107,448 research outputs found

    Review of adult vocational qualifications in England

    Get PDF

    STEM futures and practice, can we teach STEM in a more meaningful and integrated way?

    Get PDF
    Integrating Science, Technology, Engineering and Mathematics (STEM) subjects can be engaging for students, can promote problem-solving and critical thinking skills and can help build real-world connections. However, STEM has long been an area of some confusion for some educators. While they can see many of the conceptual links between the various domains of knowledge they often struggle to meaningfully integrate and simultaneously teach the content and methodologies of each these areas in a unified and effective way for their students. Essentially the question is;how can the content and processes of four disparate and yet integrated learning areas be taught at the same time? How can the integrity of each of the areas be maintained and yet be learnt in a way that is complementary? Often institutional barriers exitin schools and universities to the integration of STEM. Organizationally, at a departmental and administrative level, the teaching staff may be co-located, but when it comes to classroom practice or the teaching and learning of these areas they are usually taught very separately. They are usually taught in different kinds of spaces, in different ways (using different pedagogical approaches) and at different times. But is this the best way for students to engage with the STEM areas of learning? How can we make learning more integrated, meaningful and engaging for the students

    Development of OCIPSE Learning Model to Increase Students' Scientific Creativity in Natural Science Learning

    Full text link
    This Research & Development (R & D) has the main goal to develop and produce OCIPSE learning model. The main product of this research is the OCIPSE learning model with five phases, they are 1) Orient and organize the students for study; 2) Collaborative Investigation; 3) Presentation and discussion; 4) Strengthening of scientific creativity; and 5) Evaluate and provide recognition. The OCIPSE learning model' quality data is obtained through an expert validation process by using the OCIPSE learning model Qualification Assessment Instrument. The OCIPSE learning model quality analysis used an average validity score, single measures ICC, and Cronbach's coefficient alpha. The result of the research shows OCIPSE learning model with average content validity (3.69), construct validity (3.69), with the validity of each aspect statistically in (rα = .92) and reliability in (α = .87).  The results of this study indicate that the developed OCIPSE learning model was declared qualified by experts. The research implication is that a qualified OCIPSE learning model can be used to enhance the scientific creativity of junior high school students in natural science learning.&nbsp

    TreKker Model - Case study on TreKker Model’s impact on self-beliefs

    Get PDF
    TreKker is an intervention model designed for students which aims to develop the individual as an integrated whole. This model was created to be used as a framework for individual skills development in an academic environment. As a result of the implementation of the Bologna Process, Higher Education Institutions in Europe are required to be more focused on skills and competences than on traditional lectures centered on technical skills (European Commission, 2009a). This article presents an exploratory study with students from the Catholic University of Portugal, Biotechnology College. In 2009/ 2010 we experimented with combining degree courses. These courses would then both focus on the same skills development and share assessment techniques. In this framework, the TreKker model was used to support the development of lifelong learning, emotional intelligence and transferable skills. Early results following the intervention appear promising in terms of increases in students’ self-esteem, self-efficacy and self-confidence. The study had some limitations related to number of subjects and execution time and must be repeated in order to have more consistent results.Skills; Emotional intelligence; Continuing Education; Self Efficacy

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams

    Predicting academic achievement: The role of Motivation and Learning Strategies

    Get PDF
    The aim of this study consists in testing a predictive model of academic achievement including motivation and learning strategies as predictors. Motivation is defined as the energy and the direction of behaviors; it is categorized in three types of motivation –intrinsic, extrinsic and amotivation (Deci & Ryan, 1985). Learning strategies are deliberate operations oriented towards information processing in academic activities (Valle, Barca, González & Núñez, 1999). Several studies analysed the relationship between motivation and learning strategies in high school and college environments. Students with higher academic achievement were intrinsically motivated and used a wider variety of learning strategies more frequently. A non-experimental predictive design was developed. The sample was composed by 459 students (55.2% high-schoolers; 44.8% college students). Data were gathered by means of sociodemographic and academic surveys, and also by the local versions of the Academic Motivation Scale –EMA, Echelle de Motivation en Éducation (Stover, de la Iglesia, Rial Boubeta & Fernández Liporace, 2012; Vallerand, Blais, Briere & Pelletier, 1989) and the Learning and Study Strategies Inventory –LASSI (Stover, Uriel & Fernández Liporace, 2012; Weinstein, Schulte & Palmer, 1987). Several path analyses were carried out to test a hypothetical model to predict academic achievement (Kline, 1998). Results indicated that self-determined motivation explained academic achievement through the use of learning strategies. The final model obtained an excellent fit (χ2=16.523, df= 6, p=0.011; GFI=0.987; AGFI=0.955; SRMR=0.0320; NFI=0.913; IFI=0.943; CFI=0.940). Results are discussed considering Self Determination Theory and previous research.Fil: Stover, Juliana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Freiberg Hoffmann, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: de la Iglesia, Guadalupe. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernandez Liporace, Maria Mercedes. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Software scaffolds to promote regulation during scientific inquiry learning

    Get PDF
    This research addresses issues in the design of online scaffolds for regulation within inquiry learning environments. The learning environment in this study included a physics simulation, data analysis tools, and a model editor for students to create runnable models. A regulative support tool called the Process Coordinator (PC) was designed to assist students in planning, monitoring, and evaluating their investigative efforts within this environment. In an empirical evaluation, 20 dyads received a “full” version of the PC with regulative assistance; dyads in the control group (n = 15) worked with an “empty” PC which contained minimal structures for regulative support. Results showed that both the frequency and duration of regulative tool use differed in favor of the PC+ dyads, who also wrote better lab reports. PC− dyads viewed the content helpfiles more often and produced better domain models. Implications of these differential effects are discussed and suggestions for future research are advanced
    corecore