing Na + to 

rush into the cell (making the inside electrically more positive). This induces 

changes in more Na + channels, and allows even more Na + to enter the cell, 

and thus produces a self-generating or avalanche effect. 

Since the mean open time of the channel is only about 0.7msec, the increase in 

permeability to Na + of any part of the membrane is very brief. As the membrane 

potential reverses its sign and reaches a value of about + 55mV, Na + 

conductance is suddenly inactivated. Channels selective to K+  temporarily open 

and K+  begins to move Out of the cell, initiating the restoration of the resting 

potential. This precisely timed sequence of membrane events lasts about a 

millisecond or so, and is depicted in Figure 2.4. 

During the brief interval when the membrane is permeable to Na +, the inward 

Na+ current spreads along the membrane causing depolarisation in the 

neighbouring downstream areas of the membrane. This in turn gives rise to a 

new regenerative impulse which consequently depolarises its downstream 
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neighbourhood membrane and so on down the length of the axon. The action 

potential is a triggered, all-or-nothing event which has a distinct threshold, and 

once initiated, its amplitude and duration are not determined by the amplitude 

and duration of the initiating event. Variations in signal can be produced by altering 

the frequency of spikes in a train, or by producing special patterns in a train of 

impulses through the combined use of hyperpolarising and depolarising currents. 

Frequently neurons show a low rate of spontaneous spiking (spiking without 

externally induced depolarisation) and this base rate of firing is increased by 

depolarising currents and decreased by hyperpolarising currents. 

After each action potential, there is a period during which the axon cannot spike, 

this is called the refractory period. This occurs because the signal channels have 

to be reconfigured, Na + has to be pumped out, and the neuron membrane has 

to regain its balance of electric potentials. 

Neurons communicate with each other via synapses. Usually an axon will form 

a synapse on a dendrite or on the somas of other neurons, but it may form a 

synapse on other axons, and in some cases dendrites form a synapse on other 

dendrites and on somas. Impulses reaching a synapse set up graded electrical 

signals in the dendrites of the neuron in which the synapse impinges, the 

interneural transmission being sometimes electrical and sometimes by diffusion 

of chemicals. 

At electrical synapses, currents generated by an impulse in the presynaptic nerve 

terminal spread directly to the next neuron through a low resistance pathway. 

In the chemical synapse, a fluid filled gap between presynaptic and postsynaptic 

membranes prevents a direct spread of current. Instead, action potentials arriving 

at a chemical synapse cause vessicles containing chemical neurotransmitters to 

migrate to the synapse membrane and release their contents to the synaptic gap. 

The neurotransmitters diffuse across the synaptic gap, although some are lost 

from the gap. The molecules that arrive at the postsynaptic membrane interact 

with it to modify its membrane potential producing either an excitatory or an 

inhibitory synaptic potential. A particular neuron will only fire an electrical impulse 
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along its axon if sufficient impulses reach the endbulbs impinging on its dendrites 

in a short period of time (period of latent summation). The impulses may actually 

help or hinder firing i.e. they are either excitatory or inhibitory. 

As information transfer is achieved by a simple pulse train form, negative 

influences are obtained by having an inhibitory connection. There are thus usually 

two opposing paths of signal, one excitatory and the other inhibitory. The human 

brain has approximately 1012 neurons , with the number of synapses on 

each neuron varying from 1 - 1 It is estimated that there are some 10' s  

connections in the human nervous system. If a suitable positive weight is 

assigned to each excitatory synapse, and a negative weight to each inhibitory 

synapse, we can say that a neuron fires only if the total weight of the synapses 

which receive impulses in the period of latent summation exceeds its threshold. 

A summary of neuron features is presented in Table 2.1. 

FEATURE ACTION 

POTENTIAL 

SYNAPTIC 

POTENTIAL 

Amplitude 70— 11 OmV lOOii.V - lOmV 

Duration 1 - lOms@c 5msc - 20mins 

Summation All-or-none Graded 

Signal Depolarising Hyperpolarising or 

depolarising 

Propagation Active Passive 

Table 2.1 Summary of neuron features. 

2.4 GENERAL NOTATION FOR NEUROMORPHIC MODELS 

Despite being disparate, the neuromorphic models introduced in the following 

chapter have many features in common, and may be described as special cases 

of a general framework. Although various general characterisations have been 
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attempted, Kohonen (1977, 1984), Amari (1977a), Feldman & Ballard (1982), the 

framework utilised here is adapted from that of Rumeihart, Hinton & McClelland, 

(1986). The principle components used within this framework to define the 

models are shown in Table 2.2. 

Processing units 

State of activation 

Output function 

Pattern of connectivity 

Propagation rule 

Activation rule 

Learning rule 

Environment 

Table 2.2 Principle components of neuromorphic systems. 

Figure 2.5 illustrates the basic components of a neuromorphic system. This 

depicts a set of processing units, where at each point in time unit Uj has a state 

(of activation) denoted si(t). This activation value is passed through function f, to 

produce an output value o1(t). This output value is then passed through 

unidirectional links to other units in the system. Each connection has associated 

with it a real number called the weight, designated w. This determines the degree 

of effect which the first unit has on the second unit. All the inputs are combined 

(usually additively), together with the unit's current activation function, using 

function F to give the new activation function of the unit. 
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2.4.1 Processing units 

In some models processing units may represent conceptual objects, e.g. features 

letters, words or concepts, or in others they are simply abstract elements over 

which meaningful patterns can be defined. N is defined as the total number of 

units, with the jth  unit being designated u1. All the processing of a neuromorphic 

model is carried out by these units; there is no overseer. Each unit receives input 

from its neighbours, and as a function of the inputs it receives computes an output 

value, which it sends to its neighbours. This system is inherently parallel, in that 

many units can carry out their computations simultaneously. Units can be 

grouped into three types, viz, input, output and hidden units. Input units receive 

signals from the system's environment, output units send signals out of the 

system, and hidden units have no environmental contact, i.e. their input and 

outputs are fully within the system. Input and output units may also be collectively 

called visible units. 

2.4.2 State of Activation 

The activation levels which units are allowed to accommodate depends upon the 

particular model. Activation levels may be continuous or discrete, bounded or 

unbounded. When activation levels are restricted to discrete values they are most 

often binary. In some models they are restricted to the values 0 and 1, where 1 

is usually taken to mean that the unit is active, and 0 to mean that the unit is 

inactive. In other models the values are restricted to (+1, -1). The state of a system 

at time t is represented by a vector of N real numbers s(t), representing the pattern 

of activation over the set of processing units. The activation of processing unit 

Uj at time t is designated si(t). 
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2.4.3 Output Function 

Units interact by transmitting signals to their neighbours. The strength of the 

signals and therefore the degree to which they interact is a function of their degree 

of activation. Each unit Uj has an output function fi(s(t)), which maps the current 

state of activation s1(t) to an output signal o1(t). 

O(t) = 	 ( 2.1) 

In some cases f is the identity function f(x) =x. More often however I is some sort 

of threshold function so that a unit has no affect on another unit unless its 

activations exceeds a certain value. Sometimes the function f is stochastic, here 

the output depends in a probabilistic fashion on its activation values. 

2.4.4 Pattern of Connectivity 

The pattern of connections between units is dependent on the learning history 

of the system and determines how the system will respond to arbitrary inputs. 

When each unit provides an additive contribution to the input of units to which it 

is connected, the total input to the unit is the weighted sum of the separate inputs 

from each of the individual processor units. In such cases, the total pattern of 

connectivity can be represented by specifying the weights for each of the 

connections in the system. A positive weight represents an excitatory input, and 

a negative weight represents an inhibitory input. This pattern of connectivity is 

represented by a matrix W, in which each entry w17 represents the strength and 

sense of connection from unit uj to unit Uj. Thus the weight w,y is positive if unit 

u1 excites unit uj; negative if unit u1 inhibits unit uj; and it is 0 if uy has no direct 

connection to unit Uj. The absolute value of w,, specifies the strength of 

connection. 

In some models more complex inhibition/excitation combination rules are 

required, and it is convenient to have separate connectivity matrices for each law 

of connection. Thus we can represent the patterns of connectivity by a set of 
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connection matrices w one for each type of connection. The pattern of 

connectivity is particularly important, as it is this pattern which determines what 

each unit represents. 

2.4.5 Rule of Propagation 

This rule takes the output vector 0(t), representing the output values of the units 

and combines it with the connectivity matrices to produce a input vector for each 

type of input ito the unit, net (t). The value net11 is the net input of connection 

type ito unit j. The propagation rule is generally straightforward. For a system 

with two types of connections, inhibitory and excitatory, the net excitatory input 

is usually the weighted sum of the excitatory inputs to the unit. This is given by 

the vector product net e  = W e  0(t). Similarly the net inhibitory effect can be 

written as the vector product net i  = W L 0(t). With more complex patterns of 

connectivity, more complex rules of propagation are required. 

2.4.6 Activation Rule 

This rule (function F) combines the net inputs of each type impinging on a 

particular unit together with the current state of the unit to produce a new state 

of activation. When all connections are of one type, and F is the identity function 

s(t± 1)= Wo(t)= net(t). If F is a threshold function the net input must 

exceed some value before contributing to the new state of activation. Often the 

new state of activation depends on the previous state as well as the current input. 

In general therefore, we have:- 

s(t+ 1) = F(s(t), net(t) 1 , net(t) 2 ...) 	 (2.2) 

The function is usually assumed to be deterministic. Thus, for example, if a 

threshold is involved it may be that s ,(t) = 1 if the total input exceeds some 

threshold value and equals 0 otherwise. Other times it is assumed that F is 
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stochastic. Whenever s,(t )is assumed to take continuous values it is common 

to assume that F is a kind of sigmoid function. In this case an individual unit can 

saturate and reach a maximum or minimum value of activation. 

2.4.7 Learning Rule 

Learning in a network is accomplished by modifying the pattern of connectivity 

as a function of experience. There are basically three kinds of modification:- 

Development of new connections 

Loss of existing connections 

Modification of strength of existing connections 

Very little work has been done on (1) and (2), although recently Le Cun, Denker 

& Solla (1990) have presented a scheme that allows the selective deletion of 

existing connections. This technique, which they call Optimal Brain Damage 

(OBD), permits the deletion of weights that have the least effect on the training 

error. Using this scheme they were able to show that OBD can be used as an 

automatic network minimisation procedure and as an interactive tool to suggest 

better architectures. 

Schemes (1) and (2) above may also be considered a special case of (3), where 

the strengths of connections are modified through experience. Virtually all 

learning rules where the strengths of connections are modified are a variant of 

the Hebbian learning rule. Hebb (1949) suggested, without physiological 

evidence that:- 

"when an axon of cell A is near enough to excite a cell B and repeatedly 
or persistently takes part in firing it, some growth process ormetabolic 
change takes place in one or both cells, such that A's efficiency, as 
one of the cells firing B is increased" (Hebb, 1949). 

Thus if a unit u1 receives an input from another unit u1, then if both are highly active 

the weight w17, from u1 to u1 should be strengthened. This can be more generally 

stated as:- 

= g(s(t), t 1 (t))h(o,(t) 1  w 1 ) 	 ( 2.3) 
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where t1(t) is a kind of teaching input to U. In other words the change in connection 

from U1 to Uj is given by the product of function go, which depends on the 

activation of u1, and its teaching input t, and another function hQ, which depends 

on the output value of U1 and the connection w11. The simplest form of Hebbian 

learning requires no teacher and the functions g and h are simply proportional 

to their first arguments. Here 

Aujii = rso1 	 (2.4) 

where rlis a constant of proportionality representing the learning rate. There are 

many variations on this general rule, some of which are described later. 

2.4.8 Environment 

In neuromorphic models, the environment is represented as a time-varying 

stochastic function over the space of input patterns, i.e. at any point in time there 

is some probability that any of the possible set of input patterns is incident on 

the input units. Typically, the environment is characterised by probability 

distributions over the set of possible input patterns, independent of past inputs 

and past responses of the system. Certain models are restricted in the kinds of 

patterns that they are able to learn: some being able to learn to respond correctly 

only if the input vectors form an orthogonal set; others if the inputs form a linearly 

independent set of vectors; whereas other models are able to learn to respond 

to essentially arbitrary patterns of inputs. 

2.5 INTERPRETATION OF NEURAL VARIABLES 

Table 2.3 summarises the mappings between neural variables and the 

mathematical and conceptual world. As outlined in Section 2.3 neurons are 

complex biochemical entities yet only a few facts about neurons and 

neuroanatomy have been needed to establish a base for neuromorphic model 

theory. Models such as the Boltzmann Machine and Hopfield network can only 

be regarded as highly stylised interpretations of the biological neuron. These 
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models use simple binary units to represent neurons. Action potentials are 

emitted in bursts with the information in the axonal signal being believed to reside 

in the pulse frequency of the burst (Perkel & Bullock 1969). Thus, the signal can 

be represented by a real number in a limited interval. In the Boltzmann Machine 

and Hopfield model this is modelled as a binary number. Hence the two possible 

states for units in these models may be regarded as representing a neuron firing 

or not firing. It is interesting to note that the properties of the action potential 

indicate that communication between neurons is essentially accomplished using 

pulse code modulation. This has architectural advantages for hardware 

implementations of neural networks. 

The connections between units are analogous with the synaptic contacts of 

neurons, and the weight of the connection analogous with the synaptic strength. 

The energy gap for a binary unit has a role that is similar to that played by the 

membrane potential for a neuron, as both are the sum of the excitatory and 

inhibitory inputs and both are used to determine the output. Sections 3.2.3 and 

3.3.5 provide more information concerning the relationship of the Hopfield model 

and Boltzmann Machine to the brain. 
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NEURAL MATHEMATICAL CONCEPTUAL 

neuron unit hypotheses 

average generating activation stimulus trace or 

potential short term memory 

average firing output value degree of 

frequency confidence 

spread of spread of activation propagation of 

depolarisation confidence 

synaptic contact connection long term memory 

trace (LTM) 

excitation/inhibition positive/negative positive/negative 

weight - LTM trace 

approximate summation of approximate 

additivity of inputs additivity of 

depolarisation evidence 

spiking thresholds activation spread independence from 

threshold irrelevant 

information 

Table 2.3 Interpretation of neural variables (adapted from Smolensky 1986a) 

2.6 EVOLUTION OF NEUROMORPHIC MODELS 

2.6.1 McCulloch and PiUs 

McCulloch and Pitts (1943) approximated the brain as a set of Boolean devices, 

and performed the first analysis of neural networks with fixed connectivities. The 

threshold logic unit (ILU) or linear threshold unit is a particular type of the 

McCulloch and Pitts neuron. It has ii inputs x I  , . . . x (ii ~: 1), and one output 
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. It is characterised by n + 1 numbers, its threshold e, and the real value weights 

w I , .. . 
w where w, is associated with x 1. The unit operates on a discrete time 

scale t = 1, 2, 3, 4,..., the firing of its output at time -t + 1 being determined 

by the firing of its input at time c, and will only fire if the total weight of the inputs 

stimulated at time t exceeds the threshold of the neuron. 

0(t) = 0 i does not fire at time t 

o(t) = 1 i does fire at time t 

o may be an axonal output or a synaptic input of a neuron. The above rule may 

be expressed as:- 

+ 1) = 1 only if 	wx(t) ~: 0 	 (2.5) 

W L > 0 corresponds to an excitator' synapse (input). 

W I  < 0 corresponds to an inhibitory synapse (input). 

The TLU divides the n-dimensional space of possible input vectors into two 

regions separated by a hyperplane. One region is associated with an output value 

1, and the other with an output value 0. The value of the weights determines the 

orientation of the hyperplane. This model is perhaps the best known and arguably 

the most influential model of the nervous system. With it McCulloch & Pitts were 

able to show that it is possible to program finite networks of threshold neurons 

to produce input/output relations of arbitrary complexity by fixing all the 

connectivities in an appropriate way. Having shown how neuron-like networks 

could compute, the next problem was to understand how such networks could 

learn. 

2.6.2 The Single-layer Perceptron 

The combination of the McCulloch & Pills simplified model of the neuron with 

Hebbian learning by changes in the synaptic junctions between neurons (Hebb, 

1949) resulted in the development of the single-layer Perceptron (Rosenblatt, 
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1959). This model generated much interest at first because of its ability to learn 

to recognise simple patterns. Essentially the Perceptron consists of threshold 

logic units with connection weights and threshold values that may be fixed or 

adapted using a number of different learning algorithms. Figure (2.6) depicts a 

single-layer Perceptron that classifies an analogue input vector into two classes 

denoted A and B. The goal of learning is to minimise the error between the desired 

output value of the system d (t) and the computed value 0(t) The magnitude 

of this error is given by e (t) = d (t) - 0(t). The output is calculated as follows:- 

0(t) = 	w(t)s 1 (t) -  0 	 (2.6) 

The single node computes a weighted sum of the input elements, subtracts a 

threshold 0 and passes the result through a hard limiting non-linearity such that 

the output value 0(t) is either + 1 (class A) or -1 (class B). The fixed-increment 

algorithm updates w (t) according to 

w(t + 1) = w(t) + 'q(t)s(t) 	 (2.7) 

O:!~ i:~ N- 1 

d(t) 
= [+1 if input class A 

-1 if input class B 

The parameter n is a positive constant that controls the stability and rate of 

learning. The error may be thought of as a surface over the weight space, the 

space of possible values for the weight vector W. Vector s can then be defined 

as a vector in this weight space which points in the direction of steepest descent 

forthe error. Thus, the algorithm takes a fixed-size step in the direction of steepest 

descent. If training instances are linearly separable the fixed increment algorithm 

converges in afinite number of steps. This algorithm can be improved in a number 

of ways by choosing how far in the direction of gradient to move at each step. 
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Figure 2.6 Single-layer perceptron. 
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The LMS (least mean square) or Widrow-Hoff rule is identical to the Perceptron 

convergence procedure (equation 2.7) except that in the LMS rule the hard 

limiting non-linearity is made linear or is replaced by a threshold logic 

non-linearity. For linear activation functions the Widrow-Hoff or delta rule 

minimises the squares of the differences between the actual and desired output 

values summed over the output units and all pairs of the input/output vectors. 

This rule was first used in the ADALINE (adaptive linear neuron) of Widrow & Hoff 

(1960), who were pursuing engineering applications of trainable TLU's. 

The tremendous interest in Perceptrons was only dampened when Minsky and 

Papert (1969) produced a mathematical analysis of the computing powers of the 

single-layer Perceptron highlighting its limitations. The main limitation of the 

Perceptron convergence procedure (or Widrow-Hoff rule) is that it cannot be 

applied to devices in which there is more than one-layer of modifiable weights 

between the input array and the output unit. In other words the procedure cannot 

cope with hidden units. 

Rosenblatt made the following interesting statement at the Conference on 

Mechanisation of Thought Processes (1959):- 

"computers seem to share two main functions with the brain, a) decision 
making, based on logical rule, and b) control, again based on logical 
rule. The human brain performs these functions together with a third: 
interpretation of the environment. Why do we hold interpretation of the 
environment to be so important? The answer, I think, is to be found in 
the laws of thermodynamics. A system with a completely self contained 
logic can never spontaneously improve its ability to organise and to 
draw valid conclusions from information. " (Rosenblatt, 1959). 

Rosenblatt appeared to be saying that there were some things a computer 

couldn't do, but that the brain and Perceptrons could do because of their 

statistical properties. But a computer program can be written to simulate the 

behaviour of statistical perceptrons, and indeed Rosenblatt was one of the 

pioneers in the digital simulation of this type of problem. 

What Rosenblatt was perhaps really saying was that using the symbol 

manipulating capabilities of the computer to directly simulate the logical 

processes involved in decision making, theorem proving and other intellectual 
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activities of this sort would be inadequate to mimic the power of the human brain. 

The task he thought, could only be accomplished if computers simulated 

Perceptrons. 

2.6.3 Grossberg 

Grossberg (1982) is credited with producing the first coherent mathematical 

theory of brain functions. He claims to explain learning, perception and behaviour 

with a small number of mathematical laws and organising principles. Grossberg 

investigated various output functions and deduced that linear functions tend to 

amplify noise; slower than linear tend to generate an asymptotic uniform 

distribution; and that faster than linear select only those features of highest 

amplitude. He argues that the output function must be a sigmoid, providing a 

threshold below which noise is suppressed, and above which features can be 

enhanced. Of the many activation rules that Grossberg has presented, the 

majority are of the form 

s 1 (t + 1) = as1(t) + ([3 - s 1 (t))nQt 1 (t) + 

(y - s J (t))ri.t LJ (t) + 1 1 (t) 	 (2.8) 

where: 

a is the decay rate 

13 represents the maximal degree of excitation of the unit 

y is much smaller than [3 and represents the maximal amount the unit can 

be inhibited below the resting value of 0. 

I represents the input sources from outside the network. These are usually 

from other neurons or sensory transducers. 

In this rule the excitatory and inhibitory inputs appear separately in the activation 

rule. 

Grossberg has also studied many learning schemes, the most studied being: 

(2.9) 
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which is a variation of Hebb's law (Grossberg, 1976). 

Grossberg has developed his adaptive resonance theory (ART), which he 

originally introduced in Grossberg (1976), and presented two classes of 

networks, ART1 and ART2 (Carpenter & Grossberg 1987, Grossberg 1987). 

These networks (ART1 networks are for binary-valued inputs and ART2 networks 

are for continuous-valued inputs) are trained without supervision and form 

categories for the input data with the coarseness of the categories being 

determined by the value of a particular parameter known as attentional vigilance. 

ART networks have applications in pattern classification and the categorisation 

of data. 

2.6.4 Hopfield Model 

Hopfield (1982) presented a model that is reminiscent of the Ising model from 

theoretical physics (Newell & Montroll, 1953). This net can be used as an 

associative memory or in the solution of optimisation problems. The models use 

binary state units, which are updated one at a time. The output of each unit is fed 

back to all other units via weights. During operation, an unknown pattern is 

presented to the net, forcing the output of the net to match the unknown pattern. 

The net iterates in discrete time steps until the outputs no longer change on 

successive iterations. The pattern specified by the unit outputs after convergence 

is the net output. 

Hopfield and others (Cohen & Grossberg, 1983) have proven that this net 

converges when the weights are symmetric (i.e. W L / = w, ) and unit outputs are 

updated asynchronously. Hopfield (1982) defined an energy function for the net 

such that minima of energy correspond to stable firing patterns for the network. 

In addition an information storage algorithm was presented which allows a 

network of N units to store up to about 0.1 5N uncorrelated patterns. The optimal 

storage capacity for an N unit network however,, is 2N uncorrelated patterns, 

indicating that the Hopfield model is not an efficient content-addressable memory. 
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2.6.5 Boltzmann Machine 

The concept of minimising an energy function to arrive at particular stable states 

played a significant part in the development of the Boltzmann Machine (Hinton 

et al. 1984). This model employs binary units connected with symmetric weights. 

The update rule which is employed switches each unit into which ever of its two 

states minimises its contribution to the global energy of the system. Because the 

connections are symmetric the differences between the energy of the whole 

system with the jth  unit on and its energy with the i1h  unit off can be determined 

locally. A probabilistic decision rule is used to prevent the network from becoming 

stuck at local minima that are not globally optimal. This rule allows occasional 

jumps to higher energy states. To reliably find good minima, large jumps in energy 

are allowed at first, and then these are slowly reduced. This method is analogous 

to annealing and is known by the term simulated annealing. The particular 

formulation of the Boltzmann Machine leads to a general learning rule which 

modifies connection strengths between units in such away as to allow the network 

to develop an internal model which captures the underlying patterns of its 

environment. The Boltzmann Machine learning algorithm was the first supervised 

learning procedure presented that allowed hidden unit learning. Smolensky 

(1984) also investigated a similar scheme to that used in the Boltzmann Machine 

which he called harmony theory. 

2.6.6 Multi-layer Perceptron 

The recent development of learning algorithms (Rumelhart, Hinton and Williams, 

1985) for the Multi-layer Perceptron has allowed many of the limitations of the 

single-layer Perceptron to be overcome. Although these algorithms cannot be 

proven to converge as with the single-layer Perceptron, they have been shown 

to be capable of solving many problems of interest. The abilities of the Multi-layer 

Perceptron stem from the non-linearities used within each node. If the nodes 

were linear elements, then a single-layer net with suitably chosen weights could 

exactly duplicate those calculations performed by the multi-layer net. The 

back-propagation learning algorithm allows feed-forward nets of units with 
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continuous differentiable non-linear activation functions to be trained. The 

algorithm is basically ageneralisation of the LMS algorithm, which uses a gradient 

search technique to minimise a cost function equal to the mean square difference 

between the desired and the actual net outputs. Application of the rule involves 

two phases. During the first phase the input is presented and propagated forward 

through the network to compute the output value Oj for each unit. This output is 

then compared with the target value tj, resulting in an error term (tj-oj) for each 

output unit. The second phase involves a backward pass through the network 

during which the error term is passed to each unit in the network and the 

appropriate weight changes are made. 

2.7 SUMMARY 

The preceding sections have provided a brief introduction to neuromorphic 

models. The origins of these models have come from insights gained into the 

workings of the brain. The considerable extent of this work extends back to 

ancient times. Indeed, it was not until 1824 that the nerve cell made its first entry 

into scientific literature. Further discoveries ensued and by 1952 it was possible 

to demonstrate the complete ionic workings of the nerve impulse. This important 

finding allowed the propagation of the nerve impulse, whether in a squid's giant 

axon or a neuron of the cerebral cortex, to be explained by similar, if not identical 

mechanisms. 

The structure of the cerebral cortex was established as consisting of a very large 

number of neurons interacting primarily through the activation and inhibition of 

one another's activity. Each neuron is highly interconnected, with perhaps tens 

of thousands of interconnections. Furthermore, the processing speed of each 

neuron was discovered to be slow, and measured in milliseconds rather than the 

picoseconds common in today's computers. However, such a neural system 

does allow computations that are faster than is possible with even the largest 

and fastest of todays computing machines. 
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Such observations inspired numerous parallel processing models consisting of 

interconnected elementary processing elements. Much interest was generated 

in the studies of a model introduced by Rosenblatt in the 1950's, the Perceptron, 

because it was able to learn to recognise simple patterns. However, a critique of 

Perceptrons by Minsky & Papert (1969) dampened this tremendous interest by 

showing the limitations on the power of the single-layer Perceptron. 

The problem, as noted by Minsky & Papert (1 969) is that whereas there is a very 

simple guaranteed learning rule for all problems that can be solved without hidden 

units, there is no equally powerful learning rule for networks with hidden units. 

One response to this is to attempt to develop a learning procedure capable of 

learning an internal representation adequate for performing the task at hand. One 

such development has been the Boltzmann Machine, which makes use of 

stochastic binary units. It is so called because the equilibrium behaviour of the 

network is described by the Boltzmann distribution, providing a simple 

relationship between the energy of a state and its equilibrium probability. Later, 

the back-propagation learning rule was introduced, which is in essence a 

generalisation of the Perceptron learning rule for multi-layer networks. However, 

the back-propagation algorithm is not guaranteed to find the optimal set of 

weights for a problem since the learning is a process of gradient descent on an 

error surface that may contain local minima. The Boltzmann Machine learning 

algorithm, provides a formally guaranteed procedure for performing gradient 

descent in a global error measure. 

With the back-propagation algorithm, the error signals returning from the 

downstream layer provide indirect information about conditions of the other units 

in the layer, but the Boltzmann Machine is not limited to that type of architecture. 

The Boltzmann Machine requires symmetric links, an appropriate decision rule, 

and the absence of connections from a unit to itself, but makes no other 

restrictions on the topology of the network employed. Visible units can be 

connected to each other, hidden units can be connected to other hidden units 

and the units can be arranged in layers. The formal proof of the Boltzmann 

Machine learning algorithm is completely insensitive to such issues. 
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For these reasons the Boltzmann Machine algorithm has been adopted in the 

work considered here for the processing of speech pathology data, and its 

development is presented in the next chapter. Details of the operation of the 

Boltzmann Machine and the learning procedure are also discussed in full. For 

completeness, details of the back-propagation algorithm are included along with 

its relationship to the Boltzmann Machine. 
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3 THERMODYNAMIC NEUROMORPHIC MODELS 

3.1 INTRODUCTION 

The cerebral cortex consists of approximately 3 X 1010 neurons 

interconnected at synapses within a complex arrangement of axons, dendrites 

and cell bodies. Although the exact modus operandi of brain cell metabolism is 

not fully understood, the information carried by a single neuron appears to be 

very simple, and is transmitted by a primitive pulse train (action potential) 

propagating along the axons. About two-thirds of the cortical neural cell 

population are pyramidal cells. However, we can assume (after Braitenburg, 

1978), that the state of the cortex as a whole is fully determined by the states of 

the pyramidal cells. The remaining cells play the role of inter-neurons, modifying 

the effective interactions between the pyramidal cells. Such a system may be 

represented as a large assembly of identical elements, each of which is 

characterised by an internal state, its firing activity and its connections to each 

other at synapses:- 

"this system is reminiscent of those studied in statistical mechanics and 
the question naturally arises whether the analogy can be pursued far 
enough for the techniques of statistical mechanics to be applicable. If 
so, it would permit the introduction in neural network theories, of such 
concepts as the order parameters, phase transitions, correlation 
functions (the evoked potentials) or the use of tools such as the partition 
function, mean field theories etc... "  (Peretto, 1984). 

Statistical mechanics deals with systems comprising of a large number of 

elementary units. Because of the large number of units involved it is not possible 

to follow their individual trajectories so a statistical approach is used to extract 

the properties of the macroscopic system from microscopic averages. It is the 

science of thermodynamics which provides the broad framework for describing 

the relationships between the microscopic and macroscopic properties of such 

systems. 
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Various writers have profitably used the spin system analogy to describe the 

problems of neural assemblies. Little (1974) explored an analogy between the 

existence of persistent states (short term memory) in simple neural networks and 

the occurrence of long range order in lsing spin systems. This model was able 

to account for the action potential patterns observed in small neural assemblies 

such as the pyloric system of lobsters (Little & Shaw, 1978; Thompson & Gibson, 

1981). In a landmark paper, Hopfield (1982), introduced an asynchronous neural 

model of content addressable memory based on an analogy with spin glasses. 

Many papers followed, building on this new theoretical approach to the analysis 

of neural network models. Later, Hopfield (1984) introduced networks of graded 

response neurons; Peretto (1984) assessed the possibilities of applying statistical 

mechanics to the functioning of large neural networks; Hinton, Sejnowski & 

Ackley (1984) introduced the use of noise to find a global minimum; Smolensky 

(1984), Smolensky & Riley (1984) investigated a similar scheme called "harmony" 

theory; Kinzel (1985) discussed learning and pattern recognition in spin glass 

models; Amit, Gutfreund and Sompolinsky (1985a, 1985b) gave a statistical 

analysis of the associative model based on the equilibrium theory; Toulouse G., 

Dehane S., & Changeux J-P. (1986) presented a spin glass model of learning 

by selection. 

Of particular interest here are the models devised by Hopfield, Hinton et al. and 

Smolensky because they allow a rigourous mathematical description using 

statistical mechanics techniques. Details of the operation of the Hopfield model 

and the analogy with Ising spin systems are discussed in this chapter together 

with a biological interpretation of their findings. The addition of the concept of 

simulated annealing to the Hopfield model is also discussed along with learning 

procedures in the Boltzmann Machine. Smolensky's work on Harmony theory is 

also discussed, and brief details of both Cauchy and Gaussian Machines is 

provided. Finally, despite being a deterministic solution to learning in multi-layer 

nets, the back-propagation algorithm is discussed along with its relationship to 

the Hopfield and Boltzmann Machine models. 
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3.2 HOPFIELD MODEL 

3.2.1 Introduction 

In 1982 Hopfield introduced a parallel network of neuron-like elements for building 

content-addressable memories. This model was based on an analogy with the 

models used in the theoretical analysis of certain materials called spin glasses. 

These are magnetic materials which have a random orientational ordering (glass) 

of magnetic moments (spins). The spin sites are randomly interconnected by 

positive and negative competing interactions. 

'Any physical system whose dynamics in phase space is 
dominated by a substantial number of locally stable states to 
which it is associated can therefore be regarded as a general 
content-addressable memory. The physical system will be a 
potentially useful memory if, in addition, any prescribed set 
of states can readily be made the stable states of the system." 
(Hopfield, 1982). 

The key question posed by Hopfield was whether these neuromorphic systems 

would exhibit useful computational properties such as stable 

content-addressable memories and an ability to create categories of 

generalisation. This issue has also been examined by Smith & Davidson (1962), 

Harmon (1964), Little (1974), Amari (1977b) and Amari &Akikazu (1978) amongst 

others. 

A general content-addressable memory (CAM) is capable of retrieving an entire 

memory item on the basis of sufficient partial information. If, for example, using 

an illustration similar to that given by Hopfield (1982), the item stored in memory 

is:- 

"Newell G. F. & Montroll E. W. Rev, of Mod. Phys. 25, 353-389 (1953)" 

the key input "& Montroll (1953)" might be sufficient to retrieve the complete item, 

provided that the key only occurs once in the CAM. An ideal CAM is also 

error-correcting and would be capable of retrieving this particular item from the 

input "Mintroll, (1953)" provided that the CAM did not actually contain an entry 
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for "Mintroll, (1953)". Only relatively simple forms of CAM have been implemented 

in computer hardware, with more complex tasks like error correction of the 

accessing information usually undertaken in software. 

Little & Shaw (1978) and Kohonen (1984) have also proposed using parallel 

networks of neuron-like elements as content-addressable memories. These 

models use the concept of storing memory states as fixed points of the dynamics 

of the neural network. These fixed points are intended to be attracting, so any 

initial configuration of neurons sufficiently close to the memory state will be 

attracted onto that memory state. The set of all initial configurations of neurons 

which lead to a given memory state is called the basin of attraction of that memory 

state. It is desirable to have a well-behaved basin of attraction around each 

memory state because if the basin becomes too complicated, the CAM will not 

be uniformly robust in its error correction. 

Hopfield's (1982) model consisted of binary units that were symmetrically 

connected and updated one at a time with a deterministic update rule. This update 

rule behaves in such a way as to reduce (or at worse not increase) an overall 

measure which he called "energy" (because of the analogy with physical 

systems). Consequently, repeated iterations are guaranteed to find an energy 

minimum. 

Hopfield thought in terms of energy, because his networks behave very much 

as thermodynamic systems, which seek minimum energy states. This analogy 

of networks falling into energy minima in a manner similar to physical systems 

has provided an important conceptual tool for analysing neuromorphic 

processing mechanisms. This energy measure is essentially a costfunction which 

reflects (the negation of) the degree to which the desired constraints are satisfied. 

These constraints are: 

constraints imposed by other units 

the a priori strength of the hypothesis (captured by adding the bias) 

direct evidence (input value times the activation value of the unit) 
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States to which the network converges (when outputs no longer change on 

successive iterations) are local minima of this cost function. This means that the 

networks are performing optimisation of a well-defined function. Unfortunately, 

there is no guarantee that the network will find the best minimum. Hopfield's 

original networks were prone to this problem with local "energy minima". With 

binary units, if the net input to a unit is positive it takes on its maximum value; if 

it is negative, the unit takes on its minimum value (otherwise its value remains 

unchanged). Binary units are more prone to local minima because the units do 

not get the opportunity to communicate with one another before committing to 

one of their two states. Hopfield (1984), has since presented a version in which 

units take on a continuum of values to help deal with the problem of local minima 

in his model. 

However, finding the local minimum which is closest to the initial state is useful if 

the minima are used to represent "items" in a memory, and the initial states are 

queries to memory which may contain missing or erroneous information. The 

network then simply finds the minimum that best fits the query. Thus, this network 

may be used as an associative memory or for solving some types of optimisation 

problem. 

3.2.2 Hopfield Model 

The model postulated by Hopfield (1982) has its origins in McCulloch and Pitts 

(1943) and Hebb (1949). It is capable of storing information, as well as performing 

certain computational tasks such as error correction and nearest neighbour 

searches. Each unit i in the network may be in one of two states si = +1 or S 1  = 

0, (see Figure 3.1). Hopfield uses the states + 1 and -1 though, because his model 

was derived from physical systems called spin glasses in which spins are either 

up or down. Provided the units have thresholds, models that use +1 and -1 can 

be translated into models that use 1 and 0 and have different thresholds. 
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The link weight between unit / and i is given by w1, with all such links being 

symmetrical i.e wjj = Wjj. Each unit i has a fixed threshold 0 which unless 

otherwise stated, is chosen to be 0. Only one unit updates its state at any instant 

in time, and each unit updates repeatedly with only a short finite time between 

updates. Hopfield (1982) and also Cohen & Grossberg (1983) showed that these 

conditions of symmetric weights and asynchronous updates jointly rule out the 

possibility of a permanent oscillation in the network and therefore guarantee that 

the system will settle into a single state. 

Hopfield (1982) defined an energy function over the states of the units in the 

model as:- 

E=_! YYW ij S i S i 	 ( 3.1) 
JØL 

The factor of one half appears because the summation counts each link twice, 

once from ito] and once from] to I. The energy of a global state depends on the 

states of the individual units and the values of the link weights. Because the 

connections are symmetrical, the difference between the energy of the whole 

system with the jth unit off and its energy with the jth unit on can be determined 

locally by the 1h  unit. Thus the energy gap or change in E, due to As i  is given 

by: -  

AE=-As>Iw1s1 	 (3.2) 

The updating rule requires that each unit (selected at random) is switched to 

whichever of its two states yields the lower total energy given the current states 

of the other units. Therefore the rule for minimising the energy contributed by a 

unit is to adopt the on or +1 (true) state if its total input from the other units equals 

or exceeds its threshold. If the total input from the other units is less than the 

threshold the off or 0 (false) state is adopted. Thus the state at site I is determined 

by:- 
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+1, 	if 	w 1 s,>O 

	

= H{ wiisi} = 0
9  if 	ws 1  <O 	

(3.3) 

j,'t 

where H is the Heaviside step function. In the +1, -1 case the step function is 

replaced by a sign function. The state of the net changes until it enters a state of 

minimal energy in the sense that no change in any one of the variables si will 

lower the value of E. There may be a number of different such states, which are 

known as local minima. Global minimisation is not guaranteed. 

The update rule thus involves the link weights directly connected to a unit, and 

the states of all the units at the other ends of those links. This places practical 

limitations on the number of units possible in the numerical simulation of fully 

interconnected networks. Simulations of some very large fully interconnected 

networks using an ICL Distributed Array Processor (DAP) have been described 

by Bruce et al. (1986) and Forrest (1988) amongst others. The DAP consists of 

a 64 X  64 array of bit-serial processing elements whose single instruction multiple 

data (SIMD) parallelism is apparently readily exploited for these simulations. 

Forrest (1988) presents results from numerical simulations carried out for 

networks of 512, 1024 and 2048 units on the DAP. A unit update rate of over 1700 

units per second for a 512 unit network was claimed. 

