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Abstract 
During the past few years, innovations in the DNA sequencing technology has led to an 
explosion in available DNA sequence information. This has revolutionized biological 
research and promoted the development of high throughput analysis methods that can take 
advantage of the vast amount of sequence data. For this, the DNA microarray technology 
has gained enormous popularity due to its ability to measure the presence or the activity of 
thousands of genes simultaneously. 

Microarrays for high throughput data analyses are not limited to a few organisms but may be 
applied to everything from bacteria to higher Eukaryotes and new applications are constantly 
being reported. In this PhD thesis, various applications for DNA microarrays are explored. 
Consequently, research results are presented where the use of microarray data has been 
essential. The thesis comprises three main topics: gene expression analysis, analysis of 
chromosomal aberrations and DNA sequence dependent gene expression. 

First, this thesis contains a description of how the gene expression profiles from children 
with acute lymphoblastic leukemia may be used to improve the diagnosis of these patients 
and potentially improve their treatment. Next, a new method is presented that utilizes a large 
repository of gene expression microarray data to derive functional associations between for 
instance a mutant and a compendium of gene expression responses. By this approach, an 
extensive functional characterization of a given mutant or experimental factor such as 
compound treatment may be obtained. The same characterization could otherwise be time 
consuming and require an extensive biological knowledge of the investigated biological 
system. 

Often, solid tumors are characterized by a multitude of chromosomal aberrations where 
parts of the chromosomes have either been lost or additional copies might have been 
gained. By targeting microarrays at chromosomal DNA, it is possible to measure the so-
called DNA copy number and thereby obtain a DNA copy number profile of each 
chromosome. Numerous analysis methods have been published that aims at identifying the 
exact breakpoints where DNA has been gained or lost. In this thesis, three popular methods 
are compared and a realistic simulation model is presented for generating artificial data with 
known breakpoints and known DNA copy number. By using simulated data, we obtain a 
realistic evaluation of each method’s ability to analyze DNA copy number data. Moreover, 
our study shows that analysis methods developed for cancer research may also successfully 
be applied to DNA copy number profiles from bacterial genomes. However, here the 
purpose is to characterize variations in the gene content of various strains of the bacteria, 
e.g. Escherichia coli, with regard to genes involved in pathogenesis. 

Finally, this thesis present results demonstrating that the gene expression level is sequence 
dependent, that is, it depends on both DNA structure and codon usage bias. Here, 
microarray data was used to verify predictions of highly expressed genes. Moreover, the 
codon bias of microbial genomes was found to constitute an environmental signature. For 
example, soil bacteria have very similar codon bias.  

 



 

 



   

iii 

Resumé 
 

Inden for de sidste få år har store fremskridt i udviklingen af DNA-sekventeringsteknologien 
medført en eksplosion i tilgængelig DNA-sekvensinformation. Dette har revolutioneret den 
biologiske forskning og fremmet udviklingen af ’high-throughput’ analysemetoder, som kan 
drage fordel af disse svimlende mængder af sekvensdata. I denne forbindelse har DNA-
microarray-teknologien vundet enorm popularitet pga. dens evne til simultant at måle 
tilstedeværelsen eller aktiviteten af tusindvis af gener.  

Microarrays til brug for high-throughput dataanalyser er ikke begrænset til enkelte 
organismer, men kan bruges på alt fra bakterier til højere Eukaryoter og teknologien finder 
derfor hele tiden nye anvendelsesmuligheder. I denne Ph.d.-afhandling udforskes forskellige 
anvendelsesmuligheder for DNA microarrays. Således præsenteres forskningsresultater 
hvor microarraydata har spillet en væsentlig rolle. Afhandlingen omfatter tre hovedemner: 
genekspressions-analyse, analyse af kromosomale afvigelser og genekspressionens 
afhængighed af DNA-sekvensen. 

Først vises hvorledes genekspressions-profilerne fra børn med akut lymfocytisk leukæmi 
kan benyttes til at forbedre diagnosen af disse patienter og på sigt potentielt forbedre deres 
behandling. Dernæst præsenteres en ny metode, der udnytter de store mængder af offentlig 
tilgængeligt genekspressions-microarray-data til at finde funktionelle associationer imellem 
f.eks. en mutant og et kompendium af genekspressionsresponser. Denne metode viser sin 
anvendelighed både for bagegær og planten Arabidopsis thaliana (gåsemad). Med denne 
fremgangsmåde opnås en omfattende funktionel karakterisering af en given mutant; en 
karakterisering som ellers kan være både tidskrævende og afhænge af en stor biologisk 
baggrundsviden af det pågældende system. 

Mange kræftformer er karakteriseret ved forskellige kromosomale afvigelser, hvor dele af 
kromosomerne er enten gået tabt eller blevet multipliceret. Vha. microarrays rettet mod 
kromosomalt DNA er det muligt at måle det såkaldte DNA kopital og derved opnå en DNA-
kopitals-profil af de enkelte kromosomer. Rigtig mange analysemetoder er blevet publiceret 
til at analysere denne type data og derved identificere de præcise brudpunkter, hvor DNA er 
enten gået tabt eller blevet duplikeret. Vi sammenligner 3 populære metoder og præsenterer 
samtidig en virkelighedstro simuleringsmodel til at generere data med kendte brudpunkter 
og kendte DNA kopital. Ved brug af simuleret data opnår vi en realistisk evaluering af de 
forskellige metoders evne til at analysere DNA-kopitals-data. Vores studier viser desuden at 
analysemetoder udviklet til kræftforskningen også kan bruges til at analysere DNA-kopitals-
profiler fra bakterielle genomer. Her er målet dog at karakterisere variationer i 
tilstedeværende genmateriale for forskellige stammer af den samme bakterie, f.eks. 
Escherichia coli, bl.a. med hensyn til gener involveret i patogenese.  

Endelig indeholder denne afhandling studier af hvorledes DNA-sekvensen i form af 
strukturelle egenskaber og foretrukne codons har indflydelse på genekspressionsniveauet. 
Her blev microarraydata benyttet til at verificere forudsigelser om højtudtrykte gener. 
Desuden viste mønsteret for mikroorganismers foretrukne codons at være en vigtig faktor 
for deres foretrukne miljø. Således har f.eks. tarmbakterier meget ens codon præferencer.  
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Preface 
 

This Ph.D. thesis is written for BioCentrum, The Technical University of Denmark, under the 
Biotechnology program. The majority of the research has been done at the Center for 
Biological Sequence Analysis at BioCentrum supervised by associate professor Steen 
Knudsen (1st year) and associate professor David W. Ussery (2nd and 3rd year), and co-
supervised by assistant professor Henrik Bjørn Nielsen. Part of the research was done at 
the University of California at San Francisco (UCSF) supervised by assistant professor Jane 
Fridlyand. The project has been finance by a PhD scholarship from the Technical University 
of Denmark. 

This thesis will provide an introduction to the microarray technology and data analysis, 
followed by three parts describing different applications of the microarray technology and its 
usage. These three parts comprise a total of seven papers including the following topics: 
microarrays for gene expression analysis, microarrays for comparative genomics and use of 
microarray data for estimating sequence dependent gene expression. 
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The DNA Microarray Revolution 
Over the past few years, innovations in DNA-sequencing technology has led to an explosion 
in DNA sequence information resulting in availability of sequences from more than 300 
bacterial genomes and about 30 archaeal genomes, in addition to extensive nucleotide 
sequences information for higher eukaryotes, including human (International Human 
Genome Sequencing Consortium, 2004), mouse (Nadeau, et al., 2001) and fly (Adams, et 
al., 2000).  

This has revolutionized biological research. The explosion in nucleotide sequence 
information allows for the comparison of genetic information between individuals or the 
analysis of gene expression including possible splice-variants to provide detailed disease 
patterns, and possibly tailoring treatment. Moreover, the vast amount of sequence data may 
be searched for industrial purposes, to identify enzymes able to, for example, break down oil 
pollutants or to synthesize chemicals with less stress on the environment. 

This sudden explosion in available sequence information data has promoted the 
development of high-throughput genetic approaches for analyzing and utilizing vast amount 
of sequence data, including computational approaches to comparative genomics and 
experimental approaches such as the microarray technology. 

During the past few years, the DNA microarray technology has become popular both among 
the scientific community and in the industry due to its ability to simultaneously measure the 
presence, the activities in term of gene expression and the interactions of thousands of 
genes, thus, providing new insights into the mechanisms of living systems. In fact, no other 
methodological approach has transformed biological research more in the recent years. With 
the microarray technology, researches are no longer restricted to studies of individual 
biological functions of a few related genes. Consequently, microarrays have been applied in 
a vast range of biological studies and have immediately yielded new and interesting 
biological insight.  

Nonetheless, due to the large volumes of data generated, the analysis of microarray data is 
far from trivial and in many cases, advanced statistics are required. In the following three 
introductory chapters, microarray technology will be presented and relevant analysis 
approaches will be introduced. Examples of the application of the technology are then given 
in the subsequent chapters, including classification of childhood acute lymphoblastic 
leukemia in Chapter 4, prediction of functional associations by response overlap (FARO) in 
Chapter 5, analysis of genomic DNA variations in Chapter 6 and Chapter 7, and analysis of 
sequence dependent gene expression in Chapter 8, Chapter 9 and Chapter 10. 
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Chapter 1 DNA Microarrays 
Microarray-based methods for high-throughput monitoring of gene expression was first 
described in 1995 (Schena, et al., 1995), although the idea date all the way back to the 
discovery of DNA hybridization in the 1960s (Marmur and Doty, 1961), the invention of the 
blotting technology in the 1970s (Southern, 1975), and the suggested potential of array 
technology in genomics in the 1980s (Poustka, et al., 1986). During the past decade, the 
technology has rapidly developed into a complex field comprising both genomics, 
transcriptomics, informatics and advanced statistics.  

The microarray technique is used in a wide variety of applications like gene expression 
analysis (Schena, et al., 1995; Schena, et al., 1996), including analysis of gene expression 
profiles from cancer (DeRisi, et al., 1996), single nucleotide polymorphism (Cutler, et al., 
2001), splice-variant analysis, identification of unknown exons (Hoheisel, 2006), and 
analysis of DNA-protein interactions  (Bulyk, et al., 1999). 

Microarrays directed at the genome sequence have been widely used for comparative 
genomics, to identify differences in gene content such as changes in DNA copy number and 
chromosomal aberrations often found in cancer and developmental abnormalities including 
mental retardation (Albertson, et al., 2003; Menten, et al., 2006; Vissers, et al., 2003) or for 
complex mutations in human disease genes (see for example Chapter 6). Recently, 
developments in the technology have allowed the analysis of chromosomal imbalances in a 
single cell (Le Caignec, et al., 2006).   

In particular, development of solid tumors is associated with acquisition of complex genetic 
alterations. Consequently, microarray methods may be employed to extensively map cancer 
genomes and detect chromosomal aberrations. Moreover, by using the same arrays for 
DNA copy number analysis and expression analysis, it is possible to assess the relationship 
of mRNA expression levels to DNA copy numbers broadly across the genome (Pollack, et 
al., 2002). 

Microarray approaches are also useful in microbial comparative genomics and have been 
used to detect variations in the baseline sequence, such as in emerging pathogenic strains 
(Anjum, et al., 2003; Fukiya, et al., 2004; Winterberg, et al., 2005) and to detect horizontal 
gene transfer (Fitzgerald, et al., 2001). Due to their much lower complexity than mammalian 
genomes, it is – in fact - easier to obtain copy number information from bacteria. Because 
the concentration of each portion of the genome in the hybridization mixture is relatively 
higher, the corresponding signals will also be higher and easier discernible (see for example 
Chapter 7). 

