42 research outputs found

    Supervisory Autonomous Control of Homogeneous Teams of Unmanned Ground Vehicles, with Application to the Multi-Autonomous Ground-Robotic International Challenge

    Get PDF
    There are many different proposed methods for Supervisory Control of semi-autonomous robots. There have also been numerous software simulations to determine how many robots can be successfully supervised by a single operator, a problem known as fan-out, but only a few studies have been conducted using actual robots. As evidenced by the MAGIC 2010 competition, there is increasing interest in amplifying human capacity by allowing one or a few operators to supervise a team of robotic agents. This interest provides motivation to perform a more in-depth evaluation of many autonomous/semiautonomous robots an operator can successfully supervise. The MAGIC competition allowed two human operators to supervise a team of robots in a complex search-and mapping operation. The MAGIC competition provided the best opportunity to date to study through practice the actual fan-out with multiple semi-autonomous robots. The current research provides a step forward in determining fan-out by offering an initial framework for testing multi-robot teams under supervisory control. One conclusion of this research is that the proposed framework is not complex or complete enough to provide conclusive data for determining fan-out. Initial testing using operators with limited training suggests that there is no obvious pattern to the operator interaction time with robots based on the number of robots and the complexity of the tasks. The initial hypothesis that, for a given task and robot there exists an optimal robot-to-operator efficiency ratio, could not be confirmed. Rather, the data suggests that the ability of the operator is a dominant factor in studies involving operators with limited training supervising small teams of robots. It is possible that, with more extensive training, operator times would become more closely related to the number of agents and the complexity of the tasks. The work described in this thesis proves an experimental framework and a preliminary data set for other researchers to critique and build upon. As the demand increases for agent-to-operator ratios greater than one, the need to expand upon research in this area will continue to grow

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    Research and development of an intelligent AGV-based material handling system for industrial applications

    Get PDF
    The use of autonomous robots in industrial applications is growing in popularity and possesses the following advantages: cost effectiveness, job efficiency and safety aspects. Despite the advantages, the major drawback to using autonomous robots is the cost involved to acquire such robots. It is the aim of GMSA to develop a low cost AGV capable of performing material handling in an industrial environment. Collective autonomous robots are often used to perform tasks, that is, more than one working together to achieve a common goal. The intelligent controller, responsible for establishing coordination between the individual robots, plays a key role in managing the tasks of each robot to achieve the common goal. This dissertation addresses the development of an AGV capable of such functionality. Key research areas include: the development of an autonomous coupling system, integration of key safety devices and the development of an intelligent control strategy that can be used to govern the operation of multiple AGVs in an area

    Systems engineering approach to develop guidance, navigation and control algorithms for unmanned ground vehicle

    Get PDF
    Despite the growing popularity of unmanned systems being deployed in the military domain, limited research efforts have been dedicated to the progress of ground system developments. Dedicated efforts for unmanned ground vehicles (UGV) focused largely on operations in continental environments, places where vegetation is relatively sparse compared to a tropical jungle or plantation estate commonly found in Asia. This research explore methods for the development of an UGV that would be capable of operating autonomously in a densely cluttered environment such as that found in Asia. This thesis adopted a systems engineering approach to understand the pertinent parameters affecting the performance of the UGV in order to evaluate, design and develop the necessary guidance, navigation and control algorithms for the UGV. The thesis uses methodologies such as the pure pursuit method for path following and the vector field histogram method for obstacle avoidance as the main guidance and control algorithm governing the movement of the UGV. The thesis then considers the use of feature recognition method of image processing to form the basis of the target identification and tracking algorithm.http://archive.org/details/systemsengineeri1094550579Outstanding ThesisMajor, Republic of Singapore ArmyApproved for public release; distribution is unlimited

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    An Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data

    Get PDF
    In this thesis, we introduce a novel architecture called Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data (iARTEC ) . The proposed architecture integrates different terrain characterization and classification with other robotic system components. Within iARTEC , we consider the problem of having a legged robot autonomously learn to identify different terrains. Robust terrain identification can be used to enhance the capabilities of legged robot systems, both in terms of locomotion and navigation. For example, a robot that has learned to differentiate sand from gravel can autonomously modify (or even select a different) path in favor of traversing over a better terrain. The same knowledge of the terrain type can also be used to guide a robot in order to avoid specific terrains. To tackle this problem, we developed four approaches for terrain characterization, classification, path planning, and control for a mobile legged robot. We developed a particle system inspired approach to estimate the robot footâ ground contact interaction forces. The approach is derived from the well known Bekkerâ s theory to estimate the contact forces based on its point contact model concepts. It is realistically model real-time 3-dimensional contact behaviors between rigid body objects and the soil. For a real-time capable implementation of this approach, its reformulated to use a lookup table generated from simple contact experiments of the robot foot with the terrain. Also, we introduced a short-range terrain classifier using the robot embodied data. The classifier is based on a supervised machine learning approach to optimize the classifier parameters and terrain it using proprioceptive sensor measurements. The learning framework preprocesses sensor data through channel reduction and filtering such that the classifier is trained on the feature vectors that are closely associated with terrain class. For the long-range terrain type prediction using the robot exteroceptive data, we present an online visual terrain classification system. It uses only a monocular camera with a feature-based terrain classification algorithm which is robust to changes in illumination and view points. For this algorithm, we extract local features of terrains using Speed Up Robust Feature (SURF). We encode the features using the Bag of Words (BoW) technique, and then classify the words using Support Vector Machines (SVMs). In addition, we described a terrain dependent navigation and path planning approach that is based on E* planer and employs a proposed metric that specifies the navigation costs associated terrain types. This generated path naturally avoids obstacles and favors terrains with lower values of the metric. At the low level, a proportional input-scaling controller is designed and implemented to autonomously steer the robot to follow the desired path in a stable manner. iARTEC performance was tested and validated experimentally using several different sensing modalities (proprioceptive and exteroceptive) and on the six legged robotic platform CREX. The results show that the proposed architecture integrating the aforementioned approaches with the robotic system allowed the robot to learn both robot-terrain interaction and remote terrain perception models, as well as the relations linking those models. This learning mechanism is performed according to the robot own embodied data. Based on the knowledge available, the approach makes use of the detected remote terrain classes to predict the most probable navigation behavior. With the assigned metric, the performance of the robot on a given terrain is predicted. This allows the navigation of the robot to be influenced by the learned models. Finally, we believe that iARTEC and the methods proposed in this thesis can likely also be implemented on other robot types (such as wheeled robots), although we did not test this option in our work

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93
    corecore