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Abstract

The technological advancements in computer networks and the substantial reduction of their
production costs have caused a massive explosion of digitally stored information. In partic-
ular, textual information is becoming increasingly available in electronic form.

Finding text documents dealing with a certain topic is not a simple task. Users need tools
to sift through non-relevant information and retrieve only pieces of information relevant to
their needs [14]. The traditional methods of information retrieval (IR) based on search term
frequency have somehow reached their limitations, and novel ranking methods based on
hyperlink information are not applicable to unlinked documents.

The retrieval of documents based on the positions of search terms in a document has
the potential of yielding improvements, because other terms in the environment where a
search term appears (i.e. the neighborhood) are considered. That is to say, the grammatical
type, position and frequency of other words help to clarify and specify the meaning of a
given search term [98]. However, the required additional analysis task makes position-
based methods slower than methods based on term frequency and requires more storage to
save the positions of terms. These drawbacks directly affect the performance of the most
user critical phase of the retrieval process, namely query evaluation time, which explains
the scarce use of positional information in contemporary retrieval systems.

This thesis explores the possibility of extending traditional information retrieval systems
with positional information in an efficient manner that permits us to optimize the retrieval
performance by handling term positions at query evaluation time.

To achieve this task, several abstract representation of term positions to efficiently store
and operate on term positional data are investigated. In the Gauss model, descriptive statis-
tics methods are used to estimate term positional information, because they minimize out-
liers and irregularities in the data. The Fourier model is based on Fourier series to rep-
resent positional information. In the Hilbert model, functional analysis methods are used
to provide reliable term position estimations and simple mathematical operators to handle
positional data.

The proposed models are experimentally evaluated using standard resources of the IR
research community (Text Retrieval Conference). All experiments demonstrate that the use
of positional information can enhance the quality of search results. The suggested models
outperform state-of-the-art retrieval utilities.

The term position models open new possibilities to analyze and handle textual data. For
instance, document clustering and compression of positional data based on these models
could be interesting topics to be considered in future research.
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Kurzfassung

Die technologischen Fortschritte bei Rechnernetzen und die erhebliche Senkung ihrer Pro-
duktionskosten haben ein gewaltiges Wachstum von digital gespeicherten Daten verursacht.
Besonders die Verfügbarkeit von Textinformationen im Internet nimmt ständig zu.

In dieser Situation ist das Finden von relevanten Informationen keine einfache Aufgabe
mehr. Benutzer brauchen ständig effizientere Werkzeuge, um relevante Dokumente aus dem
riesigen Datenbestand zu extrahieren. Da traditionelle Algorithmen im Bereich des Infor-
mation Retrieval (IR) in der Regel nur auf Worthäufigkeiten basieren, haben sie mittlerweile
ihre Leistungsgrenzen erreicht. Auf der anderen Seite können die neuesten Methoden ak-
tueller Suchmaschinen, die auf Hyperlink-Informationen zurückgreifen, nur in verlinkten
Dokumenten verwendet werden. Alle Dokumente, die keine Hyperlink-Informationen ent-
halten, können meistens nur mit traditionellen (Wort-Häufigkeits-) Methoden ausgewertet
werden.

IR-Methoden, die Informationen über die Positionen von Suchbegriffen in Dokumenten
berücksichtigen, haben das Potenzial, bessere Ergebnisse als Standard-Methoden zu liefern.
Der Grund ist, dass positionsbasierte Methoden die Suchbegriffe in ihrem Kontext bzw.
ihrer Nachbarschaft innerhalb eines Dokumentes betrachten. Das heisst, die Position eines
Wortes hilft, die Bedeutung eines anderen Wortes abzuklären. Allerdings bedeutet die
Auswertung von räumlichen Informationen auch aufwändige Berechnungen, was die po-
sitionsbasierten Algorithmen langsamer und platzraubender machen. Solche Nachteile
wirken sich unmittelbar auf die Performanz der wichtigsten Phase des Retrieval-Prozesses
aus: der Auswertung einer Anfrage eines Benutzers. Aus diesem Grund werden heutzutage
positionsbasierte Algorithmen in Suchmaschinen selten verwendet.

Diese Doktorarbeit untersucht die Möglichkeit, ein traditionelles IR-System mit posi-
tionsbasierten Informationen auf eine neue Weise zu erweitern und durch die Auswertung
dieser Informationen die Performanz des Systems zur Anfragezeit zu verbessern.

Um dieses Ziel zu erreichen, werden unterschiedliche Darstellungen von Wortposi-
tionen in einem Dokument untersucht. Im Gauss-Modell werden Methoden deskriptiver
Statistik verwendet, weil sie für die typischen Unregelmässigkeiten und Ausreisser in den
positionsbasierten Daten geeignet sind. Das Fourier-Modell basiert auf Fourierreihen zur
Repräsentation positionsbasierter Informationen. Im Hilbert-Modell werden Methoden der
Funktionalanalysis für das Speichern und Bearbeiten von Wortpositionen eingesetzt.

Alle vorgeschlagenen Modelle werden mit Standard-Datenbeständen der IR-
Gemeinschaft (Text Retrieval Conference) evaluiert. In den Experimenten wird gezeigt,
dass die Verwendung von positionsbasierten Informationen die Qualität der Suchergebnisse
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erhöht und die Leistung von aktuellen Ansätzen übertrifft.
Die positionsbasierten Modelle eröffnen neue Möglichkeiten zur Analyse von textuellen

Daten. Zum Beispiel sind die Clusterung von Dokumenten und die Komprimierung
von positionsbasierten Daten basierend auf diesen Modellen interessante Themen für die
zukünftige Forschung.
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1
Introduction

1.1 Motivation

Due to the constant improvements in the capture, transmission and storage of digital in-
formation and the need for managing this enormous amount of data, many tools and ser-
vices for information search and retrieval have been developed. One of the most popular
are search engines that currently serve as widespread universal interfaces to information,
transcending user categories and geographic regions. Thus, the advances in Information
Retrieval (IR), the underlying technology of search engines, has become a topic of interest
of any online user.

Search engines contend with the basic question of information retrieval: how to estimate
the relevance of a document for a user’s information need and how to present only the most
relevant documents to the user.

The main criterion to measure the relevance of documents in a collection is based on
the frequency of search terms in the document. This criterion has been used in the origins
of information retrieval and it is still the most important approach in the IR community.
With the development of the World Wide Web (WWW), a new paradigm to determine the
relevance of documents arose. Algorithms such as HITS [84] and PageRank [17] extend the
original citation ranking of research papers to the hyperlink structure of the WWW, bringing
the use of popularity rankings to the masses. Nevertheless, popularity rankings have some
drawbacks: (a) they do not always reflect the real content of the documents, (b) relevance
values can be manipulated to unjustly get some pages ranked higher or to push others further
down [115, 66], and (c) they cannot be applied to document collections without hyperlink
information.

Collections without hyperlink information are common in enterprise scenarios, where
textual information is disseminated throughout a company without any logical association.
In this environment, keyword based IR systems are not replaceable. However, in such
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2 1 Introduction

systems, term-frequency models still predominate, and no substantial advances have been
made in the last years.

One way to improve the performance of keyword based IR models is to consider the
positions of the search terms in the document, regarding the environment (neighborhood)
where they appear. This means, the positions of other terms help to specify the meaning of
a given term. However, the required effort to process this positional information make such
algorithms unsuitable to be applied at query evaluation time.

Thus, the goal of this thesis is to find new methods of extending traditional relevance
models by exploiting positional information of search terms efficiently to improve the qual-
ity of search results.

1.2 Research Contributions

This thesis proposes novel models of representing term positions in documents to improve
relevance estimation in the information retrieval process. Like other text retrieval methods,
retrieval is performed by locating the appearances of the query terms in each document of a
given set of documents. But unlike other text retrieval methods, the document information is
mapped into the functional domain and the similarity between documents and a user query
is estimated using simple mathematical operators.

The main concepts applied in the proposed models stem from three different areas: (a)
descriptive statistics (b) signal processing, and (c) functional analysis. Descriptive statis-
tics are used to estimate term positional information, because they minimize outliers and
irregularities in the data. Concepts of signal processing (Fourier series and orthogonal poly-
nomials) are used to generate an abstract representation of term positions in documents.
Metrics of functional analysis (Hilbert spaces) are used to develop a criterion for matching
a user’s information need and the relevance of search results.

This novel form of representing term positions shifts the complexity of analysis to the
non time-critical phase of the retrieval process, permitting us to exploit the term positional
information at query evaluation time.

Two popular open source retrieval software tools are extended to implement the pro-
posed models and to estimate their performance using document collections and evaluation
software available in the information retrieval community.

Apart from the improvements in information retrieval, the proposed models also open
new ways of exploring content disposition in documents, e.g. in related areas such as cluster
analysis in textual data.

1.3 Publications

The research contributions of this thesis have been published in the following papers:

1. Patricio Galeas, Bernd Freisleben: Word Distribution Analysis for Relevance Ranking
and Query Expansion, Proceedings of the 9th International Conference on Computa-
tional Linguistics and Intelligent Text Processing, Haifa, Israel, vol. 4919 of Lecture
Notes in Computer Science, pages 500-511, Springer-Verlag, 2008.
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2. Patricio Galeas, Ralph Kretschmer, Bernd Freisleben: Document Relevance Assess-
ment via Term Distribution Analysis Using Fourier Series Expansion, Proceedings of
the 2009 ACM/IEEE-CS Joint International Conference on Digital Libraries, Austin,
USA, pages 277-284, ACM Press, 2009.

3. Patricio Galeas, Ralph Kretschmer, Bernd Freisleben: Information Retrieval via
Truncated Hilbert Space Expansions, Proceedings of the 9th IEEE International Con-
ference on Computer and Information Technology, Bradford, UK (accepted for pub-
lication), IEEE Computer Society, 2010.

1.4 Organisation of the Thesis

Chapter 2 provides an overview of where information retrieval has been and where it is
currently at, including some historical topics, such as user information need, document pro-
cessing, indexing, and a short introduction into the most important IR models and utilities.
In the final part, a standard infrastructure for the evaluation of IR systems is outlined.

Chapter 3 defines the scope of this thesis and discusses different models related to posi-
tional information retrieval and term proximity described in the literature.

Chapters 4, 5 and 6 present the three newly proposed models to represent and manage
term positional information in a document collection: the Gauss model, the Fourier model
and the Hilbert model. Apart from the corresponding description, each model includes
sections with experimental results.

Chapter 7 summarizes the thesis and outlines directions for future work.
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2
Information Retrieval

2.1 Introduction

In the last fifty years, the size of electronic information and online databases appears to
be growing exponentially [30, 31], and the task of finding relevant information gets more
difficult. In one study of inexperienced searchers [16], one-quarter of the subjects were
unable to pass a benchmark test of minimum searching skill. Even experienced searchers
could improve their search results [46].

However, the heart of the problem does not concern size, but rather it concerns meaning.
That is to say, there have been a number of hardware solutions to the problem of data size,
but the major difficulties associated with the information retrieval problem remain, namely,
the identification of content, the problem of determining which of two items of data is
“closer” in meaning to a third item, the problem of determining whether or not (or to what
degree) some document is relevant to a given request.

In order to estimate the relevance of documents, it is necessary to establish various
measures of closeness of meaning, and an approach to this semantical problem is via statis-
tics. The models presented in this chapter define various measures of closeness between
documents and between requests for information so that given an arbitrary request, a ma-
chine can automatically elaborate upon a search in order to retrieve relevant documents that
otherwise would not have been selected [98].

2.2 Information Retrieval History

2.2.1 The Dawn of IR

The index concept (originally called Cataloging), one of the most critical aspects in Infor-
mation Retrieval (IR) [86], dates back to the ancient Rome. There, when used in relation

5



6 2 Information Retrieval

to literary works, the term index was used for the little slip attached to papyrus scrolls on
which the title of the work (and sometimes also the name of the author) was written so that
each scroll on the shelves could be easily identified without having to pull them out for
inspection [157].

The Romans also developed the usage of index for the title of books, which was later
(1st century A.D.) extended to a table of contents or a list of chapters (sometimes with a
brief abstract of their contents) and hence to a bibliographical list or catalog.

However, indexes in the modern sense, giving exact locations of names and subjects in
a book, were not compiled in antiquity and only very few seem to have been made before
the age of printing around 1450 [105].

In 1545, Conrad Gesner published Bibliotheca Universalis, in which he listed alphabet-
ically all of the authors who had written in Greek, Latin, and Hebrew, with a listing of all
their books printed up to that time. Three years later, Gesner published the second part con-
taining a classification system with about 20 functional groups [87]. For this contribution,
Gesner was recognized as the father of modern bibliography.

In 1751, Diderot and D’Alembert began publishing the Encyclopedia, a systematic re-
lationship of all branches of knowledge.

2.2.2 The Period 1945-1960

The popularization of the idea of information retrieval started in 1945, with Vannevar Bush’s
article [22], where he predicted fast access to the contents of the world’s libraries.

The tremendous explosion of scientific literature during and after World War II over-
whelmed existing indexing and retrieval methods. New methods, including machines to
search for and store information, were needed. A new research phase in information began.

Between 1950 and early 1960, pioneers such as James W. Perry, Calvin Moore, and
Mortimer Taube published the first ideas of modern information retrieval:

James Whitney Perry, considering a major influence in automatic indexing and informa-
tion retrieval systems using punched card machines, developed in 1945 his ideas on improv-
ing library literature searching and methodology. His experience dealing with the literature
in chemistry demonstrated to him that the efficiency of the library and document retrieval
needed to be brought up to speed [111]. In the late 1940s he was charged with developing
punch card systems of organizing chemical information [162]. While exploring these infor-
mation issues in the sciences, Perry became interested in difficulties of information retrieval
in many other disciplines, including law, medicine, and metallurgy [111].

In 1950, the mathematician Calvin Mooers established the concept of information re-
trieval. Mooers set out to explore the use of digital processes and mathematics to impose
control on the MIT technical reports (COSATI system). At MIT, Mooers discussed his
ideas with J. W. Perry, and few months later, Perry arranged a meeting at the American
Chemical Society to present Mooers’s ideas on the development of a machine capable of
Boolean searching. In his paper, Mooers advocated that chemists should be involved in the
development of such a machine (Zatocoding) [33].

In 1950, the computer scientist Hans Peter Luhn developed a prototype of the Luhn
Scanner for IBM. (see Figure 2.1). Its technology is based on IBM punched cards, run
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Figure 2.1: Hans Peter Luhn demonstrating a mock-up of an IBM card used in his scanner
(1952).Courtesy of IBM.

vertically through a specially adapted scanner, using photo-electric cells. It does not require
fixed-field searching.

In 1951, Derwent Publications, Ltd. (Great Britain), begins patent abstracting services
with Central Patents Index. Punched cards are used to construct the indexes.

In 1952, Mortimer Taube with the foundation of his company Documentation, Inc. took
a leadership role in the documentation field. He developed Uniterm, a system of coordinate
indexing [148], and helped to establish its use as a major tool in library and documen-
tation work. Taube’s writings provoked considerable discussion in the library press, and
contributed to his international recognition.

In 1954, the US Naval Ordnance Test Station, China Lake, CA, developed the first sub-
ject search ever made by a digital computer [65], consisting of a retrieval system using the
Taube Uniterm system on an IBM 701 calculator on a file of 15,000 documents. It mimics
a manual search of a Uniterm card file. Users can add new information, delete information
on discarded documents, match search requests against a master file, and produce a print-
out of document numbers. It was only able to do Boolean and search strategy [161]. The
same year (in France), Jacques-Emile Dubois does initial work on the DARC (Description,
Acquisition, Retrieval, and Correlation) system.

In 1958, Hans Peter Luhn developed the concepts of Key Words In Context (KWIC)
indexing and Selective Dissemination of Information (SDI), establishing many of the basic
techniques now standard in information science.

On May 27, 1958, IBM unveiled Luhn’s ideas for business intelligence or selective dis-
semination system (SDI). In the International Conference on Scientific Information held the
same year, Luhn introduced his new equipment and illustrated the practical results by pro-
ducing the KWIC indexes for the conference program. Two new Luhn inventions, the 9900
Index Analyzer and the Universal Card Scanner, and the new Luhn Keyword-in-Context
(KWIC) indexing technique were introduced. Following the conference, newspapers all
over USA carried stories about auto-abstracting and auto-indexing [142].
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2.2.3 The Period 1960-1970

In 1958, the Western Reserve University developed a searching selector for a bibliographic
database of metals, and the same year the U.S. Patent Office and National Bureau of Stan-
dards developed the experimental HAYSTAQ (Have You Stored Answers to Questions) sys-
tem using a Standards Electronic Automatic Computer (SEAC) for use in searching patent
files.

In 1959, IBM built batch retrieval system for Strategic Air Command, three years later
the University of Pittsburgh developed full-text legal information retrieval system.

In 1960, Eugene Garfield’s Institute for Scientific Information (ISI) introduced the first
citation index for papers published in academic journals. ISI was the first information re-
trieval organisation with commercial interests [26]. It started with the Science Citation
Index (SCI), and later expanded to produce the Social Sciences Citation Index (SSCI) and
the Arts and Humanities Citation Index (AHCI).

In 1963, more than 1,500 abstracting and indexing services existed. The Library of
Congress initiated a study on the computerization of bibliographic surrogates, while the
Institute for Scientific Information published the first issue of Genetics Citation Index (GCI)
and the prototype of Science Citation Index (SCI), relying on computer indexing.

The same year, MEDLARS (Medical Literature Analysis and Retrieval System), an
off-line batch service, begins operation from the National Library of Medicine.

In 1964, C. Meyer and M. Kessler of Massachusetts Institute of Technology, developed
Technical Information Project (TIP), an experimental online searching system.

Gerald Salton, another classical author in information retrieval published in 1965 his
Vector model [134], were documents and queries are compared in a n-dimensional vector
space. Simultaneously, NASA developed the earliest commercial catalog system DIALOG,
and began to develop the Canadian Geographic Information Systems (CGIS).

Between 1966-1968, the Library of Congress ran its MARC I pilot project. MARC
(MAchine Readable Cataloging) standardized the structure, contents and coding of biblio-
graphic records.

In 1969, ERIC and the first databases in Canada and Europe went online. The U.S. De-
partment of Defense implemented ARPANET (Advanced Research Projects Agency NET-
work) to demonstrate how communications between computers could promote cooperative
research among scientists. The Japanese Information Center for Science and Technology
began an online service of its database. The NASA began offering the online search ser-
vice RECON (REmote CONsole) to NASA facilities. In 1969, the MARC system became
operational.

2.2.4 The Period 1970-1980

In 1970, further organizations from many branches offered information services, over 300
online databases were available.

In 1971, MEDLARS went online as MEDLINE. The OCLC (Online Computer Library
Center) went online with 54 participating libraries.

In 1973, as outgrowth of the collaboration between U.S. Air Force and Ohio Bar As-
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sociation the Lexis Legal Retrieval System went online. The ABI/Inform system becomes
first business-oriented online database.

In 1974, the NY Times InfoBank became the first online newspaper abstracting and
indexing service. The Patents index and Dow Jones went online.

In 1976, Bibliographic Retrieval Services (BRS) were founded and the ISI’s SciSearch
went online.

2.2.5 The Period 1980-1990

In 1980, over 600 databases were online with a growth rate about 100% pro year. In the
1990s, the significant reduction in cost of processing power and memory in modern comput-
ers allowed information retrieval systems to implement the previously theoretical functions
introducing a new information retrieval paradigm [86]. Full text indexing techniques were
applied, and free-text search systems were used routinely.

The first sites appeared on the world wide web and earliest modern search engines such
as Altavista and Google started.

2.2.6 The Period 1990-today

On the Web, manual linking is coming back. As we have learned how to handle text,
information retrieval is moving on to projects in audio, image, video and other types of
multimedial data.

Given the current progress, Bush’s dream of the Memex (Memory Extender) device
[22], “in which an individual stores all his books, records, and communications, and which
is mechanized so that it may be consulted with exceeding speed and flexibility could soon
be achieved.

Nowadays, storage, sensor, and computing technology have progressed to the point of
making Memex feasible and even affordable. Indeed, we can now look beyond Memex at
new possibilities. In particular, while media capture has typically been sparse throughout
a lifetime, one can now consider continuous archival and retrieval of all media relating to
personal experiences in a Human Digital Memory (HDM) [61].

Information can be captured from a myriad of personal information devices including
desktop computers, PDAs, digital cameras, video and audio recorders, and various sensors,
including GPS, Bluetooth, and biometric devices [56].

A device capable of registering such types of information is the SenseCam [72], a wear-
able digital camera that archives multimedia data without user intervention (see Figure 2.2).
The SenseCam also contains a number of different electronic sensors for light intensity, tem-
perature and a multiple-axis accelerometer. It is planned for the next versions to incorporate
audio level detection, audio recording and GPS location sensing.

Diverse collections of personal information are potentially very valuable, therefore new
models have to be developed to efficiently store and retrieve this highly heterogeneous and
unstructured data.

The chronology of Figure 2.3 summarizes some of the most significant milestones in
information retrieval history.
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Figure 2.2: The SenseCam

2.3 Definition of an Information Retrieval System

An Information Retrieval (IR) system is a system capable of storing, retrieving, and main-
taining information [86]. In this case, information can be composed of text, image audio,
video and other types of multimedia data. Furthermore, an IR system is a software program
that supports the user to satisfy his information needs.

The quality of an IR system is delimited by how effectively the properties and the char-
acteristics of a person’s information need [55] will be determined. Additionally, Kowalski
[86] proposes that the gauge of success of an IR system consists in how well it can min-
imize the overhead for a user to find the needed information. Defining overhead as the
time required to satisfy the information need, i.e. query construction, search execution, and
reading non relevant items (documents).

In information retrieval, the term “relevant” item is used to represent an item containing
the needed information. In reality, the definition of relevance is not a binary classifica-
tion but a continuous function [86]. From a user perspective, information “relevant” and
“needed” are synonymous.

The two major measures commonly associated with information systems are precision
and recall. When a user starts a search process looking for information on a topic, the total
document collection is logically divided into four groups: relevant retrieved, relevant not
retrieved, non-relevant retrieved and non-relevant not retrieved.

Relevant items are those documents that contain information that helps the searcher in
answering his question. Non-relevant items are those items that do not provide any directly
useful information. There are two possibilities with respect to each item: it can be retrieved
or not retrieved by the user’s query. Precision and recall are defined as:

Precision =
Number of Retrieved Relevant

Number of Total Retrieved
(2.1)

Recall =
Number of Retrieved Relevant

Number of Possible Relevant
(2.2)

where Number of Possible Relevant are the number of relevant items in the collec-



2.3 Definition of an Information Retrieval System 11

Figure 2.3: The information retrieval chronology.

tion. Number of Total Retrieved is the total number of items retrieved from the query.
Number of Retrieved Relevant is the number of items retrieved that are relevant to
user’s search need.

As depicted in the Figure 2.5, a typical IR system contains three basic components:
queries, processor and output [153].

Input (documents and queries) : The main difficulty here is to obtain a suitable represen-
tation for the computer logic. Computer based retrieval systems store only a reduced
representation of documents or queries which means that the text of such items is
partially lost once they have been processed. For example, a document representation
could be a list of extracted relevant words representing the content of the document.

Processor : On the one hand, the processor deals with the structuring of the information in
some appropriate way, such as classifying it. On the other hand, it will also involve
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Figure 2.5: A typical Information Retrieval System.

performing the actual retrieval function [153], i.e. executing the search strategy in
response to a query.

Output : Is usually a set of ranked documents.

Feedback : Considering the cyclic characteristics of the IR process, it is possible that the
user change his request during one search session, hoping to improve the results in
the subsequent retrieval cycle.

One can observe from the definitions above that the “information need” concept and its
counterpart the “documents” play an fundamental role in the IR model. In the next sections,
their characteristics, representations and relationships are described.

2.4 Information Need

The psychologists define Information Need (IN) as a psychological state of an individual
which is sensed to be a kind of “dissatisfaction” or “discomfort” [121]. It is information
that permits one to successfully adapt to the environmental conditions [55]. Moreover, a
living system (human being) needs to search constantly for information about the state of
the external environment. The more information the system has, the more chances it has to
survive.
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Table 2.1: Examples of concrete information needs (CIN) and problem oriented information
needs (POIN):

CIN
1. How many federal states has Germany?
2. What was the unemployment rate in Germany in 1990?
3. When became Poland as members of the European Union?
POIN
1. How can the information need be satisfied?
2. How can malignant tumors be treated?
3. How can I drive from Cologne to Berlin?

Table 2.2: Comparative characteristics of CIN and POIN
CIN POIN
1. The thematic boundaries are clearly
defined.

1. The thematic boundaries are not de-
fined

2. The request is put into exact words,
i.e., it corresponds exactly to the CIN
thematic limits.

2. As a rule, the request does not con-
form to the POIN.

3. To satisfy a CIN, only one good doc-
ument is needed.

3. As a rule, the POIN cannot be satis-
fied, even with all good documents ex-
isting in the system.

4. As soon as the good document is
found, the CIN disappears.

4. As soon as good documents are de-
livered, the thematic limits of POIN it-
self remain for a long time.

According to Frants and Brush [54], IN can be classified in two types: a concrete infor-
mation need (CIN) and a problem oriented information need (POIN).

Some examples of CIN and POIN are presented in the Table 2.1.
The characteristics given in the Table 2.2 describe the differences between the two types

of IN.
Lancaster [90] studied the relationship between a query and a need. He noted that the

lack of precise thematic boundaries not only hampers the formulation of a query, but also
may lead to situations in which the formulated query does not coincide with the thematic
boundaries of POIN. Either the query does not intersect with POIN, or it coincides with
POIN only partially, or it is entirely included in the POIN, or it exceeds the thematic bound-
aries oh the POIN by including it entirely. Thus, the same query generated by different
users can represent different POINs. Figure 2.6 illustrates these relationships.

Furthermore, it is not unusual that two different users having exactly the same POIN,
express their IN with different queries or set of queries.

It is also interesting to mention the relation between IN and information. It is possible
to classify different types of information related to a specific type of IN. Information can
be represented in different forms: a scientific article, a table, a dictionary, in a form of a
graphic, etc., which leads to different type of documents. Thus, for different types of IN,
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Figure 2.6: Possible relationships between need and query.

different types of document will be required (see Figure 2.7).
The types of information have a definite set of properties which limit their representa-

tion. For example , it is impossible to represent the information of this chapter graphically
or in the form of a dictionary.
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Figure 2.7: The information need process

Finally, the IN process described in Figure 2.7 is cyclic, as soon as some are satisfied,
new INs arise [54].

2.5 The Document

The document concept appears with the creation of writing, and can be defined as a material
carrier with information fixed on it [55]. Written documents satisfy an important function
for the society: the transmission of information in time and space.

We use the term document to denote a single unit of information, typically text in a
digital form, but it can also include other media. Furthermore, with respect to its physical
representation there are documents in a form of a file, an email, a Web page, etc.

The creator of a document expresses in it “something” that is information from the
creator’s point of view, which can be interpreted as the creator’s IN.
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As mentioned earlier, different types of INs influence the existence of different docu-
ment types.

From the user’s point of view, the document represents a potential object to satisfy
an arising INs, and due to that, the extraction of information from the document has an
individual character, i.e. different users can extract different information from the same
document [55].

With regard to the user’s knowledge level, his ability to perceive information and spe-
cially the faced task (whose solution requires the searched information), the same document
can be useful for one user and useless to another, depending on whether or not the user sat-
isfied his IN with the help of this document.

As depicted in Figure 2.8, the main elements characterizing a documents are: syntax,
structure, semantics, representation style, and meta data [8].

document

text

structure

media

+

+
syntax

presentation style

semantics

Figure 2.8: Characteristics of a document

The syntax of a document can express structure, presentation style, semantics, or even
external actions, where one or more of these elements could be implicit or given together.
For instance, a structural element (e.g., a section) can have a fixed format style. The syntax
of a document can also implicit in its content or implicit in a declarative language such as
the typesetting system TEX.

Due to the disability of computers to understand natural language, the trend is to use a
language which provides information on the document structure, format, and semantics so
that they are readable by humans as well as computers. One example of such a language is
the Standard Generalized Markup Language (SGML) including all document characteristics
mentioned above.

Documents in a collection are normally represented through a set of keywords or index
terms. Such terms might be extracted directly from the text of the document or might be
specified by a human subject. Regardless of the extraction mechanism (automatically or
manually), they provide a logical view of the document [8]. When the document is repre-
sented with its full set of words, we say that the retrieval system adopts a full text logical
view of the documents. But due to the storage and performance limitations of processing
large collection of documents, the set of representative word might be reduced [8]. This
reduction can be accomplished applying some text operations:

stopword elimination : stopwords are terms considered relatively meaningless in regards
to the document relevance. Such terms have a grammatical function and reveal noth-
ing about the content of the document [158]. Stopwords represent approximately
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Figure 2.9: Logical view of a document: from full text to a set of index terms.

40% of the document collection [53], and normally are not stored in the IR system
[64]. For example, the information provider DIALOG uses for the English language
only nine terms: an, and, by, for, from, of, the, to, and with [68]. Traditionally, stop-
words or stoplists are supposed to have included the most frequently occurring words.
However, some frequently occurring words are important depending on the document
collection features. For example, some of the most frequent words in a database of
English literature are: time, war, home, life, water, and world. On the other side, a
computer literature collection will contain many stopword candidates (computer, pro-
gram, source, machine, and language) which are not frequent in the English literature
database [51].

stemming : stemming reduces distinct words to their common grammatical root. The stem
is the portion of a word which is left after the removal of its prefixes and suffixes.
For example, the words fishing, fished, fish, and fisher could be reduced to the root
word, fish. The Porter [125] and Lovins [95] approaches are traditionally the most
used stemming algorithms. More sophisticated algorithms such as KSTEM [89] use
dictionaries to ensure that any generated stem will be a valid word.

identification of noun groups : eliminates adjectives, adverbs, and verbs. This technique
is practically an extension of the stopword list. In [53], a list of 425 stopwords derived
from the Brown corpus is proposed.

compression : text compression is about finding ways to represent the text in fewer bits
or bytes. Applying such techniques, the space to store text on computers can be
significantly reduced. The more conventional compression approach for IR is word-
based compression, where symbols to be compressed are words and not characters.
Furthermore, new word-based compression algorithms allow random access to words
within the compressed text which is a critical issue for IR systems.

There are two general approaches to text compression: statistical and dictionary
based.
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Despite of the benefits applying text operations, their use implicate some considerable
drawbacks. A counterexample to the use of stopword removal occurs when a query requests
a phrase that only contains stop words (e.g. “to be or not to be”). Documents containing
Hamlet’s citation will not be found.

Despite arguments supporting stemming seems sensible, there is controversy in the lit-
erature about the benefits of stemming for retrieval performance [8]. Furthermore, empirical
studies on potential performance benefits in IR do not deliver a satisfactory conclusion [51].

Due to these difficulties, many Web search engines consider a full-text document repre-
sentation and do not adopt any stemming algorithm in the IR system [8].

2.6 The Role of the Index

An index to a document acts as a tag by means of which the information content of the
document in question may be identified. The index consists normally of a set of terms that
identify the content of each document. The terms that constitute the allowable vocabulary
for indexing documents in a library form the common language that bridges the gap between
the information in the documents and the information requirements of the library users.

In principle, an indexer reads an incoming document, selects one or several of the index
terms from the “library vocabulary”, and then coordinates the selected terms with the given
document. Thus, the assignment of terms to each document has a binary character, for each
term either it applies to the document in question or it does not.

Furthermore, the process of indexing information and that of formulating a request for
information are symmetrical in the sense that, just as the subject content of a document is
identified by coordinating to it a set of index terms, so also the subject content of a request
must be identified by coordinating to it a set of index terms. Thus, the user who has a
particular information need identifies this need in terms of a library request consisting of
one or several index terms or a logical combination thereof [98].