1.1 The Technology 
A DNA microarray is a high-density array of known single stranded DNA (ssDNA) 
sequences attached to a solid surface. These sequences are called probes and 
complementary single stranded sample sequences, so-called targets, can be hybridized to 
these probes (see Figure 1-1). By labeling the targets with fluorescence or radioactivity, the 
amount of hybridized target can be measured. Due to their small dimensions, a vast number 
of targets might be measured much faster using DNA microarrays than by traditional gel-
based analysis methods. Moreover, only very small sample volumes are required which is 
an important feature when dealing with expensive or limited material. 

Two general methods exist for manufacturing DNA microarrays based on two different 
strategies for immobilizing DNA onto a chip. The first one is spotted microarrays, where pre-
synthesized DNA is immobilized onto a substrate surface, and the second method is ‘in situ’ 
synthesis of DNA directly on a substrate surface.  
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Owing to their flexibility and value, mechanically spotted microarrays have been the most 
popular platform. However, with the recent advances in flexibility for customizing ‘in situ’ 
synthesized DNA microarrays, this platform has become increasingly popular. An overview 
of both technologies is given in the following. 

Spotted Microarrays are often known as Stanford cDNA arrays. However, the term ‘Stanford 
array’ refers specifically to the array being developed at Stanford University in the 90’s 
(Schena, et al., 1995; Schena, et al., 1996), while ‘spotted arrays’ includes any array being 
fabricated using a spotter. In this type of arrays, a robot is used to move small quantities of 
probes in solution from a microtiter plate to the surface of a glass slide. Here, probes may be 
cDNA, PCR-products or synthetic oligonucleotides. The probes may be immobilized onto a 
substrate surface by several means, and the binding can be either covalent, including co-
polymerisation or non-covalent, including non-covalent charge interactions (Auburn, et al., 
2005). 

Besides their great flexibility in customization of the microarray content, another advantage 
of spotted arrays is that they usually allow for hybridization of two samples simultaneously to 
each slide by labeling targets from the first sample with green fluorescent dye (Cy3) and 
targets from the second sample with red fluorescent dye (Cy5). Consequently, resulting 
signal ratios are not dependent on the hybridization efficiency of individual probes but only 
on the relative amount present in the two samples, where an equal amount of targets in the 
two samples will result in a yellow fluorescence. 

Because of the numerous technical challenges that robotic spotting poses, such as variable 
spot size and varying binding efficiency of spotted ssDNA, an experienced microarray facility 

 
Figure 1-1. Cartoon illustration of DNA microarray probes and target hybridization (source: Wellcome 
Trust Centre for Human Genetics, http://www.well.ox.ac.uk/).  
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is required to set up and manufacture this type of microarrays to reduce artefacts from the 
spotting process. 

While oligonucleotides may be fabricated and spotted onto the microarray as described 
above, they may also be synthesized ‘in situ’ directly onto a microarray slide by light directed 
synthesis, so-called photolithography. Photolithography combines the power of producing 
oligomer arrays of extremely high density and flexible patterns with a relatively simple 
procedure for independently directing the sequence of the molecules synthesized at the 
individual array positions. In addition, it facilitates large-scale chip production. 

The principle of this method is illustrated in Figure 1-2 (Beier and Hoheisel, 2000; Maskos 
and Southern, 1993; Southern, et al., 1999). Generally this method of DNA immobilisation 
has several advantages. The yield is high and the distribution of the DNA is consistent over 
the array. On the other hand, the in situ method is not optimal for immobilisation of longer 
oligonucleotides, compared to other methods (Southern, et al., 1999). Another problem is 
that the necessary techniques are not easily available in individual laboratories. Because of 
the latter, the in situ technique has - until recently - been provided mainly through the chip 
manufacturing company, Affymetrix.  

Recently, another provider, NimbleGen Systems Inc, has introduced an alternative approach 
comprising a maskless method of in situ DNA synthesis using a digital micromirror array 
(Singh-Gasson, et al., 1999). This new approach has increased the flexibility of in situ 
synthesis tremendously, since it is now possible to order customized high-density 
oligonucleotide microarrays at a fraction of the cost of customized Affymetrix arrays 
manufactured by the use of masks.  

 
Figure 1-2. Principle of photolithography: light directed DNA synthesis on a wafer surface. (A) 
Photosensitive groups are exposed to UV light through a mask. (B) The exposed groups are converted 
to a hydroxy-group. (C) A specific photosensitive nucleotide, T, is attached to the hydroxy-groups. (D) 
After several cycles, where step (A), (B) and (C) have been repeated with different masks for the four 
nucleotides: A, T, G and C, an oligonucleotide is build. 
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1.2 Array comparative genomic hybridization (aCGH) 
Comparative genomic hybridization (CGH) is a technique by which it is possible to detect 
and map genetic changes such as chromosomal aberrations involved in gain or loss of 
genomic DNA. Figure 1-3 provides an overview of the various chromosomal aberrations that 
may be detected using CGH and the corresponding chromosomal profiles that may be 
obtained. While a normal diploid genome, such as the human, may experience a number of 
different amplifications, non-reciprocal translocations and deletions, it is not possible to 
distinguish between subtypes, e.g. double minutes (extra-chromosomal amplifications of 
specific DNA fragments) will result in the same profile as multiple distributed insertion 
amplifications. Nonetheless, microarray formats of CGH, array CGH (aCGH), provide a high 
throughput and relatively fast procedure for obtaining high-resolution copy number data. For 
this purpose, a variety of array platforms have been used, including large insert genomic 
clones, such as bacterial artificial chromosomes (BACs) (Snijders, et al., 2003; Veltman, et 
al., 2003), cDNA clones (Pollack, et al., 1999) and oligonucleotides for array spots 
(Carvalho, et al., 2004). 

The experimental procedure may vary slightly depending on the array platform. Typically, a 
two-color scheme is used (Figure 1-4) where a test sample and a reference genomic sample 
from a healthy individual or healthy tissue from the same patient are co-hybridized to a 
representation of the genome. Then corresponding intensity ratios are measured for each 
clone. From this, copy number changes can be identified (Albertson, et al., 2003). To block 
repetitive sequences in the genome, differentially labeled genomic DNA is combined with 
unlabeled Cot-1 DNA (Fridlyand, et al., 2004; Pollack, et al., 1999).  

Another strategy to obtain high resolution copy number data is to reduce the complexity of 
human samples by using representations (e.g. small (<1.2 kb) bglII restriction fragments), 
which has been found to improve signal-to-noise performance (Lucito, et al., 2003). This is 

 
Figure 1-3. Illustration of the various copy number aberrations detectable by aCGH. HSR: homo-
geneously staining region (Albertson and Pinkel, 2003). 
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the idea behind representational oligonucleotide microarray analysis (ROMA), which has 
evolved from an earlier method, representational difference analysis (RDA). Here, a 
microarray is constructed to consist of 70mer oligonucleotide probes designed to hybridize 
to representations of the human genome where the representations are characterized by 
reduced nucleotide complexity to increase the concentration of DNA complementary to the 
probes. Samples are prepared to consists of corresponding representations of the genome, 
e.g. by using PCR to select for small (<1.2 kb) bglII restriction fragments. This results in 
roughly 200,000 fragments interrogating approximately 2.5 percent of the human genome 
(Lucito, et al., 2003).  

 

Test Genomic DNA Reference Genomic DNA

Loss of DNA copies in tumor Gain of DNA copies in tumor

Ratio

Position on Sequence

Cot-1 DNAA.

B.

D.

C.

 
Figure 1-4. The experimental procedures of aCGH. (A) Labelled test and reference genomic DNA is 
pre-hybridized with cot-1 DNA and (B) co-hybridized to a microarray slide. Measured intensity ratios
may be (C) mapped to a location on the chromosome (D) producing a ‘copy number profile’. 
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Chapter 2 Microarray Data Pre-processing 
In the following, the most common pre-processing steps for microarray data will be 
introduced. While estimation of gene expression indices applies solely to gene expression 
data, use of spatial information in terms of segmentation approaches, may aid considerably 
in noise reduction for data from DNA copy number arrays.  

2.1 Normalization 
Microarray data from gene expression experiments are widely known for their high level of 
noise partly due to mRNA instability and sample size variations. Consequently, in order to 
make microarray data comparable, the intensity values must be normalized. Numerous 
statistical and physical models have been proposed to model these variations to normalize 
the data, i.e. to remove systematic sources of variation and make experiments comparable.  

Simple linear scaling based on assumptions like constant total amount of RNA or constant 
expression of housekeeping genes may be applied for normalization (Knudsen, 2002). 
However, these assumptions are not always valid. The total amount of RNA is, for example, 
not constant when comparing starved cells with normal cells, and the expression of 
household genes have been shown to vary under different conditions (Schadt, et al., 2001). 

Generally, linear scaling is at best sub-optimal, since the distribution of gene expression 
data is rarely linear as illustrated in Figure 2-1A. This may be the effect of, for example, non-
linear scaling of the fluorescence signal and probe saturation. Figure 2-1 also demonstrates 
an MA-plot, a popular way of illustrating probe level intensities from two gene expression 
microarray samples. It was originally suggested for comparing the red and green (R,G) – 
Cy3 and Cy5 cyanine dyes - intensities from two-color microarrays (Dudoit, et al., 2002b), 
and the illustrated data transformation has been found particularly useful for normalization of 

 

I     II. 

Figure 2-1. MA-plots for two arrays, before (I) and after (II) normalization. Red: line corresponding to 
the expected M value of all probes in case of equal gene expression for the two samples. Green: The 
lowess fit to the actual M values.  
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microarray data (Yang, et al., 2002). For the MA-plot, the axes correspond to: 

M = log2R/G  

A = log2√(R × G). 

Figure 2-1 illustrates how easy it is to perform non-linear, intensity-dependent normalization 
using the robust scatter plot smoother ‘lowess’ implemented in the statistical software 
package R (Yang, et al., 2002). Numerous additional non-linear normalization methods have 
been developed, including ‘qspline’ developed here at CBS (Workman, et al., 2002) and 
‘quantile’ developed at Berkeley (Bolstad, et al., 2003).  

After normalization of the microarray data, the exact amount of antisense RNA (aRNA) 
applied to each chip is not so crucial anymore, since all chips are normalized against each 
other. For spotted microarrays, additional considerations might have to be taken into 
account when normalizing the data, e.g. considering print tip variation by performing a 
within-print-tip-group normalization where each print tip group is fitted individually (Yang, et 
al., 2002). 

All of the normalization procedures described above have been developed for pre-
processing of gene expression data and as such, their assumptions regarding the 
distribution of the data, does not always apply to DNA copy number data (Snipen, et al., 
2006). Often median centering of DNA copy data may provide sufficient normalization for 
this type of data (Snijders, et al., 2001; Snijders, et al., 2003). However, recently, some 
methods have been proposed for normalization for experimental artifacts such as spatial 
bias (Neuvial, et al., 2006) and other systematic biases (Khojasteh, et al., 2005).  

2.2 Expression Index 
For oligonucleotide arrays (including both spotted and in situ synthesized arrays), measured 
intensities may be summarized for probes targeting the same gene. These so-called 
expression values must be calculated for each gene. On the other hand, cDNA arrays and 
arrays spotted with PCR products do not require probe level summary to extract gene 
expression levels since a single probe usually span the entire gene sequence. 

On an Affymetrix chip there is a perfect match (PM) and a mismatch (MM) for each probe 
(probe pair). The purpose of the mismatch is to represent the background, and the 
expression index for a probe was originally calculated by Affymetrix as the average 
difference of probe pairs in a probe set. However, the importance of the mismatch has been 
discussed (Irizarry, et al., 2003b; Li and Wong, 2001b). Often, an MM probe can exhibit 
higher intensity levels than the corresponding PM probe (Naef and Magnasco, 2003), 
resulting in many negative expression values when simply subtracting the intensity for the 
MM probe from the intensity of the PM probe. Since this makes little biological sense, Li & 
Wong suggested calculating the expression index using only perfect matches (Li, et al., 
2001b). Furthermore, their method for calculating the expression index is based on the fact 
that all probes are not equally good, but some tend to always have an intensity level lower or 
higher than the average. Therefore, a scaling factor for each probe is found based on 
empiric data and a multiplicative model fitted using least squares (Li, et al., 2001b). 

