2,725 research outputs found

    Just an Update on PMING Distance for Web-based Semantic Similarity in Artificial Intelligence and Data Mining

    Full text link
    One of the main problems that emerges in the classic approach to semantics is the difficulty in acquisition and maintenance of ontologies and semantic annotations. On the other hand, the Internet explosion and the massive diffusion of mobile smart devices lead to the creation of a worldwide system, which information is daily checked and fueled by the contribution of millions of users who interacts in a collaborative way. Search engines, continually exploring the Web, are a natural source of information on which to base a modern approach to semantic annotation. A promising idea is that it is possible to generalize the semantic similarity, under the assumption that semantically similar terms behave similarly, and define collaborative proximity measures based on the indexing information returned by search engines. The PMING Distance is a proximity measure used in data mining and information retrieval, which collaborative information express the degree of relationship between two terms, using only the number of documents returned as result for a query on a search engine. In this work, the PMINIG Distance is updated, providing a novel formal algebraic definition, which corrects previous works. The novel point of view underlines the features of the PMING to be a locally normalized linear combination of the Pointwise Mutual Information and Normalized Google Distance. The analyzed measure dynamically reflects the collaborative change made on the web resources

    Geographical information retrieval with ontologies of place

    Get PDF
    Geographical context is required of many information retrieval tasks in which the target of the search may be documents, images or records which are referenced to geographical space only by means of place names. Often there may be an imprecise match between the query name and the names associated with candidate sources of information. There is a need therefore for geographical information retrieval facilities that can rank the relevance of candidate information with respect to geographical closeness of place as well as semantic closeness with respect to the information of interest. Here we present an ontology of place that combines limited coordinate data with semantic and qualitative spatial relationships between places. This parsimonious model of geographical place supports maintenance of knowledge of place names that relate to extensive regions of the Earth at multiple levels of granularity. The ontology has been implemented with a semantic modelling system linking non-spatial conceptual hierarchies with the place ontology. An hierarchical spatial distance measure is combined with Euclidean distance between place centroids to create a hybrid spatial distance measure. This is integrated with thematic distance, based on classification semantics, to create an integrated semantic closeness measure that can be used for a relevance ranking of retrieved objects

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    Using Search Term Positions for Determining Document Relevance

    Get PDF
    The technological advancements in computer networks and the substantial reduction of their production costs have caused a massive explosion of digitally stored information. In particular, textual information is becoming increasingly available in electronic form. Finding text documents dealing with a certain topic is not a simple task. Users need tools to sift through non-relevant information and retrieve only pieces of information relevant to their needs. The traditional methods of information retrieval (IR) based on search term frequency have somehow reached their limitations, and novel ranking methods based on hyperlink information are not applicable to unlinked documents. The retrieval of documents based on the positions of search terms in a document has the potential of yielding improvements, because other terms in the environment where a search term appears (i.e. the neighborhood) are considered. That is to say, the grammatical type, position and frequency of other words help to clarify and specify the meaning of a given search term. However, the required additional analysis task makes position-based methods slower than methods based on term frequency and requires more storage to save the positions of terms. These drawbacks directly affect the performance of the most user critical phase of the retrieval process, namely query evaluation time, which explains the scarce use of positional information in contemporary retrieval systems. This thesis explores the possibility of extending traditional information retrieval systems with positional information in an efficient manner that permits us to optimize the retrieval performance by handling term positions at query evaluation time. To achieve this task, several abstract representation of term positions to efficiently store and operate on term positional data are investigated. In the Gauss model, descriptive statistics methods are used to estimate term positional information, because they minimize outliers and irregularities in the data. The Fourier model is based on Fourier series to represent positional information. In the Hilbert model, functional analysis methods are used to provide reliable term position estimations and simple mathematical operators to handle positional data. The proposed models are experimentally evaluated using standard resources of the IR research community (Text Retrieval Conference). All experiments demonstrate that the use of positional information can enhance the quality of search results. The suggested models outperform state-of-the-art retrieval utilities. The term position models open new possibilities to analyze and handle textual data. For instance, document clustering and compression of positional data based on these models could be interesting topics to be considered in future research

