5 research outputs found

    Analisis Metode Pendeteksian Langkah Kaki pada Pedestrian Ddead Reckoning

    Get PDF
    Pedestrian Dead Reckoning merupakan salah satu bagian dari sistem navigasi personal yang diterapkan untuk pejalan kaki. Posisi ditentukan oleh posisi sebelumnya, jarak yang ditempuh dan arah melangkah. Deteksi langkah merupakan salah satu faktor penting pada sistem navigsi PDR. Jarak yang ditempuh dapat ditentukan dengan mengetahui jumlah langkah ketika berjalan dikalikan dengan jarak untuk satu kali melangkah yang dianggap konstan. Banyak penelitian yang telah dilakukan untuk mendeteksi langkah manusia dan dalam tugas akhir ini akan mengulas tentang metode pendeteksian langkah kaki manusia. Pendeteksian langkah dilakukan dengan melihat nilai sensor akselerometer ketika berjalan. Sensor akselerometer yang digunakan adalah sensor 3 axis HITACHI H48C yang dipasang pada sepatu. Nilai percepatan ketiga axis yang terbaca oleh sensor ketika berjalan kemudian dikirim ke netbook. Nilai percepatan ketiga axis tersebut diolah sehingga didapatkan sinyal magnitude, sinyal energi, sinyal product, dan sinyal sum. Pendeteksian langkah kaki dilakukan dengan menganalisis sinyal yang didapatkan menggunakan pendekatan nilai threshold dan nilai variansi. Berdasarkan pengujian dan analisis yang dilakukan dapat diketahui bahwa fase stance merupakan fase yang paling mudah dideteksi karena pada fase stance sinyal akan stabil pada rentang nilai tertentu. Penggunaan nilai variansi pada pendeteksian langkah berguna untuk membuat sinyal pada fase stance akan berada pada nilai nol. Pendeteksian menggunakan nilai variansi memiliki tingkat keberhasilan lebih besar dibandingkan dengan sinyal aslinya. Kata Kunci : stance, swing, magnitude, threshold, variansi

    Evaluación de los sistemas de orientación en edificios de concurrencia pública para personas mayores y con discapacidad mediante Servicios Basados en Localización

    Get PDF
    En el presente trabajo de investigación se trata de un prototipo de sistema de localización, ubicación y orientación en espacios Indoor. Los sistemas de posicionamiento han alcanzado un gran éxito cuando se realiza al aire libre. En la actualidad existe un gran número de sistemas y dispositivos comerciales que se basan en la localización por medio de sistema global de navegación por satélite (GNSS). Sin embargo, estos sistemas se han mostrado inútiles en espacios cerrados (Indoor), es decir, dentro de edificios, no habiéndose llegado a conseguir un único sistema que alcance el nivel de éxito de su homólogo en el exterior. Una de las líneas de desarrollo más importante en los últimos años es desarrollar una tecnología de localización y seguimiento, equiparable en espacios Indoor al éxito conseguido en los espacios Outdoor. El principal problema es que los ambientes Indoor tienen una gran variabilidad con respecto al ambiente, pudiendo tener los edificios varias alturas, ser espacios con comportamiento estático o funcionalmente dinámico y cambiante. Además, las superficies pueden tener diferentes texturas, así como diferentes accesos a las diferentes partes del edificio. También pueden influir los obstáculos tanto a nivel del mobiliario como a nivel del público que transite por él. Por último, existe un problema adicional con las interacciones que los elementos tecnológicos ya instalados en el edificio puedan producir al nuevo sistema de localización, tales como la instalación eléctrica, la iluminación, las fuentes de alimentación, en definitiva, todos aquellos dispositivos que puedan provocar un campo electromagnético. Esto muestra la necesidad de encontrar una solución técnica que permita calcular la posición de las personas en espacios cerrados con un nivel de fiabilidad y error aceptable. En nuestra investigación nos vamos a basar en los denominados Servicios Basados en Localización (LBS), que constituyen un conjunto de aplicaciones y servicios basados en la capacidad de localizar la posición de un usuario y ofrecerle servicios relacionados con su posición y sus planes de desplazamiento. La información sobre donde nos encontramos, cuales son los posibles obstáculos hasta nuestro destino, pasos que debemos dar hasta llegar al mismo, rutas óptimas y/o alternativas, etc. es útil para nuestra orientación y planificación del trayecto. La estructura del presente estudio es la siguiente: en el capítulo 1 haremos una breve introducción de la problemática y la estructura del trabajo; en el capítulo 2 se hablara de las distintas redes inalámbricas que nos encontramos hoy en día, entrando en profundidad sobre las que vamos a utilizar en el sistema y en la aplicación que se desarrollará; en el capítulo 3 se verá la problemática de las personas con discapacidad en dichos entornos; en el capítulo 4 se explicará la metodología utilizada en la experimentación para comprobar el funcionamiento del sistema y la aplicación; en el capítulo 5 se hablará sobre las distintas librerías que hay en el mercado, así como sobre la nos basamos y las modificaciones realizadas; en el capítulo 6 se indicará la experimentación realizada en un grupo de usuarios con discapacidades de diversa etiología y las conclusiones a las que se llegó en la misma; y, por último, se plantearán unas conclusiones y tendencias futuras en la línea establecida