A similar model may be fitted using a more robust method than least squares, such as 
median polish (Holder, et al., 2001). Also, the same robust linear fitting procedure may be 
used to fit a quite different log scale linear model to estimate log scale expression values 
from background-corrected, quantile normalized and log2-transformed probe intensities 
(Irizarry, et al., 2003a; Irizarry, et al., 2003b). This robust multi-array average (RMA) 
expression measure may further be adjusted for the GC content of the oligonucleotides 
(GCRMA) (Wu, et al., 2004). 
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2.3 Choice of pre-processing method for gene expression data 
The choice of preprocessing methods depend on the desired analysis and may impact the 
list of differentially expressed genes significantly (Shedden, et al., 2005). For example, a 
recent publication found that for co-expression analyses, the Li-Wong summary method is 
the preferred method, while the RMA/GCRMA method is recommended for detection of 
differentially expressed genes (Harr and Schlotterer, 2006). 

Affycomp II (http://affycomp.biostat.jhsph.edu/) is another resource that may help the 
researchers to choose between the vast range of pre-processing algorithms available. This 
web-based resource is set up to benchmark Affymetrix GeneChip expression measures 
(Cope, et al., 2004; Irizarry, et al., 2006). Here, authors of a pre-processing algorithm can 
benchmark their method on a number of spike-in datasets and compare the performance to 
previously submitted methods. 

2.4 Segmentation 
Finding a clear separation between DNA segments corresponding to different copy numbers 
of DNA is essential for the analysis of DNA copy number data. Consequently, the use of 
spatial information for noise reduction applies mainly to data from DNA copy number arrays 
such as array CGH. To reduce noise and increase the reliability of change point detection, 
anything from simple smoothing to advanced statistical segmentation algorithms has been 
proposed. The latter to automatically partitioning the probe measurements into sets 
corresponding to the same copy number by exploiting the physical dependency of the 
nearby probes. 

 

Figure 2-2. Illustration of copy number profiles obtained from three human cancer cell lines. Here, the 
log2-ratio between cancer sample and normal control is plotted as a function of chromosomal position 
for 22 chromosomes and the X chromosome. Gains are visible with log2-ratios above 0 and losses are 
visible with log2-ratios below 0. Examples of clearly visible breakpoints are indicated with red arrows. 



14 Part I  INTRODUCTION  

 

Figure 2-2 provides a typical example of the differing complexity of copy number profiles 
from three human cancer cell lines. In the first example, the breakpoints are easy to spot 
(Figure 2-2A), but as the complexity increases, it becomes virtually impossible to manually 
spot the breakpoints (Figure 2-2C). The clear separation between segments corresponding 
to different copy numbers may be complicated by various sources of noise, including 
impurities in the sample (a mixture of tumor cells and surrounding cells), and unknown 
ploidy of the cells (Figure 2-3). Other sources of noise include random experimental noise 
and disease heterogeneity, e.g. certain aberrations occur only with a certain frequency for a 
given cancer subtype. 

 

 

 

 

Figure 2-3. Illustration of the expected log2-ratio as a function of the true copy number in the abnormal
cells and the proportion of abnormal cells in a sample. (A) Reference cell ploidy = 2. (B) Reference cell 
ploidy = 3.  
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Chapter 3 Downstream Data Analysis 
Microarray experiments produce enormous amounts of data. Therefore, the scientist faces a 
huge challenge, both in terms of selecting an appropriate statistical method to interpret the 
results with, and to exploit available computational power to process the data. While the 
number of samples is usually low due to cost or other limitations in sample availability, the 
number of genes probed for is usually very high. Consequently, use of advanced 
multivariate statistical methods and multiple testing procedures is necessary to obtain the 
correct interpretation of the data. Applying these methods, all sorts of analyses may be 
performed, including identification of differentially expressed genes, pathway analysis, 
classification of samples and genes and identification of copy number alterations.  

3.1 Testing 
Following preprocessing of the microarray data, intensity values may now be compared to 
identify up- or down-regulated genes or to identify gain or loss of genetic material. A number 
of different statistical tests may be applied to derive the significance, depending on the 
experimental design and the specific question in mind. The most popular tests include 
paired and un-paired two-sample T-test and the analysis of variance (ANOVA). The power 
of the t-test and the ANOVA is highly dependent on the number of replicates since the 
estimation of the P-value is based on variance. Thus, with a high number of replicates for 
each condition in the microarray, experimental variance estimates may be obtained with 
more confidence. While the t-test and ANOVA both are fairly robust to moderate departures 
from the underlying assumptions of normally-distributed data and equality of variance, the 
presence of very small or unequal sample sizes can decrease the statistical power 
considerably (Jafari and Azuaje, 2006).  

The student’s T-test is based on the assumptions that the data are normally distributed, and 
that the variances are the same for both groups. The T-test estimates the probability that the 
gene expressions for both groups come from the same T-distribution, from which it derives a 
probability, the so-called P-value. If the P-value is low (typically <0.05), there is a 5% chance 
of incorrectly rejecting H0, the hypothesis that no true difference exists between expression 
levels in the two tested groups. The T-test is then said to be significant at a 5% significance 
level (Montgomery, 2000). When evaluating gene expressions, the variance for the two 
groups can differ significantly. In this case, Welsh T-test, which assumes unequal variances, 
may be performed. Here, testing of the hypothesis of equal means takes the number of 
degrees of freedom into account. The paired T-test may increase statistical power in cases 
where two conditions can be assumed to be dependent, such as patient samples 
before/after treatment. In this case, the hypothesis is that the difference of all pairs is zero, 
thereby reducing noise from between patient variance (Montgomery, 2000). 

When experiments may be divided into more than two classes, an analysis of variance 
(ANOVA) may be applied. Using the ANOVA, it can be tested if one or more groups differ 
significantly from the others. The ANOVA uses the sum of squares as a measure of variance 
and compares the variance between groups to the variance within groups. The resulting F- 
statistic is compared to an F-distribution to determine significance. This test is based on the 
assumptions of normally-distributed data and equal within-group variance (Montgomery, 
2000). The ANOVA may further be applied in cases where two or more conditions are varied 
simultaneously, e.g. a two-way ANOVA with two types of treatment and two types of disease 
subtypes.  

Alternatively, non-parametric tests may be used to avoid making any assumption as to the 
specific underlying distribution model, that is, non-parametric tests are distribution free. 
Therefore, they may be less sensitive to outliers and deviations from e.g. normality. The two-
sample Kolmogorov-Smirnov test is one of the most useful and general non-parametric 
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procedures for two-sample comparisons. It may be used to determine whether two 
underlying probability distributions differ, that is, if data from x and y were drawn from the 
same or differing continuous distributions. Thus, it is sensitive to differences in both location 
and shape of the distributions (Conover, 1971). 

Rank-based procedures, such as the Wilcoxon rank sum test, are based on a comparison of 
ranks. Any variable that can be ordered can be assigned ranks based on this ordering from 
smallest to largest. The Wilcoxon rank sum test compares the central location of two 
independent unpaired populations and is the non-parametric, rank-based analogue to the 
two sample t-test. Furthermore, the Ansari-Bradley two-sample test may be applied to test 
for differences in scale parameters, that is, if two distributions differ in variance (Bauer, 
1972).  

Finally, exact tests may be used for finding over- or under represented features in a list.        
Consider the case where a list with genes of interest has been identified by one of the above 
described procedures. Instead of just skimming the list and manually attempting to identify 
prominent traits, one wants to determine with a high statistical certainty, if a particular 
feature such as ‘cancer oncogene’ or ‘ribosomal protein’ is present in the list at a higher rate 
than expected by chance. For this, one may use an exact test such as Fisher’s exact test or 
other tests in the hypergeometric or binomial distributions. The main difference between 
tests in these two distributions is that the binomial models sampling with replacement while 
the hypergeometric models sampling without replacement (Draghici and Krawetz, 2003). 
Exact tests are very popular for analysis of overrepresentation of genes within certain 
pathways, in particular, it has often been used for analysis of over representation of given 
gene ontology (GO) terms (Ben-Shaul, et al., 2005; Young, et al., 2005). 

3.2 Correction for Multiple Testing 
Since microarray data comprises thousands of genes, the same test is applied thousands of 
times to the same microarrays posing a multiple testing problem that has to be taken into 
account when determining the significance of an identified difference. In any testing 
situation, we may commit one of two types of errors: a type I error (a false positive) by 
falsely rejecting the null hypothesis - no true difference in means exists - or a type II error 
(false negative), when failing to reject the null hypothesis - true difference in means exists. 
While it is not feasible to simultaneously minimize the chance of committing either error type 
given the data, one usually seeks a trade-off between the two types of errors. Consequently, 
the type I error rate is usually controlled at an acceptable level, alpha, while selecting testing 
procedures that aim at minimizing the type II error rate, that is, maximize power, while 
retaining the type I error at level alpha. 

Especially, when working with thousands of genes, the chances of a false positive among 
numerous tests will increase enormously if using standard significance thresholds for each 
individual test. For example, with a standard significance threshold, alpha = 0.05, one would 
expect 0.05 false positives when testing one gene, we may expect 500 false positives when 
testing 10 000 genes. Therefore, it is necessary to make an adjustment - multiple testing 
correction - to avoid a large number of false positive conclusions. This may be obtained by 
tightly controlling the type I error rate. 

In multiple testing cases, the number of false positives (type I errors) may be controlled 
either by the family-wise error rate (FWER) - probability of at least one false positive, or by 
the false discovery rate (FDR) - the maximum expected proportion of false positives among 
predicted positives (Benjamini and Hochberg, 1995). The FWER is controlled, for example, 
by the classical Bonferroni procedure, where the P-values that are accepted at a 
significance level, alpha, must be below alpha divided by the number of tests (Bonferroni, 
1936). The extent to which a Bonferroni correction is necessary has been discussed, since it 
is very conservative and results in only very few genes are being rejected below the 
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corrected significance threshold when testing several thousands of genes. This may be 
exemplified in a volcano plot (Figure 3-1). However, the assumption that gene expression 
measures are independent is clearly not true since genes clusters, i.e. they are connected in 
networks and pathways. Consequently, other procedures for controlling the FWER have 
been suggested, for example a permutation based single-step maxT procedure (Westfall 
and Young, 1993) or a bootstrap re-sampling procedure to obtain consistent estimators of 
the null distribution for defining test-statistic cut-offs and derive adjusted P-values. One may 
also decide to accept a certain number of false positives, using the generalized family-wise 
error rate (gFWER), where the probability of k+1 false positives is maintained at level alpha 
(Dudoit, et al., 2004). Here, k is an arbitrary number of additional false positives one is 
willing to accept compared to the standard FWER. 

3.3 Cluster Analysis  
Cluster analysis is a method for reducing the dimension of multivariate data in order to 
visualize the results of, e.g. a microarray experiment or to discover meaningful patterns. 
Consequently, the method is useful for class discovery purposes (Xing, 2003). For example 
by grouping genes or experiments in clusters with similar expression patterns, one may gain 

 
Figure 3-1. Volcano Plot. The P-value as a function of the log2-foldchange for (blue) real data example 
and (red) permuted data where the class labels have been shuffled before estimating P-values. The 
(green) horizontal line corresponds to the Bonferroni cut-off at alpha=0.05 for the 2839 genes in the 
example. Few genes are significant at this cut-off, while many genes have P-values below that expected 
by random (minimum random P-value is indicated with a grey dotted line). 
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an overview of which genes or samples that may be related somehow. The problem is 
formalized in the following. 

Associated with each sample in the population of interest, is a vector of variables (e.g. gene 
expressions) describing each sample (Figure 3-2). Given these vectors of explanatory 
variables, x1, . . . ,xn, recorded for k samples, the task is to identify clusters, that is, groups or 
sets of similar samples and/or genes. 