In using the Hopfield model for computation, certain units are designated as 

inputs and these have their values clamped so that the updating rule is not applied 

to them. Updating is then repeatedly applied to all the other units allowing the 

network to settle to its local energy minimum. The result may then be determined 

from the designated output units. This vector of stable states constitutes a stored 

item in memory. The basic operation of the network is to converge toa stable 

state provided it is initialised with a nearby state vector (in the Hamming sense). 

Since there is no algorithm specifying which unit changes at the next time step, 

the corresponding input function may yield different values depending on the 

sequence of choices made. For a given search problem, weights are chosen for 

the network so that Eis a measure of the overall constraint violation. The Hopfield 
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(1982) update rule is then used to maximise the constraint satisfaction. This, as 

noted previously only allows local minima to be found and does not give a global 

minima. 

The information storage algorithm for determining the weights w LJ  adopted by 

Hopfield is that identified with Hebb (1949). To store a set of P nominated patterns 

on a given number of units N {s = 0, 1;c =   1, . . . P; i = 1, ...,NJ as stable 

states, w L) the symmetric weight matrix is defined as:- 

w= T (2s— 1)(2s-1) 	 (3.4) 

but with w11 = 0. This scheme is based on the sum of the outer products of the 

P pattern vectors. The symmetry and zero-diagonal nature of the matrix W imply 

the existence of an energy function which is monotonic decreasing if nodes are 

updated serially. If w11 is non-zero and too large a step is taken, it is then possible 

for the energy to increase at each step and the model become unstable. 

Since the simplest identification of states stored in memory is that they correspond 

to the fixed points of the dynamics of the net, memory states may be regarded 

as local minima of this energy surface/function. These fixed points are supposed 

to be attracting, so that any initial configurations of neurons sufficiently close to 

a memory state are called the basin of attraction. An item is recalled by specifying 

enough of its content to ensure that the net is initially in the basin of attraction of 

the energy minimum which corresponds to that item. It is also desirable to have 

a well-behaved basin of attraction around each memory state; if the basin is too 

complicated, the CAM will not be uniformly robust in its error correction. To ensure 

well defined "memory states" for each nominal vector provided requires that 

P <<N. 

The Hopfield model, with the Hebbian rule is relatively inefficient in terms of its 

storage capacity. If too many patterns are stored, the basin of attraction becomes 

too complicated, and the net may converge to a novel spurious pattern different 

from all exemplar patterns. Such a spurious pattern will produce a "no match" 
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output when the net is used as a classifier. Computer simulations by Amit, 

Gutfreund & Sompolinsky (1987), have shown that it will only store a maximum 

of about P = 0. 145N uncorrelated patterns on an N-node network. It has been 

shown that the optimal storage capacity for an N-node network is 2N for 

uncorrelated patterns, (Gardner & Derrida, 1988; Baldi & Venkatesh, 1987) and 

more if the patterns are correlated (Gardner, 1987). The number of classes is 

thus typically kept well below 0.145N. For example a Hopfield net for only 10 

classes might require more than 70 nodes and more than roughly 5,000 

connection weights. 

A second limitation of the Hopfield net is that an exemplar pattern will be unstable 

if it shares many bits in common with another exemplar pattern. Here an exemplar 

is considered unstable if it is applied at time zero and the net converges to some 

other exemplar. Hopfield (1982) statesthatforN= 100, a pair of random memories 

should be separated by 50 ±5 Hamming units so as not to be confused. (The 

Hamming distance between two binary states is defined as the number of places 

in which the digits are different). Hopfield also studied the case when N= 100 

and the number of memories stored P=8. In this case P consisted of seven 

random memories with the eighth made up with Hamming distances of only 30, 

20 or 10 from one of the other seven memories. Hopfield reported that at a 

distance of 30, both similar memories were usually stable; at a distance of 20, 

the minima were usually distinct but displaced and at a distance of 10, the minima 

were often fused. It is difficult to make a direct comparison to the "& Montroll 

(1953)" example of Section 3.2.1 as content-addressability depends on the 

number of units in the network and the number of patterns stored. The author is 

not aware of a general result for the percentage of common bits allowed before 

the model becomes unstable. The problem of having too many bits in common 

however can be eliminated and performance improved by a number of 

orthogonalisation procedures (Wallace 1985, Grant 1986). 
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3.2.3 Relationship to the Brain 

The Hopfield model is a highly stylised interpretation of the biological neuron. 

Most neurons are capable of generating a train of action potentials when the 

average potential across their membrane is held well above its normal resting 

value. The mean rate at which action potentials are generated as a function of 

the mean membrane potential is depicted in Figure 3.2, and can be seen to be 

sigmoidal. 

Perkel & Bullock (1969) were able to show that the biological information sent to 

other neurons often lies in a short-time average of the firing rate. When this is so, 

the details of individual action potentials can be neglected and Figure 3.2 may 

be regarded as a smooth input-output relationship. The linear associative 

networks of Rosenblatt (1962) and Kohonen (1977) emphasise the linear central 

region of Figure 3.2. However, the collective effects in particle dynamics 

produced by particle interactions come from a non-linear dependence of forces 

on positions of the particles. Thus, Hopfield replaced the linear input-output 

relationship with a step function as shown in Figure 3.2. 

Delays in synaptic transmission and in the transmission of impulses along axons 

and dendrites produce a delay between the input of a neuron and the generation 

of an effective output. These delays are modelled by a single parameter, known 

as the stochastic mean processing time. 

Synapses are activated by arriving action potentials. The input signal to a cell / 

can be taken to be w 11  s 1  where w 1  represents the effectiveness of the 

synapse. Figure 3.2 thus depicts an input-output relationship for a neuron. It is 

assumed that w 11 is produced by previous experience. 
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Figure 3.2 Firing rate versus membrane voltage for a typical neuron (solid line), 

dropping to 0 for large negative potentials and saturating for positive 

potentials. The broken lines show approximations used in modeling. (From 

Hopfield, 1982). 
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3.2.4 Ising Spin Analogies 

For reasons of completeness a brief introduction to Ising Models is given so that 

the analogy established by Hopfield may be observed. Ising models are based 

on a simple model of ferromagnetism proposed by Ising in his doctorate 

dissertation of 1925. These models have been the subject of considerable 

investigation since then. The model is based on the view that ferromagnetism is 

caused by an interaction between the spins of certain electrons in the atoms 

making up a crystal. The Ising model is not considered to be a very realistic model 

of ferromagnetism, but it is equivalent to a very good model of binary substitutional 

alloy and an interesting model of a gas or liquid. 

Each unit I of a system comprising of a large number N of elementary units, has 

a spin co-ordinate which can take only two values ci i  = ± 1. The spin is considered 

to be either up or down. The [sing spin models have no intrinsic dynamics thus 

once given the set! of the internal states, it remains unchanged forever. The 

existence of an unspecified mechanism which allows spins to flip must be 

assumed if the system is to evolve towards an equilibrium state. Equilibrium is 

fully determined by the rules the spin directions have to follow. 

A quantity called the molecular field h1 is associated with every site I. This is a 

linear function of the internal states or i  of the surrounding spins h, = 	J 1 c1 1 . 

The coefficients Jy are called the exchange interactions. The internal state a, 

eventually flips so as to fulfil the alignment condition h,a> 0 . If the interactions 

J1  are local, an extensive quantity H(I) can be found:- 

H(I) = - 	= - 	JLJ oa J 	 (3.5) 

The equilibrium properties of the lsing spin models are then given by:-

p(I)=Z'exp-3H(I) 	 (3.6) 
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P is a noise source parameter and H is known as the Hamiltonian of the system. 

(In physics, the Hamiltonian determines which states are most probable:- the 

states with lowest energy are most probable at all temperatures, and states of 

high energy have negligible probability except at high temperatures). 

By adding an external field h10  to the molecular field, the term— I ho is 

introduced in the Hamiltonian given by Equation (3.5) above. 

H remains an extensive quantity (i.e. a function of the state) for fully interconnected 

systems if one assumes that the long range actions J11 scale as N-1 ; 

H(I) = - 	 - 	hc 	 (3.7) 

Now Hopfield defines the input to a unit / as:- 

net, = 	w 1 s 1 	 (3.8) 

where w,is the synaptic efficiency between unit j and unit i. The state of unit / is 

Sj= 1 if a@t,, > 0 	s,=O if net, < 0, . 0, is the threshold potential of unit I. 

By allowing a, = 2s— 1 i.e. a', = + 1 when s, = 1, a', = - 1 when s, = 0 then 

a'(s,-0)>O or:- 

cl L h L > 0 
	

(3.9) 

with: 

h 1 = 	J..a'.+h? 
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The analogy established by Hopfield, between this description of a neural network 

and the lsing spin model may be observed. Note that the model does not involve 

any specific dynamical mechanism. 

An extensive quantity, an Hamiltonian can therefore be associated to the Hopfield 

neural model. This is:- 

H(I) = - 	= - 	 (3.10) 
ij 

Both c, and a j  both belong to the same set I. In general J Lj J 1 , but the 

c L c5, and the c5.a, terms can be grouped so that the Hamiltonian (3.10) can 

be rewritten as:- 

J ;1 Y 1 	 (3.11) 
<U> 

with J ij = J j i =  ( J j  + J.1 ) and the summation is carried out on neuron pairs 

<ii> 

The interactions J11  can a priori be of either sign and therefore the Hamiltonian 

(Equation 3.11) is an lsing spin glass Hamiltonian. In spin glass models, one often 

assumes that the interaction distribution is symmetrical and its average is zero. 

The biological counterpart is an equal number of excitatory and inhibitory 

synapses. Also it is believed that most neurons work in the vicinity of h io  = 0 to 

enhance their sensitivity. This corresponds to zero field spin glasses. 

In neural networks the synaptic efficiencies are not random parameters, they are 

assumed to result from a learning procedure. According to Hebb (1949) one 

has:- 

(3.12) 

-55- 



where IC = 	c = 1, ..., p are P learned patterns. Hopfield uses 

Monte-Carlo calculations to look for the minima of H and has reported that P << N 

if the minima are to be close to the learned states. 

In neural assembly modelisations, it is assumed that an unspecified noise source 

exists which permits the neurons to change their internal states. This is exactly 

as for lsing spin statistics, which demands an undetermined mechanism that 

allows the spins to flip. The equilibrium probability distribution is given by Equation 

(3.6) and H(I) is given in Equation (3.11) where 13  is a noise source parameter. 

3.3 BOLTZMANN MACHINE 

3.3.1 Introduction 

Hopfield (1982) showed how networks of binary symmetric units could be used 

as memories that were stored as local minima (see Section 3.2). For hard 

optimisation problems however, the system must try to escape from local minima 

in order to find the configuration that is the global minimum given the current 

input. 

One standard technique used in solving hard optimisation problems is that of 

gradient descent. Here the values of the variables in the problem are modified in 

whatever direction reduces the cost function or energy. For difficult problems, 

gradient descent becomes stuck at local minima that are not globally optimal. 

This is an inevitable consequence of only allowing downhill moves. If jumps to 

higher energy states occasionally occur, it is possible to break out of local minima, 

but it is not obvious how the system will then behave and it is far from clear when 

uphill steps should be allowed. 

Kirkpatrick, Gelatt and Vecchi (1983) proposed a stochastic approximation 

method for solving combinatorial optimisation problems. It was based on an 

algorithm invented by Metropolis et al. (1953) that simulates the behaviour of 
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many-particle systems in thermal equilibrium. This stochastic method used the 

physical analogy of annealing to guide the use of occasional uphill steps. This 

search method is called simulated annealing. 

A simple modification was made to Hopfield's updating rule by Hinton, Sejnowski 

& Ackley (1984) that allowed parallel networks to implement simulated annealing 

and hence find the global minimum. Hinton et al. named these networks 

Boltzmann Machines because at thermal equilibrium the relative probability of 

two global states is determined solely by their energy difference and follows a 

Boltzmann distribution. This simple relationship made it possible to derive a 

learning algorithm for the Boltzmann Machine that provably optimises a global 

measure of how well the network is performing its task. Thus the Boltzmann 

Machine is capable of learning the underlying constraints that characterise a 

domain simply by being shown examples from the domain. The network modifies 

the strengths of its connections so as to construct an internal model that produces 

examples with the same probability distribution as the samples it is shown. Then, 

when shown any particular example, the network can interpret it by finding values 

of the variables in the internal model that would generate the example. When 

shown a partial example, the network can complete it by finding internal variable 

values that generate the partial example and use them to generate the remainder. 

3.3.2 Minimising Energy 

The structure of a Boltzmann Machine is similar to that of a Hopfield network. 

Given a set of units which take on binary values Sj = 0 or Sj = 1, connected with 

symmetric weights w,ythe overall energy of a particular configuration is given by:- 

E = 	W LJS I SJ+ 	O L s L 	 (3.18) 

where 0, is the threshold of the itt  unit. Because of the symmetric connections, 

a local decision can be made as to whether or not a unit should be in the on or 

off state to minimise this energy. If the unit is off (0), it contributes nothing to the 

above equation, but if it is on (1) it contributes- 
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AE i 	w 1 s 1 —e 1 	 (3.19) 

In order to minimise the overall energy, then a unit should turn on if its input 

exceeds its threshold and off otherwise. This is the Hopfield rule for binary 

threshold units. 

The effect of 0 i  on the global energy or on the energy gap of an individual unit is 

equivalent to the effect of a link with strength —0 ,between unit! and a special unit 

that is by definition held in the on state. This true unit simplifies the computations 

by allowing the threshold of a unit to be treated in the same manner as the links. 

The value —0 i is called the bias of unit!. If a permanently active true unit is assumed 

to be part of every network, then Equations (3.18) and (3.19) can be written as:- 

£ = - 	w 1 s 1 s 1 	 (3.20) 
i<i 

AE= 	w,s 1 	 (3.21) 

3.3.3 Simulated Annealing 

The simple deterministic algorithm, as used in the Hopfield model does not allow 

the global minimum to be found because it suffers from the standard weakness 

of gradient descent methods and becomes stuck in local minima that are not 

globally optimal. This as previously observed is not a problem in Hopfield's system 

because local energy minima of his network are used to store items. If the system 

started near some local minimum, the desired behaviour is to fall into that 

minimum and not to find the global minimum. For optimisation tasks, however, 

the system must try to escape from local minima in order to find the configuration 

that is the global minimum given the current input. A simple way to get out of local 

minima is to occasionally allow jumps to configurations of higher energy. 

-58- 



An algorithm with this property was introduced by Metropolis et al. (1953) to 

simulate the behaviour of many-particle systems in thermal equilibrium. In each 

step of this algorithm, the state s1 of particle! is given a small random displacement 

and the resulting change, A F, in the energy of the system is computed. If 

AE i  !~ 0 , the displacement is accepted, and the configuration with the 

displaced atom is used as the starting point for the next step. The case A F i  > 0 

is treated probabilistically and the probability that the configuration is accepted 

is - - 

AE 

P(AE) = 	 (3.22) 

where kB  is Boltzmann's constant, and T is temperature. Random numbers 

uniformly distributed in the interval (0,1) are a convenient means of implementing 

the random part of the algorithm. One such number is selected and compared 

with P(AE) . If it is less than F(AE) , the new configuration is retained, if 

not, the original configuration is used to start the next step. By repeating the basic 

step many times, the thermal motion of atoms in thermal contact with a heat bath 

at temperature T is simulated. This choice of P (A E, 
) 
has the consequence that 

the system evolves into a Boltzmann distribution, (Metropolis et al., 1953; 

Kindermann & Snell, 1980). 

As T goes to 0, this distribution will tend to an impulse (or set of impulses) 

corresponding to the state (or states) of minimum energy, that is, to the value of 

s that minimises E(s) globally. 

One serious difficulty, however, is that attaining thermal equilibrium might take a 

very long time at low temperatures. Kirkpatrick, Gelatt & Vecchi (1983) used 

another physical analogy to guide the use of occasional uphill steps. To find a 

very low energy state of a metal, the best strategy is to melt it and then to slowly 

reduce its temperature. This process is called annealing, and so they named their 

search method simulated annealing. Thus the system to be optimised is first 

melted at a high effective temperature, then the temperature lowered by slow 
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stages until the system freezes and no further changes occur. This method has 

been used successfully to design electronic systems and on travelling salesman 

problems (Kirkpatrick et al., 1983). 

Thus, the solution to the problem of local energy minima can be solved in 

essentially the same way that flaws are dealt with in crystal formation by annealing. 

This is a process whereby a material is heated and then cooled very slowly. The 

idea is that as the material is heated, the bonds between the atoms weaken and 

the atoms are free to reorient relatively freely. They are in a state of high energy. 

As the material is cooled, the bonds begin to strengthen, and as the cooling 

continues the bonds eventually become sufficiently strong so that the material 

freezes. To minimise the occurrence of flaws in the material, it must be cooled 

slowly enough so that the effects of one particular coalition of atoms has time to 

propagate from neighbour to neighbour throughout the whole material before 

the material freezes. The cooling must be especially slow as the freezing 

temperature is approached. During this period the bonds are quite strong so that 

the clusters will hold together, but they are not so strong that atoms in one cluster 

might not change state so as to align with those in an adjacent cluster, even if 

means moving into a momentarily more energetic state. In this way annealing 

can move a material toward a global energy minimum. 

Boltzmann Machines (Hinton, Sejnowski & Ackley, 1984) are networks with a 

binary Hopfield net structure that use as their update rule a form of the Metropolis 

algorithm that is suitable for parallel computation. If the energy gap between the 

1 and 0 states is A F i  then regardless of the previous state the probability of a 

unit's next state being on is given by:- 

1 
Pi = 	 (3.23) -AS 1  

1 + 

where T is a parameter which acts like temperature of a physical system. The 

time required to reach thermal equilibrium grows extremely rapidly as T is 

lowered. A more practical way of zeroing in on the state of least energy is to start 
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at a high temperature and gradually lower it. This corresponds to annealing a 

physical system (Kirkpatrick et al. 1983). Early in the search only large energy 

differences are significant, and the system quickly makes a coarse attempt at the 

problem, avoiding states of extremely high energy. As the system cools down, 

smaller energy differences become significant, and more and more states are 

avoided as the search focuses on states with energies close to the minimal value. 

If the cooling is done gently, the state of maximal energy should be found in much 

less time than by giving T a constant low value. 

The idea of implementing constraints as interactions between stochastic 

elements was proposed by Moussouris (1974) who discussed the identity 

between Boltzmann distributions and Markov random fields. The idea of using 

simulated annealing in parallel networks has been investigated independently by 

several groups. Geman & Geman (1984) established limits on the allowable 

speed of the annealing schedule, and showed that simulated annealing can also 

be very effective for removing noise from images. They were able to prove that 

a necessary and sufficient condition for convergence to the global minimum 

based on strictly local sampling requires that the time schedule of changing the 

fluctuation variance, described in terms of the artificial cooling temperature Ta(t), 

be inversely proportional to a logarithmic function of time, given a sufficiently high 

initial temperature T0. 

T o  
T a (t)= 	 (3.24) 

log(1 +t) 

Unfortunately, the value of T0 for which Geman & Geman were able to guarantee 

convergence is in general very high, so that convergence becomes impractically 

slow. 

Hinton & Sejnowski (1983) showed that the use of binary stochastic elements 

could solve some problems that plague other relaxation techniques, in particular 

the problem of learning the weights. Smolensky (1984) investigated a similar 

scheme he called Harmony. The essential update rule employed in all of these 

models is probabilistic and is given by:- 
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Figure 3.3 Probability values as a function of net input and temperature. 
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probabi1ity(s = 1) = 
	1 	

(3.25) 

1+ 

where T is the temperature. It is not accidental that these three models all choose 

the same update rule. This rule is drawn directly from physics and there are 

important mathematical results that, in effect, guarantee that the system will end 

up in a global minimum if the system is annealed slowly enough. 

Figure 3.3 shows the probability values as a function of net input and the 

temperature. Several observations can be made. First if the temperature is 0, the 

unit takes on its maximum and minimum values with equal probability. Second, 

if the net input is large enough, the unit will always take on its maximum value no 

matter what value the temperature is; and if the net input is sufficiently negative, 

the unit will take on its minimum value no matter what the temperature. Third, as 

the temperature approaches 0, the function becomes deterministic and takes on 

its maximum value if the net input is positive and its minimum value if the net input 

is negative. The zero temperature case is identical to the Hopfield binary unit 

model. 

Simulated annealing with the Boltzmann Machine requires a cooling schedule 

inversely proportional to log time and is computationally slow. Another approach 

to simulated annealing is the Cauchy Machine (Szu, 1986) which uses the 

properties of the Cauchy distribution to perform fast simulated annealing with a 

cooling schedule inversely proportional to time (see Section 3.4). 

3.3.4 Boltzmann Machine Learning Algorithm 

At thermal equilibrium at temperature T, the Boltzmann distribution gives the 

relative probability that the system will occupy state A, as against state B:- 

P A T 	
(3.26) 

PB 

a MA-1 



where PA is the probability of being in the Ath  global state, and EA is the energy 

of that state. 

"The Boltzmann distribution has some particularly interesting 
mathematical properties and it is intimately related to information 
theory. In particular, the difference in the log probabilities of two global 
states is just their energy difference (at a temperature of 1). The 
simplicity of this relationship and the fact that the equilibrium 
distribution is independent of the path followed in reaching equilibrium 
are what make Boltzmann Machines interesting." (Hinton et al., 1984). 

By using the decision rule in Equation (3.25) and running the network freely 

without any input from the environment until it reaches thermal equilibrium at 

some finite temperature the relationship between a global state and its energy is 

given by Equation (3.26). It is therefore possible to control the probabilities of 

global states by controlling their energies. Because the energy is a linear function 

of the weights (Equation 3.18) this leads to a simple relationship between the log 

probabilities of global states and the individual connection strengths:- 

	

ölnP 	1 

	

owii 	
(3.27) 

where s is the binary state of the ith  unit in the (X  1h global state and P is CL 

the probability at thermal equilibrium, of global state a of the network when 

none of the visible units are clamped (the lack of clamping is denoted by the 

superscript -. p,1  is the probability of finding the ith  and jth  units on together 

when the system is at equilibrium. Equation (3.27) shows that the effect of a 

weight on the log probability of a global state can be computed from purely local 

information because it only involves the behaviour of the two units that the weight 

connects. This makes it easy to manipulate the probabilities of global states 

provided the desired probabilities are known (Hinton & Sejnowski, 1983). 

The units of the Boltzmann Machine partition into two groups of units, anon-empty 

set of visible units and a possibly empty set of hidden units. External input drives 

the visible units into various possible states with various probabilities. The hidden 
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units are never clamped by the environment, and can be used to explain 

underlying constraints in the input patterns that cannot be represented by 

pairwise constraints among the visible units. 

Unfortunately it is normally unreasonable to expect the environment to specify 

the required probabilities of entire global states of the network. The task that the 

network must perform is defined in terms of states of the visible units, and so the 

environment or teacher only has direct access to the states of these units. The 

difficult learning problem is to decide how to use the hidden units to help achieve 

the required behaviour of the visible units. A learning rule which assumes that 

the network is instructed from outside on how to use all of its units is of limited 

interest because it evades the main problem which is to discover appropriate 

representations for a given task among the hidden units. 

In statistical terms, there are many kinds of statistical structure implicit in a large 

ensemble of environmental vectors. The separate probability of each visible unit 

being active is the first-order structure and can be captured by the thresholds of 

the visible units. The - pair-wise correlations between the v visible units 

constitute the second-order structure and this can be captured by the weights 

between pairs of units. All structure higher than second-order cannot be captured 

by pairwise weights between visible units. For example, if the ensemble consists 

of vectors (11 0), (1 0 1), (0 11), and (0 0 0), each with probability 0.25. There 

is clearly some structure here because four of the eight possible 3-bit vectors 

never occur. However the structure is entirely third-order. The first-order 

probabilities are all 0.5, and the second-order correlations are all 0, so in 

considering only these statistics, this ensemble is indistinguishable from the 

ensemble in which all eight vectors occur equiprobably. 

The Widrow-Hoff rule or perceptron convergence procedure (Rosenblatt, 1962) 

is a learning rule which is designed to capture second-order structure and it 

therefore fails on the above example. If the first two bits are treated as an input 
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and the last bit is treated as the required output, the ensemble corresponds to 

the exclusive-OR (XOR) function which is one of the examples used by Minsky 

and Papert (1969) to show the strong limitations of single-layer perceptrons. 

In one sense it is true that networks with pairwise connections can never capture 

higher than second-order statistics. In another sense it is false. By introducing 

extra units which are not part of the definition of the original ensemble, it is possible 

to express the third-order structure of the original ensemble in the second-order 

structure of the larger set of units. In the example given we can add a fourth 

component to get the ensemble {(11O1),(1O1O),(O11O),(0000)}. It is now 

possible to use the thresholds and weights between all four units to express the 

third-order structure in the first three components. i.e. an  extra "feature detector" 

is introduced which in this example detects the case when the first two units are 

both on. Then it is possible to make each of the first two units excite the third unit, 

and use strong inhibition from the feature detector to overrule this excitation when 

both of first two units are on. The difficult problem in introducing the extra unit is 

deciding when it should be on and when it should be off, i.e. deciding what feature 

it should detect (there are six different ways of using the extra unit to solve the 

task). 

The weights in the network should be chosen so that the hidden units represent 

significant underlying features that bear strong, regular relationships to each 

other and to the states of the visible units. The hard learning problem is to 

determine what these features are, i.e. to find a set of weights which turn the 

hidden units into useful feature detectors that explicitly represent properties of 

the environment which are only implicitly present as higher order statistics in the 

ensemble of environmental vectors. 

Another view of learning is that the weights in the network constitute a generative 

model of the environment. The object then is to find a set of weights so that when 

the network is running freely, the patterns of activity that occur over the visible 

units are the same as they would be if the environment was clamping them. The 

number of units in the network and their interconnectivity define a space of 



possible models of the environment, and any particular set of weights defines a 

particular model within this space. The learning problem is to find a combination 

of weights that gives a good model given the limitations imposed by the 

architecture of the network and the way it runs. 

Making certain assumptions permits derivation of a measure of how effectively 

the weights in the network are being used for modeling the structure of the 

environment, and it is also possible to show how the weights should be changed 

to progressively improve this measure. Firstly, assume that the environment 

clamps a particular vector over the visible units and keeps it there long enough 

for the network to reach thermal equilibrium with this vector as a boundary 

condition (i.e. to "interpret it). Secondly, assume (unrealistically) that there is no 

structure in the sequential order of the environmentally clamped vectors. This 

then means thatthe complete structure of the ensemble of environmental vectors 

can be specified by giving the probability, P '  (V,, ) , of each of the 2V  vectors 

over the v visible units. P (V a) does not depend on the weights in the network 

because the environment clamps the visible units. 

A particular set of weights can be said to constitute a perfect model of the structure 

of the environment if it leads to exactly the same probability distribution of visible 

vectors when the network is running freely with no units being clamped by the 

environment. Because of the stochastic behaviour of the units, the network will 

wander through a variety of states even with no environmental input and it will 

therefore generate a probability distribution, P - (V a) overall 2V  visible vectors. 

This distribution can be compared with the environmental distribution, P + (V a). 

In general, it will not be possible to exactly match the 2V  environmental 

probabilities using the weights among the v visible and h hidden units because 

there are at most (v + h - 1) symmetrical weights and (v + h) thresholds. 

However, it may be possible to do very well if the environment contains regularities 

that can be expressed in the weights. An information theoretic measure (Kullback, 

1959) of the distance between the environmental and free-running probability 

distributions is given by:- 
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C = 	
P (V a ) 

P(V)1n 	 (3.28) 
P(V) 

where P (V ,,) is the probability of the ctt/L  state of the visible units in phase + 

when their states are determined by the environment, and P(V a ) is the 

corresponding probability in phase when the network is running freely with no 

environmental input. 

G is never negative and is only zero if the distributions are identical. G is actually 

the distance in bits from the free running distribution to the environmental 

distribution (using base 2 logarithms). 

It is possible to improve the network's model of the structure of its environment 

by changing the weights so as to reduce G. To perform gradient descent in G it 

is important to know how G will change when a weight is changed. But changing 

a single weight changes the energies of a significant number of all the global 

states of the network, and it changes the probabilities of all the states in ways 

that depend on all the other weights in the network. 

To minimise G, Hinton et al. (1984) show that from Equations (3.26) and (3.18) 

the partial derivative of 0 is:- 

ÔG 	1 	- 
Pij 	L]  (3.29) 

where p + is the average probability of two units being in the on state when the 

environment is clamping the states of the visible units, and p,1 is the 

corresponding probability when the environmental input is not present and the 

network is free running. (Both these probabilities must be measured at 

equilibrium). To minimise G, it is sufficient to observe pij  and pjj when the 

network is at thermal equilibrium and to change each weight by an amount 

proportional to the difference between these two probabilities:- 

(3.30) 
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where € scales the sign of each weight change. The change in a weight depends 

only on the behaviour of the two units it connects, even though the change 

optimises a global measure, and the best value for each weight depends on the 

values of all the other weights. Interestingly, it does not matter whether the weight 

is between two visible units, two hidden units, or one of each. 

If there are no hidden units, it can be shown that G-space is concave (when 

viewed from above) so that simple gradient descent will not get trapped at local 

minima. With hidden units, however, there can be local minima that correspond 

to different ways of using the hidden units to represent the high-order constraints 

that are implicit in the probability distribution of environmental vectors. 

Once G has been minimised the network will have captured as well as is possible 

the regularities in the environment. There are a number of variations that can be 

made to the learning algorithm and indeed various techniques that can be applied 

to speed up performance of the algorithm. Some of these are discussed in 

Chapter 4. 

3.3.5 Relationship to the Brain 

The membrane potential of a neuron may be regarded as being similar to the 

energy gap for a binary unit. Both are the sum of the excitatory and inhibitory 

inputs and both are used to determine the output state. However, neurons 

produce action potentials rather than binary outputs. When an action potential 

reaches a synapse, the signal it produces in the postsynaptic neuron rises to a 

maximum and then exponentially decays with the time constant of the membrane 

(typically around 5 msec for neurons in the cerebral cortex). 

The summed input from all the recently active binary units is represented by the 

energy gap. If the average time between updates is identified with the average 

duration of a postsynaptic potential, then the binary pulse between updates can 

be considered as an approximation to the postsynaptic potential. Although the 

shape of a single binary pulse differs significantly from a postsynaptic potential, 
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the sum of a large number of stochastic pulses is independent of the shape of 

the individual pulses and depends only on their amplitudes and durations. The 

binary approximation may therefore be reasonable for large networks having the 

large fan-ins typical of the cerebral cortex (around 10,000). 

The membrane potential of a neuron is graded, but if it exceeds a fairly sharp 

threshold an action potential is produced followed by a refractory period lasting 

several msec during which another action potential cannot be generated. If 

Gaussian noise is added to the membrane potential, then even if the total synaptic 

input is below the threshold, there is a finite probability that the membrane 

potential will reach the threshold. 

The amplitude of the Gaussian noise determines the width of the sigmoidal 

probability distribution for the neuron to fire during a short time interval, and it 

therefore plays the role of temperature in the model. A cumulative Gaussian is a 

very good approximation to the required probability distribution. It has been 

shown using intracellular recordings from neurons that there is stochastic 

variability in the membrane potential of most neurons, which is due in part to 

fluctuations in the transmitter released by presynaptic terminals. 

In a Boltzmann Machine all connections are symmetrical. It is very unlikely that 

this assumption is strictly true of neurons in the cerebral cortex. However, if the 

constraints of a problem are inherently symmetrical and if the network on average 

approximates the required symmetrical connectivity, then random asymmetries 

in a large network will be reflected as an increase in the Gaussian noise in each 

unit. 

3.4 CAUCHY MACHINE 

One of the major problems confronting simulated annealing is convergence 

speed. An algorithm that uses Cauchy noise and has a cooling schedule that is 

inversely linear in time has been present by Szu (1986). This fast simulated 

annealing (FSA) is a semi-local search and consists of occasional long jumps. 
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With a cooling schedule that is inversely linear in time it is fast compared with 

classical simulated annealing (CSA) which is inversely proportional to the 

logarithmic function of time. 

T o  

	

T(t)= 	 (3.31) 
(1+t) 

A distributed Cauchy Machine is an architecture that can execute a parallel 

version of the fast simulated annealing algorithm. Binary unit output and analogue 

unit input are used with the Cauchy noise version of the Metropolis acceptance 

function, as well as the Cauchy noise generating random states. 

The output s1 is set to one with the following acceptance criteria: 

	

1 1 	

(

nt'\
P(at L )=—+ 	 rI 	I—arcta 	 (3.32) 

2 n T) 

where T and net1 are the (artificial) temperature parameter and the total input to 

the ,lh  unit respectively. If the uniform random number N [0-1] is smaller than 

P(netD, the output Sj is set to one. T is updated according to and output s1 is set 

to zero otherwise. 

3.5 GAUSSIAN MACHINE 

A neuron in a Gaussian Machine model (Akiyama.et al., 1989) has graded output 

responses like a Hopfield Machine (Hopfield, 1984) and behaves stochastically 

like a Boltzmann Machine so that the system can escape from local minima under 

appropriate system parameters. In Gaussian Machines, the output function of a 

neuron is deterministic, just as in the Hopfield Machine, but the output value is 

influenced by random noise added to each input, and as a result forms a 

probabilistic distribution. The Gaussian Machine model includes the 

McCulloch-Pitts model, the Hopfield Machine and the Boltzmann Machine as 

special cases of its definition. 
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The Gaussian Machine is so called because its significant property is derived 

from a Gaussian distribution of random noise added to the neural input of the 

model. Each unit Uj receives the output value 0/ from the other neurons through 

the input links. The output values oj of ui are graded values with a range 0 
<  oj 

< 1. A synaptic weight Wi1  is defined for each interconnecting link from uj to u1. 

The neuron also has an input bias 0, . Thus the net input net1 to u1 is:- 

nt i  = W1O1 + O + E (3.33) 

where E is the error (per unit time) on the input caused by random noise. This 

noise term E is essential to the Gaussian Machine because it breaks the 

determinism of each neuron and helps the system to escape from local minima. 

The unit Uj is activated by the net input net. The activation value s, of net1 is 

changed in accordance with the difference equation: 

AS j 	s 
—=--+nt. 	 (3.34) 
At 	-r 

where T is the time constant of the neuron. The asynchronous update schedule 

of Equation (3.34) has the advantage of damping oscillation, as reported by 

Hopfield (1982). At has the range of 0 < 6 t '!~ 1 in consideration of convergency. 

The output value Oj is determined by a sigmoid function:- 

2( (

1 (3.35) 
so) ) 

where s0 is the reference activation level, which defines the gain of the curve. If 

so approaches zero, then the function becomes the unit step function in the same 

manner as the McCulloch-Pitts threshold model. Equation (3.35) is identical to 

that of the Hopfield Machine. 
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The net input net1 of the Gaussian Machine is always influenced by random noise 

E. The error is propagated to the activation value s1 and then affects the 

determination of the output value o. Alspector (1989) used a similar technique 

to this in an electronic model of a 6 neuron network. 

The noise E obeys a Gaussian distribution with mean of zero and variance 2  

The deviation a depends on a parameter T known as temperature and defined 

as: -  

a =  kT 	 (3.36) 

where the constant k is given by k = '..J 8/ rt 

The convergence behaviour of a Gaussian Machine depends on w17 and biases 

e.. To describe the convergence behaviour of a system, Hopfield (1984) 

presented the following energy function:- 

1NN 	 N 	 N 	o 

= - 	w ij o o- 	Oo + 	
11/2 	

(3.37) 

where the third term disappears when s0 approaches zero. 

Hopfield has shown that the energy function E monotonically decreases with time 

when the matrix w17 is symmetric, all principal diagonal elements w11  are zero, and 

there is no noise. In a Hopfield Machine, the allowing of vague decisions based 

on a continuous output values contributes to faster convergence. However, it 

cannot escape from local minima because of its determinism. 

A neuron of a Gaussian Machine changes its state stochastically with E tending 

to decrease. Thus the Gaussian Machine model can escape from a local minimum 

when the noise is sufficiently large. 

The McCulloch-Pitts model is characterised by a binary output, deterministic 

decision rule and instantaneous activation in time. If s0=O and T=O, the output 

function f becomes the unit step function and the decision is completely 

deterministic. 
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The Hopfield Machine is characterised by a graded output, deterministic decision 

rule and continuous activation in time. The Hopfield Machine is identical to the 

Gaussian Machine model when T=0 because the Gaussian Machine has the 

same output function controlled by s. 

The Boltzmann Machine model is characterised by a binary output, stochastic 

decision rule and instantaneous activation in time. The activation value s, IS equal 

to net1 in this model and is calculated by Equation (3.33). The selection of binary 

output is described probabilistically. The output value Oj is set to 1 with the 

following probability 

P(o= 1)= 
1+exp 

1 	
(3.38) 

where A F i  is identical to both net1 and sj, and T is the temperature parameter 

in the Boltzmann Machine. The cumulative Gaussian distribution is a sigmoid 

function and fits very well to the curve of the probability function on the Boltzmann 

Machine model. The two curves have the same gradient at S1  (or A F) = 0. This 

can be achieved by setting the coefficient k = J8/n . The difference between 

the curves never exceeds 0.002 (Akiyama et al., 1989), and has the same 

behaviour as a Boltzmann Machine at temperature T. 

3.6 HARMONY MACHINE 

• the privileged unconscious phenomena, those susceptible of being 
conscious, are those which... affect most profoundly our emotional 
sensibility ... Now, what are the mathematic entities to which we 
attribute this character of beauty and elegance ... ? They are those 
whose elements are harmoniously disposed so that the mind without 
effort can embrace their totality while realising the details. This harmony 
is at once a satisfaction of our aesthetic needs and an aid to the mind, 
sustaining and guiding ... Figure the future elements of our 
combinations as something like the unhooked atoms of Epicurus 
They flash in even,' direction through the space ... like the molecules 
of a gas in the kinematic theory of gases. Then their mutual impacts 
may produce new combinations." ( Poincaré, 1913). 
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The basic mathematics of harmony theory is rather similar to that of the Boltzmann 

Machine, although the structure and motivation are different. Both the Harmony 

Machine and Boltzmann Machine use bidirectional, symmetric links and discrete, 

stochastic units. Unit behaviour is governed by the sigmoid function with a model 

parameter controlling the temperature of the units. The energy function of a 

Boltzmann Machine corresponds to the negative of the harmony function defined 

over states of a Harmony Machine. The dynamics of the system can be viewed 

as minimising energy, or, equivalently, as maximising harmony. 

Whereas the Boltzmann Machine can be considered as an arbitrarily 

interconnected set of homogeneous units, Harmony theory presupposes two 

distinct layers of units (Figure 3.4). A harmony network consists of a lower layer 

of representational feature units (which contains the visible units) and an upper 

layer of knowledge units (hidden units). The feature units take on activation values 

± 1 , whereas the knowledge units take on values 0 and 1. The feature units may 

be regarded as corresponding to the featural description of a situation. In a 

complete description, each feature is either present (+1) or absent (-1). The 

knowledge units on the other hand, may be thought of as bits of knowledge about 

what configurations of features go together. Knowledge units may be either active 

or inactive. When a knowledge unit is active, it can be viewed as concluding that 

the configuration of input features it is looking for is present in the environment. 