    Heading drift mitigation for low-cost inertial pedestrian navigation

    Get PDF
    The concept of autonomous pedestrian navigation is often adopted for indoor pedestrian navigation. For outdoors, a Global Positioning System (GPS) is often used for navigation by utilizing GPS signals for position computation but indoors, its signals are often unavailable. Therefore, autonomous pedestrian navigation for indoors can be realized with the use of independent sensors, such as low-cost inertial sensors, and these sensors are often known as Inertial Measurement Unit (IMU) where they do not rely on the reception of external information such as GPS signals. Using these sensors, a relative positioning concept from initialized position and attitude is used for navigation. The sensors sense the change in velocity and after integration, it is added to the previous position to obtain the current position. Such low-cost systems, however, are prone to errors that can result in a large position drift. This problem can be minimized by mounting the sensors on the pedestrian’s foot. During walking, the foot is briefly stationary while it is on the ground, sometimes called the zero-velocity period. If a non-zero velocity is then measured by the inertial sensors during this period, it is considered as an error and thus can be corrected. These repeated corrections to the inertial sensor’s velocity measurements can, therefore, be used to control the error growth and minimize the position drift. Nonetheless, it is still inadequate, mainly due to the remaining errors on the inertial sensor’s heading when the velocity corrections are used alone. Apart from the initialization issue, therefore, the heading drift problem still remains in such low-cost systems. In this research, two novel methods are developed and investigated to mitigate the heading drift problem when used with the velocity updates. The first method is termed Cardinal Heading Aided Inertial Navigation (CHAIN), where an algorithm is developed to use building ‘heading’ to aid the heading measurement in the Kalman Filter. The second method is termed the Rotated IMU (RIMU), where the foot-mounted inertial sensor is rotated about a single axis to increase the observability of the sensor’s heading. For the CHAIN, the method proposed has been investigated with real field trials using the low-cost Microstrain 3DM-GX3-25 inertial sensor. It shows a clear improvement in mitigating the heading drift error. It offers significant improvement in navigation accuracy for a long period, allowing autonomous pedestrian navigation for as long as 40 minutes with below 5 meters position error between start and end position. It does not require any extra heading sensors, such as a magnetometer or visual sensors such as a camera nor an extensive position or map database, and thus offers a cost-effective solution. Furthermore, its simplicity makes it feasible for it to be implemented in real-time, as very little computing capability is needed. For the RIMU, the method was tested with Nottingham Geospatial Institute (NGI) inertial data simulation software. Field trials were also undertaken using the same low-cost inertial sensor, mounted on a rotated platform prototype. This method improves the observability of the inertial sensor’s errors, resulting also in a decrease in the heading drift error at the expense of requiring extra components