The methodology is not restricted to microarray data, and consequently, the variables x(n) 
can be a mix of quantitative numerical data such as gene expression indices (continous) or 
the number of genes (discrete); or qualitative such as tumor grade or pathogenecity. 

Distance Measures and Linkage 
Inherent in cluster analysis is a notion of distance or similarity between observations or 
features to be clustered. Consequently, the matrix of n×k values may be transformed into a 
k×k distance matrix of pairwise distances between the k samples to be clustered (or an n×n 
distance matrix of pairwise distances between the n observations) (Figure 3-2). 

Before transforming observed values into a distance matrix, scaling and centering of the 
data might be necessary. Centering is performed by subtracting the sample means. Scaling 
is performed by dividing by the sample standard deviations. By centering and scaling, the 
effect of one observation or one variable is not considered more important than the next one 
by the clustering algorithm. 

Several choices of distance metric exist: Euclidian distances, vector angle distance, ‘1 minus 
Pearson correlation’ distances, etc. The applied distance measure may have a large impact 
on the results of a cluster analysis and it should therefore be carefully considered depending 
on the specific research question. For example, if one wants to identify genes in the same 
pathway, i.e. genes responding similarly to a treatment, ‘1-Pearson correlation’ would be a 
good choice. Thereby genes that respond similarly will cluster together independently of 
their absolute gene expression values. On the other hand, if one wants to compare the 
codon preference of different organisms, Euclidian distances would give a better picture at 
how they are related in codon space (see for example Chapter 9). 

A number of different ways exists for defining a distance between two clusters or between a 
single observation and a cluster of observations, e.g. single linkage which is the minimum 
distance between any two observations from each cluster; average linkage which is the 
average of all pairwise distances between the members of both clusters; complete linkage 
which is the maximum distance between any two observations from each cluster; and 
centroid distance which is the distance between their centroids, where a centroid is the 
cluster mean with regard to all variables. The shape of the resulting clusters depends on the 
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Figure 3-2. Example of a n x k data matrix being transformed into a k x k distance matrix of pairwise
distances. 
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choice of linkage. For example, single linkage tends to lead to long, thin clusters, while 
average linkage tends to result in more round clusters. 

Clustering Procedures 
Several methods exist for the actual clustering. One of the most frequently used when 
working with microarray data analysis is hierarchical clustering and it may either be 
agglomerative (bottom up) or divisive (top down). Both approaches provide a hierarchy of 
clusters, from the smallest set, where all observations are in one cluster, through to the 
largest set, where each observation is in its own cluster. Hierarchical clustering results in 
one large cluster tree (dendrogram), which may be cut at any chosen level to give the 
desired number of individual clusters. The advantage with hierarchical cluster analysis is 
that it is deterministic; however, since hierarchical clustering methods usually make use of a 
distance matrix of dimension N2, N being the number of data points, the size of the distance 
matrix becomes prohibitory for large N’s in terms of memory and computational load. 

Partitioning methods are usually more computationally efficient, although many are too 
complex to have exact solutions. Often, only approximate solutions are available and 
reproducibility may become an issue. Moreover, since these methods partition the 
observations into disjoint clusters, they usually require specification of the number of 
clusters. However, the number of reasonable clusters may be estimated by optimizing the 
Silhouette widths (Rousseeuw, 1987). Some examples of popular partitioning methods are 
K-means (Hartigan and Wong, 1979) and partioning around medoids (PAM) (Kaufman and 
Rousseeuw, 1990), where PAM is a robust version of the K-means and has been shown to 
work well for gene expression data (van der Laan, et al., 2003) 

3.4 Classification 
When the classes are known a priori, supervised learning algorithms may be applied - 
commonly referred to as classification. Supervised classification methods try to 
predict/rediscover the known classes by various algorithms. Several supervised 
classification schemes have been devised. Some of the algorithms that have been used for 
classification and characterization of microarray data are simple algorithms such as the k-
nearest neighbor classifier, and some are more complex and involves machine learning.  

Feature Selection 
Feature selection is the most important step in classification since all classification 
algorithms will perform well if a set of genes could be found that were entirely differentially 
expressed between the classes. Unfortunately, it is rarely possible to find such genes, and 
the challenge is then to search for a subset of genes that together might be able to 
distinguish the classes.  

Most gene expressions in microarray data will not contribute to this class distinction (they 
have no discriminatory power) and may actually constitute an unwanted noise that many 
classification methods such as linear discriminant analysis cannot overcome. Therefore, the 
most important task of feature selection is to filter or remove these genes which often 
comprise all but a very small fraction of the entire feature set (Li and Weinberg, 2003).  

Another important reason to do feature selection is to reduce the dimensionality of the data, 
as microarray experiments generally suffer from the problem that the number of samples, n, 
is relatively small compared to the number of genes, p. This may be a problem in statistical 
methods that uses the within-class covariance matrix which is singular if n < p + 1 
(Antoniadis, et al., 2003). 

Feature selection may be performed either explicitly, before building the classifier, or 
implicitly as a part of the classifier training procedure, e.g. by a Bayesian approach 
(Krishnapuram, et al., 2004). However, most common classification schemes do not employ 
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any feature selection, and some sort of prior feature selection is usually required. The most 
simple feature selection methods are one-gene-at-a-time approaches. Here, genes are 
ranked according to a univariate test statistic, e.g. t-statistics (t-test) and F-statistics 
(ANOVA).  

Classification Schemes 
K-nearest Neighbors (KNN) and Nearest Centroid (NC) classification are both based on 
simple distance functions such as the Euclidian distance between pairs of samples in a g-
dimensional space (g is the number of genes). The simple k-nearest neighbor (KNN) 
classification rule finds the k nearest samples by the distance function and predicts the class 
by a majority vote. The principle of KNN is illustrated in Figure 3-3. By always using an odd 
number of k, the situation of a vote tie is avoided (Dudoit and Fridlyand, 2003b). Nearest 
centroid classification is based on estimates of the class average of real samples of known 
class for each gene considered by the classifier (class centroid). By comparing the squared 
Euclidian distance of a test sample to these class centroids, it may be classified as the class 
whose centroid it is closest to (Dudoit and Fridlyand, 2003a). 

Statistical approaches aim at finding a mathematical rule, a so-called discriminant function 
that can separate known classes. Some examples are Quadratic Discriminant Analysis 
(QDA), Linear Discriminant Analysis (LDA) and Diagonal Linear Discriminant Analysis 
(DLDA). DLDA is a simplification of the maximum likelihood estimator for linear discriminant 
analysis by using a diagonal covariance matrix (Dudoit, et al., 2003b). Such maximum 
likelihood estimations has been used for classification by e.g. (Dyrskjot, et al., 2003). Here, a 
test sample is classified according to its proximity to the centroid of a number of classes in 
much the same way as described in the above method of nearest centroid classification. 
However, the squared distances between a sample and class centroid for each gene are 
standardized by the estimated variance for each gene. Thereby, more weight is given to 
genes whose expression is more stable. 

Artificial Neural Networks (ANN) and Support Vector Machines (SVMs) are among the most 
popular machine learning approaches in classification. SVMs represent a powerful 
technique for general linear and nonlinear classification and compared to many of the 
previously described classification methods, SVMs are better at handling data where the 
number of features (e.g. genes) exceeds the number of samples (Li, et al., 2003).  

 
Figure 3-3. Selection algorithm for k nearest neighbour classification with k = 3. The 3 closest 
neighbours are determined by this distance function and indicated with lines. The class of the test 
sample is predicted as class 2, which is the class of the majority of the nearest neighbours. 
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The aim of SVMs is to maximize the margin between a separating hyperplane and the 
closest points from the two classes as sketched in Figure 3-4A. However, often samples are 
not linearly separable as illustrated in Figure 3-4B. Consequently, there is usually a trade-off 
between finding a hyperplane with a large margin and finding a hyperplane that separates 
the data well (minimizing ξi). 

3.5 Performance Evaluation 
Often, in the case of microarray data, the sample pool is not as large as desired and one 
cannot afford to leave out a large part of the data set for validation. However, the error rate 
may be severely under estimated when estimating the error rate of a classifier on the same 
data set as was used to build the classifier. Instead, cross validation is commonly used to 
provide a more accurate estimate of classification error rates. When using cross-validation, 
the training set is split into n smaller parts that in turn are used as test samples while the 
classifier is built using the remaining samples. When working with very small data sets, it is 
common practice to use leave-one-out cross-validation (LOOCV), where the data is trained 
on all but one sample and then tested on the last. On the downside, this training procedure 
carries a high computational burden as it requires the training procedure to be repeated n 
times. Since feature selection if often a major part of a classification scheme involving 
microarray data, when using cross validation to estimate the performance of the classifier, 
the feature selection step should be incorporated as the important features usually are 
unknown (Dudoit, et al., 2003b). 

Matthew’s correlation coefficient may be used as a measure of classification performance. It 
considers the number of true and false classifications in each class as well as the number of 
samples belonging to each class: 
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Figure 3-4. Illustration of the idea of Support Vectors. (A) The margin between the separating 
hyperplane and the closest points from the two classes (the support vectors) should be maximized and 
points from either class must fall on opposite sides of the separating hyperplane. The points lying on 
the boundaries, the open circles, are referred to as support vectors. The larger the margin, the larger is 
the margin for error when later classifying test samples. (B) Training samples may not be linearly 
separable. The data points on the “wrong” side of the discriminating margin may then be weighted 
down to reduce their influence by the use of “soft margins”. Here, the distance of the i’th “misplaced” 
sample from its own class margin, ξi, is minimized as best as possible. The distances, ξ1 and ξ2 should 
be minimized simultaneously with the maximization of the margin. 
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TP and FN are true positives and negatives, respectively, and FP and FN are false positives 
and negatives, respectively (Baldi and Brunak, 1998). 

Pearson’s product-moment correlation and Spearman’s rho (often referred to as Pearson’s 
and Spearman’s correlation coefficients) may be estimated to determine the degree of 
association between two variables. Pearson’s correlation coefficient is the most commonly 
used. It measures the strength of a linear relationship between two variables, whereas 
Spearman’s correlation coefficient is a rank based measure of association between two 
variables. It is more resistant to outliers than Pearson’s correlation coefficient since it relies 
on ranks.  It measures the degree of monotonic relationship and is 1 for perfect monotonic 
increase (where for two variables, x and y, x increases as y increases) and -1 for perfect 
monotonic decreasing, while 0 indicates no monotonic relationship. 

Sensitivity and specificity are both popular measures of performance. While sensitivity is the 
proportion of positive test examples that are correctly classified as positive, specificity is the 
corresponding proportion of negative test examples that are correctly classified as negative 
(Lazarus, 1999). When evaluating classification performance, these measures may be 
formalized as: 

Sensitivity = TP / (TP + FN) 
Specificity = TN / (TN + FP) 

Note that another definition of specificity is also used frequently in the bioinformatics 
literature, although this measure is more correctly referred to as positive predictive value 
(PPV). 

PPV = TP / (TP + FP).  

A detailed performance analysis might be obtained by looking at the receiver-operating-
characteristics (ROC) in a so-called ROC-curve. Here, sensitivity is plotted as a function of 
the false positive rate - corresponding to ‘1 minus specificity’ - and the larger the area under 
the curve, the better the performance. Thus, areas approaching 1 corresponds to a near 
perfect performance. 

 

 

 



 

 

 

Part II 

GENE EXPRESSION ANALYSIS



 

 



 

  25 

Chapter 4 Paper I 
 

Prediction of immunophenotype, treatment response, 
and relapse in childhood acute lymphoblastic leukemia 
using DNA microarrays 
 

Hanni Willenbrock1,4, Agnieszka Sierakowska Juncker1,4, Kjeld Schmiegelow2, Steen 
Knudsen1 and Lars Peter Ryder3 

 
1Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby. Denmark.  
2The Pediatric Clinic II, The University Hospital, Rigshospitalet, Copenhagen, Denmark. 
3Department of Clinical Immunology, Tissue Typing Laboratory, The University Hospital, Rigshospitalet, 
Copenhagen, Denmark 
4These two authors contributed equally to this work  

 

 

ABSTRACT 
Gene expression profiling is a promising tool for classification of pediatric acute 
lymphoblastic leukemia (ALL). We analyzed the gene expression at the time of diagnosis for 
45 Danish children with ALL. The prediction of 5-years event-free survival or relapse after 
treatment by NOPHO-ALL92 or 2000 protocols resulted in a classification accuracy of 78% 
and a Matthew's correlation coefficient of 0.59 independently of immunophenotypes. The 
sensitivity and specificity for prediction of relapse was 87% and 69% respectively. 