Then, given a set of indexing terms that describe a request for information, and a set of
indexing terms identifying the content of each document, the problem of automatic search-
ing resolves itself to that of searching for and matching terms or a combination thereof.

The set of index terms representing the whole document collection will be normally
encoded and stored in a digital form, and searched automatically.

2.7 Semantic Noise

The correspondence between the content of a document and its set of indexes is not exact
because it is extremely difficult to specify precisely the subject content of a document by
means of one or several index words. If we consider the set of all index terms on the one
hand, and the class of subjects that they denote on the other hand, then we see that there is
no strict one-to-one correspondence between them. It turns out that given any term there
are many possible subjects that it could denote, and, conversely, any particular subject of
knowledge usually can be denoted by a number of different terms. This situation may be
characterized by saying that there is “semantic noise” in the index terms. In the same way,
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the correspondence between a user’s request, as formulated in terms of one or many index
terms, and his real information need is not exact. Thus, there is a semantic noise in both the
document indexes and in the request for information [98].

One of the reasons that the index terms are noisy is due to the fact the meaning of these
terms are a function of their settings. That is to say, the meaning of an isolated term is
often quite different when it appears in an environment (sentence, paragraph, etc.) of other
words. The grammatical type, position and frequency of other words help to clarify and
specify the meaning of a given term. Furthermore, individual word meanings vary from
person to person because, the meaning of words are a matter of individual experience. This
is all to say when words are isolated and used as tags to indexing documents it is difficult
to pin down their meaning, and consequently it is difficult to use them to accurately index
documents or to accurately specify a request.

There are many attempts that try to reduce the semantic noise in indexing. Some of
the most popular are the use of specialized index systems and the logical combination of
index terms. In the first case, an indexing tailored to a particular type of documents would
be less noisy than it would be the case otherwise. The idea is to apply the principle of an
ideoglossary, as it is used in machine language translation, to remove semantic ambiguity.
In spite of a careful work in the developing of a “best” set of index terms for a particular
library , the problem of the semantic noise and its consequences remain, albeit, to a lesser
extent.

Another attempt to remove the semantic noise in request formulations is the use of logi-
cal combinations of index terms. That is to say, if two or more terms are joined conjunctively
(intersection), it helps to narrow or better specify a subject. On the other hand, the same
set of terms connected disjunctively (union) broadens the scope of the request. Thus, using
logical combinations of index terms, one would hope to either avoid the retrieval of irrele-
vant material or avoid missing relevant material. However, although a request using index
terms joined conjunctively does decrease the probability of obtaining irrelevant documents,
it also increases the probability of missing relevant documents.

The fact that conventional searching consists in matching noise index terms implies that
the results of a search provides documents that are irrelevant to the real information need,
and, even worse, some of the really relevant documents are not retrieved. Thus, in spite
of specialized indexing systems and the use of logical combinations of index terms, the
major problem is still that of properly identifying the subject content of both documents
and request.

2.8 Information Retrieval Models and Strategies

2.8.1 Introduction

Conventional information retrieval systems use index terms to index and retrieve docu-
ments. An index term is considered as a keyword (or group of related words) that has some
meaning of its own. In general, an index term is simply a word that appears in the text of a
document in the collection. Retrieval based on index terms adopts the idea that the seman-
tics of the document and of the user information need can be naturally expressed through
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sets of index terms [8]. The idea behind the term frequency was formulated in the very
beginning of information retrieval research by Luhn [96]:

‘‘It is here proposed that the frequency of word occurrences in an article fur-
nishes a useful measurement of word signicance. It is further proposed that the
relative position within a sentence of words having given values of signicance
furnishes a useful measurement for determining the signicance of sentences.
The signicance factor of a sentence will therefore be based on a combination
of these two measurements.”

Evidently, this is a considerable oversimplification of the problem because important
semantic information in a document or user request is lost when we replace its text with a
set of words. For this reason a matching between each document and the user request using
the space of index terms could be very imprecise. Thus, it is possible that the documents
retrieved in response to a user request expressed as a set of keywords are irrelevant.

Clearly, document relevance estimation is the fundamental problem in information re-
trieval systems. Such a relevance calculation defines the model logic of the implemented
search algorithm, ordering the retrieved document in a ranking. Documents appearing at
the first ranking positions will be considered as more relevant.

2.8.2 Classical Information Retrieval

Whereas the information retrieval domain as a computer science research field is as old
as computers themselves, and that thousands of experiments were conducted, there is no
agreement on a unique model of information retrieval. In every text book about information
retrieval, a chapter is dedicated to the models and each of them proposes, at least in its
table of content, a taxonomy of the models. While there is not a complete consensus on
the classification of these models, the one proposed by Baeza-Yates and Ribeiro-Neto [8]
is quite common. As depicted in Figure 2.10, these authors consider three classic models,
namely the Boolean model, the vector model and the probabilistic model. Each of these
three models is refined in i) Probabilistic models (Inference Networks and Belief Networks),
ii) Algebraic models (Generalized Vector, Latent Semantic Indexing, and Neural Networks),
iii) Set Theoretic models (Fuzzy and Extended Boolean models).

Boolean Model

The Boolean model is based on set theory and Boolean algebra. Due to the simplicity of the
set concepts, the Boolean model provides a simple framework of an IR system. The queries
are specified as Boolean expressions which have precise semantics. Given its inherent sim-
plicity, the Boolean model has had great popularity in the past years and was adopted by
many of the early commercial bibliographic systems, one of the best known of these is Di-
alog1. Others include search services provided by newspapers such as The New York Times
and Visual Recall (Xerox Corporation).

1www.dialog.com



20 2 Information Retrieval

proximal nodes

non-overlapping lists

- fuzzy
- extended boolean

- generalized vector
- latent semantic indexing
- neural networks

- inference network
- belief network

probabilistic

vector

boolean

Classic Models

Structured Models

In
fo

rm
at

io
n

R
et

ri
ev

al

Figure 2.10: The Information Retrieval Taxonomy.

The Boolean model considers that index terms are present or absent in a document. As
a result, the index terms are assumed to be all binary. A query q is composed of index terms
linked by three operators: not, and, or. Thus a query is essentially a conventional Boolean
expression that can be represented as a disjunction of conjunctive vectors (i.e., in disjunctive
normal form DNF) [8]. For example, the query [q = ka ∧ (kb ∨ ¬kc)] can be written in
DNF as [~qdnf = (1, 1, 1) ∨ (1, 1, 0) ∨ (1, 0, 0)], where each of the components is a binary
weighted vector associated with the tuple (ka, kb, kc). These binary weighted vectors are
called the conjunctive components of ~qdnf .

Definition 1 For the Boolean model, the index term weight variables are all binary i.e.,
wi,j ∈ {0, 1}. A query q is a conventional Boolean expression. Let ~qdnf be the disjunctive
normal form for the query q. Further, let ~qcc be any of the conjunctive components of ~qdnf .
The similarity of a document dj to the query q is defined as

sim(dj , q) =
{

1 if ∃ ~qcc | (~qcc ∈ ~qdnf ) ∧ (∀ ki, gi(~dj) = gi(~qcc))
0 otherwise

If sim(dj , q) = 1 the Boolean model predicts that the document dj is relevant to the
query q. Otherwise, the prediction is that the document is non-relevant, not considering a
partial match to the query conditions.

Unfortunately, the Boolean model suffers from major drawbacks:
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1. It is based on a binary decision criterion, i.e. a document is predicted to be either rel-
evant or non-relevant without any intermediate scales, which hinder a good retrieval
performance [8].

2. While the lack of an adequate weighting mechanism results in queries that are less
than optimal, the second problem with the Boolean queries is the probability of a
misstated query [85]. This problem involves incorrect interpretation of the Boolean
operators AND an OR. People who are not experienced with logical conventions
tend to misuse these operators in certain situations. For example, a person seeking
“Saturday night entertainment” may specify an interest in (dinner AND sports AND
symphony). The choices of events that are simultaneously dinner and sports and sym-
phony is limited; most probably the person means (dinner OR sports OR symphony),
or perhaps (dinner AND (sports OR symphony)). A Boolean retrieval system does
not know this, however, and will misinterpret the query. In fact, most users find the
representation of their queries in terms of Boolean expressions difficult and awkward,
restricting the formulation to quite simple expressions [8].

3. A third problem with Boolean retrieval systems lies in the order of precedence for the
logical connectives. Two different standards for the order of precedence are followed.
Both rely on parentheses to group terms together: The combination within parenthe-
ses is evaluated as a unit before the terms outside the parentheses. In one type of
systems, NOT is applied first within the parentheses, followed by AND, followed by
OR, with a left-to-right precedence among operators of the same kind. Other sys-
tems, however, follow a strict left-to-right order of precedence without regard of the
operators.

Various modifications of Boolean query systems permit some finer grading of the set of
retrieved documents. Consider, for example, the query A OR B OR C. This is satisfied by
any document containing one of the terms, while others will contain two or all three. Thus,
the retrieved set can be graded by how many of the three terms each document contains and
even by the specific terms, thus separating the documents with the term A and B but not C
from those with the terms A and C but not B, and both of these sets from the documents
containing all three terms.

Vector Space Model

As deficiencies in Boolean retrieval systems became apparent, alternative models of re-
trieval were developed.

The vector model took shape due to the work of Luhn [97], Salton [134, 129, 130],
Salton and McGill [136], and van Rijsbergen [123, 153]. Among the earliest successful
systems based on this model was the SMART system [135], originally developed at Harvard
University. Continued development of this system by Salton and his students at Cornell
University has kept it a vital force in experimental information retrieval today [85].

The vector space model calculates a measure of similarity by defining a vector ~d repre-
senting the terms on each document, and a vector ~q that represents the terms on the query
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[138]. The model is based on the idea that the meaning of a document is contained by the
words used. If one can represent the words in the document by a vector, it is possible to
compare documents with queries to determine how similar their content is [64].

If a query is considered to be related to a document, a similarity coefficient (SC) between
a document and a query can be computed. This similarity measure has the following three
basic properties:

• It is usually normalized (i.e., it takes on values between 0 and 1).

• Its value does not depend on the order in which the query and the document are
considered for comparison purposes (symmetry or commutativity).

• It is maximal, i.e., equal to 1, when the query and the document vectors are identical
(reflexivity).

Documents whose content is most closely to the content of the query are judged to be
most relevant.

The traditional method to measure the closeness (similarity) of these two vectors is
the cosine measure [153, 160], defined by the cosine of the angle (θ) between the vectors
(Figure 2.11). In mathematical terms this is the inner product of the document and query
vectors, normalized by their lengths.

similarity(~d, ~q) = cos(θ) =
~d · ~q

| ~d | × | ~q |
(2.3)

where | ~d | and | ~q | are the norms of the document and query vectors.
The cosine measure levels the playing fields by dividing the computation by the length

of the document vector. The assumption used in the cosine measure is that document length
has no impact on relevance. Without normalization factor, longer documents are more likely
to be found relevant simply because they have more terms which increases the likelihood of
match. Dividing by the document vectors removes the size of the document from consider-
ation [64].

A simple example is given in Figure 2.12. Using a language with a two word vocabulary
(only “A” and “I” are valid terms), all queries and documents can be represented in a two-
dimensional space. A query and three documents are given along with their corresponding
vectors and a graph of these vectors.

The similarity coefficient between the query q and the documents can be computed as
the distance from the query to the two vectors. In this example, one can see that document
d1 is represented by the same vector as the query so it will have the highest rank in the result
set.

It is important to remark that not all terms are equally useful for describing the document
contents. In fact there are index terms which describe better the document content than
others, and deciding on the importance of terms for summarizing the contents of a document
is not a trivial issue. A simple method to determine such term properties is to measure
the frequency of terms in the whole collection. For example, considering a collection of
one thousand documents, a word which appears in each of the one thousand documents is
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Figure 2.11: The inner product between two vectors : a · b = |a||b| cos θ
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Figure 2.12: Vector Space Model with a two term vocabulary

completely useless as an index term because it does not give us information to differentiate
which document is potentially better for the user. On the other side, a word that appears only
in few documents is quite useful because it restricts the space of documents that may be of
interest for the user. Thus, it should be clear that distinct index terms have varying relevance
when used to describe document contents. This effect is captured through the assignment
of numerical weights to each index term of a document. These weights are computed using
the inverse document frequency (idf ) corresponding to a given term.

One of the most effective term-weighting approaches is related to the basic principles
that support clustering techniques [8]. Given a collection C of objects and a vague descrip-
tion of a set A, the goal of a simple clustering algorithm might be to separate the collection
C of object into two sets: a first one that is composed of objects related to the set A and
a second one that is composed of objects not related to the set A. Vague description here
means that we do not have enough information for deciding precisely which objects are
and which are not in the set A. More sophisticated clustering algorithms might attempt
to separate the objects of a collection into various clusters (or classes) according to their
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properties.
The IR case considers only the simple version of the clustering problem (i.e., the one that

considers only two classes) because all that is required is a decision on which documents
are predicted to be relevant and which ones are predicted to be not relevant (with regard to
a given query). In this clustering problem, two main issues have to be resolved:

• First, one needs to determine what are the features that better describe the objects in
the set A.

• Second, one needs to determine what are the features that better distinguish the ob-
jects in the set A from the remaining objects in the collection C.

The first set of features provides for quantification of intra-cluster similarity, while the
second set of features provides for quantification of inter-cluster dissimilarity. The most
successful clustering algorithms try to balance these two effects.

In the vector model, intra-clustering similarity is quantified by measuring the raw fre-
quency of a term ki inside a document dj . This term frequency is usually referred to as the
tf factor and provides one measure of how well that term describes the document contents.
Furthermore, inter-cluster dissimilarity is quantified by measuring the inverse of the fre-
quency of a term ki among the documents in the collection. This factor is usually referred
to as the inverse document frequency or the idf factor. The motivation for using the idf
factor is that terms which appear in many documents are not very useful for distinguishing
a relevant document from a non-relevant one.

Definition 2 Let N be the total number of documents in the system and ni be the number
of documents in which the term ki appears. Let freqi,j be the raw frequency of term ki in
the document dj . Then, the normalized frequency tfi,j of term ki in document dj is given
by

tfi,j =
freqi,j

maxl freql,j
(2.4)

where the maximum is computed over all terms that are mentioned in the text of the
document dj . If the term ki does not appear in the document dj , then fi,j = 0.

Further, let idfi, the inverse document frequency for ki, be given by

idfi = log
N

ni
(2.5)

The best known term-weighting schemes use weights which that are given by

wi,j = tfi,j × log
N

ni
(2.6)

or by a variation of this formula [133], where the author tries to avoid the negative effect
of high frequency single terms:
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wi,j =
(log tfij + 1.0) · idfi∑t

i=1 [(log tfij + 1.0) · idfi]2
(2.7)

Such term-weighting strategies are called tf-idf schemes.

Vector Calculation - An Example. The following example [60], originally proposed by
David Grossman [64], shows a detailed term vector calculation, consisting of a case insen-
sitive query Q and a document collection consisting of the documents D1, D2, D3.

Q : “gold silver truck”

D1 : “Shipment of gold damaged in a fire”

D2 : “Delivery of silver arrived in a silver truck”

D3 : “Shipment of gold arrived in a truck”

In this collection, there are three documents, so d = 3. Applying the expression (2.5),
if a term appears in only one of the three documents, its idf is log d

dfj
= log 3

1 = 0.477.

Similarly, if a term appears in two of the three documents, its idf is log 3
2 = 0.176, and a

term that appears in all three documents has an idf of log 3
3 = 0.

Since eleven terms appear in the document collection, an eleven-dimensional document
vector is constructed. The retrieval results are summarized in the following table.

Table 2.3: Term Vector Model based on wi = tfi · IDFi
Counts,tf Weights, wi = tfi · idfi

Terms Q D1 D2 D3 dfi D/dfi idfi Q D1 D2 D3
a 0 1 1 1 3 3/3=1 0 0 0 0 0
arrived 0 0 1 1 2 3/2=1.5 .176 0 0 .176 .176
damaged 0 1 0 0 1 3/1=3 .477 0 .477 0 0
delivery 0 0 1 0 1 3/1=3 .477 0 0 .477 0
fire 0 1 0 0 1 3/1=3 .477 0 .477 0 0
gold 1 1 0 1 2 3/2=1.5 .176 .176 .176 0 .176
in 0 1 1 1 3 3/3=1 0 0 0 0 0
of 0 1 1 1 3 3/3=1 0 0 0 0 0
silver 1 0 2 0 1 3/1=3 .477 .477 0 .954 0
shipment 0 1 0 1 2 3/2=1.5 .176 0 .176 0 .176
truck 1 0 1 1 2 3/2=1.5 .176 .176 0 .176 .176

The Columns 1 - 5 : Determine the term counts tfi for the query and each document Dj .

The Columns 6 - 8 : Contain the document frequency dfi for each document. Since idfi =
log Ddfi and D = 3, this calculation is straightforward.



26 2 Information Retrieval

The Columns 9 - 12 : Contain the tf · idf products and the term weights. These columns
can be viewed as a sparse matrix in which most entries are zero.

Here, the weights are treated as coordinates in the vector space, effectively representing
documents and query as vectors. To find out which document vector is closer to the query
vector, we use the traditional method proposed in equation (2.3). For each document and
query, all vector lengths are computed:

| ~D1| =
√

0.4772 + 0.4772 + 0.1762 + 0.1762 =
√

0.517 = 0.719
| ~D2| =

√
0.1762 + 0.4772 + 0.9542 + 0.1762 =

√
1.200 = 1.096

| ~D3| =
√

0.1762 + 0.1762 + 0.1762 + 0.1762 =
√

0.124 = 0.352
| ~Q| =

√
0.1762 + 0.4772 + 0.1762 =

√
0.290 = 0.538

Now, the dot products are computed:
~Q · ~D1 = 0.176 · 0.176 = 0.031
~Q · ~D2 = 0.477 · 0.954 + 0.176 · 0.176 = 0.486
~Q · ~D3 = 0.176 · 0.176 + 0.176 · 0.176 = 0.062

And finally, the similarity values are computed:
sim( ~D1, ~Q) = cos(θ ~D1, ~Q

) =
~Q· ~D1

| ~Q|×| ~D1|
= 0.031

0.538·0.719 = 0.080

sim( ~D2, ~Q) = cos(θ ~D2, ~Q
) =

~Q· ~D2

| ~Q|×| ~D2|
= 0.486

0.538·1.096 = 0.825

sim( ~D3, ~Q) = cos(θ ~D3, ~Q
) =

~Q· ~D3

| ~Q|×| ~D3|
= 0.062

0.538·0.352 = 0.327
Sorting and ranking the documents in descending order according to the similarity values,
we obtain:

Rank 1: D2 = 0.8246
Rank 2: D3 = 0.3271
Rank 3: D1 = 0.0801

Other similarity measures. Two other commonly used measures are the Jaccard and the
Dice similarity measures [153]. Both change the normalizing factor in the denominator to
account for different characteristics of the data: the denominator in the cosine formula is
invariant to the number of terms in common and produces very small numbers when the
vectors are large and the number of common terms is small.

In the Jaccard similarity measure (2.8), the denominator becomes dependent upon the
number of terms in common. As the common elements increase, the similarity value quickly
decreases, but is always in the range -1 to +1:

simjaccard(q, di) =

∑
t
j=1wqjdij∑

t
j=1(dij)2 +

∑
t
j=1(wqj)2 −

∑
t
j=1wqjdij

(2.8)

The Dice measure (2.9) simplifies the denominator of the Jaccard measure and intro-
duces a factor 2 in the numerator. The normalization in the Dice formula is also invariant to
the number of terms in common:

simdice(q, di) =
2
∑

t
j=1wqjdij∑

t
j=1(dij)2 +

∑
t
j=1(wqj)2

(2.9)
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The main advantages of the vector model are: (a) its term-weighting scheme improves
retrieval performance; (b) its partial matching strategy allows retrieval of documents that
approximate the query conditions; (c) its cosine ranking formula sorts the documents ac-
cording to their degree of similarity to the query.

For its flexibility, simplicity and good performance with general collections, the vector
model is one of the most popular models nowadays.

Probabilistic Model

The basic assumption in the probabilistic model is that given a document and a query, it
should be possible to calculate the probability that the document is relevant to the query.
The concept was first introduced by Maroon and Kuhns [98]; it later became known as the
binary independence retrieval (BIR) model.

The model attempts to capture the IR problem within a probabilistic framework. The
fundamental idea is as follows. Given a user query, there is a set of documents that contain
exactly the relevant documents and no others. This set of documents is called the ideal
answer set (R). Given the description of this answer set, we would have no problems in
retrieving its documents. Thus, the querying process can be defined as the process of spec-
ifying the properties of an ideal answer set.

The problem is that we do not know exactly what these properties are. All we know is
that there are index terms whose semantics should be used to characterize these properties.
Since these properties are not known at query time, an effort has to be made at initially
guessing what they could be. This initial guess allows us to generate a preliminary proba-
bilistic description of the ideal answer set which is used to retrieve a first set of documents.
An interaction with the user is then initiated with the purpose of improving the probabilistic
description of the ideal set. This interaction could proceed as follows.

The user takes a look at the retrieved documents and decides which ones are relevant and
which ones are not. The system uses this information to refine the description of the ideal
answer set. By repeating this process many times, it is expected that such a description
will evolve and become closer to the real description of the ideal answer set. Thus, one
should always have in mind the need to guess the description of the ideal answer set at the
beginning. Furthermore, a conscious effort is made to model this description in probabilistic
terms [8].

The probabilistic model is based on the following fundamental assumption:
Given a user query q and a document dj in the collection, the probabilistic model tries

to estimate the probability that the user will find the document dj relevant. The model
assumes:

• the probability of relevance only depends on the query and the document representa-
tions.

• there is a subset of all documents which the user prefers as the answer set (R) for the
query q.

• R should maximize the overall probability of relevance to the user.
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• Documents in the set R are predicted to be relevant to the query.

• Documents not in R are predicted to be non-relevant.

This assumption is quite problematic because (a) it does not state explicitly how to
calculate the probabilities of relevance and (b) it does not give a sample space that is to be
used for defining such probabilities.

In the probabilistic model, each document dj is assigned with the ratio

P(dj is relevant to q) / P(dj is not relevant to q)

as a measure of similarity. This ratio gives the probability of the document dj being relevant
to the query q [8].

Definition 3 For the probabilistic model, the index term weight variables are all binary
i.e., wi,j ∈ {0, 1} , wi,q ∈ {0, 1}. A query q is a subset of index terms. Let R be the set of
documents known (or initially guessed) to be relevant. Let R̄ be the complement of R (i.e.,
the set of non-relevant documents). Let P (R|~dj) be the probability that the document dj
is relevant to the query q and P (R̄|~dj) be the probability that dj is non-relevant to q. The
similarity sim(dj , q) of the document dj to the query q is defined as the ratio:

sim(dj , q) =
P (R|~dj)
P (R̄|~dj)

(2.10)

Using Bayes’ rule,

sim(dj , q) =
P (~dj |R)× P (R)

P (~dj |R̄)× P (R̄)
(2.11)

where P (~dj |R) stands for the probability of randomly selecting the document dj from
the set of relevant documents (R), P (R) is the probability that a document randomly se-
lected from the entire collection is relevant. P (~dj |R̄) and P (R̄) are the corresponding
complements.

Since P (R) and P (R̄) are the same for all the documents in the collection, we can
redefine the similarity value as:

sim(dj , q) ∼
P (~dj |R)

P (~dj |R̄)
(2.12)

Assuming independence of index terms,

sim(dj , q) ∼

∏
gi(~dj)=1

P (ki|R)×
∏
gi(~dj)=1

P (k̄i|R)∏
gi(~dj)=1

P (ki|R̄)×
∏
gi(~dj)=1

P (k̄i|R̄)
(2.13)

where P (ki|R) is the probability that the index term ki is present in a document ran-
domly selected from the set R, P (k̄i|R) is the probability that the index term ki is not
present in a document randomly selected from the set R.
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Taking logarithms, recalling that P (ki|R) +P (k̄i|R) = 1, and ignoring factors that are
constant for all documents in the context of the same query, we can write finally:

sim(dj , q) ∼
t∑
i=1

wi,q × wi,j ×
(
log

P (ki|R)
1− P (ki|R)

+ log
1− P (ki|R̄)
P (ki|R̄)

)
(2.14)

which is the key expression for ranking computations in the probabilistic model [8].
Since we do not know the set R a the beginning, it is necessary to define a method

for the initial calculations of P (ki|R) and P (ki|R̄). There are many alternatives for such
computations. For example, in the very beginning (i.e., immediately after the query spec-
ification), there are no retrieved documents, Thus, one has to make some simplifications:
(a) assume that P (ki|R) is constant for all index terms ki (typically, equal to 0.5) and (b)
assume that the distribution of index terms among the non-relevant documents can be ap-
proximated by the distribution of index terms among all the documents in the collection,
that is P (ki|R) = 0.5 and P (ki|R̄) = ni

N , where ni is the number of documents that con-
tain the index term ki and N is the total number of documents in the collection. Given this
initial guess, we can then retrieve documents that contain the query terms and provide an
initial probabilistic ranking for them. After that, this initial ranking is improved as follows.

Let V be a subset of the documents initially retrieved and ranked by the probabilistic
mode. Such a subset can be defined, for example, as the top r ranked documents where r is
a previously defined threshold. Further, let Vi be the subset of V composed of the document
in V that contain the index term ki. For simplicity, V and Vi will be used to refer the number
of elements in these sets. For improving the probabilistic ranking, the guesses for P (ki|R)
and P (ki|R̄) will be improved, which can be accomplished with the following assumptions
: (a) one can improve P (ki|R) by the distribution of the index term ki among the document
retrieved so far. (b) one can approximate P (ki|R̄) by considering that all the non-retrieved
documents are not relevant. Using these assumption, one can write, P (ki|R) = Vi

V and
P (ki|R̄) = ni−Vi

N−V .
Repeating this process recursively, it is possible to improve the guesses of the P (ki|R)

and P (ki|R̄) probabilities, without human assistance. However, one can also use assistance
from the user for the definition of the subset V as originally conceived.

The last formulas for P (ki|R) and P (k|R̄) present some problems for small values of V
and Vi (for example V = 1 and Vi = 0). To prevent this situation, an adjustment factor (0.5)
is often added: P (ki|R) = Vi+0.5

V+1 and P (ki|R̄) = ni−Vi+0.5
N−V+1 . In the case of unsatisfactory

results, the constant 0.5 can be replaced with the fraction ni/N .

2.8.3 Alternative Models

Latent Semantic Analysis

Latent Semantic Analysis (LSA) tries to overcome the problem of lexical matching by using
statistically derived conceptual indexes instead of individual words for retrieval. It assumes
that there is some underlying or latent structure in word usage that is partially obscured by
variability in word choice [12].
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LSA maps documents as well as terms to a representation in the so-called latent seman-
tic space, using ~M , a (high dimensional) vector space representation of documents based on
term frequencies as a starting point, and applies a dimension reducing linear projection. The
specific form of this mapping is determined by a given document collection and is based on
a Singular Value Decomposition (SVD) of the corresponding term/document matrix.

~M = ~K~S ~Dt (2.15)

The matrix ~K is the matrix of eigenvectors derived from the term-to-term correlation matrix
given by ~M ~M t. The matrix ~Dt is the matrix of eigenvectors derived from the transpose of
the document-to-document matrix given by ~M t ~M . The matrix ~S is an r×r diagonal matrix
of singular values where r = min(t,N) is the rank of ~M .

Considering that only the s largest singular values of ~S are kept along with their corre-
sponding columns in ~K and ~Dt (i.e. the remaining singular values of ~S are deleted). The
resulting ~Ms matrix is the matrix of rank s which is closest to the original matrix ~M in the
least square sense [8]. This matrix is given by

~Ms = ~Ks
~Ss ~Dt

s (2.16)

where s, s < r, is the dimensionality of the reduced concept space.
The selection of a value s attempts to balance two opposing effects:

1. s should be large enough to allow fitting all the structure in the real data.

2. s should be small enough to allow filtering out all non-relevant representational de-
tails, present in the original matrix.

The relationship between any two documents in the reduced space of dimensionality
s can be obtained from the ~M t

s
~Ms matrix given by

~M t
s
~Ms = ( ~Ks

~Ss ~Dt
s)
t ~Ks

~Ss ~Dt
s = ~Ds

~Ss ~Kt
s
~Ks
~Ss ~Dt

s = ~Ds
~Ss ~Ss ~Dt

s = ( ~Ds
~Ss)( ~Ds

~Ss)t

(2.17)

In the above matrix, the (i, j) element quantifies the relationship between documents di
and dj .

To rank documents with regard to a given user query, one can simple model the query as
a pseudo-document in the original ~M term-document matrix. Assume the query is modeled
as the document with number 0. Then, the first row in the matrix ~M t

s
~Ms provides the ranks

of all documents with respect to the query.
Since the matrices used in the latent semantic model are of rank s, s << t, and s << N ,

then form an efficient indexing scheme for the documents in the collection. Further, they
provide for elimination of noise and removal of redundancy.

The general idea in LSA is that similarities between documents or between documents
and queries can be more reliably estimated in the reduced latent space representation than
in the original representation. The rationale is that share frequently co-occurring terms will
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have a similar representation in the latent space, even if they have no terms in common.
LSA thus performs a type of noise reduction and has the potential benefit of detecting
synonyms, as well as words that refer to the same topic. Although LSA has been applied
with remarkable success in various domains, including automatic indexing (LSI) [39, 40],
it has a number of deficits that will be mentioned below.

Computational Costs & the Updating Problem: Suppose an LSI generated database
already exists. That is, a collection of text objects has been parsed, a term-document matrix
has been generated, and the SVD of the term/document matrix has been computed. If more
terms and documents have to be added, two alternatives for incorporating the latter currently
exist:

• recomputing the SVD of a new term-document matrix or

• folding-in the new terms and documents.

Updating can mean either folding-in or SVD-updating. SVD-updating is the new method of
updating developed in [104]. Folding-in terms or documents is a much simpler alternative
that uses an existing SVD to represent new information. Recomputing the SVD of a larger
term-document matrix requires more computation time and, for large problems, may be
impossible due to memory constrains [27]. Recomputing the SVD allows the new terms and
documents to directly affect the latent semantic structure by creating a new term-document
matrix. In contrast, folding-in is based on the existing latent semantic structure, the current
matrix, and hence new terms and documents have no effect on the representation of the
pre-existing terms and documents. Folding-in requires less time and memory but can have
deteriorating effects on the representation of the new terms and documents [12].

Optimal Dimension of the Concept Space: Determining the optimal number of dimen-
sions in the concept space is another problem encountered with LSI [145]. The original
work by Deerwester et al. used trial and error to empirically determine the optimal number
of dimensions (they tested between 50-150 dimensions) [91]. Dumais [40] reports using
between 200-350 dimensions for TREC-3. Landauer and Littman [91] report using 100 di-
mensions for cross-language retrieval in English and in French. There does not seem to be
a general consensus for an optimal number of dimensions; instead, the size of the concept
space must be determined based on the specific collection of documents used.

Document Collection Size and Heterogeneity: When the corpus is large and heteroge-
neous, LSI’s retrieval quality is inferior to methods such as Okapi [127].

2.8.4 Structured Text Retrieval Models

Models Based on Non-overlapping Lists

Burkowski [20, 21] proposes to divide the whole text of each document in non-overlapping
text regions that are collected in a list. Since there are multiple ways to divide a text in non-
overlapping regions, multiple lists can be generated. For example, we can define a list for
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all chapters in the document, a second list of all sections, and a third list of all subsections.
These lists are kept as separate and distinct data structures. While the text regions in the
same (flat) list have no overlapping, text regions from distinct lists may overlap [8]. Figure
2.13 shows four separate lists for the same document.