    Heading drift mitigation for low-cost inertial pedestrian navigation

    Get PDF
    The concept of autonomous pedestrian navigation is often adopted for indoor pedestrian navigation. For outdoors, a Global Positioning System (GPS) is often used for navigation by utilizing GPS signals for position computation but indoors, its signals are often unavailable. Therefore, autonomous pedestrian navigation for indoors can be realized with the use of independent sensors, such as low-cost inertial sensors, and these sensors are often known as Inertial Measurement Unit (IMU) where they do not rely on the reception of external information such as GPS signals. Using these sensors, a relative positioning concept from initialized position and attitude is used for navigation. The sensors sense the change in velocity and after integration, it is added to the previous position to obtain the current position. Such low-cost systems, however, are prone to errors that can result in a large position drift. This problem can be minimized by mounting the sensors on the pedestrian’s foot. During walking, the foot is briefly stationary while it is on the ground, sometimes called the zero-velocity period. If a non-zero velocity is then measured by the inertial sensors during this period, it is considered as an error and thus can be corrected. These repeated corrections to the inertial sensor’s velocity measurements can, therefore, be used to control the error growth and minimize the position drift. Nonetheless, it is still inadequate, mainly due to the remaining errors on the inertial sensor’s heading when the velocity corrections are used alone. Apart from the initialization issue, therefore, the heading drift problem still remains in such low-cost systems. In this research, two novel methods are developed and investigated to mitigate the heading drift problem when used with the velocity updates. The first method is termed Cardinal Heading Aided Inertial Navigation (CHAIN), where an algorithm is developed to use building ‘heading’ to aid the heading measurement in the Kalman Filter. The second method is termed the Rotated IMU (RIMU), where the foot-mounted inertial sensor is rotated about a single axis to increase the observability of the sensor’s heading. For the CHAIN, the method proposed has been investigated with real field trials using the low-cost Microstrain 3DM-GX3-25 inertial sensor. It shows a clear improvement in mitigating the heading drift error. It offers significant improvement in navigation accuracy for a long period, allowing autonomous pedestrian navigation for as long as 40 minutes with below 5 meters position error between start and end position. It does not require any extra heading sensors, such as a magnetometer or visual sensors such as a camera nor an extensive position or map database, and thus offers a cost-effective solution. Furthermore, its simplicity makes it feasible for it to be implemented in real-time, as very little computing capability is needed. For the RIMU, the method was tested with Nottingham Geospatial Institute (NGI) inertial data simulation software. Field trials were also undertaken using the same low-cost inertial sensor, mounted on a rotated platform prototype. This method improves the observability of the inertial sensor’s errors, resulting also in a decrease in the heading drift error at the expense of requiring extra components

    Interacción Natural Basada en un Conjunto Mínimo de Sensores Inerciales para Realidad Virtual sin Cables

    Get PDF
    La Realidad Virtual tiene un enorme potencial aún por explotar. Esta tesis doctoral pretende ir un paso más allá en el desarrollo de sistemas de Realidad Virtual inmersivos. En concreto, su objetivo fundamental es diseñar, desarrollar y evaluar una plataforma experimental sin cables para investigación en Realidad Virtual inmersiva con navegación natural e interacción manual basada en un conjunto mínimo de sensores inerciales. Para ello se emplea metodología científica desde la perspectiva de la interacción persona computador (Human Computer Interaction, HCI). A partir del objetivo fundamental, se elaboran las recomendaciones de diseño y especificaciones del sistema a desarrollar. Tras revisar en detalle el estado del arte y establecer el planteamiento metodológico, comienza el desarrollo de herramientas en las que se basará la creación de prototipos. Durante la tesis doctoral se desarrollan 3 herramientas de investigación y 5 prototipos que se evalúan a través de diversas pruebas con usuarios y 2 experimentos. En total, participan generosamente más de 85 personas. El desarrollo de prototipos da lugar a técnicas específicas que resultan de interés por sí mismas para la comunidad científica. Por otra parte, los experimentos también aportan resultados susceptibles de ser divulgados. Uno de los experimentos realizados permite evaluar las técnicas desarrolladas para implementar un sistema de Realidad Virtual con navegación natural. El otro experimento, estudia el comportamiento del sistema de tracking para interacción manual desarrollado durante el proyecto de investigación. Además, utiliza una televisión 3D y el casco de Realidad Virtual Oculus Rift para realizar un estudio comparativo de diversos aspectos como el rendimiento, usabilidad, nivel de presencia, dificultad y preferencia. El proyecto de investigación asociado a esta tesis doctoral da lugar a varias aportaciones de distinta naturaleza como publicaciones científicas, herramientas de investigación, algoritmos y trazas de datos, además de la propia plataforma experimental que permitirá abordar nuevos estudios de Realidad Virtual inmersiva con navegación natural e interacción manual
    corecore