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ABSTRACT 

BRIDGING THE SEMANTIC GAP 

IN CONTENT-BASED IMAGE RETRIEVAL 

Joshua David Caudill 

May 9,2009 

To manage large image databases, Content-Based Image Retrieval (CBIR) 

emerged as a new research subject. CBIR involves the development of automated 

methods to use visual features in searching and retrieving. Unfortunately, the 

performance of most CBIR systems is inherently constrained by the low-level visual 

features because they cannot adequately express the user's high-level concepts. This 

is known as the semantic gap problem. 

This dissertation introduces a new approach to CBIR that attempts to bridge 

the semantic gap. Our approach includes four components. The first one learns a 

multi-modal thesaurus that associates low-level visual profiles with high-level 

keywords. This is accomplished through image segmentation, feature extraction, 

and clustering of image regions. The second component uses the thesaurus to 

annotate images in an unsupervised way. This is accomplished through fuzzy 

membership functions to label new regions based on their proximity to the profiles 

in the thesaurus. The third component consists of an efficient and effective method 

for fusing the retrieval results from the multi-modal features. Our method is based 
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on learning and adapting fuzzy membership functions to the distribution of the 

features' distances and assigning a degree of worthiness to each feature. The fourth 

component provides the user with the option to perform hybrid querying and query 

expansion. This allows the enrichment of a visual query with textual data extracted 

from the automatically labeled images in the database. 

The four components are integrated into a complete CBIR system that can 

run in three different and complementary modes. The first mode allows the user to 

query using an example image. The second mode allows the user to specify positive 

and/ or negative sample regions that should or should not be included in the 

retrieved images. The third mode uses a Graphical Text Interface to allow the user 

to browse the database interactively using a combination of low-level features and 

high-level concepts. 

The proposed system and all of its components and modes are implemented 

and validated using a large data collection for accuracy, performance, and 

improvement over traditional CBIR techniques. 
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CHAPTER I 

INTRODUCTION 

Recent technological advances in the capture, storage, and transmission of 

large digital image and video collections, coupled with the steady growth of the 

internet, has created a need for intelligent methods to analyze this data effectively. 

As personal collections [1, 2J and online photo sharing communities [3, 4J grow, 

efficient storage techniques and digital libraries are being created. These large 

libraries have made it necessary to develop automated tools for storing, retrieving, 

organizing, and mining large multimedia databases to supplement traditional 

methods based on keyword indexing and retrieval. Image data offers unique 

advantages because it is relatively easy for humans to explore and interpret; 

However, for computer methods, it poses serious challenges. 

To manage image databases, Content-Based Image Retrieval (CBIR) emerged 

as a new research subject [5, 6J. CBIR is the application of research techniques from 

various areas such as databases, pattern recognition, data mining, image processing, 

and multimedia to index and retrieve digital images in large databases. In 

particular, CBIR involves the development of automated methods that are able to 

recognize visual features of images - such as color, texture, and shape [7, 8J-, and to 

make use of this information to search, retrieve, and browse large image databases. 

CBIR systems have been in existence for approximately two decades. While 

some applications have been built for commercial use [9, la, 11], most exist within 

the university research domain [12, 13, 14J and in recent years have seen a surge in 
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prototype development (see [5, 15] for examples). Researchers have focused on 

various topics such as low-level image feature representation [16, 17, 18, 19], 

distance metrics [20, 21, 22, 23], visualization and navigation [24, 25], database 

categorization [26, 27, 28, 29, 30], and relevance feedback [31, 32]. Depending on the 

application domain, the size of the image collection, and the available a priori 

information, the above CBIR research topics exhibit varying degrees of difficulty. 

As image databases continue to increase in size and become more complex in 

content, it is becoming increasingly more difficult to achieve high accuracy in 

retrieving visually similar images with a single feature set. As a result, diverse 

feature sets are being used and combined to provide a more accurate retrieval. 

Unfortunately the addition of low-level visual features has proved insufficient to 

improve the performance of CBIR systems. In particular, for large and generic 

image databases, the performance of most CBIR systems is inherently constrained 

by the low-level features because they cannot adequately express the user's 

high-level concepts. The gap in knowledge and understanding between low-level 

features and high-level concepts is known as the semantic gap [33, 34]. This 

problem is illustrated in Figure 1. The first image in this figure is the query image. 

Here, it is assumed that the user is searching for images that have flowers. A typical 

CBIR system would retrieve the images shown below the query image. As it can be 

seen, these images have similar color information. However, conceptually, they are 

very different. 

In an attempt to bridge this gap, few approaches that integrate low-level 

visual features and textual keywords have been proposed [35, 36, 37, 38, 39, 40]. 

Unfortunately, manually labeling each image by a set of keywords is subjective and 

labor intensive. Moreover, region labeling (as opposed to global image labeling) may 

be needed, which makes manual labeling more tedious. To address this limitation, 
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Figure 1. Illustration of the semantic gap problem. The image on the top represents 
the initial query. The other six images are retrieved by a typical CBIR system that 
uses visual features only. 

several algorithms that can annotate images/regions in an unsupervised (or 

semi-supervised) have been proposed in the past few years [38, 41 , 39, 42, 43]. 

Another research issue in CBIR is how to combine the output of diverse 

multi-modal feature sets. This task has been overlooked by the CBIR community. 

Only methods that are based on distance scaling or normalization and simple list 

merging have been used [44]. In fact , different features can vary significantly with 

respect to the number of attributes, the dynamic ranges, and the adopted distance 

measures. Thus, fusion of these features is not trivial and can have a significant 

impact on the overall performance of the CBIR system. 

The goal of this thesis is to develop algorithms that address the image 

annotation and the multi-modal feature fusion tasks. Our proposed approach 

combines topics from pattern recognition, data mining, image processing, and 
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multimedia to build an efficient CBIR system. The interactive relationship between 

these topics and their sub-topics is illustrated in Figure 2. The technical overview of 

our proposed system is illustrated in Figure 3. It has four main components that are 

highlighted below. 

Clustering Algorithms 
• Efficient,Scalable,Robust 
• U " 
• Feature Selection 

( 
Image Analysis 

Multimedia 
• Multi-modal Thesaurus 
• Multimedia Mining • Feature Extraction 
• Multimedia Databases • Image Segmentation 

• Image Annotation 

Figure 2. Relationship of Core CBIR Topics 

1. Learning Thesaurus: This component uses a set of training images, that 

are annotated manually, to create a multi-modal thesaurus through clustering 

and feature weighting. The objective is to extract representative visual profiles 

corresponding to frequent homogeneous regions, and to associate these profiles 

with keywords. To accomplish this, the training images are segmented in"to 

homogeneous regions. Then, these regions are represented by visual 

descriptors combined with the image level annotations, and clustered into 

categories of regions that share common attributes. Clusters' representatives 

and their parameters are used to create profiles linking low-level image 

features and high-level concepts. 

2. Feature Extraction: This component uses the developed multi-modal 

thesaurus to automatically annotate image regions. This is accomplished 

4 



~ ...•..........•• . 
Multi-Modal Thesaurus 

1 Visual Feat¢:>Keywords 
2 Visual Feat¢::>Keywords 

• • • • •• 
M isual Feat ¢:)<eywords 

Figure 3. Overview of the proposed CBIR system. 

through two steps. First , an un-annotated image is segmented into 

homogeneous regions. Then, fuzzy memberships are assigned to the regions 

that reflect their proximity to the thesaurus entries. These annotated regions 

can then facilitate textual region based searches, or be aggregated into image 

level annotations. 
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3. Learning Feature Fusion Properties: This component implements an 

efficient and effective method for fusing the retrieval results of the multi-modal 

features. Our method is based on learning and adapting fuzzy membership 

functions to the distribution of the features' distances. These memberships are 

then used to aggregate the results of the different features. 

4. Multi-Modal Querying and Retrieval: This component uses the 

multi-modal thesaurus to perform hybrid querying and query expansion in the 

CBIR search process. Query expansion allows the enrichment of a visual query 

with textual data associated with the image. In particular, the images in the 

database, annotated using the second component, are made available to the 

hybrid queries to enrich the feature set and improve the relevancy of the 

retrieved images. 

The above four components are integrated into a complete CBIR system 

comprised of three main query retrieval modes. The first mode is a classic CBIR 

retrieval with all four components integrated as shown in Figure 3. In the second 

mode, our system uses a novel region representation that allows the user to 

formulate a query by combining multiple regions of interest. This mode is useful 

when the user has a mental picture of what he/she is looking for but does not have 

an example image to initiate the query. The final mode uses a novel graphical text 

interface to perform semantic visualization and navigation. This mode allows for 

the initial navigation to be oriented around high-level concepts instead of 

randomly-selected images. The last two modes are illustrated in Figure 4. 

This dissertation makes the following contributions to the area of 

Content-Based Image Retrieval: 
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Semantic Visualization and Navigation 
••••••••••••••••••••••••••••••••••••••••• ¥ ••••••••••••••• •• ;-;.;; • •• 'i" • ••• ;;.;-;.;-;.;; ••• 'i" • ... -----_...... 

l'~j . : ....... : ....... ~ 
Visual Feat 

VF1 •• •• VFK(l ) 

o 
o 

o 

r------- r------- ! 
I Learning Thesaurus I . 1 Feature Extraction I : 
___ ~ ______ J 0/ 
r--- -- ______ ....1' 

Learning Feature Fusion H Multi-Modal Querying and I 
L_~~~s __ J __ ~e~e~ __ J 

• Selected Image 

o 
o 

... ..... .. ... ... .. .. .. ... 

.. , 

Semantic Filter ~ • • • • •• • •• 

___ 0-; ••••••••••••••••••• ~. ~. ~. ~. ~. ~. ~. ~. ~. ~. ~. ~. ~. ~. ~~ •••••••• 

Figure 4. Overview of the G UI to the proposed CBIR system. 

• Adaptation of an efficient clustering algorithm for image databases. 

• Learning a mult i-modal thesaurus to convert from one modality to another. 

• Creating a novel approach to perform unsupervised region-based image 

annotation. 
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• Two efficient and effective methods for fusing the retrieval results of 

multi-modal features. 

• Implementation of hybrid querying, query expansion, and concept refining. 

• Efficient region-based image retrieval facilitated by boolean composition. 

• A graphical text interface that visualizes high-dimensional multi-modal data 

for browsing and navigation in a two-dimensional platform. 

The proposed CBIR system and its various components are validated using a 

large data set for accuracy, performance, and improvement over basic CBIR 

techniques. Our proposed image annotation algorithm outperforms three 

state-of-the-art approaches on average by 13% when labeling 10,000 images. Our 

efficient method for fusing the output of multi-modal features yields 6% higher 

precision on average than standard CBIR methods and 16% better retrieval 

performance than the best individual feature. Lastly, our region-based retrieval is 

30% better than a similar state-of-the-art approach. 

The CBIR system is implemented as a java framework built on a C# server. 

The server application maintains all data, clustering, and distance calculations in 

local memory. This currently places an upper limit on the size of our database equal 

to the amount of RAM on the machine. An image database of 55,000 with 6 

multi-modal feature sets requires 1GB of memory. Using this implementation 

approach however, we average 0.83s on a query with the 55,000 image database 

using a 3.4Ghz Pentium IV with 4GB of RAM. 

The organization of the rest of this dissertation is as follows: Chapter Two 

gives an overview of typical CBIR systems and their various components. Chapter 

Three contains our adaptations to an existing clustering algorithm for the CBIR 

application. Chapter Four describes our proposed approach to build a multi-modal 
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thesaurus in an unsupervised manner and its application to unsupervised image 

labeling. Chapter Five describes how to formulate hybrid queries and combine the 

output of the diverse feature sets. Chapter Six describes our proposed region 

representation that allows the user to formulate a query by combining multiple 

regions of interest. Chapter Seven describes the graphical interface of our CBIR 

system to perform semantic visualization and navigation. Finally, Chapter Eight 

gives our conclusions and highlights potential future work. 
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CHAPTER II 

RELATED WORK 

Content-Based Image Retrieval (CBIR) is the application of research 

techniques from various areas such as pattern recognition, data mining, image 

processing, and multimedia to index and retrieve digital images in large databases. 

In particular, CBIR involves the development of automated methods that are able 

to recognize visual features of images, and to make use of this information to index, 

search, retrieve, and browse large image databases. CBIR methods do not rely on 

human-inputted information such as captions or keywords, but more so on the 

content of the images themselves. Over the past few years, several CBIR prototypes 

have been developed (see [5, 15, 45, 46, 47, 30, 48, 49, 50, 51, 52] for examples). 

Most CBIR systems can be conceptually described by the framework depicted in 

Figure II. 

CBIR systems make use of various types of user queries; most commonly, 

query by sketch and query by example. In query by sketch, a user draws a rough 

approximation and the system locates images matching the sketch. In query by 

example, the user selects an image that is representative of what he/she is looking 

for and the system retrieves the most similar images from the database. In almost 

all query approaches to CBIR, when an example image is given, its visual features 

are extracted and used to match against those in the database. Well defined 

distance measures are then used to compute the similarity between the query image 

and images in the database. The images are sorted according to their distance to 

10 
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Figure 5. Content-based image retrieval framework. 

the query, and the top k images are presented to the user. 

In this chapter we outline the main steps involved in developing a complete 

CBIR system. While analyzing what it takes to make a CBIR system function , we 

will look at various approaches currently implemented. 
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A Feature Extraction 

In a CBIR system, various visual features are extracted offline from each 

image for indexing purposes. Generic systems (e.g. [12, 13, 14]) make use of 

low-level features such as texture, color, and shape [7, 8]. Other specialized systems 

make use of higher-level features such as faces [53]. Searching for relevant images in 

a database is then converted to the problem of identifying images that have similar 

features. In the following, we outline common features that have been used 

extensively in the literatures. Most of these features have been adopted in the 

MPEG-7 standard [54]. 

1 Color Features 

Since color is immediately perceived by humans when looking at an image, 

color features are the most widely used visual features. When using color features in 

CBIR, factors such as model selection, quantization and feature representation must 

be taken into consideration. The purpose of a color model is to facilitate the 

specification of colors in a standard way [55]. Common color models include 

Red-Green-Blue (RGB), Cyan-Magenta-Yellow (CMY), Cyan-Magenta-Yellow-Black 

(CMYK), Luma-Chrominance (YIQ), Hue-Saturation-Lightness (HLS), 

Hue-Saturation-Value (HSV), Luma-Blue Difference Chroma-Red Difference 

Chroma (YCbCr) and CIE-LUV. 

Prior to describing an image by a color feature, the color spaces needs to be 

quantized. This step is used to reduce the possible available colors present to a 

smaller number. Color features are then extracted and represented by some color 

feature representation. There are many different schemes of varying complexity. For 

instance, the MPEG-7 standard [54] includes the Color Structure Descriptor, 

Scalable Color Descriptor, and the Dominant Color Descriptor [54]. The most 
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common and simplest approach used to represent an image's color feature is a color 

histogram, which represents the color distribution of an image. 

2 Texture Features 

The image texture feature describes properties such as smoothness, 

coarseness, and regularity. MPEG-7 standard includes various texture descriptors 

such as Edge Histogram Descriptor, Homogenous Texture Descriptor, and 

Perceptual Browsing Descriptor. Other commonly used texture features include the 

Gabor Wavelet Texture Feature [56], Tamura Texture Features [57, 58], and Wold 

Texture Features [59]. 

3 Shape Features 

Shape information of objects in images is a very important visual feature. 

Few CBIR systems offer searching based on shape-based techniques. This is because 

these systems require image segmentation and describing each region by its shape 

feature. Segmentation is a very important step for the extraction of these features 

and includes procedures such as image smoothing, noise removal, and edge 

detection. 

Shape-based techniques are categorized into boundary-based and 

region-based. Boundary-based shape representation uses the outer edges of objects 

while region-based uses the entire shape region. MPEG-7 shape features include 

Contour Shape Descriptor, Curvature Scale Space Descriptor, and the Angular 

Radial Transform. Other commonly used shape features include the Fourier 

Descriptor [60] and Moment Invariants [61]. 
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B Distance Measures 

Once all images in the database have their features extracted and stored, a 

method for comparing them needs to be established. This is usually accomplished 

using a distance measure. These measures will provide the means of ranking the 

images in the database to a query image and returning the most relevant ones. In 

the following, we outline some distance measures commonly used for this task. 

The most common distance measure between two points x and y is the 

Euclidean distance (also referred to as the L2 distance), and is defined as 

(1) 

However, this distance can be unreliable and un-intuitive when the points in the 

feature space do not have a spherical distribution. 

A more reliable distance measure is the Mahalanobis distance, defined as 

-1 

d2 (x, y) = (x - yf I)x - y), 

where 2:.':-1 is the covariance matrix of all points (i.e. images) in the feature space. 

The Mahalanobis distance can represent data with non-spherical distribution as it 

takes into account the correlations among different features. The drawbacks of this 

distance include its high computational complexity, and the problems associated 

with computing and inverting the covariance matrix (2:.':-1) for high dimensional 

features spaces. A simple solution to this is to use a diagonal matrix instead of the 

full covariance matrix. 

For some features the Mahalanobis and Euclidean distances may not be 

appropriate. Color histograms, for instance, need to consider the similarity between 

neighboring bins. The Quadratic distance [62], defined as 

1t2(X, y) = (x - yf A(x - y), (2) 
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is commonly used for this task. In (2), A is a matrix of weights denoting the 

similarity between bins in a histogram vector. 

Other features, such as textual features, are high dimensional and tend to be 

binary. A typical distance used for this type of data is the Cosine distance, given by 

2 x. Y 
d (x, y) = 1 - Ilxllllyll' (3) 

This distance has been used extensively in text retrieval [63, 64]. 

C Segmentation and Indexing 

Once the features of an image are extracted and the distance measures are 

defined, the next step in a typical CBIR system is to index the images for scalability 

and retrieval speed in large databases. Some systems index the images globally, 

others segment the images and index their regions. In both cases, clustering 

algorithms are the main tools used for segmentation and indexing. Clustering is the 

partitioning of a data set into subsets (clusters), so that the data in each subset 

share some common trait. A trait (feature) is defined as common with respect to a 

defined distance measure. The advantages of clustering are its unsupervised learning 

ability, and capability to support many distance measures. The most common 

clustering algorithms and techniques used in this thesis are outlined below. 