L1

L2

L3

L4

chapter

sections

subsections

subsubsections

Figure 2.13: Representation of the text structure in a document by four separate indexing
lists.

To allow searching for index terms and for text regions, a single inverted file is built
in which each structural component stands as an entry in the index. Associated with each
entry, there is a list of text regions as a list of occurrences. Moreover, such a list could
be easily merged with the traditional inverted file for the words in the text. Since the text
regions are non-overlapping, the types of queries that can be asked are simple: (a) select a
region containing a given word (and does not contain other regions); (b) select a region A
that does not contain any other region B (where B belongs to a list distinct from the list for
A); (c) select a region not contained within any other region, etc.

Models Based on Proximal Nodes

Navarro and Baeza-Yates [103] propose a model that allows the definitions of independent
hierarchical (non-flat) indexing structures over the same document text. Each of these in-
dexing structures is a strict hierarchy composed of chapters, sections, paragraphs, pages,
and lines which are called nodes (Figure 2.14). To each of these nodes a text region is
associated . Further, two distinct hierarchies might refer to overlapping text regions.

Given a user query that refers to distinct hierarchies, the compiled answer is formed
by nodes that all come from only one of them. Thus, an answer cannot be composed of
nodes that come from two distinct hierarchies. Notice, however, that due to the hierarchical
structure, nested text regions (coming from the same hierarchy) are allowed in the answer
set.

Figure 2.14 illustrates a hierarchical indexing structure composed of four levels (chap-
ters, sections, subsections, and sub-subsections of the same document) and an inverted list
for the word “everest”. The entries in the inverted list indicate all the positions in the text of
the document in which the word “everest” occurs. In the hierarchy, each node indicates the
position in the text of its associated structural component

The query language allows the specification of regular expressions (to search for
strings), the reference to structural components by name (to search for the structural com-
ponent (e.g. chapter), and a combination of these. In this sense, the model can be viewed
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as a compromise between expressiveness and efficiency. The somewhat limited expres-
siveness of the query language allows efficient query processing by first searching for the
components which match the specified query string, subsequently, evaluation which of these
components satisfy the structural part of the query.

The model based on proximal nodes allows to formulate queries that are more complex
than those that can be formulated in the model based on non-overlapping lists. To speed
up query processing, however, only nearby (proximal) nodes are looked at which imposes
restrictions on the answer set retrieved (all nodes must come from the same hierarchy).

L1

L2

L3

L4

chapter

sections

subsections

subsubsections

everest 25610 ... 48.304

Figure 2.14: Hierarchical index for structural components and flat index for words

2.9 Retrieval Utilities

2.9.1 Document Pre-Processing

Document pre-processing is a procedure that can be divided into five text operations (or
transformations):

Lexical Analysis

Lexical analysis treats special characters such as digits, hyphens, punctuation marks, and
the case of letters. Some initial rules for lexical analysis are given in [2], but the effect
on precision and recall is not discussed. Many TREC papers talk about “cleaning up their
parser” and the authors confess to having their own precision and recall results improved by
very simple parsing changes. However, we are unaware of a detailed study on single-term
parsing and the treatment of special characters, and its related effect on precision and recall
[64].

Elimination of Stop Words

Stop words are frequently not stored in the index, because they are considered relatively
meaningless with respect to the document relevance, and have a very low discrimination
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values for retrieval purposes. These terms represent approximately forty percent of the
document collection [52] and their elimination reduces index construction, time and storage
costs. On the other hand, stop words removal may also reduce the ability to respond to some
queries, for instance when a query request a phrase that only contain stop words: “to be or
not to be”.

Stemming

Stemming removes prefixes and suffixes and allows the retrieval of documents containing
syntactic variations of the query terms [113, 95]. For example, if the user includes the
term “play” in the query, he can also wish to match “playing”, “player”, “played”, etc.
One problem is when two very different terms might have the same stem. A stemmer that
removes -ing and -ed results in a stem of r for the terms red and ring. The KSTEM algorithm
[89, 88] uses dictionaries to ensure that any generated stem will be a valid word. Croft et al.
[36] use corpus based statistics based on term co-occurrence to identify stems in a language-
independent fashion. These stemmers were shown to result in improved relevance ranking
over more traditional stemmers [64].

Selection of Index Terms

In this process it is defined which words/stems will be used as index terms. In general, it is
related to the syntactic nature of a word. In fact, noun words frequently carry more semantic
information than adjectives, adverbs, and verbs.

2.9.2 Inverted Index

An inverted index (or inverted file) is a word-oriented mechanism for indexing a text col-
lection in order to speed up the search task. The inverted file structure is composed of
two elements: the vocabulary containing all unique terms in the collection, and for each
vocabulary-term a posting list, with the documents in which the term occurs.

As illustrated in the Figure 2.15, an entry in the list of documents can also contain the
frequency of the term tfi,j and the positions of the term 〈pos〉i,j in the document (e.g. word,
sentence, paragraph, etc.) to facilitate proximity searching [83].

The indexing process requires additional overhead since the entire collection is scanned
and substantial input/output operations are required to generate an efficiently represented
index for use in secondary storage. Upon receiving a query, the index is consulted, the
corresponding posting lists are retrieved, and the algorithm ranks the documents based on
the contents of the posting lists [64].

Index Compression

An important topic concerning the efficiency of an IR system is the size of the index. The
size of an inverted file can be reduced by compressing the inverted lists. Because the list of
document numbers within the inverted list is in ascending order, it can also be considered as
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Figure 2.15: An inverted index

a sequence of gaps between document numbers. Since processing is usually done sequen-
tially starting from the beginning of the list, the original document numbers can be always
be recomputed through sums of the gaps.

By observing that these gaps are small for frequent words and large for infrequent
words, compression can be obtained by encoding small values with shorter codes. One
possible coding scheme is the unary code, in which an integer x is encoded as (x− 1) one
bits followed by a zero bit, so the code for the integer 3 is 110.

Two alternative methods based on the unary code were proposed by Elias [44]: the
Elias-γ code and the Elias-δ codes are variable length coding schemes for integers. In
Elias-γ, the number x will be represented as a concatenation of two parts: (1) a unary code
for 1 + blog xc and (2) a code of blog xc bits that represents the value of x − 2blog xc in
binary. For example, the Elias-γ code for x = 5 is the unary code for 3 (code 110) with the
2-bits binary number for 1 (code 01) which yields the codeword 11001. The Elias-δ code
represents the prefix indicating the number of binary bits by the Elias-γ code rather than the
unary code. For x = 5, the first part is then 101 instead 110. Thus, the Elias-δ codeword
for x = 5 is 10101. Golomb [62] presents another run-length coding method for positive
integers, which is very effective when the probability of distribution of a gap is geometric,
but it requires two passes to be generated.

The Golomb method works as follows. For some parameter b, a gap x > 0 is coded
as q + 1 in unary, where q = b(x − 1)/bc, followed by r = (x − 1) − q × b code in
binary, requiring either blog bc or dlog be bits. That is, if r < 2blog bc−1 then the number
coded in binary requires blog bc bits, otherwise it requires dlog be bits where the first bit id
1 and the remaining bits assume the value r − 2blog bc−1 coded in blog bc binary digits. For
example, with b = 3 there are three possible remainders, and those are coded as 0, 10, and
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Gap x Unary Elias-γ Elias-δ Golomb
b = 3

1 0 0 0 00
2 10 100 1000 010
3 110 101 1001 011
4 1110 11000 10100 100
5 11110 11001 10101 1010
6 111110 11010 10110 1011
7 1111110 11011 10111 1100
8 11111110 1110000 11000000 11010
9 111111110 1110001 11000001 11011
10 1111111110 1110010 11000010 11100

Table 2.4: Example of codes for integers.

11, for r = 0, r = 1, and r = 2 respectively. Similarly, for b = 5, there are five possible
remainders r, 0 through 4, and these are assigned the codes 00, 01, 100, 101, and 110. Then,
if the value x = 9 is to be coded relative to b = 3, calculations yield q = 2 and r = 2,
because 9− 1 = 2× 3 + 2 Thus, the encoding is 110 followed by 11. Relative to b = 5, the
values calculated are q = 1 and r = 1, resulting in a code of 10 followed by 101. Table 2.4
shows some examples of Unary, Elias and Golomb codes.

Witte, Moffat and Bell [163] present a detailed study of different text collections. For
all of their practical work on compression of inverted lists, they use the Golomb code for
the list of gaps. In this case, the Golomb code gives a better compression than either Elias-γ
or Elias-δ [8].

2.9.3 Relevance Feedback

A popular information retrieval utility is relevance feedback. In a relevance feedback cycle,
the user is presented with a list of retrieved documents and, after examining them, marks
those that are relevant. An alternative is to avoid asking the user anything at all and to sim-
ply assume that the top ranked documents are relevant. The main idea consists of selecting
important terms, or expressions, attached to the documents that have been identified as rele-
vant by the user, and of enhancing the importance of these terms in a new query formulation.
The expected effect is that the new query will be moved towards the relevant documents and
away from the non-relevant ones [8].

With the vector space model, the addition of new terms to the original query, the deletion
of terms from the query, and the modifications of existing term weights has been done.
With the probabilistic model, relevance feedback was only able to re-weight existing terms,
and there was not accepted means of adding terms to the original query [64]. The exact
means by which relevance feedback is implemented is fairly dependent on the employed
retrieval strategy. However, the basic concept of relevance feedback (i.e. run a query, gather
relevance information from the user, enhance the query, and repeat) can be employed with
any arbitrary retrieval strategy.
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Relevance Feedback in the Vector Space Model

The application of relevance feedback to the vector model considers that the term-weight
vectors of documents identified as relevant (to a given query) have similarities among them-
selves (i.e., relevant documents are similar). Further, it is assumed that non-relevant docu-
ments have term-weight vectors that are dissimilar from the ones for the relevant documents.
The basic idea is to reformulate the query that it gets closer to the term-weight vector space
of the relevant documents. Rocchio [128] has proposed one of the first relevance feedback
approaches for the vector model. The basic assumption is that the user has issued a query
q and retrieved a set of documents, where he determines two sets of documents: the set
R containing n1 relevant documents, and the set S containing n2 non-relevant documents.
Rocchio builds the new query q′ from the old query q using the vectors of the sets R and S:

q′ = q +
1
n1

n1∑
i=1

Ri −
1
n2

n2∑
i=1

Si (2.18)

Ri and Si are individual components of R and S, respectively.
The document vectors from the relevant documents are added to the initial query vec-

tor, and the vectors from the non-relevant documents are subtracted. If all documents are
relevant, the third term does not appear. To ensure that the new information does not com-
pletely override the original query, all vector modifications are normalized by the number of
relevant and non-relevant documents. The process can be repeated such that qi+1 is derived
from qi for as many iterations as desired.

The idea is that the relevant documents have terms matching those in the original query.
The weights corresponding to these terms are increased by adding the relevant document
vector. Terms in the query that are in the non-relevant documents have their weights de-
creased. Also, terms that are not in the original query (had an initial component value of
zero) are now added to the original query.

In addition to using values n1 and n2, it is possible to use arbitrary weights α, β and γ,
experimentally calculated and known as the Rocchio weights:

q′ = αq + β

n1∑
i=1

Ri
n1
− γ

n2∑
i=1

Si
n2

(2.19)

Not all of the relevant or non-relevant documents must be used. By adding the threshold
na and nb, one can restrict the number of documents used for the query expansion.

q′ = αq + β

min(na,n1)∑
i=1

Ri
n1
− γ

min(nb,n2)∑
i=1

Si
n2

(2.20)

Usually, the information contained in the relevant documents is more important than the
information provided by the non-relevant ones [136]. This suggests making γ smaller than
β. Other common practices are to drop the use of the non-relevant documents (assign zero
to γ) or only use the top non-relevant document [74].

The main advantages of the above relevance feedback techniques are simplicity and
good results. The simplicity is due to the fact that the modified term weights are computed
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directly from the set of retrieved documents. The good results are observed experimentally
and are due to the fact that the modified query vector reflect a portion of the intended query
semantics [8]. The main disadvantage is that no optimality criterion is adopted.

2.9.4 Automatic Relevance Feedback

As mentioned before, in a relevance feedback cycle, the user examines the top ranked docu-
ments and separates them into two classes: the relevant ones and the non-relevant ones. This
information is then used to select new terms for query expansion or query re-weighting. An
automatic variant of this procedure involves usually identifying terms that are related to the
query terms. Such terms might be synonyms, stemming variations, or terms that are close
to the query terms in the text. Two basic types of strategies can be attempted: a global one
and a local one.

Automatic Local Analysis

In a local strategy, the documents retrieved for a given query q are automatically examined
at query time to determine terms for query expansion. Two different strategies will be
discussed, the first strategy proposed by Attar and Fraenkel [7] known as local clustering
and the second strategy called local context analysis corresponds to the work of Xu and
Croft [164] which is based on a combination of local and global analysis.

Local feedback strategies are based on expanding the query with terms correlated to the
query terms. Such correlated terms are those present in local clusters built from the local
documents set. To build these cluster structures, Attar and Fraenkel proposed three basic
strategies:

Association Clusters. An association cluster is based on the co-occurrence of stems2 (or
terms) inside documents. The idea is that stems that co-occur frequently inside documents
have a synonymity association [8]. The association clusters are generated as follows:

Definition 4 The frequency of a stem si in a document dj , dj ∈ Dl, is referred to as
fsi,j . Let ~m = (mij) be an association matrix with |Sl| rows and |Dl| columns, where
mij = fsi,j . Let ~mt be the transpose of ~m. The matrix ~s = ~m~mt is a local stem-stem
association matrix. Each element su,v in ~s expresses a correlation cu,v between the stems
su and sv, namely,

cu,v =
∑
dj∈Dl

fsu,j × fsv ,j (2.21)

The correlation factor cu,v quantifies the absolute frequencies of co-occurrence and is
said to be unnormalized. Thus, if we adopt su,v = cu,v, the association matrix ~s is said
to be unnormalized. An alternative is to normalize the correlation factor using su,v =

cu,v
cu,u+cv,v−cu,v , then the association matrix ~s is said to be normalized.

2A stem is the part of a word that is common to all its inflected variants.
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Given a query q, we are normally interested in finding clusters only for the |q| query
terms. Further, it is desirable to keep the size of such clusters small. This means that
such clusters can be computed in query time. A similar procedure can be applied for a
non-stemmed version where keywords instead of stems are used. Keyword-based local
clustering is equally worthwhile trying because there is controversy over the advantages of
using a stemmed vocabulary [8].

Metric Clusters. Associations clusters are based on the frequency of co-occurrence of
pairs of terms in documents and do not take into account where the terms occur in a doc-
ument. Since two terms that occur in the same sentence seem more correlated than two
terms that occur far apart in a document, it might be worthwhile to consider the the distance
between two terms by the computation of their correlation factor. The metric clusters are
based in the following definition:

Definition 5 Let the distance r(ki, kj) between two keywords ki and kj be given by the
number of words between them in the same document. If ki and kj are in distinct documents,
we take r(ki, kj) =∞. A local stem-stem metric correlation matrix ~s is defined as follows.
Each element su,v of ~s expresses a metric correlation cu,v between the stem su and sv
namely,

cu,v =
∑

ki∈V (su)

∑
kj∈V (xv)

1
r(ki, kj)

(2.22)

In this expression, as already defined, V (su) and V (sv) indicate the sets of keywords
that have su and sv as their respective stems.

The correlation factor cu,v quantifies absolute distances and is said to be unnormalized.
Thus, if we adopt su,u = cu,v the association matrix ~s is said to be unnormalized. An alter-
native is to normalize the correlation factor. For instance, adopting su,v = cu,v

|V (su)|×|V (sv)| ,
then the association matrix ~s is said to be normalized.

Give a local matrix ~s, we can use it to build local metric clusters as follows.

Definition 6 Consider the uth row in the metric correlation matrix ~s (i.e., the row with all
the associations for the stem su). Let Su(n) be a function that takes the uth row and returns
the set of n largest values su,v, where v varies over the set of local stems and v 6= u. The
Su(n) defines a local metric cluster around the stem su.

Scalar Clusters. One additional form to obtain a synonymity relationship between two
local stems (or terms) su and sv is by comparing the sets Su(n) and Sv(n). The idea is that
two stems with similar neighborhoods have some synonymity relationship. In this case, we
say that the relationship is indirect or induced by the neighborhood. One way to calculate
such neighborhood relationships is to arrange all correlation values su,i in a vector ~su, to
arrange all correlation values sv,i in another vector ~sv, and to compare these vectors through
a scalar measure. For instance, the cosine of the angle between the two vectors is a popular
scalar similarity measure.
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Definition 7 Let ~su = (su,1, su,2, ..., su,n) and ~sv = (sv,1, sv,2, ..., sv,n) be two vectors of
correlation values for the stems su and sv. Further, let ~s = (su,v) be a scalar association
matrix. Then, each su,v can be defined as

su,v =
~su · ~sv
|~su| × |~sv|

(2.23)

The correlation matrix ~s is said to be induced by the neighborhood. Using it, a scalar
cluster is defined as follows.

Definition 8 Let Su(n) be a function that returns the set of n largest values su,v, v 6= u,
defined according to equation 2.23. Then, Su(n) defines a scalar cluster around the stem
su.

A stem su that belongs to a cluster (of size n) associated to another stem sv (i.e.,
su ∈ Sv(n)) is said to be a neighbor of sv. While neighbor stems are said to have a
synonymity relationship, they are not necessary synonyms in the grammatical sense. Often,
neighbor stems represent distinct keywords that are correlated by the current query context
[8]. The local aspect of this correlation is reflected in the fact that the documents and stems
considered in the correlation matrix are all local (i.e., dj ∈ Dl, su ∈ Vl.
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Figure 2.16: Stem su as neighbor of stem sv.

Figure 2.16 illustrates a stem (or term) su that is located within a neighborhood Sv(n)
associated with the stem (or term) sv. In general, neighbor stems are an important product
of the local clustering process since they can be used for extending a search formulation
in a promising unexpected direction, rather than merely complementing it with missing
synonyms [8].

The qualitative interpretation of normalized and unnormalized clusters is that unnor-
malized clusters tend to group stems whose ties are due to their large frequencies, while
normalized clusters tend to group stems which are more rare. Thus, the union of these two
clusters provides a better representation of the possible correlations.
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Experimental results reported in the literature usually support the hypothesis of the use-
fulness of local clustering methods. Furthermore, metric clusters seem to perform better
than pure association clusters. This strengthens the hypothesis that there is a correlation
between the association of two terms and the distance between them [8].

Local Context Analysis. As discussed above, clustering techniques are based on set of
documents retrieved for the original query and use the top ranked documents for cluster-
ing neighbor terms using the term co-occurrence criterion inside the documents boundary.
Terms that are the best query term neighbors are then used to expand the original query. A
distinct approach is to search for term correlations in the whole collection (global analy-
sis) which usually involves the building of a thesaurus that identifies term relationships in
the whole collection. The local context analysis approach [164] combines global and local
analysis, and is based on the use of noun groups (i.e., single noun, two adjacent nouns, or
three adjacent nouns in the text), instead of simple keywords, as document concepts. For
query expansion, concepts are selected from the top ranked documents (as in local analysis)
based on their co-occurrence with the query terms (no stemming). However, this approach
uses passages (text windows of fixed size) instead documents (as in global analysis). More
specifically, local context analysis is divided into three steps.

• First, retrieve the top n ranked passages using the original query. This is accom-
plished by breaking up the documents initially retrieved by the query in fixed length
passages (for example, of size 300 words) and ranking these passages as if they were
documents.

• Second, for each concept c in the top ranked passages, the similarity sim(q, c) be-
tween the whole query q (not individual query terms) and the concept c is calculated
using a variant of tf-idf ranking.

• Third, the top m ranked concepts (according to sim(q, c)) are added to the original
query q. To each added concept a weight is assigned given by 1 − 0.9 × i/m where
i is the position of the concept in the final concept ranking. The terms in the original
query q might be stressed by assigning a weight of 2 to each term.

The similarity sim(q, c) between each related concept c and the original query (step 3)
is computed as follows.

sim(q, c) =
∏
ki∈q

(
δ +

log(f(c, ki)× idfc)
log n

)idfi
(2.24)

where n is the number of top ranked passages considered. The function f(c, ki)
quantifies the correlation between the concept c and the query term ki and id given by
f(c, ki) =

∑n
j=1 pfi,j × pfc,j , where pfi,j is the frequency of term ki in the jth passage

and pfc,j is the frequency of the concept c in the jth passage. Notice that this is the stan-
dard correlation measure defined for association clusters (by Equation 2.21) but adapted for
passages. The inverse document frequency factors are computed as follows.
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idfi = max(1,
log10 N/npi

5
) (2.25)

idfc = max(1,
log10 N/npc

5
) (2.26)

where N is the number of passages in the collection, npi is the number of passages
containing the term ki, and npc is the number of passages containing the concept c. The
factor δ is a constant parameter that avoids a value equal to zero for sim(q, c). Usually, δ is
a small factor with values close to 0.1 (10% of the maximum of 1). Finally, the idfi factor
in the exponent is introduced to emphasize infrequent query terms.

The procedure to calculate sim(q, c) is a non-trivial variant of tf − idf ranking. Fur-
thermore, it has been adjusted for operations with TREC data and did not work so well with
different collections. Thus, it is important to have in mind that for operations with different
collections, tuning might be required.

Automatic Global Analysis

In a global strategy, all documents in the collection are used to determine a global-like the-
saurus structure that defines term relationships. We discuss two variants of these strategies,
one based on a similarity thesaurus and a second one based on a statistical thesaurus.

Automatic Global Analysis based on a Similarity Thesaurus. The similarity thesaurus
[114] proposes a term to term relationship, considering that terms are concepts in a concept
space. In this concept space, each term is indexed by the documents in which it appears.
Thus, terms assume the original role of documents while documents are interpreted as in-
dexing elements. The following definitions establish the proper framework.

Definition 9 Let t be a number of terms in the collection, N the number of document in the
collections, fi,j be the frequency of occurrence of the term ki in the document dj . Further,
let tj be the number of distinct index terms in the document dj and itfj be the inverse term
frequency for the document dj . Then, itfj = log t

tj
, analogously to the definition of inverse

document frequency.
Within this framework, to each term ki a vector ~ki given by ~ki = (wi,1, wi,2, . . . , wi,N )

is associated where wi,j is a weight associated to the index-document pair [ki, dj ]. These
weights are computed as follows.

wi,j =
(0.5 + 0.5 fi,j

maxj(fi,j)
) itfj√∑N

l=1(0.5 + 0.5 fi,l
maxl(fi,l)

)2 itf2
j

(2.27)

where maxj(fi,j) computes the maximum of all factors fi,j for the ith term (i.e., over
all documents in the collection). We notice that the expression above is a variant of tf − idf
weights but one that considers inverse term frequencies instead.
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The relationship between two terms ku and kv is computed as a correlation factor cu,v
given by

cu,v = ~ku · ~kv =
∑
∀ dj

wu,j × wv,j (2.28)

This equation is a variation of the correlation measure used for calculating scalar associ-
ation matrices. The main difference is that the weights are based on interpreting documents
as index elements instead of repositories for term occurrence.

The global similarity thesaurus is built through the computation of the correlation factor
cu,v for each pair of indexing terms [ku, kv] in the collection. Of course, this is computa-
tionally expensive. However, this global similarity thesaurus has to be calculated only once
and can be updated incrementally.

Given a global similarity thesaurus, query expansion is done in three steps:

• First, represent the query in the concept space used for representation of index terms.

• Second, based on the global similarity thesaurus, compute a similarity sim(q, kv)
between each term kv correlated with the query terms and the whole query q.

• Third, expand the query with the top r ranked terms according to sim(q, kv).

For the first step , the query is represented in the concept space of index term vectors as
follows.

Definition 10 To the query q is a vector ~q in the term-concept space associated given by

~q =
∑
ki∈q

wi,q~ki (2.29)

where wi,q is a weight associated to the index-query pair [ki, q].

For the second step, a similarity sim(q, kv) between each term kv (correlated to the
query terms) and the user query q is computed as

sim(q, kv) = ~q · ~kv =
∑
ku∈Q

wu,q × cu,v (2.30)

where cu,v is the correlation factor given in the equation (2.28).
For the third step, the top r ranked terms according to sim(q, kv) are added to the

original query q to form the expanded query q′. To each expansion term kv in the query q′,
a weight wv,q′ is assigned.

wv,q′ =
sim(q, kv)∑
ku∈q wu,q

(2.31)

The expanded query q′ is used to retrieve new documents for the user.



44 2 Information Retrieval

Automatic Global Analysis based on a Statistical Thesaurus. In this section, we dis-
cuss a quite different global analysis technique proposed by Crouch and Yang [37] based on
a statistical thesaurus.

The global thesaurus is composed of classes that group correlated terms in the context of
the whole collection. Such correlated terms can then be used to expand the original query.
To be effective, the terms selected for expansion must have high term discrimination values
[139] which implies that they must be low frequency terms. However, it is difficult to cluster
low frequency terms effectively due to the small amount of information about them (they
occur in few documents). To avoid this problem, documents will be clustered in classes
instead and low frequently terms in these document are used to define the thesaurus classes.
In this situation, the document clustering algorithm must produce small and tight clusters.

A document clustering algorithm that produces such type of clusters is the complete link
algorithm that works as follows (naive formulation).

1. Initially, place each document in a distinct cluster.

2. Compute the similarity between all pairs of clusters.

3. Determine the pair of clusters [Cu, Cv] with the highest inter-cluster similarity.

4. Merge the clusters Cu and Cv.

5. Test a stop criterion. If this criterion is not met, then go back to step 2.

6. Return a hierarchy of clusters.

The similarity between two clusters is defined as the minimum of the similarities be-
tween all pairs of inter-clusters documents (i.e., two documents not in the same cluster). To
compute the similarity between documents in a pair, the cosine formula of the vector model
is used. As a result of this minimality criterion, the resulting clusters tend to be small and
tight.

Given the document cluster hierarchy for the whole collection, the terms that compose
each class of the global thesaurus are selected as follows.

• Obtain from the user three parameters: threshold class (TC), number of documents in
the class (NDC), and minimum inverse document frequency (MIDF).

• Use the parameter TC as a threshold value for determining the document clusters
that will be used to generate thesaurus classes. The threshold has to be surpassed by
sim(Cu, Cv) if the documents in the cluster Cu and Cv are to be selected as sources
of terms for a thesaurus class.

• Use the parameter NDC as a limit on the size of clusters (number of documents) to
be considered.

• Consider the set of documents in each document cluster preselected above (through
the parameters TC and NDC). Only the lower frequency documents are used as
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sources of terms for the thesaurus classes. The parameter MIDF defines the minimum
value of inverse document frequency for any term which is selected to participate in
the thesaurus class. By doing so, it is possible to ensure that only low frequency
terms participate in the thesaurus class generated (terms too generic are not good
synonyms).

Given that the thesaurus classes have been built, they can be used for query expansion.
For this, an average term weight wtC for each thesaurus class C is computed as follows.

wtC =
∑|C|

i=1wi,C
|C|

(2.32)

where |C| is the number of terms in the thesaurus class C and xi,C is a pre-computed
weight associated with the term-class pair [ki, C]. This average term weight can then be
used to compute a thesaurus class weight wC as

wC =
wtC
|C|
× 0.5 (2.33)

Experiments with well known document collections (ADI, Medlars3, CACM4 and ISI5)
indicate that global analysis using a thesaurus built by the complete link algorithm might
yield consistent improvement in retrieval performance [8].

The main problem with this approach is the initialization of the parameters TC, NDC,
and MIDF. The threshold value TC depends on the collection and can be difficult to set
properly. Inspection of the cluster hierarchy is almost always necessary for assisting with
the setting of TC. Care must be exercised because a high value of TC might yield classes
with too few terms while a low TC value might yield too few classes. The selection of the
parameter NDC can be decided more easily once TC has been set. However, the setting of
the parameter MIDF might be difficult and also requires careful consideration.

2.9.5 Passage-based Retrieval

Passage-based Retrieval [24] is based on the assumption that only a small portion of each
relevant document (i.e. the relevant passage within the document) contains the information
that is relevant to the query. By computing metrics that compare the entire document to the
query, the noisy parts of the document (the sections that are not relevant) potentially mask
the relevant segments of the document in question [64].

For example, we consider the query “passage retrieval” and a book about information
retrieval containing a single section (S1) with relevant information for the query. If the
entire book was viewed as a single document, section S1 may contribute very little to the
overall similarity coefficients between the book and the passage.

Since the documents often are naturally segmented into chapters, sections, and subsec-
tions, it is reasonable to use each of these boundaries and simply rank the passages to the

3Medical Literature Analysis and Retrieval System
4Communications of the ACM
5Institute of Scientific Information
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original query. A similarity coefficient must then merge the passage-based results to obtain
a final coefficient.

passage A

passage D

passage B

sim(q,D)

sim(q, C)

sim(q, B)

sim(q, A)

d1

passage C

sim′(q, d1)

Figure 2.17: Similarity coefficients for different passages in the document d1.

Consider a document d1 from Figure 2.17 with sectionsA,B,C, andD. Further assume
section C is the only section that mentions anything about a query q. A similarity coeffi-
cient sim(q, d1) could result in a coefficient that is heavily biased towards non-relevance,
because sections A, B, and D have many terms that do not match with terms in the query.
The similarity coefficient reflects this and given the length of the document and the rela-
tively small proportion of matching terms, or even terms that are semantically related, the
document would have a low similarity coefficient.

With passage-based retrieval, four separate coefficients are computed: sim(q, A),
sim(q,B), sim(q, C), and sim(q,D) and several techniques are proposed to merge the
four different similarity coefficients.

Passage-based research focuses on determining how to delimit a passage and combine
each passage into a single similarity coefficient sim′(q, d1).

Discourse Passages

Documents usually have structural or logical divisions such as sentences, paragraphs, and
sections, marked up in standards such as XML. The discourse (or logical) components of
documents can be regarded as passages [71, 131, 159, 171]. This definition of passage is
intuitive, since sentences should convey a single idea; paragraphs should be about one topic;
and sections should be about one issue.

A problem with discourse passages is that they require a high degree of consistency
between authors. Callan [24] observed that the structure of a document might be unrelated to
its content, because documents can be structured in a particular way simply for presentation.
Also, even though most documents are supplied with their structure, manual processing is
required for those without it, thus making discourse passages impractical, as can be the case
when a document is the output of a speech recognition system [112]. Another problem with
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discourse passages is that their length can vary, from very long to very short. In addition
long passages are likely to include more than one topic; retrieving long passages contradicts
one of the main aims of passage retrieval [80].

Semantic Passages

An alternative approach is to segment documents into semantic passages, corresponding to
the topical structure of documents [10, 70, 112, 120, 132, 137]. The main idea is to parti-
tion documents into segments, each corresponding to a topic or to a subtopic. It is therefore
attractive to develop algorithms that derive segments based on topics or semantic proper-
ties. Several such algorithms have been developed. Reynar [120] proposed an algorithm
that locates semantic boundaries based on detection of repetition of lexical items such as
words or phrases. Beeferman et al. [10] used short- and long-term statistical models that
keep track of word occurrence patterns, near and far from the current position in text, to
locate topic changes, and also use lexical hints such as sentence and paragraph boundaries.
Yaari [167] applied a hierarchical agglomerative clustering algorithm to partition full-text
documents. The algorithm joins adjacent paragraphs on the basis of their similarity. Salton
et al. [132, 137] derived text segments that helped with summarising documents by com-
puting similarities between text paragraphs. Ponte and Croft [112] developed an algorithm
that segments text into short topics, assumed to be about three sentences long.

