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PERSPECTIVE

Pathways to cellular supremacy in biocomputing
Lewis Grozinger1, Martyn Amos 2, Thomas E. Gorochowski 3,4,

Pablo Carbonell 5, Diego A. Oyarzún 6,7, Ruud Stoof 1,

Harold Fellermann 1, Paolo Zuliani1, Huseyin Tas 8 &

Angel Goñi-Moreno 1*

Synthetic biology uses living cells as the substrate for performing human-defined computa-

tions. Many current implementations of cellular computing are based on the “genetic circuit”

metaphor, an approximation of the operation of silicon-based computers. Although this

conceptual mapping has been relatively successful, we argue that it fundamentally limits the

types of computation that may be engineered inside the cell, and fails to exploit the rich and

diverse functionality available in natural living systems. We propose the notion of “cellular

supremacy” to focus attention on domains in which biocomputing might offer superior

performance over traditional computers. We consider potential pathways toward cellular

supremacy, and suggest application areas in which it may be found.

Synthetic biology1,2 is a rapidly growing field of research which applies engineering concepts
and principles to the rational engineering of living systems, such as bacteria and yeast.
The promise of synthetic biology lies in its potential to provide new substrates for com-

putation3, production4, pollution control5 and medical diagnosis6 (among many areas), and to
harness the “wetware”7 inside the living cell for human-defined purposes. Synthetic biology is set
to become a significant component of the multi-billion dollar bio-economy8, but, in addition to
tangible benefits such as cheaper drug production or more precise bio-sensing, many researchers
in the field believe that the very process of re-engineering life will both require and inform a
reexamination of our fundamental understanding of cellular processes9. This position underpins
the current paper.

Much existing work in synthetic biology is concerned with the construction of “circuits” of
biological components (such as genes and proteins) that receive some input (either endogenous,
or exogenous), perform some transformation of that input, and produce a result determined by
the “rules” encoded in the circuit. This input-transform-output pipeline is entirely consistent
with the notion of a computation, as traditionally defined, and it is wholly unsurprising that
synthetic biology has, so far, largely adhered to the genetic “logic circuit” model (groundbreaking
examples include the genetic toggle switch10 and the “repressilator”11).

The roots of this biological circuit metaphor date back to the mechanistic view of the cell; the
idea that living systems may be viewed as machines, which, in turn, can be traced as far back as
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Descartes (and beyond). Characterisations of the cell as a
“factory”, a “little engine”, and a “chemical machine” dominated
early discourse in cell biology, and the post-war development of
cybernetics and computer science, combined with the emergence
of molecular biology, provided significant support for this con-
ceptual interpretation of living systems12.

The “machine model” of the cell was further cemented by the
pioneering work of Jacob and Monod, which established that the
lac operon13 facilitates metabolic switching within E. coli in a
manner that may be interpreted as a simple Boolean circuit. In his
highly influential popular book, Chance and Necessity (a chapter
of which is titled “Microscopic Cybernetics”), Monod made
explicit the connection between biological processes and the basis
of electronic circuits:

“The logic of biological regulatory systems abides not by
Hegelian laws but, like the workings of computers, by the propo-
sitional algebra of George Boole.”14

Since the discovery of the lac operon, the machine model has
largely dominated molecular biology15, and the notion of the
genome serving as a “genetic program” is still relatively com-
mon16. Of course, abstracting biological processes to the level
of circuits (Boolean or otherwise) or even programs may be a
necessary step in terms of making sense of their operation.
Conversely, in the context of engineered biological systems, the
availability of a set of well-characterised, modular and tunable
components are perhaps necessary for creating controllable and
predictable systems17. We emphasise here that we do not seek to
overturn or abandon an extremely powerful and useful metaphor.
However, it may give a misleading impression regarding the
reliability and predictability of genetic circuits, compared to their
electronic counterparts18. Moreover, as we argue in this paper, by
restricting ourselves to the computational palette offered by
(Boolean) combinatorial logic, we inherently (and seriously) limit
the power and scope of synthetic biology.

It is perhaps instructive at this point to discuss the field of
molecular computing19, which many see as a conceptual precursor
to synthetic biology, if not a direct predecessor. Although the notion
of computing with individual atoms and molecules was attributed
to Richard Feynman as early as the 1950s20, the field was only
reified in 1994, when Leonard Adleman published his ground-
breaking paper on computing solutions to the Hamiltonian Circuit
Problem using molecular operations with strands of DNA21. At the
time, a commonly-held belief was that the future promise of DNA
computation22 lay in solving instances of hard computational
problems that were beyond the capabilities of traditional silicon-
based computers23. Much early work on producing general
DNA-based computational models focussed on molecular emula-
tion of the Boolean circuit model24,25. Discussion of the field’s
overall direction was, for a time, dominated by the quest for the
“killer application”, the application of DNA computing that would
establish its superiority over existing computational substrates26,27.
In some ways, this may be viewed as a restricted form of the search
for so-called “quantum supremacy” in the quantum computing
domain28.