Let X={Xj E ~Plj=l, ... , N} be a set of N feature vectors in an 

p-dimensional feature space. Let B=(J31 , ... ,J3c) represent a C-tuple of prototypes 

each of which characterizes one of the C clusters. Each J3i consists of a set of 

parameters. Let Uij represent the membership of Xj in cluster J3 i . The CxN fuzzy 

C-partition, U=[Uij], satisfies [65]: 

Uij E [0, 1], Vi 

o < 'L~l Uij < N Vi, j (4) 

'Li:l Uij = 1 Vj 
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1 The Fuzzy C-Means (FCM) Algorithm 

The Fuzzy C-Means (FCM) algorithm [66] formulates the problem of fuzzily 

partitioning the N feature vectors into C clusters as minimization of the following 

objective function: 
C N 

J(B, U; X) = L L(Uij)md2(xj, f3i). 
i=1 j=1 

In (5), mE (1,00) is a weighting exponent (fuzzifier) and d(Xj,f3i) is the distance 

from feature point Xj to prototype f3i. Minimization of (4) with respect to U, 

subject to the constraints in (4), gives us [66] 

Uij = 1 iffj = 0 t (d
2
(Xj, f3i) ) m~l 

k=1 d2 (xj, f3k) 

Uij = 0 ifi rf- I j } iffj =I- 0 
2:=1 Uij = 1 ifi E I j K J 

If the Euclidean distance 

(5) 

(6) 

(7) 

where Ci is the center of the ith cluster is used in (5), then the FCM will seek 

spherical clusters. The update equation for the centroids is obtained by fixing the 

membership values and minimizing (5) with respect to Ci' This minimization yields 

j=1 
(8) Ci = N 

L(Uij)m 
j=1 

The FCM algorithm is summarized below: 
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Fuzzy C-Means Algorithm 

Fix the number of clusters C; 
Fix m, m E (1, (Xl); 
Repeat 

Compute d(xj, (3i) using (7); 
Update the partition matrix U(k) using (6); 
Update the centers using (8); 

Vntil(11 L-,V 11< E) 

2 The Competitive Agglomeration (CA) Algorithm 

The FCM requires specification of the expected number of clusters a priori. 

In many real applications, this may not be possible. In this case, several approaches 

to find the optimal C can be used [67, 68, 69, 70, 71]. In particular, the Competitive 

Agglomeration (CA) [71] is an efficient algorithm that determines the optimal C by 

minimizing the following objective function: 

C N C N 2 

J(B, V, X) = L L(Uij)2d2(Xj, (3i) - a L [L Uij ] , (9) 
i=1 j=1 i=1 j=1 

subject to the constraints in (4). In (9), d2 (xj, (3i) represents the distance from 

feature vector Xj to prototype (3i. The number of clusters C is dynamically updated 

in the CA. 

Optimization of J with respect to V yields [71]: 

where 

and 

U
FCM 
st 

U
B1AS 
st 

U - U
FCM + U B1AS 

st - st st, 
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In (12), 
N 

Ns = LUsj 
j=l 

is the fuzzy cardinality of clusters, and 

N _ 2::~=1[lld2(Xt, ,6k)]Nk 
t - 2::~=1[lld2(xt,,6k)] 

(13) 

(14) 

The choice of a in (9) reflects the importance of the second term relative to the first 

term. In [71], the authors recommend using 

""C ""N (u .. )2d2(x. (~.) 
a(k) = ex (-kiT) L. .. 1i=1 ~j=l 2) ), fJ2 

TJo p ""C [""N U .]2 ' 
~2=1 ~)=1 2) 

(15) 

where TJo is the initial value, T the time constant, and k is the iteration number. The 

CA algorithm is summarized below: 

Competitive Agglomeration Algorithm 

Fix the maximum number of clusters C = Cmax ; 

Initialize iteration counter k = 0 and the fuzzy C partition U(O); 
Compute initial cardinalities Ni for 1 -::; i -::; C using (13); 
Repeat 

Compute d2 (xj, ,6i) for 1 -::; i -::; C and 1 -::; j -::; N; 
Update a(k) using (15); 
Update the partition matrix U(k) using (10); 
Compute the cardinality Ni for 1 -::; i -::; C using (13); 
If (Ni < £1) discard cluster ,6i; 
Update the number of clusters C; 
Update the prototype parameters; 
k = k + 1; 

Until(prototype parameters stabilize) 

3 The Simultaneous Clustering and Attribute Discrimination 

The selection of feature subsets that best represents the given data is an issue 

concerning the design of a good learning algorithm. The performance of such 

algorithms suffers from the use of irrelevant features. To address this issue, several 

methods have been proposed to perform feature selection and weighting [72, 73, 74]. 

Feature selection completely removes irrelevant features, while feature weighting 
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extends on selection by assigning continuous weights to the features. Performance 

can degrade in both instances if feature weights are learned globally and do not take 

into account the fact that data can be made up of different groups. In this case, the 

data needs to be partitioned into groups and feature weights need to be learned for 

each group. One algorithm that can achieve this task is the Simultaneous Clustering 

and Attribute Discrimination (SCAD) algorithm [75, 76]. SCAD was designed to 

search for the optimal clusters' prototypes and the optimal relevance weights for 

each feature of each cluster. Two versions of SCAD were developed. The first one 

(SCADd balances between two terms in a compound objective function. The 

second version (SCAD2 ), minimizes a single term criterion that implements a 

discrimination exponent [76]. 

SCAD l Algorithm 

SCAD1 minimizes 

C Nne n 

J(C,U,V;X) = LL(Uij)mLVikd~jk+ L6i Lv;k, (16) 
i=l j=1 k=1 i=l k=l 

subject to (4) and 

n 

Vik E [0,1] \:j i, k; and L Vik = I, \:j i. (17) 
k=l 

In equation (16), Vik represents the relevance weight of feature k in cluster i, and 

d ijk is given by 

(18) 

where Xjk is the kth feature value of data point Xj, and Cik is the kth component of 

the ith cluster center vector. 

Optimization of J with respect to V yields [75]: 

(19) 
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where t5i is computed in iteration t using 

N n 
'"""" ( (t-l))m,"""" (t-l) (d(t-l))2 
~ uij ~~k ijk 

t5(t) = K j=1 k=1 
2 n (20) 

L (Vi~-I))2 
k=1 

The first term in (19), (lin), is the default value if all n features are treated 

equally, and no discrimination is performed. The second term is a bias that can be 

either positive or negative. It is positive for compact feature sets where the partial 

distance is, on average, less than the total distance (normalized by the number of 

features). If a feature set is compact, compared to the other features, for most of 

the points that belong to a given cluster (high Uij), then it is very relevant for that 

cluster. 

Minimization of J with respect to U, subject to the constraints in (4), yields 

1 

where :itj = L~=1 Vikdrjk is a weighted Euclidean distance. 

Minimization of J with respect to C yields 

o 
N 

L (Uij)mXjk 

j=1 

ifvik = 0, 

ifvik > O. 

SCAD} is an iterative algorithm that starts with an initial partition and 

(21) 

(22) 

alternates between the update equations of Uij, Vik, and Ci. The SCAD l algorithm is 

summarized below: 
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Fix the number of clusters C; 
Fix m, mE (1, (0); 
Initialize the centers; 
Initialize the relevance weights to lin; 
Initialize the fuzzy partition matrix U; 
Repeat 

Compute d;jk for 1 ::; i ::; C, 1 ::; j ::; N, and 1 ::; k ::; n; 
Update the relevance weights Vik by using equation (19); 
Update the partition matrix U(k) by using equation (21); 
Update the centers by using equation (22); 
Update 6i by using equation (20); 

U ntH (centers stabilize) 

SCAD2 Algorithm 

In [76], a new version of SCAD (SCAD2), that minimizes a single term 

criterion instead of trying to balance between two terms as in SCADl , was 

proposed. SCAD2 implements a discrimination exponent [76] to replace the second 

term in the objective function. It minimizes 

C N n 

J(B, U, V; X) = L L (Uij)m L (Vik)qd;jk (23) 
i=l j=l k=l 

subject to (4) and (17). The exponent q E (1, (0) is referred to as the discrimination 

exponent. 

Minimization of J with respect to V yields 

1 
Vik = ----------:--;--,,------,-,--t (Dik/D

it
) l/(q-l)' 

t=l 

(24) 

where Dik = ~~l (Uij )md;jk is the measure of dispersion of the ith cluster along the 

kth dimension, and I:~=l Du is the total dispersion of the ith cluster. In other words, 

the more compact the ith cluster is along the kth dimension (smaller Dik ), the higher 

the relevance weight, Vik will be for the kth feature. 
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Minimization of J with respect to U subject to the constraints in (4) yields 

1 
Uij = -c------

1
-

L [dTjld~j] m-l 

(25) 

k=l 

where 
n 

J:tj = L (Vik)qdTjk· (26) 
k=l 

While the discrimination exponent, q, is needed for finding feature weights Vik, for 

the purpose of computing the fuzzy memberships, Uij, it was recommended in [76] 

to set this exponent to one and use the distance measure in SCAD l : 

Minimization of J with respect to the centers C yields the same equation 

update as in SCAD l (see equation (22)). 

The SCAD2 algorithm is summarized below: 

Fix the. number of clusters C; 
Fix m, mE (1,00); 
Fix the discrimination exponent q, q E (1, 00 ); 
Initialize the centers and fuzzy partition matrix U; 
Initialize all the relevance weights to lin; 
Repeat 

Compute dTjk for 1 ::=; i ::=; C, 1 ::=; j ::=; N, and 1 ::=; k ::=; n; 
Update the relevance weights matrix V by using equation (24); 
Compute dTj by using equation (27); 
Update the partition matrix U by using equation (25); 
Update the centers by using equation (22); 

U ntil( centers stabilize) 

The Coarse Simultaneous Clustering and Attribute Discrimination 

Algorithm 

Both versions of SCAD were designed to search for the optimal clusters' 

(27) 

prototypes and the optimal relevance weight for each feature within each cluster. 
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However, for high dimensional data, learning a relevance weight for each feature 

may lead to overfitting. To avoid this situation, a coarse approach to feature 

weighting (called SCADe) was proposed in [77]. In SCADe, instead of learning a 

weight for each feature, the set of features is divided into logical subsets, and a 

weight is learned for each feature subset. 

In [77], the authors assume that the p features have been partitioned into K 

subsets: F S1, F S2, ... ,F SK, and that each subset, F SS, includes kS features. Let 

dij be the partial distance between Xj and cluster i using the sth feature subset. Let 

V = [Vis] be the relevance weight for F SS with respect to cluster i. The total 

distance, Dij , between Xj and cluster i is then computed by aggregating the partial 

distances and their weights, i.e., 

K 

DTj = L Vis (dfj) 2 
. (28) 

8=1 

SCADe minimizes 

C N K C K 

J(B, U, V; X) = L L u7] L Vis (dfj)2 + L 6i L VTs' (29) 
i=1 j=1 s=1 i=1 s=1 

subject to equation (4) and 

K 

Vis E [0, 1] V i, s; and L Vis = 1, V i. (30) 
s=1 

Optimization of J with respect to V yields 

(31 ) 

Minimization of J with respect to U, subject to the constraints in (4), yields 

1 
(32) 

Minimization of J with respect to the prototype parameters depends on the choice 

of dij . Since the partial distances are treated independent of each other (i.e., disjoint 
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feature subsets), and since the second term in (29) does not depend on the 

prototype parameters explicitly, the objective function in (29) can be decomposed 

into K independent problems: 

C N 

Js = L L U7]Vis (dfj) 2 , for s = 1, ... ,K. (33) 
i=l j=l 

Each Js would be optimized with respect to a different set of prototype parameters. 

For instance, if dfj is an Euclidean distance, minimization of Js would yield the 

following update equation for the centers of subset s, 

,\,N m s 
s ~j=l u1)x) 

c1 = N 

L)=l u;r,; 
SCADc is summarized below: 

Coarse SCAD 

Fix the number of clusters C; 
Fix m, mE (1,00); 
Initialize the centers and fuzzy partition matrix U; 
Initialize the relevance weights to 1/ K; 
Repeat 

Compute (dfj)2 for 1 :::; i :::; C, 1 :::; j :::; N, and 1 :::; s :::; K; 
Update the relevance weights Vis using (31); 
Compute D;j using (28); 
Update the partition matrix U(k) using (32); 
Update the centers using (34); 

Until( centers stabilize) 

4 Self-Organization of Oscillators Network (SOON) Algorithm 

(34) 

In [78], Frigui et al. introduced a clustering approach that combines concepts 

from clustering and synchronization of coupled oscillators. The algorithm is efficient, 

robust, unbiased to the cluster size, and can find an arbitrary number of clusters. 

Let ~ = {Yjlj = 1"" ,N; Yj E ffi'p} be a set of objects characterized by p 

attributes. Each object (Yj) is represented by an IF oscillator (OJ) characterized by 

a phase variable cPj, a state variable Xj, given by 

Xi = f(cPi), i = 1"" ,N, (35) 
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where 

(36) 

In (36), b is a constant, usually fixed to 2, and determines the concavity of f. When 

the phase of Oi, Xi, reaches the threshold one, it fires, resets to zero, and the phases 

of the other oscillators OJ (j =I=- i) get updates using 

(37) 

In (37), ti (cPj) is a coupling function. It depends on the similarity between the firing 

oscillator (Oi) and the oscillator being updated (OJ). In [78], the authors use the 

following coupling function 

(38) 

otherwise 

In (38), dij is the relative dissimilarity measure between Oi and OJ, CE and C1 are 

the maximum excitatory and inhibitory coupling respectively. If two oscillators are 

similar (i.e. dij < So), then the coupling is excitatory. However, if dij > So, then the 

oscillators are dissimilar and coupling is inhibitory. Thus, the parameter So is 

related to the resolution of the desired partitions. A small So would partition the 

data into a large number of small clusters, while a large So would partition the data 

into a small number of large clusters. 

The SOON algorithm is summarize below. 
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Self-Organization of Oscillators Network (SOON) Algorithm 

Initialize phases cPi randomly for i = 1, ... ,N; 
Repeat 

Identify next oscillator to fire = {Oi : cPi = maxf=l cPj}; 
Compute d, for J' = 1· .. N J' --I- i' ~J' , -r , 
Bring cPi to threshold & adjust other phases: 

cPj = cPj + (1 - cPi) for j = 1"" ,N; 
For all oscillators OJ(j =I i) Do 

Compute state variable Xj using (35) and (36); 
Adjust state variables using (37); 
Compute new phases: cPj(t+) = f-l(Xj(t+)); 

Identify synchronized oscillators; 
Update the parameters of the synchronized group; 
Reset phases of synchronized oscillators; 

Until (Synchronized groups stabilize); 

5 Self Organization and Visual Exploration of Large Data Sets 

In addition to clustering the data, SOON could be used to map the 

high-dimensional data to a one-dimensional phase variable that reflects the pairwise 

similarity among the data points. Thus, this algorithm could also be used to 

visualize data. In [79], the authors proposed a visualization algorithm that explores 

this property of SOON. In particular, the phase values were used as a 

one-dimensional projection of the data. To obtain a n-dimensional phase space, 

SOON could be run n-times while varying resolution and/or distance measures. 

For very large data, one-dimensional and two-dimensional phases of all data 

samples is too cluttered to reveal any useful information. Thus, the information 

must first me clustered into representative samples. This phase map of clustered 

points generates a general overview of the data, providing a global summary of the 

entire image database. The Self Organization and Visual Exploration (SOAVE) [79] 

algorithm visualizes high-dimensional data on a two-dimensional map as follows: 

1. Summarization: The SOON algorithm is used to cluster data into a subset of 
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representative points. The phases of the resulting synchronized oscillators 

provides for the initial projection. 

2. Mapping: The summarized data is allowed to self-organize for additional 

iterations at a different resolution or with a different distance measure to 

generate the second set of phases for two-dimensional space. 

3. Visualization: A two-dimensional map is generated from the sets of phases and 

presents the user with the relative spatial distribution of the clusters' 

representatives. 

4. Zooming: Zooming into a region of clusters requires a clustering algorithm 

(SOOND ) [79J that de synchronizes the phases. This approach explodes the 

elements within a cluster resulting in the re-clustering of the data as phases of 

dissimilar points diverge. 

D User Interfaces for CBIR 

Another main component of a CBIR system is the user interface. This 

component allows the user to initiate the query process and to visualize the 

retrieved images. In the following, we outline some of the common approaches. 

1 Query-by-Visual-Example 

Global query-by-visual-example (QBvE) is the most common interface mode 

in CBIR systems [9, 80, 81, 82, 83, 84J. In this mode, the user supplies a sample 

(e.g. an image) of what he/she is looking for and then the system retrieves items 

that are most similar to the submitted example. The main advantage of QBvE is 

that the user is not required to provide an explicit description of the image, which is 

instead computed by the system from the example image. A major drawback of this 
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approach is that it uses global features that cannot describe small objects within the 

image. Another problem in QBvE, known as the "Page Zero" problem [85], 

questions how does a user begin the search process without an example image. In 

other words, existing CBIR techniques are successful only if the user has a relevant 

starting point. Alternative visual browsing techniques (such as [86, 87]) help by 

providing an overview of the database but make sense for image search only if the 

goal is vague [5J. 

2 Query-by-Visual-Region 

The QBvE paradigm may not provide reasonable results when the focus of 

the search is a specific object or part of an image. Query-by-visual-region (QBvR) 

allows for more specific queries by letting the user specify which part of the image is 

the target. A QBvR retrieval system segments the images into regions (objects) and 

retrieves based on the visual similarity between them. Existing QBvR systems 

[17, 18, 88J perform an exhaustive search among regions in the database from a 

single example region. The major drawback with the QBvR approach is that image 

segmentation is a difficult problem, inevitably makes mistakes, and can cause some 

degradation in performance. Moreover, QBvR approaches are computationally 

expensive, difficult to implement, tend to be domain specific, and have the same 

"Page Zero" problem as QBvE. 

E Other Issues in CBIR 

1 Fusion of Multiple Sets of Features 

As image databases continue to increase in size and become more complex in 

content, it is becoming impossible to achieve high performance in retrieving visually 

similar images with a single feature set. As a result, diverse sets of features are 
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being used and combined to provide a more accurate retrieval. However, the task of 

effectively fusing the output of multiple descriptors has been overlooked by the 

CBIR community. Only methods that are based on distance scaling or normalization 

and simple list merging have been used [44]. In fact, the different features can vary 

significantly with respect to the number of attributes, the dynamic ranges, and the 

adopted distance measures. Thus, fusion of these features is not trivial and can have 

a significant impact on the overall performance of the CBIR system. 