When a knowledge unit is inactive it can be viewed as concluding that the evidence 

does not warrant such an assertion. All connections in a harmony model are 

symmetric, and all connections are between features and knowledge units. Thus, 

a given feature may either excite a knowledge unit that is consistent with it, inhibit 

a knowledge unit that is inconsistent with it, or have no effect on a knowledge 

unit to which the feature is irrelevant. Similarly, knowledge units specify certain 

configurations of features that are consistent with the knowledge represented by 

that unit. Thus a knowledge unit may activate those features that are consistent 

with the unit, inhibit those that are inconsistent, or not connected with those that 

are irrelevant to the contents of that unit. Neither features nor knowledge units 

are directly connected to one another. All connections in the system are ± 1 
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However, each knowledge unit has a strength designated a. The strength 

corresponds to the degree that the knowledge unit in question insists that the 

features to which it is connected are present at the input 

Harmony theory is so named because, for any configuration of input features the 

system finds the configuration of knowledge units that is maximally consistent, 

or harmonious, with the featural constraints. The configurations of active 

knowledge units may be seen as an interpretation of the input features. 

In addition to creating an interpretation of a set of input features, the knowledge 

units themselves can complete missing features in a way that is maximally 

consistent with those features that are fixed (clamped) and the set of knowledge 

units. This is the so-called completion problem. 

A state of harmonium is determined by the values of the lower and upper level 

nodes. Such a state is determined by a pair (r, s) consisting of a representation 

vector r and an activation vector s. A harmony function assigns a real number 

H,<  (r, s) to each such state. The harmony function has as parameters the set 

of knowledge vectors and their strengths: { (K a' a,, ) )  

The basic requirement on the harmony function H is that it be additive under 

decompositions of the system (in physics, one says that H must be an extensive 

quantity). This means that if a network can be partitioned into two unconnected 

networks, the harmony of the whole network is the sum of the harmonies of the 

parts. 

The harmony function H can be written in the following way:- 
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Figure 3.4 A graphical representation of a Harmony Machine. The nodes 

denote stochastic processors, and the links denote communication lines. 
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harmony = osh 	 (3.39) 

Here i ranges over the knowledge units and hi is a measure of the degree to 

which the current set of feature values is consistent with knowledge unit i. The 

variable o i  is a strength or importance value associated with unit i. The variable 

h1 is given by 

- 	 (3.40) 

Here / ranges over features, rj is the activation of representational feature /, and 

n1 is the number of non-zero connections to unit I. The variable k,y is given by 

( 1 if positive connecion 

kij 	1 if negative conection 	 (3.41) 

0 if no connection 	) 

In other words, the total harmony is given by the sum of contributions of each of 

the knowledge units. If a knowledge unit is not activated (Si = 0), there is no 

contribution. If it is active (S1 = 1), then it contributes an amount that is proportional 

to the product of its importance, cY i  , and a term representing the consistency 

of that unit with the current pattern of activation among the representational 

features. This consistency term, h1, is the proportion of relevant features that are 

consistent minus the proportion that are inconsistent, less a constant 1<.. 

Consider first the case in which i<. is 0. In this case, turning on unit iwill contribute 

a positive amount to the overall harmony of the system whenever the number of 

consistent features exceeds the number of inconsistent features. If i<. is near 1, 

then it will contribute to the overall harmony only when all, or nearly all, of its 

features match the template for the unit. 

Once a node has computed the difference in harmony A  between its two 
AH 

possible states, the likelihood ratio for adopting the two states is e T . Converting 

this to the absolute probability of changing value gives:- 
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AH 

7. 

prob(chang)= 	 (3.42) 
1 + 

where T is the computational temperature. The mapping with statistical physics 

allows harmony theory to exploit a computational technique for studying thermal 

systems that was developed by Metropolis et al. (1953). This technique uses 

stochastic or Monte-Carlo computation to simulate the probabilistic dynamical 

system under study. 

The relationship between probability and harmony is mathematically identical to 

the relationship between probability and (minus) energy in statistical physics: the 

Gibbs or Boltzmann law. This is the basis of the isomorphism between cognition 

and physics exploited by harmony theory. In statistical physics, H is called the 

Hamiltonian function; it measures the energy of a state of a physical system. In 

physics T is the temperature of the system. In harmony theory, T is called the 

computational energy of the cognitive system. When the temperature is very high, 

completions with high harmony are assigned estimated probabilities that are only 

slightly higher than those assigned to low harmony completions; the environment 

is treated as more random in the sense that all completions are estimated to have 

roughly equal probability. When the temperature is very low, only the completions 

with highest harmony are given non-negligible estimated probabilities. 

Although Smolensky briefly describes a learning algorithm for the Harmony 

Machine, much of his work (Smolensky, 1986) has been in gaining analytical and 

empirical insights into the behaviour of the machine, given a fixed set of link 

weights, during a single (annealing) pattern completion. 

3.7 DETERMINISTIC MODEL 

3.7.1 Multi-layer Perceptron 

Multi-layer Perceptrons are feed-forward networks that possess a layer of input 

units, one or more layers of hidden units, and a layer of output units. These layers 
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of hidden units are not directly connected to both the input and output nodes. 

The hidden units in any given layer are not connected to each other. The hidden 

units and output units have real-valued outputs between 0 and 1 determined by 

the sigmoid function of net input. 

Multi-layer Perceptrons overcome many of the difficulties of the Single-layer 

Perceptrons, but were generally not used in the past because effective training 

algorithms were not available. This has recently changed with the development 

of a new training algorithm called back-propagation (Rumelhart, Hinton & 

Williams, 1986). Although it cannot be proven that this algorithm converges, it 

has been shown to be successful for many problems (Rumelhart et al., 1986). 

To use the network to implement an associative memory, given a set of input 

vectors and corresponding output vectors, the network must learn to produce 

the appropriate output vector for a given input vector. The Multi-layer Perceptron 

is operated by clamping an input vector into the input units and applying the 

decision rule to each layer of units in turn from the first hidden layer to the output 

layer. Since the desired output vector is known, each output unit can compute 

an error derivative based on the difference between its actual state and the state 

specified by the output vector. Since the state of an output unit is completely 

determined by its input (these units are not stochastic), and the sigmoid function 

is differentiable, it is easy to compute the derivative of the error with respect to 

the unit's total input. That quantity can be propagated backwards along the links 

into the unit (and scaled by the link weights), to produce error derivatives for the 

units in the last layer of hidden units. This process can be repeated recursively 

to produce error derivatives for each of the layers in turn back to the first layer of 

hidden units. The link weights are incrementally adjusted in proportion to the 

partial derivatives of the global error with respect to each weight in the network. 

The back-propagation algorithm is a generalisation of the LMS or Widrow-Hoff 

algorithm (Widrow & Hoff, 1960; Widrow & Stearns, 1985). It uses a gradient 

search to minimise a cost function equal to the mean square difference between 

the desired and the actual net outputs. The desired output of all units is typically 
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low (0 or < 0. 1) unless the unit corresponds to the class the current input is from. 

In that case it is high (1.0 or > 0.9). The net is trained with supervision. Weights 

and node offsets are initially set to small random values and all training data is 

then presented repeatedly. Weights are adjusted after every trial until the cost 

function is reduced to an acceptable value or remains unchanged. An essential 

component of the algorithm is the iterative method that propagates error terms 

back from units in the output layer to units in lower layers. 

The hidden units in any given layer communicate with each other via their effects 

on the next layer. The error derivative at a unit depends both on downstream 

influences and on that unit's activity. A unit's activity, in turn, depends on the 

activities of all the units in the previous layer, and so the error derivative computed 

by one unit in the previous layer depends in part on the activities of all the other 

units in that layer. The formal derivation of the learning algorithm avoids dealing 

with these interactions by computing the appropriate change for a given weight 

under the assumption that all the other weights remain constant. Although steps 

can be taken to minimise this factor, in general, as the hidden unit interactions 

become more significant (for example when the number of hidden units in a layer 

is increased), a smaller learning rate must be chosen, which increases the 

learning time. 

It is possible to define an iterative version of the back-propagation algorithm, 

which relaxes the feed forward restriction on the network topology. Instead of 

propagating errors back through the layers of feedforward network, errors can 

be propagated backwards through the sequence of states generated over time 

by an arbitrary network (Almeida, 1987a; Almeida, 1987b; Pineda, 1987). 

Multi-layer Perceptrons which have been trained with back-propagation have 

been found to perform well in many applications including problems related to 

speech synthesis and recognition (Sejnowski & Rosenberg, 1986; Peeling & 

Moore, 1987; Elman & Zipser, 1987) and on problems related to visual pattern 

recognition (Rumelhart, Hinton & Williams, 1986). Back-propagation can be 

applied both to linear problems currently handled by Gaussian Classifiers and to 
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non-linear problems where it is difficult to specify the optimal classifier or filtering 

technique. The generally high performance found for the back-propagation 

algorithm is somewhat surprising, considering that it is a simple gradient search 

technique that may find local minima in the LMS cost function instead of the 

desired global minimum. The problem of multiple local minima corresponding to 

very different network performance levels has not been observed frequently for 

classification problems. One difficulty, however, has been that many 

presentations of the training data are frequently required for convergence. This 

is important during training but does not effect response time during classification. 

It currently sets a practical limit to the size of nets that can be trained but is not 

a severe problem for single-layer nets or multiple-layer nets with restricted 

connectivity. As an indication of the practical limit to the size of network and 

corpus of training data Elman & Zipser (1987) describe numerical simulations on 

a Cray XMP-4 for a network consisting of an input layer of 640 units, a hidden 

layer of 8 units, and an output layer of 640 units. The corpus used contained 

approximately 140,000 different input patterns, with each pattern consisting of 

640 numbers. The network was trained on this corpus for 1,000,000 learning 

cycles. No indication of the program times was given. 

3.7.2 Relationship to Hopfield and Boltzmann Machines 

If the interconnection weights of a Multi-layer Perceptron are made symmetrical 

and the self-feedback weights w11 forced to be zero and no hidden units are 

allowed, feedback perceptrons become formally equivalent to Hopfield networks 

with graded neurons (Hopfield, 1984). Therefore, back-propagation can be 

viewed as a learning rule for graded Hopfield networks. 

In addition, a feedback perceptron with symmetrical weights and diagonal 

elements w11  that are all zero and steep sigmoids, has approximately the same 

energy minima as a Boltzmann Machine with the same weights. Almeida (1 987a) 

suggests that back-propagation can very probably be used to train Boltzmann 

Machines, i.e. to adapt their weights in such a way that they have a minimum of 

energy at the desired location, for each input pattern. 
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3.8 SUMMARY 

"All of this will lead to theories [of computation] which are much less 
rigidly of an all-or-none nature than past and present formal logic. They 
will be of a much less combinatorial, and much more analytical, 
character. In fact, there are numerous indications to make us believe 
that this new system of formal logic will move closer to another 
discipline which has been linked in the past with logic. This is 
thermodynamics, primarily in the form it was received from Boltzmann, 
and is that part of theoretical physics which comes nearest in some 
aspects to manipulating and measuring information." John Von 
Neumann, Collected Works V615, p304. 

It was the Hopfield (1982) model which stimulated the current surge of interest 

in the relationship between neural networks and statistical mechanics. Hinton et 

al (1984) applied simulated annealing to Hopfield networks and proved a learning 

algorithm which allowed hidden units to capture underlying features. 

There are two key insights behind the Boltzmann Machine. The first is Hopfield's 

result that networks with symmetric weights (and some other restrictions; see 

Section 3.2) can be viewed as minimising a globally defined energy function; the 

second is that with an appropriate choice of stochastic decision rule, the 

equilibrium behaviour of the network will be described by the Boltzmann 

distribution, providing a simple relationship between the energy of a state and its 

equilibrium probability. The Boltzmann Machine learning algorithm compares the 

statistics gathered at equilibrium when the visible units are externally driven and 

when the whole network is allowed to free-run, and adjusts the link weights to 

reduce the observed differences. 

The features which make the Boltzmann Machine attractive for the application 

with which this work is concerned are that there are no restrictions on the network 

topology, that there is a formal proof for the convergence of the learning 

procedure and that the learning procedure is able to handle hidden units. Other 

attractions include the fact that the learning algorithm is based only on information 

available locally at the connection. This is particularly important for possible 

electronic implementations (Aispector & Allen, 1987). 
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4 SIMULATION ENVIRONMENT 

4.1 INTRODUCTION 

The simulation environment described in this chapter for the numerical simulation 

of Boltzmann Machines was developed from an initial serial implementation on 

a DEC VAX 11/750 to a pseudo-parallel implementation on a Masscomp 2  Vector 

Accelerator system. The Vector Accelerator implementation is described in this 

chapter and was in fact used for the majority of the experimental work described 

in the later chapters. 

Figure 4.1 depicts a block diagram of the simulation environment. The crux of 

the system is the learning module, which along with the search module are the 

only parts of the simulation system that use the Vector Accelerator. The learning 

module is used for training Boltzmann Machines while the search module is used 

for testing Boltzmann Machines. The graphical weight display module allows the 

graphical presentation of connectivity information learned using the learn module. 

The error module allows the error measures obtained during learning to be 

smoothed, if required, and displayed graphically. The data preparation module 

provides various utilities for preparing the training and testing data for application 

to the Boltzmann Machine simulations. - 

In creating a simulation environment for Boltzmann Machines for the work of this 

thesis, it was important that flexibility be maintained without unduly compromising 

the speed of learning operation. The required flexibility was ensured by catering 

for the following factors in the simulator:- 

1) networks of varying numbers of input, hidden and output units 

2)the implementation of different connection strategies, e.g. fully connected, 

no connections between input and output units etc. 

easy modification of the annealing and learning parameters 

repeatability 

ability to graphically display connectivity information 

2 Masscomp is a trademark of the Massachusetts Computer Corporation. 
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Speed of learning operation was maximised by implementing the simulator on a 

Vector Accelerator system. This required that the units be stored as a vector and 

the connection weights as a matrix. Calculating energy difference values (which 

is the most time consuming aspect of simulation) was then easily performed using 

a dot product calculation. This approach allows higher speeds of operation than 

could have been obtained by creating a data structure called a unit and then 

incurring performance penalties due to the time taken for pointer manipulation. 

This chapter provides a brief overview of the hardware platform used to host the 

simulation environment, which because of its unique architecture, directly 

influenced the approach taken in developing the simulation software. The 

particular structure of the Boltzmann Machines adopted in this work and the 

Boltzmann Machine learning algorithm itself are then discussed. Following this, 

the methodology behind the software development is described along with details 

of the software implementation of the Boltzmann Machine learning algorithm. The 

performance of the learning simulator is also discussed. The search module and 

graphical weight display modules are then briefly described along with a section 

discussing the interpretation of weight maps. Finally, elementary examples of the 

learning simulator's operation are given for the classic exclusive-OR (XOR) 

learning problem and the 4-2-4 encoder problem. 

4.2 VECTOR ACCELERATOR OVERVIEW 

The (final) hardware platform used for the Boltzmann Machine simulations was 

a Masscomp MC57003  minicomputer. This was configured with four central 

processor units (CPUs), 12 Mbytes of memory, one Vector Accelerator and one 

lightning floating point board. In addition, each of the four processors was 

equipped with a 68881 floating point processor. The operating system installed 

was Masscomp RTU 4  (Real-Time Unix). Also installed was Network File System 

(NFS) which allowed access to a very large file system. A single high-resolution 

3 MC5700 is a trademark of the Massachusetts Computer Corporation 

4 RTU is a trademark of the Massachusetts Computer Corporation 
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graphics terminal was also available on this powerful multi-user machine. Despite 

being essentially a parallel machine with four CPUs the key element here as 

regards the simulators is the Vector Accelerator. Figure 4.2 depicts a block 

diagram of the Vector Accelerator and Host. For clarity, only one Host CPU is 

shown. 

The Masscomp Vector Accelerator is architecturally distinct from traditional array 

processor designs in two important ways. It is tightly coupled with the host, and 

the Vector Accelerator's local data memory is very fast. Many traditional array 

processors are independently programmed, and have large main and secondary 

storage so that they are almost self-sufficient. These machines are usually 

attached to the host over a lower-speed peripheral bus. The slow data transfer 

speeds over the bus create the need for a large memory in the array processor. 

In the absence of a large memory, the efficiency of the processor would be 

reduced by the slowness of data transfer to and from it. 

The Masscomp Vector Accelerator does not have local program memory. 

Programs are not written to run on the Vector Accelerator's memory, but written 

to execute on the host and use the Vector Accelerator as a dedicated resource. 

Because data between the host and Vector Accelerator memory is transferred 

using the Vector Accelerator's direct memory access (DMA) facility, blocks of 

data are transferred at high speeds (1 2.47Mbytes/second for vector memory 

load operations and 15.30 Mbytes/second for store to host operations). An 

application program directly executes the instructions that transfer data between 

the Vector Accelerator and program address space. By contrast, many traditional 

array processors are virtually distinct computers, having incidental interactions 

with the host processor. 

The Vector Accelerator is controlled by the host and dedicated to a process. In 

other words it may only be assigned to one process at a time. It communicates 

with the host via a Memory Interconnect (Ml) bus (see Figure 4.2). The Vector 

Accelerator includes:- 
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The control processor has two functions. It mediates interaction between the 

host and the Vector Accelerator and also controls and schedules the MATH and 

DMA Processors. 

The DMA processor (with some assistance from the Control Processor) handles 

direct memory access. It loads data from Host memory into Vector Memory; 

likewise, it stores data from Vector memory into Host memory. Although the 

Vector Accelerator operates on floating point numbers data can be transferred 

in either integer or floating point format. 

The MATH Processor handles arithmetic processing by performing floating point 

operations on data in Vector Memory. If the data has been loaded as integer 

data, it must be converted to floating point data prior to issuing a MATH 

instruction. This can be done by the MATH processor under explicit program 

control. Except for a few exceptions the MATH processor adheres to the IEEE 

floating point standard. 

The addressable Vector Memory consists of 32K (32768) 32-bit locations. 

However, locations 31742-32767 are reserved areas for constants and a MATH 

scratch pad, leaving locations 0 - 31741 available to the user. 

The user application program, the Vector Accelerator driver and Run Time Library 

(RTL) all run on the host processor. The Vector Accelerator driver is that part of 

the operating system that deals exclusively with the Vector Accelerator. Functions 

of the Vector Accelerator driver fall into the following major categories:- 

Accelerator allocating (for exclusive use) and de-allocating for the user 

process. 

Initialising the Vector Accelerator. 
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Mapping Vector Accelerator memory, Communications Block and Ring 

Buffers into user virtual address space. 

Handling interrupts generated by the Vector Accelerator 

Establishing and delivering asynchronous system traps for the user 

process. 

The Vector Accelerator DMA processor deals only with Vector memory and Host 

physical memory. Data structures and buffers declared in the application program 

are allocated to the data segment of the user process. If this data segment is not 

locked into host physical memory, it may not be present when needed for Vector 

Accelerator load and store operations. Thus, the data segment of the user 

program is usually locked into physical memory during Vector Accelerator 

allocation. 

The Vector Accelerator Run Time Library (RTL) is a set of functions callable from 

C and FORTRAN. The RTL routines normally interact with other parts of the 

system through packet loading operations or through host operations. The 

packet loading routines place one or more packets (of instructions) in the ring 

buffers to instruct the Vector Accelerator to perform specific functions. The host 

routines operate exclusively on the host and do not cause the Vector Accelerator 

to perform an operation. Functions performed by the host routines include 

re-arranging vectors in host memory, establishing error handling and waiting for 

selected ring buffers to empty. 

There are three basic steps that have to be undertaken in using the Vector 

Accelerator:- 

load all required data before starting the MATH operation 

compute the results before starting the store operation 

store all required results before starting a host operation on those results 

As each RTL routine is called in the application program, it places one or more 

instruction packets in either the MATH ring buffer or the DMA ring buffer, or both. 
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Synchronisation and wait routines in the RTL are used to control these operations. 

The synchronisation routines place a command packet into one of the ring buffers 

to control Vector Accelerator activity. When one of these packets is encountered, 

the Vector Accelerator suspends further processing of command packets in that 

ring buffer until all operations up to and including a specified command packet 

in the other ring buffer have completed. The wait routines block host application 

program activity until a synchronisation event from the Vector Accelerator occurs. 

The application program must explicitly place each vector in Vector Memory, and 

must explicitly reserve enough space for each one. A start-up overhead is 

associated with Vector Accelerator MATH and DMA functions. This is the amount 

of time it takes the Vector Accelerator to decode a DMA or MATH command 

packet and start the actual transfer or operation. As the vector length grows, the 

relative importance of start-up overhead diminishes. 

To get the maximum performance from using the Vector Accelerator it is important 

to minimise data transfers between the host memory and Vector Accelerator 

memory and to keep the vector lengths as long as possible to reduce the effect 

of start-up overheads. In addition, many MATH processor operations on the 

Vector Accelerator are optimised for a stride of one. Hence vectors need to be 

structured to have a stride of one in Vector Accelerator Memory. 

Using the Vector Accelerator effectively requires the careful synchronisation of 

several independently executing processors:- the host CPU, the DMA processor, 

and the MATH processor. The design of the system allows the overlap of host 

CPU, DMA and MATH operations for optimum performance. 

4.3 BOLTZMANN MACHINE LEARNING ALGORITHM 

4.3.1 Network Structure 

As discussed in Section 3.3.4 the units of a Boltzmann Machine can be divided 

into two groups of units, viz, a non-empty set of visible units and a possibly empty 

set of hidden units. The Boltzmann Machine learning algorithm can be used as 
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a content addressable memory if some of the visible units are forced into particular 

states representing a search key. The remaining visible units adopt states that 

are compatible with the key as determined by the training distribution. 

Alternatively, the visible units can be divided into an input set and an output set 

and the network asked to learn a collection of probability distributions, conditional 

on the states of the input units. The first formulation may therefore be considered 

as a process for completing a pattern which may be substantially incomplete and 

the second formulation may be considered as a process for classifying a pattern. 

Thus the input/output model of the Boltzmann Machine appears to be more 

appropriate to pathological/ healthy speaker discrimination and pathology 

discrimination than models consisting of isomorphic visible units, and hidden 

units. In addition the input/output model allows a more practical implementation 

of the learning algorithm for large machines since there is no requirement for the 

machine to learn the structure between the input units as they will always be 

clamped. Hence only the input/output model of the Boltzmann Machine was 

implemented in the numerical simulator. Figure 4.3 shows a topological 

representation of a fully interconnected input/output model of the Boltzmann 

Machine. 
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4.3.2 Learning Overview 

Each Boltzmann Machine learning cycle has essentially three steps for training 

a model with exemplars consisting of input patterns and the corresponding 

desired output pattern:- 

Clamp input and output units. (Clamp phase) 

p' is  ij  estimated by clamping the input units and output units with the 

exemplars. For each set of input and output patterns the machine is annealed 

and statistics gathered for each connection weight indicating how often the 

units at either end of the link are on together. 

Clamp input units only. (Free phase) 

p ij  is estimated in a similar scheme to the above. However in this case the 

output units are unclamped and are free to change state. This step is referred 

to as the free phase of the learning procedure. It should be noted that for the 

input/output model of the Boltzmann Machine this means that only the output 

units are free to change state. In the visible/hidden unit model all the visible 

units are allowed to change state in the free phase. 

Adapt the weight values. 

The sign of the partial derivative of G is found for all the connection weights 

and the weight values are then incremented if the sign is positive or 

decremented if the sign is negative by a constant value. 

4.3.3 Unit State Update 

Reference is made in subsequent sections to units of time for the annealing 

schedule and collection of co-occurrence statistics. In the Boltzmann Machine 

context one unit of time is defined as the time required for each unit to be given, 

on average, one opportunity to change its state. 

Boltzmann Machine theory dictates that each unit be updated asynchronously. 

However, it was found empirically that satisfactory operation could be obtained 

for suitably large machines if the units were in fact updated synchronously. 

Synchronous operation, where the units change state at the same time 
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depending on the previous set of states, allows efficient use of the Vector 

Accelerator and consequently allows a higher speed of simulation than could be 

achieved by asynchronous operation with the Accelerator. 

The Boltzmann Machine employs stochastic binary units based on a sigmoid 

function given by:- 

P(s L = 1)= 
14_f' 

1 
41 C / I 

	 (4.1) 

Where A E i  is the difference in energy for the on and off states of the jth  unit. A 

scaling constant T, the temperature, determines how smooth the curve is. In the 

limit T - 0, the Boltzmann Machine decision rule becomes the deterministic 

binary rule; as T - cc, the decision rule becomes a completely random choice. 

A cumulative Gaussian distribution is a sigmoid function that fits very well to the 

probability function curve given by Equation (4.1). 

The amplitude of the Gaussian noise determines the width of the sigmoidal 

probability distribution. If the standard deviation of the Gaussian distribution is 

chosen suitably the two curves have the same gradient at AE = 0 and the 

curves never differ by more than about 1%, (see Figure 4.4). 

Using Equation (4.1) the state of a unit may be determined by first computing the 

probability that the unit should be in the on state. To determine whether to set 

the unit's state to 1 or 0 a random variable uniformly distributed between 0 and 

1 is consulted. If this random number is less than the probability of the unit being 

in the on state the unit adopts the on state, otherwise it is set to the off state. 

However, using the Gaussian approximation the local decision rule becomes:-

If AE+N(O,)>O then set 	s 1  = 1 else s = 0 (4.2) 
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where N (0, ) is a sample from a Gaussian distribution of mean 0 and standard 

deviation a . The relationship between temperature and standard deviation to 

ensure that the gradient of the curves for the cumulative Gaussian distribution 

and the probability function at AE = 0 are identical is:- 

= 	T 
	

(4.3) 

Figure 4.4 depicts the curves for the probability function and the cumulative 

Gaussian function with T= 1.0 and cl = 
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Figure 4.4 Superimposed curves for probability function and cumulative area 

under a Gaussian. For the probability function curve T = 0. For the cumulative 

Gaussian curve the Gaussian distribution used has a mean of 0 and standard 

deviation of J 8/ ii. 
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4.3.4 Simulated Annealing 

Geman & Geman (1984) were able to show that a system converges to the 

globally optimal state if temperature is lowered at the rate:- 

C 
T= 	 (4.4) log(n+ 1) 

where n is the number of iterations, and C is a constant. The value of C for which 

Geman & Geman were able to guarantee convergence is in general very high so 

that convergence becomes impracticably slow. However, it has been found 

experimentally that annealing schedules approximating the above can produce 

reasonable convergence behaviour, Hinton, Sejnowski & Ackley (1984). 

The starting temperature can be selected using the mean of the absolute value 

of the energy difference A F that each unit has to overcome before being able 

to make an uphill jump. These upward moves occur when the magnitude of AE 

is within a range of about three times the temperature or about five times the 

deviation cY of the Gaussian noise. The starting value u for the annealing 

schedule is thus chosen to be five times the average absolute energy. The 

schedule allows each unit to change once at each temperature, before moving 

to the next lower temperature. The advantage of using a starting temperature 

that depends on the energy barrier is that is ensures that the network will start 

at a sufficiently high temperature to overcome very high energy barriers created 

during the learning. 

4.3.5 G Measure 

As stated previously the Boltzmann Machine learning algorithm allows a network 

of binary symmetrically connected units to develop an internal model which 

captures the structure of its environment. An information theoretic measure, the 

G measure (Kullback, 1959; Renyi, 1962), of the discrepancy between the internal 

model and the environment can be made. For the input/output model of the 

Boltzmann Machine the G measure is:- 



I.) G= 	P(I a AO b )1fl 	 (4.5) 
ab 	 P(Ob I ía) 

where P (I a A  Ob) is the probability of the ath state of the input units and the 

bth state of the output units when all visible units are clamped by the environment, 

P +  ( 01, I 1 a)  is the probability of the bth state of the output units given the ath 

state of the input units when all visible units are clamped by the environment, 

P - (0 b I 1 a) is the corresponding probability with only the input units clamped. 

The structure referred to in Equation 4.5 is depicted in Figure 4.3. 

G is zero if and only if the clamped and free phase distributions are identical; 

otherwise it is positive. Learning is accomplished by reducing G and thus the G 

measure may be used to monitor how learning is proceeding during training. 

4.3.6 Co-occurrence Statistics 

Learning is accomplished by reducing G, which is achieved by modifying the link 

weights, since these determine P(Ob I 1 a ). Because of the relationships that 

hold at thermal equilibrium with the relative probabilities of two global states 

following a Boltzmann distribution, the partial derivative of G with respect to each 

of the weights can be calculated:- 

ÔG 	1 
(4.6) 

where p* is  ij  the probability of units I and! being on together when all the visible 

units are clamped and p is the corresponding probability with only the input 

units clamped. Hence the performance of the machine in each of the clamping 

modes is compared and the link weights altered according to the findings. Thus 

for each mode the network is annealed to a low temperature for each set of 

training data and statistics are gathered for pairs of units being on together. 
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4.3.7 Weight Adaptation 

The direction in which to change the link weights is known once the partial 

derivative of G (Equation 4.6) has been found, but the magnitude of the weight 

change required is not specified. The strategy adopted in this work was to use 

a constant step for all the links. Thus, rather than change wjj  by an amount 

proportional to (p - p ,), it is incremented by a fixed weight step if p' Q. p . 

and decremented by the same amount if p'<p . There are a number of ways 

of implementing the change in weight. The weight step can be fixed throughout 

the learning or the magnitude of the step may be decreased as a function of the 

mean error as the network converges:- 

Aw 1  = ( 1O+ 1)X SICN(p.- pb.) 	 (4.7) 

where & is the mean output bit error. This approach has the advantage in that 

it does not require the machine to select a representation that requires a very 

precise co-ordination between the numerical values of the weights. Problems 

can occur if some weights become very large as this tends to make it difficult for 

the network to achieve equilibrium due to the energy barriers becoming too large. 

To prevent the weights from becoming too large, the weights may be decayed 

by subtracting from each weight a fraction of its value Derthick (1984). This also 

ensures that arithmetic overflow does not occur and cause the learning process 

to abort. 

4.4 SOFTWARE DEVELOPMENT METHODOLOGY 

4.4.1 Introduction 

The software development process for the various modules in the simulator 

followed the steps shown below:- 
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requirements analysis 

design specification 

implementation 

unit test, integration and system test 

The software tools used comprised solely of a 'C' language compiler used in 

conjunction with the make utility, a debugger, a performance profiler, and a 

special library of routines to allow synchronisation checking to be undertaken. 

Regrettably, no source code control system or computer aided software 

engineering (CASE) tools to assist in the requirements analysis and design 

specification phases were available for use. 

4.4.2 Requirements Analysis 

The first step in the software development process was to construct a 

requirements specification for the Boltzmann Machine simulation environment. 

One of the key requirements was that flexibility be maintained without unduly 

compromising the speed of the learning operation. To achieve the desired 

flexibility it was deemed necessary to accommodate the following capabilities in 

the simulator - - 

1) networks of varying numbers of input, hidden and output units 

2)the implementation of different connection strategies, e.g. fully connected, 

no connections between input and output units etc. 

easy modification of the annealing and learning parameters 

repeatability 

ability to graphically display connectivity information 

The hardware platforms available in the Research Group in which the Boltzmann 

Machine studies were carried out included a DEC VAX 11/750, two Masscomp 

MC55005  machines with Array Processors and latterly one Masscomp MC5700 

with Vector Accelerator. The use of the Masscomp Array Processor and Vector 

5 MC5500 is a trademark of the Massachusetts Computer Corporation 
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Accelerator systems offered the best possible performance solutions, but 

required that the algorithms be structured for the unique architectures of these 

machines. The operating system available on these machines was Masscomp 

RTU (Real-time Unix). 

Because the simulation environment was designed to be a research tool it was 

important that it be easy to modify sections of code to incorporate further features 

or abilities as required. Thus it was important that the code generated be easy 

to understand and well documented. The overall structure of the simulation 

system arrived at is depicted in Figure 4.1. Each of the learn, search, graphical 

weight display and error modules was implemented as a standalone program or 

programs. These programs were able to share certain common data files, 

containing the weight information and error measures. Only the development of 

the learn and search program modules is detailed in the following sections. 

As mentioned in Section 4.2 the Vector Accelerator (and Array Processor) is a 

single-user resource. In other words only one user process could use the device 

at a time. Because the learning process could take up a considerable amount of 

compute time it was necessary to ensure that the learning could be halted from 

time to time so that the Vector Accelerator could be freed to allow other users 

on the system to use it. Because there was no queueing system arrangement 

for the Accelerator, a scheme was required which would allow the simulator a 

given amount of Vector Accelerator time before making it available to another 

user. In addition, while the simulator was waiting to use the Vector Accelerator 

whilst another user's process was locked in, it had to be able to poll for when the 

Vector Accelerator was released and ready for use. 

Because the simulations were to be run overnight it was important that a system 

crash did not result in the loss of data. To overcome this the weight information 

was to be stored periodically. It was not deemed feasible to store the weights 

developed for every learning cycle due to disc storage restrictions. The storage 

of the weights was also required to enable details of how the weights developed 

during learning to be observed. An alternative approach to the above for storing 
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the weight information would have been to store all the weights to file after each 

weight update, overwriting previous weight values in the file along with the current 

learning cycle detail. Another approach would have been to not store any weights 

to file until the learning task had been accomplished or a level of classification 

error had been achieved. Both of these approaches would not allow the 

development of the weights to be examined as learning progressed. 

The user interface to the learn and search programs made extensive use of the 

command line to specify the operating modes. Since the majority of processing 

work had to be undertaken overnight in batch mode, and indeed the processing 

time for most simulations could be measured in hours or tens of hours, the 

provision of a graphical user interface for the environment was not deemed 

relevant. 

Parameters passed to the learning simulator via the command line were as 

follows:- 

random number generator seed 

operating mode (synchronous/asynchronous) 

annealing schedule (fixed schedule, fixed start temperature and log or 

linear decay, energy based start temperature and log or linear decay) 

network topology (10 schemes, see Table 4.1) 

pattern clamping method (random/dot) 

weight adaptation (fixed, scaled, decayed) 

name of file containing the network details (i.e. number of input, hidden 

and output units) 

name of file containing various annealing, co-occurrence statistic 

gathering and weight increment parameters 

name of file for control data, such as the number of learning cycles, where 

to restart learning and how often to save the weights to file 

name of file containing the training data parameters and training data 

files 

generic name for weight, error measure and diagnostic output files 
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Thus all parameters required in the simulator's operation were specified through 

the command-line, except that is for details of the length of Vector Accelerator 

time required and for how long the Accelerator was to be released. This 

information was passed to the simulator from a reference text file which was 

edited to change Vector Accelerator time parameters rather than use a different 

parameter file. 

Table 4.1 details the various network topologies that could be specified. It should 

be noted that no intra input unit connections existed because the input units were 

always clamped. The number of receptive fields could be varied from the usual 

one to accommodate either three (intonation/jitter/shimmer parameters) or ten 

fields (one field for each of the ten intonation and perturbation parameters used). 

To obtain these various topologies, the standard weight matrix was used. 

However at the end of each learning cycle, after all the weights (in the fully 

interconnected input/output model) had been adapted, the connection topology 

required was obtained by setting to zero all the weights for the connections that 

were not needed. Figure 4.5 indicates the general structural arrangement for 

networks with three receptive fields (RFTHREE1 type) whereas Figure 4.6 

indicates the general structural arrangement for networks with ten receptive fields 

(RFTEN2 type). The scheme mnemonics are those devised by the author. 

As discussed in Section 4.2 it is important when using the Vector Accelerator to 

minimise the number of data transfers between the host memory and Vector 

Accelerator memory and to keep the vector lengths as long as possible to reduce 

the effect of start-up overheads. It is therefore necessary that the Boltzmann 

Machine algorithms be implemented in a way that makes efficient use of the 

Vector Accelerator hardware. 
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Scheme Receptive 

Fields 

i/p to a/p 

connections 

intra hidden 

connections 

intra output 

connections 

NOIO 1 N Y Y 

ENCODER 1 N N Y 

NOOP20P 1 Y V N 

IDENT 1 N Y N 

NOHID 1 Y N N 

RFTHREE1 3 N N V 

RFTHREE2 3 N N N 

RFTHREE3 3 N Y Y 

RFTEN1 10 N V V 

RFTEN2 10 N N V 

Table 4.1 Network Topologies 
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Figure 4.5 General Structure for Networks with Three Receptive Fields 
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4.4.3 Design Specification 

In this development phase the required functionality for the learn and search 

program modules was segregated into a set of twelve component modules as 

detailed in Table 4.2. 

Module Function Lines Approx. 

Man-weeks 

Flmn.c master learn module 475 20 

Fsmn.c master search module 289 8 

Cmap.c allocate and de-allocate VA 34 1 

Csig.c signal/interrupt handling 48 1 

Fadp.c adapt the weights 143 6 

Fchst.c change the unit states 63 4 

Fclmp.c binary clamping of patterns 56 1 

Fegy.c energy calculation 82 8 

Fgms.c error measures 45 1 

Fiop.c various file/data input/output routines 93 1 

Fsts.c collection of statistics 52 4 

Frnd.c randomise state of units 22 1 

Table 4.2 Simulator Modules 

In addition a small set of library routines was written to provide error handling 

and random number generation. Table 4.2 also provides an indication of the lines 

of code required for each of the component modules and the approximate 

programming effort exerted in achieving the final versions of the learn and search 

programs. 
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The highest level component modules are Flmn.c and Fsmn.c. These two 

modules call functions in the other (lower-level) modules. At this stage of the 

development process the external data file formats were also defined along with 

the key algorithms, data structures and data paths. 

4.4.4 Implementation and Coding 

Coding followed the software design blueprint developed in the design 

specification stages. As mentioned before all code was written in the 'C' 

programming language with numerous calls to the Vector Accelerator Run Time 

Library routines. The code was liberally commented throughout, and was at 

various stages reviewed and subjected to walk-throughs. It was not possible to 

obtain an independent input at these stages in attempting to locate bugs and 

errors. 

4.4.5 Unit Test, Integration and System Test 

Generally, each module was thoroughly tested using where necessary programs 

which supplied certain inputs and allowed the resulting outputs from the module 

to be validated. Once the individual modules had been tested, they were 

integrated into the final system. The system was then further tested with a number 

of cases designed to test the overall system operation. It was particularly 

important to make sure that testing was thoroughly carried out, as it was found 

at an early stage that learning can still occur in the simulator despite errors in the 

implementation. This meant that it was not sufficient to test the simulator only by 

checking that it can learn some elementary function such as the exclusive-OR or 

the 4-2-4 encoder problem. 

The software development process cycled round the various development 

phases until the system had been fully integrated and debugged. The next stage 

was to undertake performance profiling of the system and identify which areas 

were causing performance bottlenecks, and which areas would produce the 
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largest benefits from revised approaches. Thus, the development cycle around 

the development phases was repeated again but with the inclusion of 

performance profiling. 