Prediction of high vs low levels of the minimal residual disease (MRD) on day 29 (≥0.1% or 
≤0.01%) resulted in an accuracy of 100% for precursor-B samples. The classification 
accuracy of precursor-B- vs T-lineage immunophenotypes was 100% even in samples with 
as little as 10% leukemic blast cells, and the immunophenotype classifier constructed in this 
study was able to classify 131 of 132 samples from a previous study correctly. Our study 
indicates that the Affymetrix Focus Array GeneChip may be used without loss of 
classification performance compared to previous studies using the far more extensive 
U133A+B GeneChip set. Further studies should focus on prediction of MRD as this 
prediction would relate strongly to long-term outcome and could thus determine the intensity 
of induction therapy. 
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INTRODUCTION 
In the Nordic countries acute lymphoblastic leukemia (ALL) has an annual incidence of 
approximately 3.9 per 100,000 children (Hjalgrim, et al., 2003). The diagnosis of ALL is 
currently based on morphological, immunophenotypic, and cytogenetic analysis of a bone 
marrow sample, as well as clinical examinations. Based on biological and clinical features, 
the patients are assigned to risk group adapted therapy, and the 5 year event free survival 
(EFS) rate has increased to more than 75% within the last decade (Gustafsson, et al., 2000; 
Pui, et al., 2002). 

Gene expression profiling of childhood ALL cases has previously shown great promise in 
diagnosing and risk classification of ALL. Several studies have shown that it is possible to 
distinguish between the two major immunophenotypes, precursor-B- (preB-) and T-lineage 
ALL, when applying classification methods based on the genetic profile (Golub, et al., 1999; 
Ross, et al., 2003; Yeoh, et al., 2002). Furthermore, it has been reported possible to predict 
relapse as well as development of secondary acute myeloid leukemia within certain 
subgroups of ALL with 97% - 100% accuracy (Yeoh, et al., 2002).  

The aim of this study was to further explore the potential for prediction of relapse and 
classification of ALL subtypes. We present an attempt for prediction of long term outcome 
and treatment response using microarray analysis of diagnostic bone marrow samples from 
children with ALL who have been treated according to the NOPHO-ALL92 protocol 
(Gustafsson, et al., 2000). The long-term outcome was here assessed by either continuous 
complete remission (CCR), as judged by 5-year EFS, or relapse in the same period. 
Treatment response was predicted according to either low or high (≤0.01% or ≥0.1%) 
minimal residual disease (MRD) measured on day 29 of treatment (Nyvold, et al., 2002). 
Furthermore, we attempted the classification of the two major prognostically relevant 
immunophenotypes, preB- and T-lineage ALL, also for samples with less than 75% leukemic 
blasts. In this study, we based our gene expression analysis on the Affymetrix Focus Array 
GeneChip consisting of 8763 well-characterized human genes from the Affymetrix U133A 
GeneChip. Further material and raw data may be found at http://www.cbs.dtu.dk/~hanni/ 
ALL. 

METHODS 
Patients and material 
The study material included children with ALL for whom cryopreserved mononuclear bone-
marrow cells had been stored at the time of diagnosis, and who were diagnosed between 
January 1st, 1992 and April 1st, 2003 and treated at the University Hospital, Rigshospitalet, in 
Denmark according to the NOPHO ALL-92 protocol or the NOPHO ALL-2000 protocol. 
Patients who failed to achieve remission, died during induction therapy or in remission, or 
who developed a second neoplasm were excluded from the study. Criteria for classification 
as standard (SR), intermediate (IR), high (HR), and very high risk (VHR) have been 
published previously (Gustafsson, et al., 2000).  

The material included 45 ALL patients, 15 girls and 30 boys with a median age of 8.3 years 
(range 1-15) at the time of diagnosis. Written consent was obtained for all included patients. 
The 38 patients diagnosed between January 1992 and June 2001 and treated according to 
the NOPHO ALL-92 included six cases of SR-ALL, 10 cases of IR-ALL, and 22 cases of 
HR/VHR-ALL. For these patients, induction, consolidation and maintenance therapy has 
been detailed elsewhere (Gustafsson, et al., 2000). Of the 38 patients, 13 developed a 
relapse, while 21 patients had a 5-year EFS on April 1st, 2003 and are referred to as patients 
with continuous complete remission (CCR) (Table 4-1). The remaining four patients as well 
as the seven patients treated according to NOPHO ALL-2000 protocol have been followed 
less than 5 years from the date of diagnosis (Table 4-1). Among the patients for whom the 
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day-29 MRD level measurements were available, 24 patients had MRD levels ≥ 0.1% (high 
MRD) and 11 patients had MRD levels ≤ 0.01% (low MRD). During the first 29 days, all 
these 35 patients received identical therapy except an extra pulse of doxorubicin on day 8 
for HR and VHR patients treated according to the NOPHO ALL-92 protocol. For more details 
about the patients see http://www.cbs.dtu.dk/~hanni/ALL. 

Percentage of leukemic cells in samples 
The percentage of leukemic cells present in each patient sample was estimated from data 
from immunophenotyping of the samples, based on expression of lineage-specific surface 
antigens like CD19, CD20 and CD3. Out of all 45 samples, 11 had a leukemic blast 
percentage of <75% (eight preB- and three T-lineage patients). Among these samples, one 
had 10%, four had 30-55% while the remaining six samples had 60-70% leukemic blasts.  

RNA amplification and application to microarrays 
Total RNA was purified from cryopreserved mononuclear cells using the ToTALLY RNATM 
Kit (Ambion). For mRNA amplification, the MessageAmpTM aRNA Kit (Ambion) was applied, 
with the exception of the cDNA purification, which was made according to the Affymetrix 
clean-up protocol. All remaining steps were made according to the Affymetrix protocol. The 
final concentration was adjusted for starting amount of total RNA, and 10 μg of aRNA (or 
less if 10 μg of aRNA had not been obtained from the amplification step) was fragmented. 
Hybridization cocktails for Midi array format were prepared and samples were hybridized to 
Affymetrix Focus Array GeneChips for 15-17 hours and subsequently washed and stained 
with R-Phycoerythrin-streptavidin using the Midi_euk2v3 fluidics protocol. Finally, the 
GeneChips were scanned using the Agilent GeneArray® Scanner to determine the 
fluorescence intensity for each probe on the chip. Intensities for all probes were saved in a 
'CEL file' for subsequent analysis. 

Initial data treatment and statistical analysis 
The R statistical software (Ihaka and Gentleman, 1996) was used for the initial data 
treatment, statistical analysis, and for classification.  

Raw probe intensities were normalized using qspline, a nonlinear normalization method 
(Workman, et al., 2002). Gene expression indices were calculated using the method of Li & 
Wong (Li and Wong, 2001a; Li and Wong, 2001c) with outlier detection using only perfect 
matches and background correction using a method implemented in the Robust Multichip 
Analysis method for calculating expression indices (Irizarry, et al., 2003b). Unsupervised 
analysis was performed by hierarchical cluster analysis of patients using Euclidian or vector 
angle distances. 

Feature (gene) selection for the classification was carried out by ranking genes according to 
their P-value in Welsh t-test. Further dimension reduction was done by principal component 
analysis on a number of selected genes (Knudsen, 2002). The classification was carried out 
on a training set consisting of 2/3 of the data samples randomly selected. Various 
classification methods were applied and evaluated: k-nearest neighbor (KNN) (Dudoit, et al., 
2003b; Knudsen, 2002), nearest centroid (NC) (Dudoit, et al., 2003a), maximum likelihood 

Table 4-1. ALL patients selected for our study according to 5-year outcome and immunophenotype. 
  Immunophenotype   

Outcome preB-lineage T-lineage Total 

Relapse within 5 years 8 5 13 

5-year event-free survival 13 8 21 

Unknown 5-year outcome 5 6 11 

Total 26 19 45 
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(ML) (Dyrskjot, et al., 2003), nearest shrunken centroid (NSC) (Tibshirani, et al., 2002), 
linear discriminant analysis (LDA) (Conradsen, 2002; Dudoit, et al., 2003a) and support 
vector machines (SVM) (Cortes and V., 1995). Classifier performance was evaluated by 
leave-one-out-cross-validation (LOOCV) and classification accuracy as well as Matthews 
correlation coefficient (CC) (Matthews, 1975). For further information on the applied 
statistical data treatment, see http://www.cbs.dtu.dk/~hanni/ALL. 

Prediction of immunophenotype 
Classification of the preB- and T-lineage immunophenotypes was based on the 34 patients 
with ≥75% leukemic cells in the samples (18 had preB- and 16 T-lineage). For training, 2/3 
of the data set (23 samples) was randomly chosen to comprise a training set. Only three 
simple classification methods were applied, KNN, NC and ML algorithms. For the choice of 
the number of 'general class discriminatory genes' the 50 top ranking genes were evaluated 
with regard to their appearance in each of the 23 LOOCV t-test to determine the genes 
present in all top 50 LOOCV t-tests. These genes were used for training and testing of one 
optimal classifier for each method. These optimal classifiers were also used for testing of the 
data set consisting of the 11 patient samples with less than 75% leukemic blast cells. 

Prediction of immunophenotype for samples from a previous published 
study 
The raw microarray data (CEL files) for the 132 samples from the study of Ross et al. (Ross, 
et al., 2003) were obtained as test samples for our immunophenotype classifier. First, the 
CEL files were normalized against each other and expression indices were calculated by the 
same procedure as used for our own chip data. Each U133 GeneChip sample was reduced 
to probe sets included on the Focus GeneChips and each sample was subsequently 
normalized - one at a time - against all of the Focus GeneChips from our study, using the 
qspline normalization method (Workman, et al., 2002). These data were applied as a test set 
for our immunophenotype classifier. 

Prediction of relapse 
Patients with either relapse or CCR as well as ≥75% of leukemic cells in the sample were 
used for classification of relapse. Here, 10 relapsed patients (six preB- and four T-lineage) 
and 18 CCR patients (10 preB- and eight T-lineage) were included. The number of input 
genes was varied from 2 to 150, and the number of principal components on selected genes 
was varied from 2 to 12. Several classification methods were applied: KNN, ML, NC, NSC, 
LDA and SVM. Random sampling, training on 2/3 of the data set (19 samples) and testing 
on the independent samples (nine samples) were performed a total of 10 times to ensure 
that the obtained classification performance was not due to sampling effects. The 30 top 
ranking genes were evaluated by their presence in at least nine of the 19 LOOCV t-tests in 
at least four of the 10 random samplings to retrieve the ‘general class discriminatory genes’. 

Prediction of day-29 MRD levels 
Patients with available day-29 MRD level measurements as well as ≥75% of leukemic cells 
in the sample were used for classification of MRD levels. Here, 18 patients with high day-29 
MRD levels (nine preB- and nine T-lineage) and eight patients with low day-29 MRD levels 
(six preB- and two T-lineage) were included. The same classification and optimization 
approach was used as for the prediction of relapse. 