As the field of molecular computing evolved, it rapidly became
clear that the killer application would not be found by solving
large instances of computationally hard problems using any
variant of Adleman’s original model. The elegance of the original
solution derived from the encoding used to construct all possible
paths through a given graph; vertices and edges were represented
as strands of DNA that self-assembled into a collection of paths,
which was then rapidly filtered in parallel using molecular
manipulations to gradually extract valid solutions. Crucially, this
reasonable run-time required the entire solution space for a given
problem instance to be represented in an initial “test tube” at the
start of the computation; the problem was to find the “needle”

(valid solution(s)) in a molecular “haystack”. Essentially, the
entire space of solutions was tested in polynomial time using
molecular operations, but this came at the cost of having to
represent the whole solution set in a single volume of liquid22. For
even small problem instances, the amount of DNA required to
represent all possible solutions would be astronomical; Hartmanis
calculated that if Adleman’s experiment were scaled up from 7 to
200 vertices, the amount of DNA required would weigh more
than the Earth29. We note, however, that this inherent time-space
tradeoff would appear to hold regardless of whether the under-
lying substrate is DNA, silicon, or a more exotic material (with
the possible exception of substrates for quantum computers30).

Importantly, this assessment emphasised the fact that the killer
application would probably not be derived from single-use, finite
DNA-based systems (albeit ones that were large and potentially
massively-parallel in nature). Subsequent influential work on
DNA self-assembly31 and strand displacement architectures32

emulated traditional computational models such as cellular
automata33 and artificial neurons34, but also took advantage of
biochemical processes that provided power beyond mere minia-
turisation. That is, rather than simply harnessing the potential for
massively-parallel laboratory operations on large (but finite)
numbers of molecules, these systems co-opted specific physical
and chemical properties of the underlying substrate to generate
the potential for autonomous operation and dynamic behaviour.
In the context of synthetic biology, we suggest the killer appli-
cation for engineered living systems will be similarly derived; one
that will use features of the living system that are unavailable
via traditional silicon-based substrates, for the purposes of
applications that exploit autonomy and the ability to perform in
uncertain environments.

The search for cellular supremacy
If we accept that a driving motivation for synthetic biology
should be the search for a killer application, then this naturally
leads to a consideration of the class of problems in which engi-
neered living systems might offer what we call cellular supremacy
(deliberately echoing the well-established notion of quantum
supremacy28,35–37). That is, we seek a set of problem domains in
which cell-based systems will offer capabilities beyond the reach
of existing computers, due to cost or technological constraints.
Simply put, cellular supremacy will be determined by the set of
problems that biocomputers can practically solve that traditional
microprocessor-based devices cannot. To identify this set of
problems, we naturally focus on the “added value” that living
systems offer beyond silicon-based hardware. In the following
sections, we discuss a number of features of living systems that we
believe give synthetic biology-based solutions a distinct “edge”
over traditional computers. Importantly, we focus on aspects of
computation and information transformation, rather than simply
on the ability of the cell to act as a micro-scale drug precursor
“production plant” or miniaturised bio-sensor. While these
applications are important and valuable, they are not the main
focus of the current discussion, which centres on the general
computational capabilities of living systems if we go beyond the
limitations of Boolean logic-based systems. In what follows, we
use the term “cellular computing”38,39 to emphasise this focus on
computation.

When assessing cellular computing against traditional com-
puting, it may be useful to frame the comparison using a scheme
that emerged from an exercise on roadmapping the so-called
“unconventional computation” domain. The authors identified a
number of criteria or benchmarks against which emerging com-
putational models may be measured, each accompanied by its
own motivating question40. In what follows, we focus on the
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quality criterion, which asks the following question: Does the
alternative model offer qualitatively different computation to
traditional models? The authors define “quality” in terms of
precision, richness, stochasticity and repeatability. Quality is
concerned with the ability of the system to provide an analysis of
inputs that is different to that offered by a traditional computer. If
we focus on problems that fall within the remit of traditional
silicon-based machines, and use existing metrics, then cellular
computing will inevitably fall short on some of the other criteria
identified40, such as speed and cost. However, we would argue
that the real power of cell-based systems derives from the richness
of their internal (and collective) architectures, and on their
inherent stochasticity.

This leads us to a consideration of the specific computationally
expressive mechanisms that are available to us, and which act
both inside and between living cells. In what follows we focus on
five (non-exclusive) features of living cells that (we believe) offer
the most potential in terms of the search for cellular supremacy;
these are reconfigurability (that is, the ability to change internal
state/structure in response to signals), noise (the ability to not
only tolerate but to harness and exploit biological “messiness”),
concurrency (the multitude and richness of inter-cellular
processes that facilitate massively-parallel communication
and coordination), representation (the ability to use non-binary
representations for signals), and evolution (the population-level
ability to seek out novel solutions to problems over time). By
harnessing these capabilities, we will obtain bio-computing sys-
tems that are self-organising, self-repairing, resilient, distributed,
and adaptive41.