4.4.6 Porting Array Processor Software to the Vector 

Accelerator 

For the vectorised implementation of the Boltzmann Machine simulator only 

Masscomp MC5500s with Array Processors were initially available as the 

hardware environment. Hence initial design and development work was 

undertaken using the Array processor. Later when a Masscomp MC5700 with 

Vector Accelerator became available for use, the software was ported to this and 

enhanced. The Vector Accelerator system differed from the Array Processor 

system by having twice as much vector memory and a performance increase of 

approximately one order of magnitude for the Boltzmann Machine learning 

application. It also allowed the use of multiple Vector Accelerators, whereas the 

MC5500 systems only allowed a single Array Processor. However only one 

Vector Accelerator was in fact installed on the Masscomp MC5700. 

The porting of Array Processor applications to the Vector Accelerator was fairly 

straightforward. Two methods were available and were determined by which of 

two libraries the application program was linked to. One library allowed programs 

to be run in VA mode while the other allowed programs to be run in AP mode. 

The libraries differ in how the Ring Buffer data structures and data pointers are 

used. An application running in the AP mode could only use one Vector 

Accelerator, and would use only one Ring Buffer, the MATH Ring Buffer. Since 

the packets execute sequentially, there is no overlap of DMA and MATH 

operations, and the need for DMA/MATH synchronisation is eliminated. 

Applications programs running in VA mode can be written to take full advantage 

of the dual Ring Buffers and other Vector Accelerator hardware. 

-110- 



The porting of the Array Processor routines to the Vector accelerator required 

that initially they be checked for correct synchronisation. This was achieved using 

a special synchronisation library to identify any problems. It is quite possible for 

an Array Processor application to have synchronisation errors that are never 

detected on that system. This is because the faulty instruction sequences, while 

not containing proper synchronisation requests may nevertheless preserve a 

correct order of processing due to accidents of the instruction set-up time, vector 

lengths or other incidental factors. However, porting such a program to a Vector 

Accelerator may bring out such hidden problems. 

After checking for synchronisation problems the programs were compiled and 

linked with the AP mode library. The programs were then checked to see that 

they executed correctly and yielded the correct results, and that they did so under 

different system conditions. Some program synchronisation errors may or may 

not reveal themselves on any given execution, depending on system load and 

other variable factors. Thus it was basically an iterative process to correct 

synchronisation problems, compile and check execution of the program. Once 

the program was running correctly in the AP mode it was then recompiled using 

the VA mode library. Again correct operation was checked, and if necessary 

iterating as before in the event of synchronisation problems arising. Once the 

program was running correctly in the VA mode it was then possible to improve 

the performance further by modifying the code to incorporate new Vector 

Accelerator Run Time Library routines and longer vector lengths. 

4.5 SOFTWARE IMPLEMENTATION FOR LEARNING 

4.5.1 Data Structures 

As outlined earlier, to achieve efficient operation of the Vector Accelerator 

requires that the Boltzmann Machine algorithms be structured so as to minimise 

the transfer of data between the Accelerator and the host. It was thus important 

to keep as much of the computation and data in the Vector Accelerator as 

possible. In addition, it was also important to make the vectors being operated 
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Figure 4.7 Vector accelerator memory allocation. 
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on by the Accelerator as long as possible. This was achieved by accommodating 

within Vector Accelerator memory as many pairs of Boltzmann Machines as 

possible. One of the machines of each pair had its input and output units clamped 

by one of the sets of training data, while the remaining machine of the pair had 

only its input units clamped with data from this set. Thus, the clamped and free 

phases of the learning algorithm co-exist in the simulator for as many of the 

training patterns as the Accelerator's memory will allow. Unfortunately, due to 

the nature of the computations required it was not generally possible to allow 

simultaneous Vector Accelerator operations over all the Boltzmann Machines in 

Accelerator memory, However, a limited number of operations could be 

performed on all the machines at once. 

Figure 4.7 depicts how the Vector Accelerator memory was allocated. Locations 

0 to 5 were used to store constants as shown in Table 4.3. 

Location Constant Description 

0 zero 0.0 

1 one 1.0 

2 + prm.wsc constant weight increment 

3 -prm.wsc constant weight decrement 

4 prm.pon probability that an on unit is allowed 

to remain on 

5 prm.pof probability that an off unit is allowed 

to remain off 

Table 4.3 Locations 0 -5 of Vector Accelerator Memory 

The position of the unit and energy vectors in the Accelerator's memory depends 

on:- 

The length of the annealing schedule 

The number of units in each network 
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3) The number of training pattern sets that could be applied to pairs of 

machines 

Figure 4.7 depicts the general position of these vectors. Immediately following 

the constant area in Accelerator memory is the annealing schedule. The 

remaining Vector Accelerator memory was divided up into vectors corresponding 

to clamped units (uc); free units (uf); energy values for the clamped units (ec); 

energy values for the free units (ef) and a working area (wc). As many patterns 

as possible were installed into Vector Accelerator memory so that the units and 

energy portions of the Accelerator memory were indexed as uc[n], uf[n], ec[n], 

ef[n] where n is the training pattern number. The number of units in a single 

network is referred to as snet, and the number of patterns being processed in 

the vector Accelerator is referred to as patns. 

Although it would be possible to shuffle various vectors around in Vector 

Accelerator memory and increase vector lengths, is was considered that the 

performance increase would not justify the time taken in shuffling the vectors, 

and also that this would result in code that was difficult to understand and modify. 

The connectivity weight matrix for a network of N units is a symmetric zero 

diagonal matrix of size N X N. The zero diagonal indicates that there is no 

connection from a unit to itself, i.e. w ii  = 0. Also associated with each unit is a 

bias or threshold value. For a network of 100 units the weight matrix size is 100 

X 100 which with 32-bit floating point number representation requires 

approximately 39 Kbytes of memory. The 100 bias values take up another 400 

bytes. For a net with 200 units the storage requirements would be about 157 

Kbytes. As it is required to store the weight matrices at regular intervals in order 

to observe the way the weights develop during training, it can be seen that a large 

amount of storage would be required. This storage requirement can be relaxed 

because the weight matrix is symmetric, it is thus only necessary to store 

( N 2 + N)/2values (including the bias values). 
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However, the particular formulation of the Boltzmann Machine under study was 

the input/output model. Here the input units remain clamped throughout the 

learning procedure as the machine is not required to model any structure between 

the input units. Hence, the weight values between the input units are all zero. 

Thus if we have i input units, o output units and h hidden units, all the weights 

can be determined from a matrix of size (o + h) X  (I + h + o), (see Figure 4.8). 

This is particularly significant if there are a large number of input units. 

Further savings in storage space could be made by using the symmetry property 

as outlined earlier. However, for a large number of simulations the number of 

input units is likely to be larger than the number of hidden and output units. There 

would also be time penalties incurred if the weights were stored in a compacted 

form. Thus the matrix form shown in Figure 4.8 was adopted for storing the weight 

values. This was slightly modified in that the bias values were stored in the 

normally zero diagonal locations of the weight matrix. 

4.5.2 Main Component Module 

The component module FImn.c handles getting the operating parameters from 

the command line, opening/closing files, calculating pointers, allocating storage, 

generating vectors of both Gaussian distributed and uniformly distributed random 

numbers, checking the position of learning and retrieving weights from a file if it 

was  continuation of an aborted learning process, obtaining control of the Vector 

Accelerator and locking it in to process memory, and initialising the Vector 

Accelerator. 

As part of the Vector Accelerator sharing scheme it was necessary to specify 

how much Accelerator time was required before releasing the Accelerator to allow 

another user to have access to it. A give period of time was used rather than a 

given number of learning cycles since the learning cycle time varied depending 

on the size of the network being simulated and the quantity of training data that 

was being presented. Vector Accelerator use was timed using an alarm signal 

which generates an interrupt after a given time period and enables the Vector 
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Accelerator to be released. After waiting for a given period of time attempts were 

then made to gain control of the Accelerator again. This process was continued 

until the specified number of learning cycles had been achieved. Arithmetic 

exceptions (invalid operand, under-flow, overflow and inexact results) in the Vector 

Accelerator made use of the default RTL response, which caused an error 

message to be printed and the process to be aborted. 

For training data consisting of n sets of input and corresponding output patterns, 

2n Boltzmann Machines were established in Vector Accelerator memory. Thus 

each of the two phases detailed above coexisted in the simulator. If the number 

of pairs of machines was too large for the Vector Accelerator memory the training 

patterns were broken up into subsets corresponding to the maximum number 

of pairs of machines that could be fitted into memory. These subsets were then 

presented sequentially to the virtual Boltzmann Machines residing in memory on 

completion of the learning cycle for the previous pattern subset. In this way 

transfers from host memory to Vector Accelerator memory were minimised, and 

vector lengths were kept as long as possible. 

Learning was started by initialising to zero the variable handling the error measure 

value and installing the annealing schedule and constants into Vector Accelerator 

memory. The sequence of learning operations was then as follows:- 

clear co-occurrence statistics matrices 

randomly set the state of all the units 

clamp input and output units in clamp phase machines and input units in 

free phase machines 

anneal the machines 

collect the co-occurrence statistics 

adapt the weights 

Repeat 1 -6 until the specified number of learning cycles have been completed. 

The method of implementing the Boltzmann Machines in the simulator means 

that it is not practical to test each Boltzmann Machine to ascertain whether or not 
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it has converged. Instead, the specified annealing schedule is followed by all the 

Boltzmann Machines for the same number of steps and convergence is assumed 

to have occurred. 

4.5.3 Random numbers 

Simulations require two types of distribution of random numbers:- 

1\ numbers uniformly distributed in the range 0 to 1 and •1 

2) numbers drawn from a Gaussian distribution of mean 0 and standard 

deviation 1. 

Because the generation of both these random numbers takes up considerable 

time, they were not calculated on demand as the learning progressed. Instead, 

a vector of 10,000 numbers was generated for each type of random number at 

the start of learning. During the learning, vectors of numbers were taken from 

random starting positions in the host vectors and transferred to the Vector 

Accelerator. 

Masscomp RTU includes the routine randO which provides random integers 

uniformly distributed in the range 0 - 32767. This was used to provide random 

numbers uniformly distributed in the range 0 to 1 by dividing the value returned 

from randO by 32767. The method used for generating the normal (Gaussian) 

deviates was the Polar method (Knuth, 1969). This algorithm 'calculates two 

independent normally distributed variables given two independent variables 

uniformly distributed between 0 and 1. 

4.5.4 Initialisation 

A function rnd_u(patns) is used to randomly set the state of all the units so that 

there is a 50% probability of them being in the on state. This is achieved by loading 

snet (the total number of units in each network) normal (Gaussian) distributed 

numbers into the Vector Accelerator at locations uc[n] and uf[n] for n = 0 to n 

= patns. Thus the complete units vector area for all of the Boltzmann Machines 

in Vector Accelerator memory are filled with these standard deviates. The 
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deviates are compared to 0 and if an element is greater than 0, that element in 

the vector is set to 1.0 otherwise it is set to 0. The vector length for this operation 

is 2 X saet X pat ris 

The component module Fclmp.c contains a number of clamping routines. Some 

of these are specific to the format of the data applied to the input units and are 

described in Chapter 6. However, one of the functions, clmp rndO is described 

here. This function sets on units off with probability (1 - prm.pon), and sets off 

units on with probability (1 - prm.pof). It is used to introduce noisy clamping (if 

prm.pon and prm.pof are less than 1) and is a technique for preventing the weights 

from becoming too large. For each Boltzmann Machine in Vector Accelerator 

memory the function first loads the input and output patterns for the clamped 

units. Then the Vector Accelerator is loaded with a vector of uniformly distributed 

random numbers corresponding to the number of input and output units. These 

values are then compared so that if greater than prm.pon the corresponding 

element in edO] (used here for temporary storage) is set to zero, otherwise it is 

set to 1. This is repeated again but this time for whether the random values are 

greater than prm.pof. In which case the corresponding element in ef[O] (used 

here for temporary storage) is set to 1 otherwise it is set to 0. Then to actually 

perform the noisy clamping the states of the units are compared to 1. If they are 

equal to 1 they are replaced with the corresponding element from vector edO], 

if not, they are replaced with the corresponding element from vector ef[O]. The 

uc[n] input pattern is then copied to the input pattern portion of uf[n]. This process 

is repeated for all of the n Boltzmann Machines in Vector Accelerator memory. 

4.5.5 Energy Calculation 

The function energy(patns) is used to determine the energy difference values for 

all the units in Vector Accelerator memory except that is for the input units. This 

is achieved by calculating the dot-product of the unit states and corresponding 

weights. Thus, for each unit (except the input units) the column vector of weights 

representing the weight values between it and every other unit in the Boltzmann 

Machine are loaded into the Vector Accelerator memory. This vector is multiplied 
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with the corresponding states of the units. The result is then summed and stored 

at the appropriate index in the relevant energy vector. This calculation is 

performed for every pair of Boltzmann Machines in Vector Accelerator memory, 

so that the weight column vector is only loaded into Accelerator memory once 

every learning cycle. 

On completion of the dot-product calculations for all relevant units in all the 

Boltzmann Machines an adjustment has to be made to ensure that the bias value 

for each unit is correctly added to its energy value. At this stage, the bias value 

will only have been added if the unit in consideration is in the on state. However 

the bias value must be added irrespective of the state of the unit. To achieve this 

in Accelerator memory, the bias values are loaded from the host to Accelerator 

memory. The stride for the bias values on the host is effectively snet+ 1, and is 

transformed to a stride of 1 in the Accelerator. These bias values are then added 

to the corresponding energy values. Next, the bias values are multiplied by the 

state of the unit each one is associated with. This new vector is then subtracted 

from the energy values, leaving the correct energy values in the ec and ef vectors 

for all of the training patterns. 

4.5.6 Updating Unit States 

Using the timing information given by Masscomp for the Vector Accelerator the 

likely execution times of both the probability function and Gaussian approximation 

method were evaluated. Tables 4.4 and 4.5 present the corresponding execution 

times in microseconds of process user time for vectors of length 10 and 100. 

Thus for a vector length of 10 the Gaussian method is approximately 8.8 times 

faster, and for a vector length of 100 it is approximately 6.0 times faster. The 

timings are for a system in single user mode, with routines called from the C 

language and all vectors having a stride of 1. It is nevertheless a good indication 

of the time differences likely to be encountered between the two methods. For 

both of the approaches, it was assumed that vectors of uniform or Gaussian 

distributed random numbers were available on the host. 
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Operation Vector Length 

10 100 

- 	x A E (with -1 /T as a constant) 20 29 

Exponential function 447 550 

Add 11 20 29 

Reciprocal 115 137 

Load uniformly distributed random 

numbers 

25 55 

Compare to random number 25 55 

Totals 652 855 

Table 4.4 Vector Accelerator Timings for Sigmoid Function Method 

Operation Vector Length 

10 100 

Load normally distributed N(O, 1) 

numbers 

25 55 

Calculate a X N(O, 1) + AE 24 33 

Compare to 0 25 55 

Totals 74 143 

Table 4.5 Vector Accelerator Timings for Gaussian Method 

The function change (step, patns) is used to change the state of units in Vector 

Accelerator memory. Before commencement of this routine vectors ec and ef 

are assumed to contain the current energy (difference) values. The step 

parameter indicates the current annealing step and provides an index to the 
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annealing schedule held in the Accelerator's memory. The particular value 

(temperature) pointed to by the index is used to calculate Gaussian distributed 

numbers with a mean of 0 and standard deviation given by cY. To achieve this, for 

each of the patterns in Vector Accelerator memory a vector of snet normally 

distributed numbers is loaded from host memory to Vector Accelerator memory. 

This vector of snet numbers is selected from a vector of 10,000 normally 

distributed numbers residing in host memory. The index position within the host 

vector for the starting pot of the snet length vector is selected randomly. These 

snet Gaussian numbers are then multiplied by the scalar a indexed by the value 

of step, and within the same Accelerator routine added to the energy values. 

Once this has been completed for all the Boltzmann Machines in Vector 

Accelerator memory, the new states of the units are determined by comparing 

the energy values to 0. If the energy is greater than 0 the unit is placed in the on 

state, otherwise it is placed in the off state. The results for this are placed back 

into the energy vectors and not directly into the unit vectors. If the Boltzmann 

Machines are to be updated synchronously the new states for the hidden and 

free output units are copied to the unit vectors. If however the Boltzmann 

Machines are being updated asynchronously, only one unit in each machine is 

allowed to change state. This is selected at random from the new values in the 

energy vectors and transferred to the unit vectors. The asynchronous mode is 

only intended for small networks, with no more than approximately 10 

hidden/output units, with the number of training patterns restricted to about 4. 

As only one unit is updated at a time effective use is not made of the Vector 

Accelerator architecture, and learning time is much extended. No performance 

measures were undertaken to determine how learning time scales with the 

number of hidden and output unitsfor the asynchronous mode of operation. 

4.5.7 Statistics Gathering 

Once the Boltzmann Machines have been annealed, they are run for a certain 

time and statistics are gathered indicating how often pairs of units are on together. 

These probabilities are defined as:- 
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pi = 	ss 1 	 (4.8) 
clamp 

	

p. = 	ss 1 	 (4.9) 
free 

There will be noise present in these estimates, which will depend on the 

temperature at which the statistics are gathered, (Equation 4.6). The effect of 

noise in the estimates can be reduced by collecting statistics for a longer time. 

The simulator allows statistics to be gathered for either a fixed length of time 

during each learning cycle or for the length of time to be increased as a function 

of decreasing mean output bit error. 

A function collect(patns) performs these statistics collecting operations. The 

intermediate statistic matrices for the clamped and free machines are held on the 

host for the same reason that the weight matrix is stored on the host. In updating 

the statistics the relevant column vector of each of the statistics matrices is loaded 

into the Accelerator's memory. The clamped statistics are held in ec[O] and the 

free statistics held in ef[O]. Then for each of the patterns in the Accelerator's 

memory the functions in Equations 4.8 and 4.9 are performed for the relevant 

clamped or free phase machines. After having run through all the patterns in 

Accelerator memory, this information is added to the previous co-occurrence 

values and stored back on the host. 

4.5.8 Updating the Weights 

In performing weight adaptation a column vector from the clamp statistics matrix 

is loaded from the host to the Accelerator memory along with the corresponding 

column vector from the free statistics matrix. The corresponding column vector 

from the weight matrix is also loaded into the Vector Accelerator's memory. The 

free statistics vector is subtracted from the clamp statistics vector. If the result is 

greater than zero for any of the elements, the corresponding weight is 

incremented. If the result for any of the elements is less than zero the 

corresponding weight value is decremented. If there is no difference between 
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the clamp and free statistics for a particular element, no change to the 

corresponding weight value is made. The weight column vector is then stored 

back on the host. The incremental or decremental weight value used is the scalar 

value stored in the constant area of the Accelerator's memory. 

If the architecture of the Boltzmann Machines is to be constrained in any way by 

for example having no connections between the input and output units or no 

connections between the hidden units, then at this stage, the weights for 

connections that are not required are set to zero. 

4.5.9 Error Measures 

The two error measures available are the G measure of Equation 4.5 and the 

number of output bits wrong, expressed as a percentage. 0 is zero if and only if 

the clamped and free phase distributions are identical; otherwise it is positive. 

Learning is accomplished by reducing the error measures, which may be used 

to monitor how learning is proceeding during training. One  of these measures is 

calculated every learning cycle and stored to file on the host. This data is readily 

graphed to give an indication of how the learning proceeded. 

4.5.10 Learning Time Performance 

Figure 4.9 depicts performance curves for learning cycle time versus number of 

hidden units (h) for differing numbers of patterns. For these results the network 

consisted of 80 input units and 2 output units. This size of network was chosen 

because it allowed 8 units for each of the ten intonation and perturbation 

parameters and two output units each representing one of the two possible 

classes for pathological/healthy voice discrimination. The number of hidden units 

was varied so as to alter the number of weights that needed to be updated. This 

particular structure of network is representative of some of those studied in 

Chapter 6. The learning simulator was run in the synchronous mode with an 

annealing schedule taking 10 units of time and co-occurrence statistics being 

gathered for 10 units of time. The network was fully connected. 
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Table 4.6 shows the number of weights that are updated in fully interconnected 

networks with differing numbers of hidden units. It should be remembered that 

the input/output model is used and thus there are no interconnecting links 

between the input units or biases for the input units. The figures appearing in the 

weights column of Table 4.6 represent the number of pairs of symmetric 

interconnection links plus the number of bias values. 

It may be seen from Figure 4.9 that an increase in the number of weights to be 

updated by a factor of approximately 10 (i.e. from 2 to 32 hidden units) gives a 

resulting increase in learning cycle time by a factor of 6 for 16 training patterns 

and by a factor of 5.7 for 32 training patterns. 

Thus the effect of the start-up time overhead required for each Vector Accelerator 

MATH or DMA operations maybe observed. As the vector lengths increase, 

further time savings would result. 

Hidden 

Units 

Total 

Units 

No. of 

Weights 

2 84 330 

4 86 501 

8 90 855 

16 98 1611 

32 114 3315 

64 146 7491 

Table 4.6 Total Number of Weights for Different Net Sizes 

Using the various approximations made to the Boltzmann Machine procedures, 

it was observed that there was a probability that the machine could become stuck 

in local minima that were not globally optimal. The computational expense 

required to avoid this by using slower annealing schedules and running the 
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simulator in the asynchronous mode would have been considerable. In many 

instances, the problem could be avoided by using different starting points and/or 

modifying the annealing schedule used, thus enabling the learning time to be 

kept as small as possible. 

Using an annealing schedule based on energy difference values as discussed 

in Section 4.3.4 proved to be generally more successful than using fixed 

schedules, which were chosen empirically for a given problem. However, 

although using the energy difference approach allowed a sufficiently high starting 

temperature to be selected it still meant that the annealing step had to be suitably 

chosen. This could have been overcome by including an automatic procedure 

for determining when thermal equilibrium had been reached, and if this was not 

achieved within a given number of units of time to adjust the annealing step size 

and try again. 

Table4.7 shows the relative time taken by various functions in the learn simulator. 

All values are relative to one call of the unit update function change. 

Function 

name 

Action Performance 

Index 

change update state of all unclamped units 1.0 

energy calculate energy for hidden and output units 21.5 

clamp clamp all input units and necessary output 

units 

21.6 

collect collect co-occurrence statistics for all weights 28.8 

wt_adapt adapt all weights 120.8 

Table 4.7 Relative Performance of Functions in the Learn Simulator 
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Figure 4.9 Simulator learning time performance. 
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4.6 SEARCH MODULE 

Once a set of weights has been learned it is useful to be able determine the 

performance of the Boltzmann Machine using these weights with data previously 

unseen by the machine. From the learning results it is straightforward to determine 

whether or not the Boltzmann Machine has successfully learned all of the training 

patterns. If it has not been completely successful, it is useful to determine which 

of the pattern(s) caused the learning problem. The search program is used to 

determine this. This is essentially a cut-down version of the learning program. It 

simulates one Boltzmann Machine in Accelerator memory, with each of the input 

patterns being clamped to the input units in turn. There is no need to complicate 

matters here by implementing a large number of Boltzmann Machines in Vector 

Accelerator memory at once, because the time taken to produce a search output 

is just the time taken to anneal the network and collect statistics on the output 

units. It is necessary to collect statistics about how often the output units are on 

or off because as the Boltzmann Machine is not deterministic, the output units 

can change state and hence waver about the convergence point. Collecting the 

statistics enables the probability of a particular output pattern being valid to be 

determined. 

4.7 GRAPHIC WEIGHTS DISPLAY MODULE 

A program was developed to allow the graphical display of learned weights. It 

makes use of the Masscomp graphics package primitive routines and allows the 

weight displays produced to be passed to a number of device filters. The 

information displayed represents the strengths of connections from the hidden 

units and the strength of connections between the input and output units (if 

present). The strength of each weight is represented by the area of a box, with 

the presence or absence of shading of the box indicating the sign of the weight. 

A thresholding function is provided so that weights can be filtered out and not 

displayed if they are below a certain percentage of the largest weight value. The 

scale is indicated by a shaded square representing the largest weight value. The 

threshold value can also be displayed as a relevant sized square. 
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This weight presentation technique was adopted because it was felt that it would 

be easier to attempt an interpretation of the weights developed when they were 

presented graphically, rather than just as arrays of numbers. In addition, similar 

techniques are widely used amongst the neural network community. An 

alternative method to the one chosen, for example, is to use a topological 

representation as shown in Figure 4.10. Although this method makes the 

presentation of small networks straightforward, it soon becomes difficult to 

interpret as the number of connections is increased. It is not the absolute value 

of each weight that is important, as the value for each weight depends on the 

value of every other weight. It is the relative magnitudes of the weights that is 

important. 

The program takes the weight information from the weights output file produced 

by the learning program. The user is prompted for the particular weight values 

to be displayed depending on the update time for the weights file. The weights 

are then displayed on the graphics screen and a graphics file is created. The 

graphics produced are described in more detail in the following two sections. 

The weight maps included in this thesis are shown only in black and white, 

however the program is able to produce these maps in colour, which improves 

their clarity. 

4.8 INTERPRETATION OF WEIGHT MAPS 

In the weight maps, (see Figure 4.15 for an example), each unit in the network 

is represented by a square outline. Within this unit outline a weight is represented 

by a square whose size is proportional to the magnitude of the weight and whose 

colour represents the sign of the weight (black or shaded for positive, white with 

black outline for negative). The maps are generally arranged in two sections (if 

appropriate). One section representing the connections made from the hidden 

units to all the other units, whereas the other section represents the connections 

made from the output units to all other units (except for the input units, as this 

information is to be found in the previous display section). Thus all the weights 

developed in a network are displayed. 
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For the display section detailing connections from hidden units, (this section if 

present is placed at the top of the page), a graphical representation of the 

complete network outline is repeated for each of the hidden units in the network. 

Thus in Figure 4.15, because the 4-2-4 encoder network has two hidden units, 

the complete network outline of 10 units is repeated twice at the top of the page. 

The particular unit whose connection weights are depicted in any of one of the 

network outlines is identified by a small upward pointing triangle situated beneath 

it. The square situated within the unit square pointed to by the triangle represents 

the bias value for that particular unit. 

In the display section detailing the connections from the output units, the network 

outline is repeated for each of the output units, as before. Again because the 

4-2-4 encoder has four output units, the outline of the 10 units is repeated four 

times in Figure 4.15. In this case it can be clearly seen that there are no 

connections from the output units to the input units. The only weights displayed 

are the bias values for each of the output units and the connections that are made 

between the output units. 

The magnitude of the largest weight in the map is indicated in each map along 

with its correspondingly sized square. Because some of the weights may be very 

small, and hence make it difficult to determine what their sign is using the 

reproduction method adopted, a thresholding function is used to filter out any 

weights whose magnitude is less than a given percentage of the magnitude of 

the largest weight. Typically, the weight threshold is set to 5%. A zero weight or 

a weight whose magnitude is below the threshold is indicated by the unit outline 

being left blank inside. As mentioned in the previous section the value of each 

weight depends on the value of every other weight in the network, thus the relative 

magnitudes of the weights are important, rather than the absolute magnitude of 

the weights. 

A positive weight (represented by a black or shaded square) is excitatory, and if 

one unit it is linked to is on causes the input to the other unit to be increased and 

hence make it more likely for that unit to be on. A negative weight (represented 
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by a white outline square) is inhibitory and if one unit it is linked to is on causes 

the input to the other unit to be decreased and hence make it more likely for that 

unit to be off. 

4.9 XOR EXAMPLE 

As explained in Section 3.3.4 the implementation of the exclusive-or (XOR) 

function cannot be achieved with a simple two-layer associative network. in such 

networks a set of input patterns are mapped directly to a set of output patterns 

at an output layer. This network has no hidden units and so there is no internal 

representation. The XOR problem is illustrated in Table 4.8. Those patterns which 

overlap least are supposed to generate identical output values. This problem 

cannot be accomplished by networks without hidden units with which to create 

their own internal representations of the input patterns. 

Input Patterns Output Patterns 

00 0 

01 	 -9 1 

10 	 -4 1 

11 	 -9 0 

Table 4.8 The XOR Problem 
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Figure 4.10 A simple XOR network with one hidden unit. 
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Figure 4.11 Smoothed percentage bit error for XOR learning 
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Figure 4. 10 illustrates how the XOR problem can be solved with a single hidden 

unit. The weights for the solution shown are those reached after 2000 learning 

cycles during which each of the four stimulus patterns was presented. The 

annealing schedule used was logarithmic with a starting value a (temperature) 

of 20 and length 10 units of time with temperature being decreased after every 

unit of time as follows:- 

- 0.693X 0  

log (k+ 2) 	
(4.10) 

 

where or the starting temperature and 0 :5 k < 10. Statistics were collected for 

10 units of time. The weights were incremented or decremented by a value of 

1.0. No noisy clamping was used and the simulator operated in the asynchronous 

mode. 

Figure 4.11 shows the percentage bit error rate smoothed using a moving 

average technique for a data window of 25 learning cycles. 

The graphical weight display output is depicted in Figure 4.12. The four units at 

the top of the figure represent all the units in the XOR network. The two input 

units are labelled 1 and 2. The hidden unit is shown in the middle with the single 

output unit at the bottom. The small triangle pointing to the hidden unit indicates 

that this unit is the reference unit for this particular display block. In other words, 

the weight indicated in the hidden unit box is its bias value. The weights in the 

two input unit boxes are the values of the weights between the hidden unit and 

each of the input units. The weight in the output unit indicates the size of the link 

between the hidden unit and the output unit. 

The three units at the bottom of the figure indicate the relationships between the 

input and the output units. In this case the output unit is the reference unit and 

its bias value is indicated within its unit box. The weights in the input unit boxes 

indicate the size of the links between the output unit and the two input units. 

Figure 4.10 provides a topographical representation of the data shown in Figure 

4.12. 
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Figure 4.12 Weight map for the XOR network 
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The solution developed by the network uses the hidden unit to identify when there 

is a 1 at either or both of the inputs. This hidden unit is then effectively regarded 

as another input unit from the output units point of view. It is thus as if the input 

pattern consisted of three rather than two units. Table 4.9 depicts the effective 

patterns for this three input system. 

Input Patterns I 	Output 

Patterns Input 	Hidden 

00 	 0 0 

01 	 1 1 

10 	 1 1 

11 	 1 0 

Table 4.9 The XOR problem showing hidden unit states. 

The weight from the hidden unit to the output unit with the weights from the input 

units to the output unit and the output units bias value ensure that the output unit 

will not come on when both input units are on. 

4.10 4-2-4 ENCODER EXAMPLE 

Figure 4.13 illustrates the network topology for a 4-2-4 encoder. The network 

consists of four input units and four output units. In the formulation depicted here 

the input and output unit groups each have only one unit on at a time so that 

there are only four different states for each group. The input and output units are 

not connected directly but both are connected to two hidden units. To permit 

perfect communication between the input and output units h ~: 10 92() where 

h is the number of hidden units and V is the number of visible (input + output) 

units. 
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Figure 4.13 4-2-4 Encoder Connections 
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The environment patterns consisted of four equiprobable vectors of length four 

which specify that one unit in the input units and the corresponding unit in the 

output units should be on together, with all other visible units off. The input units 

are only connected to the hidden units. The output units are connected internally 

and each is also connected to the hidden units. The hidden units are not 

connected to each other. 

The annealing schedule followed for this problem used a starting value a of 10 

and followed the logarithmic scheme of Equation 4.10 for 20 iterations. 

Co-occurrence statistics were collected for 10 units of time. The weight change 

value was 1.0. Noisy clamping was not used and the simulator was operated in 

the asynchronous mode. Figure 4.14 depicts the percentage bit error rate 

smoothed with a moving average window of length 25 learning cycles. 

The weights learned at 300 learning cycles are shown in Figure 4.15. That there 

are no connections between the input and output units and also no connections 

between the two hidden units is clearly shown. The hidden units encode the input 

units into a binary format as follows:- 

Input unit on Hidden unit states 

1 11 

2 00 

3 10 

4 01 

Table 4.10 4-2-4 Hidden Unit States 

A similar set of weight values are used to decode the hidden units to give the 

required output states. The connections between the output units indicate that 

they inhibit each other very strongly. 
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Figure 4.15 Weight map for 4-2-4 Encoder 
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5 LARYNGEAL PATHOLOGY AND WAVEFORM 

PERTURBATIONS 

5.1 INTRODUCTION 

The larynx is situated at the top of the trachea and houses two lips of ligament 

called the vocal folds or cords. Situated between them is a slit-like orifice, the 

glottis. The opening and closing of the vocal cords can take place at varying 

speeds. This vibration of the vocal cords produces a buzzing sound known as 

voicing. It is the frequency of vibration that determines the pitch of the voice. The 

complex vibratory process by which voicing is produced is known as phonation. 

However as Baken comments:- 

'The phonatory system is not a perfect machine, and every speaker's 
vibrato,',' cycles are erratic to some extent, (Baken, 1987:166). 

The cycle-to-cycle duration and/or amplitude of the pitch periods of the laryngeal 

waveform are characterised to a certain extent by apparently random fluctuations. 

The term perturbation is used to refer to such random deviations from the 

regularity of the laryngeal waveform. Pitch period perturbation is known as jitter, 

and amplitude perturbation at waveform peaks is called shimmer. 

Davis (1979) suggested that the measurement of pitch perturbations may be of 

value in screening for vocal disorders. The feasibility of using pitch perturbations 

to separate pathological speakers from control speakers has been demonstrated 

by Layer, Hiller, Mackenzie & Rooney (1986). 

In this chapter the opportunity is taken to acquaint the reader with the structure 

of the larynx, vocal folds and the acoustic significance of various laryngeal 

pathologies. Well over thirty studies have been published in which pitch period 

FO and AO contours have been examined for perturbatory behaviour as a method 

for quantifying laryngeal function associated with voice pathology. A brief review 

of perturbation analysis is presented. The perturbation measurement system of 
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Hiller (1985), which provided the raw data for the Boltzmann Machine 

experiments, is also described along with details of the speakers and speech 

samples used. 

5.2 SPEECH PRODUCTION 

There are no organs of the human body which have been specifically designed 

for speech. The parts of the body which produce the sounds of language are 

from a biological point of view primarily used for breathing and eating. In fact, the 

muscular activity necessary for speaking must be learned. A diagram of the vocal 

apparatus is shown in Figure 5.1. 

In speaking the lungs fill with air as in breathing, except that the oral tract as well 

as the nasal tract is used. The airstream from the lungs passes between the vocal 

cords, which are two small muscular folds located in the larynx at the top of the 

trachea. Situated between the vocal folds is a slit-like orifice known as the glottis. 

If the glottis is open (i.e. vocal cords wide apart), as it is normally when breathing 

out, the air from the lungs will have a relatively free passage into the pharynx and 

mouth. However if the vocal cords are drawn together so that there is a narrow 

passage between them, the air flow will increase and the local pressure will be 

reduced. This very local reduction is a consequence of the Bernoulli effect and 

causes the cords to be sucked together. With the glottis now closed there will 

be no flow of air, and the pressure below the cords will be built up until they are 

blown apart again. The flow of air between them will then cause them to be sucked 

together again, and the vibratory cycle continues. This process is known as 

phonation. Sounds produced when the vocal cords are vibrating are said to be 

voiced, whereas those produced when the vocal cords are apart, are said to be 

voiceless. 

The air passages above the vocal cords are known collectively as the vocal tract. 

Each time the vocal cords open and close there is a pulse of air from the lungs. 

These pulses act like sharp excitations on the air in the vocal tract, which is 

accordingly set into vibration in a way determined by its shape and size. The air 
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Figure 5.1 The vocal apparatus 
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in the vocal tract vibrates at a number of resonant frequencies and provided the 

position of the vocal apparatus  remains the same is regardless of fundamental 

frequency, which is determined by the rate of vibration of the vocal cords. The 

resonances of the vocal tract are known as formants. 

The opening and closing of the vocal cords can take place at varying speeds, 

the frequency at which they open and close being governed by their tension and 

by the force of the airstream brought into play on them. The pitch of a voice is 

determined by the frequency of vocal cord vibration, and is in constant fluctuation 

while we are talking. Furthermore, voicing is not continuous during speech, as 

part of the time the glottis is in vibration and part of the time it is not. In normal 

speech voicing is responsible for most of the noise that is made, and for the 

carrying power of what we say. 

5.3 THE LARYNX 

The larynx is a fairly rigid box made up of cartilages, situated at the top of the 

trachea. The biological function of the larynx is to provide protection by acting 

as a valve to prevent air from escaping the lungs, and by preventing foreign 

substances from entering the trachea. As described in the previous section an 

important secondary function of the larynx is sound production. The fundamental 

frequency of a voiced sound is a function of the mass, elasticity, compliance and 

length of the vocal folds. It also depends slightly on the subglottal pressure and 

the acoustical load of the vocal tract. 

Figure 5.2 depicts a cross-section view through the larynx. A full description of 

the anatomy of the cartilages, muscles and other tissues which make up the 

larynx is beyond the scope of this thesis. The interested reader is referred to texts 

by Kaplan (1960), Saunders (1964), Hardcastle (1976), Romanes (1978) and 

Layer (1980). 
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Figure 5.2 Cross-sectional view through the larynx 
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THYROID 

Figure 5.3 Schematic view of the vocal folds, seen from above. 



A schematic view of the vocal fold structure is shown in Figure 5.3. The area of 

the vocal fold that is most freely involved in vibration during phonation is the 

ligamental area. The vocal fold itself is a layered structure, which in the ligamental 

area consists of the vocalis muscle and a covering of mucous membrane (Figure 

5.4). The cartilaginous area of the vocal fold is also built up from a series of tissue 

layers with the cartilage lending rigidity to the edge of the vocal fold. 

The area of laryngeal interest lies within the true vocal fold, and in particular around 

the ligamental part of the fold. The ligamental area is the part most prone to 

pathological problem and change. The cartilaginous area is much less freely 

involved in vibration and so disorders in this area may have only minimal acoustic 

consequences. A look in detail at the tissue make up of the ligamental border of 

the fold shows that there are five different types of tissue layers involved 

(Mackenzie, Layer & Hiller 1983). 

Figure 5.4 shows a schematic representation of the ligamental portion of the vocal 

fold seen in cross-section. The vocalis muscle makes up the body of the fold and 

lies under a cover of mucous membrane. This flexible cover is itself made up of 

four thin layers, each with different mechanical properties. The three inner layers 

make up the lamina propria and the outer layer is the epithelium. The epithelium 

is thin, relatively stiff and inelastic and has the same degree of stretchability 

lengthwise and crosswise. It rests on a very thin base membrane which acts as 

a biological barrier to infection. Many disorders arise in the epithelium, but do not 

necessarily spread into the lamina propria or the vocalis muscle (Mackenzie, 

Layer & Hiller 1983). 

