925 research outputs found

    Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The design of long oligonucleotides for spotted DNA microarrays requires detailed attention to ensure their optimal performance in the hybridization process. The main challenge is to select an optimal oligonucleotide element that represents each genetic locus/gene in the genome and is unique, devoid of internal structures and repetitive sequences and its Tm is uniform with all other elements on the microarray. Currently, all of the publicly available programs for DNA long oligonucleotide microarray selection utilize various combinations of cutoffs in which each parameter (uniqueness, Tm, and secondary structure) is evaluated and filtered individually. The use of the cutoffs can, however, lead to information loss and to selection of suboptimal oligonucleotides, especially for genomes with extreme distribution of the GC content, a large proportion of repetitive sequences or the presence of large gene families with highly homologous members.</p> <p>Results</p> <p>Here we present the program OligoRankPick which is using a weighted rank-based strategy to select microarray oligonucleotide elements via an integer weighted linear function. This approach optimizes the selection criteria (weight score) for each gene individually, accommodating variable properties of the DNA sequence along the genome. The designed algorithm was tested using three microbial genomes <it>Escherichia coli</it>, <it>Saccharomyces cerevisiae </it>and the human malaria parasite species <it>Plasmodium falciparum</it>. In comparison to other published algorithms OligoRankPick provides significant improvements in oligonucleotide design for all three genomes with the most significant improvements observed in the microarray design for <it>P. falciparum </it>whose genome is characterized by large fluctuations of GC content, and abundant gene duplications.</p> <p>Conclusion</p> <p>OligoRankPick is an efficient tool for the design of long oligonucleotide DNA microarrays which does not rely on direct oligonucleotide exclusion by parameter cutoffs but instead optimizes all parameters in context of each other. The weighted rank-sum strategy utilized by this algorithm provides high flexibility of oligonucleotide selection which accommodates extreme variability of DNA sequence properties along genomes of many organisms.</p

    Defining species specific genome differences in malaria parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years a number of genome sequences for different <it>plasmodium </it>species have become available. This has allowed the identification of numerous conserved genes across the different species and has significantly enhanced our understanding of parasite biology. In contrast little is known about species specific differences between the different genomes partly due to the lower sequence coverage and therefore relatively poor annotation of some of the draft genomes particularly the rodent malarias parasite species.</p> <p>Results</p> <p>To improve the current annotation and gene identification status of the draft genomes of <it>P. berghei</it>, <it>P. chabaudi </it>and <it>P. yoelii</it>, we performed genome-wide comparisons between these three species. Through analyses via comparative genome hybridizations using a newly designed pan-rodent array as well as in depth bioinformatics analysis, we were able to improve on the coverage of the draft rodent parasite genomes by detecting orthologous genes between these related rodent parasite species. More than 1,000 orthologs for <it>P. yoelii </it>were now newly associated with a <it>P. falciparum </it>gene. In addition to extending the current core gene set for all plasmodium species this analysis also for the first time identifies a relatively small number of genes that are unique to the primate malaria parasites while a larger gene set is uniquely conserved amongst the rodent malaria parasites.</p> <p>Conclusions</p> <p>These findings allow a more thorough investigation of the genes that are important for host specificity in malaria.</p

    E-Predict: a computational strategy for species identification based on observed DNA microarray hybridization patterns

    Get PDF
    DNA microarrays may be used to identify microbial species present in environmental and clinical samples. However, automated tools for reliable species identification based on observed microarray hybridization patterns are lacking. We present an algorithm, E-Predict, for microarray-based species identification. E-Predict compares observed hybridization patterns with theoretical energy profiles representing different species. We demonstrate the application of the algorithm to viral detection in a set of clinical samples and discuss its relevance to other metagenomic applications

    Model-based probe set optimization for high-performance microarrays

    Get PDF
    A major challenge in microarray design is the selection of highly specific oligonucleotide probes for all targeted genes of interest, while maintaining thermodynamic uniformity at the hybridization temperature. We introduce a novel microarray design framework (Thermodynamic Model-based Oligo Design Optimizer, TherMODO) that for the first time incorporates a number of advanced modelling features: (i) A model of position-dependent labelling effects that is quantitatively derived from experiment. (ii) Multi-state thermodynamic hybridization models of probe binding behaviour, including potential cross-hybridization reactions. (iii) A fast calibrated sequence-similarity-based heuristic for cross-hybridization prediction supporting large-scale designs. (iv) A novel compound score formulation for the integrated assessment of multiple probe design objectives. In contrast to a greedy search for probes meeting parameter thresholds, this approach permits an optimization at the probe set level and facilitates the selection of highly specific probe candidates while maintaining probe set uniformity. (v) Lastly, a flexible target grouping structure allows easy adaptation of the pipeline to a variety of microarray application scenarios. The algorithm and features are discussed and demonstrated on actual design runs. Source code is available on request