RESULTS AND DISCUSSION 
Unsupervised analysis of all samples 
A hierarchical cluster analysis of all 45 ALL samples based on all 8763 gene expressions 
(Figure 4-1) showed that patients with the preB or T immunophenotype generally grouped 
separately, although a complete separation of the two subtypes was not observed. In three 
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of the five main clusters, preB and T samples were grouped together, except for one T 
sample (P25). Based on this unsupervised analysis it seemed as if the most apparent 
differences in gene expressions between the ALL patients in our study were those 
determined by the immunophenotype. The same results have previously been obtained by 
application of unsupervised analysis to ALL microarray data (Golub, et al., 1999), where 
preB and T immunophenotypes were identified as the two major subclasses of ALL with 
almost complete separation. Regarding the prognostic factors: WBC and age at the time of 
diagnosis as well as relapse or CCR, no sub-clustering within the preB or T clusters was 
observed for the 45 patients.  

Figure 4-1. Hierarchical clustering of 45 ALL samples included in the study. From left: patient number, 
immunophenotype (B: preB-lineage, T: T-lineage), age, WBC (in 109/l), 5-year outcome (R: relapse, C: 
CCR, U: unknown), percentage of leukemic blasts in the sample. The five main clusters are marked. 
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Classification of immunophenotype 
It has previously been reported that the gene expression profiles of preB and T-ALL were 
easily separable by means of classification (Golub, et al., 1999; Yeoh, et al., 2002), and 
classification of immunophenotypes was also attempted in our study. For all the applied 
classification methods (KNN, NC and ML) an accuracy of 100% was obtained both for 
training (23 samples) and testing the independent test set (11 samples) on the optimal 
classifier based on the 29 'general class discriminatory genes'. Among these 29 genes (see 
http://www.cbs.dtu.dk/~hanni/ALL), several were encoding well-known immunophenotype 
specific proteins, i.e. CD19 and CD3. Moreover, as little as one single gene, CD74, 
appeared to be enough to distinguish between the two immunophenotypes of ALL. 

Prediction of immunophenotype for samples with <75% leukemic cells 
In two previous extensive studies, all classifications were based on samples with ≥75% 
leukemic cells and it had been questioned if their subtype classifier might perform as well on 
samples with lower levels of leukemic blasts (Ross, et al., 2003; Yeoh, et al., 2002). For 
classification of the 11 samples with less than 75% leukemic blast cells as either preB or T-
ALL by our simplified classifier using the 29 ‘general class discriminatory genes’, all samples 
were classified correctly for the KNN (k = 1 and 3) and NC classification methods. Thus, our 
study indicates that the subtype-specific gene expression profile measured in ALL samples 
was characteristic enough even in samples with less than 75% leukemic cells, and that 
samples with as little as 10% leukemic blast cells may be classified correctly with respect to 
immunophenotype. Gene expression analysis might therefore be an improvement of the 
immunophenotype identification for patients with a small fraction of leukemic cells, where 
immunophenotyping might be difficult using the current flowcytometric methods. 

Prediction of immunophenotype for samples from a previous published 
study 
The results from the classification of preB and T immunophenotypes obtained in our study 
were evaluated by testing the 132 samples applied onto Affymetrix U133 GeneChips from 
the study of Ross et al. (Ross, et al., 2003). Prediction of immunophenotype using the 
optimal classifiers designed in our study resulted in very good performance, where the NC 
method appeared to be superior (Table 4-2). Only one sample with MLL rearrangements 
was misclassified of all 132 samples. This subtype of preB ALL was, however, not 
represented in our data set.  

Generally, our results confirmed, that the selected 29 ‘general class discriminatory genes’ 
were not only applicable for prediction of our particular samples, but were general for 
prediction of immunophenotype. Moreover, nine out of the 29 ‘general class discriminatory 
genes’ were identical to the 100 genes found to be characteristic for distinguishing between 
preB and T reported by Ross et al. (Ross, et al., 2003). 

Prediction of relapse 
Hierarchical clustering of preB- and T-lineage patients separately as well as for the pooled 

Table 4-2. Results from testing of Ross et al’s data on the optimal classifier built based on the 29 
‘general class discriminatory genes’, trained on 2/3 of the data set with ≥75% leukemic cells. 

preB ALL (%) 
  T ALL 

(%) E2A-PBX1 Hyperdiploidy MLL BCR-ABL TEL-AML1 Other 

K-nearest neighbor, k=1  100 100 100 90 100 100 96.40 

K-nearest neighbor, k=3 100 100 100 85 100 100 89.30 

Nearest Centroid 100 100 100 95 100 100 100 
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preB- and T-lineage patients based on all gene expressions did not reveal any clustering 
into groups with the same outcome when only the 28 relapse or CCR patients with ≥75% of 
leukemic cells in the sample were included in the analysis (see http://www.cbs.dtu.dk/ 
~hanni/ALL). 

When various classification methods were applied to predict either relapse or CCR of ALL 
patients, mean CCs in range of 0.33-0.59 and corresponding accuracies of 0.69-0.78 were 
obtained for the 19 random samples used for LOOCV training (Table 4-3). While most 
methods had an optimal performance using 3-45 gene expressions, LDA and SVM seemed 
to perform best when using dimension reduced data in the form of two principal 
components. The nearest centroid classifier had the best performance, CC=0.59±0.18, with 
an optimal number of 30 genes (as can be seen in Figure 4-2), and this method is also the 
only one that showed a significant classification performance (with an estimated P-value of 
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Figure 4-2. Prediction of relapse. The correlation coefficient (average value for the 10 random 
samplings) as a function of number of input genes for prediction of outcome (relapse or CCR) for the 
nearest centroid method.  

Table 4-3. Prediction of relapse independently of immunophenotype (pooled preB and T ALL samples).  
  Correlation 

coefficienta Accuracya Optimal parameters p-valuea,b 
K-nearest neighbor 0.51 0.77 45 genes, kc=3 0.064 

Maximum likelihood 0.44  0.72 4 genes  0.074 

Nearest centroid 0.59 0.78 30 genes 0.021 

Nearest shrunken centroid 0.47  0.72  3 genes 0.054 

Linear discriminant analysis 0.41 0.71  2 PC (based on 4 genes)  0.082 

Support vector machine 0.33  0.69 2 PC (based on 30 genes), cd=3 0.074 
aThe values are the average of 10 random samples from LOOCV training of classifiers trained on 2/3 of the data set.  
bAs determined by a permutation test. 
cSpecific parameter for k-nearest neighbor. 
dSpecific parameter for support vector machines. 
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0.021). Thus, for all other classifiers than NC, there is a statistically significant chance that 
classification performances matching the obtained CCs might have been obtained with 
random prior class assignments with a significance level of 5%. Therefore, the NC method 
seems to be most suitable for the outcome classification problem, and it is also reasonable 
that a simple method like NC is optimal when only a limited number of samples is available. 

Testing of the nine samples in each of the 10 random independent test sets on the LOOCV 
nearest centroid classifiers resulted in a CC of 0.56 ± 0.2 and a corresponding accuracy of 
74% ± 0.11. This CC and accuracy are thought to be a truer estimate of the classification 
performance than obtained for LOOCV during training and it is noteworthy that they do not 
differ significantly.  

Interestingly, while the overall accuracy for prediction of outcome was found to be only 74%, 
the prediction accuracy for the relapse was 87%. The fact that almost all patients with 
relapse were found among the patients predicted as relapsed based on the diagnostic 
samples might be important for clinical application of the prediction method, since these 
patients could have been given an alternative or more intensive treatment. On the other 
hand, among the patients predicted to be CCR patients, a high percentage is in fact CCR 
patients (specificity of 92%). Future studies are needed to explore whether this subset can 
be cured with less intensive therapy. The specificity for patients predicted as relapse 
patients was only 69%. However, this is a far better overall specificity of relapse prediction 
than that obtained presently by conventional risk classification criteria such as age, white 
cell counts, immunophenotype, and cytogenetics.  

By evaluation of the 30 top ranking genes, 19 ‘general class discriminatory genes’ were 
retrieved (see http://www.cbs.dtu.dk/~hanni/ALL). A hierarchical cluster analysis of the 28 
patients based on the gene expression of these 19 genes (Figure 4-3) illustrates that the 
relapsed patients group together with 4 CCR patients, while only one single relapse patient 
cluster with the CCR patients. The cluster analysis pattern thus supports the fact that 
several of the CCR patients are predicted as relapsed patients, while only few relapse 
patients are predicted as CCR patients. 

It has previously been reported possible to predict relapse in certain subgroups of ALL by 
use of gene expression data (Yeoh, et al., 2002) with a prediction accuracy of 97% for T-
lineage ALL. However, it has later been discovered that this prediction accuracy was 
overestimated since it was based on LOOCV only during classifier training while the feature 
selection step had not been included in the LOOCV procedure. The performance was 
subsequently re-estimated (James R. Downing, December 2003) and resulted in a much 
lower classification accuracy of 73.5% using the top 50 ranked genes in a t-test and data 
pre-treatment by Affymetrix MAS 5.0. However, the specificity for relapse cases was only 
25% giving a CC of 0.16.  

The CCs for prediction of relapse independently of immunophenotype found in the present 
study (0.59 and 0.56 for the LOOCV training and the independent test sets, respectively) 
were significantly higher than the CC obtained for T-lineage samples for the re-evaluated 
data set from Yeoh et al. (Yeoh, et al., 2002), while the prediction accuracy obtained in the 
present study (78%) was only slightly higher than the re-estimated accuracy obtained by 
Yeoh et al. (Yeoh, et al., 2002). The better results obtained in our study might partly be due 
to the different treatments that patients had received in these two studies as well as 
differences in the period for EFS applied to define patients with CCR, where we defined the 
minimum period of EFS to be 5 years, while patients with shorter EFS period were included 
as CCR patients in the study of Yeoh et al. (Yeoh, et al., 2002). 

Moreover, it was reported by Yeoh et al. (Yeoh, et al., 2002) that it was not possible to 
predict relapse across subtypes of ALL. However, the results from our study indicated that 
an at least as good classification performance could be obtained when predicting relapse 
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independently of ALL immunophenotype compared to prediction of relapse for preB and T 
patients separately (data not shown). However, this may partly be attributed to the fact that a 
limited number of patients were available for each of these subtype-specific classifiers. 
Especially, when taking into consideration that there are many subtypes of ALL, we cannot 
expect to find a common expression profile for relapse for all subtypes. Thus, the low 
prediction accuracy of clinical outcome is not surprising. The chances for cure for individual 
patients will reflect the leukemic clone, the host and the treatment. A number of different 
leukemia-related biological features such as chromosomal translocations, multiple drug 
resistance gene activity, and deregulated apoptotic pathways may influence clinical 
outcome, and their impact may differ between different subsets of ALL. In addition, the 
strongest prognostic factor is treatment itself. Thus, patients are assigned to different risk 
groups that are offered different treatment protocols, the bioavailability and disposition of the 
anticancer agents may differ among patients, and both physician and patient compliance to 
the treatment protocols may significantly influence the chances for cure. Further 
improvement of the outcome prediction using DNA microarrays may necessitate analysis of 
both tumor samples and patient germline samples that allow identification of genetic 
polymorphism that influence drug disposition. Such data should be analyzed within 
biological well-defined subsets of leukemias treated by similar therapeutic strategies.  

Figure 4-3. Horizontal: Hierarchical clustering of the 28 ALL patients with known 5-year outcome 
based on the gene expression levels of the 19 genes. For each patient the number and outcome, 
relapse (R) or CCR (C), are given. Vertical: Hierarchical clustering of the 19 genes found to be 
predictive for long-term outcome based on gene expression levels. The Affymetrix id and gene symbol 
is given for each gene. The color scale shows the logarithm of the gene expression value relative to the 
mean logarithmic gene expression for each gene. 
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Prediction of MRD level  
Finally, prediction of high and low MRD level on day 29 after treatment initiation was 
attempted. Since the number of patients with available MRD data was limited, this prediction 
was only possible for pooled preB and T-ALL patient samples (26 patients) or for preB 
samples only (15 patients), where only samples with ≥75% leukemic blasts were included in 
both cases.  