First, we consider aspects of computational theory that suggest
how cellular computers may out-perform traditional machines.
We then describe a number of features of biological systems that
lend themselves to non-standard computation. Taken together,
these two perspectives point towards a number of possible areas
for investigation in which the killer application for cellular
computing may reside.

Information processing beyond digital logic
The current definition of digital computation is based on the
abstract model defined by Turing in the 1930s42, and the
von Neumann architecture43 used to implement the types of

computations performed by the Turing Machine. Although
Turing’s model provides a framework for answering fundamental
questions about computation, “…as soon as one leaves the
comfort provided by the abundance of mathematical machinery
used to describe digital computation, the world seems to be
packed with paradoxes.”44.

The important thing to note here is that although genetic
circuits may appear to behave digitally, it is only the collective
behaviour of a large number of inherently analogue components
that give rise to this property. The fact remains that we still
currently lack any formal framework within which to argue that a
cell computes, according to any understood model of computa-
tion (although recent work has started to address this45).

The nature of computation is not of purely theoretical interest.
Mathematical models of computation and their properties inform
the engineering of their physical manifestations (Fig. 1). Many
such implementations may be possible, but all inherit the char-
acteristics of their abstract counterparts—both their abilities and
their limitations. The fact that the nature of computation within a
given model is independent of its implementation allows the
application of theoretical computer science to all kinds of physical
systems, including cells. However, the cost of this generality is a
semantic gap between the model and the physical processes that
actually perform the computation. That is, mapping computa-
tions from an abstract model to a real system may be more or less
difficult, depending on the model chosen. The cellular computing
substrate is quite different from that of silicon computers, offering
opportunities for implementing some models with a narrower
semantic gap. Practical considerations such as these could guide
future applications of cellular computing.

Conventional silicon computers are fundamentally imple-
mentations of a deterministic, centralised and digital model of
computation, and they excel at computational tasks which are
easily described by such models. In contrast, cellular computing
has been optimised over billions of years of evolution to perform
very different computational tasks, and we are unlikely to find
cellular supremacy in applications such as discrete mathematics,
sending emails or reading documents. However, computer sci-
ence has developed models in which the nature of computation is
quite different to that of the Turing Machine46–53 and compu-
tation in cells appears to share some properties with these less

Model of computation

Inputs Algorithm Outputs
Theory of
computation

Computing
implementation

Cellular
implementation

Electronic
implementation

0111001011

Fig. 1 The cell as a “physical” computer. A model of computation formally defines inputs and outputs, as well as how an algorithm processes inputs into
outputs. Though the same theoretical model of computation can be physically implemented in many different ways, the nature of computation remains the
same. Electronic implementations receive electronic data for inputs/outputs, while cells are able to sense/deliver a wide range of physical, chemical and
biological inputs/outputs. The encoding of information into inputs can be done in different ways. Temperature, for instance, can be encoded as the height
of mercury in a tube, the voltage of an electronic thermometer or the state of a DNA thermosensor
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conventional models. With this in mind, the application of
theoretical computer science to cellular computation may still
present routes to cellular supremacy in those areas where the
properties of cellular and traditional computation differ.

Here, we introduce a selection of theoretical aspects of com-
puting that impact significantly upon the nature of computation,
all of which seem to be exploited in the cell for processing
information, but whose theoretical implications may not be
familiar to those outside the field of computer science.

Computational states for computations over time
Not all models of computation are equally powerful, that is, they
are not equivalent in terms of the range of computations they
can possibly describe. By this metric, combinatorial logic circuits
are extremely weak, since the output of a circuit is purely a
function of its current inputs (that is, there is no “memory”),
and this severely restricts the range of computations that are
possible with a single circuit. Clearly, there are models of
computation more powerful than combinatorial logic, that is,
models which can describe all computations that are possible
with combinatorial logic circuits and more. In this regard, two
extremely powerful models of computation, the Lambda calcu-
lus54 and the Turing Machine42 are particularly important.
These two models are both equally powerful, but quite different
in their formulation—the Lambda calculus is a model of func-
tional computation, while the Turing Machine models stateful
computation. Here we focus on stateful computation, as states
enable functions that operate over time, such as memory,
learning and adaptation.