An algorithm that is well-suited to passage retrieval from large collections such as
TREC data is that of Hearst [71], known as TextTiling. This algorithm partitions full-text
documents into coherent multi-paragraph units, creating a subtopic structure for documents.
The model relies on word frequency and assumes that a set of words is in use during the
course of a given subtopic discussion, and when that subtopic changes, a significant pro-
portion of the vocabulary changes as well. Richmond et al. [122] extended the TextTile
algorithm by introducing a new measure of word significance, which uses the relative oc-
currence of words in documents to compute the scores between adjacent blocks. Experi-
mental results suggest that the extended algorithm is slightly more reliable than the original
TextTile algorithm.

Regardless of the segmentation technique, an advantage of semantic passages is that
they can be applied where the logical structure of document is not explicit, for example
by documents created using OCR or speech recognition technology. Discovering semantic
passages is computationally expensive, but this cost is only incurred once. However, the
accuracy of segmentation as compared with human segmentation is not yet perfect [122, 70].

Window-based Passages

Structural properties of documents are not always explicit, retrieval requirements vary de-
pending on the user need, and semantic segmentation can be inaccurate. An alternative to
discourse and semantic passages is break to break documents into passages of fixed length,
often referred to as non-overlapping windows. If paragraph boundaries are known, they can
be considered, but if the are not available, then passages can simply be defined as sequences
of words.
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The passage should be in a fixed range of sizes based on number of words, not too long
or too short. Callan [24] use a word-based approach, by defining a passage, or a window, as
a fixed-length sequence of words. Zobel et al. [171] and Callan [24] considered paragraphs
instead of words as the basic unit, and use heuristics to bound their lengths. For instance,
short paragraphs are merged with subsequent paragraphs, and paragraphs longer than some
minimum length are kept intact. Zobel et al. [171] referred to such passages as pages, since
they approximate a physical page of text (around 2 kilobytes). Stanfill and Waltz [144]
define a passage as a block of 30 words, and segment document into sequential blocks.
Consecutive blocks can be joined into a larger text segment, to address the problems of
retrieving blocks of text that are too short.

The main advantage of window-based passages is that they are easy to construct, ir-
respective of the text. However, there are disadvantages. If window-based passages are
retrieved and presented to the user, they are likely to be confusing unless additional infor-
mation is presented, describing the context from which the passage has been selected; and
window-based passages are static, since, once the are defined, they are also indexed.

Dynamic Passages Partitioning

Different approaches have been used to automatically find good partitions. These ap-
proaches attempt to partition documents differently based on the particular query [24, 80].
One means of doing this is to find a term matches the query and then build a passage around
this match. If a term matches at position n, passage A will begin at position n and continue
until position n + p where p is a variable passage size. The next passage B, will overlap
with A and start at position n + p

2 . For example, considering a term that matches at po-
sition ten, a small passage length of fifty terms results in passages around terms [10,60],
[35,85], [60,110], etc. where [i, j] indicates the passage starts at position i and continues to
j. Overlapping passages are intended to avoid splitting sections of relevant text.

Merging Passage-based Similarity Measures

Passages contribute to the similarity coefficient in a number of different ways. Wilkin-
son [159] tested twenty different methods of merging passage-based contributions. These
methods ranged from simply taking the highest ranked passage as the similarity coefficient
to combining document level contributions with passage level contributions. Callan [24]
also used a combination score with the document and the passage level evidence to obtain
the best results.

2.10 Information Retrieval Evaluation

2.10.1 Recall and Precision

Consider an example information request I (of a test reference collection) and its set R of
relevant documents. Let |R| be the number of documents in this set. Assume that a given
retrieval strategy (which is being evaluated) process the information request I and generate
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a document answer set A. Let |A| be the number of documents in this set. Further, let |Ra|
be the number of documents in the intersection of the set R and A. Figure 2.18 illustrates
these sets.

|Ra|

CollectionRelevant Docs
in Answer Set

Answer Set
|A||R|

Relevant Docs

Figure 2.18: Precision and recall for a given example information request.

The recall and precision measures are defined as follows.

Definition 11 Recall is the fraction of the relevant documents (the set R) which has been
retrieved i.e.,

Recall =
|Ra|
|R|

(2.34)

Definition 12 Precision is the fraction f the retrieval documents (the set A) which is rele-
vant i.e.,

Precision =
|Ra|
|A|

(2.35)

Recall and precision, as defined above, assume that all the documents in the answer set A
have been examined (or seen). However, the user is not usually presented with all the doc-
uments in the answer set A at once. Instead, the documents in A are first sorted according
to a degree of relevance (i.e., a ranking is generated) The user then examines this ranked
list starting from the top document. In this situation, the recall and precision measures vary
as the user proceeds with the examination of the answer set A. Thus, proper evaluation
requires plotting a precision and recall curve as follows.

As before, consider a reference collection and its set of example information request.
Let us focus on a given example information request for which a query q is formulated.
Assume that the set Rq containing the relevant documents for q has been defined. Without
loss of generality, assume further that the set Rq is composed of the following documents.

Rq = {d3, d5, d9, d25, d39, d44, d56, d71, d89, d123} (2.36)

Thus, according to a group of specialists, there are ten documents which are relevant to the
query q.
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Figure 2.19: Precision at 11 standard recall levels.

Consider now a new retrieval algorithm which has just been designed. Assume that this
algorithm returns, for a query q, a ranking of documents in the answer set as follows.

Ranking for query q:

1. d123 • 6 d9 • 11 d38

2. d84 7. d511 12. d48

3. d56 • 8. d129 13. d250

4. d6 9. d187 14. d113

5. d8 10. d25 • 15. d3 •

The documents that are relevant to the query q are marked with the bullet after the docu-
ment number. If we examine this ranking, starting from the top document, we observe the
following points. First, the document d123 which is ranked as number 1 is relevant. Further,
this documents corresponds to 10% of all relevant documents in the set Rq. Thus we say
that we have a precision of 100% at 10% recall. Second, the document d56 which is ranked
as number 3 is the next relevant document. At this point, we say that we have a precision
of roughly 66% at 20% recall. Third, if we proceed with our examination of the ranking
generated we can plot the curve of precision versus recall as illustrated in Figure 2.19. This
precision vs recall curve is usually based on 11 (instead of ten) standard recall levels which
are 0%, 10%, 20%,. . . ,100%. For the recall level 0%, the precision is obtained through an
interpolation procedure as detailed below.

In the above example, the precision and recall figures are for a single query. Usually,
however, retrieval algorithms are evaluated by running them for several distinct queries. In
this case, for each query a distinct precision versus recall curve is generated. To evaluate the
retrieval performance of an algorithm over all test queries, we average the precision figures
at each recall level as follows.

P (r) =
Nq∑
i=1

Pi(r)
Nq

(2.37)

where P (r) is the average precision at the recall level r, Nq is the number of queries used,
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and Pi(r) is the precision at recall level r for the i-th query.
Since the recall levels for each query might be distinct from the 11 standard recall levels,

utilization of an interpolation procedure is often necessary. For instance, consider again the
set of 50 ranked documents presented above. Assume that the set of relevant document for
the query q has changed and is now given by

Rq = {d3, d56, d129} (2.38)

In this case, the fist relevant document in the ranking for query q is d56 which provides a
recall level of 33.3% (with precision also equal to 33.3%) because, at this point, one-third
of all relevant documents have already been seen. The second relevant document is d129

which provides a recall level of 66.6% (with precision equal to 25%). The third relevant
document is d3 which provides a recall level of 100% (with precision equal to 20%). The
precision figures at the 11 standard recall levels are interpolated as follows.

Let rj , j ∈ {0, 1, 2, . . . , 10}, be a reference to the j-th standard recall level (i.e., r5 is a
reference to the recall level 50%). Then,

P (rj) = maxrj≤r≤rj+1Pr (2.39)

which states that the interpolated precision at the j-th standard recall level is the maximum
known precision at any recall level between the j-th recall level and the (j+1)-th recall level.

The curve of precision versus recall which results from averaging the results for various
queries is usually referred to as precision versus recall figures. Such averages figures are
normally used to compare the retrieval performance of distinct retrieval algorithms.

In recent years, other measures have become more common. Most standard among
the TREC community is Mean Average Precision (MAP), which provides a single-figure
measure of quality across recall levels. Among evaluation measures, MAP has been shown
to have especially good discrimination and stability. For a single information need, Aver-
age Precision is the average of the precision value obtained for the set of top k documents
existing after each relevant document is retrieved, and this value is then averaged over in-
formation needs. That is, if the set of relevant documents for an information need qj ∈ Q is
{d1, . . . dmj} and Rjk is the set of ranked retrieval results from the top result until you get
to document dk, then

MAP(Q) =
1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Precision(Rjk) (2.40)

When a relevant document is not retrieved at all,6 the precision value in the above equa-
tion is taken to be 0. For a single information need, the average precision approximates the
area under the interpolated precision-recall curve, and so the MAP is roughly the average
area under the precision-recall curve for a set of queries.

Using MAP, fixed recall levels are not chosen, and there is no interpolation. The MAP
value for a test collection is the arithmetic mean of average precision values for individual

6A system may not fully order all documents in the collection in response to a query or at any rate an
evaluation exercise may be based on submitting only the top k results for each information need.
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information needs. (This has the effect of weighting each information need equally in the
final reported number, even if many documents are relevant to some queries whereas very
few are relevant to other queries.) Calculated MAP scores normally vary widely across
information needs when measured within a single system, for instance, between 0.1 and
0.7. Indeed, there is normally more agreement in MAP for an individual information need
across systems than for MAP scores for different information needs for the same system.
This means that a set of test information needs must be large and diverse enough to be
representative of system effectiveness across different queries.

The above measures factor in precision at all recall levels. For many prominent appli-
cations, particularly web search, this may not be germane to users. What matters is rather
how many good results there are on the first page or the first three pages. This leads to mea-
suring precision at fixed low levels of retrieved results, such as 10 or 30 documents. This
is referred to as “Precision at k”, for example “Precision at 10”. It has the advantage of not
requiring any estimate of the size of the set of relevant documents but the disadvantages that
it is the least stable of the commonly used evaluation measures and that it does not average
well, since the total number of relevant documents for a query has a strong influence on
precision at k.

An alternative that alleviates this problem is R-precision. It requires having a set of
known relevant documents Rel, from which we calculate the precision of the top Rel doc-
uments returned. (The set Rel may be incomplete, such as when Rel is formed by creating
relevance judgments for the pooled top k results of particular systems in a set of experi-
ments.) R-precision adjusts for the size of the set of relevant documents: A perfect system
could score 1 on this metric for each query, whereas, even a perfect system could only
achieve a precision at 20 of 0.4 if there were only 8 documents in the collection relevant to
an information need. Averaging this measure across queries thus makes more sense. This
measure is harder to explain to naive users than Precision at k but easier to explain than
MAP. If there are |Rel| relevant documents for a query, we examine the top |Rel| results of
a system, and find that r are relevant, then by definition, not only is the precision (and hence
R-precision) r/|Rel|, but the recall of this result set is also r/|Rel|. Thus, R-precision
turns out to be identical to the break-even point , another measure which is sometimes used,
defined in terms of this equality relationship holding. Like Precision at k, R-precision de-
scribes only one point on the precision-recall curve, rather than attempting to summarize
effectiveness across the curve, and it is somewhat unclear why you should be interested in
the break-even point rather than either the best point on the curve (the point with maxi-
mal F-measure) or a retrieval level of interest to a particular application (Precision at k).
Nevertheless, R-precision turns out to be highly correlated with MAP empirically, despite
measuring only a single point on the curve.

2.10.2 Document Collections

One of the first collections for Information Retrieval purposes was the Cranfield collection
[29], created in the 1960s and widely used by researchers. It contained approximately 1.400



2.10 Information Retrieval Evaluation 53

abstracts and 225 requests. Later, other collections have been created, such as the CACM7

Collection [50] and the NPL8 Collection [155]. They were major computing challenges
when first used, but they are small for the today standards. As hardware and information
retrieval matured, it was necessary to use more realistically sized collections, because small
collections often do not reflect the performance of systems in large full-text searching, and
certainly does not demonstrate any proven abilities of these systems to operate in real-world
information retrieval environments [156].

In the 1970s, Karen Sparck Jones and Keith van Rijsbergen [77] proposed the creation
of a large test collection, which was to be not only superior to the current test collections in
size, but was to be carefully designed to allow controlled experimentation. They considered
many factors in selecting the documents, the test requests, and creating the relevance judge-
ments. They pointed out the need of an heterogeneous collection: different text character-
istics (various writing styles), different document types (for example, general newspapers
versus scientific articles), different request types (for instance, precise versus non-precise
requests), etc. They obtained a controlled retrieval environment to be correlated with the
various parameters used in retrieval systems.

Unfortunately, this ideal test collection was not built due to a lack of funding, forcing
researcher to continue to use small test collections. The main disadvantages were their spe-
cific design characteristics to support the particular experimental purposes. For example,
the Cranfield collection was built to test hypotheses about the manual indexing of docu-
ments, with careful attention paid to the location of all relevant documents and the creation
of multiple types of manual indexes [156]. The CACM collection was built to study the
interaction between textual and bibliographic data, with an emphasis on providing full bib-
liographic information, including citation links and manual categories, from a complete set
of journals articles (CACM from years 1958-1979).

Furthermore, some collections did not built natural user requests but created specially
constructed request sets around the documents in the collection. For example, the Cranfield
requests and documents were specially constructed to obtain always a sufficient number
of relevant documents. On the other side, the CACM collection created 64 independent
requests, and had an independent collection (assorted abstracts, titles, and bibliographic
information for 3.204 articles), but almost 50% of the articles had only a title, and there
was a highly variable number of relevant documents per request, including twelve with no
relevant document at all.

The peculiarity of these collections could influence the outcomes of third-party exper-
iments based on these documents, specially when the researchers are not awarded of these
particular design criteria. The reuse of these collections without recognizing the interaction
of the design could cause some experimental problems.

The design of a new test collection such as the one laid out in the 1970s’ ideal collection
work presents many challenges. The first is to build a collection that is realistic in that it
mirrors some operational situation, but also is multifaceted enough that it can be reused in
many different controlled experiments. The second challenge is to sufficiently document the

7Communications of the Association of Computing Machinery
8National Physical Laboratory
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motivation, design, and creation of this test collection such that the researchers are aware of
its limitations [156].

2.10.3 The DARPA TIPSTER Project

The TIPSTER test design was based on traditional information retrieval testing models,
involving a test collection of documents, user requests, and relevance assessments.

The Documents

The document collection needed to reflect the corpus seen by information analysts. This
meant that a very large collection was needed to test the ability of the algorithms to han-
dle huge numbers of full-text documents. The documents needed to cover many different
subject areas in order to test the domain independence of the algorithms. Additionally, the
documents needed to mirror the different types of documents used in the TIPSTER ap-
plication; specially they had to be of variable length, writing style, level of editing, and
vocabulary. As a final requirement, the documents had to cover information from different
years to show the effects of document date.

The Requests

The requests for the new test collection were also designed to model some of the needs of
analysts. It was assumed that the users needed the ability to do both high-precision and
high-recall searches, and were willing to look at many documents and repeatedly modify
queries in order to get high recall. The topics therefore were created to be quite specific, but
included both broad and narrow searching needs.

The Relevance Assessments

The relevance assessments were made by retired analysts who were asked to view the task as
if they were addressing a real information need. The narrative section of the topic contains
a clear definition of what makes a document relevant, and the assessors used this section as
the definition of the information need. Documents retrieved for each topic were judged by
a single assessor so that all documents screened would reflect the same user’s interpretation
of the topic.

TIPSTER centered around two main tasks based on traditional information retrieval
modes: an ad hoc task, and a monitoring (routing9) task. In the ad hoc task, it is assumed
that new requests are being asked against a fixed set of data. This task is similar to how
a researcher might use a library, where the collection is known, but the requests likely to
be asked are unknown. In the routing task, it is assumed that the same topics are always
being followed, but the new data is being searched. This task is similar to that done by news
clipping services.

9Equivalent task name in the TREC collection
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Although the TIPSTER collection contained a very large set of document, the project
involved only four DARPA detection contractors, the TREC initiative [156] opened the eval-
uation to the wider information retrieval research community, with twenty-five additional
research groups taking part in 1992 and eighty-eight groups by 2007.

2.10.4 The TREC Collection

In the early 1990s, the TREC initiative started under the leadership of Donna Harman at the
National Institute of Standards and Technology (NIST), in Maryland. This effort consisted
of promoting a yearly conference, named TREC for Text REtrieval Conference, dedicated
to experimentation with a large text collection comprising over a million of documents. For
each TREC conference, a set of reference experiments is designed. The research groups
which participate in the conference use these reference experiments for comparing their
retrieval systems [9].

Since the collection was built under the TIPSTER project, the guidelines used in the
TIPSTER were also been followed in TREC. The first eight cycles of TREC were centered
on the traditional information retrieval modes too (Routing and Ad Hoc retrieval). As the
most test collections, the TREC collection is composed of three parts: the documents, the
information requests (topics), and the set of relevant documents for each information re-
quest. The documents came from different original sources distributed in six CD-ROM
disks of roughly 1 gigabyte compressed text each. Its documents were selected not only be-
cause of their suitability to the TIPSTER task but also because of their availability. Table 2.5
illustrates the contents of each disk and some statistics regarding the collection (extracted
from [156]).

The Topics

The TREC collection includes a set of information requests (topics) that can be used to
measure the performance of a new ranking algorithm. Each topic tries to mimic a real
user need in natural language, and was written by people who are actual users of retrieval
systems. The topic writers, the topic format, and the method of construction have evolved
over time. This evolution has had major effect on the results, and therefore care should be
taken in selecting TREC topics sets for various experimental purposes.

The topics are usually automatically transformed into a machine version (system query)
for the evaluation process. Some of these transformations include: stopword removing,
stemming, construction of Boolean expressions, etc. The TREC designers create topics re-
flecting a user need statement rather than more traditional requests. Three main ideas were
involved in this decision: (a) allow a wide range of query construction methods by keeping
the topic distinct from the query, (b) the ability to increase the amount of information avail-
able about each topic, (c) the recognition that any future use of the test collection would
need as much detailed information about the topics as possible to allow different types of
experiments [156].

An example of an information request from TREC-8 is illustrated in Figure 2.20.
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Table 2.5: TREC collection statistics. Stopwords are not removed and no stemming is
performed.

Source Size
(Mb)

Nr. of
docs

Median
w/da

Mean
w/d

Disk 1
Wall Street Journal, 1987-1989 (WSJ) 267 98.732 245 434,0
Associated Press newswire, 1989 (AP) 254 84.678 446 473,9
Computer Selects articles, Ziff-Davis (ZIFF) 242 75.180 200 473,0
Federal Register, 1989 (FR) 260 25.960 391 1.315,9
Abstracts of U.S. Department of Energy pub-
lications (DOE)

184 226.087 111 120.4

Disk 2
Wall Street journal, 1990-1992 242 74.520 301 508,4
Associated Press newswire, 1988 237 79.919 438 468,7
Computer Selects articles, Ziff-Davis 175 56.920 182 452,9
Federal Register, 1988 209 19.860 396 1.378,1
Disk 3
San Jose Mercury News, 1991 (SJM) 287 90.257 379 453,0
Associated Press newswire, 1990 237 78.321 451 478,4
Computer Selects articles, Ziff-Davis 345 161.021 122 295,4
U.S. patents, 1993 243 6.711 4.445 5.391,0
Disk 4
Financial Times, 1991-1994 (FT) 564 210.158 316 412,7
Federal Register, 1994 (FR) 395 55.630 588 644,7
Congressional Record, 1993 (CR) 235 27.922 288 1.373,5
Disk 5
Foreign Broadcast Information Service
(FBIS)

470 130.471 322 543,6

Los Angeles Times, 1989-1990 (LA) 475 131.896 351 526,5
Disk 6
Foreign Broadcast Information Service
(FBIS)

490 120.653 348 581,3

Los Angeles Times, 1994 (LA) 475 131.896 351 526,5

awords/document
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<top>
<num> Number: 401
<title> foreign minorities, Germany
<desc> Description:
What language and cultural differences impede the integration
of foreign minorities in Germany?
<narr> Narrative:
A relevant document will focus on the causes of the lack of
integration in a significant way; that is, the mere mention of
immigration difficulties is not relevant. Documents that discuss
immigration problems unrelated to Germany are also not relevant.
</top>

Figure 2.20: A topic example of the TREC-8 collection.

The Relevance Judgements

One of the most critical elements in a test collection are the relevance judgements. For
each topic, it is necessary to compile a list of relevant documents; this list needs to be as
comprehensive as possible. In TREC, three possible methods for finding the relevant doc-
uments could have been used. The first and impracticable method could be a full relevance
judgement over a million documents for each topic, resulting in over a hundred million
judgments. As a second approach, a random sample of documents could have been taken,
with relevance judgments done on the sample only. The problem with this approach is that
a random sample that is large enough to find on the order of one hundred relevant docu-
ments per topic is a very large random sample, and is likely to result in insufficient numbers
of relevant documents. The third method, known as the pooling method, makes relevance
judgements based on the sample of document selected by various participating systems.
The pooling method was recommended in 1975 to the British Library for building a very
large test collection, and was adopted by TREC to build the collection [78].

To construct the pool, the following was done:

• For each topic within a set of results, the top x-ranked documents were selected for
input to the pool.

• These results were merged across all systems and sorted by document numbers, and
then duplicate documents were removed.

The merged list of results was then shown to the human assessors, with each topic being
judged by a single assessor to ensure the best consistency of judgements. Each topic pool
was sorted by document number so that the assessor could not tell if a document was highly
ranked by some system or how many systems (or which systems) retrieved that document.

The TREC-8 Collection

In our experiments, we use the document collection of the TREC-8 conference, consisting
of the Disks 4 and 5 from Table 2.5.
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<DOC>
<DOCNO>FT911-3</DOCNO>
<PROFILE>_AN-BEOA7AAIFT</PROFILE>
<DATE>910514</DATE>
<HEADLINE>
FT 14 MAY 91 / International Company News:
Contigas plans DM900m east German project
</HEADLINE>
<BYLINE>By DAVID GOODHART</BYLINE>
<DATELINE>BONN</DATELINE>
<TEXT>
CONTIGAS, the German gas group 81 per cent owned
by the utility Bayernwerk, said yesterday that it
intends to invest DM900m (Dollars 522m) in the next
four years to build a new gas distribution system
in the east German state of Thuringia. ...
</TEXT>
<PUB>The Financial Times</PUB>
<PAGE>International Page 20</PAGE>
</DOC>

Figure 2.21: A document extract from the Financial Times (TREC-8).

Like most of the traditional retrieval collections, there are three distinct parts in TREC-
8: the documents, the topics, and the relevance judgements. The documents are tagged
using SGML to allow easy parsing (see Fig. 2.21). The philosophy in the formatting at
NIST is to leave the data as close to the original as possible. No attempt is made to correct
spelling errors, sentences fragments, strange formatting around tables, or similar faults.

The title field of the topics consists of up to three words that best describe the topic,
and the description field is a one sentence description of the topic area containing all of the
words of the title field. The narrative gives a concise description of what makes a document
relevant.

Ad hoc topics have been constructed by the same person who performed the relevance
assessments for that topic (called assessor).

2.11 Information Retrieval Software

In this section, software modules used and/or developed in the context of the thesis are
described. The first module is a graphical application developed for the analysis of term
distributions in virtual documents. It implements the mathematical functions for the Fourier
series and the orthogonal polynomials (Legendre and Laguerre). The module was written
in Java and permitted us to study the characteristics of the different term position represen-
tations and to evaluate the performance of the models.

The Lucene and the Terrier libraries are the base of our evaluation framework. We
started using Lucene to evaluate the performance of our statistical model and to obtain
some graphical representations of the ranking. Later, we changed to Terrier where specific
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Figure 2.22: The interface of the Expansion Analyzer represents a virtual document con-
taining three arbitrary set of terms and permits a graphical analysis of the proposed term
position models.

classes for the TREC evaluation are implemented.

2.11.1 The Expansion Analyzer

With the aim of understanding the properties and behaviour of the different term positions
models, the Expansion Analyzer, a Java module that emulates a “virtual document” and the
position of three arbitrary group of terms was developed. This software provides a graphi-
cal view of the term position models and permits us to analyze the different mathematical
operators used to compare the proposed term distribution functions.

The program interface (Figure 2.22) consists of two main groups of components: the
Input Controls and the Analysis Windows:

The Input Controls

As shown in Figure 2.22, the Input Controls help the user to set the parameters of the test
environment. They consist of three input fields (A), three check-boxes (B) and one slider
(D). The input fields in (A) define the positions of three arbitrary term sets: the Reference
(black), Distribution 1 (blue), and Distribution 2 (red). The selected check-box in (B) define
the mathematical model (expansion) used to calculate the term position functions, and the
slider (D) set the order of the selected expansion.
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Figure 2.23: Lucene Structure.

Functions Viewers

The Functions viewers are a set of windows reproducing graphically the characteristics of
the test environment defined through the Input Controls. The main viewer (C) describes the
form of the term position functions in the virtual document, and the group of windows in
(F) depicts four different mathematical operators applied to the input functions in the form:

• Operator(Reference,Distribution1) (blue curve), and

• Operator(Reference,Distribution2) (red curve).

The implemented operators are, from left to right: (a) the scalar product, (b) The cosine of
the corresponding coefficient vectors, (c) the norm difference, and (d) the projection.

Finally, using the Button (E) one can dump the expansion coefficients of the current
configuration to confirm the accuracy of the calculated coefficients.

With the help of this module it was possible to determine the most suitable configuration
applied in the experimental phase.

2.11.2 Apache Lucene

Apache Lucene is a popular scalable IR library written in Java. It is a technology suitable
for nearly any application that requires full-text search, especially cross-platform. Lucene
is a member of the popular Apache Jakarta family of projects, licensed under the liberal
Apache Software License [63].

Lucene provides a core API for indexing and search tasks that can be easily integrated in
existing applications. Figure 2.23 shows the indexing architecture of Lucene. Lucene uses
different parsers for different types of documents. Take HTML documents, for example –
an HTML parser does some pre-processing, such as filtering the HTML tags and so on. The
HTML parser outputs the text content, and then the Lucene Analyzer extracts tokens and
related information, such as token frequency, from the text content. The Lucene Analyzer
then writes the tokens and related information into the index files of Lucene.
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Figure 2.24: Terrier Structure.

2.11.3 Terabyte Retriever - Terrier

Terrier is a search engine that implements state-of-the-art indexing and retrieval functions
providing a platform for the rapid development of large-scale retrieval applications [106].

Terrier is written in Java, and can be used for Web and Enterprise search, Desktop,
Intranet and Vertical search engines, as well as developing and evaluating novel large-scale
text information retrieval techniques and applications.

The open source version of Terrier provides a platform for research and experimentation
in text retrieval, supporting commonly used TREC research collections (e.g. TREC CDs 1-
5, WT2G, WT10G, GOV, GOV2, Blogs06).

Terrier implements two main applications: (a) Trec Terrier: an application that enables
indexing and querying of TREC collections, and (b) Desktop Terrier: for the indexing and
retrieval of local user content.

As shown in the Figure 2.24, Terrier has a similar indexing and retrieval structure as
Lucene and also is an Open Source project (Mozilla Public Licence).

2.12 Summary

In this chapter, the basic concepts of information retrieval (IR) were examined. Starting
with a brief historical review, we explored the main components of an modern information
retrieval system.

Some key concepts, such as information need, document, similarity, and index were
analyzed. Classical and alternative IR models were also reviewed, including a section with
the most important utilities and methods to enhance retrieval, developed in the last years.

Finally, the tools used by the IR community to evaluate different algorithms and strate-
gies were examined, they included standard document collections and some open source
software platforms.
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3
Related Work

3.1 Introduction

In this chapter, the most relevant work from the IR research community in relation with this
thesis will be described.

Some approaches considering contextual information for improving search results will
be analyzed, including a revision of the models incorporating term proximity information
in the IR process.

Finally, one of the first approaches using functions to represent positional information
will be analyzed in detail.

3.2 General Approaches Using Contextual Information

As mentioned in the introductory sections, the context in which information needs are deter-
mined plays a fundamental role in the development of methods to improve the information
retrieval process.

Contextual information can be obtained in two ways: by the text surrounding the search
terms in the document corpus, or by the context delivered by the user (i.e. personalization)
[73]. There are approaches that utilize the query history of users [140] or the text surround-
ing the query [48, 118] to build augmented queries (i.e. query expansion) for improving the
performance of interactive retrieval systems.

Relevance feedback is the most popular query expansion strategy [41, 18]. Here, the
expanded terms are typically extracted from the retrieved documents and judged as relevant
in a previous retrieval iteration. As demonstrated in several experimental studies, relevance
feedback systems are quite effective [124, 19]. However, the browsing process required to
determine the relevance of a document has been widely recognized as a significant limitation
by the information retrieval research community.

63
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To overcome the intervention of the user in the relevance feedback process, two basic
types of strategies have been proposed: automatic global analysis and automatic local anal-
ysis. In automatic global analysis, all documents of the collection are used to determine a
thesaurus-like structure, defining term-to-term relationships within the document corpus. In
general, global analysis techniques are limited to small database applications, where doubt-
ful improvements have been observed [6]. In automatic local analysis, the system is able to
estimate the relevance of the first retrieved documents without user intervention. The main
idea is to consider the top-n initially retrieved documents as relevant, and to use statistical
heuristics to identify query related terms [43, 165]. Noise and multiple topics are two major
negative factors for expansion term selection [169]. To deal with these problems, traditional
clustering methods have been proposed [69]. The experiments performed by Fan et al. [45]
confirm that highly-tuned ranking offers more high-quality documents at the top of the hit
list.

In general, it is difficult to determine correlated terms inside a document, because these
terms do not necessarily co-occur very frequently with the original query terms if the doc-
ument is considered as a whole. In fact, it is common to have unrelated terms co-occurring
with query terms very frequently [146]. To address this problem, page segmentation strate-
gies have been suggested [169, 23]. They provide a better document partitioning at the
semantic level and reduce the probability to carry irrelevant terms to the query expansion
process. In general, an important drawback of automatic local analysis strategies is the
considerable amount of computation, which represents a substantial problem for interactive
systems [92].

An approach that applies term positional data in retrieval feedback is the work of Attar
and Fraenkel [7]. They propose different models to generate clusters of terms related to
a query (searchonyms) and use these clusters in a local feedback process. In their experi-
ments with English and Hebrew documents, they confirm that metrical methods based on
functions of the distance between terms are superior to methods based merely on weighted
co-occurrences of terms.

Katz [81] has analyzed the distribution of content-bearing terms in technical documents.
Important concepts supporting word occurrence models, such as inter-/within-document re-
lationships, topicality and burstiness are proposed. The author concentrates on the mod-
eling of the inter-document distributions of content words, while our work focuses on the
within-document relationships applied to relevance evaluation in the information retrieval
process. Another interesting approach on this subject has been proposed by Fernández et al.
[47], where words appearing in a similar syntactic context are used for lexical and syntactic
disambiguation in a natural language parsing process.

One of the first approaches applying Fourier analysis to term distributions in documents
is Fourier Domain Scoring (FDS), proposed by Park et al. [116]. FDS performs a separate
magnitude and phase analysis of term position signals to produce an optimized ranking.
It creates an index based on page segmentation, storing term frequency and approximated
positions in the document. FDS processes the indexed data using the Discrete Fourier
Transform to perform the corresponding spectral analysis. The approaches proposed in this
thesis, on the other hand, represent the term signal information (series coefficients) directly
as an n-dimensional vector using the corresponding analytic transform, thus permitting an
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immediate and simple term comparison process.
In the next two sections, two aspects closely related to the basic ideas of the proposed

approach are analyzed: the term proximity models and the retrieval model based on Fourier
analysis.