2 Bridging the Semantic Gap Problem 

The performance of most CBIR systems is inherently constrained by the 

low-level features used to describe the content of the images; These low-level 

features cannot adequately express the user's high-level concepts, and as such give 

unsatisfactory results. This problem is referred to as the" Semantic Gap" [33, 34]. 

The semantic gap is the inability to reconcile high-level concepts as perceived by 

users and low-level features used to describe the content of the images. Through life 

experiences, humans gain knowledge that allows them to associate concepts with 

objects. Teaching a computer to make these connections, however, is a non-trivial 

problem. 

Current solutions to bridge the semantic gap can be categorized into three 

main approaches. The first one is based on image database categorization 

[89, 90, 91, 92, 93, 94, 95]. In this approach, the goal is to partition the image 

database into clusters of similar images. During retrieval, only clusters that are 

similar to the query image are searched. Thus, if images within each cluster are 

semantically similar, the retrieved images will also be semantically similar. Thus, 

considerable effort has been made towards effective clustering algorithms for this 

task. These algorithms attempt to learn relevant features for each category, and use 

29 



partial supervision information to guide the clustering process 

[96, 97, 98, 99, 100, 94, 101, 102, 103]. 

The second type is based on relevance feedback [104, 98]. For example, a 

typical image retrieval process begins by using the QBvE approach, wherein the 

user provides the system with an example image [105]. The system then retrieves a 

set of images that are visually similar to the given query. Then, the user is asked to 

select which returned images are relevant to their interests. This is usually 

accomplished by allowing the user to flag any number of returned images as either 

positive (relevant) or negative (irrelevant) [25, 106, 107, 108]. Iteratively, the 

algorithm continues by using the information obtained from the features of the 

current query, and factors in the given feedback information to adjust or guide the 

query tract to adapt to the user's perception. Examples of such guidance include 

using the relevance to shift the query in the feature space [25], learn or adjust 

feature relevance weights [106, 107], or attempt to predetermine relevance values for 

the remaining images in the database [108]. 

The third approach involves annotating the images and representing them by 

textual features to support text-based queries. While this could be done manually, 

it is tedious and not practical for large scale image databases. A viable alternative 

would involve automatic image labeling. Since our proposed approach falls into this 

category, in the following section, we outline few different methods that were 

proposed for this task. 

3 Image Annotation 

Image annotation has proven to be an important approach to bridge the 

semantic gap in CBIR systems. While no system can fully bridge the gap, 

experiments have shown that any step towards it can have a drastic improvement in 
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the accuracy of the CBIR. 

An example of the benefit of adding textual information to a CBIR query is 

shown in Figure 6. Here, the query image is shown in Figure 6(a) and the results in 

Figure 6(b) are retrieved using only visual features. While these results are visually 

relevant, there is a noticeable semantic difference between the query and the results. 

In Figure 6 ( c), semantic information is added to the query. Adding these labels to 

the query can improve the results significantly as shown in Figure 6( d). The success 

of this approach depends on the accuracy and efficiency of the annotation process. 

For instance, if the database contains few thousand images, then manually labeling 

the images is tedious, but feasible. But in most real world applications with vast 

databases, labeling elements quickly becomes unrealistic. Automatic image 

annotation is thus the only feasible approach to accomplishing the task. 

Automatic image annotation is not a trivial task. It cannot be accomplished 

with traditional pattern recognition techniques. When dealing with images, there 

are multiple problems in trying to use a classifier: (1) standard classification relies 

on labeled data for training and it is hard to collect large labeled data, (2) there are 

too many classes (typically in the 100's), (3) the image features are 

high-dimensional, (4) the values are continuous with no known range, and (5) the 

available training data may not be accurate. 

Different approaches to image labeling have been proposed. Some of these 

algorithms annotate images at the region level, others are global and annotate at 

the image level. Annotation at the image level involves finding words/labels that 

best describe the entire image. Region level annotation requires segmenting the 

image into objects, regions, or blobs, and annotating each region. Region level 

annotation allows for direct object searching and in most cases, produces higher 

31 



~-----~ ~----~/ 
V 

(a) 

"flower", "leaves" 

,------- ~----~/ V 
(c) 

"... , 

' . , .. ,. 

.I -:~""'-"'- -.! - - -

I"'~ ,. , - . 
. - , ~ - . 

.,.- . 
. - - -( 

'---------------- ---------------~ ---...r-
(b) 

"flower", "leaves" "flower", "leaves" "flower", "leaves" 

"flower" , "leaves", 
~bush", "ground" 

.- "'Y,:.·. -·, 

. . ., " 
' ''' t ' 

:?+F ";'t' / ... ..... ~ 
" - <il " .' •• ~ ;~~~~' 

"flower", "leaves", 
"grass", "bush" 

-.....,,-
(d) 

"flower", "grass" 
"barn", "field" ~ 

Figure 6. Illustration of the benefits of adding textual information to CBIR. (a) The 
query image. (b) The most similar 6 images using only low-level visual features . (c) 
Textual information is added to the query image. (d) The most similar images using 
visual and textual features . 

retrieval accuracy since what is inside the image can be better represented. While 

there are further divisions in approaches into unsupervised and supervised, only the 

unsupervised methods will be described, as supervised approaches are 

semi-equivalent to manual labeling and can become tedious as well. 

The main unsupervised approaches to image annotation are probabilistic, 

correlation based, latent semantic indexing, and data mining (clustering and 

association rule based). These approaches are outlined in the following sections. A 

few other approaches that do not fall into these are also discussed in the last 

subsection. 
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Probabilistic Approaches 

Probabilistic approaches model the data to estimate the probability 

distributions and the local relevances of the features. The modeling of the visual 

features in conjunction with their textual features provides a model for translating 

the feature from one modality to another. In the following, few of these approaches 

are outlined. 

In Duygulu et al. [38], the problem of image annotation is treated as a 

machine translation from one form (images regions) into another form (words). This 

model learns lexicons from an annotated training data set through a variant of the 

Expectation-Maximization (EM) [109] algorithm. These lexicons are then used to 

predict one representation (words) given another representation (image regions). In 

particular, a correspondence between the words assigned to an image and the 

regions representing the image can be learned. Annotation of a new test image 

consists of segmenting it into blobs, and choosing the word with the highest 

probability for each blob. 

Another annotation approach is proposed by Barnard et at. [37]. Here, a 

number of models that can calculate the joint distribution and correspondence of 

image regions and words are learned. The annotation models are used to describe 

the distribution of regions and words, and a separate set of models are used to 

establish correspondence. Multiple models are integrated to reveal more information 

than any individual one. The annotation models considered in [37] include a 

Multi-Modal Hierarchical Aspect Model and a Multi-Modal Latent Dirichlet 

Allocation. In the first model, nodes generate image regions using a Gaussian 

distribution and words using a multinomial distribution. Each word is assumed to 

have come from a node in a hierarchical concept tree which is coherent with the 

model for nouns and verbs adopted by WordNet [110]. The closer a node is to the 
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root the more clusters share it. Root nodes give more general words (e.g.sky) than 

leaf nodes (e.g. waves). An image (document) is modeled by a sum over the clusters 

and weighted by the probability that the document is in the cluster. 

In the mixture of multi-modal LDA model (MoM-LDA), each collection is 

modeled by a randomly generated mixture over latent factors. The outer plate is 

the repetition of I images, and each image has M blobs and N words. An EM 

algorithm [109] with variational E step calculates the maximum likelihood estimates 

of the Dirichlet, word multinomials, and Gaussian parameters. Co-occurrence of 

words and regions on a node can simulate correspondence between specific regions 

and words from the hierarchical clustering model. Lastly, weighted models provide 

for integrating correspondence and hierarchical clustering to strengthen the 

relationship between words and image regions. 

The translation model in [38] was extended by Jin et al. [111] to eliminate 

uncorrelated words from those generated through usage of WordNet [110]. 

Uncorrelated words refers to those that label an image during annotation and are 

irrelevant to the image. This is done by using various semantic similarity measures 

between keywords and combining these to make a final decision using 

Dempster-Shafer evidence combination [112]. Some of the similarity measures used 

are the Resnik Measure (RIK) [113], Jiang and Conrath Measure (JNC) [114], Lin 

Measure (LIN) [115], Leacock and Chodorow Measure (LNC) [116], and Banerjee 

and Pedersen Measure (BNP) [117]. Each measure depicts different independent 

relationships (evidence) between words that is utilized and combined to create 

hypothesis' in Demptster's Rule. A threshold then removes keywords from the 

annotation list for that image. 

Another probabilistic approach to image annotation is the Cross-Media 

Relevance Models (CMRM) [39]. This approach derives the probability of 
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generating a word given the blobs in an image in a simpler way. It does not assume 

a one-to-one correspondence between blobs and words in an image as the translation 

models. The CMRM assumes that a set of keywords {WI'" wn } is related to the 

objects represented by blobs {b1 ... bm }. A relevance model is the underlying 

probability distribution of an image I and contains all possible blobs and words that 

could appear in 1. The probability of observing a word W from the relevance model 

for I is estimated by the conditional probability P( W II). Since the actual relevance 

model is unknown, Jeon et oJ [39] estimate P( wlI) by either sampling repeatedly 

from the distribution or by picking n words with the highest probability. An 

alternative approach that uses a Continuous-space Relevance Model (CRM) was 

also introduced in [118]. 

The Coherent language models (CLM) [119] are closely related to the 

cross-media relevance models. These models exploit word-to-word correlations in an 

image to strengthen annotation decisions. This approach benefits from three 

advantages over previous models: 1) it can determine the annotation length, 2) the 

number of annotated image examples can be reduced through active learning, and 

3) it avoids the overfitting problem with the EM algorithm. Instead of predicting 

each annotated word independently, this model estimates coherent language models 

for a given image. In other words, the CLM treats the words annotating an image 

as a set, {w}, and attempts to maximize the conditional probability P({w}II). To 

avoid dealing with an exponential number of word sets (with respect to vocabulary 

size), the CLM computes word probabilities, 8 w , that determines the likelihood of 

each word to be used in the annotation. 

The coherent language model with flexible length (CLMFL) is introduced 

and utilizes the fact that the estimated language model is based on Bernoulli 

distributions. This model provides for annotations of different lengths and the 

35 



ability to predict this length. Adding an active learning strategy to the CLMFL 

model can allow users to annotate images with the least averaged word probability. 

This reduces the uncertainty in determining the right model. 

A different probabilistic image annotation approach has been proposed in 

[120]. In this approach, a two-dimensional multiresolution hidden Markov model (2D 

MHMM) is used to represent each concept. These models assign a likelihood value 

of the occurrence of an image based on the textual description of a concept. A high 

likelihood indicates a strong association and can be used to annotate new images. 

Fan et al. [121, 122] proposed a multi-level approach to annotate image 

components with relevant semantic concepts. Salient objects are used for image 

content representation and feature extraction. Support Vector Machine (SVM) 

classifiers are honed to detect salient objects, and finite mixture models (FMM) are 

used for concept interpretation. The optimal model structure is determined through 

an adaptive EM algorithm that does not require careful initialization, can take 

advantage of negative samples, and can escape local extrema by reorganizing the 

distribution. Salient objects from an image are classified into the best matching 

semantic image concept with the maximum posterior probability. 

In [123], a Latent Dirichlet Allocation (LDA) model is used for modeling 

associations between words and pictures. Three different annotation models were 

compared: the Gaussian-Multinomial Mixture Model, Gaussian-Multinomial LDA, 

and Correspondence LDA. 

Correlation Based Approaches 

Correlation approaches combine visual features with textual features and 

look for associations. These approaches tend to be fast and efficient, as modeling 

the data is not required as with probabilistic methods . 
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Wang et at. [124J and Pan et al. [125J use similar approaches to discover . 
correlations between visual features and keywords through a correlation-based 

translation table. In [124], blob-tokens are created through a K-means clustering 

algorithm [126J that performs weighted feature selection, and in [127J blob-tokens 

are created through clustering with the G-means algorithm [127J which can 

adaptively learn the number of tokens. Both approaches proceed by creating a 

weighted matrix that combines visual features and keywords. This matrix is then 

used to create a translation table that measures the association between a term and 

a blob-token by the co-occurrence counts. The method in [125J is expanded further 

to use singular value decomposition (SVD) [128J for suppressing noise in the data 

before learning the association. 

Another correlation based image annotation method uses Mixed Media 

Graph (MMG) to discover cross-modal correlations [129J. This approach represents 

all objects and attributes as nodes in a graph. Correlations are then discovered 

using a "random walk with restarts". This graph theory approach states that before 

a random walk chooses its next edge there is a probability it will go back to the 

beginning. These steady-state probabilities are then calculated to find the 

importance of node B with respect to node A. 

Latent Semantic Approaches 

Latent Semantic Indexing (LSI) [130J has been used mainly to index 

documents in text-retrieval. Cross-Language Latent Semantic Indexing (CL-LSI) is 

the technique of using LSI to retrieve queries in multiple languages where the 

queries themselves can be in different languages. The idea of CL-LSI was first 

presented by Landauer and Littman [131 J with French and English documents. In 

[132, 33, 34]' Hare et al. used a generalization of the CL-LSI to annotate images. 
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Their annotation however was not explicit. Unannotated images are simply placed 

in a semantic-space which can be queried by keyword. 

In [133], Yu et al. extended the LSI to take into account the targeted values 

in the training set as well as the inputs in multi-label informed latent semantic 

indexing (MLSI). This approach not only preserves the information contained 

within inputs but learns correlations between multiple outputs. Unlike normal LSI 

which is purely unsupervised, MLSI is a supervised LSI and could be extended to 

image annotation as with the CL-LSI. 

Another annotation model that has shown promising performance is based on 

Latent Semantic Analysis (LSA). Here, annotation is accomplished through finding 

the underlying semantic structures of words and image features in a linear Latent 

Space. For instance, in [42] Liu and Tang reveal these latent variables of words and 

visual features using Probabilistic LSA (PLSA). The authors have also extended 

this approach to use a Nonlinear Latent Space and capture the dependency of 

images and words using Image-Word Embedding (IWE). In [43], the authors 

compare PLSA to LSA, citing differences and benefits to both approaches. 

Data Mining Based Approaches 

Data mining techniques, and in particular Clustering and Association Rules, 

have been used to annotate images. In [134], Wang et al. used clustering to group 

similar visual tokens from images using a modified K-means algorithm. At each 

iteration, the algorithm determines which features are important to a given cluster 

and discards the remaining features. Then, using a method similar to the one 

presented in [125], keywords are linked to blob-tokens using a correlation table 

approach. Stan and Sethi [135] on the other hand, use multidimensional indexing to 

solve the high dimensionality and the non-Euclidean nature of the feature space. 
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Then, the primitive features and high-level concepts are mapped using IF-THEN 

rules using keyword rankings and cluster radius. 

Another data mining technique that has been used for image annotation is 

association rule mining. Association rule mining has been used traditionally in 

applications such as market basket analysis [136]. It attempts to capture interesting 

relationships between attributes, thereby enhancing the understandability of the 

data. Association rule mining has also been applied to image data [137, 138, 139]. 

However, they have not been fully exploited for the case of multi-modal data to 

learn relationships among the different modalities. 

Multiple instance learning (MIC) has also been applied to learn image 

annotation. For instance, in [140], Chen and Wang use his technique for region 

based image categorization. A collection of instance prototypes are learned that 

represent a class of instances more likely to appear in bags with specific labels. 

Every bag is then nonlinearly mapped to a point in the bag feature space and 

support vector machines are trained on this space. 
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CHAPTER III 

CLUSTERING AND FEATURE DISCRIMINATION 

As image databases continue to increase in size and become more complex in 

content, it is becoming impossible to achieve high performance in retrieving visually 

similar images with a simple feature set. As a result, diverse sets of features are 

being used and combined to provide a more accurate retrieval. However, this would 

impose additional requirements on several components of the CBIR system. For 

instance, in clustering, the different sets of features are not expected to be equally 

relevant in the different image categories. Consequently, irrelevant features can 

adversely affect cluster definitions. Thus, it is recommended to identify 

cluster-dependent feature-relevance weights. Unfortunately, most existing feature 

selection and weighting algorithms [141 J are not suitable for unsupervised learning. 

Recently, an algorithm performing Simultaneous Clustering and Attribute 

Discrimination (SCAD) was proposed (refer to section §ILC.3). SCAD is designed 

to search for the optimal clusters prototypes and the associated optimal relevance 

weight for each feature within a cluster. Two versions of SCAD were developed: 

The first (SCAD l , §II.C.3.3) balances between two terms in a compound objective 

function while the second (SCAD2,§ILC.3.3) minimizes a single discrimination 

exponent term. 

For high dimensional data, learning a relevance weight for each feature may 

result in overfitting. To avoid this, a coarse feature weighting approach, called 

SCADc [77J was proposed as an extension of SCAD l (see section §ILC.3.3). Instead 
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of learning a weight for each feature, the set of features is divided into logical 

subsets, and a single weight is learned for each of these subsets. For CBIR 

applications our initial experimentations have indicated that SCAD2 is more stable 

than SCAD1 . Since a coarse version of SCAD2 was not previously developed, we will 

first start by developing this algorithm and deriving the necessary conditions. To 

simplify notation, we will simply use SCAD to refer to SCAD version 2. Whenever 

we refer to the original version, we will explicitly mention that it is version 1. 

In this chapter, we adopt the SCAD algorithm and enhance it to cluster 

image features into more meaningful groupings. First, we propose a coarse extension 

of SCAD that assigns relevance weights to feature subsets. Next, the algorithm is 

extended to partition the data into the optimal number of clusters by interpreting 

concepts from the Competitive Agglomeration (CA) described in section §ILC.2. 

Then, different techniques to deal with prototype initialization, distance 

normalization, and annealing schedule for feature discrimination are proposed. 

A Simultaneous Clustering and Attribute Discrimination (SCAD) 

We assume that the p features have been partitioned into K subsets: 

F 51, F 52, ... ,F 5 K such that each subset F 5 s includes kS features. For CBIR 

applications, these subsets could include a set for color features, another for texture 

features, and yet another for textual features. Let dfj be the partial distance 

between feature vector Xj and cluster i using the 8th feature subset, and let V = [Vis] 

be the relevance weight for F 5 s with respect to cluster i. SCADc minimizes 

C N K 

J(B, U, V; X) = L L (Uij)m L (Visr (dfJ2, (39) 
i=1 j=l s=1 

subject to the constraints in (4) and (17). 