    Making a Better Query: Find Good Feedback Documents and Terms via Semantic Associations

    Get PDF
    When people search, they always input several keywords as an input query. While current information retrieval (IR) systems are based on term matching, documents will not be considered as relevant if they do not have the exact terms as in the query. However, it is common that these documents are relevant if they contain terms semantically similar to the query. To retrieve these documents, a classic way is to expand the original query with more related terms. Pseudo relevance feedback (PRF) has proven to be effective to expand origin queries and improve the performance of IR. It assumes the top k ranked documents obtained through the first round retrieval are relevant as feedback documents, and expand the original queries with feedback terms selected from these feedback documents. However, applying PRF for query expansion must be very carefully. Wrongly added terms can bring noisy information and hurt the overall search experiences extensively. The assumption of feedback documents is too strong to be completely true. To avoid noise import and make significant improvements simultaneously, we solve the significant problem through four ways in this dissertation. Firstly, we assume the proximity information among terms as term semantic associations and utilize them to seek new relevant terms. Next, to obtain good and robust performance for PRF via adapting topic information, we propose a new concept named topic space and present three models based on it. Topics obtained through topic modeling do help identify how relevant a feedback document is. Weights of candidate terms in these more relevant feedback documents will be boosted and have higher probabilities to be chosen. Furthermore, we apply machine learning methods to classify which feedback documents are effective for PRF. To solve the problem of lack-of-training-data for the application of machine learning methods in PRF, we improve a traditional co-training method and take the quality of classifiers into account. Finally, we present a new probabilistic framework to integrate existing effective methods like semantic associations as components for further research. All the work has been tested on public datasets and proven to be effective and efficient

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Bridging the semantic gap in content-based image retrieval.

    Get PDF
    To manage large image databases, Content-Based Image Retrieval (CBIR) emerged as a new research subject. CBIR involves the development of automated methods to use visual features in searching and retrieving. Unfortunately, the performance of most CBIR systems is inherently constrained by the low-level visual features because they cannot adequately express the user\u27s high-level concepts. This is known as the semantic gap problem. This dissertation introduces a new approach to CBIR that attempts to bridge the semantic gap. Our approach includes four components. The first one learns a multi-modal thesaurus that associates low-level visual profiles with high-level keywords. This is accomplished through image segmentation, feature extraction, and clustering of image regions. The second component uses the thesaurus to annotate images in an unsupervised way. This is accomplished through fuzzy membership functions to label new regions based on their proximity to the profiles in the thesaurus. The third component consists of an efficient and effective method for fusing the retrieval results from the multi-modal features. Our method is based on learning and adapting fuzzy membership functions to the distribution of the features\u27 distances and assigning a degree of worthiness to each feature. The fourth component provides the user with the option to perform hybrid querying and query expansion. This allows the enrichment of a visual query with textual data extracted from the automatically labeled images in the database. The four components are integrated into a complete CBIR system that can run in three different and complementary modes. The first mode allows the user to query using an example image. The second mode allows the user to specify positive and/or negative sample regions that should or should not be included in the retrieved images. The third mode uses a Graphical Text Interface to allow the user to browse the database interactively using a combination of low-level features and high-level concepts. The proposed system and ail of its components and modes are implemented and validated using a large data collection for accuracy, performance, and improvement over traditional CBIR techniques

    Arabic Query Expansion Using WordNet and Association Rules

    Get PDF
    Query expansion is the process of adding additional relevant terms to the original queries to improve the performance of information retrieval systems. However, previous studies showed that automatic query expansion using WordNet do not lead to an improvement in the performance. One of the main challenges of query expansion is the selection of appropriate terms. In this paper, we review this problem using Arabic WordNet and Association Rules within the context of Arabic Language. The results obtained confirmed that with an appropriate selection method, we are able to exploit Arabic WordNet to improve the retrieval performance. Our empirical results on a sub-corpus from the Xinhua collection showed that our automatic selection method has achieved a significant performance improvement in terms of MAP and recall and a better precision with the first top retrieved documents
    corecore