3.3 Term Proximity

The use of term proximity in IR is not really new. Numerous retrieval applications have im-
plemented tools to define term proximity at the query formulation level [5, 67]. However,
despite their benefits confirmed by professional searchers, these tools are less effective and
rarely utilized by common searchers. The reason is that proximity implementation and syn-
tax is possibly the worse parts of many search interfaces. It is neither easy to learn nor to
use. Consistency, both within one system and between systems is scarce, it requires con-
siderable memorization and the user help is poor [83]. Some studies [82] confirm that even
a two-term proximity-search offers several hundred possibilities if all options are consid-
ered. This suggests either that systems should offer only a restricted set of options, or that
some means of automating the application of the options can be devised, so that proximity
specifications are automatically adjusted by the system to become productive [83].

According to these challenges, many approaches have proposed different heuristics to
incorporate term positional information in the retrieval process. Some of them define new
ranking models based on term proximity heuristics and others use this positional infor-
mation to improve the performance of existing retrieval methods. In the next section, we
examine some of these approaches.

3.3.1 Shortest-Substring Model

The Shortest-Substring approach [28] is a passage retrieval technique that incorporates
Boolean operators. The result of a search is a set of extents (passages) over a single string
that represents the whole collection. As expressed in the model’s name, the ranking algo-
rithm is based on the smallest extents that satisfy the query.

Notation

For search and retrieval purpose the text is viewed as a string of symbols C1, . . . , CN drawn
from a text alphabet Σ.

The short poem [149] in Figure 3.1 is used as a recurring example. Here, a reasonable
choice for the text alphabet consists of the English words appearing in the text with all
characters mapped to lowercase.

Σ ={a, am, an, and, as, at, autumn, bells, can, clang, clock, cold, crowed, cry, day,. . .}

In the example, the superscripts indicate positions in the text sequence. An index func-
tion I maps each symbol in the text alphabet to the set of positions in the database string
where the symbol appears (I : Σ→ 2{1...N}).. In the example, we have

I (“bells”) = {1, 20, 50, 62, 65, 68} (3.1)
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Bells1

At2 six3 o′4 clock5 of6 an7 autumn8 dusk9

With10 the11 sky12 in13 the14 west15 a16 rusty17 red,18

The19 bells20 of21 the22 mission23 down24 in25 the26 valley27

Cry28 out29 that30 the31 day32 is33 dead.34

The35 first36 star37 pricks38 as39 sharp40 as41 steel42

Why43 am44 I45 suddenly46 so47 cold?48

Three49 bells,50 each51 with52 a53 separate54 sound55

Clang56 in57 the58 valley,59 wearily60 tolled.61

Bells62 in63 V enice,64 bells65 at66 sea,67

Bells68 in69 the70 valley71 heavy72 and73 slow74

There75 is76 no77 place78 over79 the80 crowded81 world82

Where83 I84 can85 forget86 that87 the88 days89 go.90

(Sara91 Teasdale92)

Figure 3.1: Example text. Superscripts indicate word positions.

The document boundaries are in this case ignored and multiple documents are treated as if
concatenated into a single long document.

Model

The result of the search is represented as a set of ranges or extents over the string that forms
the database. Each extent is of the form (p, q), where p is the start position of the extent,
while q is the end position of the extend.

An extent (p, q) overlaps an extent (p′, q′) if either p′ ≤ p ≤ q′ or p′ ≤ q ≤ q′ but not
both. An extent (p, q) is nested in an extent (p′, q′) if (p, q) 6= (p′, q′) and p′ ≤ p ≤ q ≤ q′.
If a = (p, q) and b = (p′, q′) are extents, the notation a @ b indicates that a nests in b; the
notation a v b indicates that a is contained in b– that either a and b are equal or that a nests
in b. Extents form a partial order in v.

A solution to a query is a set of extents. Over the database string C1 . . . CN , the range
of the index function I is limited to N positions. However, there are O(N2) extents over
this same range–every (p, q) such 1 ≤ p ≤ q ≤ N . Depending on the query, any of these
O(N2) extents could be a candidate for inclusion in the query’s solution set. For example,
given a query for a particular word (e.g., “bells”) every extent that overlaps an occurrence
of the word might reasonably be viewed as a potential member of the solution set, including
the extent (1, N) corresponding to the entire database. Similarly, if a query consists of the
conjunction of two terms (e.g., “bells” AND “valley”) every extent that contains both terms
might be considered as a potential solution extent.

Many of these extents overlap and nest. In order to reduce the number of extents that



3.3 Term Proximity 67

result from the search, nested solution extents are not allowed. However solution extents
are permitted to overlap. This approach of eliminating nested extents is called the shortest-
substring search model: the resulting set is called a generalized concordance list.

Generalized Concordance List. A set of non-nesting extents is referred to as a gener-
alized concordance list, or simply GC-list. In the case of a search for a single word that
occurs once in the database, the corresponding generalized concordance list contains a sin-
gle extent of unit length that begins and ends at the word’s position. The index function I
may be viewed as mapping symbols in the index alphabet onto GC-lists: the elements of
the results are interpreted as extents that begin and end at a single position. For example,

I (“bells”) = {(1, 1), (20, 20), (50, 50), (62, 62), (65, 65), (68, 68)}.

By viewing the index function as producing extents, it may be augmented to encompass
phrase matching. For example,

I (“the valley”) = {(26, 26), (58, 59), (70, 71)}.

Similar extensions may be used to support truncation and stemming.
The reduction of a set of extents S to a generalized concordance list may be formalized

as a function (S):

G (S) = {a|a ∈ S and 6 ∃ b ∈ S such that b @ a}. (3.2)

A set S of extents is a GC-list if and only if

S = G (S) (3.3)

Boolean Operators. Given a query Q, an extent (p, q) satisfies Q if the substring of the
database beginning at position p and ending at q would match the query if the substring was
treated as a document under the standard set-based Boolean model. More precisely,

1. an extent (p, q) satisfies a query Q1 AND Q2 if the extent satisfies Q1 and satisfies
Q2.

2. an extent (p, q) satisfies a query Q1 OR Q2 if the extent satisfies Q1 or satisfies Q2.

3. an extent (p, q) satisfies a term T if the term occurs in the interval of text correspond-
ing to the extent.

To operators, “one of” (5), corresponding to OR, and “both of” (4), corresponding to
AND, are defined to effect this shortest-substring model of Boolean search.

A5B = G ({c|∃a ∈ A such that a v c or ∃b ∈ B such that b v c}) (3.4)

A4B = G ({c|∃a ∈ A such that a v c and ∃b ∈ B such that b v c}) (3.5)

Under the shortest-substring model the query
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“bells” AND (“sky” OR “valley”)

is interpreted as

G (“bells”)4 (G (“sky”)5 G (“valley”))

which specifies the set of extents

{(1, 12), (12, 20), (20, 27), (27, 50), (50, 59), (59, 62), (68, 71)}

over the text in Figure 3.1. The extents (35,61), (62,71), (1,90) and many others all satisfy
the query, but are eliminated by the shortest-substring rule.

Solution Sets. The algorithm may be viewed as a generalization of the “index-skipping”
algorithms used to optimize the evaluation of Boolean queries under the standard set-based
model [152, 100].

The algorithm is based on two access functions defined over the database string
C1 . . . CN . The values computed by the access functions are defined as follows:

r(S, k) =


q if ∃(p, q) ∈ S such that k ≤ p

and 6 ∃(p′, q′) ∈ S such that q′ < q and k ≤ p′

N + 1 if 6 ∃(p, q) ∈ S such that k ≤ p
(3.6)

l(S, k) =


p if ∃(p, q) ∈ S such that k ≥ p

and 6 ∃(p′, q′) ∈ S such that q′ > q and k ≥ p′

0 if 6 ∃(p, q) ∈ S such that k ≥ p
(3.7)

where S is a GC-list, while k is a position in the database string. In these definitions, the
extent (0, 0) and (N + 1, N + 1) essentially act as “end of file” markers for the GC-lists.

Informally, the function r(S, k) returns the end position of the first extent in S that starts
at or after the position k, and l(S, k) returns the start position of the last extent in S that
ends at or before position k. Over the test in Figure 3.1, the solution to I (“bells”) is the
set of extents

S = {(1, 1), (20, 20), (50, 50), (62, 62), (65, 65), (68, 68)}.

Over the set, r(S, 18) = 20, l(S, 64) = 62, and r(S, 69) = N + 1 = 93.
These access functions are extended from CG-lists to queries in the following way: if

Q is a query, and S is the solution set, then r(Q, k) = r(S, k) and l(Q, k) = l(S, k)
For the 5 and 4 operations, implementation of the access functions is defined by the

following equations:

r(A4B, k) = max(r(A, k), r(B, k)),
r(A5B, k) = min(r(A, k), r(B, k)),
l(A4B, k) = min(l(A, k), l(B, k)), and
l(A5B, k) = max(l(A, k), l(B, k)).

(3.8)
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The two access functions r and l may be used in concert to compute the solution set for
a query Q. Thus, the third access function τ is defined which indexes into a GC-list and
returns a complete extent, rather than a start or end position. If S is a GC-list, the value
returned by the access function over the database string C1 . . . CN is defined as follows:

τ(S, k) =


(p, q) if ∃(p, q) ∈ S such that k ≤ p

and 6 ∃(p′, q′) ∈ S such that q′ < q and k ≤ p′

(N + 1, N + 1) 6 ∃(p, q) ∈ S such that k ≤ p
(3.9)

The access function τ returns the first extent from S that ends at or after position k. Once
again, the access function is extended from GC-list to queries, by defining τ(Q, k) =
τ(S, k), where S is the solution set for query Q. The relationship between the three func-
tions is defined as follows: Let S be a GC-list. Let v = r(S, k). If v 6= N + 1; let
u = l(S, v); otherwise, let u = N + 1.

τ(S, k) = (u, v) (3.10)

where S is a GC-list, v = r(S, k), and

u =

{
l(S, v) if v 6= N + 1
N + 1 otherwise.

Ranking

Under the shortest-substring search model, the result of a query is the set of shortest extents
that satisfy the specified Boolean predicate. Each extent in the solution set represents an
interval in the text. Each document in the database may contain one or more of the solution
intervals. Ranking is based on two assumptions:

Assumption A: The shorter a solution extent, the greater the likelihood that an interval of
text containing the extent is relevant.

Assumption B: The more solution extents contained within a document, the greater the
likelihood that the document is relevant.

The first assumption suggests a basis for ranking individual solution extents; the second
suggest a basis for ranking documents in terms of the solution extents contained within
them. Both assumptions are superficially reasonable.

Consistent with Assumption B, a score for a document might be obtained by summing
individual scores for the solution extents contained within it. Consistent to Assumption A,
the score for an extent (p, q) might be based on the inverse of its length q − p− 1:

Score of (p, q) ∝
(

1
q − p− 1

)α
, (3.11)

with a falloff parameter α > 0.
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During preliminary trials of the technique it was observed that if the length of an extent
was below a threshold of a dozen or so words, Assumption A no longer appeared to hold
as strongly and all extends appeared to be a more or less equally good indicator of likely
relevance. As a result, a cutoff parameter K > 0 was added to the scoring function:

I(p, q) =

{(
K

q−p−1

)α
if q − p+ 1 ≥ K

1 if q − p+ 1 ≤ K
(3.12)

For any extent (p, q), I(p, q) > 0. If solution extents (p1, q1), . . . , (pN , qN ) are con-
tained in a document, the score for the document is

N∑
i=1

I(pi, qi). (3.13)

Shortest-substrings retrieval computes the set of solutions extents for a specified query.
The ranking procedure then filters this set of extents against a list of extents representing
document boundaries before computing the final scores and generating the ranking. Evalu-
ation of a query proceeds in five steps:

1. Determine the set of solutions extents

2. For each solution extent, either determine the document extent that contains it, or if
it overlaps document boundaries, eliminate it.

3. For each document extent containing one or more solution extents, calculate its score.

4. Sort the document extents by score.

5. For the top-ranking documents, translate the document extents into external identi-
fiers.

Using the text of the poem from Figure 3.1 and the query:

“bells” AND (“sky” OR “valley”)

we obtain the set of extents

{(1, 12), (12, 20), (20, 27), (27, 50), (50, 59), (59, 62), (68, 71)}.

Treating each of the three verses as a separate document eliminates (27, 50) and (59, 62),
which overlap verses, and (1, 12), which overlaps the title. Scoring each verse separately,
and for the purpose of this example using a cutoff of K = 4 and a falloff of α = 1, gives a
score for each verse as follows:

first : I(12, 20) + I(20, 27) ≈ 0.44 + 0.50 = 0.94
second : I(50, 59) = 0.40

third : I(68, 71) = 1.00

The third verse outscores the first, but contains fewer solution extends. Despite the many
substrings that satisfy the query, few contribute to the scores.
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Evaluation

Experiments using the the TREC-4 collection demonstrated that the shortest-substring rank-
ing slightly outperforms the Okapi ranking, but this performance difference is statistically
not significant.

3.3.2 Fuzzy Proximity Model

Based on the idea that the closer the query terms are in the document, the more relevant
this document is, Beigbeder et al. [11] estimated the relevance of a document to a query
computing the fuzzy proximity degree of the query terms occurrences in such document.
This model is able to deal with Boolean queries, but contrary to the traditional extensions
of the basic Boolean model, it does not explicitly use a proximity operator. The fuzzy term
proximity is controlled with an influence function. Given a query term and a document, the
influence function associates to each position in the text a value dependant on the distance
of the nearest occurrence of this query term. To model proximity, this function is decreasing
with distance where different forms of functions with limited support can be used: trian-
gular, Gaussian, etc. Once the fuzzy proximity for each query term are calculated, the
document score is computed applying the traditional methods of fuzzy IR models.

Notation

Let T the set of terms appearing in the documents of a collection C, a document is rep-
resented (in the most basic Boolean model) as a set of terms where d ∈ {0, 1}T . This
expression can be easily extended to the one used in the Boolean models based on the fuzzy
set theory [99], where d ∈ [0, 1]T . Thus, a document d is a function d : T → [0, 1] and d(t)
is the membership degree of the document d to the term t considered as fuzzy set. In the
vector model context, d(t) is usually called the weight of the term t within the document d,
and usually written wd,t. Note that in the vector model the range of the d is likely to be R+

(and even R), rather than the interval [0, 1].
The collection model is a set of documents, so C is a collection iff: C ⊂ {0, 1}T for

the basic Boolean model, or C ⊂ [0, 1]T for any fuzzy model, or C ⊂ RT for the other
extended Boolean models and the vector space model.

Given these definitions and notations, one can consider the family of functions (µt)t∈T
defined by µt(d) = d(t). When C is a subset of {0, 1}T , µt is the characteristic function of
the set of documents containing at least one occurrence of the term t. When C is a subset of
[0, 1]T , µt is the membership degree function of the fuzzy set of documents containing the
term t.

Model

The proposed model represents the documents considering their term positions and it is
based on a fuzzy proximity function between each position in the document text and the
query. This fuzzy proximity function is assumed up over Z to score the document.
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Let d−1(t) be the set of the positions in the document d where the term t appears, the
elements in d satisfying the following condition: ∃ l ∈ N, d−1(T ) = [0, l − 1]. Moreover,
d−1(T ) is the set of positions of actual terms appear.

Figure 3.2 shows an example of a collection C of four documents (d0 to d3) where only
two different elements of T , A and B, are represented. From this example: d3(2) = A,
d3(3) = A, and d−1

3 (A) = {2, 3}.

131211109876543210
A B

543210
B

43210

d3 A Ad2

d1

d0

131211109876543210
A B

Figure 3.2: Example of a collection C containing the documents d1, d2, d3 and d4. A and
B are some elements of T .

Local Term Proximity. Within the basic Boolean model, it is easy to define a NEAR
operator at the leaf level. For instance, the query A NEAR 5 B is evaluated to true if there
exists one occurrence of the term A and one occurrence of the term B with less than five
other words between them. This is a binary proximity value, and this notion will be in
this approach fuzzyfied by taking into account the number of words between the two term
occurrences.

In fact, a new notion of proximity will be defined, does not consider the proximity
between two terms in the text, but between a position in the text and one term. Formally,
we define the proximity function µdt : Z→ [0, 1] with

µdt (x) = max
i∈d−1(t)

(max(
k − |x− i|

k
, 0)), (3.14)

where k is some integral parameter which controls to which extend one term occurrence
spreads its influence.

In the following examples, the value k = 4 is used. The function µdt reaches its maxi-
mum (the value 1) where the term t appears and it decreases with a constant slope down to
zero on each sides of this maximum. In other words, this function has a triangular shape at
each occurrence of the term t. Figure 3.3 shows (µdA)d∈C and (µdB)d∈C for the collection C
shown in Figure 3.2.

This function can be interpreted as the membership degree of any text position x in the
document d to the fuzzy set (d, t).
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Figure 3.3: The functions (µdA)d∈C plotted with plain lines and (µdB)d∈C plotted with
dashed lines for the collection C and k = 4.

Local Query Proximity. Now, a local proximity function between a text position and a
query will be defined. The implemented query model is that of the Boolean model. The
functions µdt defined in the previous section are associated to the leaves of the query tree.
Defining the local proximity at a given OR node as

µ(OR,(qi)i) = max
i
µqi , (3.15)

and likewise
µ(AND,(qi)i) = min

i
µqi , (3.16)

where (qi)i is a finite subset of the query set Q. This are the same scoring formulas of the
basic Boolean model, but in this case the functions are defined over Z [11].

The recursive application of the previous formula up to the root q leads to a local prox-
imity function between a document and the query q. This proximity means that the closer
the terms requested by the AND operators are, the higher the value of the function is. More-
over, this value is augmented by the closest of the terms requested by an OR operator. This
function can be interpreted as the membership degree of any text position x in the document
d to the fuzzy set (d, q).

Figure 3.4 and Figure 3.5 plot µdA OR B and µdA AND B (respectively) for the documents
of the collection C of Figure 3.2. Although the the document d1 contains both terms A and
B, the function µd1A AND B is uniformly zero, because the occurrences of A and B in d1 are
too distant.

Ranking

One of the first similarity measures between a document and a query was the coordination
level [94]. It operates by counting the number of occurrences of the query terms. The idea,
which was carried out further in the vector model, is to accumulate pieces of evidence for
relevance. This similarity measure c defined in this model also may be interpreted as the
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Figure 3.4: µdA OR B for the collection C of Figure 3.2.
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Figure 3.5: µdA AND B for the collection C of Figure 3.2.

number of elements of the set of positions in the text where one of the query terms appears

c(q, d) = | ∪t∈q d−1(t)|. (3.17)

As the sets given in the union are mutually disjoint, we have

c(q, d) =
∑
t∈q
|d−1(t)|, (3.18)

or
c(q, d) =

∑
x∈Z

νdq (x), (3.19)

with νdq (x) = 1 iff d(x) ∈ q and νdq (x) = 0 otherwise. Note that in this case the query
is a set of terms. Computing the relevance score with the coordination level method is not
possible with Boolean queries. In the proposed model, the relevance score of a document d
to the query q is defined by

s(q, d) =
∑
x∈Z

µdq(x). (3.20)
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According to the fuzzy set model, this is the fuzzy number of elements of the set of
positions in the document d. Here, x 7→ µdq(x) represents the local proximity to the request
for the document d while x 7→ νdq (x) represents the binary proximity to a (non fuzzy) set of
terms.

The relevance score is a positive real number and the documents can be ranked accord-
ing to their scores.

Evaluation

An evaluation using the TREC WT10g collection has demonstrated that the performance of
the proposed method is comparable to the Okapi model [126].

Drawbacks

One problem not discussed in Beigbeder’s papers is that simple queries based on the OR
operator produce ranking scores that contradict the model hypothesis. For example, con-
sidering the query q = {A OR B} and the documents of Figure 3.2, one can observe that
although the terms A and B are in the document d0 closer than in the document d1, the
relevance score s(q, d0) is smaller than s(q, d1).

3.3.3 A Proximity Weighting Model

The work of Rasalofo and Savoy [117] suggests the use of proximity measurement in combi-
nation with the Okapi probabilistic model [126]. The authors intend to enhance the retrieval
performance by applying a term-proximity scoring heuristic to the top documents returned
by a keyword-based system. This approach is based on the assumption that if a document
contains sentences having at least two query terms within them, the probability that this
document will be relevant must be greater. Moreover, the closer are the query terms, the
higher is the relevance probability.

To achieve this objective, the original query is expanded using keywords pairs extracted
from the query’s wording, assuming that the queries are short, the queries have more than
one term, and the users will only write relevant terms.

Model

First, the set of all possible search keyword pairs is established. If the query
wording consists of q = (ti, tj , tk), we obtain the following set S of term pairs:
{(ti, tj), (ti, tk), (tj , tk)}, with the ordering of terms not being important. The term pair
retrieval within a given document is performed by sequentially reading the query term posi-
tions, and for each instance the term pair (ti, tj) within a maximal distance of five (or having
a maximal of four terms between the keyword pair), the term pair instance (tpi) weight is
computed:

tpi(ti, tj) =
1.0

d(ti, tj)2
(3.21)

where d/ti, tj) is the distance expressed in number of words between search term ti and tj .
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The hypothesis is that the closer two search keywords appear together within a docu-
ment, the higher is the weight attached to the occurrence of this term pair. Based on this
formulation, the higher value is 1.0, corresponding to a distance of one (the terms are ad-
jacent), and the lower value is 0.04 corresponding to a distance of 5. For example, based
on the request “information retrieval”, the resulting tpi of an occurrence of the same string
“information retrieval” will be 1.0 while the tpi of “the retrieval of medical information”
will be 0.11.

Of course, a given term pair may appear more than once in a document. Therefore, the
weight attached to this given term pair (ti, tj) is evaluated by summing all the corresponding
term pair instances tpi. In a manner similarly to the Okapi weighting scheme [126]:

wd(ti, tj) = (kl + 1) ·
∑

occ(ti,tj)
tpi(ti, tj)

K +
∑

occ(ti,tj)
tpi(ti, tj)

(3.22)

where
K = k

[
(1− b) + b l

avdl

]
l : is the document length,

avdl : is the average of the document length (set to 750)
b : is a constant (set to 0.9)
k : is a constant (set to 2)
kl : is a constant (set to 1.2)

Ranking

Based on the Retrieval Status Value (RSV) proposed by Okapi, the contribution of all occur-
ring query term pairs in a document (TPRSV ) will be calculated. Given the request q and
the document d, the TPRSV value is defined as:

TPRSV (d, q) =
∑

(ti,tj)∈S

wd(ti, tj) ·min(qwi, qwj) (3.23)

where S is the set of all query term pairs in q, qwi and qwj are the weights of the query
terms ti and tj calculated according to

qwi =
qtfi

k3 + qtfi
· log

(
n− dfi
dfi

)
(3.24)

where

qtfi : is the frequency of term ti in the query,
dfi : is the number of documents in the collection containing the term ti,
n : is the number of document included in the collection,
k3 : is a constant (set to 1000)

Due to efficiency needs, the TPRSV value is only calculated for the top 100 docu-
ments returned by the Okapi search model. The final retrieval status (ranking) for a given
document d, denoted

RSVNew(d, q) = RSVOkapi(d, q) + TPRSV (d, q) (3.25)



3.3 Term Proximity 77

This formulation accounts for both the original Okapi score (RSVOkapi) and the pro-
posed proximity scoring function (TPRSV ). During this process no new document is re-
trieved, as it is performed on the top 100 documents retrieved by Okapi. Instead, the scores
and therefore the ranks of documents containing at least one query term pair are improved
based on the following assumption: The presence of query terms within a document would
not always imply a match related to the true meaning of the request, whereas account for
search keywords pairs using some distance constraint may reduce this error. Using this idea
and for example in response to the request “operating system”, a document containing the
two terms close each other will be presented to the user before any other document having
these two terms within two different paragraphs.

Evaluation

Experiments conducted on the TREC-8, TREC-9 and TREC-10 collections reveal that pre-
cision improvements obtained by the proximity measure are more noticeable after retrieving
5 documents, and in this case the overall performance is around 8, 2%. Such results would
prove useful for those users looking at the top 5 or 10 documents returned.

3.3.4 Arbitrary Passage Retrieval

The term similarity concept is also related to passage retrieval [24, 80, 93, 131, 150], where
documents are often pre-segmented into small passages, which are then taken as units for
retrieval. Since matching a passage implies imposing a proximity constraint on the matched
query terms, passage retrieval can also capture proximity at a coarse granularity level,
though it is clear that proximity can only be captured in a limited way with this approach
[147].

The passage retrieval methods discussed in Section 2.9.5 are defined before or during
the indexing, which has several consequences. First, documents are partitioned into pas-
sages without consideration of individual queries. Second, when discourse passages such
as paragraphs are used, long sections may be split into passages that are individually less
informative, which is undesirable if the entire section is relevant to a given query. Third, the
definition of a passage is subjective, and depends on document structure.

The effectiveness of the passages types mentioned before, varied and did not identify a
clear winner.

Model

Kaszkiel and Zobel [80] proposed an alternative passage model. They define an arbitrary
passage as any sequence of words of any length starting at any word in the document. The
location and dimensions of the passages are delayed until the query is evaluated, so that the
similarity of the highest-ranked sequence of words, from anywhere in the document, defines
the passage to be retrieved; or in the case of document retrieval, determines the document’s
similarity. Two subclasses are defined,
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• Fixed-length passages, where the length of the passage is set before query evaluation,
and

• Variable-length passages, where passage can be of any length.

Fixed-length arbitrary passages do have one serious drawback: the cost of ranking pas-
sages is high and impractical. Experiments based on TREC collections demonstrate that
retrieval based on fixed-length arbitrary passages was significantly better than document
ranking, for both short and long queries. However, comparing document retrieval based on
fixed-length passages and predefined passages, no significant differences were found.

The experiments of Kaszkiel and Zobel [80] have shown that, on the average, document
retrieval using fixed-length passages is at least as effective as with predefined passages.
However, they discovered that no particular length was superior. That is, for queries of
the same type, one passage length worked best for some queries but not for others. A
solution to the limitation of fixed-length arbitrary passages is to select a passage length
most likely to suit the query. The best passage length can also depend on the document
ranked. For instance, given a query, one could find two long documents, where in one the
start of document or the abstract is relevant, and in the other a 400-word section is relevant.
Adjusting the passage length to the type of text should result in improvement retrieval.

Therefore, a more flexible approach would be to extract passages of different lengths,
and select the best one to represent each document. A variable-length passage is of any
length that is determined by the best passage in a document, when the query is evaluated.

Ranking

Since documents are represented by passages of different lengths, variable-length passage
ranking has to deal with two basic problems: first, how to discriminate between passages
of different length in the same document; second, how to discriminate between passages of
different length drawn from different documents.

In the absence of length normalization in the similarity measure, the longest passage
for each document determines the rank of the document. This is undesirable because, as
observed by fixed-length passages [80], effectiveness degrades with passages in excess of
450 words. To select a passage to represent a document, pivoted-cosine normalization can
be used, which is restated here for variable-length passages:

Wp = (1− slope) + slope · plen
∆len

(3.26)

where slope is set to 0.2 (which has shown to be effective in the context of predefined
passage ranking), plen is the length of fragment p in bytes, and Deltalen is the average
length of all fragments in the collection. This formula has been shown to be effective for
predefined passage types and minimizes the fragility of ranking fragments of varying length.
The overall similarity of passage p to a query q is:

sim(q, p)
Wp

(3.27)
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Formally, this is not applicable to variable-length passage ranking since it requires av-
erages over all passages lengths in the collection, which is not meaningful in the context
of variable-length passages. Singhal et al. [141] have argued that this length formulation
is reasonably robust if ∆len is set to an overall average, which in this case is the average
passage length used (about 300 words). This approach is referred to as Variable. The simi-
larity score for a document d to a query q is based on the best-scoring passage among twelve
different lengths in the range of 50 to 600 words.

sim(q, d) = max
(
sim(q, d, p50)

Wp,50
,
sim(q, d, p100)

Wp,100
, . . . ,

sim(q, d, p600)
Wp,600

)
(3.28)

where sim(q, d, plen) is the similarity of passage p of length len in document d to query
q, based on the cosine measure. The value of Wp,len is the pivoted-cosine normalisation
component for passage p of length len.

Evaluation

The experiments executed by Kaszkiel et al.[80] show that the effectiveness improvements
achieved by the use of passage are significant for databases for which the variability of
document length is large, but for databases with uniform document length the improvement
is smaller. The improvement obtained by passage ranking compared with whole-document
ranking varied depending on the passage type, collection and query set, with the greatest im-
provement in average precision for passage ranking from 20% to 50%. For a text collection
with uniform document lengths, the improvements did not exceed 7%.

Compared with the best predefined passage ranking, the effectiveness of variable-length
arbitrary passage ranking is consistently improved.

Despite of the general improvements in effectiveness of passage-based ranking, no sin-
gle passage type showed superior retrieval effectiveness across five different text collections
and two query sets.

A Similar Approach

Variable-length arbitrary passage is similar to locality-based retrieval proposed by de
Kretser and Moffat [38], where document boundaries are ignored and text is treated as a
continuous sequence of words. The similarity scores for passages are according to how
many query term occurrences appear near to each other. Shape, height, and spread of a
function is used to calculate the contribution of query terms to text regions. High-scoring
regions are identified and passages that contain them retrieved. In this approach, the length
of the passage depends on a scoring function and the corresponding parameters are used to
identify text regions. The parameters used in the function need to be adjusted for different
collections and query sets, and no consistent results for any functions were reported [38].

Passage Retrieval in Relevance Feedback

The effectiveness of automatic query expansion is degraded when long documents are used
[3]; instead, only the part of the document that is most similar to the query should be used for
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feedback. Allan [3] and Xu and Croft [166] showed that using passage instead of full-text
documents in automatic query expansion can improve the retrieval effectiveness of queries.

Passages have also been used in other works of relevance feedback [34, 107]

3.3.5 Proximity and Relevance Feedback

One of the first approaches applying term positional data in retrieval feedback is the work of
Attar and Fraenkel [7]. They propose different models to generate clusters of terms related
to a query (searchonyms) and use this clusters in a local feedback process. The proposed
clustering methods are divided in three categories:

• Local Relative Frequencies,

• Local Association Matrix,

• Metric Correlations.

The first two methods are based on term frequency data; for this reason, they will be not
considered in our analysis. The latter methodology uses term position information to build
the proposed clusters.

Based on some experiments with English and Hebrew documents the authors confirm
that metrical correlations, i.e. methods based on functions inversely proportional to the
distance between terms, are superior than methods based merely on weighted co-occurrence
of terms.

Metric Correlation Methods

Attar and Fraenkel [7] proposed basically two metric correlations: the reference vectors
and eigenvectors and the scalar product clusters. To analyze these methods, the following
are notations introduced: a form is an ordered strings of letters, preceded an followed by a
space. A word is an occurrence of a form in the text counting multiplicities. A coordinate
of a word is an ordered six-tuple consisting of the author code, volume, document number,
paragraph number, sentence number, and word number within the sentence. Let G(s) be a
nonempty subset of forms which are grammatical variants of each other. A canonical form
s of them is called stem.