The output of stateful computations depends not only on the
current input, but also on the current state, which encodes
information about previous inputs that are no longer present.
Models of computation such as finite state machines (FSMs)
(shown in Fig. 2) exceed the capabilities of combinatorial logic,
and are extremely powerful models of computation—the central
processing units of modern digital computers are built from
sequential logic circuits, which are implementations of FSMs.
Even so, they cannot describe all computations that are available
to the Turing Machine model, since they have only a bounded
number of states. Turing machines are similar to FSMs, but have
an unbounded memory (commonly conceptualized as a tape),
which endows them with an unbounded computational state
space (number of distinct configurations). Consequently, Turing
Machines can compute anything that any real computer can, and
in fact, computer science starts from the notion that Turing
Machines (TMs) demarcate what is (and is not) computable42.
From a practical perspective, these considerations of the limits of
computability might be of less conceptual value than the strategy
that TMs employ to decouple the complexity of the machine from
the number of states on which they can operate.

Modern digital computers, as with any real physical system55,
lack the unbounded state space required for implementing a
Turing Machine. However, their state space is so vast as to make
them practically indistinguishable from implementations of
Turing Machines (consider that even systems with an extremely
modest 1 MB of storage have at least 210

6´8 states). It is therefore
unlikely that cellular computing will outperform silicon purely on
the basis of enabling more complex stateful computations.
Nevertheless, synthetic biology has already engineered successful
in vivo implementations of stateful computations10,56,57, and
there also exists significant theoretical work linking stateful
models of computation to biological implementations58,59. This
work is undoubtedly of considerable importance for a broad
range of synthetic biology applications, and since biological sys-
tems naturally engage in stateful computation60–62, statefulness

or “memory” will likely be a key component in future engineered
biocomputations of any significant complexity.

Noise permits stochastic and non-deterministic computations
Combinatorial logic circuits, FSMs and TMs model deterministic
computations, which are essentially step-wise descriptions
of mathematical functions that map inputs to outputs, where
each step follows in a predetermined way from the previous
step. Deterministic computation can be generalised to include
stochastic and non-deterministic computation. Stochastic
(or probabilistic, or randomised) computing refers to algorithms
which can make random choices during their execution. Speci-
fically, a given input may generate a number of different com-
putational paths, each with some probability, and the cumulative
probability of all such paths is equal to one. Probabilistic algo-
rithms are a cornerstone of computer science63, and are used to
solve approximately, but efficiently, hard optimisation problems
for which deterministic algorithms would be intractable. One of
the most important algorithms in systems biology, the Gillespie
algorithm, is stochastic. Gillespie showed from basic quantum
mechanics that a set of biochemical reactions must be understood
as a stochastic process64, and offered an efficient way for simu-
lating (sampling) its dynamics65. Therefore, cells may already be
seen as “stochastic processors” that could provide a substrate for
implementing probabilistic algorithms. Indeed, the utility of
stochastic processors has already been recognised in the silicon
world50,66.

In non-deterministic models of computation, as in stochastic
ones, there may be many computational paths from input to
output, but crucially each of these computational paths is

Computer
science

Combinatorial
logic

Gene regulation

Biology

Metabolism Evolution

x
y z

Finite-state
machine

Turing machine

0 1 1 0 0 1 10 0

Fig. 2 Cells could provide more than logic circuits. Computer science has
developed models of computation that are far more powerful than
combinatorial logic, such as finite-state machines or the Turing Machine.
These models are more powerful in that they allow processing of a wider
range of inputs into outputs, and in many more ways, than are admissible
by combinatorial logic. Similarly, living systems have evolved a variety of
computational processes to allow cells to process information. A simple
model, used extensively as the basis for engineering combinatorial logic
circuits in cells, is the standard representation of the central dogma (CD) of
molecular biology. However, this model does not incorporate core cellular
mechanisms such as metabolism, or processes such as evolution, which
may provide possibilities for building more powerful, but as yet
unknown, models
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explored simultaneously by the algorithm, with a result analogous
to parallel execution of multiple distinct deterministic algorithms.
While non-determinism has considerable impact on theoretical
computer science, practical implementations of non-deterministic
computation remain elusive. Nevertheless, algorithmic solutions
to some computational tasks can be significantly easier to express
as non-deterministic, and biological systems extensively exploit
non-determinism, both at the population level67,68 and at the
scale of evolution69. Perhaps more speculatively, we might also
consider the role of quantum effects in biology70, and whether or
not these may be harnessed for the purposes of non-deterministic
algorithms in biological systems.

Distributed computing can exploit concurrency
For some models of computation, the definition of an algorithm
is “sequential”, and implies an ordering of the computational
steps. Implementations of these models enforce these “sequential
semantics”, because sequential execution may be a strict
requirement to ensure the correctness of an algorithm. However,
for certain computations, algorithms exist in which the ordering
of computational steps may be relaxed, or abandoned entirely—in
computer science terms, the algorithm displays a level of con-
currency. In such situations, if multiple computing devices may
interact and coordinate their efforts as a “distributed system”,
concurrent parts of an algorithm may be executed in parallel,
potentially speeding up computations significantly.