The lamina propria is made up of three layers of connective tissue. The superficial 

layer has been likened by Hirano (1981) to soft gelatin. With the epithelium, this 

layer acts like a liquid with a very high surface tension. The intermediate layer is 

much more tightly packed with fibres. These are elastic fibres in an orderly 

arrangement parallel to the unattached edge of the vocal fold. They are elastic 

along the length of the fibres, but stiffer across the grain. The tissue is assumed 

to be incompressible (Titze, 1973). The deep layer is similar to the intermediate 

-147- 



Ial  

0 

/000O 000 g11 

o o 0 0 0 

oO00 a 00 

J0o0 0 O0 
0 
 O0 

10Oa 0  
400 0 
10 

00 00 
 

1000o 0 
oo 00  

0 0 00 0 000 Do 

:0° 0 oo 0 

0 0 0 
00 0 

0 

LJ 
i DEEP LAYER OF 

LAMINA PROPRIA 

[] 

 

INTERMEDIATE LAYER 
OF LAMINA PROPRIA 

: SUPERFICIAL LAYER 
OF LAMINA PROPRIA 

SQUAMOUS EPITHELIUM 

CILATED COLUMNAR 
EPITHELIUM 

Figure 5.4 Schematic representation of the ligamental portion of the vocal fold, 
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layer, but the fibres are mostly formed of collagen. They are flexible, but difficult 

to stretch. Like the intermediate layer, the deep layer is assumed to be anisotropic 

and incompressible. 

The final layer is made up of the vocalis muscle, part of the thyroarytenoid muscle. 

The fibres run parallel to the unattached edge of the fold, but their elasticity 

depends very much on their state of contraction. Hirano et al. (1982) cites 

research establishing as much as a tenfold difference in elasticity between resting 

and contracted muscle. The vocalis muscle is anisotropic, being much more 

elastic longitudinally than crosswise, and is relatively incompressible. 

These five different layers behave basically like three relatively independent 

masses, with the epithelium and the superficial layer of the lamina propria forming 

one semi-fluid layer, the intermediate and the deep layers of the lamina propria 

forming a stiffer layer within the cover, and the vocalis muscle forming the third 

mass as the body. If any of these layers change in mass, stiffness or geometry, 

then the vibratory pattern of the fold changes. 

Every change causes an acoustic effect which is more directly understood in 

some cases than in others. For example, an increase in mass will normally bring 

about a drop in fundamental frequency, and an increase in stiffness will normally 

generate a rise in fundamental frequency and a drop in intensity. Prevention of 

full glottal approximation by the intrusion of a surface mass will inject 

inter-harmonic noise into the glottal spectrum (giving audible whisperiness), and 

asymmetrical structural changes will increase waveform perturbation, increasing 

frequency jitter and intensity shimmer factors. From an analysis of the acoustic 

detail, it seems possible to some extent to work backwards, and use the acoustic 

information as evidence of the possible existence of a given class of laryngeal 

disorder, which can in turn be checked by laryngological and tissue examination. 

Experienced laryngologists may often use simple listening tests to judge existing 

pathology in a patient's voice. It follows from this that information suggesting 

pathology is reflected in the speech signal. High-speed motion pictures of 

pathological vocal folds reveal that frequently there are irregular vibratory patterns 
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(von Leden, Moore & Timcke, 1960). Measures of pitch period perturbation 

(Liebermann 1961; 1963; Smith & Liebermann 1964; Koike 1967, 1973; Hiki, 

Sugawara & Oizumi 1968; Crystal & Jackson 1970; Hecker & Kreul 1971) and 

measures of amplitude perturbation (Koike 1969) from acoustical waveforms of 

pathological speakers are different from those of normal speakers. Two 

psychoacoustical studies (Wendahl 1963, 1966) involving the synthesis of 

speech with pitch period and amplitude perturbations indicated that the resulting 

sounds are correlated closely with subjective judgements of roughness, and that 

these perturbations are indicative of pathological vocal quality. 

A fundamental frequency which is judged to be too low when compared to 

persons of similar age, sex and body size may result in a hoarse, harsh, husky 

or rough voice (Davis 1976). Low fundamental frequency stemming from 

functional vocal abuse may lead to contact ulcers (Luchsinger & Arnold 1965). 

Organic causes may be virilisation, tumours or other enlargements which 

increase the mass of the folds, or nerve paralysis which decreases the elasticity 

and compliance of one or both folds. 

A study by Layer, Mackenzie, Hiller & Rooney (1986) used discriminant analysis 

techniques with nine intonation and perturbation parameters to provide correct 

identification for pathologies of 91.7% for females and 87.5% for males, with false 

alarm rates of 7.5% for females and 6.0% for males. The study also explored the 

question of whetherthe acoustic technique is capable of discriminating diagnostic 

sub-groups of disorders. Evidence for this was provided by using a comparison 

of average values for the full set of nine acoustic parameters, in units of standard 

deviation away from the control group means, for 15 male patients with epithelial 

disorders versus 11 male patients with polyps or nodules. Beck (1988) also 

reports qualitative findings for the classification of pathological subjects into three 

broad classes, epithelial disorders, polyps/nodules and disorders of the 

cartilaginous area. 

_150- 



The validity of acoustic assessment procedures is dependent on the complex 

relationship between the vibrating source function and the resultant speech signal 

output by the production system. The nature of this complex relationship can be 

summarised from Davis (1979) as follows:- 

In general, asymmetrical changes in the mass and elastic properties of 

the vocal folds are created by the presence of laryngeal pathology. 

These symmetric changes result in the modulation of subglottal airstream 

by unbalanced vocal fold movement. 

Irregular air pulses are emitted by the larynx into the supraglottal 

structures which are then radiated at the lips and nose. 

The resultant acoustic signal is therefore affected by a disturbance of the 

vocal folds, and the acoustic speech signal can be used to quantify the 

disturbance. 

Every act of phonation is characterised to a degree by apparently random 

variations of the cycle-to-cycle duration and/or amplitude of the pitch periods of 

the laryngeal waveform. Acoustically, perturbation can characterise the laryngeal 

waveform in both the time domain (jitter) and the frequency domain (shimmer). 

The term perturbations is used to refer to such random deviations from the 

underlying regularity of the laryngeal waveform. In the frequency domain, a 

frictional element can add spectral noise to the laryngeal waveform. 

Jitter and shimmer contribute to the auditory effect usually called harshness. 

Physiologically, a voice which is audibly and habitually harsh can arise either 

functionally from misuse of the phonatory musculature, or pathologically from 

disruptive mechanical effects of neoplastic growths in the laminar tissue layers 

of one or both vocal folds. 

Spectral noise alone is associated with the auditory effect known as whisperiness. 

When spectral noise is added to jitter and/or shimmer, this has the effect of adding 

whisperiness to harshness, and the composite voice quality is known as 

hoarseness. Physiologically, the frictional element in whispery and hoarse voices 

is caused by incomplete glottal closure. Incomplete closure can be the result of 
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either idiosyncratic, habitual adjustments of the phonatory musculature, or of 

mechanical intrusion into the glottis of obstructions such as vocal nodules, polyps 

and other types of growths, or of paralysis of one or both vocal folds 

Perturbation in the laryngeal waveform of a given speaker can occur across a 

wide range of incidence, from occasional to habitual, and in degree from slight 

to severe. Severe perturbations are almost always signs of either pathological or 

functional disorder, but slight perturbations occurring occasionally are evident 

in all speaking voices. 

5.4 LARYNGEAL PATHOLOGY 

5.4.1 Diagnosis 

When patients complain of harsh or hoarse voices it is important to determine 

whether the symptoms present are due to pathological causes or functional 

causes. Historically, physicians have relied on two basic techniques in the 

diagnosis of pathological conditions in the larynx. These are auditory evaluation 

of the voice and visual examination of the larynx. Since laryngeal diseases are 

often accompanied by changes in the voice, simple listening tests sometimes 

give useful information. The principal criticisms of this auditory method are its 

subjectivity and its lack of absolute quantitative standards. 

Visual laryngeal examination is usually completed by indirect laryngoscopy which 

involves the placing of a mirror in the patient's throat so that the vocal folds and 

surrounding tissues maybe observed. This visual examination provides a 

restricted supralaryngeal view of the larynx under static conditions. An improved 

visual examination of the larynx can be achieved with other instruments such as 

the fibreoptic laryngoscope. All these techniques are intrusive and may not be 

readily accepted by some patients. To allow a view of the vocal folds in motion 

both the indirect and direct methods may be combined with stroboscopic 

illumination. It is particularly important to obtain a dynamic view of phonatory 
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action, since neoplastic growths below the surface of the vocal folds may display 

their effects only in terms of interference with symmetrical and regular vibration 

of the folds. 

Ultrasound techniques may also be used for inspection of the vocal folds and 

are comparable to laryngoscopic ,  techniques in that they afford a view of the vocal 

fold geometry. These techniques can be useful when the patient is not able to 

endure laryngoscope examination, but their low resolution tends to make them 

of limited value. 

Neither laryngoscopy nor ultrasonic scanning techniques give directly 

quantifiable information about pitch perturbations. However they can give 

important background information about the probable mechanical state of the 

vocal folds. 

Auditory assessment of the phonatory quality of a patient's voice suffers from 

extraneous factors, with differences between individuals' perceptions being the 

greatest compounding factor. The development of an automatic acoustic 

technique for screening voices for the presence of laryngeal pathologies and the 

differentiation of such pathologies is seen as being complementary to the 

techniques already used by the laryngologist. 

5.4.2 Screening 

Unlike vocal injuries which have a functional origin, diseases are acute or chronic 

organic disorders. The most important ones are benign and malignant tumours 

and paralyses. In all cases a structural deviation is initially responsible for a change 

in the voice. As the disease advances, especially in malignant pathologies, the 

voice becomes progressively more hoarse, and in the majority of cases, surgery 

or radiation may be necessary. The best way to insure good prognosis and to 

avoid serious complications is early diagnosis and treatment. 

The detection of laryngeal pathologies by an acoustic analysis system has several 

potential applications (Layer, Hiller, Mackenzie & Rooney, 1986):- 
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Screening of populations known to be at-risk alongside existing screening 

programmes in hospitals. An acoustic system has the advantage of being 

completely non-invasive, and the recording procedure is simple and 

causes minimal distress to subjects. It would also be highly portable so 

that screening could be extended to factories. At-risk populations include 

factory workers in potentially laryngeal-damaging environments such as 

flour-mills, cement factories and the asbestos industry. 

Priority assessment of patients visiting their general practitioner with 

complaints of harshness or hoarseness. The use of an automatic acoustic 

system could speed the process of referral for laryngeal examination by 

specialists with hospital-based fibreoptic laryngoscope facilities in those 

cases where evidence of serious pathology was indicated 

Diagnostic support where a particular laryngeal pathology is already 

suspected. This would depend on the acoustic system being shown to 

reliably discriminate one type of pathology from another, or general 

evidence of pathological versus functional aetiology. 

Monitoring to assess changes with time of the phonatory efficiency of 

patients receiving surgery, radiotherapy, chemotherapy or speech 

therapy, or to track deterioration or remission in progressive disease. 

5.4.3 Structural Pathologies of the Larynx 

A vocal disorder must show either a structural or a functional change from the 

characteristics of the healthy normal larynx to have an effect on the acoustic 

signal. From Mackenzie, Layer, Hiller (1983) guidelines to the acoustic 

consequences of changes in physical parameters to the larynx may be 

summarised as follows:- 

1) Mass.. An increase in mass adds inertial force to the vocal fold, which will 

tend to decrease the frequency of oscillation. It may be expected to exert 

its effect most strongly at the onset of phonation, when the vocal fold is 

accelerating from a relatively stationary position. 
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Stiffness. Increasing the stiffness of a vibrating body should inhibit the 

vibratory movement, causing a decrease in amplitude of excursion. 

Protrusion. Protrusion of a mass into the glottal space will only interfere 

with vocal fold approximation if it is relatively localised. A distinction must 

be made between localised and non-localised protrusions. An example 

of localised protrusion is a vocal polyp, which may become wedged 

between the vocal folds, thus preventing the folds from meeting. A 

non-localised protrusion may occur due to mild inflammation (a uniform 

swelling along the full length) of the vocal folds during upper respiratory 

tract infections. 

Asymmetry. Asymmetry of the vocal fold structure may cause the two 

vibrating folds to move out of phase with each other, with complex 

consequences for the acoustic waveform. Structural asymmetry is a 

feature of many laryngeal pathologies including vocal polyps and 

papillomata. 

Mackenzie, Layer & Hiller (1983) attempted to summarise pathologies in terms 

of the presence or absence of mass and stiffness changes, protrusion into the 

glottal space, symmetry, and tissue layer geometry (Table 5.1). From this work 

an important point emerged concerning the potential power of acoustic screening 

to differentiate between disorders. Some clinically separable disorders may be 

expected to impose rather similar mechanical constraints on vibration, and hence 

on acoustic output, so that they are unlikely to be separable by a solely acoustic 

assessment procedure. An example of this is the grouping of papilloma, 

squamous carcinoma, and verrucous carcinoma, all of which may show an 

asymmetric increase in mass and stiffness originating in the epithelium, with 

protrusion into the glottis and altered tissue layer geometry. It therefore appears 

more realistic to attempt a healthy/pathological speaker separation or the 

discrimination of sub-groups of disorders that have similar mechanical effects. 

In conclusion, the relationship between diagnosis of pathology, structural status 

of the vocal folds, mechanics of their vibration and the resulting acoustic output 

are complex. There will seldom be one-to-one links (Mackenzie, Layer & Hiller 
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1983) to be traced between them, and this is particularly true of the link between 

diagnosis of pathology and the structural status of the vocal folds. From an 

examination of Table 5.1 it would appear not to be possible to discriminate 

individual conditions based on the structural status of the vocal folds. In addition 

a given pathology may show different structural attributes in different individuals, 

or at different stages of development. However Table 5.1 indicates that the 

identification of sub-groups of disorders rather than individual disorders may be 

achievable and results from Layer, Mackenzie, Hiller & Rooney (1985) and Beck 

(1988) support this to a limited extent for a small number of sub-groups. 

For completeness some of the pathologies tabulated are described giving detail 

of their mechanical properties and consequences for laryngeal vibration as 

highlighted by Mackenzie, Layer & Hiller (1983). 

The most common injury to the larynx is vocal abuse, which is usually a functional 

problem. At the onset, it may be brought on by improper use of the voice during 

prolonged speaking or singing, often with excessive tension, If the problem 

persists, changes in phonatory structures may result to produce disorders such 

as functional fatigue, nodule, polyp, contact ulcer or chronic laryngitis. 

Functional vocal fatigue (myasthenia laryngis) is characterised by weakness of 

the vocal muscles. This allows the vocal folds to be lengthened, stretched and 

tensed so that the balanced tension of the folds is not maintained, and the voice 

sounds hoarse. 

Hyperplasia is an increase in cell number resulting from rapid division of the basal 

cell layer. The increase in basal cell number may cause buckling and distortion 

of the basement membrane, but the stratified arrangement of cells is maintained, 

and the cells appear normal. Hyperplasia occurs anywhere within the laryngeal 

epithelium. It is common at the centre of the ligamental area of the vocal fold. 

Mechanical factors associated are an asymmetric increase in mass, with normal 

tissue layer geometry. 
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- 
PATHOLOGY 

Disrupted 
tissue 
layer 

geometry  

Mass 
Change 

Stiffness 
change 

Protrusion Asymmetry  

A. LIGAMENTAL PORTION  

A.1 EPITHELIAL 

A.1.1 Hyperplasia  + + 

A.1.1 Keratosis  (+) + (+) + 

A.1.1 Carcinoma-in-situ + + 

A.12 iSquaamous crcinoma -I- + + + + 

A.1.2 Verrucous carcinoma + + + + + 

A.1.2 Adult papilloma + + + + + 

A.2 SUPERFICIAL LP.* 

A.2.1 Reinke's oedema + N.L 
A3 UNSPECIFIED L.P. 

A.3.1 Vocal nodules + + (+) 

A.3.1 Vocal polyps (+) 
(sessile)  

+ + + (+) 

A.3.1 Acute laryngitis  + N.L. 
A.3.1 Chronic laryngitis  + Ni. 
A.3.1 Chronic 	hyperplastic 

laryngitis  
+ + N.L 

AalFibrome + + + + 

A.3.2 Vocal polyps 
(pedunculated) 

+ + + + (+) 

A4 VOCALIS MUSCLE 

A.4.1 Sarcoma I + ? I + 
B CARTILAGINOUS PORTION 

6.1. EPITHELIAL (asunder A.1.)  

82 UNSPECIFIED LP.* 

B21 Acute oedema + + 

82.2 Contact ulcer + + + + (+) 

L.P. = lamina propria 	 possible or variable presence 
+ = presence of a factor 	N.L. = non-localised protrusion, not 

expected to prevent vocal fold 
approximation 

Table 5.1 A summary of mechanical characteristics of vocal fold pathologies 

(from Mackenzie, Layer & Hiller, 1983). 
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Keratosis is a condition in which the squamous cells of the epithelium begin to 

produce keratin, which is laid down as a layer at the surface of the epithelium. It 

may form a large whitish mass, which protrudes into the glottal space and may 

interfere with vocal fold approximation. The site of occurrence is as for 

hyperplasia. Mechanical factors associated are an asymmetric increase in 

stiffness, with normal tissue layer geometry. Eventually there may be a significant 

increase in mass and protrusion into the glottal space. 

Tumours are tissue masses which have no function and which develop from 

structures normally present. A benign tumour does not infiltrate neighbouring 

tissue, although it may displace or crowd nearby areas. A malignant tumour such 

as cancer, may invade and destroy adjacent structures, and it may migrate via 

the blood or lymph circulation systems to other sites. Because of the danger of 

the malignancy spreading, it is very importantto recognise and treat such tumours 

early, since there is then a significantly higher probability of a complete cure. 

Tumours may develop anywhere within the larynx. When located on the vocal 

folds, they cause hoarseness at an early stage. Subsequent removal may build 

up scar tissue and hinder effective phonation. 

Carcinoma-in-situ is usually regarded as the earliest recognisable stage of cancer 

of the larynx, although it is not an inevitable precursor of invasive cancer, and 

not all cases of carcinoma-in-situ necessarily progress to become fully invasive. 

Carcinoma-in-situ occurs anywhere within the laryngeal epithelium. Mechanical 

factors associated with it are an asymmetrical increase in mass, with normal tissue 

layer geometry and a variable increase in stiffness and protrusion into the glottal 

space. (Baur & McGavran, 1972; Ferlito, 1974; Friedmann & Osborn, 1978). 

Squamous cell carcinoma is the commonest type of laryngeal cancer. It may 

occur anywhere within the larynx and is most common in the ligamental portion 

of the vocal fold. Mechanical factors associated with it are an asymmetric change 

in mass and stiffness, with disruptive tissue layer geometry and protrusion into 

the glottal space. (Ferlito, 1974; Michaels, 1976; Friedmann & Osborn, 1978, 

Shaw, 1979). 
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Verrucous carcinoma is a specific type of squamous cell carcinoma, which 

presents as a slowly growing warty mass. It may occur any where within the 

larynx, although is commonest in the ligamental portion of the vocal fold. 

Mechanical factors are an asymmetrical increase in stiffness and mass, with 

localised protrusion into the glottal space and disruptive tissue geometry. (Ferlito, 

1974; Michaels, 1976; Friedmann &Osborn, 1978, Shaw, 1979; Maw etal., 1982). 

Papilloma is a benign warty tumour, which in adults forms multiple branch-like 

projections of highly keratinised epithelium. There may be extrusion of thin 

columns of lamina propria into the tumour, so that tissue geometry is substantially 

disrupted. They are commonest at the edge of the ligamental portion of the vocal 

fold or at the anterior commissure. (Friedmann & Osborn, 1978, Shaw, 1979; Hall 

& Colman, 1975). 

Reinke's oedema is a specific form of chronic laryngitis which is characterised 

by the loosening of the attachment between tissue layers in the ligamental portion 

of the vocal fold. Both vocal folds are affected along their full length. Mechanical 

factors associated with this are a symmetrical mass increase with non-localised 

protrusion into glottal space. Tissue layer geometry is normal but with weakened 

adherence between layers. (Saunders, 1964; Birrell, 1977; Friedmann & Osborn, 

1978). 

Vocal nodules are benign growths which vary in size, and may have a pointed 

or round shape and a white to red colour. They probably represent inflammatory 

responses to trauma or vocal abuse over a prolonged period of time. The size 

and shape of the nodule determines the degraded quality of the voice. Vocal 

nodules usually occur on the edge of the vocal fold in the centre of the ligamental 

portion. The mechanical factors associated with the early stages of vocal nodules 

are a symmetrical or asymmetrical increase in mass, with localised protrusion 

into the glottal space and normal tissue layer geometry. Stiffness is only increased 

slightly. (Arnold, 1962; Michaels, 1976; Aronson, 1980). 
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Polyps are very similar in appearance to nodules. Vocal polyps may be sessile 

or pedunculated. One distinguishing feature may be the appearance of a base 

or stalk between the polyp and the vocal fold. Unlike nodules, the vocal abuse 

causing the injury need not be of long duration and may sometimes be related 

to a single event of vocal strain. The effect on voice quality is similar to the effect 

of nodules. Vocal polyps usually occur at the edge of the ligamental portion of 

the vocal fold. Mechanical factors associated with vocal polyps are an 

asymmetrical (or rarely symmetrical) increase in mass and stiffness, with localised 

protrusion into the glottal space. Tissue layer geometry is significantly disrupted 

only if growth is pedunculated. (Arnold, 1962; Aronson, 1980; Greene, 1972; Hall 

& Colman, 1975; Michaels, 1976). 

Chronic laryngitis has many causes which include smoking, alcoholism, repeated 

attacks of acute laryngitis and voice abuse. Chronic laryngitis may be rather 

variable in form and the whole larynx may be involved. Mechanical factors 

associated with this are a symmetrical increase in mass, with non-localised 

protrusion into the glottal space, and normal tissue layer geometry. (Saunders, 

1964; Hall & Colman, 1975; Friedmann & Osborn, 1978; Aronson, 1980). 

Contact ulcers are found less often than nodules or polyps. They may be caused 

by improper use of the voice during prolonged forceful speech. Contact ulcers 

are generally thought to develop from a localised area of inflammation over the 

vocal process of the arytenoid cartilage, which is the point of maximum impact 

during adduction of the cartilages for phonation. Contact ulcers occur on the 

mucosa overlying the vocal processes of the arytenoid cartilages. Mechanical 

factors associated with them are an increase in stiffness with a redistribution of 

mass, localised protrusion into the glottal space, and disrupted tissue layer 

geometry. The degree of symmetry is variable. (Perkins, 1977; Aronson 1980). 
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5.5 PERTURBATION STUDIES 

Measures of pitch period perturbation (Liebermann 1961, 1963; Smith & 

Liebermann, 1964; Koike, 1967, 1973; Hecker and Kreul 1971) and measures of 

amplitude perturbations (Koike, 1973) from acoustical waveforms of pathological 

speakers are different from those of normal speakers. 

Ephemeral variations in the mucal conditions of the fluid bathing the surface of 

the vocal folds can also cause momentary perturbations, often eliminated by the 

speakers clearing their throats. Other slight perturbations in healthy voices during 

the course of phonation probably have a neuromuscular origin (Baer, 1978, 1980, 

1981). Increased perturbation is also one symptom of the aging voice (Benjamin 

1981; Ramig and Ringel 1983; Wilcox and Horii 1980). 

Perturbatory differences of the cycle-to-cycle period in the normal voice are very 

small. Liebermann (1963) found that in normal adult male speakers, only some 

15% of such differences typically exceed 0.5ms in duration. Perturbations of the 

cycle-to-cycle period below about 1% of the local fundamental frequency or 

intensity seem not to be audible as such, though they can be registered by 

acoustic or physiological analysis. An important consideration in the ability of 

acoustic techniques to register perturbation data is therefore the sensitivity of the 

acoustic technique itself. The major factor controlling such sensitivity is the 

sampling frequency used. If too low a frequency is employed, the minimum 

difference of period that can be registered when comparing successive cycles 

is unsuitably large (Heilberger & Horil 1982; Hiller 1985). Sampling frequencies 

giving suitable resolution to detect low levels of perturbation in waveforms from 

adult male speakers and most adult female speakers range should be not lower 

than about 20kHz. 

The attempt to discover objective acoustic and physiological methods for 

characterising laryngeal waveforms in terms of perturbation parameters now has 

a history of over 30 years, starting from the pioneering work of researchers such 

as Moore and von Leden (1958), Moore (1962), Liebermann (1961, 1963) and 

Michel (1964). The literature of perturbation studies is already substantial. 
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Interested readers are referred to Hiller (1985) who reviews the studies in detail 

and to Baken (1987) who gives a compact review of different approaches to the 

measurement of perturbation. 

Most studies of waveform perturbation can be classified according to two main 

types of perturbation parameter. A frequency or period perturbation parameter 

(jitter) quantifies the degree of regularity displayed by the temporal components 

of the fundamental frequency of the speech signal. Measures of amplitude 

perturbation (shimmer) evaluate the regularity of the peak amplitude structures 

associated with the speech waveform's fundamental periodicity. Secondly, two 

basic units of waveform perturbation have been used to produce frequency and 

amplitude perturbation parameters. The cycle-to-cycle perturbation describes 

the relationships between adjacent pulses of vibration as seen in speech 

waveforms. In the trend line approach, the basic unit of perturbation is measured 

as the deviation of FO and AO values from equivalent smoothed values produced 

by a local statistical smoothing algorithm. Thirdly perturbatory behaviour has 

been observed for two types of speech sample including sustained vowel 

phonations and samples of connected speech. A majority of studies have 

measured cycle-to-cycle frequency and amplitude perturbation parameters from 

samples of sustained vowel phonations. Only a small number of investigations 

have applied trend line analysis techniques to samples of connected speech in 

order to derive measures of frequency and amplitude perturbation. 

A disadvantage of taking isolated vowels is that the production of speech in such 

circumstances is a less demanding task for the subject, who may have learned 

to mask the effects of pathology by limiting his or her production to a more 

restricted but manageable zone of vocal performance. 

The advantage of taking continuous speech as input to perturbation analysis is 

that it is more likely to yield representative data. In the case of pathological 

phonation, the production of continuous speech may tax the laryngeal 

mechanism in a manner which makes the pathology more evident (as reflected 

in increased magnitude of perturbatory parameter values). The analysis of period 
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and amplitude values from continuous speech is more difficult than from 

sustained monotone vowels since the detecting algorithm has to examine a 

variety of signal structures produced by interactive segmental effects of the 

dynamic movements of the articulators, together with multiple voicing onsets and 

offsets. 

If continuous speech data is used for perturbation analysis then a minimum 

duration of speech material is required to stabilise long-term measurements of 

perturbation (e.g. the mean and standard deviation of each perturbatory 

parameter). Hiller (1985) reported that a 40-second sample of read speech 

provided relatively stable long-term speaker-characterising parameters of 

perturbation for healthy male and female speakers. 

5.6 PERTURBATION MEASUREMENT SYSTEM 

This section contains material relating to the data used in this thesis. This data 

has been made available to the Research Group in which the Boltzmann Machine 

studies were carried out, and acknowledgement is due to Dr. Steven Hiller. An 

indication of the processing required for the speech samples used, and detail of 

the choice of control parameters for determining the various acoustic parameters 

is appropriate. This section provides the necessary detail. A full description of 

the data preparation is to be found in Hiller (1985). 

Briefly, the Hiller (1985) Perturbation Measurement System was comprised of the 

three following major components:- 

Pitch Detection algorithm, using a modified parallel processor operating 

in the time domain to extract fundamental frequency and amplitude 

contours from samples of connected speech. 

Non-linear smoothing algorithm, comprising of a running-median and 

Hanning window which is applied to the contours to produce trend lines 

of fundamental frequency and amplitude, from which excursions of the 

unsmoothed values may be extracted. 
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3) Statistical evaluation of long-term parameters of intonation and 

perturbation. The excursions of fundamental frequency and amplitude 

are statistically evaluated to produce the perturbation parameters. 

5.6.1 Pitch Detection 

The basic scheme of the parallel processor pitch detector has been described 

by Rabiner and Schafer (1978) as follows:- 

"1. The speech signal is processed so as to create a number of impulse 
trains which retain the periodicity of the original signal and discard 
features which are irrelevant to the pitch detection process. 

This processing permits very simple pitch detectors to be used to 
estimate the periodicity of each impulse train. 

The estimates of several of these simple pitch detectors are logically 
combined to infer the period of the speech waveform." (Rabiner & 
Schafer, 1978). 

A block diagram of the parallel processor is shown in Figure 5.5 adapted from 

Gold & Rabiner (1969). 

The speech data used by Hiller (1985) and Beck (1988) was recorded on high 

quality analogue tape recorders (Revox A77 & Uher 4000). The data was then 

digitised at 20kHz with 12-bit quantisation. A 20kHz sampling rate provides a 

resolution of 0.05ms for each pitch period detected by the parallel processor. 

Prior to digitisation, the input speech was passed through an analogue filter which 

prevents aliasing of the waveform during sampling. The analogue filter was a 

Butterworth type which produced a -48dB/octave roll-off beyond a cutoff 

frequency of 10kHz. 

The first pre-processing step in the pitch period detection process was the phase 

compensation of low-frequency distortions of the input voice sample. These 

phase distortions were the result of reactive and resistive components in the tape 

recording and playback system which did not maintain the relative phases of the 

harmonics of the recorded system (Olsen, 1982). A more accurate representation 

of the original speech signal was produced by compensation of the low-frequency 

phase distortions in the recorded (and digitised) version of the signal. It was found 

by Hiller (1985) that low-frequency phase distortions of tape recorded voice 
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samples adversely effects the discrimination of healthy and pathological speakers 

by waveform perturbation parameters. The phase compensation technique 

employed was the frequency domain procedure of Berouti, Childers & Paige 

(1977). 

A digital linear-phase filter (McClellan 1975) consisting of 32 coefficients which 

produced approximately -48dB/octave roll-off beyond the cutoff frequency was 

used to low-pass filter the phase compensated voice samples to reduce formant 

information. For male speakers the cut-off frequency was set to 600Hz. 

The silence detector used was that of Gold (1964) in which a segment of speech 

is searched for two samples which exceed a pre-determined silence energy 

threshold. If the energy threshold is exceeded then the remainder of the 

estimation is completed, otherwise the pitch period result is set to zero and the 

next frame of data is processed. If speech is present, then the smoothed speech 

is examined for the presence of peaks and valleys which represent periodic 

behaviour in the waveform. Several measures of amplitude are calculated as each 

valley and peak is located. 

The first stage of the basic extractor was to minimise the data by finding anchor 

points for determining periodicity and the elimination of the remaining data 

samples. For the parallel processor anchor points are peak minima (valleys) and 

maxima (peaks). Six functions of peakedness were derived for the local minima 

and maxima within the preprocessed speech signal. The sampling resolution of 

each detected peak was increased by parabolic interpolation of the three sampled 

data points which define the peak. The use of six different measures of waveform 

characteristics was designed to cover a range of different types of waveform, 

varying from a simple sinusoid to a signal composed of a weak fundamental 

component with a strong second harmonic. Each type of peak and valley 

measurement produced an impulse train made up of positive impulses 

representing the amplitudes and locations of the measurements. 
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The second stage of the basic extraction process of the parallel processor was 

the selection of the remaining samples which are likely to represent a period 

delimiter and the rejection of other samples. This step was completed for each 

of the six impulse functions based on the peak measurements. For each function, 

the marker detection was completed by a time-varying exponential rundown 

circuit. 

Each impulse train was evaluated for periodicity by a peak detecting circuit based 

on an exponential decay function (Gold 1962). Following the detection of a 

possible pitch period marker, the circuit is reset and held for a blanking interval 

during which no detection occurs. After the blanking interval, the circuit begins 

to decay. The decay continues until an impulse of sufficient amplitude exceeds 

the decay threshold, and then is once again reset. In this manner, possible pitch 

period information is stored and extraneous data discarded. The decay behaviour 

of the exponential circuit (i.e. blanking time and decay rate) was dependent upon 

local pitch period trends in order that reasonable limits were set for the detection 

of the next period. 

For each analysis interval the peak detecting circuit produced six estimates of 

the pitch period, one for each of the six impulse trains. These estimates of 

periodicity were combined with the two most recent sets of estimates from the 

six parallel pitch period detectors. The final estimation of the pitch period was 

based on a comparison of all the estimates. The estimate with the greatest level 

of agreement among the six immediate candidates was declared the pitch period 

for the speech segment. 

Voiced/voiceless decisions were determined from the level of agreement 

between the chosen pitch period estimate and the other period measures, Gold 

(1964). For voiced speech the agreement level would be high since each simple 

detector represents redundant information concerning the periodic behaviour of 

the waveform. There is a lack of redundancy associated with noisy voiceless 
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speech and therefore a low level of agreement for any pitch period estimate. A 

voiced /voiceless decision threshold was determined from the distributions of the 

agreements calculated for voiced and voiceless speech (Gold 1964). 

Each pitch period estimation was completed on a segment of filtered speech 

data selected by a rectangular analysis window. The interval within the window 

was set at 25ms for male speakers and was designed to accommodate the largest 

probable pitch period. Since three sampled data points were required to define 

a peak minimum or maximum in the pre-processed speech signal contained 

within an analysis interval, sampled data points were lost at the beginning and 

end of the interval. Thus the longest possible pitch period permitted in a given 

interval was slightly less than the length of the window. For a 25ms window and 

a sampling rate of 20kHz, the largest duration pitch period is 24.9ms (40.2 Hz). 

Cycle-to-cycle data was estimated by shifting the rectangular window along the 

data in such a way as to try to bring just one new pitch period into the window. 

Variable shifting was used with range limits of 40Hz to 240 Hz set for male 

speakers. With variable shifting inaccuracies will arise only under certain 

conditions of FO movement. 

5.6.2 Perturbation Algorithm 

The Hiller (1985) Perturbation Measurement System was comprised of three 

notable features:- 

Input data consisting of FO and A0 contours extracted from samples of 

connected speech processed using the parallel processing pitch 

detection system described in Section 5.6.1. 

Perturbation measurement based on excursions (i.e. deviations) of the 

individual input values from a local smoothed trend line of samples - a 

non-linear smoothing consisting of a 5-point running-median plus 3-point 

Hanning filter produces the smoothed trend line. 
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3) Output parameters comprised of long-term distributional measures of 

frequency and amplitude perturbation based on the excursions from the 

smoothed trend line. 

The measurement system also produced long-term distributional measures of 

the fundamental frequency based on the smoothed trend line of FO values. 

The parallel processing pitch detection algorithm produced from samples of 

connected speech two outputs consisting of the inverse values of the detected 

pitch periods in units of Hz and an AO contour whose sample values were based 

on peak amplitudes derived from each detected pitch period represented in the 

FO contour. 

The trendline underlying the raw FO curve was constructed by a non-linear 

smoother as presented by Rabiner, Sambur & Schmitdt (1975). A non-linear 

smoother has advantages over more conventional linear smoothers (e.g. 

Running average) which tend to smear sharp discontinuities present in speech 

signals as well as being affected by gross errors in contour. A non-linear smoother 

was used so as to preserve realistic discontinuities present in FO contours (i.e. 

transitions from voiced to voiceless states and vice-versa), while smoothing 

micro-perturbatory roughness and gross pitch period estimation errors. The 

non-linear smoother implemented was a combination of running median filter 

plus a Hanning window. This was used for extracting both the FO and AO 

trendlines. 

The application of the non-linear smoother to a given FO and AO contour produces 

a trendline from which perturbations can be measured for connected speech 

samples. The basic unit of perturbation measurement is defined as the difference 

between an input unsmoothed value of FO or AO and its equivalent smoothed 

value along the trend line derived by the non-linear smoother. This basic unit of 

perturbation is called an Excursion. This unit is measured in relation to a smoothed 

trendline in order that slow-moving modulations and intonational movements of 

FO and AO are excluded from contributing to the estimation of perturbation 

parameters. The use of excursion measures from a smoothed trendline have 
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been presented in Koike (1973), Kitajima, Tanabe & lsshiki (1975), Davis (1976), 

Kitajima & Gould (1976), Koike, Takahashi & Calcaterra (1977) and Layer, Hiller 

& Hanson (1982). 

An excursion was derived for each output of the non-linear smoother and defined 

as the difference between the unsmoothed input value of FO or AO and its 

equivalent smoothed sample. Each excursion of FO was stored in four formats:- 

signed excursion in Hz, the difference between input and smoothed FO 

in units of Hz with algebraic sign retained. 

signed excursion in percent (SE%)-- the ratio of the signed excursion in 

Hz to its equivalent smoothed FO value multiplied by 100. 

magnitude of excursion in Hz - the absolute value of the signed excursion 

in Hz 

Magnitude excursion in percent (ME%) - the absolute value of the signed 

excursion in percent. 

The four formats were also produced for a given input A0 contour with the 

appropriate amplitude values. 

Two sets of long-term intonation and perturbation parameters were based on 

the output of the simple non-linear smoother. The symbols used for these 

parameters are those adopted by Layer, Hiller, Mackenzie & Rooney (1986) and 

Beck (1988). The parameters describe the magnitude, distribution, and 

frequency of micro-perturbatory behaviour for each FO contour in the speech 

sample. The long-term intonational parameters produced are described below. 

F0-AV is the average fundamental frequency in units of Hz for all non-zero FO 

samples in the smoothed contour. The use of the smoothed contour meant that 

values outside the pre-set limits of 40-240Hz (for males) were eliminated from the 

original data pool. This was to limit the effects of gross measures in FO produced 

by the pitch detection algorithm. 
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FO-DEV is the standard deviation of the fundamental frequency in units of Hz for 

all non-zero values in the smoothed FO contour, This parameter represents the 

typical range of FO produced by each speaker for a given speaking task. The 

pre-set limits for acceptable values are also used for producing this parameter. 

Intonational parameters were included as it is possible that some pathological 

speakers may be able to maintain normal perturbation whilst deviating from 

normal in their range of FO. 

The long-term perturbation parameters produced are described below. 

J-AVEX/S-AVEX. These parameters represent the average excursion (AVEX) as 

found for the magnitude excursions in percent of FO (jitter) and AO (shimmer) 

contours, respectively. The magnitude of the excursion is used as the input to 

this parameter in order that all non-zero values of FO and AO will produce a 

non-zero mean value. 

J-DEVEX/S-DEVEX. These parameters represent the standard deviation of the 

excursions (DEVEX) as derived for the SE% for FO (jitter) AO (shimmer) contours, 

respectively. In this case, signed excursions are input since it is expected that a 

normal-like distribution of excursions will occur around a mean value close to 

zero. If there is a tendency towards the production of larger than average 

excursions of FO and AO then these should be revealed as a large spread of 

excursion values as seen in the DEVEX measures for jitter and shimmer. 