Reference Vectors and Eigenvectors. For a given text Dg, Fg, Cg, and Sg are set of all
its documents, forms, coordinates, and stems, respectively. They are also called (global)
database of documents, forms, coordinates, and stems, respectively. Similarly, Dl, Fl, Cl,
and Sl are the set of all documents, forms (words) coordinates, and stems, respectively, of a
subset of the database, such as the (local) set of all documents returned from a given search
formulation. Also Wg and Wl are the sequence of all words in the global and local text
respectively.
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Now, for any stem s ∈ Sl, let ws(i) ∈ Cg be the coordinate of the ith occurrence of any
variant of s. If x ∈ Sl, we define the function

b(s, x) =
∑
i

∑
j

F (ws(i), wx(j)), (3.29)

where the summation is over all i, j such thatws(i), wx(j) ∈ Cl, andF is a suitable function
of distance d = |ws(i)− wx(j)| in words between ws(i) and wx(j) in the text. After some
experimental tests, the following distance function was selected:

F (ws(i), wx(j)) =

{
1/d if ws(i), wx(j) are in the same sentence and d ≤ 20,
0 otherwise

(3.30)

For a fixed s ∈ Sl, let xi, run over Sl and generate a linear list of the b(s, xi) ranked on non
increasing size and a linear list of the corresponding xi. Selecting the first n terms in each
of these lists gives the eigenvector

En(s) = Eun(s) = (b1(s), b2(s), . . . , bn(s)), b1(s) ≥ b2(s), . . . , bn(s) (3.31)

and the induced reference vector

Rn(s) = Run(s) = (x1, x2, . . . , xn). (3.32)

An examination of the reference vectors Rn(s) reveals that the relation between s and
the stems xi ∈ Rn(s) is of two kinds:

• A synonymity relation, either global, pertaining to the entire language, or local, relat-
ing to the search at hand.

• A neighborhood relation, reflecting the neighborhood of s, overwhelmingly the dom-
inant relation.

The second relation (neighborhood) induces a relation on the components of Rn(s). Let
x ∈ Rn(s). If y is a synonym of x which occurs in the database, it is likely to appear
also in Rn(s), since it may replace x in some of the neighborhoods of s. This “indirect”
synonymity relation is more frequent than the “direct” synonymity relation between s and
x.

Scalar Product Clusters. Based on the neighborhood relation defined above, it may be
assumed that two stems with “similar” neighborhoods have some synonymity relation that
can be measured using the scalar product. Arranging the components in the eigenvectors E
and reference vectors R introduced before and aligning terms:

Ek(s1) = (b1(s1), b2(s1), . . . , bk(s1)) ,
Ek(s2) = (b1(s2), b2(s2), . . . , bk(s2)) ,
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with common reference vector (x1, x2, . . . , xk); i.e. b1(s1) and b1(s2) are coefficients of
the same term x1, (1 ≤ i ≤ k ≤ 2n). Then,

cosk(s1, s2) =
Ek(s1), Ek(s2)

(Ek(s1), Ek(s1))1/2(Ek(s2), Ek(s2))1/2
(3.33)

is the scalar product of the vectors Ek(s1), Ek(s2). The function cosk(s, x) is computed
for all stems x in the set U = {y : y ∈ ∪R20(s)}, where the union is over all stems s ∈ T .
For each x ∈ U, Ek(x)was computed and then cosk(s, x). The scalar product cluster is
defined by

Pn(s) = (x1, x2, . . . , xn) , (3.34)

induced by
(cosk(s, x1), cosk(s, x2), . . . , cosk(s, xn)) , (3.35)

where cosk(s, x1) ≥ cosk(s, x2) ≥ · · · ≥ cosk(s, xn), xi ∈ U . Experimental results
demonstrate that Scalar Product Clusters are useful to produce synonyms with little noise,
however their retrieval capability is generally inferior to that of eigenvectors.

The additional terms generated through the clustersRn(s) or Pn(s) are used to augment
the initial query (s) in next retrieval iterations, obtaining Rn(s) as the best performance in
the experimental phase.

3.4 Fourier Domain Scoring

Fourier Domain Scoring (FDS) processes the document spatial information of the document
and uses it to rank documents. The main difference between FDS and other vector space
similarity measures is that, rather than storing only the count of a frequency term per docu-
ment, FDS stores a term signal. The term signal shows how the term is spread throughout
the document [110]. Comparing the spectrum of query term signals in documents, FDS
permit to observe the following features:

• which documents have a high occurrence of the query terms.

• which documents have the query terms appearing together.

This information is obtained by comparing the magnitude and the phase of the spectrum
across different term signals.

Documents that contain query terms that all follow a similar positional pattern are con-
sidered more relevant than documents whose query terms do not follow similar patterns.

3.4.1 FDS Methodology

To make use of the spatial information of the document, the vectors used in the FDS model
represent the position of query terms throughout the document. Documents that have key-
words appearing periodically and that contain the keywords together are given a higher
relevance than the documents that have the keywords apart [109].
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Figure 3.6: A graphical representation of the Reference Vector Rn considered in the first
metric correlation proposed by Attar and Fraenkel. Note that in the second metric (Scalar
Product Clusters), for each element xi in Rn, the vector E(xi) will be calculated to obtain
the vector Pn(s).

To analyze the relative positions, the vectors are mapped into the frequency domain. The
word position is treated as the position in time. Performing the Discrete Fourier Transform
(DFT) allow us to observe the word spectrum in relation to a certain document. By splitting
the word spectrum into the magnitude and phase, one can determine the power and delay of
the word at certain frequencies.

To estimate the document relevance, FDS examines the positions of the query terms in
the document by comparing their phase (per frequency component) and adjust it according
to the appearance of the term by observing the magnitude.

3.4.2 Words Position Representation

By treating the word as a discrete time interval, one gets a string of ones and zeros. To be
more efficient, sequences of words can be clustered into bins (e.g. the first fifty words in the
bin0, the second fifty words in the bin1, etc). This reduces the size of the input to the DFT
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and also gives larger counts than one in each bin [109].
te

rm
fr

eq
ue

nc
y

t1 t2 t3 t3 t3t2

bin0 bin1 bin2

d

fd,t1,0

fd,t2,1

fd,t1,2

0
1
0
1

0

2

2

1

3

Figure 3.7: Word positions representation in FDS for the terms t1, t2, t3 in the document d,
using a bin of five words.

For example, Figure 3.7 gives the positions of the terms t1, t2, and t3 through out a
document d. By choosing a bin of five words, we obtain the term signals [1 0 0], [0 2 0] and
[0 0 3], respectively.

Applying this scheme, a set of Term Signals for each document in the collection is cal-
culated as a sequence of values that show the occurrence of a particular term in a particular
bin of the document. The Term Signal for the term t in the document d is represented by:

f̃d,t = [fd,t,0, fd,t,1, . . . , fd,t,B−1], (3.36)

where fd,t,b is the value of the signal component.
Having B signal components and D terms in the document, the value of the bth com-

ponent is computed by counting the occurrences of term t between the ( bDB )th word in the
document and the ( (b+1)D

(B−1) )th word in the document. Therefore, if B = 8, fd,t,0 would
contain the number of times the term t occurred in the first eighth of document d. If B = 1,
fd,t,0 would contain the count of therm t throughout the whole document.

3.4.3 Weighting Bins

Before the Fourier Transform will be applied, the calculated bin components are weighted
using a BD-ACI-BCA weighting scheme [170], obtaining the following values:

ωd,t,b = Ωd(fd,t,b) =
1 + loge fd,t,b

(1− s) + s ·Wd/avd∈DWd
, (3.37)

where fd,t,b is the count of term t in bin b of document d, s is the slope factor (set to
0.7), Wd, avd∈DWd are the document vector norm and the average document vector norm,
respectively.
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The BD-ACI-BCA weighting scheme uses a pivoted document normalization, which re-
duces the effect of repetition of a word in a document and negate any effect of the document
size has on a query.

Through the weighting process the term signal will be mapped to the Weighted Term
Signal vector:

w̃d,t = [wd,t,0, wd,t,1, . . . , wd,t,B−1] (3.38)

3.4.4 Applying the Discrete Fourier Transform

As described in [108], FDS applies the Discrete Fourier Transform to the Weighted Term
Signal wd,t,b, the original function will be decomposed into a superposition of linearly in-
dependent sinusoidal terms given by:

ζd,t,β =
B−1∑
b=0

wd,t,b e
−i2πβb
B (3.39)

Since each ζd,t,β (component of the series) is the projection of the word signal w̃d,t onto
a sinusoidal wave of frequency β, the signal ζ̃d,t is the spectrum of the given term signal
given by:

ζ̃d,t = [ζd,t,0, ζd,t,1, . . . , ζd,t,B−1], (3.40)

where ζd,t,b = Hd,t,beiθd,t,b is the bth spectral component with magnitude Hd,t,b and phase
θd,t,b.

The word spectrum shows the frequency components the word signal is made up of.
Each frequency component is a complex number of the form:

Hf e−iφf , (3.41)

whereHf ∈ R represents the power of the frequency component f , and φf ∈ R is the phase
shift of f . Each frequency component contains magnitude and phase information which can
be interpreted as the effect and shift of the component respectively. The effect gives us an
idea of the shape of the word signal.

Applying the Nyquist-Shannon Sampling Theorem [76], the frequency components will
be limited to B

2 , obtaining the vector:

ζ̃d,t = [ζd,t,0, ζd,t,1, . . . , ζd,t,B
2

] (3.42)

Discussion

We want to remark that the number of coefficients calculated in the Fourier expansion and
the use of the sampling theorem play a critical role in the FDS procedure, because it deter-
mines the amount of positional data stored finally in the index. On this account, we made
a detailed analysis of the expression (3.39) and detected that the reduction of the number
of frequency components does not concern with the use of the Sampling Theorem, but with
two properties of the proposed Fourier Transform:
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(a) the Discrete Fourier Transform from (3.39) is periodic in β, that is:

ζd,t,β+B = ζd,t,β (3.43)

(b) the Weighted Term Signal (wd,t,b) is not complex, therefore all negative values of β
have the same value of its complex conjugate:

ζd,t,−β = ζ∗d,t,β (3.44)

As depicted in Figure 3.8, using the Term Signal f̃d,t = [1 0 0 2 0 2 0 0] from a document
with eight bins, we can observe the properties of periodicity derived from the expressions
(3.43) and (3.44), and conclude that the whole spectrum information of the function ζd,t,β
is contained in the coefficients from 0 to B

2 , which has nothing to do with the use of the
Sampling Theorem.
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Figure 3.8: Analysis of the Discrete Fourier Transform periodicity.

3.4.5 The Score Calculation

The basic idea in the FDS approach is that relevant documents should have large magnitudes
and the corresponding phase of each query term should be similar (in phase). To analyze
these properties, FDS deals with the magnitude and phase separately, obtaining from the
calculated spectral components the magnitude Hd,b and phase precision Φd,b. These values
will be combined in the ranking process to obtain the final document score.
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The first concepts involved in the score calculation are: (a) the Unit Phase Φ and (b) the
Zero Phase Precision Φ̄ (corresponding to the averaged value of Φ over all query terms).

Φd,t,b =
ζd,t,b
Hd,t,b

= eiθd,t,b , 0 < θ < 2π (3.45)

Φ̄d,b =
1

#Q

∣∣∣∣∣∣
∑

t∈Q, Hd,t,b 6=0

Φd,t,b

∣∣∣∣∣∣ (3.46)

The basic idea is to obtain the mean (average over the terms t of the query Q) of the unit
phases Φd,t,b for a document d and frequency b.

In the next step, the weighted sum of the magnitudes Hd,t,b will be calculated:

H̄d,b =
∑
t∈Q

ωQ,tHd,t,b (3.47)

where ωQ,t is the applied weighting scheme for a query term t in Q.
Hence, the corresponding components of the score vector will be calculated as follows:

s̃d = [sd,0, sd,1, . . . , sd,B−1] , (3.48)

sd,b = Φ̄d,bH̄d,b (3.49)

Finally, the document score Sd is represented as the lp norm of s̃d:

‖s̃d‖p = p

√√√√B−1∑
b=0

|sd,b|p , (3.50)

where a value of p = 2 corresponds to the usual Euclidean norm.
Figure 3.9 represents the geometrical view of the components involved in the FDS rank-

ing. Here, the first spectral components (ζ̃d,t1,0 and ζ̃d,t2,0) of two arbitrary terms t1 and t2
in the document d are operated to obtain their corresponding similarity value Sd,0.

Additional Ranking Methods

Optional methods to the FDS ranking calculation are:
(a) the sum of all components:

Sd =
B/2+1∑
b=1

Sd,b (3.51)

(b) the sum of the largest score vector elements:

Sd = Sd,b1 + Sd,b2 ,
Sd,b1 , Sd,b2 ≥ max

∀ b 6=b1,b2
(sd,b) (3.52)
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Figure 3.9: A geometrical representation of the ranking model used in the FDS considering
the first spectral components ζ̃d,t1,0 and ζ̃d,t2,0 of the terms t1 and t2.

(c) the sum of the largest phase precision components:

Φ∗d,b1 ,Φ
∗
d,b2 ≥ max

∀ b6=b1,b2
(Φ∗d,b) (3.53)

(d) the sum of the largest magnitude components:

H∗d,b1 , H
∗
d,b2 ≥ max

∀ b 6=b1,b2
(Hd,b) (3.54)

(e) and the sum of the largest phase precision components:

Sd =
∑

b ∈ {c|Φ∗d,c>P}
Sd,b (3.55)

Discussion

When the query terms appear in a document with a similar pattern, we would expect that
the standard deviation of a phase angle of their spectral components for a given frequency b
is small.
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∆d,b =
√

1
#Q

∑
t∈Q

(θd,t,b −mean(θd,b))2 (3.56)

mean(θd,b) =
1

#Q

∑
t∈Q

θd,t,b (3.57)

where mean(θd,b) is the average phase angle. If all phase angles would be considered
modulo 2π, this calculation will be correct. Alternatively, we can use the unit phase Φd,t,b =
exp(iθd,t,b):

∆′d,b =
√

1
#Q

∑
t∈Q

(Φd,t,b −mean(Φd,b))2 (3.58)

But instead of this value the model applies the expression (3.46).

3.4.6 Further Assumptions

• About magnitude

– If a lower frequency component magnitude is large with respect to the other
components, then the word should appear clustered in a few places in the docu-
ment.

– Is a higher frequency component magnitude is large with respect to the other
components, then the word clusters would be scattered throughout the docu-
ment.

• About phase

– If two signals have the same phase (are in phase), then they appear together
throughout the document.

– If two signals have the opposite phase (out of phase), then they not appear most
of the time together in the document.

Terms made from several words are normally the topic of the document when the words
appear close together and periodically. Therefore, a document in which the frequency f has
a large magnitude (Hf ) for all the words of the topic set T , and the phase of each word of
T is similar, then it is most likely that T is a subset of the topic.

3.5 Summary

In this chapter, the most relevant work from the IR research community related with the
matter of this thesis were considered.

We began describing some approaches considering contextual information for improv-
ing search results, and revised the main models incorporating term proximity information
in the IR process.
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Finally, one of the first approaches using functions to represent positional information
was analyzed in detail.



4
The Gauss Model

4.1 Introduction

In this chapter, the Gauss model, a novel methodology to improve document relevance
evaluation is proposed. The Gauss model is based on a compressed statistical description of
the word positions in a document collection, represented through their measures of center
and spread.

As a complement to the term frequency/inverse document frequency (tfidf ) metric, the
term density distribution measure to estimate a document’s relevance is introduced. Fur-
thermore, a new query expansion algorithm is proposed. It is based on overlapping the
distributions of query terms in the top-ranked documents.

Experimental results obtained for the TREC-8 document collection demonstrate that the
Gauss model is superior to the tfidf weighting scheme without applying query reformulation
or relevance feedback techniques. Furthermore, a query expansion methodology to support
the user in the query refinement process is developed.

Part of the material presented in this chapter has been published in [57].

4.2 Term Distribution Analysis

The previous studies corroborate that, independent of the applied technology, the analysis
of relationships between words in a document collection is a significant way to improve
relevance estimation in information retrieval systems. On the other hand, the analysis of
word distributions in a text reveals that content-bearing words are likely to repeat in close
proximity to each other [15].

In this section, a novel approach is proposed in order to obtain a compressed repre-
sentation of the relationships between words using simple methods of descriptive statistics
applied to the word positions in documents. One naive method is to calculate the distance
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Table 4.1: Positions of words a and b in a linear representation of document d.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a a a a

b b b b b

Table 4.2: Interquartile range for the position of a and b in the document d.
Word Positions 1stquartile(Q25) median (Q50) 3rdquartile (Q75)

a 1 4 9 15 1.75 6.5 13.5
b 6 8 10 12 14 7 10 13

between all word pairs. Applying this procedure, one can expect that, if two words are near
to each other in a set of documents, some semantic relationship is likely to exist between
these two words. Unfortunately, such a method is computationally costly due to (a) the ex-
cessive increase of the dimensions of the index matrix that contains information about each
word position in the document collection, and (b) the distance computations between the
query and the document terms.

Our proposed method permits us to obtain semantic information about the relationships
between words based on only two statistical parameters describing the positions of words
in the corresponding document: the statistical measures of center and spread. The most
common measures of center and spread are the mean (µ) and the standard deviation (σ).
Because the mean and standard deviation suffer from the influence of extreme observations,
resistant measures of center and spread, such as the median and percentiles, will be used
to better deal with outliers and common irregularities in the data. As shown in the next
subsection, these statistical values can be easily incorporated in standard index structures
(i.e. an inverted index), extending the capabilities to recognize relevant documents in a set
of retrieved documents.

4.2.1 Descriptive Statistics and Document Semantics

In Table 4.1, we see a linear representation of a document d, where several instances of the
words “a” and “b” are located in their respective positions along the document body. The
idea is to analyze how these words are distributed within the document and to find a reduced
representation that permits to compare their context.

Table 4.2 shows the interquartile range [151] for the positions of a and b in document d.
Using the calculated parameters, their interquartile ranges are shown in Fig. 4.1. It

can be observed that the instances of word a are mainly situated in the first half of the
document with Q25 = 1.75 and Q75 = 13.5, while the instances of word b are distributed
approximately in the middle of the document with Q25 = 7 and Q75 = 13.

This statistical representation of the word positions gives a concrete picture of their
dispersion within the document, such that the distributions of two or more words can be
compared.

The interquartile range allows us to reach some conclusions about specific scores in our
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Figure 4.1: Interquartile range for the positions distribution of a and b

distribution. Approximately 50% of the instances of word a are located in its corresponding
interquartile range ra = [Q25a , Q75a ], and about 50% of the instances of word b are located
in the range rb = [Q25b , Q75b ]. Using the document length |L|, the equations can be nor-
malized: 0 ≤ Ra ≤ 1 and 0 ≤ Rb ≤ 1, where Ra = ra

|L| and Rb = rb
|L| . Thus, if the range of

a word in the document is near to 1, the instances of this word are widely distributed within
the document body. Similarly, if the intersection range (I) of two words is determined,
we can expect that the word instances situated in this common document region are close to
each other: I(a, b) = Ra∩Rb. Based on this information, two approximations are proposed
in the following subsection.

4.2.2 The Document Relevance Estimator

Let Rad be the distribution range of word a in document d, and ρad the word density (num-
ber of occurrences) of word a in document d. Then, the Term Density Distribution (TDD)
is defined as an estimator for the relevance of word a in document d:

TDD(a)d = Rad · (1 + log {ρad}) (4.1)

A wide range and a high frequency of word a imply that word a is regularly distributed
within the document body, and it could be considered as a relevant key to describe the
document content. For example, considering the documents of Fig. 4.2 and the query
q = {a}, then the document d1 will be more relevant than the document d2, because
TDD(a)d1 > TDD(a)d2 .

4.2.3 The Semantic Distance Estimator

By calculating the intersection range between two words I(a, b) and their word densities in
document d, one can estimate their semantic statistical distance (δa,b) in the document:

δa,b =
n

n∑
d=1

I(a, b)d · (1 + log
{
ρ(a,b)d

}
)

(4.2)
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Figure 4.2: Dispersion of the word a in two arbitrary documents.

where I(a, b)d is the intersection range between the words in document d, ρ(a,b)d is the
word density of (a+b) in document d, and n is the number of documents in the collection
containing word a and word b.

The higher the intersection range between two words and the higher the word density
in the same range, the closer their position is in the document, implying some semantic
connection between them.

4.3 Implementation Issues

4.3.1 Index, Search and Ranking

In the implementation of the proposed approach, the statistical computations are performed
simultaneously with the indexing process. To achieve this task, the open source information
retrieval software library Lucene1 is used. Some of the main components of Lucene have to
be extended in order to calculate, store, and apply the word distribution information along
the retrieval process.

Using the statistical information contained in the extended index structure, a new search
algorithm is proposed. First, an initial approximation of relevant documents based on the
tfidf criterion and the query q is retrieved. Then, a procedure consisting of the following
two simultaneous tasks is started.

Ranking Optimization.

Selecting the first k documents from the initial tfidf ranking and applying the TDD estimator
of equation (4.1), we calculate D = {d1, d2, d3, . . . , dk}, an optimized document list based
on the dispersion of the query q in the top-ranked documents.

The TDD value for each document di is obtained by applying equation (4.3), and the
final ranking value is computed using a weighted combination of TDD and tfidf as shown in

1http://lucene.apache.org
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formula (4.4). An optimal value for the weighting coefficient w is estimated experimentally.

TDD(q)di = Rqdi · (1 + log(ρqdi )) (4.3)

FinalRanking = w · TDD + (1− w) · tfidf (4.4)

Query Expansion.

Using the term frequency values provided by the Lucene index, we first calculate T =
{t1, t2, t3, . . . , tm}, the m-most frequently occurring terms in D. Then, our δ estimator
in equation (4.5) is applied to compute the semantic distance between the query q and
the words in T. Finally, the semantic distance threshold ε is used to build the term list Qe
representing both the semantic neighborhood of the query in the retrieved documents and
the candidate terms to expand the query (equation (4.6)).

δti,q =
d

d∑
j=1

I(ti, q)j · (1 + log
(
ρ(ti,q)j

)
)

, i = 1 . . . t (4.5)

Qe = {t1, t2, t3, . . . , tk} (4.6)

where tj ∈ Qe ⇐⇒ δtj ,q ≤ ε, and ε is a semantic distance threshold.
From the initial results, the necessary information to accomplish two tasks is obtained:

(a) estimating the query terms distribution for immediate ranking optimization and (b) cal-
culating the query neighborhood, giving the possibility to incorporate these new terms in a
query refinement process.

4.4 Experimental Results

The TREC-8 document collection has been used to compare the performance of our ap-
proach with the tfidf weighting scheme. The goal of this evaluation is to determine how
well our approach is able to identify relevant documents in the collection.

The evaluation framework consists of the following components: (a) The Ad Hoc Test
Collection containing 556,077 documents (2.09 Gigabytes) corresponding to the Tipster
disks (3 and 4), (b) The Topics and Relevance Judgments (qrels), (c) Our algorithm consist-
ing of 4 java modules for indexing, search, graphical evaluation and tuning tasks, and (d)
The results analysis where the effectiveness of our approach will be estimated.

To evaluate the performance of the word distribution and semantic distance concepts,
two groups of experiments, consisting of 28 and 14 runs are executed.

4.4.1 The Dispersion Runs

In the first group of experiments, the effectiveness of our word dispersion indicator is mea-
sured. Based on a short query (qrel title) and running the tfidf algorithm, we obtain a
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preliminary group of relevant documents (tfidf results). Subsequently, applying the word
dispersion criterion, we estimate how the query terms are distributed in the retrieved docu-
ments and use this information to optimize the ranking (dispersion results).

Equation (4.7) represents the dispersion considering a query q having one or more terms
and an arbitrary document d from the tfidf -ranking. The performed runs have been divided
into four groups delimited by the dispersion models executed in the initial ranking:

OTD model : disp(i)d = iqr(i)d/lengthd
LIN model : disp(i)d = tf(i)d · iqr(i)d/lengthd

SQR model : disp(i)d =
√
tf(i)d · iqr(i)d/lengthd

LOG model : disp(i)d = log(tf(i)d) · iqr(i)d/lengthd
Applying equation (4.8), each model is tested with six different dispersion weighting

schemes: w = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

Disp(q)d =
∑
i∈q

disp(i)d (4.7)

DRank(d)w = w ·Disp(q)d + (1− w) · tfidf(q)d (4.8)

where q are the query terms, iqr(i)d is the interquartile range of term i in document d,
lengthd is the length of document d, tf(i)d is the frequency of term i in document d,
disp(i)d is the dispersion of term i in document d, Disp(q)d is the dispersion of query
terms q in document d, tfidf(q)d is the tfidf of document d by query q, DRank(d)w is the
dispersion ranking of document d using a weighting scheme w.

Based on this scenario, a total of 28 runs using the previously generated index and the
title-tag of the TREC-topics as a query were performed. For each run, the corresponding
results file using the trec eval program was generated, obtaining the map and R-Precision
values (see Section 2.10) for tfidf and the different weighting schemes of the dispersion
ranking. From Fig. 4.3, the performance gain (map and R-Precision) of the dispersion
ranking over tfidf is evident practically for all models, obtaining the OTD, LOG and SQR
models as the best results.

By comparing the map values of tfidf and the dispersion ranking for all queries derived
from the TREC-8 qrels, our approach outperforms the tfidf ranking by 6.6%.

Factors Influencing the Relevance Increase in the Dispersion Runs.

In the following figures, the query-words distribution for the top ranked documents is pre-
sented, based on topic 430 for the tfidf and dispersion algorithms as an example. From
Fig. 4.4, a clear difference in the document ranking positions and how the query terms
are distributed in the document body can be observed. The document ranking positions
change once the dispersion criterion is applied. For example, the document LA080389-
0111 holding the first place in the dispersion ranking (right) partially presents (per term) a
more distributed term position than the first ranked document in the tfidf ranking. Further-
more, analyzing this particular result with trec eval, a map gain of 17.2% (tfidf : 0.1944,
dispersion: 0.2278) is achieved.
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Figure 4.3: Comparing the performance of all Gauss models vs. tfidf using map and R-
Precision values.

Figure 4.4: Tfidf (left) and Dispersion Ranking (right) for Topic 430.
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Usually, a slight positive variation of the map value generates an important difference
in the distribution of query terms in the “new” top-ranked documents. We observe that
the document LA080389-0111 which ascends to the first position in the dispersion ranking,
presents a more extensive description of the document LA031389-0095 which previously
occupied the first position in the tfidf ranking. Furthermore, in LA080389-0111 a wider
distribution of all query terms along the document body than in document LA031389-0095
can be observed. Thus, documents where all query terms are regularly distributed will be
favored in the ranking obtained from applying the dispersion criterion. This avoids two
unfavorable situations: (a) query term agglutination, i.e. high frequency terms allocated
in a small document fragment, and (b) query term predominance, i.e. the disproportioned
effect of high frequency single query terms over low frequency ones. In our example, the
influence of the high frequency term “bee” (freq=16) compensates the low frequency of
the term “attack” (freq=1), nevertheless this document is placed in the first position of the
tfidf -ranking.

Comparing our results with 13 participants of the ad hoc retrieval task who utilize an
analog evaluation framework (based on the topic title), we observe that the median improve-
ment over the baseline achieved by these participants is about 11.3%, with lower and upper
quartiles of 3.5% and 13%, respectively. The performance gain of our approach inside the
inter-quartile range is evident; as already mentioned, a performance gain of about 6.6%
over tfidf is obtained. Compared to results of the selected TREC-8 participants, this value
corresponds to about 58% of the participants’s performance using relevance feedback tech-
niques. In contrast, our results are achieved by applying the dispersion model only (without
query reformulation).

4.4.2 The Query Expansion Runs

Query expansion (or term expansion) is a process of supplementing the original query with
additional terms, with the aim of improving retrieval performance [42, 13]. It should be
emphasized that our query expansion experiments are based on the search results only. No
internal/external knowledge structure was used to leverage the re-ranking procedure. In
the group of runs described in the following, the proposed query expansion model based
on the Semantic Distance Estimator δ is evaluated. For the top-n ranked documents, the
query-nearest-terms to expand the query is computed and the ranking is recalculated.

The query reformulation and ranking procedure consists of the following stages:

1. Calculate the expanded query terms (eT ) using the top-n documents from the disper-
sion ranking.

2. Get the top-r relevant terms from the expanded query eT (r).

3. Reformulate the original query (oQ) adding the terms from eT (r) using formula
(4.9).

4. Execute tfidf -search using eQuery:

eQuery = oQ ∧ 0.5× (eT1 ∨ eT2 ∨ · · · ∨ eTr) (4.9)
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Figure 4.5: Query expansion results: the averaged map for each query expansion scheme.

where: eQuery represent the expanded query, oQ is the original query and eTi is the ex-
panded term i.

For the top-5 ranked documents (n=5), 14 different query expansion schemes were ap-
plied: r = {1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 50, 60}.

The results are depicted in Fig. 4.5, where the averaged map for all topics and each
query expansion scheme are illustrated. Approximately from the 15th expanded term, our
approach improves the tfidf results.

4.5 Summary

In this chapter, the Gauss model, a novel methodology to improve the document relevance
evaluation in information retrieval applications is proposed. The Gauss model is based on a
compressed representation of word positions in a document collection, based on two statis-
tical parameters: the measures of center and spread, which reduce the index size compared
to full term position index structures. By analyzing the distributions of query terms in the
initial search results, the ranking can be optimized without any relevance feedback cycle.
Furthermore, the semantic distance concept was extended to develop a query expansion
methodology supporting the user in the query refinement process.

An evaluation of the Gauss model using the TREC-8 collection has exhibited a perfor-
mance gain of 6.6% over the usual tfidf weighting scheme without applying query refor-
mulation methods. This improvement represents 58% of the TREC-8 participants’s perfor-
mance improvements implementing relevance feedback techniques. Further analyses have
shown that the Gauss model promotes documents having a wider query term distribution
and thus minimizes term agglutination and predominance effects in the top-ranked docu-
ments.
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5
The Fourier Model

5.1 Introduction

The Fourier model is based on an abstract description of the term positions in a document,
represented by the Fourier series expansion of a rectangular function describing the term
positions in the document. In addition, a document ranking optimization procedure, based
on objective query functions determining a user defined document region, is proposed as
an alternative to the well-known term frequency metrics. Furthermore, a query expansion
algorithm is introduced. It is based on overlapping the distributions of query terms in the
top-ranked documents. Experimental results obtained for the TREC-8 document collection
demonstrate that the proposed approach is superior to state-of-the-art relevance feedback
techniques such as Rocchio and Divergence from Randomness models [128, 4].

Part of the material presented in this chapter has been published in [58].

5.2 Term Distribution Analysis Using Fourier Series

Fourier analysis is based on the idea that functions can be approximated by a sum of sine
and cosine waves at different frequencies. The more sinusoids are included in the sum, the
better the approximation. There are several applications of Fourier analysis in the field of
information retrieval (IR), such as audio-IR [32], image-IR [49], and in text-IR [116].

Consider a function f(x) that is defined for x ∈ [0, L]. A Fourier series expansion is an
expansion

f(x) =
a0√
L

+

√
2
L

∞∑
k=1

[
ak cos

(
2πkx
L

)
+ bk sin

(
2πkx
L

)]
(5.1)

where the coefficients ak and bk have to be determined. If the sum over k is restricted to
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k ≤ n, the Fourier series gives an approximation fn(x) to the function f(x) called the n-th
order Fourier approximation of f(x).

Consider a document D containing L terms. To characterize the distribution of a partic-
ular term t within the document, the set of positions of all occurrences of t in D is denoted
as Pt, where all terms are enumerated starting with 1 for the first term in the document and
so on.

As exemplified in Figure 5.1, Pt = {3, 8} represents the fact that the two instances of
the term t in the documentD are located in the third and the eighth position of the document
body.

tt

x

1

L

D

f(x)

Figure 5.1: Distribution of the term t in document D, represented by a rectangular function.