The utility of such distributed computing is not limited
to performance advantages. For some problems, sequentiality
is desirable, but the nature of the computing substrate makes it
impractical (or even impossible) to enforce71. For instance, at a
fundamental level, and even within a single cell, natural cellular
computation is concurrent and distributed. Computation is per-
formed by stochastic biochemical processes—the probabilistic
interactions of spatially separated molecular computing “agents”,
many of which can happen in any order. Computer science has
long used distributed and concurrent models of computation
such as actors49, Petri nets51, process algebras72 and population
protocols52 to describe computations in just these situations.

Analogue computing allows for continuous non-binary inputs
The nature of computation described so far has been digital; that
is, information is represented using a set of discrete values.
However, many physically relevant quantities vary continuously.
Even the signals that encode binary values in electronic logic
circuits are, in reality, stored as continuous-valued voltages. Such
signals must be discretised in order to represent digital values. In
contrast, analogue computation allows continuous signals to be
used directly in the computational steps of an algorithm, and for
representation of information as continuous values.

Although many cellular computations involving binary “yes/
no” decisions may be interpreted as digital computations, and
digital logic computations are certainly suited to applications such
as biosensors, cells often exhibit graded responses to stimuli that
are more appropriately viewed as analogue computations62,73.
Furthermore, the biochemical processes responsible for cellular
computations involve discrete interactions of discrete molecules,
but are also inherently stochastic. Cellular computing may,
therefore, be viewed as both digital and stochastic, or as analogue
computation with noise74, and the viability of the cell as a sub-
strate for synthetic analogue computations has already been
demonstrated75.

Whilst some models of analogue computation such as the
Blum-Shub-Smale machine53 or neural networks46, use arbitrary
precision signals to perform super-Turing computation, it is not
clear whether realisations of analogue computation will be able to

provide more computational power than digital computation,
since physical laws forbid the existence of such an idealised
computer55,76. However, for digital models of computation,
the abstraction of continuous signals into digital represents a
semantic gap between the formal definition and implementation
of a computation. Models of analogue computation admit con-
tinuous signals, which not only narrows this semantic gap, but
also allows more powerful computational primitives to be used
for defining algorithms77. Consequently, depending on the
computation and the computing substrate, an analogue algorithm
might have a more intuitive implementation, require fewer
components to implement, and be considerably more energy-
efficient than its digital counterpart74,75.

Engineering complex cellular computing systems
There are certainly deep physical connections between chem-
istry and electronics78, but the fact remains that the cellular
environment is a radically different computing substrate than
silicon. Although this difference might make cells unsuitable for
computational tasks traditionally dominated by conventional
computers, it could also offer opportunities to explore more
unconventional models of computation. Aside from gene reg-
ulation, which has been useful for engineering biological logic
circuits, a number of processes and features exist in natural
systems which may offer computational capabilities. Here, we
identify four such resources as promising in terms of their
information-processing capabilities (Fig. 3).

Towards whole-cell computation
Synthetic cellular computing systems have generally focussed on
DNA components that are isolated from the many other pro-
cesses within a cell79,80. However, evolution has shaped intricate
information-processing networks whose function emerges from
the interplay between many layers of the cellular machinery81.
For example, bacteria adapt to nutrient fluctuations by sensing
extracellular cues, transducing such signals to the genetic
machinery, and ultimately adapting their metabolic state to make
maximal use of carbon sources. This requires a careful whole-cell
orchestration of trafficking processes at the levels of membrane,
cellular signalling pathways, gene expression programmes and
metabolic activity.

In a similar fashion, synthetic systems that exploit whole-cell
interactions offer exciting opportunities to expand the range of
computational tasks that can be achieved with living systems.
Metabolic circuits, in particular, produce analogue dynamics that
could allow us to move beyond basic Boolean operations82. Cir-
cuits integrating genetic programs with metabolic activity have
been successfully engineered to improve the productivity of
microbial cell factories83–85, but their potential goes far beyond
simple production. Notably, retrobiosynthesis approaches based
on generic representations of reactions, known as reaction rules,
expand the design space of metabolic circuits by predicting novel
synthetic pathways connecting metabolism and gene expres-
sion86–88. Machine-learning is increasingly being applied by such
retrosynthesis algorithms to select the best candidate reactions in
the search through the chemical space89,90.

Moreover, experimental and theoretical work has shown that
gene expression noise can permeate to metabolism68,91, sug-
gesting the possibility of processing information using metabolic
heterogeneity. The interplay between gene expression and
metabolism can be conceptualised in terms of memory systems
employed in most computer architectures. These have a
long-term static memory, conceptually similar to information
stored in DNA, and a short-term volatile memory, akin to the
fast dynamics of metabolism (Fig. 3a). Computer science has
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developed efficient techniques for managing data flows across
these two memories to exploit their characteristic timescales.
There is some evidence that cells also exploit such differing
timescales to their benefit62, and, ultimately, the ability to
encode signals in different frequency domains may allow us to
move from classic Boolean abstractions to more complex coding
systems.