To optimize J with respect to V, we use the Lagrange multiplier technique 
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and minimize: 

where A = [AI, ... ,Ac]t are Lagrange multiplier constants. Since the rows of V are 

independent, the optimization problem above can be reduced to the following C 

independent problems: 

( 40) 

In (40), Vi is the ith row of V. By setting the gradient of li to zero, one can solve 

the system of equations 

ali (Ai, Vi) 
aAi 

for the relevance weights Vis and obtain 

Simplifying (43), Vis reduces to 

1 
Vis = ---------t ( i\, / Dik) 1/(q-1) ' 

k=l 

( 41) 

( 42) 

( 43) 

( 44) 

where Dis = 2..:;=1 (Uij)m (d:i ) 2 is the measure of dispersion for the ith cluster taking 

into account only the 8
th feature set and 2..:~=1 Dik is the cumulative dispersion of 

the ith cluster. This relation implies that the more compact the ith cluster is with 

respect to feature set 8 (smaller Dis), the higher the relevance weight, Vis will be for 

the 8 th feature. 
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The discrimination exponent q E (1,00) controls the feature discrimination 

among the different subsets. For large values of q, there is little or no 

discrimination. For small values, there is greater discrimination. 

Minimization of J in (39) with respect to U, subject to the constraints in (4), yields 

1 
( 45) 

where 
K 

dfj = I)Vis)q (dtj)2 (46) 
s=l 

is the total distance between Xj and cluster i computed from aggregating the partial 

distances and their weights. As recommended in [76], we let q = 1 when computing 

the fuzzy memberships, i.e., we replace (46) with 

K 

dTj = L Vis (dfj)2 . (47) 
8=1 

Minimization of J with respect to the prototype parameters depends on the choice 

of dfj. Since the partial distances are treated independent of each other (i.e. disjoint 

feature subsets), the objective function in (39) can be decomposed into K 

independent problems: 

C N 

Js = L L(Uij)m(ViS)q (dfj) 
2 

, for s = 1,··· ,K. ( 48) 
i=l j=1 

Each Js would be optimized with respect to a different set of prototype parameters. 

For instance, if dfj is an Euclidean distance, minimization of Js would yield the 

following update equation for the centers of subset s 

2:N ms 
. 1 UX· s J= ZJ J 

Ci = N m 
'\'. lU·· ~J= zJ 

The SCADc algorithm is summarized below: 
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Coarse Simultaneous Clustering and 
Attribute Discrimination Algorithm 

Fix the number of clusters C; 
Fix m, mE (1, (0); 
Fix the discrimination exponent q, q E (1, 00 ); 

Initialize the centers and fuzzy partition matrix U; 
Initialize all the relevance weights to 1/ K; 
Repeat 

Compute (dfj)2 for 1 :S i :S C, 1 :S j :S N, and 1 :S s :S K; 
Update the relevance weights matrix V using (44); 
Compute d~j using (47); 
Update the partition matrix U using (45); 
Update the centers using (49); 

U ntil( centers stabilize) 

B Case of Unknown Number of Clusters 

The SCADc algorithm described in the previous section requires that the 

number of clusters be specified a priori. However, it is not always possible to 

estimate this value, and the final partition can be sensitive to this value. To address 

this issue, we integrate the objective function of the Competitive Agglomeration 

algorithm (explained in §II.C.2) into the objective function of SCADc. The resulting 

objective function would combine the advantages of the CA and the SCADc 

algorithms. This algorithm (called SCADc-CA) minimizes 

C N KeN 2 

J (B, U, V; X) = L L (Uij) m L (ViS) q (dfj) 2 - a L [L Uij] , (50) 
i=l j=l s=l i=l j=l 

subject to the constraint in (4). 

In (50), C is an upper bound of the expected number of clusters. Minimization of 

(50) with respect to V yields the same equation of Vis as in SCADc (see (44)) since 

the new term does not depend on Vis' The same is true for determining the centers 

(see (49)). To optimize (50) with respect to U, we use the Lagrange multipliers and 
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obtain 

CN K C N 2 N C 

J(B, U X) = L I)Uij)2 L (Vis)q (dfj) 
2 

- a L [L Uij] - L Aj (L Uij - 1) 
i=l j=l s=l i=l j=1 j=l i=l 

An updating equation for the memberships Uij can be obtained by fixing Band 

solving 

K N 

:: = 2Uij L (Vijt (dfj) 
2 
-2a L Uit-Aj = 0, fori E {I, ... , C},j E {I, ... , N} (51) 

~ 8=1 t=l 

If we assume that the membership values do not change significantly from one 

iteration to the next, then (51) can be solved for Uij, yielding 

(52) 

In (52), 

(53) 

is the fuzzy cardinality of cluster i. Using (52), the constraint in (4), and solving for 

Aj, one obtains 

A = 1 - a L:~=l[Nk/ L:~1 (Vkj)q (dt) 2] 

) L:~=1[1/L:~1 (Vkj)q (dkj )2] 
(54) 

Substituting equation (54) in equation (52), we obtain the update equation for the 

membership of feature point Xj in cluster (3( 

Rearranging the terms, we obtain 

U,). = u FCM + u B1AS 
" Z) 2)' (55) 

where 

(56) 
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and 

(57) 

In (57), 

N = L~~l[l/ L~l (Vkj)q (dkj )2]Nk 

J Lf=l[l/ L~l (Vkj)q (dkj )2] . 
(58) 

The choice of 0: in (50) reflects the importance of the second term relative to the 

first term. We use the same scheme recommended by the authors in [71] to update 

0: in every iteration to balance the two terms. That is, we use 

""c ""N (U")2",,K (v .. )q (dS )2 
o:(k) = TJ(k)~i=l ~j=l c lJ ~s=l IJ ij 

Li=l[Lj=l Uijj2 

where 

TJ(k) = TJoexp( -kiT). 

(59) 

(60) 

In (60), TJo is the initial value, T the time constant, and k is the iteration number. 

C Initialization & Distance Normalization for SCADc-CA 

One issue when combining distances from feature subsets of variable lengths 

is that their values can have very different dynamic ranges. Thus, it is critical that 

the distances be normalized within SCADc-CA to avoid any bias that may be 

caused by the dimensionality of the feature set. In our application, we use the fuzzy 

c means algorithm (FCM) (outlined in section §ILC1) to obtain an initial partition 

of the data set. This algorithm, treats all features equally important and assigns a 

fuzzy membership value Uij to each point Xj in cluster i. 

Using these memberships, after few iterations of the FCM algorithm, we 

estimate the average distance for each feature subset s using 
N c 
LLUij x dfj 
j=l i=l 

D~vg = N C 

LLUij 
j=l i=l 
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where dfj is the partial distance of Xj to Ci with respect to the given feature subset s. 

U sing D~Vg, equations (39)- ( 48), (50) can be modified such that the partial 

distances are replaced by the normalized partial distance, i.e., 

- d~· dS. = _2J_ 
2J Ds 

avg 
(62) 

in every iteration. 

D Annealing Schedule for Feature Discrimination 

In [76], the authors have argued that the discrimination exponent, q, can 

have a significant influence over the feature subset weights. In fact, selecting a value 

too high can result in all feature subsets being equally weighted, while a value too 

low emphasizes just one subset as important. Through experimentation, it was 

determined that it is better to initially begin with equally weighted subsets while 

the centroids are drastically moving, then have the weights discriminate certain 

subsets per cluster later in the computation. This leads to using annealing schedule 

for the discrimination exponent, q'. Let Q M AX be the upper bound of q early in the 

algorithm, Q MIN be the lower bound of q at the end of the algorithm, and Q BREAK 

be the iteration that q' must reach QMIN. Then, q' is defined as 

{ 

Q (k) QMAX-QMIN ilk < Q q' = MAX - QBREAK' BREAK 

Q MIN Otherwise 
(63) 

where k is the current iteration. To translate this implementation into the existing 

equations, we simply let q = q'. 

The resulting SCADc-CA algorithm is summarized below 
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SCADc-CA Algorithm 
Fix the maximum number of clusters C = Cmax ; 

Fix m, mE (1,00); 
Fix FCM averaging counter 1; 
Fix the discrimination exponent parameters Q MAX and Q MIN, 

QMAX E (1,00), QMIN E (1,00), and QMAX > QMIN; 

Fix the discrimination exponent counter Q BREAK, 

QBREAK E (1,00); 
Initialize iteration counter k = 0; 
Initialize the centers and fuzzy partition matrix U; 
Initialize all the relevance weights to 1/ K; 
Compute initial cardinalities Ni for 1 :::; i :::; C using (13); 
Repeat 

Compute d2 (xj, f3i) = (dfj? using (1)-(3); 
Update the partition matrix U(k) using (6); 
Update the centers using (8); 
k = k + 1; 

Until(k > 1) 
Compute D~vg using (61); 
Repeat 

Compute q = q' using (63); 
Compute (dfj)2 = (dij / D~Vg)2 for 1 :::; i :::; C, 

1 :::; j :::; N, and 1 :::; s :::; K; 
Update a(k) using (59 and 60); 
Update the relevance weights Vis using (44); 
Compute dTj using (47); 
Update the partition matrix U(s) using (55); 
Update the centers using (49); 
Compute the cardinality Ni for 1 :::; i :::; C using (53); 
If (Ni < Ed discard cluster f3i; 
Update the number of clusters C; 
Update the prototype parameters; 
k = k + 1; 

Until(centers and prototype parameters stabilize) 
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CHAPTER IV 

UNSUPERVISED IMAGE REGION ANNOTATION 

The performance of most CBIR systems is inherently constrained by the used 

low-level features, and cannot give satisfactory results when the user's high level 

concepts cannot be expressed by low level features. In an attempt to bridge this 

semantic gap, few approaches that integrate low level visual features and 

user-defined textual keywords have been proposed [35, 36, 37]. Unfortunately, 

manually labeling each image by a set of keywords is subjective and labor intensive. 

Moreover, region labeling (as opposed to global image labeling) may be needed, 

which makes manual labeling more tedious. To address this issue, few algorithms 

that can annotate images/regions in an unsupervised (or semi-supervised) manner 

have been proposed in the past few years (refer to section §II.E.3). 

In this chapter, we describe our proposed approach to annotate images at the 

region level to bridge the semantic gap in our CBIR system. Figure 7 displays the 

over all architecture of our proposed CBIR (shown initially in Figure 3) where the 

image annotation components are highlighted. Our approach, called Thesaurus 

Based Image Annotation (TBIA), is based on learning associations between 

low-level visual features and high-level textual keywords through multimedia data 

mining. These associations are then used to construct a multi-modal thesaurus that 

relates keywords to visual profiles through frequently co-occurring patterns. In 

particular, we adopt the SCADc-CA algorithm, that was developed in the previous 

chapter, to perform clustering and feature weighting simultaneously for the purpose 
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of learning inter-modality associations. This clustering algorithm is used to identify 

representative profiles that correspond to frequent homogeneous regions. The 

feature discrimination process, embedded in the clustering, would identify the 

relevant features in each profile. Then, representatives from each cluster and their 

relevant visual and textual features are used to build a multi-modal thesaurus. This 

thesaurus could be used to facilitate many tasks such as auto-annotation, hybrid 

searching and browsing, and query expansion as will be demonstrated throughout 

this thesis. 

A Multi-Modal Thesaurus Construction 

1 Training Data Set 

We assume that a collection of images is available and that each image is 

annotated by few keywords. We do not assume that the annotation is complete or 

accurate. For instance, the image may contain many objects, and there is not a one 

to one correspondence between objects and words. This scenario is very common as 

images with annotations are readily available, but images where the regions 

themselves are labeled are rare and difficult to obtain. 

Fig. 8 displays three images annotated at the image level from our training 

collection. Some keywords, such as "grass" , can be clearly associated with color 

features. Others, such as, "house", may be associated with shape features. Other 

words may be associated with any combination of color, texture, and shape features. 

This information, if it could be learned, would improve the efficiency of image 

annotation and hybrid searching and browsing. 
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Figure 7. Highlighted architecture of the proposed CBIR system component to per
form unsupervised image annotation. 

2 Feature Extraction and Vector Representation of Images 

First , each image in the training set is segmented into homogeneous regions 

based on color and/or texture features. While various segmentation algorithms 

could be used, in this work each image is coarsely segmented by clustering. The 

initial segmentation of all images in the database is carried out offline and the 

computation time may not be an issue. However, for image queries presented to the 
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I Flowers; Garden; Grass I I Flowers; House; Tree 

Figure 8. Examples of image-level annotations that refer to different and not seg
mented regions in the image. 

CBIR system, segmentation must be carried out online at query time, requiring the 

segmentation algorithm to have a fast response. For this reason, instead of 

clustering every single pixel in the image, we extract one feature vector for a group 

of pixels in a fixed neighborhood. Moreover, we only use a simple feature that 

encodes the color histogram of the pixels in the neighborhood. 

After the feature extraction, the Competitive Agglomeration (CA) algorithm 

[71] (outlined in section §ILC.2) is used to group the feature vectors into clusters. 

Our choice of this algorithm is based on its computational efficiency and its ability 

to identify the optimal number of clusters for each image. Figure 9 displays three 

sample images segmented using the above described approach. As it can be seen, 

our segmentation is coarse and we identify only the large regions. 

After segmentation, each image region is described by standard visual 

features such as color, texture, shape, and a set of keywords. These features are 
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(a) (b) 

Figure 9. Examples of segmented images using the CA; (a) Original Images, (b) 
Coarsely segmented images. 

briefly outlined below. For a more detailed description, we refer the reader to the 

references. 

1. Wavelet Texture Descriptor: Each image is analyzed at different resolutions. 

The Haar filter bank is used to decompose the image into three scales [56]. 

This would result in a total of 10 components (approximation at scale three, 

and horizontal, vertical, and diagonal components at the three scales). Then, 
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the mean and standard deviation of the components are computed. This 

results in a 20-dimensional feature vector. We will refer to this feature set as 

FWTD. 

2. Edge Histogram Descriptor: The Edge Histogram Descriptor [54] encodes the 

structure of an image. First, simple edge detector operators are used to 

identify edges and group them into five categories: vertical, horizontal, 450 

diagonal, 1350 diagonal, and isotropic (non-edge). Then, a five bin histogram 

is used to represent the frequency of each edge category within each region. 

This results in a 5-dimensional feature vector. We will refer to this feature set 

as FEHD. 

3. RGB Color Histogram: The colors of all pixels within each region are 

uniformly quantized and represented by a histogram. We use a total of 64-bins 

and obtain a 64-dimensional feature vector. We will refer to this feature set as 

FHRGB. 

4. HSV Color Moments: The Mean, standard deviation, and skewness of the 

distribution of the pixels within each region in the HSV color space are 

computed. This results in a 9-dimensional feature vector. We will refer to this 

feature set as FMHSV. 

5. L UV Color Moments: The Mean, standard deviation, and skewness of the 

distribution of the pixels within each region in the L UV color space are 

computed. This results in a 9-dimensional feature vector. We will refer to this 

feature set as FMLUV. 

6. Shape: For each region, the eccentricity, orientation, area, solidity, and extent 

are calculated. The eccentricity is calculated by first finding an ellipse with 

the same second-moments as the region and then computing the ratio of the 
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distance between the foci of the ellipse and its major axis length. The 

orientation is defined as the angle in degrees between the x-axis and the major 

axis of the ellipse containing the same second-moments as the region. The 

area is defined as the actual number of pixels within the region. The area is 

normalized by the total number of pixels in the image so that images of 

different sizes are comparable. The solidity is defined as the proportion of 

pixels in the convex hull that are also in the region. The extent is defined as 

the proportion of the pixels in the bounding box of the region that are also in 

the region. It is computed as the Area divided by the area of the bounding 

box. These features are represented by a 5-dimensional feature vector. We will 

refer to this feature set as FSH p. 

7. Use-Provided Keywords: We use the standard vector space model with term 

frequencies as features [142]. Let {WI, W2, ... ,wp} be the set of all keywords 

used to annotate the image database. Then, for each image region, we use a 

binary vector where the ith element indicates the presence/absence of the ith 

keyword in annotating the image. Since our data set it annotated by 97 

keywords, this feature set is represented by a 97-dimensional feature vector. 

We will refer to this feature set as FTXT. 

Let {IX), ... ,I;2} be a kj dimensional vector that encodes the lh visual 
J 

feature set of region Ri of a given image. An image that includes n regions 

(RI' ... , Rn) would be represented by n vectors of the form: 

(i) (i) (i) (i) 111 , ... ,IIk
1
"" ,1 CI' ... ,1 Cke ' WI, ... ,Wp , i = 1 ... n. 

'-.,,-' , "V' I '--...-' 

visual feat 1 of Ri visual feat C of Ri Keywords 

Figure 10 illustrates this image representation approach. It should be noted 

here that since the keywords are not specified per region, they are duplicated for 

each region representation. The assumption is that, if word W describes a given 
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RI =>[COIor(l) Texture(l) Shape(l) Spatial (I) Grass Tree Wolf 
R2=> Color(l) Texture(l) Shape(l) Spatial(2) Grass Tree Wolf 
· . . . . . . . · . . . . . . . · . . . . . . . 

R, => Color') Texture(9) Shape(9) Spatial(9) Grass Tree Wolf 

Co\ori): Feature vector encoding color distribution of region Ri 
Texture(i}: Feature vector encoding textufO: of region Ri 

Figure 10. Representation of visual and textual features 

region ~, than a subset of its visual features would be present in many instances 

across the image database. Thus, an association rule among them could be mined. 

On the other hand, if none of the words describe Ri , then these instances would not 

be consistent and will not lead to strong associations. 

3 Learning Associations Between Visual Features and Keywords 

Developing a learning algorithm using the visual and textual features of the 

images is a challenging task. First, the training data is incomplete as the words are 

not specified for the different regions. Second, different types of features need to be 

extracted and combined. Third, the number of keywords is too large to treat the 

task as a standard classification problem where each word corresponds to one class. 

Last, different visual features are not equally important in characterizing different 

image regions. Highly relevant features for one group of regions may be completely 

irrelevant for another group. In this thesis, we propose using a data mining 

approach. 

Association rule mining [136J has been used traditionally in applications such 
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as market basket analysis. It attempts to capture interesting relationships between 

attributes, thereby enhancing the understandability of the data. Association rule 

mining has also been applied to image data [137, 138]. However, they have not been 

fully exploited for the case of multi~modal data to learn relationships among the 

different modalities. 

U sing the image representation described in the previous section, a large 

collection of images could be mined to extract associations between the different 

feature sets. For instance, using a subset of images similar to those in Figure 8, we 

can extract association rules of the form: 

"If color is green and texture is regular, fine, with dominant 

orientation at 900 then keyword is grass." (shape and spatial location features are 

not relevant). 