The cardinality |Pt| of Pt is the total number of occurrences of t in the document. The
characteristic function

f (t)(x) :=
{

1 for x ∈ [p− 1, p] if p ∈ Pt
0 otherwise

(5.2)

is assigned to Pt for x ∈ [0, L]. The Fourier coefficients of f (t) are given by

a0 =
|Pt|√
L

(5.3)

and for k > 0

ak =

√
L

2
1
kπ

∑
p∈Pt

[
sin
(

2πk
p

L

)
− sin

(
2πk

p− 1
L

)]
(5.4)

bk = −
√
L

2
1
kπ

∑
p∈Pt

[
cos
(

2πk
p

L

)
− cos

(
2πk

p− 1
L

)]
(5.5)
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Figure 5.2 shows the Fourier representation of the step function f (t)(x) for the positions
Pt = {3, 8} of the term t in document D, calculated for different Fourier orders n =
2, 4, 6, 8.

-0.2
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f(x)

x

rect.function
n=2
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n=8

Figure 5.2: Fourier distribution of Pt = {3, 8} in document D, using different Fourier
orders n.

5.3 Comparing Term Distributions

The underlying concepts of the proposed approach are:

• The positions of content terms in a document influence its relevance evaluation in the
retrieval process.

• If two content term distributions are similar, then the corresponding terms are located
in a similar document region, implying some semantic relationship between them
[79, 7, 147].

• The algorithm to compare two term distributions has to be computationally simple
such that it can be performed under realistic conditions.

It is noticeable that finite order Fourier approximations provide a systematic way to
characterize and analyze the positions of terms. Applying a Fourier approximation of order
n reduces the data necessary to describe the term distribution to 2n+ 1 real numbers.

In addition, the finite approximation allows to exploit the broadening effect on the orig-
inal function (Figures 5.2, 5.3), defining a certain neighborhood around each term position.
This broadening effect provides an instrument for estimating the similarity between terms
within a document.
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b

Nb

Na

D a

Figure 5.3: The broadening of the approximated term distributions, defining the term neigh-
borhoods Na and Nb and the corresponding overlapping region.

5.3.1 Comparing the Term Distribution Functions

In this section, the notion of similarity of two term distributions is defined. For a term dis-
tribution f(x), the n-th order Fourier approximation fn(x) is considered and its Fourier co-
efficients are used to form the 2n+ 1 dimensional real vector ~fn = (a0, a1, b1, . . . , an, bn).

The similarity of two term distributions can be related to the overlap integral

〈fn, f ′n〉 =

L∫
0

fn(x)f ′n(x) dx (5.6)

The overlap integral measures in which regions of the integration range both functions are
large (see Figure 5.3). An important property of the Fourier expansion (5.1) is that the
overlap integral can be easily expressed by the spectral vectors ~fn and ~f ′n:

〈fn, f ′n〉 = a0a
′
0 +

n∑
k=1

(aka′k + bkb
′
k) = ~fn · ~f ′n (5.7)

i.e. the overlap integral is just the scalar product of the spectral vectors [143]. Since the
functions f and f ′ can represent terms from documents of different lengths, the overlap
integral (5.6) is not used directly to define the similarity of term distributions, but instead
the overlap of the normalized term distributions fn/

√
〈fn, fn〉 is used. It is simply the

cosine of the angle between the spectral vectors:

sim(fn, f ′n) = cos θ =
~fn · ~f ′n
|~fn||~f ′n|

(5.8)

Here, the length of the spectral vector is given by

|~fn| =
√
a2

0 +
∑n

1
(a2
k + b2k) =

√
〈fn, fn〉
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5.3.2 Relevance Ranking Optimization

The document ranking problem can be stated as an optimization problem that is based on the
query term distribution function fq,d and a user defined objective function fo representing
the optimal query term distribution in the document body:

Maximize {sim(fq,d, fo)} ∀fq,d ∈ A (5.9)

where A represents the set of query term distributions in an initial document ranking, fq,d
is the query term distribution function for query q in document d, and fo is a user defined
objective function, representing the optimal query term distributions for the documents in
the ranking.

For queries consisting of multiple terms, the distribution function is the sum of the
single query term distributions.

Applying expression (5.9), a new sorted set of documents with a maximum similarity
between each document distribution fq,d and the objective function fo is obtained. In other
words, we get a new ranking in which the searched terms are distributed similarly to the
optimal query term distribution described by fo.

Figure 5.4 illustrates several basic objective functions to identify documents where
query terms are distributed in particular document regions. The following nomenclature
is used to define an objective function:

Definition 13 The expression “fo : X|Y ” represents an objective function to evaluate the
relevance of documents with respect to the position of specific terms. Each document is
divided into Y equally sized sections of length L

Y . The terms situated in the Xth section
increase the document’s relevance in the ranking.

For example, the objective function fo : 1|1 can be used to search for documents in which
content terms (keywords) are distributed within the whole document body. It allows to
identify so-called topical documents [81], where multiple keyword instances (topical terms)
represent the intensity with which a concept is treated within the document.

More sophisticated objective functions, such as fo : 1|2 and fo : 1|3 + 3|3, can be used
if the user is interested in documents where the contents of the first, or the first and the last
section is more relevant. An example is the search for scientific papers where the abstract,
the introduction (first sections) and the conclusion (last section) typically contain the most
condensed document information. Another example might be a newspaper article, where
readers expect to find the most relevant information at the top of the document.

Comparing the term distribution of our sample documentD (Figure 5.1) to Figure 5.4, it
can be observed that D will be only considered as relevant if the applied objective function
resembles the pattern fo : 1|3 + 3|3.

Algorithmic Complexity and Index Representation

Each term distribution function (i.e. their Fourier coefficients) can be obtained using an
algorithm with a complexity of O(η), where η = termFrequency ∗ fourierOrder, and
it will typically be executed in indexing time.
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scientific papers newspaper articles

1|21|3 + 3|3

x x

topical document

1|1

xL L L

1 1 1

f(x) f(x) f(x)

Figure 5.4: Examples of objective functions

The most efficient index structure for text query evaluation is the inverted file: a collec-
tion of lists (one per term) recording the identifiers of the documents containing that term
[9]. An inverted file index consists of two main components: a vocabulary and a set of in-
verted lists. The inverted lists are represented as sequences of <d, νd,t> pairs, where νd,t is
the frequency of term t in document d. This is the standard document-level index in which
term positions within documents are not recorded. In the proposed approach, this index is
augmented with Fourier coefficients:

<d, a
(t)
0 , a

(t)
1 , b

(t)
1 , . . . , a(t)

n , b
(t)
n > (5.10)

where n is a predefined Fourier order and a(t)
k , b

(t)
k are the Fourier coefficients representing

the positions of term t in document d. Note that from (5.3), the component a(t)
0 corresponds

to the term frequency νd,t.
The Fourier coefficients are computed by the indexing process. It should be emphasized

that at query time these coefficients will be used to evaluate the similarity score between
terms, by applying a simple scalar product calculation. We call this method Fourier Vector
Scoring (FVS).

An Example

Let us consider three arbitrary documents from the TREC-8 document collection containing
the term “brasil”. The corresponding term distribution functions will now be compared with
different objective functions, simulating two particular ranking criteria.

In Table 5.1, the similarity for each document using the Fourier order n = 3 is shown.
The applied objective function directly influences the ranking configuration, obtaining the
documents FT944-15312 and FT931-11717 with the higher similarity (relevance) values for
fo : 1|2 and fo : 1|1, respectively.

Figure 5.5 indicates how documents whose term distribution approximates the applied
objective function obtain a higher similarity value. For example, document FT944-15312
with fo : 1|2 obtains a similarity value of 0.9314, while the same document evaluated with
fo : 1|1 has a similarity value of 0.6067, lowering its relevance in the ranking.
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Table 5.1: Similarity and ranking for the query “brasil” and three arbitrary TREC docu-
ments using the objective functions: fo : 1|2 and fo : 1|1.

document fo : 1|2 fo : 1|1
sim rank sim rank

FT944-15312 0.9314 1 0.6067 2
FBIS3-10730 0.5950 2 0.6053 3
FT931-11717 0.5277 3 0.6594 1

5.3.3 Query Expansion

Query expansion (or term expansion) is a process of supplementing the original query (q)
with additional terms, with the aim of improving retrieval performance [42, 13]. The use of
query expansion strategies such as automatic local analysis typically has positive effects on
the retrieval performance. Based on this observation, a new approach for query expansion
is proposed, considering the top-r documents D = {d1, d2, . . . , dr} of an initial ranking
process.

The function fq,d represents the distribution of the query term q for each document d
∈ D. The set of terms Tq whose elements t maximize the expression sim(fq,d, ft,d) is
computed. Using this expression, the terms for all documents in D that have a similar
distribution as the query, i.e. terms positioned near the query in the top ranked documents,
are obtained.

Taking a look at the term positions of a typical TREC-8 document (see Figure 5.6), it
can be observed how the similarity criterion reflects the location properties of distant and
neighboring terms (see Figure 5.7). To order n = 3, the term “brasil” and its neighbor term
“portuguese” have a high similarity value of 0.9490, while its similarity value with respect
to the more distant term “chile” decreases to 0.0533, which is about 20 times smaller. Thus,
the proposed method is quite sensitive with respect to the location properties of terms.

The expanded query is the set

T kq = {τ1, τ2, . . . , τk} (5.11)

consisting of the k best related query terms in D, obtained by ranking the terms according
to the expression

sim(fq,d, fτi,d), ∀ d ∈ D, τi 6= q (5.12)

The maximization process requires a simple comparison using the scalar product and
norm of the corresponding Fourier coefficients, i.e. the algorithm to calculate the expanded
query terms has a computational complexity of O(η), where η = |D|m+m logm, and m
is the number of terms in each document in D.

5.4 Experimental Results

The TREC-8 document collection has been used to measure the performance of the pro-
posed approach. The goal of this evaluation is to determine how well the algorithm is able
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Figure 5.5: The distribution of the term “brasil” in three TREC documents, applying the
objective functions: fo : 1|2 (left) and fo : 1|1 (right). The solid and dashed curves rep-
resent the approximations of order = 3 of the word distribution and the objective function,
respectively.

to identify documents based on a predetermined objective function, and to compare the
proposed query expansion approach with some of the state-of-the-art models.

The evaluation framework consists of the following components: (a) the Ad hoc Test
Collection containing 556,077 documents (2.09 Gigabytes) corresponding to the Tipster
disks (3 and 4), (b) the Topics and Relevance Judgments (qrels), (c) our approach consisting
of 4 Java modules for indexing, search, graphical evaluation and configuration tasks, and
(d) the results analysis where the effectiveness of our approach will be estimated.

All experiments were carried out using the third Fourier order.

5.4.1 Objective Function Runs

In this experiment, it will be analyzed how the query terms are distributed in the top-10
ranked documents for three different ranking schemes: (a) tfidf (baseline) and two objective
functions: (b) fo : 1|3 and (c) fo : 3|3.

To measure how the developed ranking algorithm follows the proposed objective func-
tions, the skewness [102] of the term position distributions is calculated and their asymme-
try is compared with the tfidf scheme. To obtain relevant statistical results, only topics that
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<DOC>
<DOCNO> FBIS3-10730 </DOCNO>
<HT> "drlat048_n_94005" </HT>
<HEADER>
<AU> FBIS-LAT-94-048 </AU>
Document Type:Daily Report
<DATE1> 11 Mar 1994 </DATE1>
</HEADER>
<F P=100> Chile </F>
<H3><TI> Brazil’s Franco Completes Schedule
Despite Flu </TI></H3>
<F P=102> PY1103004294 Brasilia Voz
do Brasil Network in Portuguese
2200 GMT 10 Mar 94 </F>
<F P=103> PY1103004294 </F>
<F P=104> Brasilia Voz do Brasil Network </F>
<TEXT>
Language: <F P=105> Portuguese </F>
Article Type:BFN
[Text] Although he has the flu and a fever of 38 degrees
centigrade, President Itamar Franco is carrying out all
commitments included on the agenda of his visit to Chile.
</TEXT>
</DOC>

Figure 5.6: A typical TREC-8 document.

return more than 10 document hits were considered.
The results are shown in Figure 5.8, in which the horizontal axis corresponds to the

terms given by the TREC topics 401 to 450.
The first graph of Figure 5.8 depicts the skewness of the query terms positions. In the

tfidf ranking, the term positions have a skewness of around zero, i.e. the terms are evenly
distributed. Applying both objective functions, it can be observed how in the optimized
ranking the query terms approximate the corresponding objective function: the ranking
based on fo : 1|3 shows a positive skewness, demonstrating that terms are mainly situated
in the header of the ranked documents. On the other hand, applying fo : 3|3 generates
a document ranking where query terms are predominantly distributed at the document’s
bottom (negative skewness).

The last two graphs of Figure 5.8 show the percentage of query terms fitting the pro-
posed objective functions. For example, the fo : 1|3 function applied to topic 420 produces
a document ranking where 68% of the query terms are situated inside the objective function
region, while the tfidf ranking returns only a fitting rate of 26%. Analyzing all experimental
results, it can be observed that by applying the proposed approach to TREC-8, about 67% of
the query terms (from the top ranked documents) are positioned inside the defined objective
function region.

Therefore, it is evident that the ranking process can be flexibly optimized without af-
fecting the index structure. This provides new possibilities to express the information need
of the user.
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Figure 5.7: Term neighborhood analysis for a typical TREC-8 document for Fourier order
n = 3.

5.4.2 Query Expansion Runs

Our query expansion experiments are based exclusively on the search results. No external
knowledge structure was used to leverage the re-ranking procedure.

In the group of runs described in the following, the proposed query expansion model
based on the query terms distribution (fq) is evaluated.

Using the top-n ranked documents, the query distribution function fq for each ranked
document is obtained, and the terms having a similar distribution as fq are calculated. Based
on equation (5.12), the first k candidate terms T kq = {τ1, τ2, . . . , τk} for query reformula-
tion are obtained and the new ranking using our test collection is evaluated.

The query reformulation and ranking procedure consists of the following steps:

1. Calculate the expanded query terms T kq based on the top-n documents from the tfidf
ranking.

2. Using T kq , calculate the expanded query

qe = {w0q, w1τ1, w2τ2, . . . , wkτk} (5.13)

where wi is a weighting factor corresponding to the similarity between the original
query q and the term τi.

3. Perform the tfidf -search with qe.

Using the top-10 ranked documents and the first 40 terms having the highest query
similarity, the proposed Fourier Vector Scoring (FVS) query expansion method for wi = 1
is compared with eight state-of-the-art query-expansion methods: Rocchio for β = 0.2, 0.4,
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Figure 5.8: The first graph represents the skewness of the query terms distributions for tfidf
and two different ranking schemes: fo : 1|3 and fo : 3|3. The last two graphs show the
percentage of query terms in the proposed objective function regions.

0.6, 0.8, 1.0 (Ro.2, Ro.4, Ro.6, Ro.8, Ro1) [128], Bose-Einstein 1 (Bo1), Bose-Einstein 2
(Bo2) [4] and Kullback-Leibler (KL) [35]. For the query expansion experiments, the Terrier
[106] platform was used.

Considering the measures of relevance precision and precision at 10 documents, it can
be observed from Figure 5.9 that FVS outperforms all other query expansion methods.

Table 5.2 shows the most relevant expanded terms, listed in descending relevance order,
for eight arbitrary topics from the test collection. The same term sets were also used in the
query expansion runs.

5.5 Summary

In this chapter, the Fourier model based on term distribution analysis using Fourier series
expansion has been proposed as a novel methodology to improve document relevance eval-
uation in information retrieval applications. The proposed approach is based on a Fourier
series representation of the term positions in a document collection, by calculating the cor-
responding expansion coefficients. By using query objective functions for predetermined
document regions, the approach provides new ways to define or refine queries. Further-
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Figure 5.9: Ranking improvements using query expansion. FVS represents the proposed
Fourier Vector Scoring.

more, a novel query expansion methodology has been presented to support the user in the
query refinement process.

An evaluation of our proposal using the TREC-8 collection has demonstrated that 67%
of the query terms are positioned inside the user defined objective function region. A further
analysis has shown that using the proposed approach to generate expanded query terms
leads to a performance gain over state-of-the-art query expansion models such as Rocchio
and Divergence from Randomness models.

Table 5.2: Examples of query expansion terms for some arbitrary TREC-8 Topics.
Topic Title Query Terms for Query Expansion
403 osteoporosis bone, women, calcium, health, risk, study, claim, research
406 Parkinson’s disease brain, research, cells, london, drug, symptoms, alzheimer, fetal
408 tropical storms july, disaster, area, caribbean, hurricane, texas, georgia, tem-

peratures
417 creativity people, mental, illness, scientists, part, human, children, de-

pression
421 industrial waste disposal management, facilities, hazardous, radioactive, solid, com-

pany, state, site
427 UV damage, eyes radiation, rays, sunglasses, protect, adhesive, patch, exposure,

children
429 Legionnaires’ disease nosocomial, hyph, infection, control, patients, prevention,

pneumonia
431 robotic technology robot, manufacturing, industrial, system, company, human, in-

dustry
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The Hilbert Model

6.1 Introduction

The Hilbert model synthesizes the main concepts of the term position paradigm, providing
a general mathematical basis for the previously proposed term position models.

The Hilbert model is based on the basic metrics of Hilbert spaces, i.e. an abstract vector
space possessing the structure of an inner product that allows length and angle to be mea-
sured and provides the tools to operate within n-dimensional vectors. Thus, transforming
term positional information into n-dimensional vectors permits us to efficiently operate on
term positional data, making it possible to optimize search results at query evaluation time.

Because the proposed Hilbert model is not limited to a specific function, two particular
cases corresponding to the Legendre and Laguerre polynomials will be analyzed, and some
properties of the Fourier model introduced in the last chapter will also be reviewed.

Experimental results obtained for the TREC-8 document collection demonstrate that the
Hilbert model is superior to state-of-the-art relevance feedback techniques such as Rocchio
and Divergence from Randomness models [128, 4], and provides an efficient instrument to
personalize search results based on objective query functions.

Part of the material presented in this chapter has been published in [59].

6.2 Analyzing Term Positions

In this section, a general mathematical model to analyze term positions in documents is
presented, making it possible to effectively use the term-positional information at query
evaluation time.

Consider a document D of length L and a term t that appears in D. The distribution
of the term t within the document is given by the set Pt that contains all positions of t,
where all terms are enumerated starting with 1 for the first term and so on. For example,

113



114 6 The Hilbert Model

a set Pt = {2, 6} represents a tern that is located at the second and sixth position of the
document body. A characteristic function

f (t)(x) =
{

1 for x ∈ [p− 1, p] if p ∈ Pt
0 otherwise

, (6.1)

defined for x ∈ [0, L], is assigned to Pt.
The proposed method consists of approximating this characteristic function by an ex-

pansion in terms of certain sets of functions. In order to do so, some concepts of functional
analysis are introduced. Details can be found in the book of Yosida [168].

6.2.1 Expansions in Hilbert Spaces

A Hilbert space H is a (possibly infinite-dimensional) vector space that is equipped with a
scalar product 〈., .〉, i. e. two elements f, g ∈ H are mapped to a real or complex number
〈f, g〉. We only consider real scalar products here.

An example of a Hilbert space is the space L2([0, L]) defined as the set of all functions
f that are square-integrable in the interval [0, L], i. e. functions for which

∫ L
0 (f(x))2 dx <

∞ . In this vector space, the addition of two functions f and g, and the multiplication of a
function f by a scalar α ∈ R are defined point-wise: (f+g)(x) = f(x)+g(x) , (αf)(x) =
αf(x) . The scalar product in L2([0, L]) is defined by

〈f, g〉 =

L∫
0

f(x)g(x) dx . (6.2)

Two vectors with vanishing scalar product are called orthogonal.
The scalar product induces a norm (an abstract measure of length)

‖f‖ =
√
〈f, f〉 ≥ 0 . (6.3)

With the help of this norm, the notion of convergence in H can be defined: A sequence
f0, f1, . . . of vectors of H is said to converge to a vector f , symbolically limn→∞ fn = f ,
if limn→∞ ‖fn − f‖ = 0. This allows to define an expansion of a vector f in terms of a set
of vectors {ϕ0, ϕ1, . . .}. One writes

f =
∞∑
k=0

γkϕk , (6.4)

where the γk are real numbers, if the sequence fn =
∑n

k=0 γkϕk of finite sums converges
to f . This kind of convergence is called norm convergence.

Of particular importance are so-called complete, orthonormal sets {ϕ0, ϕ1, . . .} of func-
tions in H. They have the following properties: (a) The ϕi are mutually orthogonal and
normalized to unity:

〈ϕn, ϕm〉 = δnm =
{

1 for n = m
0 for n 6= m

(6.5)
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(b) The ϕi are complete, which means that every vector of the Hilbert space can be expanded
into a convergent sum of them.

Important properties of expansions in terms of complete orthonormal sets are: (a) The
expansion coefficients γk are given by

γk = 〈ϕk, f〉 . (6.6)

(b) They fulfill
n∑
k=0

γ2
k ≤ ‖f‖2 for all n, and

∞∑
k=0

γ2
k = ‖f‖2 (6.7)

(Bessel’s inequality and Parseval’s equation).
Given two expansions f =

∑∞
k=0 γkϕk, g =

∑∞
k=0 γ

′
kϕk, the scalar product can be

expressed as

〈f, g〉 =
∞∑
k=0

γkγ
′
k . (6.8)

If the expansion coefficients are combined into coefficient vectors ~c = (γ0, γ1, . . .), ~c′ =
(γ′0, γ

′
1, . . .), the preceding equation takes the form 〈f, g〉 = ~c · ~c′.

The Fourier expansions considered by Galeas et al. [58] are an example of such an
expansion. The functions

ϕFo
0 (x) =

1√
L
, ϕFo

2k−1(x) =

√
2
L

sin
(

2πk
L

)
, ϕFo

2k(x) =

√
2
L

cos
(

2πk
L

)
(6.9)

(k > 0) form a complete orthonormal set in L2([0, L]), leading to an expansion

f(x) =
a0√
L

+

√
2
L

∞∑
k=1

[
ak cos

(
2πkx
L

)
+ bk sin

(
2πkx
L

)]
, (6.10)

where a0 = γ0 and ak = γ2k, bk = γ2k−1 for k > 0.
Another complete set of orthonormal functions of L2([0, L]) is given by

ϕLe
k (x) =

√
2k + 1
L

P ∗k (x/L) , k ≥ 0 , (6.11)

where the P ∗k (x) are so-called shifted Legendre polynomials [1]. These polynomials are of
order k. The first few of them are P ∗0 (x) = 1, P ∗1 (x) = 2x − 1, P ∗2 (x) = 6x2 − 6x + 1,
P ∗3 (x) = 20x3 − 30x2 + 12x− 1. Fig. 6.1 (left) shows ϕLe

k (x) for 0 ≤ k ≤ 4 in the range
x ∈ [0, L] for L = 1.

Another example that will be used later is a complete set for the space L2(R+) (the
space of square-integrable functions for 0 ≤ x <∞):

ϕLa
k (x) =

e−x/(2λ)

√
λ

Lk(x/λ) , k ≥ 0 . (6.12)

Here, λ is a positive scale parameter and the Lk(x) are Laguerre polynomials [1], the first
few of which are L0(x) = 1, L1(x) = −x + 1, L2(x) = x2/2 − 2x + 1, L3(x) =
−x3/6 + 3x2/2− 3x+ 1, see Fig. 6.1 (right).
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Figure 6.1: Left: Shifted Legendre polynomials ϕLe
k (x) for 0 ≤ k ≤ 4. Right: The expan-

sion functions (6.12) for 0 ≤ k ≤ 4 and λ = 1

6.2.2 Truncated Expansions of Term Distributions

As explained above, the finite sums fn =
∑n

k=0 γkϕk converge to the function f in the
sense of norm convergence. As a consequence of Bessel’s inequality (6.7) they approximate
f increasingly better for increasing n. An essential ingredient for the following discussion
is to consider a truncated expansion, i. e. the mapping

Pn : f (t) 7→ f (t)
n , (6.13)

which associates to a term distribution f (t) of the form (6.1) its finite-order approximation
f

(t)
n in terms of some complete orthonormal set for some order n.

Figure 6.2 shows an example for the Fourier expansion. One can observe the character-
istic broadening effect generated by the reduction of the expansion order (truncation).

The L2 scalar product of two truncated term distributions fn and gn,

〈fn, gn〉 =
∫
fn(x)gn(x) dx (6.14)

has the meaning of an overlap integral: The integrand is only large in regions in which both
functions fn(x) and gn(x) are large, so that 〈fn, gn〉 measures how well both functions
overlap in the whole integration range.

Given fn and gn, two truncated term distributions describing the term positions and
their neighborhood in a certain document, we introduce the concept of semantic interaction
range: Two terms that are close to each other present a stronger interaction because their
truncated distributions have a considerable overlap. This semantic interaction range moti-
vates the following definition of the similarity of two term distributions f and g: For some
fixed order n, one sets

sim(f, g) = 〈fn, gn〉 = 〈Pnf, Png〉 . (6.15)

In this definition, the truncation Pn : f 7→ fn is essential, because the original term dis-
tributions f and g are always orthogonal if they describe two different terms. This is so
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Figure 6.2: Fourier distribution of Pt = {3, 8} in document D, using different Fourier
orders n.

because different terms are always at different positions within a document, so that their
overlap always vanishes.

Definition (6.15) is only one possibility. In fact, any definition based on the scalar
product 〈fn, gn〉 can be utilized. For example, in Galeas et al. [58] a cosine definition
cosϑ = 〈fn,gn〉

‖fn‖‖gn‖ has been used. Another choice is the norm difference

‖fn − gn‖ =
(∫

(fn(x)− gn(x))2 dx
)1/2

=
√
‖fn‖2 + ‖gn‖2 − 2〈fn, gn〉 . (6.16)

Using different measures based on 〈fn, gn〉, no significant differences in the final retrieval
results in several experiments were found.

The scalar product of the truncated distributions can be easily calculated using the coef-
ficient vectors: If the original distributions f and g have the infinite-dimensional coefficient
vectors ~c = (γ0, γ1, . . .) and ~c′ = (γ′0, γ

′
1, . . .), respectively, then the truncated distribu-

tions fn and gn have the (n+ 1)-dimensional coefficient vectors ~cn = (γ0, γ1, . . . , γn) and
~c′n = (γ′0, γ

′
1, . . . , γn), resp., and their scalar product is the finite sum

〈fn, gn〉 = ~cn · ~c′n =
n∑
k=0

γkγ
′
k . (6.17)

6.2.3 The Semantic Interaction Range

In this section, a precise definition of the semantic interaction range is given.
In abstract terms, the truncation Pn : f 7→ fn is a filtering or a projection: In the

expansion f(x) =
∑∞

k=0 γkϕk(x) the components ϕk for k > n are filtered out, which
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amounts to a projection of f onto the components ϕ0, . . . , ϕn. Thus, Pn is a projection op-
erator in the Hilbert space. To derive a closed expression for the operator Pn, one combines
(Pnf)(x) = fn(x) =

∑n
k=0 γkϕk(x), with (6.6) to obtain

(Pnf)(x) =
n∑
k=0

(∫
ϕk(y)f(y) dy

)
ϕk(x) =

∫ ( n∑
k=0

ϕk(y)ϕk(x)

)
f(y) dy . (6.18)

One can write the last expression as
∫
pn(y, x)f(y) dy with the projection kernel

pn(y, x) =
n∑
k=0

ϕk(y)ϕk(x) (6.19)

as an integral representation of Pn in the sense of a convolution. It has the advantage that
one can study the properties of the truncation independently of the function f .

The width of pn(y, x) as a function of x is a lower bound for the width of a truncated ex-
pansion of a term located at y. Therefore, this width will be used as the semantic interaction
range for a term at position y.

For the Fourier expansion, p2k is given by

pFo
2k(y, x) =

cos(4πk(y − x)/L)− cos(2π(2k + 1)(y − x)/L)
L(1− cos(2π(y − x)/L))

. (6.20)

(We consider only even orders n = 2k, because for these orders the expansion consists of
an equal number of sine and cosine terms, see (6.9).) The maximum of pFo

2k(y, x) is at x = y
and the two zeros closest to the maximum are at x = y ± L/(2n + 1). Thus, the semantic
interaction range for a Fourier expansion of order n may be defined to be

%Fo
n =

2L
2n+ 1

. (6.21)

Fig. 6.3 (left) shows pFo
6 (20, x) and pFo

6 (100, x) for L = 200.
For the expansions in terms of Legendre and Laguerre polynomials, the projection ker-

nels can be calculated with the Christoffel-Darboux equation [1]. The results are

pin(y, x) = αin
ϕin+1(y)ϕin(x)− ϕin(y)ϕin+1(x)

y − x
, (6.22)

i = Le, La, with αLe
n = (L/2)(n+ 1)/(2n+ 1) and αLa

n = −λ(n+ 1). These kernels are
no longer functions of y−x, meaning that the broadening of a term distribution depends on
the position y of the term distribution within the document.

Fig. 6.3 (right) shows the projection kernel pLa
6 (y, x) for y = 20 and y = 100. One

can see that the spatial resolution of the truncated expansion decreases for terms that are far
away from the beginning of the document.
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Figure 6.3: Left: Projection kernel for the Fourier expansion showing the semantic inter-
action range for two terms at the positions 20 and 100, for n = 6 and L = 200. Right:
Projection kernel for the expansion in terms of Laguerre polynomials showing the semantic
interaction range for two terms at the positions 20 and 100, for n = 6 and λ = 15.

6.3 Applications

The goal of our approach is to shift the complexity of processing the positional data from
the query evaluation phase to the (not time critical) indexing phase, reducing the ranking
optimization via term positions to a simple mathematical operation.

Hence, we propose to calculate the expansion coefficients γk of the term distributions
in the indexing phase and to store this abstract term positional information in the index.
This permits a considerably faster query evaluation, compared with methods that use the
raw term-positional information.

Thus, the index contains an (n + 1)-dimensional coefficient vector ~cn = (γ0, γ1, . . . ,
γn) for each term and each document in the collection. The γk are calculated analytically
via (6.6). To give an example of the complexity involved,

γk =
∑
p∈Pt

k∑
j=0

αj

[( p
L

)j+1
−
(
p− 1
L

)j+1
]

(6.23)

with αj =
√

(2k + 1)Laj/(j + 1) is the expression for the expansion coefficients in the
case of the expansion in terms of Legendre polynomials, cf. (6.1). (The aj are the polyno-
mial coefficients of the shifted Legendre polynomial of order k.) Calculations of this kind
can be easily performed in the indexing stage.

The investigated retrieval scenarios are: (a) ranking optimization based on user-defined
objective functions and (b) query expansion based on term-positional information [58], and
(c) cluster analysis of terms in documents. They all involve a calculation of the similarity
of term distributions.

6.3.1 Ranking Optimization

The first scenario states document ranking as an optimization problem that is based on the
query term distribution function fq,d and a user-defined objective function fo representing
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the optimal query term distribution in the document body:

Maximize {sim(fq,d, fo)} ∀fq,d ∈ A (6.24)

where A represents the query term distributions in a document set, fq,d is the query term
distribution function for query q in document d, and fo is a user-defined objective func-
tion, representing the optimal query term distributions for the documents in the document
ranking.

6.3.2 Query Expansion

The second scenario considers the top-r documents D = {d1, d2, . . . , dr} of an initial
ranking process and the functions fq,d with d ∈ D. The set of terms Tq whose elements t
maximize the expression sim(fq,d, ft,d) is computed. It contains the terms for all documents
in D that have a similar distribution as the query, i.e. terms positioned near the query in the
top ranked documents. This set Tq is used to expand q.

6.3.3 Cluster Analysis of Terms in Documents

Given a document, one may ask whether there are groups (clusters) of terms whose el-
ements all have similar distributions. One may then infer that all terms inside a cluster
describe related concepts [7]. In this section, some properties of the proposed method will
be explained that may be useful for the analysis of term clusters.