Whole-cell computation presents major challenges because, as
the size of synthetic circuit grows, so does their footprint on the
cellular host. Synthetic circuits do not work in isolation, but
continuously draw resources away from vital functions of the
host92. These resources include energy, polymerases for tran-
scription, ribosomes for translation, enzymatic co-factors, and so
on, the depletion of which has a negative impact on native pro-
cesses. This is commonly known as the cellular burden, and has
gathered substantial attention in the community93. Recent work
has aimed at identifying relevant sources of burden imposed by
synthetic constructs94,95. Together with increasingly powerful
mathematical models for cell physiology96,97, these experimental
efforts are paving the way for accurate prediction98 and control of
burden99, which will enable the construction of complex circuitry
that takes full advantage of the cellular machinery100.

The power of multicellular consortia
The burden imposed by synthetic biological constructs places a
fundamental ceiling on the information processing capacity of a
single cell. In order to execute larger and more complex compu-
tations, living systems harness the capabilities of multicellular
ensembles, such as the vast neural networks in the brain. Dis-
tributing computational demands across a population of specialised
cells lowers the burden on each individual cell, and offers a way to
more easily scale the complexity of the computations being per-
formed. Such scalability is uniquely fostered in biological systems by

the inherent ability of living cells to self-replicate. Similar distributed
approaches have been employed in engineered biological systems,
where an algorithm is spread across a consortium of different
microbes that are able to communicate and interact (Fig. 3b). Many
theoretical101–105 and experimental106–112 examples demonstrate
the benefits of distributing computation in this way, as well as a
growing number of tools for their simulation113–120 and assembly
in living cells121,122.

Although the development of engineered multicellular consortia
is possible with current technologies, their structure is often fragile,
and their information-processing capabilities are dwarfed by
microbial communities found in nature123. A key difference in
naturally-occurring systems is that extensive resources and diverse
mechanisms are used to establish and coordinate the complex
social behaviours of a communityʼs participants123. Social rela-
tionships such as cooperation, mutualism, competition and com-
mensalism are used concurrently to drive a required community
structure that can potentially change over time in response to the
environment. Advances in our ability to control cell-to-cell inter-
actions, either through spatial patterning of cell populations112

and/or orthogonal communication channels121,124, will be crucial
to future developments in this area.

A feature of multicellular consortia that pushes us beyond the
capabilities of classical electronic computers is their highly flexible
and re-configurable nature125. In computer science, a computer
architecture describes the structural relationship between differ-
ent components of a system (e.g. the processor and memory) and
constrains how algorithms run on the system. A program com-
piled for one type of computer architecture may not be executable
by another due to these physical differences. The architecture of
most electronic computers is fixed during a computation and has
been honed to perform primitive digital operations in quick
succession, guided by a set of instructions (the code). While this
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Fig. 3 Cellular information-processing fundamentals that go beyond combinatorial logic circuits. aWhole-cell computations, merging genetic and metabolic
circuits, could achieve more ambitious goals than genetic circuits alone. Cells have evolved intricate networks that make simultaneous use of the varied
features of both genetic and metabolic processes. In terms of information storage, metabolism presents a volatile memory, while DNA sequences are able
to store information in a more stable fashion. Coordinating the use of different types of memory is a fundamental aspect of complex computer
architectures. The dynamic difference is also a potential source of complexity if coupled; metabolic reactions operate on a faster timescale relative to
genetic regulatory networks. b Multicellular computing (right) is currently implemented by connecting the output of one strain to the input of another.
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interactions are fundamental in natural communities—they provide stable architectures executing a desired computation. c Gene expression noise is
intrinsic to living systems; the panel figure shows different patterns for gene expression. Despite the fact that all are described as being on, there are
different types of expression—thus different on/off standards. d The cell as a general-purpose machine. As the basis for a model of computation, the
central dogma of molecular biology can be expanded to include metabolism. Evolutionary processes may also be included as major forces guiding
information-processing in cells, since they allow the purpose of cellular computations to adapt over time
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architecture is general enough for tackling many types of task, its
static architecture makes it sub-optimal for most of them. In a
cellular consortium, such a severe trade-off between flexibility
and optimality (e.g. in regards to energy consumption or speed)
need not exist, as the cellular community can dynamically change
its physical composition and the interactions present to produce a
“living architecture” that better matches the problem at hand.
Furthermore, such reconfiguration is possible even during a
computation itself, offering a level of control and flexibility that
electronic computers are unable to match. Harnessing these
unique capabilities will offer synthetic biologists new approaches
to solving problems and require us to rethink what a computer
architecture can be126.