"if color is yellow and shape is round and location is top of image, then 

keyword is sun. (texture is not relevant) 

Using these type of rules, a multi~modal thesaurus can be built to: 

• Auto-annotate: e.g., for a given region, if its color is "green" and has 

specific texture properties, one can automatically label it "grass". 

• Perform hybrid search and browsing: The query can be expanded to 

include inter~modality associations and to include both visual and textual 

features. For example, if the user specifies" grass" as the keyword for 

searching, the search will also include the associated visual features. 

• Expand the query: The query can also be expanded to include 

intra~modality associations. For instance a yellow and circular region (sun) 

may be associated with "reddish" regions located on the top (sunset view). 

Thus, a query image that has the picture of the sun (yellow) may retrieve 

sunset images that are not similar in color (red). 
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Several algorithms could be used to extract association rules from the 

proposed data representation. However, due to the uncertainties in the 

images/regions representation (duplicated words, incorrect segmentation, irrelevant 

features, ... ), standard association rule extraction algorithms may not provide 

acceptable results. Our proposed approach overcomes these limitations by relying 

on the SCADc-CA algorithm described in the previous chapter. This algorithm is 

designed to search for the optimal clusters' prototypes and the optimal relevance 

weight for each feature of each cluster. The clustering component would be used to 

group similar regions and identify prototypical visual profiles. The feature weighting 

component would guide the clustering process to identify meaningful clusters with 

subsets of relevant features. We use the seven features (described in section 

§IV.A.2) as different feature subsets, and for each subset we use an appropriate 

distance measure In particular for FWTD FEHD FMHSV FMLUV and FSHP we use . , " , , 

the Euclidean distance (see eqn. (1)). For FHRGB we use the Quadratic distance (see 

eqn. (2)) and for FTXT we use the Cosine distance measure (see eqn. (3)). 

Clustering all image regions in the database would result in clusters of 

regions that show common visual and textual attributes. Within each cluster, a 

correlation can be established between the visual and textual features. This 

correlation is the principle behind the proposed multi-modal thesaurus and its 

ability to bridge the semantic gap. 

4 Multi-Modal Thesaurus Construction 

For each cluster, we use its visual prototype (closest image to centroid), the 

visual features of its centroid, the relevance weights for each feature subset, and the 

dominant keywords from the textual feature set to form a visual profile, Qi' In the 
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FTXT respectively. Formally, let CT, ... ,cf represent the centers of the feature 

subsets FS1
, ... ,FSK of cluster i, and let vl, ... ,vf represent the feature relevance 

weights of these subsets. The feature subsets of profile Qi are defined as 

and the relevance weights as 

QCs - s - 1 K i - ci ' S - ,..., , 

QV s = V S 
t t . 

(64) 

(65) 

The visual prototype of profile Qi, denoted Qf, is then defined as the closest image, 

l.e., 
N 

Q{ = Image (arg min D~), 
k=1 

(66) 

where Image(k) is the image of region R k , N is the number of images in the 

database, and 

D k = 2:K 
Qf" x dist(RL Q~s) 

t DB· (67) 
Q avg 

s=1 

In (67), R'k is the sth feature subset of region Rk . Finally, letting t represent the 

feature set that represents the keywords (i.e. FTXT ), the textual feature set for 

profile Qi is defined by 

Qf = c~. (68) 

The visual and textual profiles of all clusters constitute the multi-modal thesaurus. 

B Unsupervised Image Annotation 

The constructed multi-modal thesaurus could be used to annotate new 

unlabeled images. In the following, for clarity purposes, it is assumed that only one 

set of color and one set of texture features are used. Given a test image, it is first 

segmented into homogeneous regions using the CA algorithm following the same 

procedure used to segment the training images. Then, for each region, Rkl its color 
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feature, Rk, texture feature RL are extracted and compared to the profiles 

representatives using 

Dik = vf x dist(Rk' QD + vi x dist(RL QD, i = 1, ... ,C. (69) 

In (69), Qi and Q~ are the centers for the color and texture feature subsets of profile 

i, and vi and vf are their relevance weights. Based on the distances Dik and the 

distribution of the clusters, several ways could be used to annotate Rk and assign an 

evidence value to each label. In our approach, we use a fuzzy labeling approach. 

1 Fuzzy Membership Generation 

Each region Rk would be assigned a fuzzy membership degree in all profiles 

using: 

-(R ) _ 1 
P,1 k - ",c (D ID )2/(m-l)' 

Dp=l 1k pk 

(70) 

where m is a weighting exponent that controls the degree of fuzziness. 

The process of assigning fuzzy memberships to different image regions in the 

different concepts is illustrated in Figure 11. Figure l1(a) displays a test image to 

be annotated. First, the image is segmented into homogenous regions. Figure 11 (b) 

displays the three regions. Then, for each region, visual features are extracted (see 

section §IV.A.2), and a distance is computed to all profiles in the multi-modal 

thesaurus. After mapping the distances to memberships (using eqn. (70)) and 

sorting, the top three profile matches for each region are selected. Figure 11 ( c ) 

displays the top three matching profiles for each image region. Below the 

representative region of each profile we display the membership value for the image 

region in that profile. Above each image profile, we display the top annotations 

(with their respective centroid feature values). For instance the first region can be 

assigned to one profile without ambiguity (p, = 0.999). Using this profile one could 

annotate this region using the keyword" Flower". The third region on the other 
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hand, is not representative of any of the profiles and is assigned a low fuzzy 

membership to multiple clusters. Using the keyword feature subsets of the best 

matching profiles, we coulod label this region as "grass", "tree", "flower", " leaves", 

... etc. with various degrees. In the next section, we outline our approach to 

combine the membership degrees in all profiles and the labels of these profiles to 

annotate image regions . 

Best Profile J Best Profile 2 Best Profile 3 

Car(I.5I7), Skn'.461),_ 

\.'---~y~-~ '---~y~-- --------------~ --v--
(a) (b) (c) 

Figure 11. Illustration of the image segmentation and annotation. (a) Image to be 
annotated. (b) The three regions of the image in (a). (c) Best three profiles matched 
to each region. 

2 Keyword Weighting 

The keyword components of the prototypes, i. e. c',!!, are biased by more 

frequent words. Frequent words tend to be present in more clusters, and their 

feature values may not reflect their actual relevance within the cluster. This is a 

well-known problem in text document classification and categorization. The 

standard approach to overcome this bias is to weigh the term frequencies by the 

inverse document frequencies (IDF) [142]. Using a similar approach, we first define 
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the inverse cluster frequency (lCP) of word j as 

where Cj is the number of clusters that include the word Wj with a significant 

frequency. 

(71) 

Then, to reduce the bias of the more frequent words, the word frequencies in 

each cluster i , i.e. components of cr, are scaled by the ICP using 

C'f = ICP x cf. 

Finally, the evidence value of assigning word Wj to region Rk is computed using 

c 
EVid(wJ) = L J-ti(Rk ) x C0 

i=l 

(72) 

(73) 

In Figure 12, we illustrate our unsupervised annotation on six images. For 

each image, we show the boundaries of its region and we only show the top word 

and its evidence. 

Figure 12. Segmentation and annotation of six images. The regions' boundaries are 
displayed as white lines, and the top word with its evidence is shown for each region. 

C Experimental Results and Validation 

In this section, we validate our proposed TBIA approach to learn image 

semantics and compare it to existing systems using a large image collection. The 
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data set used for this experiment consists of 9,264 labeled images from the Corel 

collection. Each image in the training set is manually labeled by 1 to 7 keywords. A 

total of 97 keywords were used which provide a global description of the images and 

are not explicitly associated with specific regions. Table 1 displays a list of all 

keywords. This data set is defined such that there are at least 50 images labeled by 

each keyword. Each image is coarsely segmented by clustering its color distribution 

as described in section §IV.A.2. Segmentation of all the training images resulted in 

a total of 40,051 regions, averaging to 4.32 regions per image. Each region is 

represented by the sets of visual and textual features outlined in section §IV.A.2. 

The image regions, represented by the seven feature subsets , are clustered 

using the SCADc-CA algorithm. In this application, finding the optimum number of 

clusters (C) is not critical as long as it is large enough to avoid lumping different 

profiles into one cluster. Here, the results are reported when C = 400. Table 2 

displays the parameters of the data set and other parameters used for clustering. 

Sample results of this clustering step are illustrated in Figure 13. For each 

cluster , few regions (within each image, the other regions are masked and have a 

gray color) are displayed and for each image the keywords used to annotate it are 

shown. As it can be seen, SCAD has succeeded in identifying meaningful clusters of 

visually similar regions. Moreover, each cluster includes few consistent and dominant 

keywords that can provide a semantic description of the images assigned to it. 

Table 3 displays the relevant feature weights for the four clusters displayed in 

Figure 13. The more dominant and consistent a feature across the assigned regions 

is, the higher the associated weights. For instance, the cluster" Sky" has a relatively 

high relevance weight for the color features and a low weight for the structure 

feature. Similarly, for the "Flower" cluster, a higher relevance weight is assigned to 

the texture feature. This is because the color of the different regions assigned to this 
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TABLE 1 

List of words used to label the training images 

antelope cloud helicopter road 
ape column hippo rock 
badger cow horse sand 
balloon crocodile leaves sculpture 
beach deer leopard seal 
bear desert lion sheep 
bird dirt lizard skunk 
bison dog llama sky 
boat donkey manatee smoke 
branch elephant mane snake 
bridge fence miscellaneous snow 
building field monkey squirrel 
bus fire mountain stone 
bush fish mushroom sun 
butterfly flower night tiger 
cactus foot ballfield opossum train 
car forest owl tree 
castle fox people turtle 
cat frog person wall 
cheetah giraffe pig water 
cherry tree goat plane whale 
chicken grapes porcupine wolf 
chipmunk grass rabbit zebra 
city ground raccoon 
cliff groundhog rhino 

cluster is not consistent. 

In Figure 14 the extracted visual profiles of the clusters displayed in Figure 

13 are displayed. For each profile, we show the image of the closest region (Qf) 

along with a visualization of the features of its centroid. For the FHRGB color 

features , a 64-bin histogram is displayed. For the FMH SV and FMwv color moments, 

the mean is displayed as an image patch. For the FEHD subset, the edge histogram 

of the five components indicating the proportion of horizontal, vertical, diagonal, 

anti-diagonal, and non-edge pixels in the region are shown. For the multi-resolution 
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TABLE 2 

Experimental Constant Values used in Application of SCADc-CA 

Category: Data Set 
Definition Constant Name Constant Value 
# Images I 9,264 
# Keywords W 97 
Max Keywords per Image m 7 
A vg. Image Height r . 236 
A vg. Image Width c 384 

Category: SegmentatIOn (CA) 
Maximum # Clusters Cmax 10 
Total Number Regions Created N 40,051 

Category: SCAD 
# Feature Subsets K 7 
Maximum # Clusters C 400 
# Initial FCM Iterations I 10 
Discrimination Exponent Max QMAX 10 
Discrimination Exponent Min QMIN 3 
Discrimination Exponent Stabilization QBRE AK 30 
Fuzzifier m 1.1 
CA Initial Value rJ 0.01 
CA Time Constant T 10 

TABLE 3 

Feature relevance weights for the sample clusters shown in Figure 13. 

Cluster FHRGB F M H SV FMLUV F
WTLJ F b 'HLJ F

SHY FTX:L 

"Sky" 33% 12% 13% 14% 14% 7% 8% 
"Flower" 6% 11% 10% 33% 22% 9% 9% 
"Tiger" 12% 18% 16% 21% 14% 11% 8% 
"Plane" 41% 15% 15% 9% 6% 6% 8% 
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"Flower" "Flower" 

'TIger", "Grass" 

"Sky" Cluster 

"Sky", "Bird" 

"Flower" Cluster 

"Flower" "Flower" 

"Tiger" Cluster 

'TIger", "Grass" 
'Water" 

"Plane" Cluster 

"Sky", "Plane" 

"Flower" "Flower" 

"Butterlly" 