For the pooled preB and T patients a very low CC was obtained at LOOCV training on 2/3 of 
the data set (-0.05 to 0.23). On the contrary, for the preB samples only, a classification 
accuracy of 100% could be obtained during LOOCV training for the LDA and SVM methods 
on six PC based on the 120 top ranking genes. However, these promising results could not 
be tested on an independent test set due to the limited number of samples and when testing 
on the samples with <75% leukemic blasts only four out of the six preB samples with 
available MRD data were predicted correctly (66.7%).  

If the MRD classifier was in fact as good as the results from the LOOCV training indicate, it 
would be highly useful in clinical settings for choice of induction therapy. Thereby, it would 
be possible to predict the treatment response on day 29 already at the time of treatment 
initiation, and for the patients with predicted high MRD, an alternative or more intensive 
therapy could subsequently be given. Another advantage of the MRD prediction is that all 
patients have received almost identical treatment during the first 29 days, which makes the 
classification results more easily interpretable and more general compared to the prediction 
of relapse where treatment during the first 5 years from diagnosis varied among the patients. 

Microarray platform 
All the analyses performed and the results obtained indicate that the use of the limited 
Focus Array platform does not result in a loss in classification performance compared to 
previous studies using the far more extensive U133A+B GeneChip set from Affymetrix for 
immunophenotype classification. On the contrary, by using the Focus Array, only the most 
validated genes are included in the analysis and much of the potential noise from probes 
against possible nonexisting human genes is therefore avoided. While this chip is less 
complex and easier to interpret than other chips on the market, it has other advantages, too. 
It is cheaper, requires smaller amounts of sample and is faster to run. Thus, the use of these 
chips for clinical gene expression profiling seems promising. 

CONCLUSION 
Altogether, our results indicate that gene expression analysis using DNA microarrays is a 
promising tool for prediction of relapse or treatment response in childhood ALL patients. 
Moreover, our immunophenotype classifier was able to classify correctly all but one sample 
from a previous independent study and thus, this technology shows potential for future 
clinical multicenter studies.  
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ABSTRACT 
Extensive utilization of gene expression data repositories is often restricted by limited 
comparability between experiments. Here, we present a novel and conceptually simple 
approach that overcome this restriction by deriving associations from overlaps in 
differentially expressed genes. This approach demonstrates an excellent capability to find 
biologically meaningful association between experimental factors even from independent 
studies. By this approach, published evidence of the roles of the Arabidopsis MAP kinase 4 
could be confirmed and extended. Further results demonstrated that the approach is more 
powerful than existing methods such as co-expression analysis and has potential for cross-
platform applications. 
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INTRODUCTION 
During the past few years, the number of available transcriptomes has exploded due to 
recent advances in high-throughput techniques such as microarrays. However, only limited 
comparability between independent studies has been reported due to high variability 
between studies. Therefore, novel approaches for effective exploitation of the fast growing 
microarray data repositories are much needed. 

In the areas of functional genomics, analyses of mutants are among the most successful 
approaches for deciphering the genetic makeup and the molecular functions of genes. 
However, the function of a mutant gene is rarely immediately obvious from the phenotype of 
the mutant. Even mutants brought to light under carefully designed screenings may be very 
difficult to dissect and may possess molecular functions not obvious at first. Global 
transcription analyses of mutants have, in several cases, proven valuable in determining or 
narrowing down the molecular function and affected pathways through careful expert 
examination of differentially expressed genes or statistical analysis of systematic gene 
annotations such as gene ontology (GO) or KEGG. Both of these approaches rely on high-
quality annotations and expert knowledge of the biological system. Alternatively, use of gene 
expression microarray data for deriving associations between gene functions has previously 
been limited to analysis of co-expression and cluster analysis (Carlson, et al., 2006; Hughes, 
et al., 2000; Lee, et al., 2004; Zhang, et al., 2004). In addition, some advanced clustering 
approaches have been suggested, for example the utility of transcriptional consensus 
clusters derived from multiple cluster algorithms (Wu, et al., 2002) or incorporation of prior 
gene function knowledge into the clustering procedure (Huang and Pan, 2006). However, a 
transcriptional response is typically restricted to a smaller subset of genes differentially 
expressed between the experimental conditions addressed. Therefore, inclusion of non-
responding genes in such analyses is likely to introduce a significant amount of noise.  

The underlying assumption in previous studies, as well as in the present, is that; if 
associated biological functions are affected, the response to these tends to be similar. 
Furthermore, we consider that the amplitudes of the responses may vary or be reversed, 
even when closely associated functions are affected. For example, if we have two proteins 
close to each other in a pathway, network or interaction complex, we expect overlapping 
sets of genes to respond when compromising either of them. However, If one protein is a 
repressor and the other an activator, the resulting responses are likely to affect overlapping 
gene sets in opposite directions.  

Here, we show that response overlaps in terms of overlapping differentially expressed genes 
between gene expression microarrays experiments can be used for deriving associations 
between the factors (mutants, treatments, experimental conditions, etc.) of the experiments 
in question. We designate such associations ‘Functional Associations by Response Overlap’ 
(FARO). Applying this approach, we demonstrate that an Arabidopsis mutant, MAP kinase 4 
(mpk4), may be functionally characterized in agreement with previously documented 
characteristics by assigning FARO associations to a compendium of Arabidopsis gene 
expression responses derived from a series of experiments originating from various 
laboratories. Furthermore, we demonstrate that the FARO approach is superior to co-
expression analysis in associating genes accordingly to KEEG and MIPS annotations in the 
Rosetta Yeast compendium (Hughes, et al., 2000). Finally, the approach demonstrates 
potential for cross-platform applications. 

RESULTS 
The FARO approach 
To assign Functional Associations by Response Overlap (FARO) between an experimental 
factor and the experimental factors of a compendium of gene expression responses, a query 



 Paper II - Functional Associations by Response Overlap (FARO) 37 

 

 

response, in terms of a list of differentially expressed genes, was compared to the 
responses of the compendium (Figure 5-1). The statistical significance of the overlap was 
estimated using Fishers exact test (Fisher, 1922) and overlaps were ranked thereby. The 

 
Figure 5-1. Overview of the FARO approach. Here, the query response demonstrates significant 
associations to compendium factor 1, 3, 4, and 5. 
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compendium of gene expression responses was constructed by first analyzing the individual 
studies in a collection of microarray studies in order to rank the genes by their significance of 
differential expression. Each individual experiment was analyzed separately; hence, 
individual samples were only compared directly within a study. Consequently, variations in 
experimental procedures between different experiments have no direct influence on the 
estimated responses. Assuming that the individual experimental designs were executed 
carefully, differentially expressed genes represent the response to the addressed factor and 
hence – provides an expression phenotype. 

Functional characterization of the Arabidopsis knockout mutant mpk4  
Figure 5-2 illustrates a FARO analysis of the Arabidopsis knockout mutant mpk4 against a 
compendium of Arabidopsis gene expression responses. In Figure 5-2, the gene expression 
response of 245 experimental factors derived from this compendium, are represented as 
nodes. Edges from the central mpk4 node to the compendium nodes represent the most 
significant response overlaps. In short, the associations above the threshold used in Figure 
5-2 are almost all in agreement with previous knowledge and few if any of the factors below 
the threshold are known to be relate to mpk4 (for details, see methods and supplementary 
Table 1).  

 
Figure 5-2. Graph illustrating a FARO analysis of mpk4. The thickness of the edges and the size of the 
node font indicate increasingly significant response overlaps. Only edges and names for factors with 
strong associations to mpk4 are included. The edge arrows or bars indicate significant congruent or 
significantly opposite response direction of overlapping genes, respectively. 
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The analysis indicates a series of very strong associations between mpk4 and plants 
subjected to various infections, including both virulent and avirulent pathogens as well as 
non-pathogens. In fact, 16 of the 18 infection studies in the compendium were among the 
significant associations. In extension to this, strong associations to the classical defense 
mutants NPR1 (non-expresser of pathogenesis-related genes 1 (Cao, et al., 1994)) and 
CPR5 (constitutive expresser of pathogenesis-related genes 5 (Bowling, et al., 1997)) were 
found. These findings are consistent with the previous observation that mpk4 exhibit 
constitutive systemic acquired resistance (SAR) (Andreasson, et al., 2005; Brodersen, et al., 
2006; Petersen, et al., 2000).  

MAP kinase substrate 1 (MKS1) interacts physically with MPK4 in vivo and is 
phosphorylated by MPK4 in vitro (Andreasson, et al., 2005). In perfect agreement with this, 
one of the strongest associations to the mpk4 knockout mutant is to the mks1 
overexpressor. Likewise, the strong association to coronatine-insensitive 1 (coi1), 
constitutive triple response 1 (ctr1) and the ethylene response-inhibiting agent, AgNO3, all 
affecting the perception of the plant hormones jasmonic acid (JA) or ethylene (ET), also 
agrees with previously reported findings. Namely, that MPK4 plays a central role in plant’s 
antagonistic mechanism between SA and both ET and JA (Brodersen, et al., 2006; 
Petersen, et al., 2000). Particularly, the epistatic relationship between ctr1 and mpk4 can be 
determined (Van Driessche, et al., 2005) since global expression data is available for both 
mutants and the ctr1/mpk4 double mutant (Brodersen, et al., 2006). From this, we conclude 
that mpk4 in some respect is epistatic to ctr1 (for details, refer to supplementary Note 1).  

In addition, the compendium contained 33 studies of Arabidopsis responses to various plant 
hormone treatments (AtGenExpress, 2006). Of these, only the response to SA treatment 
associates to mpk4 despite the fact that SA is among the hormone studies with least 
statistical power due to only four samples in the study. While this is expected due to the 
elevated levels of SA previously observed in the mpk4 mutant (Petersen, et al., 2000), it 
illustrates that the approach, to some extend, can overcome limited statistical power in weak 
experimental designs of the underlying studies. Also, supporting the SA like expression 
phenotype of mpk4 is the observed strong association to the NahG transgene plant 
(Gaffney, et al., 1993), which expresses a SA hydroxylase that degrades SA (Buchanan-
Wollaston, et al., 2005).  

The elevated SA levels in mpk4 may also explain the significant response overlap between 
mpk4 and various leaf types. Confounding with this, MPK4 is primarily expressed in leafs 
(Petersen, et al., 2000). Here, the FARO analysis demonstrated remarkable consistency. 
Hence, of the 58 plant tissue specific experimental factors, the 16 addressing different leaf 
sections, stages or types all have associations to mpk4 that rank 22 or better in respect to 
other tissues. The only other tissue with significant associations illustrated in Figure 5-2 is 
sepals (stage 15), which in many aspects resemble leafs. It is further noticed, that mpk4 
associates to seedlings post transition and prior to bolting (day 21, 22 and 23), a stage 
where SA plays a critical role and where the majority of the biomass is leafs. 

Moreover, the congruence or dissimilarity in the direction of the observed responses also 
supports the association found by the response overlap. That is, several strong associations 
have very significant congruence or dissimilarity in terms of the direction of the gene 
expression response of the overlapping genes (Figure 5-3). Between mpk4 and pathogen or 
elicitor treated plants, the congruence is close to 100%. The same is true for the overlap 
between mpk4 and the mks1 overexpressor (95%), whereas, not surprisingly, plants 
transgene for NahG have an inverted response (85%).  
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Novel associations to mpk4 
The mpk4 mutant was first described by (Mizoguchi, et al., 1993) in 1993 and has, since 
then, been subjected to intense investigations. It is, therefore, not surprising that most of the 
identified associations agrees with previous characterizations or derivatives of these. 
However, mpk4 has not previously been associated with the Arabidopsis response regulator 
21 (arr21) or the protein synthesis inhibitor cycloheximide (CHX) treatment. Transcriptional 
response to CHX typically indicates that there is a feed back loop from the protein to the 
mRNA stability or the transcription of the gene. The mRNA steady state level of mpk4 itself 
does not change in response to cycloheximide. However, transcripts of the closely 
associated MKS1 accumulate strongly as a result of CHX treatment (NASCArray 183).  