Encoding signals using gene expression noise
Combinatorial logic, which relies on well separated on/off signals
to encode information, constitutes a valuable framework with
which to understand and build genetic circuits. Even if molecular
signals (for example, a transcription factor that down-regulates a
promoter) do not have absolute and constant values, the notion of
a promoter being repressed or not (thus being binary) is intuitive.
Nevertheless, the use of Boolean logic for engineering cellular
circuits is often challenged by the fact that molecular signals are
intrinsically noisy, and therefore stochastic. Each signal will have
different on/off values (Fig. 3c), and not all are compatible, which
makes building a large combinatorial circuit a significant chal-
lenge127. Combinatorial logic is, therefore, a good example of
how a given theoretical model of computation may be easily
implemented with one physical toolkit (electronic), but not with
another (molecular).

The voltage that runs through electronic wires is also noisy, but
computer engineers overcame this problem by arranging for
thresholds at the input and output of logic gates, so that analogue
values could be abstracted into two unique values: 0 and 1. In
contrast to this, living systems have evolved to benefit from signal
variability. Stochasticity has been shown to be useful in coordi-
nating the expression of large sets of genes128, in producing the
phenotypic variability that allows for bet-hedging strategies that
promote survival in fluctuating environments67,129, and as a key
component of evolution under tight selection criteria69. There-
fore, models of computation incorporating stochasticity would
seem to be necessary to best fit the intrinsic properties of living
systems.

Unlike silicon computing devices, where noise is a consequence
of random signal fluctuations, cellular systems are capable of
encoding important information into noise patterns. For exam-
ple, the change in gene expression noise according to intracellular
physical distances130 reveals information about the structural
architecture of the cell. Also, noisy patterns in the cellular
machinery of Staphylococcus aureus (that lead to different infec-
tious cell types) originate in upstream molecular events131. These
examples, among others75, highlight the fact that the shape of
non-digital biological signals is used to effectively transmit
information. Therefore, the challenge is to use noise for imple-
menting computations — an area where cellular computers
clearly outperform conventional ones. In the meantime, current
efforts in the discretisation132, stabilisation133,134 and reusa-
bility135 of noisy signals may help to understand, and harness, the
dynamic complexity of molecular interactions.

Evolution as an information-processing mechanism
Evolutionary computing is a field within computer science that
develops and applies algorithms inspired by Darwinian evolu-
tion136. Different implementations of this idea exist, such as genetic
algorithms, evolutionary strategies or genetic programming, but

the underlying principles are similar: a set of candidate solutions to
a problem (an initial population) compete under some pre-defined
fitness criteria, and the fittest individuals are selected to form the
next generation (via crossover and/or mutation). An important
advantage of these techniques is that they allow for the dynamic
optimisation of solutions throughout potentially vast search spaces.

Both computer scientists and living systems use evolutionary
algorithms to generate algorithmic solutions. Evolutionary pro-
cesses have also been used to design biomolecules137,138, libraries
of biological components139 and even to evolve non-functional
genetic circuits into functional ones140. Despite this, evolutionary
processes are often omitted when engineering computing circuits
in living cells. Harnessing the power of such information-
processing mechanisms for predefined functions seems to be
difficult, and the rational engineering of autonomous evolu-
tionary computing in living cells is still an overarching challenge.

In order to start addressing this challenge, it will be important
to formalise the effects of evolutionary dynamics on the flow of
genetic information. A potential initial step would be to expand
on the standard representation of the central dogma (CD) of
molecular biology to include evolutionary dynamics, in an
attempt to describe the model of computation of a living cell
(Fig. 3d). Expansion of the CD-based model is not a new idea; for
example, the inclusion of metabolic processes has previously been
suggested141, since, as evidenced above in “Towards whole-cell
computation”, metabolism is a crucial omission from the point of
view of information processing. A complete model of the flow of
genetic information at a given point in time needs to include both
genetic and metabolic processes, and dynamic models of com-
putation inside living cells should include evolutionary processes
that operate on genetic information.

Theoretical models of computation may find valuable and
perhaps novel implementations within this dynamic representa-
tion of the CD. Recent developments in optogenetics are pro-
mising to this end, since these show how genetic elements
dynamically shape their response in relation to external sig-
nals142. Importantly, these studies linking environmental signals
to intracellular responses in a predictable way, as well as directed
evolution efforts143, are undertaken in tightly controlled systems.
However, the mechanisms that allow a cell to thrive in challen-
ging and dynamic environments are largely unpredictable. For
problems like bio-remediation which intrinsically involve ever-
changing environments, natural cellular computers clearly show
superiority compared to conventional ones.

Applications of cellular computing systems
As already discussed, cellular computing is unlikely to compete
with conventional computers in domains for which the latter are
specifically engineered. Although future biological systems may
offer competitive performance in related areas such as data
storage144, the benefits are largely limited to the exploitation of
material factors such as miniaturisation and longevity of
components.