"Plane", "Sky" "Plane", "Sky" "Plane", "Sky" "Plane", "Sky" "Helicopter" "Plane", "Sky" 

~~~[iFl~~ 
Figure 13. Representative regions from 4 sample clusters. For each cluster few regions 
assigned to it are shown (The gray part of the image includes other regions not 
assigned to this cluster). The keywords above each image are those used to provide 
a global image annotation. 

wavelet features, the average values of the different wavelet components are 

displayed as bars, and on each bar, the variance of the corresponding components is 

indicated. For the shape features , the values of the five components are listed. For 

the textual features, the three dominant components are listed. Finally, the 

relevance weight of each feature set is shown. 

The visual profiles correlate features from different modalities. For instance, 

66 



using the first profile in Figure 14, it can be deduced that: "if the color is bluish and 

the texture is smooth, then the label is sky". Similarly, using the second profile, one 

can deduce that: "if the color is pinkish and there are some fine edges (high 

resolution), then the label is flower". 

In addition to the inter-modality correlation, the clusters identified by 

SCADc-CA can reveal intra-modality correlation. For example, the visual features 

of the "tiger" and "butterfly" in cluster three of Figure 13 are highly correlated. 

Also, the visual features of several "sky," "water," and "snow" clusters are 

correlated. Similarly, from the keywords assigned to the" Tiger" and" Plane" 

clusters in Figure 14, the words "sky" and "plane" and the words "grass" and 

"tiger" are highly correlated. 

1 Comparative Analysis 

To validate the proposed annotation method, two aspects need to be 

evaluated: how accurate is the algorithm in labeling images and how does it 

compare to existing methods. 

A 4-fold cross validation on the data set is performed to determine how 

accurate the algorithm is, resulting in 6,948 training and 2,316 testing images per 

fold. The test images are automatically annotated by various state-of-the-art 

methods [40, 41, 39, 143]. Then the labeled images are used to determine the word 

accuracy and the overall accuracy of the labeling approach. 

Let NU (w) be the set of images containing the true keyword (labeled by user) 

w. Let N A ( w) be all the images containing the label w, generated by a labeling 

algorithm, within the top five global image labels. The accuracy ( w) is then defined 
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as 

(74) 

and the overall method accuracy as 

L~=l accuracy ( w) 
accuracy = M . (75) 

We compare the accuracy of our proposed approach (TBIA) with those generated 

by the following algorithms. 

• Image-to-Word Transformation (IWT): This approach, proposed by 

Mori et al. [41] is a simple method that correlates image regions with 

keywords. First images ate partitioned into block regions using a uniform grid. 

Then the visual features of the regions are clustered and the likelihood 

conditional probability is estimated by accumulating the word's frequencies in 

each cluster. Finally, the query image regions are compared to clusters and 

their likelihoods combined to find plausible words. 

• Cross-Media Relevance Model (CMRM): In [39], the joint distribution 

of regions and words are learned. This distribution represents the cross-media 

relevance model and defines the underlying probability distribution of an 

image. The relevance model contains all possible regions and words that could 

appear. From these distributions, the regions corresponding to each test image 

are then used to generate words and associated probabilities. Each test image 

is therefore annotated by a vector of probabilities for all keywords. 

• Pair-wise Constrained Clustering Based Annotation (PCCBA): In 

[143], Rui et al. presented a labeling approach that uses constraint based 

clustering. Their approach is motivated by the fact that image regions with 

different semantic words but similar appearance may be easily grouped during 
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clustering due to a sparse feature space. To overcome this problem, they 

impose some constraints on the process of clustering. This approach associates 

a cost with violating a constraint between pairs of regions. These constraints 

are derived by considering the language model underlying the annotations 

assigned to training images. Annotation is then performed through a greedy 

selection and joining algorithm that finds independent sub-sets of region 

clusters and employs a semi-naIve Bayesian model to compute the posterior 

probability of words given those independent sub-sets. 

The accuracy of each word using the four considered algorithms is displayed 

in Figure 15 along with the frequency of that word in the data set. As it can be 

seen, the IWT and the PCCBA methods both perform well for frequent words. 

However, the TBIA and CMRM outperform on the lesser frequent terms and across 

the entire database on average. For clarity, words in Figure 15 that are not found by 

all methods are discarded. In Table 4 the overall accuracy of each system is shown. 

The results for TBIA in Figure 15 vary with words based on their respective 

frequency. The frequent words are presented more in the clustering and, as such, 

have a higher correct percentage. Additionally, there are also some words that are 

simply un-predictable; they are either never used or always used in the wrong region. 

Our TBIA approach has been shown to achieve a higher overall accuracy in 

image labeling and identify lesser frequent terms than other state-of-the-art 

approaches. The advantage of the TBIA is not only in its approach to association 

mining through the multi-modal thesaurus, but in utilizing a better clustering 

algorithm with feature relevance weights. Through assigning fuzzy memberships to 

different image regions, our approach does not require an accurate segmentation and 

allows multiple clusters to affect the outcome of the labeling. The addition of the 

inverse cluster frequency assists this approach in overcoming the bias problem of 
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frequent keywords appearing through clusters. This common problem in text 

document classification is not addressed in most image labeling systems. 

TABLE 4 

Accuracy of the four labeling methods averaged over all keywords. 

Method TBIA IWT CMRM PCCBA 
Accuracy 28% 13% 23% 12% 

D Conclusions 

In this chapter, we presented an unsupervised approach that extracts 

representative visual prototypes from large collections of images through a process 

of clustering and unsupervised feature selection. This approach creates visual 

profiles corresponding to frequent homogenous regions that are associated with 

keywords. To accomplish this, manually annotated images are segmented into 

homogeneous regions. Then, the regions are combined with the image level 

annotations and clustered into categories of regions that share common attributes. 

Clusters' representatives and their parameters are used to create profiles linking 

low-level image features and high-level concepts. 

The second component of our approach uses the multi-modal thesaurus to 

automatically annotate segmented regions. This part is accomplished through two 

steps. First, an un-annotated image is segmented into homogeneous regions. Then, 

fuzzy membership functions are used to label new regions based on their proximity 

to the thesaurus entries. These annotated regions can then facilitate textual region 

based searches, or be aggregated into image level annotations. We showed that our 

approach outperforms state-of-the-art methods on its ability to determine accurate 

annotations with infrequent annotations. Thus, our approach is more reliable when 
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the database is very large, and only few labeled samples are available. 

In addition to summarizing the large number of regions by few visual 

prototypes, we showed that the identified clusters could be used to reveal inter- and 

intra-modality correlations. In particular, the inter-modality correlation could be 

used to extract associations between visual profiles and textual keywords. These 

associations, along with the cluster-dependent feature relevance weights, could be 

used to build a multi-modal thesaurus that could serve as a foundation for 

inter-modality translation, and for hybrid navigation and search in content-based 

image retrieval. For instance, a textual query using the terms" grass" could be 

expanded to include the associated visual features. Thus, allowing the user to use 

keywords to query unlabeled images. In the following chapters, we will show how 

these properties can be exploited to develop a CBIR that uses hybrid query and 

navigation. 
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Figure 14. Visual profiles of the clusters in Figure 13. The six feature sets are shown 
with their representative regions. The FHRGB is shown as a 64-bin histogram. The 
FMHSV and FMwv moments are displayed as their mean color. The FEHD is shown 
as a 5-bin bar plot representing the various angles. The FWTD is shown with the 
mean and standard deviation of each frequency bank. The F8HP feature lists the 
five values. Finally the dominant keywords in the cluster are shown as FTXT (User 
Provided Keywords). To the right of each feature set, we show its relevance weight . 
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Figure 15. Comparison of the annotation accuracy using the proposed method and 
three other different annotation algorithms. 
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CHAPTER V 

FUSION OF MULTI-MODAL FEATURES FOR IMAGE 

RETRIEVAL 

As image databases continue to increase in size and become more complex in 

content, it is becoming impossible to achieve high performance in retrieving visually 

similar images with a single feature set. As a result, diverse sets of features are 

being used and combined to provide a more accurate retrieval. However, the task of 

effectively fusing the output of multiple descriptors has been overlooked by the 

CBIR community. Only methods that are based on distance scaling or normalization 

and simple list merging have been used [44]. In fact, the different features can vary 

significantly with respect to the number of attributes, the dynamic ranges, and the 

adopted distance measures. Thus, fusion of these features is not trivial and can have 

a significant impact on the overall performance of the CBIR system. 

In this chapter, we present the component of our CBIR system that addresses 

the aforementioned issues. This component is highlighted in Figure 16. It includes 

two efficient and effective methods for fusing the retrieval results of the multi-modal 

features. The first method is based on learning and adapting fuzzy membership 

functions with the distribution of the features' distances. These memberships are 

then used to aggregate the results of the different features. The second technique is 

non-linear and is based on the discrete Choquet integral. 
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Figure 16. Architecture of the proposed CBIR system with the component that 
performs multi-modal querying and retrieval highlighted. 

A Feature Descriptors 

For global image retrieval purposes, features need to be extracted at the 

image level (not at the region level as in the previous chapter) . In our CBIR system, 

each image is described by standard visual features that include color, texture, and 

a set of automatically labeled keywords. These features are outlined below. For a 

more detailed description, we refer the reader to the references. 
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structure of an image. First, simple edge detector operators are used to 

identify edges and group them into five categories: vertical, horizontal, 450 

diagonal, 1350 diagonal, and isotropic (non-edge). Then, the image is divided 

into 16 sub-images and local, global, and semi-local edge histograms are 

generated. This results in a 150-dimensional feature vector. We will refer to 

this feature set as FEHD. 

6. Textual Keywords: Using the multi-modal thesaurus, learned as described in 

the previous chapter, each image is segmented and its regions are labeled by 

the proposed TBlA algorithm. Since our dictionary includes 97 words, the 

TBlA Generated Keywords (TGK) feature would include 97 dimensions. Each 

component is the sum of evidence (computed using eq. (73) ) of the 

corresponding word across all image regions. This results in a 97 -dimensional 

feature vector. We will refer to this feature set as FTGK. 

To illustrate the need for fusion of different sets of features, the performance 

of the individual features is analyzed. Figure 17 displays the precision vs. recall 

curves for the six features defined above. These curves are generated using a 

database of 10,000 images from the Corel collection, partitioned into 100 pre-defined 

categories. The definition of these categories will be defined in section §V.C. For 

each category, we select 10 images randomly and use them as queries. For each 

query, we vary the number of retrieved images from 10 to 75 and compute the 

precision and recall values. Then, the results of all 1000 queries are averaged and 

displayed in Figure 17. As it can be seen, the performance of the different 

algorithms can vary significantly. Even though it is easy to rank these features 

based on their average performance, this does not mean that a given feature (e.g. 

FCSD ) is consistently better than all other features. For instance, in Table 5, one 

sample image is displayed for each case where one of the features has the largest 
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number of relevant images among the 50 retrieved images. It is interesting to note 

that there are few instances where even the FHTD , which has a poor average 

performance for the used image collection, can retrieve the largest number of 

relevant images. The textual descriptor (FTGK
) also has a relatively low 

performance. This is because the annotation process is completely unsupervised and 

thus, is not very accurate. For instance, for the third and fifth images in Table 5, 

the FTGK feature did not retrieve any relevant images in the top 50 images. ·This is 

because these query images were not annotated correctly. This usually occurs if the 

image segmentation is poor and/or the constructed multi-modal thesaurus does not 

include words that can describe the image. The above observations emphasize the 

need to effectively fuse the results of the different features to take advantages of 

their strengths without being affected by their weaknesses. 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

o~--~--------~~--------~--------~--------~----------~ 
0.02 0.04 0.06 0.08 0.1 0.12 

Figure 17. Precision/Recall curves of the six individual feature sets 
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TABLE 5 

Sample query images and the number ofrelevant images (among the top 50 retrieved) 
for each feature. 

26 2 7 18 21 

30 13 22 23 24 

3 3 11 6 4 o 

24 10 47 20 15 

8 2 7 17 31 0 

13 14 11 24 10 45 

B Multi-Modal Feature Fusion 

1 Distance Mapping 

For each feature, we learn a fuzzy membership function that maps the 

distances to the [0, 1] interval. The basic idea is to assign high membership values 

(close to 1) to distances that are relatively low and low membership values to 

relatively large distances. These membership functions could be designed based on 

the distribution of the distances within each feature using a small set of training 

Images. 

For simplicity, we use a piecewise linear function to .model the memberships 

79 



functions as illustrated in Fig. 18. This function is characterized by three points: A, 

B, and C. These points are learned for each feature k using a set of training images 

based on the inter-category feature distance distributions. Let Mkc be the n x n 

pairwise distance matrix for all training images in category c, and let Mkc be the 

sorted distance matrix. Let 

",n ",n/2+1 MS ['][P] 
'\'C L,j=l L,p=n/2-1 ki J 

(3 - L...t~=1 3xn 
k - C ' 

and 

(76) 

(77) 

(78) 

In the above equations C is the number of image categories, and n is the number of 

training images in each category. In other words, A, B, and C correspond to the 

category averages of the distances of the three closest images, the three images 

ranked at the middle, and the three furthest images respectively. The membership 

function f-lk(d) of feature k, is then defined as 

1 if d < Cik 

1+~(d-Ci ) if Cik s: d < 13k 
f-lk(d) = 

Qk-(3k k 

0.5 + ~(d - 13 ) 
(3k -'Yk k if 13k s: d < rk 

0 otherwise 

During retrieval, the function f-lk ( dk) would be used to map the partial 

distance (using feature set k) between the query image, q, and any image j in the 

database to a membership value in the [0, 1] interval. 
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Figure 18. Piecewise linear membership function, I-li(di ) used to map the distances of 
feature set i into membership values. A, B, and C correspond to the averages of the 
distances of the three closest images, the three images ranked at the middle, and the 
three furthest images respectively. 

2 Feature Relevance Weights 

The different features are usually not equally important. Ideally, the 

importance of each feature depends on the location of the query image in the 

feature space and on the user 's preferences. Thus, relevance weights for the features 

should ideally be updated dynamically using a relevance feedback mechanism. Since 

our proposed CBIR system does not involve feedback, only a global degree of 

worthiness is estimated for each feature. In particular, a weight , Wfi, is assigned to 

each feature , Fi , based on its relative performance. For instance, the area under the 

precision/recall curves could be used to estimate the feature relevance weights. 

3 Feature Fusion 

The features ' memberships values and their relevance weights could be 

combined using several methods. In this chapter, we present two distinct 
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approaches. The first one is linear, and is based on ~ simple weighted combination. 

The second one is non-linear and is based on the di$crete Choquet integral. 

Sum of Weighted Fuzzy Memberships 

The aggregated confidence assigned to each i.rJnage j in the database that is at 

a distance di(q,j) from the query image is compute<!l using 

K 

ji(j) = L f-Li(d(q, j)) x' Wi' 

i=l 

(79) 

In (79), K is the total number of features to be com~ined. We will refer to the fusion 

using the above equation as the Sum of Weighted F~zzy Memberships (SWFM). 

Discrete Choquet Integral 

Choquet integral based fusion [144, 145, 1461 involves a nonlinear 

aggregation of algorithm confidence values. The aggregation operator is defined by 

the discrete Choquet integral with respect to a fuzzy measure. The Choquet 

integral aggregates confidence values by computing a weighted average of their 

sorted values. The weights are determined by a fun¢tion of the fuzzy measure which 

depends on the ordering of the confidence values. 

Using standard notation in this area, a fuzzy imeasure is defined as follows: 

Definition 1 Let X = {Xl, ... , xn} be an arbitrary s~t. A set function g : 2x ---+ [0, 1] 

that satisfies the following requirements is called a fuzzy measure if 

1. g(0) = 0, g(X) = 1 

2. A, B c X, and A c B, then g(A) ~ g(B) 

3. if {Ad is an increasing subsequence of subsets, of X, then 

82 



A fuzzy measure is a Sugeno measure (or a Ar fuzzy measure) if it satisfies the 

following additional condition for some A > -1 

4. VA, B c X with A n B = 0 

g(A U B) = g(A) + g(B) + Ag(A)g(B) (80) 

The value of A can be uniquely determined for a finite set X by solving 

n 

(A + 1) = II (1 + Ag( {Xid )). (81) 
i=l 

The value g( {Xi}) is called the density of the measlJire, and is interpreted as the 

importance of the single information source Xi. 

Let X be a set, g a fuzzy measure, and h : X -----+ [0, 1] be a function where 

h( x) denotes the confidence value of x. The Choquet integral of h which respect to 

the fuzzy measure g can be defined as 

where Al< = {x I h( x) ~ a}. If X is a discrete set, the Choquet integral can be 

computed as follows 

n 

Cg(h) = L [h(Xi) - h(Xi-l)] g(Ai ), (82) 
i=l 

U sing our CBIR context, the feature confidence function JL( x) will be used as 

the h( x) function, and the feature relevance weights, Wi, will be used as the 

importance of the single source of information Xi, i.e., g(Xi)=Wi. 

4 Hybrid Query and Query Expansion 

The multi-modal thesaurus and the proposed feature fusion methods allow for 

hybrid querying, query expansion, and concept refi:qing in a simple and natural way. 
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Hybrid querying allows the use of profiles that associate low-level features 

and concepts in the multi-modal thesaurus to more accurately represent the user's 

perception of the query. In creating a hybrid query, the user first selects a query 

that may include both images and keywords. The keywords are treated as an 

independent feature set and its retrieved results are fused with those obtained with 

the other visual features. 

An extension to hybrid querying is query expansion (when concepts are 

unknown) and concept refining (when features are unknown). Query expansion 

matches the low-level features in the query to thesaurus profiles and retrieve the 

most relevant concepts. These concepts are converted to a textual feature vector 

and appended to the original query. Concept refining consists of taking the user's 

keywords query and expanding it by finding the best matching profile(s). Then a 

query of low-level features is created and is used to expand the original textual 

query. Concept refining can result in multiple queri¢s being sent and their results 

being combined and ranked for one final set. 

To prepare the image database for the use of hybrid querying and retrieval, 

all the images in the database are labeled offline using the unsupervised image 

annotation technique described in the previous chapter. 

C Experimental Validation 

For this experiment, we use the same 9,264 images used in section §IV.C for 

training. In particular, these images were used for learning the multi-modal 

thesaurus, the mapping of the different distances to fuzzy membership functions, 

and the aggregation weights of each feature set. An additional 10,000 images from 

the Corel collection were used for testing and evaluation. This set is partitioned into 

100 categories with 100 images in each category, based on the Corel folders in which 
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they originated. For each category, we use all 100 images, even if they are not 

homogeneous. As a result, the ground truth of this ~ollection is not accurate and 

the overall performance may be low, and not representative of the actual 

performance of the different features. Thus, only relative performance will be 

emphasized in the analysis of the results. To generate the queries, 10 images from 

each category were randomly selected and used excl~sively for testing. The 

remaining images were used to populate the database. 

1 Hybrid Query and Query Expansion 

First, the performance of the additional high.;level feature is evaluated when 

the textual feature set, FTGK, is used to expand the query image. That is, we 

simulate a scenario where the user specifies a query image and retrieves similar 

images without being aware of the semantic labels 31ssigned to the query image or to 

the other images in the database. That is, the initial query, which contains only 

low-level visual features of the query image, is expanded to include the 

automatically generated textual features. In other words, a query that includes 

low-level features only is transformed into a hybrid query that includes both visual 

and textual features. For now, the partial results of all individual features (five 

visual and one textual) are fused using a simple distance scaling method. For each 

query image, the distances generated by each featu}1e are scaled within a fixed 

interval, (e.g. [0,1]), and the fusion is simply the sum of the scaled distance. 

Figure 19 displays the precision vs. recall curve when only visual features are 

used and when the visual features are expanded to included the textual features. 

These curves were generated by varying the number of retrieved images from 10 to 

75 and recording the number of correctly retrieved images. The results are averaged 

over all of the 1000 query images (10 images per category selected randomly). As it 
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Figure 19. Recall and precision of visual only features versus a hybrid query of visual 
and textual using query expansion. The results are averaged over the 1000 test images. 

can be seen, the additional textual features can improve the performance of the 

CBIR system significantly. 

To illustrate the advantage of the textual features further , we select two 

query images and display the images retrieved by each method. The results are 

displayed in Figure 20 and Figure 21. In these figures, the first image is the query 

image, and the remaining 19 images are sorted in an increasing order of their total 

distances. For both figures, the hybrid query method retrieved more relevant 

images. In fact, most of the retrieved images (especially the butterfly image) do not 

share the same low-level features. They were retrieved because they were labeled 

correctly using words such as "butterfly" , " leaves" , "flowers", and " grass" . 
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(a) Query Visual Features Only 

(b) Query Expansion (Visual Features + Automatic Annotation) 

Figure 20. Sample query image where query expansion improves the results signif
icantly. The first image is the query image. The others are the top 19 retrieved 
images, where X indicates that the image is from the same category, and thus is rele
vant. Most of the retrieved butterfly images do not share the same low-level features 
but they are labeled by the same set of keywords. 

2 Fusion of Mult iple Feature Sets 

The results of the proposed fusion methods are compared with those obtained 

using two approaches commonly found in CBIR based on distance scaling or 

normalization and distance ranking. In the scaling method, for each query image, 

the distances generated by each feature are scaled within a fixed interval, (e.g. 

[0,1]). The fusion of the different feature is simply the sum of the scaled distance. In 

the ranking method, the distances generated by each feature are ranked in 

ascending order. The fusion is computed as the sum of the individual ranks . This 

method will be referred to as the sum of ranked distances. 

