33 research outputs found

    From the selfish gene to selfish metabolism: revisiting the central dogma

    Get PDF
    The standard representation of the Central Dogma (CD) of Molecular Biology conspicuously ignores metabolism. However, both the metabolites and the biochemical fluxes behind any biological phenomenon are encrypted in the DNA sequence. Metabolism constrains and even changes the information flow when the DNA-encoded instructions conflict with the homeostasis of the biochemical network. Inspection of adaptive virulence programs and emergence of xenobiotic-biodegradation pathways in environmental bacteria suggest that their main evolutionary drive is the expansion of their metabolic networks towards new chemical landscapes rather than perpetuation and spreading of their DNA sequences. Faulty enzymatic reactions on suboptimal substrates produce reactive oxygen species (ROS), which fosters DNA diversification and eventually couples catabolism of the new chemicals to growth. All this calls for a revision of the CD in which metabolism (rather than DNA) has the leading role.The work in Author’s laboratory is supported by generous grants of the Spanish Ministry of Science and Innovation (CONSOLIDER), by contracts of the Framework Program of the EU (MICROME, ST-FLOW), the European Research Council (ARISYS) and by Funds of the Autonomous Community of Madrid (PROMT Program).Peer reviewe

    From the phosphoenolpyruvate phosphotransferase system (PTS) to selfish metabolism: a story retraced in Pseudomonas putida

    Get PDF
    Although DNA is the ultimate repository of biological information, deployment of its instructions is constrained by the metabolic and physiological status of the cell. To this end, bacteria have evolved intricate devices that connect exogenous signals (e.g. nutrients, physicochemical conditions) with endogenous conditions (metabolic fluxes, biochemical networks) that coordinately influence expression or performance of a large number of cellular functions. The phosphoenolpyruvate:carbohydrate-phosphotransferase system (PTS) is a bacterial multi-protein phosphorylation chain which computes extracellular (e.g. sugars) and intracellular (e.g. phosphoenolpyruvate, nitrogen) signals and translates them into post-translational regulation of target activities through protein-protein interactions. The PTS of Pseudomonas putida KT2440 encompasses one complete sugar (fructose)-related system and the 3 enzymes that form the so-called nitrogen-related PTS (PTSNtr), which lacks connection to transport of substrates. These two PTS branches cross-talk to each other, as the product of the fruB gene (a polyprotein EI-HPr-EIIA) can phosphorylate PtsN (EIIANtr) in vivo. This gives rise to a complex actuator device where diverse physiological inputs are ultimately translated into phosphorylation or not of PtsN (EIIANtr) which, in turn, checks the activity of key metabolic and regulatory proteins. Such a control of bacterial physiology highlights the prominence of biochemical homeostasis over genetic ruling –and not vice versa.This study was supported by the BIO Program of the Spanish Ministry of Science and Innovation, the ST-FLOW and ARYSIS Contracts of the EU, the ERANET-IB Program and the PROMT Project of the CAMPeer reviewe

    Single cell fluorescence imaging of glycan uptake by intestinal bacteria

    Get PDF
    Microbes in the intestines of mammals degrade dietary glycans for energy and growth. The pathways required for polysaccharide utilization are functionally diverse; moreover, they are unequally dispersed between bacterial genomes. Hence, assigning metabolic phenotypes to genotypes remains a challenge in microbiome research. Here we demonstrate that glycan uptake in gut bacteria can be visualized with fluorescent glycan conjugates (FGCs) using epifluorescence microscopy. Yeast α-mannan and rhamnogalacturonan-II, two structurally distinct glycans from the cell walls of yeast and plants, respectively, were fluorescently labeled and fed to Bacteroides thetaiotaomicron VPI-5482. Wild-type cells rapidly consumed the FGCs and became fluorescent; whereas, strains that had deleted pathways for glycan degradation and transport were non-fluorescent. Uptake of FGCs, therefore, is direct evidence of genetic function and provides a direct method to assess specific glycan metabolism in intestinal bacteria at the single cell level.</p

    Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation of resource supply is one of the key factors that drive the evolution of life-history strategies, and hence the interactions between individuals. In the yeast <it>Saccharomyces cerevisiae</it>, two life-history strategies related to different resource utilization have been previously described in strains from different industrial origins. In this work, we analyzed metabolic traits and life-history strategies in a broader collection of yeast strains sampled in various ecological niches (forest, human body, fruits, laboratory and industrial environments).</p> <p>Results</p> <p>By analysing the genetic and plastic variation of six life-history and three metabolic traits, we showed that <it>S. cerevisiae </it>populations harbour different strategies depending on their ecological niches. On one hand, the forest and laboratory strains, referred to as extreme "ants", reproduce quickly, reach a large carrying capacity and a small cell size in fermentation, but have a low reproduction rate in respiration. On the other hand, the industrial strains, referred to as extreme "grasshoppers", reproduce slowly, reach a small carrying capacity but have a big cell size in fermentation and a high reproduction rate in respiration. "Grasshoppers" have usually higher glucose consumption rate than "ants", while they produce lower quantities of ethanol, suggesting that they store cell resources rather than secreting secondary products to cross-feed or poison competitors. The clinical and fruit strains are intermediate between these two groups.</p> <p>Conclusions</p> <p>Altogether, these results are consistent with a niche-driven evolution of <it>S. cerevisiae</it>, with phenotypic convergence of populations living in similar habitat. They also revealed that competition between strains having contrasted life-history strategies ("ants" and "grasshoppers") seems to occur at low frequency or be unstable since opposite life-history strategies appeared to be maintained in distinct ecological niches.</p

    Pathways to cellular supremacy in biocomputing

    Get PDF
    Synthetic biology uses living cells as the substrate for performing human-defined computations. Many current implementations of cellular computing are based on the “genetic circuit” metaphor, an approximation of the operation of silicon-based computers. Although this conceptual mapping has been relatively successful, we argue that it fundamentally limits the types of computation that may be engineered inside the cell, and fails to exploit the rich and diverse functionality available in natural living systems. We propose the notion of “cellular supremacy” to focus attention on domains in which biocomputing might offer superior performance over traditional computers. We consider potential pathways toward cellular supremacy, and suggest application areas in which it may be found.A.G.-M. was supported by the SynBio3D project of the UK Engineering and Physical Sciences Research Council (EP/R019002/1) and the European CSA on biological standardization BIOROBOOST (EU grant number 820699). T.E.G. was supported by a Royal Society University Research Fellowship (grant UF160357) and BrisSynBio, a BBSRC/ EPSRC Synthetic Biology Research Centre (grant BB/L01386X/1). P.Z. was supported by the EPSRC Portabolomics project (grant EP/N031962/1). P.C. was supported by SynBioChem, a BBSRC/EPSRC Centre for Synthetic Biology of Fine and Specialty Chemicals (grant BB/M017702/1) and the ShikiFactory100 project of the European Union’s Horizon 2020 research and innovation programme under grant agreement 814408

    Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen

    Get PDF
    The Bartonella gene transfer agent (BaGTA) is an archetypical example for domestication of a phage-derived element to permit high-frequency genetic exchange in bacterial populations. Here we used multiplexed transposon sequencing (TnSeq) and single-cell reporters to globally define the core components and transfer dynamics of BaGTA. Our systems-level analysis has identified inner- and outer-circle components of the BaGTA system, including 55 regulatory components, as well as an additional 74 and 107 components mediating donor transfer and recipient uptake functions. We show that the stringent response signal guanosine-tetraphosphate (ppGpp) restricts BaGTA induction to a subset of fast-growing cells, whereas BaGTA particle uptake depends on a functional Tol-Pal trans-envelope complex that mediates outer-membrane invagination upon cell division. Our findings suggest that Bartonella evolved an efficient strategy to promote genetic exchange within the fittest subpopulation while disfavoring exchange of deleterious genetic information, thereby facilitating genome integrity and rapid host adaptation

    The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor

    Get PDF
    The growth of the soil bacterium Pseudomonas putida KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. We examined the bacterial growth in glycerol cultures while monitoring the metabolic activity of individual cells. Fluorescence microscopy and flow cytometry, as well as the analysis of the temporal start of growth in single-cell cultures, revealed that adoption of a glycerol-metabolizing regime was not the result of a gradual change in the whole population but rather reflected a time-dependent bimodal switch between metabolically inactive (i.e., nongrowing) and fully active (i.e., growing) bacteria. A transcriptional Φ(glpD-gfp) fusion (a proxy of the glycerol-3-phosphate [G3P] dehydrogenase activity) linked the macroscopic phenotype to the expression of the glp genes. Either deleting glpR (encoding the G3P-responsive transcriptional repressor that controls the expression of the glpFKRD gene cluster) or altering G3P formation (by overexpressing glpK, encoding glycerol kinase) abolished the bimodal glpD expression. These manipulations eliminated the stochastic growth start by shortening the otherwise long lag phase. Provision of glpR in trans restored the phenotypes lost in the ΔglpR mutant. The prolonged nongrowth regime of P. putida on glycerol could thus be traced to the regulatory device controlling the transcription of the glp genes. Since the physiological agonist of GlpR is G3P, the arrangement of metabolic and regulatory components at this checkpoint merges a positive feedback loop with a nonlinear transcriptional response, a layout fostering the observed time-dependent shift between two alternative physiological states
    corecore