    Non-parametric algorithms for evaluating gene expression in cancer using DNA microarray technology

    Get PDF
    Microarray technology has transformed the field of cancer biology by enabling the simultaneous evaluation of tens of thousands mRNA expression levels in a single experiment. This technology has been applied to medical science in order to find gene expression markers that cluster diseased and normal tissues, genes affected by treatments, and gene network interactions. All methods of microarray data analysis can be summarized as a study of differential gene expression. This study addresses three questions, 1) the roles of selectively expressed genes for the classification of cancer, 2) issues of accounting for both experimental and biological noise, and 3) issues of comparing data derived from different research groups using the Affymetrix GeneChipTM platform. A key finding of this study is that selectively expressed genes are very powerful when used for disease classification. A model was designed to reduce noise and eliminate false positives from true results. With this approach, data from different research groups can be integrated to increase information and enable a better understanding of cancer

    VARIATIONS IN MICROARRAY BASED GENE EXPRESSION PROFILING: IDENTIFYING SOURCES AND IMPROVING RESULTS

    Get PDF
    Two major issues hinder the application of microarray based gene expression profiling in clinical laboratories as a diagnostic or prognostic tool. The first issue is the sheer volume and high-dimensionality of gene expression data from microarray experiments, which require advanced algorithms to extract meaningful gene expression patterns that correlate with biological impact. The second issue is the substantial amount of variation in microarray gene expression data, which impairs the performance of analysis method and makes sharing or integrating microarray data very difficult. Variations can be introduced by all possible sources including the DNA microarray technology itself and the experimental procedures. Many of these variations have not been characterized, measured, or linked to the sources. In the first part of this dissertation, a decision tree learning method was demonstrated to perform as well as more popularly accepted classification methods in partitioning cancer samples with microarray data. More importantly, results demonstrate that variation introduced into microarray data by tissue sampling and tissue handling compromised the performance of classification methods. In the second part of this dissertation, variations introduced by the T7 based in vitro transcription labeling methods were investigated in detail. Results demonstrated that individual amplification methods significantly biased gene expression data even though the methods compared in this study were all derivatives of the T7 RNA polymerase based in vitro transcription labeling approach. Variations observed can be partially explained by the number of biotinylated nucleotides used for labeling and the incubation time of the in vitro transcription experiments. These variations can generate discordant gene expression results even using the same RNA samples and cannot be corrected by post experiment analysis including advanced normalization techniques. Studies in this dissertation stress the concept that experimental and analytical methods must work together. This dissertation also emphasizes the importance of standardizing the DNA microarray technology and experimental procedures in order to optimize gene expression analysis and create quality standards compatible with the clinical application of this technology. These findings should be taken into account especially when comparing data from different platforms, and in standardizing protocols for clinical applications in pathology

    Feature selection and modelling methods for microarray data from acute coronary syndrome

    Get PDF
    Acute coronary syndrome (ACS) represents a leading cause of mortality and morbidity worldwide. Providing better diagnostic solutions and developing therapeutic strategies customized to the individual patient represent societal and economical urgencies. Progressive improvement in diagnosis and treatment procedures require a thorough understanding of the underlying genetic mechanisms of the disease. Recent advances in microarray technologies together with the decreasing costs of the specialized equipment enabled affordable harvesting of time-course gene expression data. The high-dimensional data generated demands for computational tools able to extract the underlying biological knowledge. This thesis is concerned with developing new methods for analysing time-course gene expression data, focused on identifying differentially expressed genes, deconvolving heterogeneous gene expression measurements and inferring dynamic gene regulatory interactions. The main contributions include: a novel multi-stage feature selection method, a new deconvolution approach for estimating cell-type specific signatures and quantifying the contribution of each cell type to the variance of the gene expression patters, a novel approach to identify the cellular sources of differential gene expression, a new approach to model gene expression dynamics using sums of exponentials and a novel method to estimate stable linear dynamical systems from noisy and unequally spaced time series data. The performance of the proposed methods was demonstrated on a time-course dataset consisting of microarray gene expression levels collected from the blood samples of patients with ACS and associated blood count measurements. The results of the feature selection study are of significant biological relevance. For the first time is was reported high diagnostic performance of the ACS subtypes up to three months after hospital admission. The deconvolution study exposed features of within and between groups variation in expression measurements and identified potential cell type markers and cellular sources of differential gene expression. It was shown that the dynamics of post-admission gene expression data can be accurately modelled using sums of exponentials, suggesting that gene expression levels undergo a transient response to the ACS events before returning to equilibrium. The linear dynamical models capturing the gene regulatory interactions exhibit high predictive performance and can serve as platforms for system-level analysis, numerical simulations and intervention studies
    corecore