J-RATEX/S-RATEX. These parameters represent the rate of excursions (RATEX) 

found in FO and AO contour respectively. RATEX is adapted from the Pitch 

Perturbation Quotient (PPQ) of Koike, Takahashi & Calcaterra (1977), and uses 

a non-linear smoother instead of the moving average approach used to calculate 

PPQ. RATEX is the percentage of points in a given contour where a magnitude 

of excursion in percent is greater than a pre-set threshold. The pre-set threshold 

is used to quantify the number of significant perturbations in any given voice 

sample. The pre-set threshold was set to 3%, because even in the healthiest 

voices, uttering a sustained monotone vowel, the successive pitch periods 

typically show approximately 2% frequency jitter in a normal distribution (Hanson 
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1978). The 3% threshold enables one to discount this factor from the J-RATEX 

measure. The choice of threshold for S-RATEX is less certain since equivalent 

statistical statements are not available for shimmer. A 3% threshold was also 

chosen for S-RATEX. 

J-DPF/S-DPF. This parameter is the Directional Perturbation Factor (DPF) which 

has been adapted from the work of Hecker & Kreul (1971). The DPF is based on 

changes of direction in values within FO and AO contours, DPF counts the number 

of times there is a change in algebraic sign when a difference is measured 

between adjacent input contour values. Therefore, roughness in an FO or AO 

contour may be evaluated as small directional changes in the contour. DPF totals 

the number of directional changes and this total is divided by the total number 

of possible directional changes within a given contour and multiplied by 100 to 

produce percentage values of J-DPF and S-DPF. The DPF parameter has been 

modified by including the requirement that a magnitude difference of greater than 

3% must occur for any given directional change before it is included in the total 

DPF count. This threshold is another attempt to exclude the normal distribution 

of FO directional changes from perturbation parameters. Any zero in the FO 

contour is not evaluated by the DPF algorithm and this includes onsets/offsets 

of voicing as well as short discontinuities within the contour. 

5.7 LARYNGEAL PATHOLOGY DETECTION STUDIES USING 

ACOUSTIC PARAMETERS 

As mentioned in Section 5.6 the data used in this thesis was made available to 

the Research Group in which the Boltzmann Machine studies were carried out. 

Sets of this data have also been used in other pathological/healthy detection 

studies. This section briefly describes some of these studies. 

Layer, Hiller, Mackenzie and Rooney (1986) studied various group separation 

techniques. Initially, parameter values were transformed to Z-scores and 

expressed as multiples of the control standard deviation from the control group 

mean. Given that two standard deviations on any one parameter should include 
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approximately 90% to 95% of control subjects (assuming normal distribution), 

any subject whose score on a given parameter deviates from the control group 

mean by more than two standard deviations was considered at risk of pathology. 

On this basis, no single parameter of the ten was shown to distinguish between 

the two groups sufficiently for the purposes of screening. The use of one FO 

parameter and one perturbation parameter was shown to be more successful. 

The parameters F0-AV and S-DPF were analysed to give an ellipse (at the 2 SD 

level) indicating the covariance between the parameters. The boundary of the 

ellipse formed the screening threshold for the detection of pathology. Using this 

method, 90.1% of pathological males were outside the ellipse and classified as 

pathological. However, 9.5% of control males were also outside the ellipse and 

registered as false positives. The control group was comprised of 63 male 

speakers and the pathological group was comprised of 55 male speakers with 

diagnosed laryngeal pathologies. 

Layer, Hiller, Mackenzie and Rooney (1986) also describe experiments using 

linear discriminant analysis. This is a statistical technique for discriminating 

between two (or more) groups on the basis of several parameters simultaneously. 

A discriminant function is derived by weighting and combining the parameters in 

such a way that the groups will be maximally separated by their member's score 

on this function. Using discriminant functions derived from all ten acoustic 

parameters the results in Table 5.2 were reported. 

Classified 

Correctly 

Classified 

Incorrectly 

Pathological 85.5% 14.5% 

Control 92.1% 7.9% 

Table 5.2 Group separation results using linear discriminant functions. 

The results of this discriminant analysis need to be treated with caution. Linear 

discriminant analysis assumes that the data show a multivariate normal 
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distribution, but given the heterogeneous composition of the pathological group 

it is likely that this assumption was seriously violated. However, the technique is 

quite robust in the face of such violations. A more serious problem is that the 

groups are rather small. 

Layer, Hiller, Mackenzie and Rooney (1986) also analysed the weighting 

coefficients derived from the linear discriminant analysis procedure and were 

able to conclude that all ten parameters are not equally useful. Some do not 

separate the groups very well, while others are redundant by virtue of their high 

correlation with those that do. They concluded that S-DPF was the most important 

contributor to both the male and female discriminant functions. 

Using a larger data set, Beck (1988) reports, using linear discriminant analysis 

with all 10 parameters, 87.5% correct classification of pathological voices and 

8.4% of control speakers classified as pathological. The control group in this 

study comprised 83 male speakers and the pathology group was comprised of 

56 pathological male voices. 

Beck (1988) also reports results using 9 acoustic parameters (excluding 

S-DEVEX because of its non-normal distribution) with maximum likelihood 

techniques. Using this approach 87.5% of pathological speakers were correctly 

classified, and 14.3% of control speakers were classified as belonging to the 

pathological group. Beck (1988) concluded that discriminant analysis is probably 

the best of these screening options. 

All these techniques have been applied to within group testing and thus the 

classification rates obtained cannot safely be asserted to be necessarily 

predictive of future success in classifying another set of subjects with the same 

function. 

5.8 SPEAKERS USED FOR PERTURBATION ANALYSIS 

The data made available to the Research Group in which the Boltzmann Machine 

studies were carried out was comprised of two groups of native British speakers. 
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One group consisted of 53 male adult speakers who showed a variety of laryngeal 

pathologies. All had undergone laryngeal examination, and details of laryngeal 

status were obtained from their medical records. The pathologies detected are 

listed in Table 5.3 

Type of Pathology Males 

DISORDERS OF THE LIGAMENTAL AREA 

Epithelial disorders 

Hyperplasia 1 

Keratosis 2 

Squamous carcinoma 9 

Verrucous carcinoma 1 

Papillomata 2 

Lamina Propria disorders 

Polyps, nodules 10 

Acute laryngitis 2 

Chronic laryngitis 3 

Oedema 1 

Mild redness, thickening 6 

DISORDERS OF THE CARTILAGINOUS AREA 

Contact ulcer 4 

Cyst 1 

VOCAL FOLD PALSIES 11 

Table 5.3 Laryngeal disorders diagnosed in the pathological subject group. 
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The control group was comprised of 78 male speakers who had no reported 

history of speech or voice disorder. It was not feasible to subject this group to a 

laryngeal examination. The age range for the control speakers was 18 - 71, and 

the age range for the pathological speakers was 23 - 82. 

The acoustic parameter data made available for the Boltzmann Machine studies 

was obtained in the following way. A high quality tape recording of each speaker 

was made as he read the first two paragraphs of the The Rainbow Passage, 

(Fairbanks 1960). Prior to the recording, the speakers had familiarised 

themselves with the passage, and were asked to read Out loud at a comfortable 

level, using their habitual voice. Forty seconds of each recording was digitised 

and stored on computer magnetic tape for intonation and perturbation analysis 

as described in Section 5.6. 

This chapter has described the methods by which the intonation and perturbation 

parameters were obtained from speech recordings of 78 healthy adult male 

speakers and 53 adult male speakers with known laryngeal pathologies. These 

parameters have been used to investigate two screening applications using 

Boltzmann Machine models. The first of these is for discriminating between 

healthy and pathological speakers, and is presented in Chapter 6. The second 

application is for discriminating between groups of pathologies present, and is 

presented in Chapter 7. 
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6 SEPARATION OF CONTROL AND PATHOLOGICAL GROUPS 

6.1 INTRODUCTION 

The experiments presented in this chapter make use of the intonational and 

perturbation parameters made available to the Research Group in which the 

Boltzmann Machine studies were made. The details concerning the method by 

which these intonation and perturbation parameters were produced has been 

described in the previous chapter. Each experiment described in the current 

chapter is only concerned with the separation of pathological and healthy 

speakers. The aim of these experiments is to investigate a neuromorphic 

approach to the screening of populations for voice pathologies. 

The subject groups used to provide the intonation and perturbation parameters 

for the experiments comprised 53 adult male speakers, with diagnosed voice 

pathologies, and 78 adult male control speakers, with no history of voice 

disorders. This data was subdivided into a training set of 39 control and 28 

pathological speakers and into a test set of 39 control and 25 pathological 

speakers. A smaller training set was also produced which had only 10 control 

and 10 pathological speakers. The testing data set was larger, with 68 control 

and 43 pathological speakers. The function of this smaller training set was to 

investigate the effect on network generalisation using a reduced set of training 

data. As mentioned above however the overall objectives of the experiments 

discussed in this chapter are to differentiate between healthy and pathological 

speakers only. 

Before the intonation and perturbation parameter data could be applied to the 

Boltzmann Machine networks used in the various experiments it was necessary 

to transform the data from floating point format into a binary format. Three types 

of binary format were investigated. 

The networks were trained using examples from the training set, and then tested 

to see whether they could correctly identify the control and pathological subjects 

in new examples from the test set. The network's generalisation to the test set 
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was measured by counting the number of cases that the network classified 

correctly. A severe problem with this approach is that it is liable to require a large 

amount of accurately labelled training data to give good generalisation. A network 

may require a large number of weights to allow it to capture the relevant structure, 

and so the training data must contain a large number of samples in order to 

constrain these weights sufficiently to give good generalisation. If the number of 

samples in the training data does not significantly exceed the number of degrees 

of freedom in the model, the network can use a form of rote-learning or table-look 

up to learn the training cases. In other words, it can find a setting of the weights 

that give the correct output for all the training examples, without capturing the 

underlying regularities of the task. Unfortunately, each training example only 

contains a few bits of information, because for a supervised learning procedure, 

as used in Boltzmann Machine learning, the information in an example is the 

number of bits it takes to specify the correct output. So there is a severe practical 

problem to provision of sufficient training data. Results of Prager et al. (1986) 

confirm that the generalisation is poor when a general learning procedure is used 

to fit a model that has more degrees of freedom than there are samples in the 

training set. 

For the Boltzmann Machine with binary inputs, the number of bits in a Boltzmann 

Machine's input pattern directly affects the number of weights required in the 

network, which in turn affects the network's information capacity and hence its 

ability to learn and generalise from a given number of training cases. Because 

there were only 67 training patterns in the larger training set, each of which 

requires an output choice that can be specified by 1-bit, a network would need 

to learn 67-bits of information to perform the task by table look-up. Each weight 

appears (in the single-layer model) to be able to comfortably store approximately 

1.5 bits of information, so a network with more than about 50 weights may have 

a tendency to memorise the training cases and thus fail to generalise to the test 

set. Such limitations on training data would also apply to other supervised network 

learning procedures, such as the Multi-layer Perceptron. However, this general 

information capacity argument does not take into consideration specific 
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properties of the problem domain. In addition it is not clear how much an oversized 

network would suffer in generalisation. Elman & Zipser (1987) have reported that 

generalisation performance can be improved by introducing certain kinds of noise 

into the training patterns and hence expanding the data set. This tends to result 

in greater error during the learning phase but better generalisation. A noisy pattern 

clamping technique, described later, was developed and its effect on 

generalisation investigated. 

One reason why so much data may be required is that there is no prior knowledge 

built into the network. In other words, the network has no prior expectations that 

adjacent parameters or quantisation levels are likely to be more relevant to each 

other than non-adjacent ones. This lack of prior expectation means that the 

learning is searching a huge space of possible feature detectors, most of which 

are almost certainly useless. It is possible that the training data could be reduced 

by using an architecture that omits irrelevant connections, or by starting with 

reasonable hand-coded feature detectors. 

A network can be forced to develop localised feature detectors by restricting its 

connectivity in such a way that each hidden unit receives input from a 

receptive-field that only covers a small region of the input. (Details of how 

Boltzmann Machine connectivity can be restricted are to be found in Section 

4.4.2). Because the total number of its weights is a relatively small multiple of the 

number of its hidden units, a network with small-receptive-fields can possess a 

rich inventory of hidden unit codes to represent subtleties of the input, without 

being burdened by an excessive number of free parameters that would allow the 

network to learn its training set by rote. This assumes that the capacity limitation 

that forces good generalisation is the number of weights. 

Initially, experiments with single-layer networks (in which the input units are 

directly connected to the output units) were conducted to provided a performance 

baseline. Networks having hidden units, but no connections between input and 

output units were then investigated. In addition, experiments were conducted 

with these networks using noisy data to clamp the input units during training. 
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Experiments were also conducted using network architectures with 

small-receptive-fields. A natural partition for the input data was to divide it into 

three receptive fields with each field corresponding to the intonation, jitter or 

shimmer parameters. Each hidden unit was connected to either the intonation, 

jitter or shimmer parameter data present at the input units. To permit the detection 

of multiple features in each set of parameters, the network had up to 2 hidden 

units connected to each of the three receptive fields. No connections were 

allowed between hidden units, and the two output units were connected to each 

other and the hidden units. There were no connections between the input units 

and the output units. 

In another variation of the restricted receptive-field network architecture, each 

hidden unit was only allowed to make connections to the input units 

corresponding to one of the intonation or perturbation parameters. Again, to 

permit the detection of multiple features up to two hidden units were allowed for 

each of the ten receptive fields. Limitations on the compute time available meant 

that it was not possible to investigate additional numbers of hidden units for each 

receptive fields, or indeed further different sizes of receptive fields. A restricted 

receptive field network with two hidden units per field would thus have 

approximately the same number of weights as the networks with two hidden units 

(but no connections between input and output units) mentioned above. 

Finally, experiments were performed using as input data to networks a number 

of different subsets of the ten intonation and perturbation parameters. The 

network architectures investigated included those with, and without hidden units. 

The power of any pattern-recognition system lies in its ability to deal with noise 

or distortion. That is, after being trained on representative patterns of a class, the 

system is able to recognise all other patterns of that same equivalence class. In 

the supervised learning for the Boltzmann Machine, the output is an estimated 

value of the class index. Consider a Boltzmann Machine that has been trained 

to yield an output of 1 for all of the pathological patterns and of 0 for all 

non-pathological (in this case the control) patterns. An unknown pattern is 
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clamped over the input units and maintained while the network is annealed. Due 

to the stochastic nature of the operation of the Boltzmann Machine, the network 

is then run for a given length of time at thermal equilibrium to determine how often 

the output unit is either on or off. Thus, the probability of that particular pattern 

occurring is obtained. An actual test-set pattern may thus occur with a probability 

of 0.85 and would be considered to be of the pathological class. The basic act 

is that of estimation, although the final result is clothed in the guise of classification. 

For many of the networks, a map of the weights learned is presented. Each unit 

in the network is identified by a square outline. The input units are presented as 

an array (see Figure 6.1 for an example of 10 by 12 units). Each of the columns, 

representing one of the ten parameters, is labelled with an identification number 

(see Table 6.1). The quantisation levels are stacked in the column with lowest 

values at the base of the column, and highest values at the top of the column. 

A positive weight is represented by a shaded or black square within the unit 

square. This represents an excitatory link. A negative weight is represented by 

a square outline within the unit square. This represents an inhibitory link. A zero 

weight or a weight that is below a given weight value threshold is represented by 

the unit square being blank. 

Some of the weight maps presented have a weight threshold value of 5% of the 

maximum absolute weight value. Any weights below this threshold are not 

displayed because primarily the reprographic procedure used makes it difficult 

to distinguish whether very small weights have positive or negative values. It is 

also expected that very small weights will have an inconsequential effect on 

attempts made to interpret the patterns of the weights learned. 

For some of the weight maps presented, the output patterns used for training set 

the left-hand output unit on, and the right-hand output unit off for a pathological 

subject. A control subject was indicated by training with the left-hand unit set to 

off, and the right hand unit set on. 
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6.2 DATA PREPARATION 

The corpus of data has been described in Section 5.8 and comprises one 

pathological group of 53 adult male speakers and one control group of 78 adult 

male speakers. The speakers in the pathological group all showed a variety of 

laryngeal disorders and all had undergone laryngeal examination. The control 

group speakers had no reported history of speech or voice disorder, but had not 

undergone laryngeal examination. For each of the speakers ten intonation and 

perturbation parameters were obtained using the perturbation measurement 

system described in Section 5.6, see Table 6.1. 

# PARAMETER DESCRIPTION 

1 F0-AV Mean Fundamental frequency 

2 FO-DEV Standard deviation of FO 

3 J-DEVEX Jitter- standard deviation of excursions 

4 J-AVEX Jitter- average excursions in % of FO 

5 J-RATEX Jitter- rate of excursions 

6 J-DPF Jitter- directional perturbation factor 

7 S-DEVEX Shimmer- 	standard 	deviation 	of 

excursions 

8 S-AVEX Shimmer- average excursions in % of A0 

9 S-RATEX Shimmer- rate of excursions 

10 S-DPF Shimmer- 	directional 	perturbation 

factor 

Table 6.1 Intonation and perturbation parameters. 

All the parameter values were in floating point format and had to be transformed 

into a binary format for presentation to the Boltzmann Machines in the simulator. 

To obtain the binary representations required, the maximum global range for 
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each of the intonation and perturbation parameters was linearly quantised into 

an integer number of buckets or quantisation levels. The smallest number of 

quantisation levels required using all ten parameters, from the total of 131 

speakers, to ensure that the binary representation of each speaker's data 

remained unique was six. Thus quantisation levels of six and twelve, which 

provided twice the minimum resolution, were used. Three binary formats of this 

data were employed. The first being the dot method. In this case the bucket 

corresponding to the value of the parameter was set to the value 1 and all the 

remaining buckets were set to the value 0. The second approach is referred to 

as the slide method. It is similar to the dot method but in addition the two buckets 

immediately adjacent to the bucket corresponding to the parameter value are 

also set to 1, with the remaining buckets set to zero as before. The final method 

is referred to as the bar method and provides data in a format that is similar to 

a bar-graph display. That is, all the buckets below and including the bucket 

corresponding to the parameter value are set to the value 1, and the remaining 

buckets are set to the value 0. Table 6.2 indicates these three binary 

representations of the parameter data. 

The slide format has been described as a coarse coding method by Hinton (1984) 

and Kanerva (1984). The object behind this approach is that to encode features 

accurately using as few units as possible, it is best to use units that are very 

coarsely aligned, so that each feature activates many different units and each 

unit is activated by many different features. A specific feature is then encoded by 

a pattern of activity in many units rather than by a single active unit, so coarse 

coding is a form of distributed representation. 

These formats essentially require that a separate code be used for each of the 

quantisation levels. Alternatively, each quantisation level could be represented 

by a binary number, which would have reduced the number of bits in the input 

patterns. It would however have made interpretation of the weight maps produced 

particularly difficult. Furthermore, informal experiments showed that learning 

times were much longer for this method and so this representation was not used. 
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Coarse coding is only effective when the features that must be represented are 

relatively sparse. If many feature-points are crowded together, each receptive 

field will contain many features and the activity pattern in coarse coded units will 

not discriminate between many alternative combinations of feature points. There 

is thus a resolution /accuracy trade-off. It may thus be possible to use fewer 

quantisation levels, to achieve a given level of accuracy, provided the features to 

be represented are relatively sparse. 

FORMAT REPRESENTATION 

DOT 00010000 

SLIDE 00111000 

BAR 11110000 

Table 6.2 Examples of the three binary formats for a given parameter data 

value. 

The range of values for parameter 7 (S-DEVEX) was distorted by one speaker 

having a particularly large value for the rate of excursions found in his FO contour. 

This particular value was disregarded and the next largest value was used to 

determine the overall range for S-DEVEX. The parameter value in excess of the 

maximum range value was catered for by saturating to the highest quantisation 

level available. 

A computer program was written, which would process the raw parameter data 

and provide an output file containing the parameters selected, the desired binary 

format, and the number of quantisation levels required. It was also established 

that the smallest number of quantisation levels required using all ten parameters, 

from the total of 131 speakers, to ensure that the binary representation of each 

speaker's data remained unique was six. This meant that patterns in each of the 

control and pathology groups were not duplicated, so that the number of different 

patterns applied was known. Uniqueness in each of the healthy and pathological 

groups is not particularly relevant in the healthy/ pathology discrimination task 
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as the speakers are only being classified into these two groups. Quantisation 

levels below six also meant that patterns overlapped between the control and 

pathology groups, which is clearly undesirable. Uniqueness in the pathology 

group is more important when considering the classification of pathological 

speakers into groups of laryngeal disorders. 

6.3 TRAINING AND TEST GROUPS 

For purposes of training and testing the various networks the data was divided 

into two training and test sets. The smallest training set comprised 10 pathological 

speakers and 10 randomly selected control speakers. The pathologies were 

chosen to be representative of all the pathologies reported in the data set and 

are indicated in Table 6.3. The test sets were comprised of the remaining control 

and pathological subjects. 

The second training set comprised 39 randomly selected control speakers and 

28 pathological speakers. The pathologies present in the training and test sets 

are indicated in Table 6.4. 
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Type of Pathology TRAIN TEST 

DISORDERS OF THE LIGAMENTAL AREA 

Epithelial disorders 

Hyperplasia 0 1 

Keratosis 1 1 

Squamous carcinoma 2 7 

Verrucous carcinoma 0 1 

Papillomata 0 2 

Lamina Propria disorders 

Polyps, nodules 2 8 

Acute laryngitis 0 2 

Chronic laryngitis 0 3 

Oedema 0 1 

Mild redness, thickening 1 5 

DISORDERS OFTHE CARTILAGINOUS AREA 

Contact ulcer 2 2 

Cyst 0 1 

VOCAL FOLD PALSIES 2 9 

Table 6.3 Laryngeal disorders diagnosed in the small pathological training and 

test data sets. 
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Type of Pathology TRAIN TEST 

DISORDERS OF THE LIGAMENTAL AREA 

Epithelial disorders 

Hyperplasia 1 0 

Keratosis 1 1 

Squamous carcinoma 4 5 

Verrucous carcinoma 1 0 

Papillomata 1 1 

Lamina Propria disorders 

Polyps, nodules 4 6 

Acute laryngitis 1 1 

Chronic laryngitis 2 1 

Oedema 1 0 

Mild redness, thickening 3 3 

DISORDERS OFTHE CARTILAGINOUS AREA 

Contact ulcer 2 2 

Cyst 1 0 

VOCAL FOLD PALSIES 6 5 

Table 6.4 Laryngeal disorders diagnosed in the large pathological training and 

test data sets. 
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6.4 SIMULATIONS 

6.4.1 No Hidden Units 

Much of the literature detailing the application of Boltzmann Machines and other 

networks with hidden units describes results obtained using large numbers of 

hidden units. In many instances, the use of hidden units is justified in terms of 

providing specific feature detectors or in aiding generalisation. The performance 

of these networks with no hidden units is not dealt with. To provide a baseline 

measure with which to compare the performance for various topologies of 

network using the Boltzmann Machine learning algorithm a number of 

experiments were carried out using no hidden units. These were performed with 

the simulator by making the update rule deterministic rather than stochastic. This 

was achieved by setting the temperature parameter to zero. As no annealing is 

required, due to this type of network having a concave energy space, the length 

of the annealing schedule was set to unity, to allow a single update per learning 

cycle. Statistics were collected for one unit of time and the simulator was operated 

in the synchronous mode. The simulator is thus allowing Hebbian learning to be 

performed on the network. The weights were updated according to the scheme 

detailed in Equation 4.7. Thus, the weights were changed by a fixed step which 

decreased in magnitude as a function of the mean error as the network 

converged. The weight polarity is determined by the sign of the difference 

between the probability that a pair of units is on together in the clamping and free 

phases. 

Two baseline networks with no hidden units were initially investigated. The first 

network had 60 input units each connected to 2 output units for use with 6-bit 

quantised data, and the other comprised 120 input units and 2 output units. In 

each case the two output units were not connected together. The two required 

output classes were coded so that one unit on represented control speakers, 

and the other unit on would represent pathological speakers. A single output 

could have been used instead, but using the two output units in this way meant 

that the learning problem presented to the simulator was in fact equivalent to 
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two networks, with 60/120 input units and one output unit each. Thus two 

networks were being trained with the weights learned in each being virtually 

identical except that in one, connections to features indicative of pathological 

voices have positive value weights, whereas in the other, connections indicative 

of pathological voices have negative value weights. 

For each of the two sizes of network, experiments were initially conducted using 

both the training and test sets of data to train the networks with all 10 parameters. 

Experiments were then conducted using the small and large training sets for 

these networks, again using all 10 parameters. Noisy clamping of the training 

data was also investigated, whereby the quantisation level for each parameter 

was perturbed up or down by one level with a 5%, 10%, 15% or 20% probability. 

6.4.2 Hidden Units 

To investigate the effect of hidden units experiments were conducted using 

networks comprising 2, 4 and 8 hidden units, 60/120 input units and 2 output 

units. The architecture of these networks was constrained so that there were no 

direct connections from the input units to the output units, and also no 

connections between the hidden units. The objectives of these experiments was 

to examine the feature detectors formed using hidden units and to compare 

generalisation results with those of the baseline networks. The topological 

variations possible with the simulator for networks containing hidden units and 

one receptive field are detailed in Section 4.4.2 

For each of the two networks, experiments were conducted using all the 

parameters from the large training set. Experiments were also conducted, again 

using all 10 parameters, whereby the data for each parameter was perturbed up 

or down the scale by 1-bit with a 5%, 10%, 15% or 20% probability. 

During the training procedure, all the networks were annealed using a logarithmic 

schedule based on a starting temperature of three times the mean hidden unit 

energy. The end temperature was approximately one third of the starting 

-189- 



temperature. Co-occurrence statistics were collected for between 6 and 40 units 

of time depending on the mean output error of the networks, (see section 4.4.7). 

The weights were adapted according to the scheme of Equation 4.7. 

6.4.3 Intonation, Jitter and Shimmer Receptive Field Networks 

To determine the effect of restricting network connectivity so that each hidden 

unit covers only a small region of the input units, the input array was divided into 

three regions. These three regions were made to correspond to parameters of 

intonation, jitter and shimmer. Each of the hidden units was connected to either 

the frequency, jitter or shimmer parameter data present at the input units. To 

permit the detection of multiple features for each set of parameters, the network 

had up to 2 hidden units allowed per receptive field. No connections were allowed 

between the hidden units, and the two output units were connected to each other 

and to the hidden units. There were no connections between the input units and 

the output units. An example of this type of structure is given in Figure 4.5. 

For each of the networks the large training set was used, with bit perturbation 

also applied. A similar training schedule was used to that described for the 

previous section. 

6.4.4 Intonation and Perturbation Parameter Receptive Field 

Networks 

To determine the effect of using a receptive field for each of the 10 intonation and 

perturbation parameters, a small receptive field network was simulated which 

had each hidden unit connected to one of these parameters at the input units. 

To permit the detection of multiple features in each set of parameters up to two 

hidden units connected to each of the ten receptive fields. No connections were 

allowed between hidden units, and the two output units were connected to each 

other and the hidden units. There were also no connections between the input 

units and the output units. An example of this type of structure is given in Figure 
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4.6. An annealing schedule similar to that described for the previous section was 

implemented for networks trained on the large training set of 39 control and 28 

pathological speakers. 

6.4.5 Selected Parameter Networks 

Results from experiments undertaken by Layer, Hiller, Mackenzie & Rooney 

(1986) and Beck (1988) have suggested that there is a degree of redundant 

information in the 10 parameters. Despite these indications, no optimal parameter 

set has been presented due essentially to the small data set available. Although 

it was not feasible to attempt the selection of an optimal parameter set, it was 

decided to investigate the performance of networks with subgroups of 

parameters selected from observations of weight maps produced by networks 

without hidden units. Experiments were conducted for networks with and without 

hidden units, for a number of parameter subsets. Each of these subsets was 

comprised of four parameters. The parameters within each of the four subsets 

in the networks are shown in Table 6.5. 

SET  SET  SET  SET  

F0-AV (1) F0-AV (1) F0-AV (1) F0-AV (1) 

J-DPF (6) J-RATEX (5) J-AVEX (4) J-AVEX (4) 

S-AVEX (8) S-AVEX (8) S-AVEX (8) S-RATEX (9) 

S-DPF (10) 1 	S-DPF (10) 1 	S-DPF (10) S-DPF (10) 

Table 6.5 Parameter subsets 

The parameters were selected following observations of a number of weight maps 

for networks without hidden units. From these it was not possible to determine 

an optimum parameter set, but those parameters that had strong connections 

over the range of the parameter were interpreted as being more useful than those 

which only utilised a small number of the parameter units. The validity of this 

approach rests on the assumption that the weights have not become very large 

I 
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as a way of improving the performance of patterns already learned, but have 

been kept suitably small to allow equilibrium to be reached. Although no tests of 

this assumption were made it appears to a certain extent to be verified in the 

results from Sections 6.5.1 and 6.5.2 which indicate the presence of higher than 

normal levels of perturbation for pathological speakers. 

For all the networks simulated, training was performed with the 39 control and 

28 pathology speaker training set. With quantisation to six levels it was found for 

each of the four sub-sets that each pathological pattern was different from the 

control patterns. However, for sets 2 and 4 eighteen of the 39 control training 

speaker patterns were identical and for sets 1 and 3 fifteen of the 39 control 

speaker patterns were identical. As discussed in Section 6.2 uniqueness is not 

important in discriminating between the control and pathology group. However, 

the fact that the number of different control patterns presented to the selected 

parameter networks was different from the number obtained with all ten 

parameters, means that direct comparisons cannot be made between these 

experiments. 

Initially, networks with no hidden units, two output units and 24/48 input units 

were trained using all of the three dataformats. Experiments were also conducted 

using networks with 24 input units and 2 hidden units. These networks had 

connections between their input and output units, and each hidden unit was also 

connected to each input unit and to each output unit. No connections between 

hidden units and no connections between output units were allowed. 

6.5 RESULTS 

6.5.1 No Hidden Units 

Using all the patterns from the training and testing sets to train the 60 and 120 

input unit networks it was found that with 6 quantisation levels it was not possible 

for the network to correctly learn all the patterns. The dot format data allowed 
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the network to correctly learn 88.5% of the patterns, wheres the slide format 

allowed 54.9% and the bar format 60.3% of patterns to be correctly learned. With 

12 quantisation levels the networks were able to correctly learn all of the patterns. 

Various sizes of network using different numbers of coefficients for each 

perturbation parameter were then trained with both the training and test tokens. 

The objective of this experiment was to determine approximately what the storage 

capacity of this net was using all of the control and pathological subjects data 

available, and thus approximately how much information could be encoded by 

each weight using this data. 

Using the dot data format it was possible to store 131 patterns using 80 weights 

(i.e. 8 coefficients per parameter). This corresponds to approximately to 1.6 bits 

of information per weight. For the slide representation 9 coefficients per 

parameter (90 weights) were required giving approximately 1.5-bits per weight. 

For the bar format 10 coefficients per parameter (100 weights) were required 

giving approximately 1.3-bits per weight. 

Both the slide and bar representations of the training data were too coarse to 

allow the network to correctly distinguish between the two groups when the 

resolution was down to 8 levels or less per parameter. At 9 levels the slide 

representation was able provide 100% classification, but the bar representation 

required 10 levels before the same performance could be achieved. The degree 

of overlap for patterns is greater for the slide format than the dot format, and 

greater still for the bar format than the dot and slide formats. This overlap can be 

resolved by increasing the resolution of the parameters and thus increasing the 

number of input units. 

It is expected that there is a degree of correlation between patterns within each 

of the control or pathological classes, and thus the number of bits stored per 

weight is probably higher than one would expect for an orthogonal data set. Lang, 

Waibel & Hinton (1990) mentions that as a rule of thumb for backpropagation 
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networks (according to Carnegie-Mellon University folklore) each weight is 

comfortably able to store approximately 1.5-bits of information. This appears to 

be broadly similar to the results obtained in these experiments. 

The pattern of weights learned provides some indication as to which intonation 

and perturbation parameters are being used in differentiating between the control 

and pathological speakers. 

Figures 6.1 to 63 depict maps of  the weights :earned for networks with 12 

quantisation levels per parameter and one output unit. The training data 

comprised the total 131 patterns in the dot, slide and bar formats. A positive 

weight is represented by a black square within the grids and causes the output 

unit attached to it to become activated when a 1 is present in the component of 

the input pattern to which the weight is connected. A negative weight is 

represented by a white square within the network grids and is inhibitory. This 

causes the output unit to become deactivated when a 1 is present in the 

corresponding component of the input pattern. A zero weight is represented by 

a blank unit square within the grid causing the output unit to ignore the contents 

of the corresponding component of the input pattern. 

The left hand map displays the weights learned when the state of 1 at the output 

determines a member of the pathological class. Thus the positive weights (in 

black) represent connections made to those features which allow the network to 

identify pathological speakers. The right hand map indicates the weights learned 

when a state of 0 at the output unit determines a member of the pathological 

class. Thus the negative weights (in black outline) represent connections made 

to those features which allow the network to identify pathological speakers. As 

would be expected the left-hand map values are an almost exact inverse of the 

right-hand map values. 

Each column in the input array represents one of the parameters labelled 1 to 10 

(see Table 6.1). The quantisation levels are stacked in the column with lowest 

values at the base of the column, and highest values at the top of the column. In 

Figures 6.1 to 6.3 a 5% threshold of the maximum absolute weight value has 
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Figure 6.1 Weights learned by single-layer network. Learning data comprised 

all 131 control and pathological subject patterns in the dot format, with 12 

quantisation levels per parameter. 
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been applied to remove very small weights from the maps. These weights will 

only have a nominal effect on the networks ability to distinguish between the two 

groups by only contributing very low levels of activation to the output units. 

Figures 6.1 and 6.2 provide a clear indication that some pathological individuals 

were distinguished from the control group by virtue of having lower than normal 

levels of perturbation. This is particularly reflected in parameters 3 (J-DEVEX), 4 

(J-AVEX) and 9 (S-RATEX). To a lesser extent parameters 5 (J-RATEX), 7 

(S-DEVEX) and 8 (S-AVEX) also indicate use of lower than normal levels of 

perturbation. The number of large positive weights in the top four quantisation 

level positions of the left-hand side map indicates (for the perturbation 

parameters) that higher levels of perturbation play a significant role in identifying 

pathological speakers. For parameters 3 (J-DEVEX) and 8 (S-AVEX) there is an 

indication that relatively large levels of perturbation are present for speakers within 

the control group. This implies that either the control group may in fact contain 

speakers with laryngeal disorders, or that healthy speakers have high values of 

J-DEVEX and S-AVEX. Indeed, it is known that some of the control speakers 

were later diagnosed as pathological. Unfortunately, this happened well after the 

end of the data collection exercise and a detailed follow-up was never made 

possible. 

The positive weights in the right-hand maps indicate positive connections made 

when an output of 1 represents the control group. The weights learned identifying 

the control speakers indicate that for control speakers, parameter 10 (S-DPF) 

and 6 (J-DPF) are lower than for the pathological speakers. Strong connections 

are also made to perturbation parameters 7 (S-DEVEX), 8 (S-AVEX) and 10 

(S-DPF). 

Most of the lesions in the pathological group involve some degree of mass 

increase, which would be expected to lower the F0-AV. However, the weight 

values for the intonational parameters indicate that F0-AV is higher than normal 
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in the pathological group. This suggests that many of the disorders involve an 

increase in stiffness, which might balance the mechanical consequences of mass 

increase. 

Figure 6.2 depicts the weights learned using the training data in the slide format. 

At the 5% threshold level fewer weights appear to be used than with the network 

trained using data in the dot format. The use of the slide code means that the 

data presented to the network has a higher degree of overlap than for the data 

in the dot format. The number of iterations to convergence for the slide method 

was between about 5 and 10 times greater (depending on the number of 

quantisation levels for the parameters) than that for data in the dot representation. 
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Figure 6.2 Weights learned by single-layer network. Learning data comprised 

all 131 control and pathological subject patterns in the slide format, with 12 

quantisation levels per parameter. 
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Figure 6.3 Weights learned by single-layer network. Learning data comprised 

all 131 control and pathological subject patterns in the bar format, with 12 

quantisation levels per parameter. 
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Figure 6.3 depicts the weights learned with the data in the bar format. With this 

representation it appears that the presence of perturbation parameter values 

lower than normal are not being used in determining which group a speaker 

belongs to. An explanation for this is that different features in the training set are 

being used to discriminate between the two groups, and that with the bar 

representation, because the presence of a 1 in the training pattern at the lower 

quantisation values is highly likely due to the large degree of overlap, it is not 

possible for the network to utilise the occasional absence of l's from the 

corresponding training pattern. Learning time for the bar method was between 

about 15 and 25 times longer (depending on resolution) than that for data in the 

dot format. 

Ignoring the lower four quantisation levels, parameters with weight patterns 

differing substantially from the dot and slide representation models are 3 

(J-DEVEX), 4 (J-AVEX) and 7 (S-DEVEX). The bar format does however confirms 

that pathological voices have relatively high levels of perturbation and intonational 

parameters. 

Using the training data comprising of 39 control speakers and 28 pathological 

speakers it was possible for a simple network using a resolution of 6 quantisation 

levels for each of the ten parameters to correctly learn all the training patterns. 

In addition, networks were trained using noisy data. This was obtained by 

perturbing each parameter value up or down one quantisation level with a 

probability of 5%, 10%, 15% or 20%. There was a 50% probability that the move 

would be up one level. Overall, the best generalisation with the test data set of 

39 controls and 25 pathological voices for the dot format was 89.7% of control 

speakers correctly classified as control speakers and 68.0% of pathological 

speakers correctly classified as pathological speakers. The network trained using 

data in the slide format gave no improvement with results at 87.2% and 68.0% 

respectively. The bar format however gave much better results for the 

pathological group with 84.0% correctly classified, and 84.6% for control 
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speakers correctly classified. The results at different noise levels varied 

substantially, and it was not always possible for the networks to correctly identify 

the base training patterns. 

For parameters coded to just 6 levels, a perturbation of one level in either direction 

presents a relatively crude change in pattern. The number of controls correctly 

classified as controls decreased slightly as noise levels increase for the dot 

format. The number of controls classified as pathologicals increases slightly for 

the dot, slide and bar format from the results with no noise. Indeed the changes 

in classification results for the dot format were much smoother than those for the 

slide and bar formats. This is because there is greater pattern overlap for slide 

and bar formats. 

The results for the networks trained with parameter data for the 39 control and 

28 pathological quantised to 12-bits are shown in graphical form in Figures 6.4 

to 6.6. The x-axis represents the percentage probability that a parameter has its 

value perturbed up or down by one quantisation level. The y-axis indicates the 

percentage of pathology subjects classified as (1) pathological; (2) controls, and 

the percentage of control patterns classified as (3) controls and (4) pathological. 

In an ideal classification system curves (1) and (3) would be horizontal lines at 

100% and curves (2) and (4) would be horizontal lines at 0%. Thus, the closer 

curves (1) and (3) are to the 100% level and curves (2) and (4) are to the 0% level 

the better the system is performing. Figure 6.4 presents the results for the dot 

format with 12 quantisation levels per parameter. 
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Figure 6.4 Results at various noise levels for 64 test patterns (dot format). 