To compute the fuzzy measures for the Choquet integral fusion, first the 

densities of the individual features are computed. For each feature, the area under 
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(a) Query Visual Features Only 

(b) Query Expansion (Visual Features + Automatic Annotation) 

Figure 21. Sample query image where query expansion improves the results signif
icantly. The first image is the query image. The others are the top 19 retrieved 
images, where X indicates that the image is from the same category, and thus is 
relevant. Labeling by the correct keywords allows the retrieval of images missed by 
the low-level features. 

the precision/recall curve to estimate these densities is used. A relatively more 

reliable feature would have a larger area, and thus, would be assigned a larger 

density value. The values of these densities, computed using eqn. (80) and the 

curves in Figure 17, are shown in Table 6. 

For the linear fusion , the results are evaluated when the different features are 

equally weighted (i.e., wi=l , for all i) , and when the different features are weighted 

using the weights in Table 6 (i.e., Wi=gi). 

The precision/recall values, averaged over the 1000 test query images are 

displayed in Figure 22. In this figure, the performance of the best individual feature 

is shown as a reference curve. First, we note that all fusion methods can improve 

the results significantly. Second, of all fusion methods, the sum of the ranked 
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distances method has the worst performance. This is due mainly to the fact that 

this approach assigns integer ranks to the individual features and ignores the 

relative values of the distances. In other words, it does not take into account 

distances that are clustered or the possible large gaps in the sorted distances. 

The other fusion methods have comparable results at high recall values. That 

is, when a large number of images are considered, these methods retrieve comparable 

number of relevant images. However, at a higher precision, when fewer images are 

considered, the Choquet-based and the sum of weighted fuzzy membership fusions 

have better performance. This means that these methods do a better job at ranking 

the relevant images. This is mainly due to the weights (or densities) assigned to the 

different features based on their average performance on a training set. 

Even though some of the fusion methods have comparable average 

performances, their results on individual query images can vary significantly. In 

Figure 23 and Figure 24, the closest 9 images to two sample queries using three 

fusion methods are shown. In Figure 23, the fusion based on the sum of weighted 

memberships outperforms the other methods, while in Figure 24, the fusion based 

on the Choquet integral outperforms the other methods. The difference between 

these methods is more significant if more images are ranked and displayed. 

TABLE 6 

Feature relevance weights of the six individual feature sets determined through pre
cision/recall used in fusion. 

Feature F CSD F SUD FHTD F WTD F1'lHD F TGK 

W f 0.238 0.220 0.118 0.167 0.164 0.165 
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Figure 22. Precision/Recall of the proposed fusion method (Sum of weighted fuzzy 
memberships) and the standard sum of scaled distances. The performance of the best 
individual feature (FCSD) is shown as a reference. 

3 Subjective Evaluation 

The precision/recall curves on fixed categories can provide limited 

information on how a retrieval method should perform. To truly assess the 

performance of a retrieval system some form of user satisfaction needs to be 

measured. In this section we describe our subjective experiment that was designed 

to provide a quantitative measure on the user's level of satisfaction for several query 

Images. 

For this experiment, a more realistic data set is simulated containing 55,000 

Corel images with many overlapping categories. From the 55,000 available images, 

25 are randomly selected as query images. Four different retrieval approaches will 

be analyzed and compared in this experiment . The first one is a standard CBIR 
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(a) Fusion based on sum of weighted fuzzy memberships 

(b) Fusion based on the discrete Choquet integral 

( c) Fusion based on the sum of scaled distances 

Figure 23. Sample query image where the fusion based on the sum of weighted 
memberships outperforms the other methods. The first image is the query image. 
The others are the top 9 retrieved images, where X indicates that the image is from 
the same category, and thus is relevant. 

method that uses the sum of scaled distances (SSD). The second approach is the 

sum of weighted fuzzy memberships (SWFM). To compare the results of the SSD 

and fusion approach, all the features in the retrieval are used except the semantic 

information (TGK). To compare the effect of text , and in particular hybrid 

91 



(a) Fusion based on sum of weighted fuzzy memberships 

(b) Fusion based on the discrete Choquet integral 

( c) Fusion based on the sum of scaled distances 

Figure 24. Sample query image where the fusion based on the Choquet integral 
outperforms the other methods. The first image is the query image. The others 
are the top 9 retrieved images, where X indicates that the image is from the same 
category, and thus is relevant. 

querying, we manually labeled each of the 25 queries. These labels are compared to 

the automatically generated labels of the images in the database. This additional 

textual feature is added and all 6 feature sets are fused using the SWFM (" SWFM 

with text"). This approach permits all users of the experiment to have the same 
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textual feature and results. The final method of retrieval is trivial and examines 

what would happen if just random images are retrieved, thereby justifying the need 

for a CBIR system. 

For each query, the top ten images from each of the four approaches are 

retrieved and stored. A user is shown the results of all algorithms at the same time 

for one query. Figure 25 displays a snapshot of our user interface. The query image 

is on the left of each row and the retrieved images per algorithm are beside it. To 

prevent any prior knowledge from influencing the user's preference, the algorithm 

results are randomly placed on different rows (i.e. Alg A for the last query may be 

Alg B in the next query). The interface also guarantees that if any images are 

present in multiple rows (approaches can return the same top images to the same 

query), they will receive the same rating. The available choices for the query~result 

pairs are: "Poor", "Minimal, "Average", "Reasonable" , and "Good". No 

instructions are given to the user, so the definitions of these choices are purely 

opinionated based on the user's understanding of image retrieval systems. 

Figure 26 shows the overall user satisfaction for each query per algorithm for 

the 67 users that participated in this evaluation. This value is calculated as a 

weighted query precision, where the weight is the match value assigned. Except for 

one of the 25 queries, both fusion methods outperform SSD, in most cases by 20%. 

In query 24 the SSD shows higher user satisfaction then SWFM, even though both 

still fall within the" minimal match" boundaries. For this query adding semantic 

information allows the fusion to jump to an "average match" range, above SSD. In 

general the fusion with text either matches or does better then fusion without text. 

In Figure 27, where he user satisfaction is averaged over all 25 query images, both 

fusion methods clearly outperform SSD and all methods are better then random 

which was expected. The overall algorithm averages are shown when only five 
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QUERY 
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Figure 25. Screen shot of the Subjective Test Online Interface. 

images are retrieved versus ten to determine the level of precision significance in the 

initial five. As Figure 27 shows there is almost a 10% increase in user satisfaction 

for SWFM and SWFM with text when only the first five results are examined, while 
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only about a 5% increase for the SSD. This phenomenon is attributed to the fusion 

methods returning images with better ranks, as Figure 22 suggested they should. 
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Figure 26. Average Subjective Test Results for Individual Queries. 
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Figure 27. Overall Average User Satisfaction for Algorithms, a) Using Top 10 Images 
to Query and b) Using Top 5 Images to Query. 

As part of the anonymous registration for the subjective test, users had to 

indicated their level of image retrieval experience (i.e. Inexperienced, Average User, 
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Knowledgeable, and Expert) . Figure 28 shows the overall user satisfaction when the 

experienced users results are separated from the inexperienced. Here experience is 

defined as "knowledgeable" and "expert". Interestingly enough, the experienced 

users satisfaction is approximately 5% lower on all approaches then the 

inexperienced. We attribute this to the face that a knowledgeable user maybe more 

critical of the results and using the full range of possible satisfaction choices, 

whereas an inexperienced user may tend to use just" poor match" or "good match" . 

Subjective Test Result Overall Averages, by Experience 
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Figure 28. Overall User Satisfaction Classified by Experience. 

These results confirm that even with a very large set of data (we are 

retrieving 0.018% of available information), the proposed fusion approaches and 

especially fusion with semantic information can considerable outperform the 

standard method of combining multiple features. 

D Conclusions 

In this chapter, we presented a generic approach to fuse the outputs of 

multiple features for CBIR. Our approach is based on mapping the distribution of 
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the distances of each feature to a fuzzy membership value, and assigning a degree of 

worthiness to each feature based on its average performance. The memberships and 

the feature weights are then aggregated to produce a confidence that could be used 

to rank the retrieved images. Two aggregation methods were presented and 

evaluated. The first one is linear and is based on a simple weighted combination. 

The second one is non-linear and is based on the discrete Choquet integral. Both 

approaches are computationally efficient and involve only simple multiplication and 

summation of the outputs of the individual features. The Choquet integral involves 

additional sorting of the individual outputs which is not a significant task if only 

few features are used. Thus, both methods could be used to fuse the results in a 

real-time mode. 

The proposed CBIR system was validated and compared using a set of 10,000 

pre-categorized images. Standard MPEG-7 features and a textual set of feature 

extracted automatically using our image annotation approach are used. It was 

shown that the system can improve the overall ranking of the retrieved images 

significantly and thus, provides a higher precision, especially at low recall values. 

Our CBIR system was evaluated further using a larger set of 55,000 generic 

color images by analyzing the user's response to the retrieved images. The 

subjective test proved that our proposed CBIR system outperforms other systems. 

Currently, our CBIR system is trained globally using simple membership 

functions and a set of training images. It is possible to integrate a relevance feedback 

component into the CBIR system to adapt the fusion parameters. In particular, the 

user's feedback could be used to adjust the parameters of the membership functions 

and to adjust the degree of worthiness assigned to each feature. 
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CHAPTER VI 

REGION-BASED IMAGE RETRIEVAL 

Most existing CBIR systems are based on global image features and have 

limited capabilities because they cannot capture local variations of the image 

properly. To overcome this deficiency, region-based image retrieval (QBvR, see 

section §II.D.2) has been proposed. Rather than deploying global features over the 

entire content, QBvR segments images into a number of homogeneous regions, 

which ideally should correspond to objects, and extract local features for each 

region. QBvR allows the user to search for images containing objects similar to 

those in a reference image. This object-level representation is intended to enhance 

the ability of capturing as well as representing the focus of the user's perception of 

image content. The main limitations of QBvR is that image segmentation is not a 

trivial task and image segments do not usually correspond to objects. Moreover, 

searching with multiple reference regions is less obvious to solve, and 

computationally is much more expensive. 

Another issue in existing CBIR systems is known as the "Page Zero" problem 

[85]. This questions how can the user begin the search process without an example 

image. In other words, these systems assume that the user has a relevant starting 

point, which may not be always valid. In this case, alternative visual browsing 

techniques can help by providing an overview of the database. The "Page Zero" 

problem is more critical in QBvR as the query segments may come from different 

images. 
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To address the "Page Zero" and the computational efficiency problems in 

QBvR, Fauqueur et. al. [147, 148] proposed an approach that allows the user to 

perform mental image search by formulating a boolean composition of region 

categories. In this method, all images are segmented and their regions are 

categorized through clustering. One region (closest to cluster center) is selected to 

represent each category, and these regions are presented to the user to initiate the 

query process. The user can compose a boolean expression of region representatives. 

The search process is performed through the use of inverted tables of the region 

category labels, and thus, is very efficient. This QBvR system is unique in letting a 

user say" I want images that contain regions similar to these, and not similar to 

these". One limitation of the Fauqueur's approach is that a large number of images 

could be retrieved and these images are presented to the user without any sorting. 

Moreover, this system relies on visual features only. This is despite the fact that 

recent research has shown that the inclusion of automatically generated textual 

features, even if they are not perfect, can improve the results of CBIR systems 

significantly [35, 36]. This is because visual similarity is weakly correlated with the 

measures of similarity adopted for image comparison [149], and using text as an 

additional feature has the advantage of evaluating image similarity at a higher level 

of abstraction, providing better generalization. 

In this chapter, we build on Fauqueur's mental image search application, 

enhancing it with recent advances in bridging the semantic gap for increased user 

satisfaction. This extension allows the user to formulate hybrid queries by selecting 

reference image regions and/or textual keywords that should (or should not) be 

included in the target images. This QBvR process is naturally facilitated by the 

boolean composition, and exhaustive search is not required. The highlighted section 

in Figure 29 shows the architecture of the region based image retrieval approach in 
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our CBIR system. 

Figure 29. Overview of the proposed CBIR system component to perform region 
based image retrieval. 

A Hybrid Region Indexing 

We propose expanding Fauqueur's mental image search [147, 148] by learning 

a multi-modal thesaurus (see section §IV.A) and integrating textual keywords in the 

indexing and retrieval processes. We use the Thesaurus Based Image Annotation 
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(TBIA) method [150] previously presented to learn image semantics in an 

unsupervised way. This approach has the advantages of being computationally 

simple, assigning labels with soft confidence values, and more importantly, assigning 

labels at the image region level. 

The visual profiles of the identified region categories will be used to provide 

the user with a visual summary of the image database content. That is, they will be 

used to construct "page zero" of the QBVR system. The user can formulate a query 

by selecting regions that should and/or regions that should not be included in the 

retrieved images. To retrieve relevant images efficiently, we use an indexing scheme 

that combines techniques used in the classic text-based information retrieval with 

techniques used in [148] for visual information retrieval to facilitate hybrid query 

and retrieval. 

First, we introduce few indexing tables to provide associations between 

images, region categories, and keywords. Let Cl(1) be a table that links an image I 

with all region categories that contain one of its regions. Similarly, let I C (C) be the 

inverted table of Cl(1) which lists all the images that have at least one region 

assigned to category C. For the textual keywords, we first annotate the images 

using the learned thesaurus. Each region of each image is annotated based on the 

proximity of its visual feature to the prototypes in the thesaurus [151]. Then, we 

create indexing tables for the annotating keywords. Let TC (W) be the set of images 

that contain regions annotated with word W, and let Y (W) be a set of learned 

synonyms to W (including the word W itself). 

Since the region clustering is not perfect, and since the user may have only a 

vague idea of what he/she is looking for, we expand the indexing scheme by 

implementing a range-query mechanism which includes the neighbors of a category. 

In [148], the authors define the neighbor category of category Cq as the set of 
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categories Cj such that 

In (83), N is the total number of region categories, Pq and Pj are the prototypes 

(feature vectors of the centroids) of categories Cq and Cj respectively, and '"'( is a 

fixed range radius threshold. When the user selects a region category, Cq , all 

categories within Nf (Cq ) will also be considered. 

(83) 

The definition of Nf(Cq ) in (83) makes sense only when the clusters are well 

defined, have spherical shapes, and the centroids are good representatives. However, 

this is rarely the case for generic image databases where images are represented by 

high-dimensional feature vectors, and where boundaries between image categories 

are fuzzy. To overcome this limitation, instead of using (83), we define Nf(Cq ) using 

the distribution of all the regions within a category instead of a single representative 

point. In particular, we let 

(84) 

where T is the total number of image regions in the database, and UqiE[O, 1] is the 

fuzzy membership of region i in category q. These membership values are generated 

by the fuzzy clustering algorithm used to categorize the regions. Using this fuzzy 

similarity definition, two categories are similar if most regions have similar 

membership degrees in the two categories. Using (84), we create a fifth indexing 

table, N(C), to implement the range query. For each category Cq , this table 

includes a sorted list of all similar categories. 

B Retrieval by Boolean Composition 

The learned multi-modal thesaurus constitutes the query interface. This 

interface consists of iconic images of the regions' representatives and a list of 
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keywords. The user can easily formulate queries using the visual prototypes, the 

textual keywords, or a combination of both. Figure 30 displays a snapshot of our 

interface. 

This feature allows you to composttion quel)l into a hybrid 
quel)l which includes textual Below are the automatically 
alIDotated labels for the region selected. Using the interrace you can modify 
Ihese labels for this region or your quel)l. (Close when finished) 

Add Database Labels Current Quel)l 
(Double Click to Add) (Double Click to Remove) 

antelope 

f" ape .. , sky 

badger 
balloon 

beach 
bear 

hird 
bison 

boat 
branch 
bridge 1-;-

Figure 30. Snapshot of the Region Query Interface. 
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1 Query by Boolean Composition of Visual Prototypes 

This mode allows the user to formulate queries such as: "Find images that 

include regions similar to these ones but with no regions like these ones". Using the 

visual interface, the user selects positive and/or negative region categories. Let the 

Positive Query Categories, PCQs={ CpqI , ... ,CpqM }, represent the set of regions 

that the user has selected to be included in the target images. Similarly, let the 

Negative Query Categories, NCQs={CnQll ••• ,CnQR }, represent the regions that the 

user has selected to be excluded. Each of the categories included in PCQ and NCQ 

would be expanded using its neighboring categories. Using the IC inverted tables, 

the system retrieves images that satisfy 

(85) 

where 
M 

SQ = n [ U IC(C)] , 
i=l CEN7(Cpq;) 

and 
R 

SNQ=U[ U IC(C)]. 
i=l CEN7(Cnq;) 

2 Query by Boolean Composition of Keywords 

In this mode, the user specifies a set of keywords that should and/or should 

not be included in the target images. These keywords could be specified from a list. 

They could also be extracted automatically from the labels assigned to the region 

categories selected by the user (as illustrated in Figure ??). In this thesis, we report 

the results using the latter method. Let W C ( C q) be the set of words that annotate 

the query category Cq . Using the indexing tables TC(W) and Y(W), and the 

neighbor expansion of Cq , the system retrieves images that satisfy 

M 

TQ = n [ n U TC(z)]. 
i=l WEWC(N7(Cpq;)) ZEY(W) 
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We should note that, for simplicity, (86) includes only the set of positive query 

categories. This equation could be easily expanded to include the negative set, 

NCQ, as well. 

3 Query by Hybrid Boolean Composition 

Equations (85) and (86) could be easily combined to retrieve images that 

satisfy both visual and textual conditions. One simple way to achieve this is to 

retrieve images that satisfy 

(87) 

C Ranking of Hybrid Boolean Composition 

A drawback in the Fauqueur approach [147, 148] is the inability to sort the 

results when a large number of images are retrieved. We propose a method for 

sorting the returned images after the result set is defined. This is equivalent to 

having a query image and comparing it to a smaller list, S~esult' of filtered images 

using a normal CBIR approach. Since our image database is greatly decreased 

through the boolean composition approach, computational complexity is not 

dramatically increased. In this method, the query image is the union of the regions 

from the PCQs (as if they were from one image), and the query mode is a hybrid 

query utilizing the expanded labels available. For now we use the simple Sum 

Squared Distances (SSD) approach to determine the overall similarity. However, 

more effective methods could be implemented using feature membership, 

categorization feature weights, and feature fusion methods [152] as outlined in the 

previous chapter. Let 

M '"""' ,""",K + 1 (dS )2 
D2 = " (L.JPER(k,j) L.Js=l Vks pk ) V· S' 

J ~ IR(k,j)1 1 J E result· 
(88) 
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where j is an image in S;esult, Vks is the relevance weight of feature s in category k 

(identified during clustering with SCAD), M is the number of PCQs, and K is the 

number of visual features (K + 1 is if we include the textual feature). R( k, j) is a 

function that returns the set of regions in j that are contained in N'Y (OpQk)' 

In (88), D; will return distances representing how close an image in S;esult is 

to the original mental query. This ordering could be used to reduce the list of 

retrieved images, or to simply allow the user to focus on the first few images in the 

list. 

D Experimental Results 

For this experiment, the 9,264 images from section §IV.C were used to create 

the multi-modal thesaurus. An additional 4,000 Corel images were used for testing 

and evaluation. Each image is coarsely segmented by clustering its color 

distribution. The Competitive Agglomeration (CA)[71] was used to cluster each 

image into an optimum number of regions (as outlined in section §IV.A.2). 

Segmentation of all the test images resulted in 17,514 regions. Each region is then 

characterized by the a set of standard descriptors defined in section §IV.A.2. 

The 17,514 image regions were clustered using SCAD with 0=200. Figure 31 

displays a sample of 20 region representatives. 

To illustrate the behavior of the proposed system, we assume that the user 

selects two positive and two negative query categories. These categories are shown 

in Figure 32. Here, it can be assumed that the user is interested in retrieving images 

that contain a horse or a deer on grass but not flowers. Using only the visual 

features of these categories and their neighbors (expanded using (84)), and using 

(85), the system retrieves 671 images. Using this setting, our system behaves similar 

to Fauqueur's mental image search system [148]. Next, we use the labels assigned by 
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Figure 31. 20 samples from the 200 Category Representatives 

the TBIA annotation algorithm (refer to chapter §IV) , construct boolean 

compositions of keywords (using (86)) , and retrieve images that satisfy the boolean 

expression in (87). In this case, the number of retrieved images reduces to 183, 

without loosing many relevant images. In Figure 33, we compare the precision of 

querying with and without textual features for the most frequent categories among 

the retrieved images. As it can be seen, using the automatically generated region 

labels increases the precision of the relevant categories (e.g., cats, horses, deer, etc.) 

and reduces the precision of the irrelevant images (e.g., buildings, cars, foliage, etc.) 

In a second experiment, we select 30 different queries and for each one we 

compute the precision when the number of retrieved images is varied from 10 to 70 

by an increment of 10. For each query, we compare the results of four region-based 

image retrieval implementations; The original Fauqueur approach, visual features 

only using our fuzzy neighborhood, hybrid approach using visual and textual 

107 



(a) Positive Query Categories (b) Negative Query Categories 