The identification of promising applications for cellular
computing has been largely guided by the observation that
living systems operate best in application domains that are not
easily reachable by conventional computers. Successes in bio-
remediation145, bio-production146 and targeted therapeutics147

indicate that this is indeed a fruitful line of inquiry. Nevertheless,
the implementation of conventional computations with uncon-
ventional computing substrates does not, in and of itself, con-
stitute cellular supremacy. Rather, supremacy must be derived
from the fact that the type of computation performed by a con-
ventional computer is qualitatively different to that executed by
living systems. Current implementations of computations within
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living cells are generally based on combinatorial or sequential
logic circuits mapped onto equivalent genetic circuits; while these
are useful metaphors for both understanding and engineering
living systems, digital logic is not easily implemented using a
cellular substrate. Furthermore, logic circuits offer a relatively
bland computational palette compared to the richness of biology.
For this reason, future developments in cellular computing should
focus on models of computation that both accommodate and
exploit the natural abilities of the cell, and avoid forcing biological
systems into artificial (and often unsuitable) architectures148.

This does not mean that cellular computing must necessarily
“reinvent the wheel” when it comes to models of computation.
Living systems share many characteristics with in vitro platforms
for computation, and as well as the considerable body of theo-
retical work concerning molecular computing, cellular computing
may draw on cell-free systems as a practical resource for faster
prototyping with a greater degree of control149–151. Furthermore,
the relationship between computer science and natural comput-
ing is often synergistic. As described earlier, models of compu-
tation that transcend logic circuits are available which have yet to
be explored by cellular computing to any great extent. In return,
biological systems offer computational features that are (and are
expected to remain) unavailable to silicon implementations of
existing computational models. It is at this intersection that
exciting opportunities for cellular supremacy emerge. For exam-
ple, in the past decade it has become increasingly clear that a
number of biological processes show quantum mechanical
properties152,153. In particular, there is strong experimental evi-
dence that long-lived quantum coherence is involved in photo-
synthesis154, and that quantum tunnelling is active in enzyme
catalysis155. Since most quantum computing devices are built and
run under stringent environmental conditions (at temperatures
approaching absolute zero), the opportunity to control quantum
effects in a biological system that “runs” at room temperature,
through the emergence of a “quantum synthetic biology”, could
turn out to be a game changer in the quantum supremacy race.
More to the point, realising models of quantum computation156

using quantum biology could yield a cellular computer capable of
a radically different kind of computation than silicon153.

Although we have, until now, focussed primarily on bacterial
cells, there does, of course, exist a multiplicity of cell types that
possess rich and complex computational capabilities. For exam-
ple, plants can respond to environmental signals and stresses in a
way that is reminiscent of signal processing in neural networks
(the so-called “plant perceptron”)157. Cultured neuronal cells
have been used to control flight simulators158 and robots159, and
slime mould has a rich repertoire of spatial computing cap-
abilities160. Additionally, we do not dismiss the possibility of
“hybrid” architectures, in which cellular systems are interfaced to
more traditional, silicon-based machines. Such connections may
allow for subtle and sensitive adjustments to cell state, for
example161, but these hybrid systems will still fundamentally rely
on the properties of the living material.

As we have already argued, natural cellular computing
operates at vast scales, in a distributed manner, and in the
presence of considerable noise. Consequently, biological meta-
phors have served as inspirations for models of amorphous
computation, for which cellular computing is a promising
implementation technology162, especially at scales inaccessible
to silicon. Robotics has also drawn inspiration from biological
computation, particularly in relation to morphological com-
puting, which takes advantage of the physical properties of
computing agents in order to achieve more efficient computa-
tions163. By using intrinsic physical properties of the compu-
tational substrate to “outsource” parts of the computation,
increasingly complex computations can be carried out whilst

maintaining relatively simplistic control structures164. Living
systems are an ideal implementation technology for morpho-
logical computation, since they not only compute solutions to
individual instances of problems, but continuously compute and
adapt in order to embody an efficient general solution. As we
have previously argued, conventional silicon computers have
inflexible architectures by comparison, which must sacrifice
efficiency for generality. These qualitative differences between
cellular and conventional computing suggest that applications
such as terraforming and smart material production may remain
beyond the reach of silicon computers, but in contrast, strategies
for both applications based on living technologies have already
been proposed165,166.

In this perspective, we have championed the notion of cellular
supremacy in an attempt to focus attention on the high-impact
areas in which synthetic biology can have a truly transformational
effect. We call on the community to consider cellular supremacy
as a framing device for future work, and to explore in a systematic
fashion how it may be established. By accepting the idea of cel-
lular supremacy, we naturally acknowledge the richness and
power of living systems. And by ceding a degree of control to
biology, we may yet open up a much wider range of applications
and perspectives on information processing in nature.
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