Network trained with 67 patterns in dot format and 12 quantisation levels. 
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Figure 6.5 Results at various noise levels for 64 test patterns (slide format). 

Network trained with 67 patterns in slide format and 12 quantisation levels. 
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Figure 6.6 Results at various noise levels for 64 test patterns (bar format). 

Network trained with 67 patterns in bar format and 12 quantisation levels. 
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The level perturbed during noisy clamping with 12 quantisation levels is half that 

for each network in the experiments with 6 quantisation levels for each parameter. 

There are also twice as many weights. For the networks trained using the dot 

and slide formats the correct classification of controls and pathologicals remains 

very similar as the noise levels are increased. However, the miss-classifications 

are reduced as the noise is increased. It should be noted that the noise referred 

to here is the probability of perturbing the quantisation level for each parameter 

by one level, and does not reflect the addition of noise to the patterns by changing 

the state of randomly selected inputs to the network. The noise approach used 

here, appears to expand the training pattern set, by using the original patterns 

as the basis for perturbation of the parameter quantisation levels and thus 

increases the models ability to generalise (Elman & Zipser 1987). 

For both the slide and dot format, the level of correct classification for 

pathologicals never reaches the levels achieved for the controls. However, with 

the bar format similar levels of correct classification for both controls and 

pathological subjects is achieved from a 5% probability of perturbing each 

parameter by one level. 

In addition, for the dot and slide format the number of pathological subjects 

incorrectly classified as controls never achieves the same level as for the number 

of control subjects incorrectly classified as pathologicals. However, using the bar 

format, it was possible to achieve similar levels after training with 5% to 20% 

probability of perturbing a parameter by one level. Between the dot, slide and 

bar formats, the levels for control subjects correctly identified as controls and for 

control subjects incorrectly identified as pathologicals remain very similar indeed. 

The best generalisation with the test data set of 39 controls and 25 pathological 

voices for the dot format was 79.5% of control speakers correctly classified as 

control speakers and 68.0% of pathological speakers correctly classified as 

pathological speakers. However, random selection would give 50% correct 

classification. Thus a result of 68.0% classification is very close to random, and 

hence would not be of any practical use in a screening system. The network 
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trained using data in the slide format gave results of 84.6% and 64.0% 

respectively. The bar format however gave much better results for the 

pathological group with 88.0% correctly classified, and 84.6% for control 

speakers correctly classified. 

Figures 6.7 to 6.9 depicts the weights learned by these networks for the different 

data formats at 12 quantisation levels. No noisy clamping was used in training 

for the networks shown. 
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Figure 6.7 Weights learned by network with no hidden units. Training data 

comprised 67 pattern set in the dot format, with 12 quantisation levels per 

parameter. 
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Figure 6.8 Weights learned by network with no hidden units. Training data 

comprised 67 pattern set in the slide format, with 12 quantisation levels per 

parameter. 
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Figure 6.9 Weights learned by network with no hidden units. Training data 

comprised 67 pattern set in the bar format, with 12 quantisation levels per 

parameter. 
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The weights learned are obviously similar to those learned using all the 131 

patterns discussed earlier. Of interest here is the reduced use of lower than normal 

values of perturbation parameters. This suggests that the test data set may 

contain speakers where lower than normal perturbation values are present. 

Again, the weight maps for the networks trained using data in the bar format are 

characterised by not using the lower four quantisation levels (except for 

S-DEVEX). 

The networks were also trained using the training set of 10 control speakers and 

10 pathological speakers with requisite resolutions of 6 and 12 quantisation levels 

for each of the ten parameters. The testing set data comprised 68 control 

speakers and 43 pathological speakers. For the networks with 60 input units 

trained with data in the dot format the best generalisation was 86.8% of controls 

correctly classified, and 74.4% of pathologicals correctly classified. 

Corresponding figures for the slide format are 91.2% and 68.6%, and for the bar 

format 91.9% and 74.4%. 

For networks with 120 input units the result are as follows. Training with the data 

in dot format gives 80.9% controls classified correctly and 70.9% pathologicals 

classified correctly. Corresponding figures for the slide format are 90.4% and 

74.4%, and for the bar format 90.4% and 66.3%. The weights learned by the 

networks for the three data formats are depicted in Figures 6.10 to 6.12. The 

weights are shown after training with no noisy clamping. 

The weight map for the network trained with data in the dotformat is characterised 

by the vast majority of weights having very similar values. This indicates that there 

has been very little overlap between the training patterns. The same is evident, 

although to a lesser extent for the slide format and also the bar format. Despite 

very few training patterns being used the generalisation results are similar to 

those obtained for the larger training set. This would seem to imply that there is 

a high degree of correlation between patterns of the same class. 
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The networks trained on data with 12 quantisation levels per parameter generally 

did not perform as well in generalising to the test data as networks trained using 

data with 6 quantisation levels per parameter. This would imply that for this data 

set single-layer networks were not able to develop suitable feature detectors to 

take advantage of the finer data resolution. Additionally, in these experiments the 

120 input networks have more degrees of freedom than the 60 input networks 

and thus a larger search space. 
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Figure 6.10 Weights learned by network with no hidden units. Training data 

comprised 20 pattern set in the dot format, with 12 quantisation levels per 

parameter. 
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Figure 6.11 Weights learned by network with no hidden units. Training data 

comprised 20 pattern set in the slide format, with 12 quantisation levels per 

parameter. 
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Figure 6.12 Weights learned by network with no hidden units. Training data 

comprised 20 pattern set in the bar format, with 12 quantisation levels per 

parameter. 
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6.5.2 Hidden Units 

The results for experiments using networks with no connections between the 

input and output units and between 2, 4, and 8 hidden units are as follows for 

various levels of noise. 

For networks trained with data in the dot format, with 6 quantisation levels per 

parameter, the generalisation results obtained are shown in Table 6.6. 

Hidden 

Units 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

2 92.3% 7.7% 36.0% 64.0% 

4 89.7% 10.3% 30.0% 70.0% 

8 87.2% 12.8% 40.0% 60.0% 

Table 6.6 Generalisation results for networks with hidden units trained with 

data in the dot format, with 6 quantisation levels per parameter. 

For networks trained with data in the slide format, with 6 quantisation levels per 

parameter, the generalisation results obtained are shown in Table 6.7. 

Hidden 

Units 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

2 85.9% 14.1% 28.0% 72.0% 

4 87.2% 12.8% 24.0% 76.0% 

8 84.6% 15.4% 28.0% 72.0% 

Table 6.7 Generalisation results for networks with hidden units trained with 

data in the slide format, with 6 quantisation levels per parameter. 
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For networks trained with data in the bar format, with 6 quantisation levels per 

parameter, the generalisation results obtained are shown in Table 6.8. 

Hidden 

Units 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

2 89.7% 10.3% 32.0% 68.0% 

4 85.9% 14.1% 22.0% 78.0% 

8 92.3% 7.7% 40.0% 60.0% 

Table 6.8 Generalisation results for networks with hidden units trained with 

data in the bar format, with 6 quantisation levels per parameter. 

The results indicate that the networks trained with the various: formats with data 

transformed to 6 quantisation levels can perform slightly better in correctly 

identifying control speakers than those without hidden units. However, this is 

usually at the expense of degraded performance in correctly identifying the 

pathological subjects. 

For networks trained with data in the dot format, with 12 quantisation levels per 

parameter, the generalisation results obtained are shown in Table 6.9. 

# Hidden 

Units 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

2 84.6% 15.5% 32.0% 68.0% 

4 83.3% 16.6% 18.0% 82.0% 

8 89.7% 10.3% 44.0% 56.0% 

Table 6.9 Generalisation results for networks with hidden units trained with 

data in the dot format, with 12 quantisation levels per parameter. 
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For networks trained with data in the slide format, with 12 quantisation levels per 

parameter, the generalisation results obtained are shown in Table 6.10. 

# Hidden 

Units 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

2 89.7% 10.3% 20.0% 80.0% 

4 84.6% 15.4% 24.0% 76.0% 

8 84.6% 15.4% 24.0% 76.0% 

Table 6.10 Generalisation results for networks with hidden units trained with 

data in the slide format, with 12 quantisation levels per parameter. 

For networks trained with data in the bar format, with 12 quantisation levels per 

parameter, the generalisation results obtained are shown in Table 6.11. 

# Hidden 

Units 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

2 89.7% 10.3% 8.0% 88.0% 

4 89.7% 10.3% 18.0% 82.0% 

8 87.2% 12.8% 20.0% 80.0% 

Table 6.11 Generalisation results for networks with hidden units trained with 

data in the bar format, with 12 quantisation levels per parameter. 

The results indicate that the networks trained with the various formats with data 

transformed to 12 quantisation levels are capable of achieving better performance 

in correct identification of pathological voices than networks trained with data 

transformed to 6 quantisation levels, with generally only a slight degradation in 

performance for the control speakers. However, for networks with no hidden 
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units, there is little difference in performance for pathological classification using 

either 6 or 12 quantisation levels. But at the same time, the control speaker 

classification performance was generally better by using only 6 quantisation levels 

rather than 12. This suggests that the hidden units may be developing feature 

detectors for pathology classification, and to a limited extent for control 

classification, where higher parameter resolution is required to enable the 

features to be adequately distinguished. For the single-layer networks, the higher 

degree of overlap between patterns at the lower resolution level rather than the 

higher resolution level may have allowed the network to learn a coarse 

representation of the control data, which then gave better results on the control 

test data set due to its greater homogeneity. 

The effect of training using the noisy clamping scheme may be seen for networks 

trained with data in the bar format in Figures 6.13 to 6.15. The effect for the other 

two data formats is similar in that all of the various classification values (1) to (4) 

tended to be relatively smooth. This would appear to indicate that networks with 

hidden units had better ability in capturing the underlying features in the training 

data used. 
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Figure 6.13 Results at various noise levels for 120 input unit network and 2 

hidden units trained with 67 patterns in bar format. 
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Figure 6.14 Results at various noise levels for 120 input unit network and 4 

hidden units trained with 67 patterns in bar format. 
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Figure 6.15 Results at various noise levels for 120 input unit network and 8 

hidden units trained with 67 patterns in bar format. 

-221- 



The networks trained with the bar format tended to perform better with 12 

quantisation levels than the other formats. Examples of weights learned by some 

of these networks using the data in bar format and noisy clamping turned off, are 

shown in Figures 6.16 to 6.18. Figure 6.16 indicates the weights learned using a 

network with two hidden units. One would expect that only one hidden unit would 

be used, as experiments in the previous section have shown that a 120 input unit 

and one output unit network can learn to differentiate between the two training 

classes. However, a number of small connections have been formed that use 

the second hidden unit. 

The weights learned between the output units are shown at the bottom of the 

map. This indicates that there are weights with negative values connecting the 

two units. Thus each output unit acts to inhibit the other. When the leftmost hidden 

unit is on it indicates a control speaker. Positive weights from the input array to 

ensure that this hidden unit comes on when a control speaker is presented to 

the network may be seen for parameters 2 (170-DEV), 3 (J-DEVEX), 4 (J-AVEX) 

and 8 (S-AVEX). The presence of a pathological speaker causes the leftmost 

hidden unit to be inhibited, so preventing the control output unit from coming on. 

To prevent the hidden unit from turning on, there are strong negative weights for 

areas of the followings parameters 1 (F0-AV), 2 (F0-DEV), 5 (J-RATEX), 6 (J-DPF), 

7 (S-DEVEX), 9 (S-RATEX) and 10 (S-DPF). In addition, a number of small positive 

weights have been formed between the second hidden unit and the input units. 

These connections are for parameters 1 (F0-AV), 2 (F0.DEV), 3 (J-DEVEX) and 

7 (S-DEVEX). Some of the weights developed between the hidden units and input 

units bear a resemblance to those learned by the network with no hidden units 

(see Figure 6.9) for some of the parameters 7 (S-DEVEX) and 10 (S-DPF). The 

network with hidden units makes more use of the lower quantisation levels than 

the network without hidden units. However, the hidden unit network has more 

than twice the weights that were used in the network with no hidden units. 
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Figure 6.16 Weights learned using training data in bar format and network with 

2 hidden units. 
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Figure 6.17 Weights learned using training data in bar format and network with 

4 hidden units. 
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Figure 6.17 depicts the weights learned for a network with 4 hidden units. In this 

case each hidden unit makes use of similar numbers of connections to the input 

units as judged at the 5% weight threshold level indicated. The leftmost hidden 

unit is referred to as hidden unit 1 and the rightmost as hidden unit 4. It may be 

seen that positive value weights connected to hidden unit 4 are used in detecting 

pathological subjects, whereas positive value weights to the remaining hidden 

units are used in detecting control subjects. 

Conversely, it may also be seen that negative value weights connected to hidden 

unit 4 are used in detecting control subjects, whereas negative value weights to 

the remaining hidden units are used in detecting pathological subjects. It may be 

seen that the positive weights connecting the input units to the third hidden unit 

are similar to those learned in the two hidden unit network in Figure 6.16 

connecting the input units to the first hidden unit. Again, with the four hidden unit 

network, more use of the lower levels of intonation and perturbation parameters 

is made compared to those weights developed by the network with no hidden 

units (Figure 6.9). 
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Figure 6.18a Weights learned using training data in bar format and 8 hidden 

units (weights to first four hidden units shown). 
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Figure 6.18b Weights learned using training data in bar format and 8 hidden 

units (weights to last four hidden units shown). 
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Figure 6.18a and 6.18b depict the weights learned for the network with 8 hidden 

units. Each hidden unit maybe seen to have made connections to the input units. 

In this case, connections utilising the lowest quantisation levels have been used 

by a number of the hidden units. 

6.5.3 Intonation, Shimmer and Jitter Receptive Fields 

Using the dot format and three receptive fields, one for the two intonational 

parameters, one for the four jitter parameters and one for the remaining four 

shimmer parameters, it was found that using 12 quantisation levels the 

generalisation results shown in Table 6.12 were obtained. 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 79.5% 20.5% 44.0% 56.0% 

slide 79.5% 19.2% 24.0% 76.0% 

bar 85.9% 14.1% 28.0% 72.0% 

Table 6.12 Generalisation results for networks with one hidden unit per 

intonation, shimmer and jitter receptive fields, trained with data in the three 

formats and 12 quantisation levels per parameter. 

It was not possible for the training set to be correctly learned within the 500 

learning cycles allowed for this type of network. On average 93.8% of the control 

patterns were correctly learned for data in the dot, slide and bar formats. For the 

pathological patterns the average was 89.6%. Incorporating an additional hidden 

unit per restricted field yielded no overall improvements in learning or 

generalisation. 

Examples of the weights learned for the different formats are shown in Figures 

6.19 to 6.21. 
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Figure 6.19 Weights learned using training data in dot format with 12 

quantisation levels per parameter. Network has one hidden unit for each of the 

intonation, jitter and shimmer receptive fields. 

-229- 



0000009009  
EEEE 

1E1Eirnrn OOOOODOEEE  
0000000000  

OOOEEEOOOO 000000MENCilff  
EEEEE 

0000=0000 ED 
EEELEE 
rnurnrnrn 
ODEE090000 0000000EIEN 
000FE000000 EDEEEEU 
EEE 

DEDOODOODD 
nrnrnrn 

icirnai 
EEEEDEE 

rnrnrnrnrn 
rnrnrnrnrn 
irnrnnrn 
irnrnrnrn 

mE 
U0 
	

No 
	

•IEi 

- 2O 	 • • 

Ell 	 D Ff 

Figure 6.20 Weights learned using training data in slide format and 12 

quantisation levels per parameter. Network has one hidden unit for each of the 

intonation, jitter and shimmer receptive fields. 
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Figure 6.21 Weights learned using training data in bar format and 12 

quantisation levels per parameter. Network has one hidden unit for each of the 

intonation, jitter and shimmer receptive fields. 
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Figures 6.19 depicts an example of weights learned using the dot data format. 

The positive weights in each receptive field indicate connections made for 

determining control subjects. The pathological group output unit has a large 

positive bias value. The negative value weight throughout the input fields indicate 

parameters used in determining the pathological group. Presentation of a subject 

from the pathology group (if identified correctly) results in all the hidden units 

being off. The bias value for the control output unit is negative and ensures that 

it is off when there is no input to it from the hidden units. The large positive bias 

value for the pathological group output unit results in this unit coming on when 

there is no input to it from the hidden units. 

Figure 6.20 depicts an example of weights learned using the slide data format. 

The positive value weights in the intonation and jitter receptive fields (parameters 

1 to 6) are used in identifying pathological speakers. The negative value weights 

are used to identify the control speakers. In the shimmer receptive field negative 

weights are used to identify pathological speakers, and positive value weights 

the control speakers. 

Figure 6.21 depicts an example of weights learned using the bar data format. The 

positive value weights in the intonation receptive field (parameters 1 and 2) are 

used in identifying pathological speakers. The negative value weights are used 

to identify the control speakers. In the jitter and shimmer receptive fields negative 

weights are used to identify pathological speakers, and positive value weights 

the control speakers. 

The number of weights in the networks with one hidden unit per receptive field 

is very similar to the number of weights used in a 120 input unit single layer 

network. Results for the receptive field network are not as good as those for the 

single-layer nets. It should be noted that none of the receptive field networks 

simulated were able to correctly learn all of the training data. This would imply 

that the receptive field restrictions did not allow the networks to develop a good 

set of feature detectors. 
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6.5.4 Intonation and Perturbation Parameter Receptive Fields 

Using 10 receptive fields, the results obtained for one hidden unit per field are 

displayed in Table 6.13. A maximum of 500 learning cycles was allowed for each 

of the network. For the dot format 82.1% of controls and 73.2% of pathological 

voices were correctly learned. Using the slide format, 88.5% controls and 75.0% 

of pathological voices were correctly learned. With the bar format, 84.6% control 

and 78.6% of pathological voices were correctly learned. 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 75.6% 24.4% 48.0% 52.0% 

slide 79.5% 20.5% 40.0% 60.0% 

bar 71.8% 28.2% 40.0% 60.0% 

Table 6.13 Results for 10 receptive field networks with one hidden unit per 

receptive field. Training data was quantised to 12 levels. 

For networks with two hidden units per receptive field the results shown in Table 

6.14 were obtained. For the dot format 73.1% of controls and 55.4% of 

pathological voices were correctly learned. Using the slide format, 88.5% controls 

and 83.9% of pathological voices were correctly learned. With the bar format, 

96.2% control and 69.6% of pathological voices were correctly learned. 

Figures 6.22a and 6.22b depict an example of the weights learned for this type 

of network with training data in the slide format. 
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Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 61.5% 38.5% 58.0% 42.0% 

slide 65.4% 34.6% 24.0% 76.0% 

bar 73.1% 26.9% 36.0% 64.0% 

Table 6.14 Results for 10 receptive field networks with two hidden unit per 

receptive field. Training data was quantised to 12 levels. 
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Figure 6.22a Weights learned using training data in slide format and a 

restricted receptive field for each parameter (connections to hidden units 1 to 6 

shown) 
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The results are poor for this type of network connectivity, being comparable with 

being random. For all the networks considered in this topology and for all the 

data formats, it was not possible to learn all the training patterns. This would 

obviously have a detrimental affect on the classification of patterns from the 

testing data set. The use of two hidden units rather than one for each parameter 

did not generally result in any real improvements. The use of the restricted 

receptive fields appears to make the learning problem harder here. It is also 

possible that some of the weights may have become too large, thus preventing 

the network from reaching equilibrium and allow the network to develop good 

feature detectors with this training data. 
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Figure 6.22b Weights learned using training data in slide format and a 

restricted receptive field for each parameter (connections to hidden units 7 to 

10 shown) 
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6.5.5 Selected Parameter Networks 

All networks with 48 input units and one output unit trained with data in the dot 

and slide format were able to correctly learn all the training data. However, using 

the bar format none of the networks were able to learn all of the training set. The 

average percentage of patterns learned was 59.7%. 

Generalisation results are shown in Tables 6.15 to 6.18 for data presented to the 

networks in the dot and slide formats. 

Set 1 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 87.2% 10.3% 50.0% 50.0% 

slide 89.7% 10.3% 40.0% 60.0% 

Table 6.15 Results for single-layer network trained using parameters from 

subset 1 with 12 quantisation levels per parameter. 

Set 2 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 74.3% 25.6% 32.0% 56.0% 

slide 84.6% 10.3% 28.0% 56.0% 

Table 6.16 Results for single-layer network trained using parameters from 

subset 2 with 12 quantisation levels per parameter. 
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Set 3 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 79.5% 17.9% 48.0% 44.0% 

slide 84.6% 10.3% 24.0% 56.0% 

Table 6.17 Results for single-layer network trained using parameters from 

subset 3 with 12 quantisation levels per parameter. 

Set 4 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 76.9% 17.9% 36.0% 44.0% 

slide 87.2% 5.1% 32.0% 60.0% 

Table 6.18 Results for single-layer network trained using parameters from 

subset 4 with 12 quantisation levels per parameter. 

The results are characterised by poor recognition of pathological speakers for 

all the subset groups. 

Figure 6.23 to 6.26 depict examples of the weights learned for 48 input unit and 

single output unit networks with the different parameter sets for the training data. 
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Figure 6.23 Weights learned using set 1 training data in slide format for 

network with 48 input and one output unit. 
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Figure 6.24 Weights learned using set 2 training data in slide format for 

network with 48 input and one output unit. 
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Figure 6.25 Weights learned using set 3 training data in slide format for 

network with 48 input and one output unit. 
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Figure 6.26 Weights learned using set 4 training data in slide format for 

network with 48 input and one output unit. 
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The pattern of weights learned for parameters 1 (F0-AV) and 10 (S-DPF) are 

similar for each of the networks trained with one of the parameter subsets. The 

weight patterns produced using data subsets 1 and 3 are also very similar. Lower 

than normal levels of perturbation are shown for parameter 8 (S-AVEX) in 

characterising pathological speakers. 

Networks with two hidden units trained with data in the dot and slide formats, 

and 6 quantisation levels, were able to learn all of the training set patterns. The 

generalisation results obtained for each of the parameters are shown in Tables 

6.19 to 6.22. 

Set 1 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 76.9% 20.5% 32.0% 64.0% 

slide 71.8% 28.2% 32.0% 68.0% 

Table 6.19 Results for network with two hidden units trained using parameters 

from subset 1 with 6 quantisation levels per parameter. 

Set 2 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 74.4% 17.9% 24.0% 60.0% 

slide 64.1% 23.1% 24.0% 64.0% 

Table 6.20 Results for network with two hidden units trained using parameters 

from subset 2 with 6 quantisation levels per parameter. 

-244- 



Set 3 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 64.1% 15.4% 20.0% 60.0% 

slide 59.0% 15.4% 20.0% 60.0% 

Table 6.21 Results for network with two hidden units trained using parameters 

from subset 3 with 6 quantisation levels per parameter. 

Set 4 

Data 

Format 

Control subjects 

classified as: 

Pathological subjects 

classified as: 

Control Pathological Control Pathological 

dot 84.6% 10.3% 28.0% 56.0% 

slide 82.1% 10.3% 20.0% 68.0% 

Table 6.22 Results for network with two hidden units trained using parameters 

from subset 4 with 6 quantisation levels per parameter. 

The number of weights in the networks with no hidden units and 48 input units 

was 48. The total number of weights in the networks with.24 input units, 2 hidden 

units and 2 output units was 76. The results for networks with hidden units are 

better for pathological speakers than those nets with no hidden units. It appears 

that using the hidden units enables the networks to develop better feature 

detectors in this case for the pathological subjects. 

6.6 COMPARISON WITH RESULTS FROM OTHER WORK 

Results using data from the pool used for experiments described in this chapter 

have been reported by Layer, Hiller, Mackenzie & Rooney, (1986) and Beck 

(1988). The methods used include bivariate plots, linear discriminant analysis 

and maximum likelihood classification. These techniques assume that the data 
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shows a normal distribution, but given the heterogeneous composition of the 

pathological group it is likely that this assumption is seriously violated. Despite 

this, the techniques are reported to be quite robust in the face of such violations. 

The Boltzmann Machine techniques discussed do not require the data to conform 

to the above requirements. 

Beck (1988) reports 87.5% correct classifications of pathological subjects, and 

8.4% incorrect classification of pathologicals as controls using linear discriminant 

analysis. These results were obtained from within group testing. The results using 

various connectivity arrangements for Boltzmann Machines used a much smaller 

training set than the data set used by Beck (1988) in applying linear discriminant 

analysis and maximum likelihood techniques. The best results for classification 

of pathological speakers was 88.0% with 8.0% of pathological subjects classified 

as controls. This result was obtained for a network using 12 quantisation levels 

for all parameters, 120 input units and 2 hidden unit. It is likely that these figures 

would be improved using a larger training set. 

6.7 SUMMARY 

The best results obtained for networks with no hidden units were obtained using 

120 input units and one output unit. Two output units were used in the experiments 

but the resulting network was equivalent to two networks of 120 input units and 

1 output unit each. The data was presented in the bar format, with twelve 

quantisation levels for each of the ten intonation and perturbation parameters. 

The network was trained using 39 control speakers and 28 pathological 

speakers. Testing was performed using 39 control speakers and 25 pathological 

speakers. In this case 88.0% of the pathological speakers were classified as 

pathological and 12.0% classified as healthy. 84.6% of the healthy speakers were 

classified as healthy and 15.4% were classified as pathological. 

The worst results for networks with no hidden units and trained using 39 control 

speakers and 28 pathological speakers were obtained for a network with 120 

input units and 1 output unit. The data was presented in the slide format, with 
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twelve quantisation levels for each of the ten intonation and perturbation 

parameters. Testing was performed using 39 control speakers and 25 

pathological speakers. In this case 64.0% of pathological speakers were 

classified as pathological and 44.0% were classified as healthy. 84.6% of healthy 

speakers were classified as healthy and 15.4% classified as pathological. 

The single-layer networks trained on data with 12 quantisation levels per 

parameter generally did not perform as well in generaUsing to the test data as 

networks trained using data with 6 quantisation levels per parameter. This would 

imply that the larger networks were not able to make use of the finer resolution, 

and were not able to form suitable feature detectors. In these experiments the 

120 input networks have more degrees of freedom than the 60 input networks 

and thus a larger search space. 

The network topology which gave the best classification rates had 120 input units, 

2 hidden units and 2 output units. The connections were constrained so that there 

were no connections from the input units to the output units and also no 

connections between the hidden units. This required the data to be quantised to 

12 levels and be presented in the bar format. The network was trained using 39 

control speakers and 28 pathological speakers. Testing was performed using 39 

control speakers and 25 pathological speakers. This network correctly classified 

88.0% of the pathological speakers and classified only 8.0% as being healthy. A 

total of 89.7% of the healthy speakers were correctly classified as healthy, and 

10.3% classified as pathological. 

The worst results obtained for networks with hidden units excluding those with 

restricted receptive fields were obtained using a network with 120 input units, 8 

hidden units and 2 output units. The data was presented in the dot format, with 

twelve quantisation levels for each of the ten intonation and perturbation 

parameters. The network was trained using 39 control speakers and 28 

pathological speakers. Testing was performed using 39 control speakers and 25 

pathological speakers. In this case 56% of the pathological speakers were 
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classified as pathological and 44.0% classified as healthy. 89.7% of the healthy 

speakers were classified as healthy and 10.3% classified as having pathological 

voices. 

The various weight maps produced clearly indicate that higher levels of 

perturbation are associated with pathological speakers. However, some 

pathological individuals appeared to be distinguished from the control group by 

virtue of having lower than normal levels of perturbation. For parameters 

(J-DEVEX) and (S-AVEX) there is an indication that relatively large levels of 

perturbation are present for speakers within the control group. This implies that 

either the control group may in fact contain speakers with laryngeal disorders, 

or that healthy speakers have high values of J-DEVEX and S-AVEX. Because no 

laryngeal examinations were made of the speakers in the control group it is quite 

possible that some of these speakers may have had undetected laryngeal 

pathologies or functional disorders. 

Most of the lesions in the pathological group involve some degree of mass 

increase, which would be expected to lower the F0-AV parameter. However, the 

weight values for the intonational parameters indicate that F0-AV is higher than 

normal in the pathological group. This suggests that many of the disorders involve 

an increase in stiffness, which might balance the mechanical consequences of 

mass increase. 

Generally, miss-classifications are reduced by perturbing the quantisation level 

for each parameter by one level with a probability of between 5% and 20%. The 

noise approach used here, appears to expand the training pattern set, by using 

the original patterns as the basis for perturbation of the parameter quantisation 

levels by one step. It would appear that networks with hidden units had better 

ability in capturing the underlying features in the training data used when this 

noisy clamping approach was used. 

The results indicate that networks with hidden units, and one receptive field 

trained with data transformed to 12 quantisation levels for the three formats, are 

capable of achieving better performance in correct identification of pathological 
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voices than networks trained with data transformed to 6 quantisation levels. This 

does nevertheless give rise to a slight degradation in performance for the control 

speakers. However, for networks with no hidden units, there is little difference in 

performance for pathological classification using either 6 or 12 quantisation levels. 

But at the same time, the control speaker classification performance was 

generally better by using only 6 quantisation levels rather than 12. This suggests 

that the hidden units may be developing feature detectors for pathology 

classification, and to a limited extent for control classification, where higher 

parameter resolution is required to enable the features to be adequately 

distinguished. For the single-layer networks, the higher degree of overlap 

between patterns at the lower resolution level rather than the higher resolution 

level may have allowed the network to learn a coarse representation of the control 

data, which then gave better results on the control test data set due to its greater 

homogeneity. 

Networks with hidden units tended to make more use of the lower quantisation 

levels than networks without hidden units. However, the hidden unit networks 

generally have many more weights than used in the networks with no hidden 

units. 

The number of weights in the networks with one hidden unit per receptive field 

is very similar to the number of weights used in a 120 input unit single layer 

network. Results for the receptive field network are not as good as those for the 

single-layer nets. It should be noted that none of the receptive field networks 

simulated were able to correctly learn all of the training data. This would imply 

that the receptive field restrictions did not allow the networks to develop a good 

set of feature detectors. 

The results are poor for the restricted receptive field type of network connectivity, 

being comparable with being random selections. For all the networks considered 

in this topology and for all the data formats, it was not possible to learn all the 

training patterns. This would obviously have a detrimental affect on the 

classification of patterns from the testing data set. The use of two hidden units 
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rather than one for each parameter did not generally result in any real 

improvements. The use of the restricted receptive fields appears to make the 

learning problem harder here. It is also possible that some of the weights may 

have become too large, thus preventing the network from reaching equilibrium 

and allow the network to develop good feature detectors with this training data. 

Networks trained using four selected parameters performed only marginally 

better (some were worse) than random for the detection of laryngeal pathologies. 

Of the four groups of parameters considered the group containing the parameters 

F0-AV, J-AVEX, S-RATEX and S-DPF performed the best for a network of two 

hidden units and two output units and 6 quantisation levels for each parameter. 

68.0% correct classification of pathological speakers was achieved with 20.0% 

classified as healthy. 82.1% of healthy speakers were correctly classified with 

10.3% classified as pathological. The results for the selected parameter networks 

fall a long way short of the results obtained using all the parameters. The selection 

technique for the parameters was based on an inspection of the weight maps 

developed by networks using all the parameters. Unless the weights are 

controlled suitably during learning, there is a tendency for the weights to become 

large for patterns already learned. If this occurred, then the large weights formed 

would not necessarily have reflected the most significant parameters. 

Generally, the results for healthy speaker classification did not vary greatly for 

different data formats. However, much greater differences in results for the 

pathology classification were observed. The bar format gave the best results for 

healthy/pathological discrimination. This format only allowed very small weights 

to be developed to the lower levels of intonation and perturbation parameters 

due to the high degree of overlap for patterns in this area. This may well have 

forced the networks to develop better feature detectors using the higher 

perturbation levels. 
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7 PATHOLOGY IDENTIFICATION 

7.1 INTRODUCTION 

The imprecise nature of some of the medical diagnosis for the pathological 

subjects meantthat only rather broad classifications of pathologytypes appeared 

possible. The four classes of pathology considered are shown in Table 7.1. 

Class Disorder Train Test 

1 Epithelial disorders 8 7 

2 Lamina propria disorders 11 11 

3 Disorders of the cartilaginous area 3 2 

4 Palsies 6 5 

Table 7.1 Pathology classes diagnosed in the training and test data set. 

In medical terms it is not important if some benign laryngeal disorders are missed 

by a screening system, however it is important that all cases of cancer or 

potentially precancerous states should be detected. These mostly arise in the 

epithelium, so an ideal screening device would pick up all changes in the 

epithelium (Beck, 1988). Every network investigated in the previous chapter for 

healthy/pathological speaker discrimination misclassified some of the 

pathological speakers as healthy. Disorders that were misclassified included 

those of the epithelium. This indicates that if it is not possible to correctly 

distinguish these speakers for just two class classification, it will still not be 

possible to distinguish them correctly if further classes of pathology types are 

added. It was however decided to investigate how successfully the correctly 

classified pathological speakers could in fact be discriminated into various groups 

of pathological disorder. 

To investigate the ability of the Boltzmann Machine in classifying the pathologies 

into the four classes shown in Table 7.1 experiments were conducted with 
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networks, both with and without hidden units. The training data comprised 28 

pathological speakers and the testing data comprised 25 pathological speakers. 

The number of subjects for each of the four pathology classes is indicated in 

Table 7.1. 

The data was transformed to various binary formats as discussed in section 6.2. 

As there are four pathology classes, the minimum number of output units required 

is two. However, since it may not always be easy to interpret the weight maps 

obtained for coding the four classes with two output units, networks were trained 

with both two and four output units. 

7.2 SIMULATIONS 

7.2.1 No hidden units 

The simulator was operated as discussed in section 6.4.2 for single-layer 

networks. Initially, all the pathology data was used to train single-layer networks 

with two or four output units. Further experiments used just the training set for 

the training, and the networks were evaluated using the testing data set. In each 

case, all the intonation and perturbation parameters were used with quantisation 

to 6 or 12 levels. 

7.2.2 Hidden units 

Experiments were also conducted using networks with sixty input units (all the 

intonation and perturbation parameters quantised to 6 levels) and two hidden 

units. Connections between input and output units were allowed in addition to 

the connection of the hidden units to both the input and the output units. No 

connections were allowed between the output units. The annealing schedule and 

weight adaptation regime used followed the schemes described in section 6.4.2. 
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7.3 RESULTS 

7.3.1 No hidden units 

With all the pathology data transformed to 6 quantisation levels the only network 

structure that was able to learn the complete pathology data set was the four 

output unit net, and this required that the data be represented in the dot format. 

In this case there was far too much pattern overlap to enable the slide and bar 

formatted data to be learned correctly. 

With all the training data transformed to 12 quantisation levels it became possible 

for networks with either two or four output units to learn the training data for all 

three formats. The number of learning cycles required for the dot format was 

approximately 25 while for the slide format the number of learning cycles was 

approximately 170 for a network with either two or four output units. For data in 

the bar format, nets with four output units took approximately 400 learning cycles 

while nets with two output units took approximately 500 learning cycles. 

The weights developed for networks with four output units trained with data 

transformed to 12 quantisation levels are shown in Figures 7.1 to 7.3. The leftmost 

output unit represents class 1 whereas the rightmost output unit represents class 

4. Examining the weights learned for networks with data present in the dot and 

slide formats indicates that epithelial disorders appear to be characterised 

predominantly by higher than normal levels of parameters 1 (F0-AV), 2 (F0-DEV), 

4 (J-AVEX), 5 (J-RATEX) and midrange values of parameters 7 (S-DEVEX) and 

9 (S-RATEX). 

Lamina propria disorders appear to be characterised predominantly by midrange 

values of parameters 2 (F0-DEV), 7 (S-DEVEX) and 9 (S-RATEX). Cartilaginous 

disorders appear to be characterised predominantly by midrange values for 

parameters 2 (F0-DEV), 4 (J-AVEX), 5 (J-RATEX) and 6 (J-DPF) and also by 

high and low values for parameter 8 (S-AVEX). 
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Palsies appear to be predominantly characterised by high values for parameters 

2 (F0-DEV) and 10 (S-DPF); midrange values for parameters 4 (J-AVEX) and 5 

(J-RATEX); low values for parameters 3 (J-DEVEX) and 6 (J-DPF). 

The networks trained with data in the bar format present differing solutions to 

weights learned. As for experiments undertaken distinguishing between control 

and pathological speakers, networks trained with data in the bar format do not 

make very effective use of the lower quantisation levels. 

All the pathology groups appear to be associated with increased levels of 

perturbation. This fits with the theory that normal vocal fold vibration is very 

sensitive to changes in the mechanical state of the ligamental portion of the vocal 

folds, but that alterations in the cartilaginous portion have much less effect on 

vocal fold vibration. This may also be seen to a certain extent in the weight maps 

by the development of smaller weights overall for cartilaginous disorders 

compared to the other three classes of laryngeal disorder investigated. 
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Figure 7.1 Weights learned by single layer network with four output units. 

Learning data comprised 53 pathological voices in the dot format, with 12 

quantisation levels per parameter. 
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Figure 7.2 Weights learned by single layer network with four output units. 

Learning data comprised 53 pathological voices in the slide format, with 12 

quantisation levels per parameter. 
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Figure 7.3 Weights learned by single layer network with four output units. 

Learning data comprised 53 pathological voices in the bar format, with 12 

quantisation levels per parameter. 
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Figure 7.4 Weights learned by single layer network with two output units. 

Learning data comprised 53 pathological voices in the dot format, with 12 

quantisation levels per parameter. 
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Figure 7.5 Weights learned by single layer network with two output units. 

Learning data comprised 53 pathological voices in the slide format, with 12 

quantisation levels per parameter. 
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Figure 7.6 Weights learned by single layer network with two output units. 

Learning data comprised 53 pathological voices in the bar format, with 12 

quantisation levels per parameter. 
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Figures 7.4 to 7.6 depict the weights learned by the networks with just two output 

units. The patterns of weights developed are harder to interpret than those 

developed with four output units. The output unit states for each of the classes 

is zero for epithelial disorders and three (binary) for palsies. As for the nets with 

four output units, as the data representation becomes coarser, fewer weights, 

as indicated above the 5% threshold value are required by the networks. 

Tables 7.2 to 7.4 show the results obtained for inI-la 	 '*,+ +'' 
j 	.uvvir 	YVIUI LVVki 

output units trained with the 28 pathological subject training set and tested with 

the 25 pathological subject test set. The overall results for networks with four 

output units were not as good as those with two output units. 

Test 

Class 

% Subjects classified as: 

1 2 3 4 

1 71.4% 14.3% 0.0% 14.3% 

2 36.4% 63.6% 0.0% 0.0% 

3 50.0% 50.0% 0.0% 0.0% 

4 20.0% 1 	80.0% 0.0% 0.0% 

Table 7.2 Results for single-layer network with two output units and data in dot 

format quantised to 12 levels. 
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Test 

Class 

% Subjects classified as: 

1 2 3 4 

1 57.1% 42.9% 0.0% 14.3% 

2 27.3% 54.5% 9.1% 9.1% 

3 0.0% 100.0% 0.0% 0.0% 

20.0% 1 	80.0% 0.0% 0.0% 

Table 7.3 Results for single-layer network with two output units and data in 

slide format quantised to 12 levels. 