Figure 32. Positive and Negative query categories selected by the user to formulate a query. 
Here, the user is looking for images that contain horse/deer on grass but no flowers. 
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Figure 33. Comparison of the precision values for the query regions in Fig. 32 with and 
without textual features. 

features , and the ranked hybrid using eqn. (88). The average precision values are 

shown in Figure 34. As it can be seen, each of our additions to the region-based 

CBIR improves the results significantly. The addition of the fuzzy neighborhood 

slightly improves the Fauqueur method, especially as more images are retrieved. 

This results from both methods not ranking their results, so the more images 

returned the greater the influence of the fuzzy association on the result set. 

In the hybrid approach, as it can be seen, when the textual features are 

added to constrain the visual features , they do filter out many irrelevant images. 

The final addition of ranking the hybrid results improves the precision/ recall 

dramatically, especially when fewer images are returned to the user. 
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Figure 34. Comparison of the precision values when querying with and without textual 
features, and when using the fuzzy neighborhood and ranked hybrid methods. The values 
are averaged over 30 queries. 

E Conclusions 

In this chapter, we proposed an efficient region based image retrieval system 

that indexes and retrieves images using both visual and textual features. Our 

system segments all the images in the database and categorize their regions into 

groups of similar regions. To integrate high-level semantic features into the boolean 

composition of region categories, we use our thesaurus based image annotation 

algorithm to label image regions. The representative regions and their labels are 

then presented to the user who can formulate a query using a combination of 

positive and negative categories. This way, the user can formulate hybrid queries by 

selecting reference image regions and/or textual keywords that should (or should 

not) be included in the retrieved images. The keywords could also be implicitly 

selected as those used to label the reference regions. The search process is performed 

through the use of inverted tables of the region category labels, and thus , exhaustive 

search is not needed. The multi-modal features could be processed in parallel or 
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sequentially, where one modality could be used as a filter for the other modality. 

Our approach builds on a previously developed system [148]. In the worst 

case scenario our region based image retrieval system will perform equal to this 

approach. The advantages of our additions are in removing the spherical assumption 

in determining neighborhoods, especially with high-dimensional data. Using the 

fuzzy membership approach allows the distribution of all regions within a category 

to affect the results, and allows multiple regions to belong to multiple categories. 

The modification of the SNQ allows for a more meaningful user query to be 

formed. In this instance, the user excludes regions similar to their NCQ's, however 

the Fauqueur constraint on the intersection of the NCQ's (effectively removing fewer 

images) is not present. Additionally textual information is added to support hybrid 

region based query. These results are then ranked in a novel way to display the 

closest images matching the user's desires without compromising system efficiency. 

In this chapter, we have illustrated our approach when textual features are 

extracted from the labels assigned to the query regions and were used to constrain 

the visual features. We have shown that these additional features can filter out 

many irrelevant images and thus, improve the precision of the system. Other 

possible scenarios include allowing the user to specify keywords and using features 

from one modality to rank the images retrieved by another modality. 
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CHAPTER VII 

SEMANTIC VISUALIZATION AND NAVIGATION 

In the previous chapters we presented the to query-by-visual example at a 

global and region level for our CBIR system. However, there are cases where the 

user does not have a clear idea of what he or she is searching for. These users have 

no specific aim other than to find interesting things. For this reason, many CBIR 

systems incorporate a browsing and navigating interface. These systems organize 

and present the entire database of images to the user for browsing and navigation. 

Visual browsing techniques such as those in [86, 87] provide an overview of the 

database, but are practical only when the goal image is vague [5] and the domain of 

the image database is broad. 

As image databases become increasingly large, it is not conceivable to browse 

the entire database at once; however, an overview of the entire database is desired. 

In this regard, the image library must create a set of images representative of the 

images located within. In order to summarize a database effectively, most 

visualization applications cluster solely based on the visual content of the images. 

This constrains the navigation, thereby introducing the semantic gap; "As long as 

the gap is there, use of the content-based retrieval for browsing will not be within 

the grasp of the general public as humans are accustomed to rely on the immediate 

semantic imprint the moment they see an image [5]." 

Additionally, in order to effectively visualize high dimensional data, each 

point needs to be projected into a two or three-dimensional space. Techniques such 
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as Principal Component Analysis (PCA) [153], Singular Value Decomposition 

(SVD) [154], Kohonen Self Organizing Feature Maps (SOFM) [155], and 

Multi-Dimensional Scaling (MDS) [156] have been used for this purpose. However, 

these projection approaches are not easily scalable and require the entire data set to 

be loaded into memory. 

In this chapter, we present the navigational component of our CBIR system 

that addresses the aforementioned issues. In addition to completing our CBIR 

system, we also address the existing browsing issues; Scalability and the semantic 

gap. We present the Graphical Text Interface (GTI) that visualizes 

high-dimensional multi-modal data for browsing and navigation in a 

two-dimensional platform. This approach provides a platform for dynamic updating 

that can account for both visual and semantic information. This component is 

highlighted in Figure 35. The clustering of the content is performed using the SOON 

algorithm [78] discussed below. The GTI can search online in realtime, actively 

adapt to different resolutions7, reorganize each axis independently, and perform 

centroid-free clustering to reduce the effect of the curse of dimensionality [157]. 

A Self Organization and Visual Exploration of Large Multi-Modal Data 

Sets 

We have adopted the SOAVE algorithm (refer to section §ILC.5) to 

summarize and visualize our large multi-modal data collection. In particular, we 

have modified the following components: 

1. Distance Measure: A common problem associated with most prototype-based 

clustering algorithms is that their performance degrades as the dimensionality 

of the data increases. For instance, using a centroid-based algorithm to cluster 

our data collection (in a n-dimensional space) may lead to poor 
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Figure 35. Overview of the proposed CBIR system component to visualize high
dimensional visual and textual data. 

summarization and visualization. To overcome this limitation, we have 

modified SOAVE to use pairwise distances. In other words, when considering 

the assignment of a given point to a cluster, we compute its distance to all 

points within the cluster instead of the distance to the centroid of the cluster. 

This modification makes SOAVE more effective in clustering high dimensional 

data, but increases the computational and storage requirements. To maintain 

the scalability and efficiency of SOAVE, we have redesigned it to use linked 
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lists and various indexing schemes. 

2. Mapping: To accommodate for the multi-modal features and semantic 

information in our data collection, we provide the user with options to map 

the data based on different distance measures, resolutions, or features. This is 

achieved by using SOON to cluster the data with the specified parameters and 

then using the phases to map the data to a one-dimensional space. This 

option allows each axis of the two-dimensional visualization space to function 

independently of the others, yielding semantic and visual comprehension of 

the image database. For instance, the horizontal axis may reflect the similarity 

with respect to the color feature while the vertical axis may reflect the 

semantic similarity using the keywords. 

3. Zooming: To zoom into a specific region of clusters, the SOON algorithm is 

applied to each axis with a lower resolution while retaining the feature set and 

distance measures. This allows some of the clusters to de synchronize and break 

into smaller clusters. Thus, providing the user with a more detailed view. 

B Graphical Text Interface 

The Graphical Text Interface (GTI) is a two-dimensional map browser that 

visualizes high dimensional data using SOON at multiple resolutions. Using SOON 

allows each axis of the map to be dynamically clustered in real-time and computed 

independently of the other axis. This unique ability enables a user to keep one axis 

focused on textual information at a given resolution while continually redefining a 

different axis based on another feature set. Similar to SOAVE, the GTI provides the 

user with full control of each axis, giving the ability to select different features, 

distance measures, and clustering resolutions. 
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The GTI addresses the "Page Zero" issue (see chapter VI) in an intuitive 

way. This alternative visual browsing technique removes the visual requirement for 

formulating a query found in most CBIR systems. This is accomplished by 

presenting an overview of the database in a high-level conceptual form. At any point 

during browsing and navigation, the user may switch part or all of the interface to 

use visual features instead of textual features. This additional ability displays 

conceptually related images on a visual axis. Additionally, the system enables the 

user to view images based on the conceptual or visual representative of a cluster. 

Figure 36 shows how the GTI facilitates browsing and navigation and how to 

select an image query if needed. In Figure 36(a), the initial interface is displayed 

providing an overview of the entire image collection. Each circle in the display 

represents one of the clusters, and these few clusters summarize the 10,000 images. 

The size of each circle reflects the relative size of the cluster and the color reflects 

the dominant color of the cluster representative image. The most frequent keyword 

is also displayed inside each circle to provide the user with semantic information. 

Within this view, the user can select a region of clusters to zoom into that area and 

visualize it at a lower resolution. In Figure 36(b), we display the map of the area 

selected in Figure 36(a). As it can be seen, this step has resulted in breaking the 

clusters into many smaller clusters. The dominant colors of all these tiny clusters 

are red, green, and yellow. Next we assume that the user zooms in further and 

selects the region highlighted in Figure 36(b). If the user is interested in only 

browsing the data collection, then he/she can stop after these steps, or he/she can 

select a different region to zoom into. If the user is interested in querying the 

database, then he/she can select the query example from the map as indicated in 

Figure 36(d). In this case, the system uses this example and switches to the 

query-by-visual-example mode. 
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Figure 36. Graphical Text Interface: Walk though from view of semantic database 
to selection of query image. (a) Initial semantic view of the system. (b) Zoomed in 
region. (c) Zoomed in region from image view. (d) Selecting an image after zooming. 

Another component of the GTI is the ability to filter out the results to be 

displayed based on semantic keywords. This browsing option is novel and is 

non-existent in current applications. It provides a unique platform for narrowing the 

semantic gap. Figure 37 shows how limiting the images to be visualized to those 

that include keywords" grass" and "flower" drastically reduces the number of 

clusters and images displayed. In Figure 37(a), the initial system is shown with all 

semantic concepts while in Figure 37(b), only clusters containing at least one of the 

filtered keywords within the top five cluster words is shown. 

The final component of the GTI is the ability to re-organize each axis 
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Figure 37. Illustration of the filtering option to constrain the elements displayed 
based on selected keywords. (a) initial view for all semantic concepts. (b) view when 
only clusters signifying" grass" or "flower" are shown. 

independently of the other. In Figure 38(a), the initial system is shown with both 

axes using the textual feature at different resolutions. In Figure 38(b), the vertical 

axis has been changed to use one of the color features. Notice, the horizontal axis 

still holds semantically similar information spatially close while the vertical axis has 

now grouped similar visual components closer together (i.e., "sky" clusters in the 

lower half while" grass" clusters in the upper). 
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Figure 38. Reorganization of the axes to combine visual and textual features in the 
map. (a) view when both axes are based on textual features at different resolutions. 
(b) view when vertical axis is re-organized based on a color feature set. 
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C Conclusions 

In this chapter, we presented the Graphical Text Interface (GTI) component 

of our CBIR system. This interface consists of a two-dimensional map browser for 

visualizing high-dimensional data. It is an adaptation of the SOAVE algorithm to 

perform summarization and projection of high-dimensional multi-modal data. It 

allows the user to visualize the data with respect to different feature sets, and zoom 

in and explore certain regions of the mapped space. The user could also filter the 

data to be visualized using a restricted set of keywords. 

The GTI interface could be used to provide the user with an overview of the 

database. This approach provides a method of searching and navigating the 

database without requiring knowledge of the high-dimensional image content, while 

being able to dynamically adapt the visual feature space for individual needs. The 

GTI interface could also be used to overcome the "page zero" problem and guide 

the user in selecting an example image to initiate the query process. Once a query 

image is selected, our CBIR system switches to the query-by-visual-example mode. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

We have presented various algorithms addressing the image annotation and 

multi-modal feature fusion tasks to narrow the semantic gap in Content-Based 

Image Retrieval. The developed algorithms combine topics from pattern 

recognition, data mining, image processing, and multimedia and were integrated in 

a complete CBIR system that has four main components. The first component uses 

a set of training images to learn a thesaurus. These images are manually annotated 

and used to create a multi-modal thesaurus through clustering and feature 

weighting. The objective is to extract representative visual profiles corresponding to 

frequent homogeneous regions and to associate these profiles with keywords. To 

accomplish this, the training images are segmented into homogeneous regions. 

Then, the regions are represented by visual descriptors, combined with the image 

level annotations, and clustered into categories of regions that share common 

attributes. Representatives of each cluster and its parameters are used to create 

profiles linking low-level image features and high-level concepts. 

The second component of our CBIR system uses the developed multi-modal 

thesaurus to automatically annotate segmented regions. This was accomplished 

through two main steps. First, an unannotated image is segmented into 

homogeneous regions. Then, fuzzy membership functions are used to label new 

regions based on their proximity to the thesaurus entries. These annotated regions 

are then used to facilitate textual region based searches. We have showed that our 
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approach outperforms the state-of-the-art methods in its ability to determine 

accurate annotations especially for infrequent concepts. Thus, our approach is more 

reliable when the database is very large, and only few labeled samples are available. 

The third component consists of an efficient and effective method for fusing 

the retrieval results of the multi-modal features. Our approach is based on mapping 

the distribution of distances for each feature to a fuzzy membership function and 

assigning a degree of worthiness to each feature based on its average performance. 

The memberships and the feature weights are then aggregated to produce a 

confidence value that is used to rank the retrieved images. Two aggregation 

methods were described and experimented with. The first is linear and is based on a 

simple weighted combination. The second one is non-linear and is based on the 

discrete Choquet integral. Both approaches are computationally efficient, requiring 

only simple multiplication and summation of the outputs of the individual features. 

The Choquet integral involves additional sorting of the individual outputs which is 

not significant if only few features are used. Thus, both methods could be used to 

fuse the results in a real-time mode. We have showed, using both subjective and 

objective experiments that our approach outperforms standard approaches that 

combine multiple features using distance scaling and ranking. 

The fourth component of our CBIR uses the multi-modal thesaurus to 

perform hybrid querying and query expansion in the CBIR search process. In 

particular, the inter-modality correlation learned using the first component of the 

CBIR and represented in a multi-modal thesaurus is used to enrich and expand the 

visual query with textual data. We have showed that this query expansion can 

improve the accuracy of the retrieved images significantly. This is particularly true 

for images that are semantically similar but visually different. 

The above four components were integrated and implemented into a complete 
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CBIR system that can run in three different modes. The first mode is a classic 

CBIR retrieval with all four components integrated. The user selects the query 

image from the database and can select any of the visual and/or textual features. 

The user has also the flexibility to modify the distances, the fusion methods, and to 

add semantic labels or use the labels assigned automatically by the second 

component of our system. 

The second mode uses a novel region based approach that addresses the 

visual search when the user has a mental picture of what he is looking for but no 

sample image. This mode is an efficient region based image retrieval system. Our 

system first segments all the images in the database and categorizes their regions 

into groups of similar regions. Then, each region is labeled using our thesaurus 

based image annotation algorithm. The representative regions and their labels are 

then presented to the user who can formulate a query using a combination of 

positive and negative categories. Thus, the user can formulate hybrid queries by 

selecting reference image regions and/or textual keywords that should, or should 

not, be included in the retrieved images. Additionally the keywords could be 

implicitly selected as those used to label the reference regions. The search process is 

performed through the use of inverted tables of the region category labels; as such, 

exhaustive search is not necessary. 

The final mode uses a novel Graphical Text Interface to perform semantic 

visualization and navigation, allowing for the initial navigation to be oriented 

around high-level concepts instead of randomly-selected images. This 

two-dimensional map browser visualizes high dimensional data using a clustering 

algorithm that can summarize the data at multiple resolutions. We use this 

algorithm to cluster and map the data dynamically using any of the features 

specified by the user. This unique ability lets the user keep one axis focused on 
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textual information at a given resolution, while continually refining a different axis 

using another feature set. In addition, the GTI provides the user with full control of 

each axis to modify the features, distance measures, clustering resolution, and 

various filtering options. 

The presented CBIR system and its various components were validated using 

a large data set for accuracy, performance, and improvement over basic CBIR 

techniques. Our thesaurus based image annotation algorithm outperforms three 

state-of-the-art approaches on average by 13% when labeling 10,000 images. Our 

efficient method for fusing the output of multi-modal features yields 6% higher 

precision on average than standard CBIR methods and 16% better retrieval 

performance than the best individual feature. Lastly, our region-based retrieval is 

30% better than a similar state-of-the-art approach. 

The CBIR system is implemented as a java framework built on a C# server. 

The server application maintains all data, clustering, and distance calculations in 

local memory. Using this implementation approach, we average 0.83s on a query 

with a 55,000-image database using a 3.4Ghz Pentium IV with 4GB of RAM. 

One current limitation of our CBIR system consists of the implementation 

method used to store the data. To achieve increased speed the data set and features 

are always in memory. This currently places an upper limit on the size of our 

database equal to the amount of RAM on the machine. A database of 55,000 images 

with 6 multi-modal feature sets requires 1GB of memory. As image features are 

added to provide more accurate retrieval the memory constraints increase. One 

solution to maintain time constraints of real-time querying would be to use multiple 

servers. Partitioning the database across platforms allows unlimited capacity while 

only slightly decreasing performance. For instance, one could have a color feature in 

one location and a texture feature in another. Sending the appropriate feature of a 
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query to a service running on that machine, the databases could return a subset of 

image results whose output could be fused. A similar method would allow splitting 

images of a database across servers, and not just their features. 

Another limitation that faces our system is related to the scalability issue. 

First, we use a relatively small vocabulary size (j100 words). In a more realistic 

scenario, a much larger vocabulary size may be needed. In this case, the vector 

space notation may not be appropriate, and thus, integrating the textual features 

into the clustering phase is not trivial. Second, the SCAD algorithm used to 

categorize the images and image regions is not scalable. That is it cannot handle a 

large data set that does not fit into memory. We are currently developing a scalable 

version of SCAD for large data that partitions the data, clusters the partitions, and 

then clusters the results. If this approach could produce similar output as SCAD, 

each partition could be clustered in parallel on separate machines or in separate 

threads and increase time performance. 

Future research will expand on the contributions presented here, while 

investigating solutions to the possible limitations of the system. One such area is to 

examine exploiting the intra-modality correlations learned during the region 

clustering process. For instance, some colors such as the color of "planes" and the 

color of the" sky" may be correlated. These intra-modality correlations could be 

used to expand the query to include features not present in the query image but 

highly correlated. 

Additionally, one can focus on enhancing the multi-modal thesaurus. The 

intra-modality correlations could not only be used to learn similar features, but to 

expose tightly coupled terms that should be investigated. For keywords that always 

appear together, no new knowledge is being gained and incorrect 

annotation/representation can take place. By adding images that contain each term 
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but not the other to the training set, the multi-modal thesaurus can begin 

distinguishing between these. We also will investigate adding more images for low 

frequency terms to not only allow them to be better distinguished, but decrease the 

penalty assigned to the higher frequency words through the ICF. 

Finally, it is possible to integrate a relevance feedback component into our 

CBIR to further minimize the semantic gap. Relevance feedback has shown great 

results in focusing a users query, and if we could store/learn from this information 

we would strengthen our existing components. For instance, relevance feedback can 

be used to adapt the fusion parameters. Our current approach is trained globally 

using simple membership functions and a set of training images. Future 

enhancements could use the user's feedback to adjust the parameters of the 

membership functions and the degree of worthiness assigned to each feature. 

Similarly, the relevance feedback could be used to adjust the annotations of the 

images in the database. Storing the positive and negative information obtained from 

each query could not only strengthen existing keywords by modifying their values, 

but also highlight erroneous labels and add new terms to the database through 

hybrid querying. A modification to the fuzzy labeling process could then take this 

new knowledge into consideration as an expert equal to the profiles in the 

multi-modal thesaurus. Relevance feedback shows promise in expanding our 

annotation approach and providing a foundation for improving the accuracy of the 

system as a whole. 
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