Consider a document of length L. Since at every position within the document a partic-
ular term may either be present or not, there are in totalN = 2L possible term distributions.
Each of these distributions is mapped to a point in an (n + 1)-dimensional Hilbert space.
If the norm difference (6.16) is used as the similarity criterion, then clusters of similar term
distributions are just Euclidean point clusters in the Hilbert space.

We will now investigate the geometrical structure of the set of all possible term distribu-
tions. Let us first calculate the center f̄(x) = (1/N)

∑N
ν=1 f

(ν)(x) of all term distributions
(here f (ν)(x), ν = 1, . . . , N , is an enumeration of distributions of the form (6.1)). At any
position x, half of all N distributions have a term present (f (ν)(x) = 1) and the other half
does not (f (ν)(x) = 0), so that f̄(x) = 1/2 = const for all x ∈ [0, L]. This average
distribution is mapped to a non-truncated, in general infinite-dimensional coefficient vec-
tor ~̄c, whose length |~̄c| is given by the norm ‖f̄‖ = [

∫ L
0 dx/4]1/2 =

√
L/2. The squared

distance between the center point and the coefficient vector ~c(ν) of a distribution f (ν) is
|~̄c − ~c(ν)|2 = ‖f̄ − f (ν)‖2 =

∫ L
0 (1/2 − f (ν)(x))2dx. Since f (ν)(x) is either 0 or 1, it

follows that (1/2− f (ν)(x))2 = 1/4 = const for all x ∈ [0, L], giving |~c(ν) − ~̄c| =
√
L/2

for all ν. This means that the non-truncated coefficient vectors of all term distributions lie
on the surface of a sphere with radius

√
L/2 whose center is at ~̄c. Because |~̄c| =

√
L/2, this

sphere touches the origin of the Hilbert space.
Bessel’s inequality (6.7) leads to |~c(ν)

n − ~̄cn| ≤
√
L/2 for all ν for the coefficient vectors

truncated to order n. Thus, the truncated vectors all lie within a sphere of radius

R0 =
√
L/2 (6.25)
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Figure 6.4: Three dimensional sphere of all 512 possible term distributions in a document
of length L = 9 for the expansion in terms of Legendre polynomials.

in the (n + 1)-dimensional Hilbert space. The center of this sphere is at ~̄cn. If—as in
the Fourier and Legendre cases—one of the expansion functions, say ϕ0(x), is constant,
the vector ~̄c describing itself a constant function has only a non-vanishing zero component:
~̄c = ~̄cn = (

√
L/2, 0, 0, . . .). Fig. 6.4 shows this term sphere in n+ 1 = 3 dimensions for a

document of length L = 9 and the expansion in terms of Legendre polynomials.
The fact that all possible truncated coefficient vectors ~c(ν)

n lie within a sphere whose
radius and center are known is very useful for clustering analysis. First of all, it shows
where in the Hilbert space to look for clusters. Secondly, assume one has found a cluster
K = {~k1, . . . ,~kq} of term distributions by some clustering algorithm (for an nth order trun-
cation). The volume of this cluster can be estimated by calculating the standard deviation
RK = [(1/q)

∑q
i=1(~ki − ~̄k)2]1/2 = [(1/(2q2))

∑q
i,j=1(~ki − ~kj)2]1/2 (here ~̄k is the center

of the cluster) and approximating the cluster by a sphere of radius RK . Since the volume
of a sphere of radius RK in n+ 1 dimensions is proportional to Rn+1

K , the cluster occupies
approximately a part ξ = (RK/R0)n+1 = (2RK/

√
L)n+1 of the theoretically available

space. A cluster would then be considered as significant only if ξ � 1. An analysis of this
kind may be useful to generate an ontology of terms based on individual documents.

It has been conjectured that the use of quantum mechanical methods, in particular
infinite-dimensional Hilbert spaces and projection operators, may be advantageous in IR
[154]. The approach presented here goes into this direction, because constructing appro-
priate sets of orthogonal functions is a standard technique in quantum mechanics. Still, we
emphasize that this approach is essentially classical, not quantum mechanical, since it does
not use any of the interpretational subtleties of quantum mechanics.
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Figure 6.5: Lucene Payload structure

6.4 A Suitable Index Implementation

One of the main properties of our models is the abstract way to represent term positions
information (using coefficients). This new data format will influence the structure of the
database where term positions information is generally stored: the index. Consequently, the
use of a suitable index structure is an important point to be considered in the design of an
IR system that implements our approach.

As we began with the experimentation phase based on the Lucene platform, an extension
of the index structure was not considered in the software model. But in the recent past,
developers of Lucene proposed Payloads, a new data structure that permits this type of
index manipulation. The Payloads model is an extension that adds the possibility to store
arbitrary metadata together with each position of a term in its posting lists. In the actual
development release of Lucene (2.9), Payloads are implemented as an arbitrary byte array
stored at a specific position (i.e. a specific token/term) in the index (Figure 6.5). Payloads
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can be used to store weights for specific terms or things like part of speech tags or other
semantic information [75].

The Payload structure offers a base for the implementation of our index model, but some
important modifications have to be done. In an ideal index structure, we do not need to store
the original term positional information, but only the corresponding coefficients containing
an abstract representation of these term positions.

As illustrated in Figure 6.5, the term “questioning” in the original index structure con-
tains the the value “7” corresponding to its position in the document D0 plus the payload
data, while in the proposed structure the original positional data was eliminated and the
Payload field contains the coefficients representing the position of “questioning” in the doc-
ument D0.

Due to the very small number of sample documents in Figure 6.5, the necessary space to
store the Payload information is bigger than the original position space. This effect vanishes
in real documents containing hundreds or thousands of words.

Event though the implementation of an adapted Payload version for our data model
requires some programming effort, we consider Payloads as the best alternative compared
to the index models of actual open source IR platforms.

6.5 Implications Regarding the Document Length

One important aspect to be analyzed is how the length of document influences the similarity
measures in the term position models. As shown in the expression 6.26, the vector model
uses normalized vectors to calculate the similarity values between documents and the user
query.

sim(dj , q) =
~dj · ~q
|~dj | × |~q|

(6.26)

Because the similarity measures with the Term Position models considers terms
“within” the same document, a normalization process is not necessary. Nevertheless, there
is an important effect by comparing term distributions “between” documents of different
lengths. Using the Expansion Analyzer (Section 2.11.1) we examined a fixed term position
configuration for two different document lengths: (a) a short document with L = 24, and
(b) a long document with L = 500. Then, we compared the measures of similarity between
the defined term distributions based on the scalar product and the cosine measures.

In Figure 6.6 (top), we observe the distribution of three different single terms at the
positions {8, 12, 18} represented by the functions: Reference (R), Distribution 1 (D1), and
Distribution 2 (D2) respectively. If we compare these three functions in the main analysis
window, we can observe a clear difference in the overlapping regions: Overlap(R,D1) >
Overlap(R,D2), particularly for low expansion orders. This difference can be confirmed
in the scalar product and cosine measures from the Figure 6.6 (bottom): by low expansion
orders (order ≤ 6) the similarity values based on both measures reflex a high similarity
between R and D1, and a low similarity between R and D2.

Using the same term position configuration and increasing the length of the document
to L = 500, we obtain the results depicted in Figure 6.7 (top).
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Figure 6.6: Top: The Expansion Analyzer illustrating three single terms at the positions
{8, 12, 18} in a document of length L = 24 with the Fourier model. A clear differ-
ence between the overlapping regions is shown: Overlap(Reference,Distribution1) >
Overlap(Reference,Distribution2). Bottom: In the scalar product and cosine graphics,
one can observe (by low expansion orders) a high similarity between R and D1, and a low
similarity between R and D2.

Here one can observe that all functions (R,D1, andD2) present almost the same pattern
and the overlapping regions are very similar: Overlap(R,D1) ∼ Overlap(R,D2). This
effect can be confirmed in the scalar product and cosine (Figure 6.7 (bottom)) where for low
expansion orders, a high similarity between the distributions (D1, D2) and the reference (R)
functions is illustrated.

Using the Semantic Interaction Range (SIR) concept (Section 6.2) to analyse the doc-
ument length effect, one can confirm that variations in the document length affect the SIR
measures, depending on the applied term positions model. For instance, in Figure 6.8, the
SIR for the Fourier model (6th order) at the positions {50, 100} is illustrated. Here, the
SIR values for the positions 50 and 100 do not vary within the document boundaries, but
they grow proportionally to the variation in the document length. On the other hand, if we
use the Laguerre model with the same term positions configuration (Figure 6.9), one can



6.5 Implications Regarding the Document Length 125

Figure 6.7: Top: The Expansion Analyzer illustrating three single terms at the positions
{8, 12, 18} in a document of length L = 500 with the Fourier model, having all dis-
tributions a similar term distribution pattern: Overlap(Reference,Distribution1) ∼
Overlap(Reference,Distribution2). Bottom: In the scalar product and cosine curves
we observe, for low expansion orders, a high similarity between all term distribution repre-
sentations.

observe that the SIR values lightly vary for term positions within the document, but they are
not affected by variations of the document length.

Analyzing the document length effect in the proposed IR applications (Query Expansion
and Ranking Optimization) we confirmed the following statements:

In Query Expansion : Due to the fact that the Semantic Interaction Range in a long doc-
ument contains more terms than in a short document, long documents will contribute
with more terms to the query expansion process than short documents. The level of
influence depends directly on the applied term distribution model. In consequence, by
the selection of the term distribution model one should consider the properties of the
documents in the collection. For homogeneous collections where the document size
does not vary considerably, the Fourier model will be probably the best alternative.
The Laguerre model, due to its independence of the document length, will be the best
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Figure 6.9: The Semantic Interaction Range %La for the Laguerre polynomial of order 6 is
independent of the document length but lightly varies within the document boundaries.

choice in collections where the document length strongly varies.

In Ranking Optimization : The user defined objective function fo (Expression 6.24) is
always scaled to each processed document in the ranking, therefore the document
length does not influence the proposed ranking optimization method.

6.6 Experimental Results

6.6.1 Software

During the development of the Hilbert model, we discovered the software Terrier [106] (see
Section 2.11.3), a new platform for research and experimentation in text retrieval.

Unlike the Lucene platform, Terrier incorporates the modules necessary for experiments
on the TREC collections, simplifying the evaluation and comparison of the different models.

To perform the experiments with the Hilbert model, the functionality of Terrier was
extended, implementing new Matching and QueryExpansion classes for the Fourier and the
polynomial models. In the same way, the necessary components to specify the properties of
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the term distribution models were also integrated in the Terrier modules.

6.6.2 Experiment 1: Varying the Query Expansion Parameters

First, a set of experiments to analyze the performance of all models by varying two basic
variables of the query expansion methodology were performed: (a) the number of top-
ranked documents to be considered in the pseudo relevance set (expansion.documents), and
(b) the number of the highest weighted terms from the pseudo relevance set to be added to
the original query (expansion.terms).

Recent studies in search engine user behavior [119, 25] demonstrate that 68% of search
engine users click a search result within the first page of results, and a full 92% of search
engine users click a result within the first three pages of search results. Based on this
information, the proposed query expansion models were evaluated, assuming that the users
are principally interested in the first page of the results. This corresponds approximately to
the first 10 documents of the ranking, which is also equivalent to the well known measure
in IR precision at 10 documents (P.10).

The goal of this experiment is two fold; first, we analyze how these two variables affect
the retrieval performance of the models, and second, because the comparison of the models
requires fixed values of expansion.documents and expansion.terms, we use the experimental
data to estimate a common initial configuration where all models present a suitable retrieval
performance, avoiding an unfair comparison.

Figure 6.10 shows the retrieval performance for different values of expansion.documents
and expansion.terms applied to two groups of models: (a) the term position models on the
left column, and (b) the state-of-the-art query expansion models on the right column.

Term Position Models State-of-the-art Models

• Fourier

• Legendre

• Laguerre

• Rocchio 0.8

• Kullback-Leibler (KL)

• Bose-Einstein 1 (Bo1)

The x-axis corresponds to the number of expansion documents, the y-axis is the number
of expansion terms, and the z-axis represent the Precision at 10 documents (P.10).

Figure 6.10 shows that all models increase their performance between 5 an 10 expansion
documents. All state-of-the-art models present an optimal performance between 10 and 15
documents and they also drastically decrease their performance from the 15st document.
The Fourier model, on the other hand, increases its performance directly proportional to
the number of documents in the analyzed range (5 to 20 documents). The Legendre model
initially presents a performance similar to the Fourier model, but decreases slightly its ef-
ficiency from the 15st document. Finally, the Laguerre model improves its performance
uniformly with the number of expanded documents and terms.
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Query Expansion Boundaries

Analyzing the numerical results of the experiments, we can argue that the performance re-
duction in the state-of-the-art models (described above) is highly influenced by the method-
ology used to process the documents in the first iteration of the query expansion.

All tested models use the tfidf weighting scheme to generate the initial ranking, but
how these ranked documents are later processed distinguishes the proposed models from
the traditional query expansion models.

Qi+1 = αQi + β
∑

relevant

Di

|Di|
− γ

∑
non−relevant

Di

|Di|
(6.27)

In the Rocchio formula (equation 6.27), the number of relevant documents obtained from
the first iteration plays a fundamental role in the selection of the expanded terms, because
the term frequency is here the main criterion to select the expansion terms. If one selected
document from this iteration is irrelevant or contains terms that are not related for the orig-
inal query, unwished noise (bad terms) will be added to the expanded query harming the
performance of the model. This behavior affects all state-of-the-art models and it can be
observed in the precision values calculated for different query expansion configurations in
Table 6.1: In the last two rows, the performance of the Rocchio, KL and Bose-Einstein
(Bo1) models drops drastically.

Table 6.1: Performance drops by the state-of-the-art query expansion models from the 15th

document.
Precision at 10 documents (P10)

QE Config. Models
Terms Docs Rocchio KL Bo1 Fourier Legendre Laguerre

40 5 0.4340 0.4500 0.4480 0.4420 0.4580 0.4500
40 10 0.4580 0.4560 0.4540 0.4700 0.4620 0.4540
40 15 0.4640 0.4540 0.4580 0.4720 0.4740 0.4680
40 20 0.4340O 0.4320O 0.4360O 0.4720 0.4580 0.4680

On the other hand, the term position models select the expansion terms using the query
neighborhood, avoiding to include possible noisy terms from other regions of the document.
This effect permits to increase the number of documents considered in the expansion process
which are the source of relevant expansion terms, and minimizes the existence of irrelevant
terms in the expanded query.

In the term position models, the Fourier and Laguerre models present the best perfor-
mance, due to the high number of documents used in the expansion process that contribute
to new relevant terms. We assume that this effect is a result of the symmetry of the expan-
sion, specially in the case of the Fourier model that permits to obtain well defined regions
around the query terms on the analyzed documents and thus more reliable neighbor terms.

With regard to the number of expansion terms, we observed that in all state-of-the-
art models the increment of expansion terms (between 20 and 50 terms) scarcely affects
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their performance, while all term position models are more sensitive to a variation of this
parameter.

6.6.3 Experiment 2: Using Fixed Query Expansion Parameters

Based on the results of Experiment 1, we conclude that a good trade-off for the performance
of all models is between 10 and 15 expansion documents and between 30 and 40 expansion
terms. In the query expansion experiments, all models will be evaluated for the proposed
document and term ranges, which correspond to the combinations presented in Table 6.2:

Table 6.2: Query expansion experiments for different expansion.documents and expan-
sion.terms configurations. The experimental results are displayed in the graph referenced in
the column “Figure”.

Run expansion.documents expansion.terms Figure
QE.1 10 30 6.11
QE.2 10 40 6.12
QE.3 15 30 6.13
QE.4 15 40 6.14
QE.5 20 50 6.15

From Figures 6.11, 6.12, 6.13, 6.14, and 6.15 we can observe that the term position
models outperform the state-of-the-art models in all tested query expansion configurations,
where the Fourier model has the best general performance.

To measure the benefits of the term position models, a last query expansion run was
performed using a configuration of 20 documents and 50 terms. As shown in Figure 6.15,
the clearly superior performance of the term position models becomes evident.

6.6.4 Experiment 3: Comparing the Query Expansion Terms

To obtain a clear picture about the query expansion process, the expansion terms generated
by the state-of-the-art models and the term position models are analyzed below.

As shown in the example of Table 6.3, 77% of the expansion terms generated by the
Rocchio, Kullback-Leibler and Bose-Einstein-1 models are identical. Only a slight differ-
ence in the associated weighting coefficients can be observed. These weighting coefficients
define the grade of importance of each term in the expanded query.

A similar situation can be observed in Table 6.4; about 92% of the expansion terms
produced by the term position models are identical.

For this reason, it was decided to organize the results in two groups: The group “A”
containing the expansion terms calculated with the state-of-the-art-models, and the group
“B” containing the expansion terms generated with the term distribution models.

Table 6.5 shows the expansion terms for six arbitrary TREC-8 Topics, calculated with
the algorithms of the group “A” (Rocchio, Kullback-Leibler, and Bose-Einstein-1) and with
the algorithms of the group “B” (Fourier, Laguerre, and Legendre). The terms in bold
represent the differences in the calculated sets.
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Table 6.3: Query expansion terms for Topic 429, calculated with the state-of-the-art models,
where 77% of the generated expansion terms are identical.

Topic 429 : legionnaires disease
Rocchio Kullback-Leibler Bose-Einstein 1

term weight term weight term weight
legionella 0,63 legionella 0,64 legionella 0,65
nosocomi 0,54 nosocomi 0,53 nosocomi 0,53
pneumonia 0,34 legionellosi 0,37 legionellosi 0,41
legionellosi 0,33 hospit 0,26 pneumophila 0,28
pneumophila 0,31 pneumophila 0,25 pneumonia 0,24
infec 0,20 water 0,24 spp 0,23
patient 0,20 pneumonia 0,22 hospit 0,20
prevent 0,19 spp 0,21 water 0,16
hyph 0,18 hyph 0,21 outbreak 0,16
spp 0,17 case 0,16 patient 0,15
infect 0,15 patient 0,16 infec 0,15
hospital 0,15 outbreak 0,15 epidemiolog 0,15
risk 0,15 preven 0,14 preven 0,14

Table 6.4: Query expansion terms for the Topic 429, calculated with the term distribution
models, where 92% of the generated expansion terms are identical.

Topic 429 : legionnaires disease
Fourier Legendre Laguerre

term weight term weight term weight
infec 0,27 pneumonia 0,28 pneumonia 0,34
nosocomi 0,27 nosocomi 0,26 system 0,32
pneumonia 0,26 system 0,26 infec 0,32
hospit 0,26 report 0,26 control 0,31
control 0,25 hospit 0,25 hospit 0,30
report 0,25 water 0,24 legionella 0,29
system 0,25 infec 0,24 health 0,29
preven 0,24 control 0,24 water 0,28
health 0,24 health 0,23 report 0,28
legionella 0,23 legionella 0,23 nosocomi 0,27
legionellosi 0,20 preven 0,21 preven 0,25
epidemiolog 0,19 legionellosi 0,20 legionellosi 0,22
water 0,19 laboratori 0,17 patient 0,21
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In Table 6.5, it is shown that the state-of-the-art models produce quite different expan-
sion terms than the term position models. For example, 83% of the generated terms for
Topic 417 “creativity” are different in both groups.

Considering the results of the TREC-8 experiments shown in Figures 6.11, 6.12, 6.13,
6.14, 6.15 and the information contained in Table 6.5, the term position models seem to
produce better expansion terms than the state-of-the-art models (at least subjectively).

6.6.5 Experiment 4: Objective Function with Term Position Models

In the fourth group of experiments, the effectiveness of a ranking based on the user defined
objective function fo for all term position models is measured.

For this purpose, the search results for two fictitious users having quite different infor-
mation needs are analyzed. The first user (UserA) is searching for scientific papers having
the query terms close to the Abstract and the Introduction sections, that is approximately, in
the first third of the document. The second user (UserB), is interested in papers having the
query terms in the Conclusion section, almost at the bottom (last third) of the document.

Using the document collection of TREC-8 and the corresponding 50 query sets (topics),
the query term positions in the top-20 documents based on the objective functions fo = 1|3
and fo = 3|3 were analyzed, representing the information needs of UserA (fo = 1|3 means
first third of the documents) and UserB (fo = 3|3 means last third of the documents),
respectively. Both objective functions were evaluated using polynomials of 6th order for
the Fourier, Legendre and Laguerre models.

Figures 6.16, 6.17, and 6.18 show the distribution of query terms after ranking opti-
mization using the interquartile range (IQR), a robust measure of statistical dispersion that
defines the difference between the 75th and 25th percentiles of a variable [101, 102]. The
bounds around the � symbol (square) define the positions of the query terms for fo = 1|3,
while the bounds around the© symbol (circle) define the positions of the query terms for
fo = 3|3.

The results demonstrate the high accuracy obtained by the Fourier and Legendre models.
For example, in Figure 6.16, 50% of the topics produce a ranking where 100% of the query
terms are located in the range defined by the objective function (fo = 3|3). Many of the
remaining topics have an equivalent query term distribution within the second half of the
documents. As illustrated in the Legendre graph (Figure 6.17), the ranking shows a similar
performance. Finally, due to the logarithmic component of the Laguerre polynomial, some
difficulties to recognize search terms located at the bottom of the documents (fo = 3|3)
become obvious (Fig. 6.18).

6.7 Summary

In this chapter, relevance evaluation using truncated Hilbert space expansions has been pre-
sented. The proposed approach is based on an abstract representation of term positions
in a document collection which induces a measure of proximity between terms (semantic
interaction range) and permits their direct and simple comparison. Based on this abstract
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Table 6.5: Query expansion stems for TREC-8 Topics. The column “A” contains a set of
expansion stems calculated using the state-of-the-art query expansion algorithms (Rocchio,
Kullback-Leibler, Bose-Einstein-1) and the column “B” contains a set of the expansion
stems computed with the term distribution algorithms (Fourier, Laguerre, Legendre). The
terms in bold indicate the differences in the calculated sets.

417: creativity 427: uv damage, eyes 421: industrial waste disposal
A B A B A B

compute artist exposur agenc dump compani
csikszentmihalyi column irradi cancer gorleben countri
depres design lamp effect hazard environ
dress first nm exposur inciner facil
experi human protec human landfil financi
gaultier imagin radiat increas municip futur
idea individu rai light nirex govern
ideafish number resist measur nuclear hazard
ill peopl skin product plausibl kingdom
manic person spectrum protec practic london
mental process spf radiat quantiti manag
mihali product sunglass recent radioact method
peopl start sunscreen research sea nuclear
practic studi ultraviolet state sellafield power
research think uva studi site sellafield
scientist univers uvgi system solid water
studi world wavelength wavelength state
think writer wastewat

431: robotic technology 408: tropical storms 429: legionnaires disease
A B A B A B

autom assembl atlant associ case control
abb autom augusta atlant epidemiolog epidemiolog
assembl compani carolina brief hospit health
autom control coast center hyph hospit
control develop depres coast infec infec
demark europ flood column legionella laboratori
develop factori floodwat downgrad legionellosi legionella
engelberg includ gulf forecast nosocomi legionellosi
handl industri hattera hurrican outbreak nosocomi
hannov intern hurrican intern patient patient
industri manufactur lili least pneumonia pneumonia
machin research louisiana mexico preven preven
odet scienc miami miami risk report
satellit system nation nation spp system
sensor rain peopl water water
space remnant press
system saturdai report
weld shigehara servic

weather south
wind staff
wire weaken
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representation, it is possible to shift the complexity of processing term-positional data to
the indexing phase, permitting the use of term-positional information at query time with-
out significantly affecting the response time of the system. Three applications for IR were
discussed: (a) ranking optimization based on a user-defined term distribution function, (b)
query expansion based on term-positional information, and (c) a cluster analysis approach
for terms within documents.
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Figure 6.10: Precision at 10 documents for term positional models and three other models,
using different query expansions configurations. The axes labeled documents and terms
correspond to |D| and |Tq|, respectively. The term position models (left column) differ
from the state-of-the-art models (right column) because the former tend to increase the
retrieval performance by incrementing the number of expansion documents and expansion
terms, while the state-of-the-art models present an important drop in the performance from
the 15th expansion document.
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Figure 6.11: Comparing the query expansion performance for the term distribution models
(Fourier, Legendre and Laguerre) and the state-of-the-art models, using three configurations
of 10 expanded documents and 30 expanded terms.
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Figure 6.12: Comparing the query expansion performance for the term distribution models
(Fourier, Legendre and Laguerre) and the state-of-the-art models, using three configurations
of 10 expanded documents and 40 expanded terms.
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Figure 6.13: Comparing the query expansion performance for the term distribution models
(Fourier, Legendre and Laguerre) and the state-of-the-art models, using three configurations
of 15 expanded documents and 30 expanded terms.
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Figure 6.14: Comparing the query expansion performance for the term distribution models
(Fourier, Legendre and Laguerre) and the state-of-the-art models, using three configurations
of 15 expanded documents and 40 expanded terms.
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Figure 6.15: Comparing the query expansion performance for the term distribution models
(Fourier, Legendre and Laguerre) and the state-of-the-art models, using three configurations
of 20 expanded documents and 50 expanded terms. In this diagram the clear performance
superiority of the term position models over the traditional models can be observed.
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Figure 6.16: Distribution of the query terms for the top-20 TREC-8 documents ranked with
the Fourier model and two different objective functions: fo = 1|3 and fo = 3|3.
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Figure 6.17: Distribution of the query terms for the top-20 TREC-8 documents ranked with
the Legendre model and two different objective functions: fo = 1|3 and fo = 3|3.
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Figure 6.18: Distribution of the query terms for the top-20 TREC-8 documents ranked with
the Laguerre model and two different objective functions: fo = 1|3 and fo = 3|3.



7
Conclusions

7.1 Summary

The main contribution of the thesis is the application of statistical, signal processing and
functional analysis techniques in the field of information retrieval in order to capture po-
sitional information of terms in documents for improving the relevance of search results.
It has been shown that the use of term positional information is an effective means to im-
prove keyword based retrieval models, since it considers the terms in the context where
they appear (neighborhood). Furthermore, the positions of other terms help to determine
the relevance of a given term.

Different approaches to generate an abstract representation of term positional informa-
tion have been investigated, starting from simple statistical models to refined polynomial
representations that permit to construct a viable infrastructure to be applied in the IR pro-
cess. Furthermore, the performed experiments provide the guidelines for implementing
such models in real IR systems.

7.1.1 Term Position Models

The Gauss model has been the first attempt to incorporate term positional information in
the IR process using simple statistical measures of center and spread. Using this model,
it could be demonstrated that algorithms considering query term positions outperform al-
gorithms based only on term frequency. In particular, documents containing query terms
in neighborhood regions are more relevant than documents containing distant query terms.
Using this criterion, two optimization methodologies based on the semantic distance con-
cept have been proposed: ranking optimization without relevance feedback, and a query
expansion methodology.

With the aim of improving the initial statistical representation of term positions, a novel

139
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model based on Fourier series has been proposed. The Fourier model provides a more pre-
cise representation of the term positions and allows us to control the resolution of the term
representations (Fourier order). Experimental results have demonstrated that by using low
Fourier orders (e.g. 6) accurate term position representations can be generated, providing a
basis for reliably estimating the relevance of documents.

In the newly proposed Hilbert model, a mathematical basis for the term position
paradigm has been defined. It considers the use of orthogonal polynomials to describe the
term position functions, and the Fourier model is a special case of this model. The Legendre
and Laguerre polynomials have been proposed as further representational functions.

One can misleadingly think that the use of mathematical instruments such as Fourier
series or orthogonal polynomials could decrease the speed of the retrieval system. On the
contrary, all necessary calculations to generate the abstract term position representations are
executed and stored in the indexing phase, which does not interfere with the time-critical
phases of the IR process. The simplicity of the computed positional data permits an efficient
execution of the corresponding term position operations at query evaluation time, without
increasing the response time of the system.

Several experiments conducted on the TREC-8 collection have demonstrated the supe-
riority of the models using term positional information over term frequency approaches.

7.1.2 Query Expansion

It has been demonstrated experimentally that the performance of query expansion strategies
is highly influenced by the number of documents and terms considered in the expansion
process. The use of term positional information constitutes a key element for selecting
expanded terms, because it allows to increase the amount of analyzed data (documents),
improving the quality of the expanded terms.

Query expansion methods based only on term frequency are susceptible to incorpo-
rate noisy or irrelevant terms in the expanded query, particularly if many documents are
considered in the expansion process. This behavior affects all state-of-the-art models, as
confirmed in Figure 6.10, and the precision values calculated for different query expansion
configurations (Table 6.1).

In contrast, the term position models select the expansion terms using the neighbor-
hood of the query, avoiding to include possible noisy terms from other irrelevant document
regions. This property allows us to increase the number of documents considered in the ex-
pansion process that are the source of relevant expansion terms, and minimizes the addition
of irrelevant terms in the expanded query.

7.1.3 User Objective Functions

The proposed objective function concept represents a novel methodology in IR. Experi-
ments on the TREC collection have confirmed that relevance ranking can be improved by
defining particular document regions (Section 6.6, Run 3), but it is very likely that an even
better performance can be obtained by processing collections of documents having homo-
geneous structures such as forms, papers, questionnaires, etc.
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Due to the symmetry properties of the Fourier and Legendre models, they show the best
performance in recognizing the document regions defined as relevant by the user. On the
other hand, the logarithmic component of the Laguerre model mislead the representation of
terms at the bottom of documents, harming its overall performance.

7.1.4 Document Length

As shown in Section 6.5, variations in the document length can influence the measures of
neighborhood in the term position models. That is, the neighborhood of a term is directly
proportional to the document length. This effect is harmless by term operations within the
document boundaries, but it could be problematic if we want to compare term distributions
among different documents.

A clear example is the proposed query expansion algorithm, where long documents con-
tribute with more expansion terms than short documents. In this case, the selection of the
term position model is fundamental for adequate query expansion performance: for homo-
geneous collections where the document size does not vary considerably, the Fourier model
will probably be the best choice, while the Laguerre model, due to its independence of the
document length, will be a better alternative in heterogeneous collections. In other words,
the selection of a suitable term position model regarding the properties of the document
collection minimizes the negative effect induced by variations in the document length.

7.2 Future Work

There are several issues for future work, as outlined below:

7.2.1 Document Structure

It would be interesting to study the possibility of generating optimized objective functions
by training the proposed approach with particular document categories such as medical, ju-
ridical, scientific papers, etc. Such document categories generally have well defined struc-
tures that are interesting for specialized searchers. For instance, scientific papers always
contain three main elements in their structure: the abstract (at the top of the document), the
body, and the conclusions (at the end of the document). By using objective functions, the
retrieval model can be easily optimized to promote such essential regions and help the user
to refine results or specify individual information needs.

7.2.2 Index Size

A further topic to be investigated is how an abstract representation of term positions will
influence the size of the index. Depending on the number of coefficients defined in the
model, the space required to save positional data is smaller than the positional data itself,
except for terms of very low frequency. An experimental analysis of such variables is an
interesting area to be investigated.
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7.2.3 Other Applications

Since this work is based on functional representations, one can easily extend it to cover areas
other than text. For example, sound and images could be represented in an index with their
coefficients (sound as one-dimensional and images as two-dimensional signals). Retrieving
them would be as easy as presenting portions of the sound or image that we want.

7.2.4 Clustering

Document clusters that are based on term frequency could be an interesting area for using
positional information. As mentioned in Section 6.3.3, the model provides a graphical
representation of the term position space that could be used as the basis for a graphical
analysis of document collections.

7.2.5 Software Platform

Regarding the index structure and the term positions representation, the use of the Lucene
platform currently offers the best alternative to implement the proposed models – on the one
hand, due to the newly proposed Payloads approach (Section 6.4), and on the other hand
because its increasing popularity, permanent improvements, and active support. However,
the implementation of the proposed models based on term positional information in other
information retrieval platforms should also be considered in future work.
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