Test 

Class 

% Subjects classified as: 

1 2 3 4 

1 57.1% 0.0% 0.0% 42.9% 

2 27.3% 27.3% 9.1% 18.2% 

3 50.0% 50.0% 0.0% 0.0% 

4 20.0% 40.0% 0.0% 40.0% 

Table 7.4 Results for single-layer network with two output units and data in bar 

format quantised to 12 levels. 

The number of members in class three of the training data set was only three and 

resulted in it not being possible for the class three subjects to be correctly 

classified from the testing set. Performance for class 4 was also very poor. The 

correct identification of classes 1 and 2 was better for data in the dot format than 

either the slide or bar formats. The quantity of training data used for each of the 

groups appears to be insufficient in enabling the networks to develop the requisite 

feature detectors. The three different coding schemes used produced widely 

differing results, again suggesting that the networks were completely unable to 

develop suitable feature detectors. 
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Overall the number of subjects correctly classified from the test group for data 

in the dot format was 48.0%, for data in slide format 40.0% and in the bar format 

36%. 

7.3.2 Hidden units 

The addition of two hidden units to the single-layer networks with sixty input units 

and either two or four output units enabled all the training data to be learned for 

all data formats. Overall results for the test data set for networks with two output 

units were with the dot format 32% of the test set subjects correctly classified, 

with the slide format 28% of the test subjects correctly classified, whereas with 

the bar format 40% were correctly classified. 

Figure 7.7 depicts the weights learned for a network with two output units trained 

with data in the dot format. Figure 7.8 depicts the weights learned for a network 

with four output units with the training data also in the dot format. 
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Figure 7.7 Weights learned by network with two hidden and two output units. 

Learning data comprised 28 pathological voices in the dot format, with 6 

quantisation levels per parameter. 
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An investigation of the weights learned by networks with two output units trained 

with data in the bar format indicated that the hidden units made a large number 

of very small connections to the input units. The size of these weights was less 

than 5% of the largest weight developed in the network, and consequently they 

are too small to reproduce in the form of the weight maps used. Many of these 

weights made connections to the lower quantisation levels, and thus appears 

that they are able to use more of the parameter range than the networks without 

hidden units trained on the same data. 

7.4 COMPARISON WITH RESULTS FROM PREVIOUS WORK 

Beck (1988) reports qualitative findings for the classification of pathological 

subjects into three broad classes, epithelial disorders, polyps/nodules and 

disorders of the cartilaginous area. The findings are based on averaged raw 

scores and Z-scores for the intonation and perturbation parameters. Epithelial 

disorders were reported to be characterised by relatively high jitter levels, 

whereas polyps and nodules (disorders of the lamina propria) and also disorders 

of the cartilaginous region tended to be characterised by higher shimmer levels. 

As far as the author is aware there is no quantitative evidence for the discrimination 

of groups of pathology using intonation and perturbation parameters. 

From examinations of the various weight maps produced it may be clearly seen 

that epithelial disorders are characterised by high levels of jitter. The various 

disorders of the cartilaginous region appear to be characterised by either high 

or low levels of shimmer. Some lamina propria disorders do appear to be 

characterised by high shimmer levels, although strong connections are also 

made to lower values of parameters 7 (5-DEVEX) and 9 (5-RATEX). 

The Boltzmann Machine approach is at present severely limited by the amount 

of data available. The discrimination of groups of pathologies does not look very 

promising from the results obtained so far, particularly for identifying changes in 

the epithelium which may indicate cancer or precancerous states. An ideal 

classifier for use as a screening tool need only discriminate between healthy and 
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pathological voices. Speakers classified as pathological would then be referred 

to a laryngologist who would then use afurther classifier capable of discriminating 

between the various groups of disorders in attempting to make a diagnosis of 

the suspected laryngeal disorder. 
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8 CONCLUSION 

8.1 Review of Results Presented in Thesis 

In this thesis the results obtained by applying Boltzmann Machines to the problem 

of determining whether speakers have healthy or pathological voices as 

evidenced by intonation and perturbation parameters have been presented. In 

addition, results obtained by applying them to the estimation of the type of 

pathology have also been presented. For the healthy/pathological speaker 

discrimination problem the Boltzmann Machine structures using all of the ten 

intonation and perturbation parameters with and without hidden units, but with 

no restricted receptive fields, are considered first. 

For healthy/pathological speaker classification the best results were obtained 

using a network with 120 input units, 2 hidden units and 2 output units. The 

topology of this particular network was constrained so that there were no 

connections from the input units to the output units and also no connections 

between the hidden units. The data was presented in the bar format, with twelve 

quantisation levels for each of the ten intonation and perturbation parameters. 

The network was trained using 39 control speakers and 28 pathological 

speakers. Testing was performed using 39 control speakers and 25 pathological 

speakers. Results were 88.0% of the pathological speakers correctly classified 

as pathological and 8.0% classified as healthy. One pathological speaker could 

not be discriminated as belonging to either of the two classes. A total of 89.7% 

of the healthy speakers were correctly classified as healthy and 10.3% classified 

as pathological. 

Using a network with no hidden units the best results were obtained using 120 

input units and one output unit. Two output units were used in the experiments 

but the resulting network was equivalent to two networks of 120 input units and 

1 output unit each. The data was presented in the bar format, with twelve 

quantisation levels for each of the ten intonation and perturbation parameters. 

The network was trained using 39 control speakers and 28 pathological 
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speakers. Testing was performed using 39 control speakers and 25 pathological 

speakers. In this case 88.0% of the pathological speakers were classified as 

pathological and 12.0% classified as healthy. 84.6% of the healthy speakers were 

classified as healthy and 15.4% were classified as pathological. 

Other network configurations discussed in Chapter 6 provided poorer results for 

healthy/ pathological speaker discrimination which are very nearly random. 

However, even for the best results, the false alarm rate is too high to enable 

satisfactory use of these Boltzmann Machines as a screening tool. It must of 

course be noted that since control speakers were not given laryngeal 

examinations a proportion of the false positives may actually have had undetected 

laryngeal pathologies or functional disorders. Indeed, a number of the control 

speakers were later diagnosed as having laryngeal pathologies. This happened 

well after the end of the data collection exercise and a detailed follow-up was 

never made possible. 

The effect of training with noise has generally been to improve the classification 

results. It would therefore appear that the addition of noise to the training data is 

successful in expanding the training data set. However it should be noted that 

the noise technique was not that of adding noise randomly to the data set, but 

that of perturbing the quantisation level for each parameter by one level with a 

given probability. Thus over a number of noisy presentations of the training data 

the mean of the distribution will coincide with the original data. With the addition 

of random noise to the training data one would expect performance to degrade. 

However by perturbing the quantisation levels by a small amount appears to 

effectively increase the training data set, and hence the ability to generalise. 

Generally, better results were obtained for the correct classification of healthy 

speakers rather than for the correct classification of pathological speakers. This 

may have been affected by the fact that there was in most instances more training 

data used for the healthy speakers than for the pathological speakers. However, 

with the small training set of ten control and ten pathological speakers the results 

for healthy speaker classification were still better than those for pathological 
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classification. This suggests that the composition of the control group was fairly 

homogeneous, with a high degree of correlation between speakers. The 

pathological speaker group is likely to be rather heterogeneous due to then umber 

of different pathologies present. 

From the weight maps it was possible to observe that higher levels of perturbation 

play a significant role in identifying pathological speakers, as strong connections 

are made to inputs corresponding to these higher levels. It was also observed 

that high levels of values for parameters J-DEVEX and S-AVEX were present for 

speakers within the control group. As the control group had not been subjected 

to a laryngological examination it is quite possible that the healthy group did in 

fact contain speakers with the early stages of disorders present. It was also 

observed that for some of the pathological speakers lower than normal levels of 

perturbation were present. 

Networks trained using four selected parameters performed only marginally 

better (some were worse) than random for the detection of laryngeal pathologies. 

Of the four groups of parameters considered the group containing the parameters 

F0-AV, J-AVEX, S-RATEX and S-DPF performed the best for a network of two 

hidden units and two output units and 6 quantisation levels for each parameter. 

A total of 68.0% of the pathological speakers were correctly classified with 20.0% 

being classified as healthy. For healthy speakers 82.1% were correctly classified 

with 10.3% classified as pathological. The results for the selected parameter 

networks fall a long way short of the results obtained using all ten parameters. 

The selection technique for the parameters was based on an inspection of the 

weight maps developed by networks using all the parameters. Unless the weights 

are controlled suitably during learning, it is possible for the weights to become 

large for patterns already learned. If this occurred, then the large weights formed 

would not necessarily reflect the most significant parameters. 

Results obtained for networks with intonation, shimmer and jitter receptive fields 

were disappointing. It was not possible for the networks considered to correctly 

learn all of the training data within the 500 learning cycles allowed. Incorporating 
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an additional hidden unit per restricted receptive field yielded no overall 

improvements in learning generalisation. This suggests that the use of restricted 

receptive fields makes the learning problem harder. It is also possible in this case 

that weights have become too large so that equilibrium cannot be achieved. This 

would result in the network being unable to learn all of the training patterns or 

make use of additional hidden units. 

The results for the use of ten intonation and perturbation parameter receptive 

fields were even worse than those obtained for only three receptive fields. Again 

it was not possible for these types of networks to correctly learn all the data and 

the observations made for the intonation, shimmer and jitter receptive field 

networks hold. 

The investigation into the use of the Boltzmann Machine for pathology group 

identification showed that from the data used it was not possible to discriminate 

between disorders of the cartilaginous area, palsies, lamina propria disorders 

and epithelial disorders. This result may be due to the limited data set used, the 

data format, and the choice of sub-groups. Or indeed it may be that it is not 

possible to differentiate between these groups of disorder. Further work is 

required here. From a medical point of view it is not important if some benign 

laryngeal disorders are missed, but it is important that all cases of cancer or 

potentially precancerous states should be detected. These mostly arise in the 

epithelium so an ideal screening tool would pick up all changes in the epithelium. 

The data formats used affected the results for pathological classifications. For 

example for networks with 120 input units, 2 hidden units and two output units 

the results for correct pathological classification are dot 68.0%, slide 80.0% and 

bar 88.0%. Results for correct healthy speaker classification are dot 84.6%, slide 

89.7% and bar 89.7%. Generally the results for healthy classification did not vary 

a great deal for different data formats. However, much greater differences in 

results for the pathological classification were observed. This suggests that the 

transformations were not affecting the control data to a great extent, but did affect 

the pathological data. One would expect the data for the control speakers to be 
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centred approximately mid-range for each parameter and the pathological data 

to be at the extremities of the range. This may have introduced boundary 

problems. Furthermore, it may be that due to the large number of laryngeal 

disorders present higher resolution of data representation would be beneficial. 

Interestingly, the bar format gave the best results for discriminating between 

healthy and pathological voices. It can be observed from the weight maps that 

no weights or at least very small weights were developed for lower levels of the 

intonation and perturbation parameters. This would suggest that the high degree 

of overlap for the bar format for the low levels of intonation and perturbation may 

have caused the network to ignore features in this area, and forced the network 

to develop feature detectors using the higher perturbation levels. 

In all cases, the data representation format affected the number of learning cycles 

required to obtain a given error in learning of the training data. The higher the 

degree of overlap between patterns the more learning cycles were required. The 

identification of control speakers was much better than the desired identification 

of pathological speakers. A possible explanation for this is that it is due to the 

heterogeneous composition of the pathological speaker group and the fact that 

approximately 40% more subjects were used in the control speaker training group 

than in the pathological speaker training group. 

Results obtained with a representation of 6 quantisation levels per parameter did 

not perform as well as when a representation of 12 quantisation levels per 

parameter was used for pathological classification for networks with hidden units 

(excluding restricted receptive field models). However performance for networks 

with no hidden units was very similar between the two resolutions for pathological 

classification. Results for 6 levels with the dot and slide formats were better than 

those for 12 levels, whereas the bar format was better with 12 levels. 

The scope of the experiments was severely limited by the amount of data 

available. There are enormous problems in acquiring good voice recordings and 

adequate laryngeal observations simultaneously. In addition since control 
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subjects were not given laryngeal examinations a proportion of the false positives 

reported may actually have had minor laryngeal pathologies or functional 

disorders. 

The use of training data in binary format and the small number of classification 

classes for this data suggest that in many cases it was possible for the networks 

studied to memorise the training data, rather than to generalise to the test set 

data. However, generalisation with these networks was in many cases better than 

those with restricted connectivities, where it was hoped to force the network to 

generalise. This was particularly so for the control speakers and would suggest 

that there is a high degree of correlation between the intonation and perturbation 

parameters for the control speakers. 

The Boltzmann Machine has been shown to offer only a marginal improvement 

in classification accuracy over the use of linear discriminant techniques for 

distinguishing between control and pathological speakers, but overall at much 

greater computational expense. As a technique for learning with networks of 

hidden units it is very slow, due to the time required for annealing and collecting 

co-occurrence statistics. However, once a network has been trained, applying 

a test pattern to the network and searching for an estimate of class index is very 

fast compared to the training time. 

It was concluded that the intonation and perturbation parameters used were 

useful for differentiating between groups of healthy speakers and speakers with 

known pathological conditions of the larynx using a Boltzmann Machine. 

However, the performance of such a system using a Boltzmann Machine is not 

yet good enough to be used as a screening procedure. From interpreting the 

various weight maps of the weights developed by the networks studied, 

pathological voices could generally be seen to be characterised by higher than 

normal levels of perturbation. However, some pathological speakers did indicate 

lower than normal levels of perturbation. 
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8.2 Comparison to Other Work 

Results for healthy/pathological voice discrimination of male speakers using data 

from the pool used for experiments described in this thesis have been reported 

by Layer, Hiller, Mackenzie & Rooney (1986) and Beck (1988). Layer et al. used 

a control group of 63 speakers and a pathological group of 55 speakers. Two 

techniques were presented, the first of these being the use of bivariate plots. 

Principal components analysis was applied to the F0-AV and S-DPF data for the 

control group to give an ellipse (at the 2 SD level) indicating the covariance 

between the parameters. The boundary of the ellipse formed the screening 

threshold boundary for the detection of pathology. Using this technique 90.1% 

of the pathological speakers were correctly classified as pathological and 9.5% 

were classified as healthy. 

The second technique used linear discriminant analysis, which is a statistical 

technique for discriminating between two (or more) nominal groups on the basis 

of several parameters simultaneously. Using this technique 85.5% of pathological 

speakers were classified as pathological, and 14.5% were classified as healthy. 

Beck (1988) however suggested that discriminant analysis was probably the best 

screening option from a number of techniques examined. These included using 

bivariate plots to compare pathological speakers with control group distributions 

and a pattern discrimination technique based on the maximum likelihood 

principle. Beck used 83 control male speakers and 56 pathological male 

speakers. For the bivariate technique using F0-AV versus S-DPF, results of 80.4% 

of pathological speakers being correctly classified as pathological and 10.8% 

being classified as healthy were obtained. Using linear discriminant analysis, with 

ten intonation and perturbation parameters 87.5% of pathological speakers were 

correctly classified as pathological and 8.4% were classified as healthy. 

As Beck points out, the results of the discriminant analysis technique need to be 

treated with caution. Linear discriminant analysis assumes that the data show a 

multivariate normal distribution, but given the heterogeneous composition of the 

pathological group it is likely that this assumption is seriously violated. However, 
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the technique appeared to be quite robust in the face of such violations. The 

classification rates obtained, however, cannot safely be asserted to be 

necessarily predictive of future success in classifying another set of subjects with 

the same function. 

The above techniques have all used within group testing whereas the Boltzmann 

Machine experiments have attempted classification on a test set of subjects. By 

training a sing!e-iayer network on the data in both the training and test set it is 

possible to achieve 100% correct classification of the healthy and pathological 

voices in the total training set. It was not possible to determine whether the 

patterns had just been memorised or whether generalisation had taken place. In 

any instance, one could not safely assert that the classifier be capable of such 

success in classifying another set of subjects with the same function. 

Beck (1988) reports qualitative findings using averaged raw scores and Z scores 

for three broad classifications of pathology. These were epithelial disorders, 

polyps/nodules and disorders of the cartilaginous area. For males epithelial 

disorders of ligamental region appeared to be characterised by relatively higher 

jitter scores, whilst polyps, nodules and disorders of the cartilaginous regions 

appeared to have higher shimmer scores. 

As far as the author is aware there is no quantitative evidence for the discrimination 

of groups of pathology using intonation and perturbation parameters. Results 

to-date using Boltzmann Machines suggest that it is unlikely to be successful. 

8.3 Areas for Further Work 

As mentioned earlier in this chapter the scope of the experiments was severely 

limited by the amount of data available. Furthermore, the healthy speakers were 

not subjected to a laryngological examination. The experiments were also only 

undertaken using intonation and perturbation data from male speakers. 

However, any screening system produced should be able to cope with both male 
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and female speakers. Despite there being enormous problems in acquiring good 

voice recordings and adequate laryngeal observations simultaneously they are 

both essential if further studies are to be made. 

The pathological data group should include samples from as wide a range of 

disorders as possible. It should also include graded samples of a wide range of 

disorders at different degrees of severity from both adult males, adult females 

and also children. The control group database speakers should be matched in 

sex, age, socioeconomic status, general physique and general state of health to 

the speakers in the pathological group. 

The application of the Boltzmann Machine to the discrimination of healthy or 

pathological speakers as evidenced by intonation and perturbation parameters 

has been demonstrated. Further work applying neurornorphic systems requires 

an expanded set of training examples, including the addition of data from female 

speakers. The investigations conducted made use of a binary representation of 

the data. The use of networks that can use continuous valued data would 

eliminate limitations in the binary transformation carried out and would seem 

worthwhile. Almeida (1987a) has suggested that back-propagation can be used 

to train Boltzmann Machines and would thus allow the speed of learning to be 

considerably improved. There is a fairly high level of processing of the raw speech 

datato obtain the ten acoustic parameters forthe various healthy and pathological 

speakers. It would seem worthwhile to attempt to discriminate between healthy 

and pathological speakers by applying their digitised raw speech data to a 

network. This would have possible problems in that the network would need to 

handle a stream of input data. However, this approach would benefit from not 

being hampered by any restrictions that the choice of the ten intonation and 

perturbation parameters maybe imposing on the discrimination task. 

Pattern recognition devices implemented using the Boltzmann Machine or 

Multi-layer Perceptron require supervised learning. In other words the device 

must be presented with labelled patterns so that it can learn the mapping between 

the feature space and the classification space. However, it would be useful to 
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know how the ensemble of patterns observed in healthy/pathological speaker 

discrimination is distributed in pattern space. If the mechanism giving rise to the 

patterns also segregates them into clusters in a meaningful manner, then any 

procedure that identifies the location and distribution of these clusters is also 

meaningful. Some neural net algorithms have been suggested for cluster 

formation, these are the Adaptive Resonance Theory (ART) structure (Carpenter 

& Grossberg 1987) and the self organising neural array, Kohonen (1982, 1987) 

and would appear worthy of further examination. 
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ABSTRACT 

Recent work on the 	representation of 
'knowledge' in massively parallel networks has 
resulted in the development of the 	Boltzmann 
Machine. In such networks, 'knowledge' is 
represented by the pattern and strengths of inter-
connections between simple processing elements. In 
the Boltzmann Machine noise is used to aid the 
search procedure in the network. 

Developed primarily for static image process-
ing, Boltzmann Machines are well suited to problems 
that can be formulated as ccnstraint satisfaction 
searches. This paper describes some simple experi-
ments using a Boltzmann Machine to process and 
classify static speech patterns. 

INTRCDUCTION 

Advances in VLSI technology making possible 
the implementation of hundreds or thousands of 
cooperative processing elements, and increased 
knowledge about the structure of the brain has lead 
to a resurgence of interest in 'connectionist' 
models. These models enable a significant part of 
the knowledge of a system to be applied to a par-
ticular problem in a very short time. This is par-
ticularly attractive for speech recognition, where 
the need to segment and label the non-symbolic 
speech signal, using knowledge sources is 
expedient. 

Generally, connectionist machines are unpro-
grammed, with the networks finding their solutions 
by settling into stable states rather than follow-
ing detailed algorithms. The Boltzmann Machine [3], 
is a particular type of massively parallel network 
that is well suited to 'weak' constraint satisfac-
tion searches. In finding the most plausible 
interpretations for perceptual data, the best solu-
tion may well violate some of the constraints of 
the problem domain. A more expedient approach is 
to use weak constraints that incur a cost when they 
are violated. The quality of the interpretation is 
then determined by the total cost of the infringed 
COnstraints. 

In the Boltzmann Machine the constraints of 
the problem domain are encoded in the connections 
between simple processing elements of the network, 
with the magnitude of the connection strengths 
representing the cost of violating that constraint. 
The search for good global states (i.e. low cost 
interpretations) is performed by repeatedly allow-
ing each processing element to adopt whichever of 
its permitted two states minimises the total cost 
for the current state of the network. 

This procedure may result in local minima that 
are not globally optimal, but by making the deci-
sion rule probabilistic, it is possible to escape 
from these local minima. The probabili:y of the 
system being in a particular global state, and the 
energy of that state, are related by the Boltzmann 
distribution. This has made possible the develop-
ment of a simple learning rule for modifying the 
connection strengths of the network so as to embody 
knowledge about the problem domain. 

We present here preliminary results of exper-
iments using a very simple Boltzmann Machine to 
process and classify static speech patterns. 

THE BOLTZMANN MACHINE 

The Boltzmann Machine consists of elementary 
processing elements called units. These units can 
be in one of two states, on or off. Which state is 
adopted is a probabilistic function of the states 
of its contiguous units, and the weights on the 
links to them. Significantly, link weights are sym-
metric, having the same strength in both direc-
tions. Each unit also has a bias (or threshold 
value) associated with it. 

It has been shown (1], that each global state 
of a network of symmetrically connected binary pro-
cessors can be assigned an 'energy' value. If some 
of the units of the network are coerced into par-
ticular states, the system will then find the 
minimum energy configuration that is compatible 
with that input. 



The energy of a global state is defined as 

E- 	E 	1)  ..s. 
1 
 s. 	 (1) 

3 

where w. . is the strength of the connection between 
units 1 and j, a. is I if the unit is on , and s. 
is 0 if the unit is off. ( We assume here that th 
threshold value associated with the unit is 
accounted for in the atrcngth of a link between i 
and a unit that is always in the on state 

Because the connections are symmetric, the 
difference in global energy for the on and off 
states of the k unit can be determined locally by 
that unit. unit. The energy difference is: 

AE k = Ewk.s. 
	 (2) 

The search for good (low energy) global states 
is done by selecting a unit at random and setting 
its state to that which provides the least energy 
contribution, given the current states of the other 
units. 

However, this simple search algorithm suffers 
from becoming stuck in local minima that are not 
globally optimal. One way around this problem is to 
allow occasional uphill steps to configurations of 
higher energy, thus allowing the system to escape 
from local minima. 

The Metropolis algorithm [6] has this desired 
property, and has recently been adapted [2],[5] to 
constraint satisfaction problems. The probabilis-
tic decjion rule is as follows: If the energy gap 
of the k" unit isEk  then regardless of the pre-
vious state, set k= 1 with probability 

= 	
-AE,/T 	 (3)  

To reliably find good minima in a 
time, the system is started at a high teoperatu r  

' and then the temperature is gradually lowered.  
This technique is known as optimisation by simu 
lated annealing. 

The properties of the Boltzmann distributio n  
allow analysis of the stochastic search process 
and has resulted in the development of a learning 
algorithm. This allows the strengths of connections 
to be.adated so that the network can capture the 
essential properties of its environment. 

To minimise the distance between the Probabil-
ity distributions for when the system is clamped by 
the environment , and for when it is free - running, 
statistics about how often pairs of units are on 
together are collected when the system is at ther-
mal equilibrium. Each weight is then chanced by an 
amount proportional to the difference between these 
probabilities. If p. . is the average probability of 
two connected units oth being in the on state when 
the environment is clamping, and p..  is the 
corresponding probability when the netwofX is run-
ning freely, (both probabilities measured at ther-
mal equilibrium), then each weight is changed by an 
amount: 

= c(P ij - 	ij) 	 (4) 

where t scales the size of each weight change. 

When this distance has been minimised, the 
network will have generated a set of weights that 
make up a locally optimal model of the constraints 
in the problem domain. 

SPEECH PROCESSING 
where I is a parameter that behaves like tempera-
ture. (See Fig. 1). A system following this deci-
sicn rule obeys a Boltzmann distribution. At low 
temperatures, the time required to make the jump 
out of a local energy minima may be long, where as 
at high temperatures these barriers are easily 
jumped, but this results in only a- coarse level 
search. 

I L 	fl . ;;1I1II 
Figure 1 

Probability for a unit to be 
on 

as a function of energy gap 6E for 1=1 

In order to explore the Bolt:marin Machine con-
cept for speech recognition tasks, a small, elemen-
tary network has been considered in addressing the 
problem of reliable recognition of isolated words 
for one speaker, having trained the system on one 
utterance of each word. Of particular interest is 
the capability of the Boltzmann Machine in making 
the generalisations required to recognise previ-
ously unseen utterances of the trained words. 

The speech data used comprised the English 
digits (0-4) for a speaker from the South of Eng-
land. The speech was recorded under studio condi -
tions, banJliinited to 4kiz, and digitised at 10kHz. 
Features were then extracted from 32mS blocks of 
the digitised speech to yield a set of eight 
equally spaced (normalised log amplitude) spectral 
coefficients. 



The Boltzmann Machine structure used consisted 
of a two-dimensional array of units coupled to five 
output units (i.e. one for each of the spoken 
digits). The two-dimensional layer comprised 8x16 
units, with each of the units being connected to 
its twenty-four nearest neighbours. Each unit of 
this planar array was connected to each of the out-
put units. 

The processed speech data was applied directly 
to the units of the two-dimensional array such that 
the data in effect, acts as a variable weight vec-
tor between the units of the array and a set of 
permanently on units. Alternatively, the speech 
data could have been quantised to sixteen discrete 
levels, and a unit assigned to each of these levels 
in the network [41. This option was rejected in the 
present work, as the number of units would have 
increased significantly beyond available computa-
tional capabilities. 

The learning procedure for the network was as 
follows. For each learning cycle, two speech pat-
terns were selected at random, and applied in turn 
to the input layer. The speech data was noisily 
clamped by randomly varying the sample values over 
the range t3t. of the maximum possible value of the 
speech data. The output units were noisily clamped 
as follows, each on unit of the output clamp vector 
was switched off with a probability of 0.2 , and 
each off unit of the output vector was switched on 
with a probability of 0.15 

At the start of the learning phase, all the 
bias settings and weights were set to zero, except 
for the bias value of the layer units, which was 
set to -2. For each of the speech patterns 
applied, the 	network was allowed to reach 
equilibrium once. 
Co-occurrence statistics were then gathered for ten 
units of time. (One unit of time being defined as 
the time required for each unit to be given on 
average one chance to change its state). During 
the unclamped phase of learning the output units of 
the network were randomised with an equal probabil- 
ity of being on or off. 	The network was then 
allowed to reach equilibrium again, 	and co- 
occurrence statistics again gathered for ten units 
of time. 

Instead of adapting the weights by an amount 
proportional to p..p 	, they were incremented .. 
by a fixed step of 	0 if

.. 
 . > p.., and decre 

mented by a fixed step of 10J1f 

Each time the network was taken to equilibrium 
the units were initially randomised with equal pro-
bability of being on or off. The annealing 
schedule followed, allowed the network to run for 
the following times at the following temperatures:-
(2 units of time with T=10; 2 units with T7; 
2units with T=3; 4 units with T=11, after which it 
was assumed that the network had reached equili-
brium. 

RESULTS 

After typically 1000 learning cycles the net-
work was able to provide 100 discrimination (as 
measured at the output units) of the five utter-
ances used for training. On being presented with a 
subsequent utterance of the trained words by the 
same speaker the network proved to be capable of 
making the correct decision for only 64 of the 
time. 

By observing the patterns of the states of the 
units in the input layer of the network, it is pos-
sible to pick out some of the features of the input 
data. Figure 2 and figure 3 depicts the states of 
the units for the utterance pattern. The similarity 
between these two figures forms the basis for on-
tinuing investigation of speaker-independent opera-
tion of the Boltzmann Machine. 

Figure 2 

Unit states for trained word 'two'. 

---------- 

Figure 3 

Unit states for word 'two'. 



CONCLUSIONS 

A very simple Boltzmann Machine network has 
been considered. The structure has been demon-
strated as partially successful in identifying pre-
viously unseen speech patterns. The model currently 
incorporates only a simple type of learning as none 
of the units are hidden from the environment. The 
effects of varying the connectivity patterns of the 
model, and the inclusion of extra layers of units 
in the network remain to be explored. 

There are many parameters that need closer 
investigation. Parameters observed to have a pro-
found affect on the learning ability of the network 
are those of the weight step value used in adapting 
the link weight values, and the annealing schedule 
used. Current work includes investigation of the 
effects of parameter variations, and carrying out 
more detailed simulations using an array processor 
implementation 
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ACOUSTIC SCREENING FOR VOCAL PATHOLOGY WITH A BOLTZPJANN MACHINE 

J. F. Trehern*,  M. A. Jack*, J. Laver*,  S. M. Hill er* .  

ABSTRACT 

The measurement of pitch perturbation has been used in acoustic screening for the detection 
of vocal disorders. As an alternative to applying conventional statistical techniques to the 
pitch perturbation parameters used for separation of control and pathological speakers, a 
parallel distributed processing model approach has been implemented using a Boltzmann 
Machine (BM) After training, the machine is able to separate the two groups and to classify 
the vocal disorders present in the pathological group of speakers. The connections developed 
by the Boltzmann Machine have also given some insights into the usefulness of each of the 
perturbation parameters employed. 

INTRODUCTION 

It has been suggested that the measurement of pitch perturbation may be of value in screen-
ing for vocal disorders (ref 1), and work in this field has proved this approach to be partially 
successful in separating pathological speakers from control speakers (ref 2). The basic metho-
dology used to achieve this group separation has been to extract parameters from a sample of 
continuous speech for each speaker, and then subject these parameters to a statistical analysis 
using bi-variate plots or a multivariate technique (linear discriminant analysis). 

In this paper, we consider the application of a new technique based on statistical 
mechanics, to separate the control speakers from the pathological speakers, and to 
differentiate between the various vocal disorders present. The Boltzmann Machine (ref 3), is a 
recent development in parallel distributed processing (PDP), and consists of a nonlinear net-
work of stochastic binary processing units, which interact pairwise through symmetric connec-
tion strengths. An important feature of the BM is the existence of a domain independent 
learning algorithm. This allows the strengths of connections between processing units to be 
modified and enables the network to create internal representations that capture underlying 
features in the training data. 

ACOUSTIC ANALYSIS SYSTEM 

The analysis system produces a set of 10 parameters for each speaker, taken from measure-
ments of fundamental frequency (F0) and waveform perturbations in approximately 40 seconds 
of recorded text read from the 'Rainbow Passage' (ref 4). The measurement system uses a 
modified version of the Gold and Rabiner parallel processing pitch detection algorithm, with 
phase compensation for low frequency distortion introduced by tape recording techniques; low 
pass filtering to remove high-frequency resonance effects from the waveform (600 Hz males ); 
non-linear smoothing to derive an intonational 'trendline' from the new pitch period esti-
mates; parabolic interpolation at waveform peaks to provide greater resolution of pitch period 
values (ref 5). -. 

Intonational data are derived from a smoothed F0  trendline, giving its mean value (F0-AV) 
and its range, represented as the standard deviation of trendline values (F0-DEV). Statistical 
analyses are then made of pitch period perturbation (jitter) and amplitude perturbation at 
waveform peaks (shimmer). The following measures are taken for both jitter and shimmer:- 

(1) Average magnitude of excursion of the raw F0  contour from the local trendline (AVEX). 

Centre for Speech Technology Research, Univ. of Edinburgh, 80 South Bridge, Edinburgh, EH1 1HN. 



Standard deviation of (signed) excursion from trendline (DEVEX). 	 - 

Rate of excursion (RATEX); percentage of points in the sample where magnitude of 
excursion is greater than or equal to 3 17o of local trendline value. 3% was chosen as even 
the healthiest of voices, performing monotone steady-state vowels typically show a level 
of (jitter) perturbation of about 2% (ref 6). 

Directional perturbation factor (DPF). This measure, adapted from Hecker and Kreul (ref 
7), is the percentage of changes in algebraic sign between adjacent pitch or amplitude 
estimates in the raw contour. A 3% threshold was also applied. 

BOLTZMANN MACHINE 

The Boltzmann Machine is a particular type of massively parallel network. Processing in the 
network is performed by elementary binary units, which are either in the on or off state. 
There are two types of unit in the network, visible and hidden. The visible units are those.- 
that interface the network to its environment, and the hidden units are those that have no 
environmental contact. 

Units are connected to each other by bi-directional links, which have real value weights 
attached to them. The state of each unit is a stochastic function of the states of its contiguous 
units, and the strengths of its connections to them. Processing proceeds with each unit asyn-
chronously updating its state until the network eventually reaches equilibrium. The strength 
of the connections between units is used to store 'knowledge', which is used to provide an 
interpretation of any input applied to the network. 

A cost function called 'energy' has been defined by Hopfteld (ref 8), for binary symmetric 
networks. Searching such a network may thus be regarded as minimising this cost function. 
One strategy for minimising the energy is for each unit to update its state by switching itself 
into whichever state minimises its contribution to the global energy value for the network. 
However, this can result in the network becoming stuck in local minima that are not globally 
optimal. To avoid this happening occasional. uphill jumps in energy value are allowed so that 
these local minima may be escaped from. The decision rule for the units is now as follows: if 
the energy gap between the on and off  states of the kth  unit is AE k  then regardless of the pre-
vious state set state of s 1 with probability 

Pk 	 (1) 

1+e 

T is a parameter that acts like temperature. (When T0 function p k  is a step function, i.e. 
the search will follow a normal gradient descent). 

The temperature T determines the size of uphill jumps in energy allowed. A reliable 
method of taking a network to thermal equilibrium in a given time is achieved by at first 
allowing large jumps in energy (high temperature), resulting in a coarse search of the energy 
landscape. Then gradually reducing the temperature to a low value, better minima may be 
found within the coarse scale minima. This process is called simulated annealing. 

For a system following the above decision rule, the relative probability between two glo-
bal states of the network will follow a Boltzmann distribution. This has allowed the develop-
ment of a domain independent learning algorithm (ref 3) that is able to modify the strength 
of connections by 'experience', so that a network is able to develop an internal model of its 
training environment. 

APPLICATION TO ACOUSTIC SCREENING FOR VOCAL PATHOLOGY 

To assess the BM for vocal pathology screening, experiments were performed on totally con-
nected networks having a 10X8 input array, 2 output units for the control/pathology discrimi-
nation, and 5 output units for pathology classification. During the training procedure each 
input training pattern in turn was clamped over the input units, and the desired output 



pattern clamped over the output units. The machine was then.taken to equilibrium and statis-
tics were gathered about how often pairs of units were on together. This was then repeated, 
but with the output units unclamped. Co-occurrence statistics were again gathered. The 
clamp ediunclaroped statistics were used in the adaption of the connection strengths. It should 
be noted that hidden units are never clamped by the environment. 

The data employed consisted of a pathological group of 37 male speakers, whose laryngeal 
state had been established by medical examination, and a control group of 39 male speakers, 
who although not subjected to a laryngeal examination reported no history of laryngeal 
disorders, or other relevant complaints. The laryngeal disorders present in the pathological 
group were classified as shown in Table 1. 

Table 1. Classification of laryngeal disorders and number of cases. 

PATHOLOGY 

Disorder of ligamental area: 
Squamous cell carcinoma 6 
Sessile vocal polyps 6 
Not classified 20 

Disorders of cartilaginous area: 5 

The maximum global range for each of the 10 perturbation parameters employed was deter-
mined and divided into octiles. The parameters were presented in binary form as a direct 
mapping of the occupancy state of the octiles, to the 10x8 input array of the B.M. 

The training data employed consisted of 20 control speakers and 20 pathological speakers. 
(The pathological training data set comprised the following: 3 carcinomas; 3 polyps; 3 cartila-
ginous; and 11 not-classified). For the problem of control/pathological group separation a 
machine with 2 output units corresponding to each group was used. Machines with (and 
without) hidden units proved to be capable of providing 100% discrimination between the 
groups for the training data set. Table 2. summarises the results for 'unseen' test data. 
Although the hidden units have not had any effect on the control recognition rate, the patho-
logical recognition rate has been improved. 

Table 2. Control'pathological group separation results for test data. 

GROUP 
TEST DATA %ERROR 	I 

no hidden with hidden (8) I 

I Controls 10.5 10.5 
Pad   35.3 17.6 

For the problem of pathological classification a BM with 5 output units was used, with each 
unit representing one of the classes. Again, the machine was capable of 100% discrimination 
between classes in the training data. Table 3. summarises the results for unseen' test data. 

Table 3. Control/pathological classification results for test data. 

GROUP I 	TESTDATA %ERROR 

no hidden with hidden (4) 
I Controls 5.3 0.0 

ALL Pathologicals 8.2 J 	76.5 

These results show an improvement in both the control and pathological class separation 
results with a machine using hidden units. The recognition rates for the individual pathology 



classes are not shown because in most cases the machine was unable to identify data outside 
of its training set. This is probably due to the very small amount of data available - 3 patterns 
for each class except for the not-classified and control groups. In fact the not-classified group 
was able to record a percentage error of 66.7 17o with 'unseen' test data. 

Further preliminary experiments showed that the 2 output unit BM was capable of distin-
guishing between the control and pathological groups correctly when trained on the complete 
corpus of data. This compares very favourably with the results previously obtained by linear 
discriminant functions (ref 2) viz. 14.5% incorrect classifications for the pathological group and 
7.9% incorrect classifications for the control group. 

For the two group separation problem it was observed that particularly strong connections are 
made to the F 0-AV, J-DEVEX, J-AVEX, S-RATEX, J-DPF and S-DPF parameters. This sup-
ports previous findings indicating the importance of functions of perturbation to this type of 
classification (ref 2). 

CONCLUSIONS 

The separation of the two groups of subjects and the classification of different pathologies has 
been shown using a BM. These results compare favourably with those obtained by linear 
discriminant analysis. 

There appears to be some underlying structure to the data as determined by the small 
improvement gained by using hidden units in the BM. The power of the BM lies in its ability 
to capture any underlying structure using hidden units. Due to the fact that only limited data 
samples were available for some of the groups, increased training data is expected to show 
better separation performance with hidden units. 

This work was supported in part under the Anglo-Portuguese Joint Research Programme 
-Treaty of Windsor. 
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