The experimental factor Arr21C (Kiba, et al., 2005) (NASCArray 183) corresponds to plants 
overexpressing the C-terminal DNA binding domain of ARR21 driven by the cauliflower 
mosaic virus 35S promoter. For a review on Arabidopsis response regulators, see (Mizuno, 
2004). In contrast to the ARR21 knockout mutant, for which no phenotype is detected 
(Horák, et al., 2003), the constitutive overexpressor demonstrates an extremely abnormal 
development with tissue resembling in vitro callus formations (Tajima, et al., 2004). A 
second order FARO analysis, i.e. an analysis for overlap between the compendium and the 
mpk4-arr21 overlap, characterized the mpk4-arr21 association as a tissue specific stress 
and/or pathogen response with Phytophthora infestans being the predominant factor. A 
FARO analysis of ARR21C itself indicates strong associations to zeatin treatments, 
circadian rhythm, ARR22 over expression - in line with (Kiba, et al., 2005; Mizuno, 2004), P. 
infestans as well as tissue specific stress response. 

Figure 5-3. Bar plot of gene expression congruence. 
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Multifactor FARO applications 
The FARO analysis further indicates that MPK4 may be involved in or exhibiting a stress 
response. This is evident from strong associations to a series of stress responses, where 
tissue specificity could be derived (NASCArray 137-146). Interestingly, the overlapping 
genes demonstrate a strong tendency to respond to stress predominantly in the shoot 
(Figure 5-4). The ‘single factor against all’ FARO analysis, here, fails to distinguish clearly 
between the different tissue specific stress responses. The FARO approach, however, also 
allows us to investigate the relationships between multiple factors in one combined schema 
and thereby gain an overview. Doing so for all factors in the Arabidopsis compendium, a 
very tight cluster is revealed between tissue-specific responses to various stress conditions 
similar to what have also been reported for yeast (Gasch, et al., 2000). Hence, comparison 
of top 1209 most significantly differentially expressed genes from each of the nine stress 
treatments (cold, drought, genotoxic, heat, osmotic, oxidative, salt, UV-B radiation and 
wounding) resulted in a collection of only 1858 different genes. Of these, 657 respond to all 
nine stress conditions. Surprisingly, the response direction is not conserved between the 
stress forms (Figure 5-5, average congruence 61%). This observation predicts that plants 
are unable to provide an adequate response to certain combinations of stress. This is 
interesting because it may contribute to understand what farmers and breeders already 
recognize, namely that combinations of abiotic stresses in the field (e.g. drought together 
with cold) cause the greatest losses to crop productivity worldwide (Mittler, 2006). 

The multi factor FARO analysis further explains why mpk4 associates to all tissue specific 
stress treatments rather than a subset. An analysis of congruence points toward mpk4 as 
exhibiting an osmotic stress (Droillard, et al., 2004), but also to some extend UV-B, salt or 
cold stress (Teige, et al., 2004). 

FARO has Cross-platform potential  
Exploiting the vast amount of gene expression data available from central repositories may 
often be complicated by low cross-platform comparability. To investigate whether the FARO 

 

Figure 5-4. Pie chart, 
showing the fractions 
of mpk4 responding 
genes that are diffe-
rentially expressed in 
shoot, root or both in 
response to the indi-
cated stress types. 
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approach potentially may improve this comparability, gene expression responses were 
extracted from a number of cDNA studies (AFGC data) and compared to our Affymetrix 
ATH1 GeneChip® based Arabidopsis compendium. A predominant number of these 
comparisons demonstrated good compatibility. Most convincing was the cDNA gene 
expression response of ‘white light treated’ Colombia and Landsberg wild type Arabidopsis 
plants (NASCArray 250) that were highly associated (rank 3 and 4, respectively) to the ‘4 
hours white light’ compendium response phenotype (NASCArray 124) (for details, refer to 
supplementary Note 2). 

Benchmarking on the Rosetta Yeast compendium 
To validate the performance of the FARO approach in a more quantitative fashion, two 
benchmarking datasets were created from the Rosetta compendium of yeast gene 
expression profiles (Hughes, et al., 2000). The Rosetta dataset consists of microarray gene 
expression data for a large number of yeast deletion mutants and a few chemical treatment 
experiments. The mutants within the Rosetta compendium may be associated by common 
KEGG category (71 mutant experiments) or by protein-protein interactions as annotated in 
MIPS PPI (30 mutant experiments), respectively. 

Within each set, the strength of all associations was estimated by response overlaps. For 
the KEGG set, 39 correct associations were found stronger than the strongest false 

Figure 5-5. Expression profiles 
of the 657 tissue specific stress 
responding genes, through nine 
different stress conditions. The 
response is clearly different 
between these. 
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association and no false positive associations were found at FARO scores (minus log10 p-
value) above 1/3 of that of the strongest association (Figure 5-6a).  

Associations evaluated by use of the manually curated MIPS protein interaction annotations 
illustrates that the performance on this dataset, in fact, was even better than for the KEGG 
dataset (Figure 5-6b). Here, an extremely high initial true positive to false positive rate was 
observed in spite of the relatively low number of true associations in the MIPS set (MIPS: 35 
true associations out of 436 possible vs. 619 true KEGG associations out of 2485 possible). 
Moreover, the eight chemical treatment experiments included in the Rosetta compendium 
consistently associated strongest to mutants in the pathway they affect (supplementary Note 
3). From this, it is evident that the FARO approach certainly enrich for true associations. 
Furthermore, a comparison demonstrated that the performance for the FARO approach is 
clearly superior to a conventional co-expression analysis evaluated against corresponding 
associations in KEGG (Figure 5-6b). 

DISCUSSION 
Functional Association by Response Overlap (FARO) is a robust and conceptually 
straightforward approach for extracting information regarding the relatedness of 
experimental factors (knockout mutant, treatment, experimental condition, etc.) of microarray 
gene expression experiments, even when the experiments originate from independent 
studies from different laboratories. This allows for novel employments of available 
microarray data repositories and offers an advantage over existing analysis methods due to 
its robustness, simplicity and direct interpretability. A detailed characterization of the plant 
mutant mpk4 is an example hereof. By comparing the result of a mutant/wild type gene 
expression study to a compendium of Arabidopsis gene expression responses, associations 
were derived to a meaningful subset of experimental factors within the compendium. The 
subset of mpk4 associated factors together suggests that the mutant is involved in 
interactions with both virulent and avirulent pathogens, and that the mutant has a salicylic 
acid like expression profile. Furthermore, the mutant exhibits a gene expression response 
that resembles a shoot specific stress response. The subset also contained a series of 

 
Figure 5-6. Benchmarking of the FARO approach. (a) True positive rate (TPR) and false positive rate 
(FPR) as a function of the relative FARO score for response overlap. (b) ROC curves of performance. 
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mutants involved in plant defense and/or perception of plant hormones (ET, JA) that are 
important for defense regulation. In short, this characterization of mpk4 was consistent with 
previously reported characteristics and general understanding of plant biology. Moreover, 
two novel associations in relation to mpk4 were identified: Arabidopsis response regulators 
21 (ARR21C) and cycloheximide. Although, this analysis could not establish the exact 
relationship between ARR21C and MPK4, the association appears similar to a tissue 
specific stress response or pathogen response. 

The analysis of the Rosetta Yeast compendium (Hughes, et al., 2000) enabled a more 
quantitative benchmarking of the FARO approach. Held up against both KEGG and MIPS, 
the FARO approach demonstrated an astonishing ability to re-extract the groupings and 
protein interactions specified in these annotations. Furthermore, the FARO approach was 
clearly superior to the commonly applied method of co-expression analysis for deriving 
functional associations. Moreover, we show that the FARO approach is also applicable for 
cross-platform analyses. 

For both analyses described here, the FARO approach demonstrated extremely high 
robustness toward experimental noise. Much of this robustness may be due to the indirect 
comparison of individual experimental results. That is, direct comparisons between 
microarrays are restricted to within experiment comparisons and only the outcomes of the 
statistical analyses in the form of differentially expressed genes are compared between 
experiments. Hence, the FARO approach benefits from the great care with which 
experimentalists have ensured comparability within their individual experimental designs. In 
addition, the extraction of differentially expressed genes serves as a feature selection step, 
enriching for genes that are characteristic for the given experimental factor. This reduces the 
amount of noise in the between factor comparison and consequently contributes significantly 
to the robustness of the analysis. Moreover, it renders the result more transparent.  

Weak experimental designs or noisy experiments result in a less well-defined list of 
responding genes and tend to result in a smaller overlap than otherwise expected for truly 
associated factors. Such, weak experiments may result in false negatives, but is unlikely to 
result in false positive associations. Nonetheless, in the FARO analysis of the Arabidopsis 
mpk4 knockout mutant presented here, cases of highly significant response overlaps were 
evident even to factors supported by weak data (e.g. salicylic acid).  

While application of various clustering schemes also may provide a network of functional 
predictions for individual genes (Tavazoie, et al., 1999; Wu, et al., 2002), none of these 
measures are as easy interpretable as the FARO approach. Although, the interpretation of 
the FARO associations to some extend is up to the scientist, this approach offers an 
advantage over more abstract methods since the result may be further dissected into the 
actual genes that constitute the overlap. In fact, the interpretations of the FARO associations 
can be further investigated by any systematic analysis that may be applied to the list of 
overlapping response genes. Examples are GO-term overrepresentation analysis, 
chromosomal location bias analysis or even a second order FARO analysis. Consequently, 
the annotation of the overlapping genes may directly facilitate an interpretation of the 
functional association. Moreover, the response directions of the overlapping genes may add 
to the understanding of the relationship indicated by the association. 

An essential advantage of the FARO approach over existing approaches utilizing co-
expression measurements - apart from being more powerful - is its inherent ability to 
associate not only genes or proteins, but all kinds of factors that may be experimentally 
addressed, e.g. drug treatment and disease stages. Moreover, associations between 
analyzed experimental factors may be used to reveal clusters of factors in a functional 
association network that may be integrated with other data sources. Consequently, a FARO 
analysis enables exogenous factors to be associated directly to genotypes and as such 
unites bottom-up and top-down analysis approaches into a single association scheme. 
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METHODS 
The Arabidopsis Compendium of Gene Expression responses 
The Nottingham Arabidopsis Stock Center (NASC) compendium of global expression data 
(http://affymetrix.arabidopsis.info/) is a repository of microarray gene expression data from 
numerous Arabidopsis studies (Craigon, et al., 2004). From this repository, we selected the 
AffyWatch II and III collection including the data from the AtGenExpress consortium: 21 
studies of hormone treatments, 6 studies of pathogen infections, 3 studies of growth 
conditions, 9 studies of stress treatment, and 7 studies of different developmental stages. 
The set further include focused studies by 29 different authors from various experimental 
plant labs and two genotype studies of our own addressing the effect of the Arabidopsis 
knockout mutant of the constitutive triple response 1 (ctr1) gene (Brodersen, et al., 2006; 
Kieber, et al., 1993) and the MAP kinase 4 substrate 1 (mks1) overexpressor (Andreasson, 
et al., 2005). From NASC, we further selected 6 cDNA studies from the AFGC data 
collection for cross-platform compatibility benchmarking. 

Experimental factors were manually extracted from the description files, and each individual 
study was analyzed as a separate case with regard to the experimental factors in its design. 
Microarray data was pre-processed by RMA (Irizarry, et al., 2003a; Irizarry, et al., 2003b). 
Appropriate statistical tests (T-test, ANOVA) were used to obtain list of genes ranked by 
their significance of differential expression for the 245 different experimental factors. For a 
comprehensive list of included studies and their experimental factors, refer to supplementary 
Table 1. 

KEGG and MIPS 
By extracting mutants experiments that can be associated to other mutant experiments, 
within the Rosetta Yeast Expression Profile Compendium (Hughes, et al., 2000), by 
common annotation in the Kyoto Encyclopedia of Genes and Genomes (KEGG: 
http://www.genome.jp/kegg/) or by protein-protein interactions as annotated in MIPS PPI  
(from the manually curated comprehensive Saccharomyces cerevisiae protein-protein 
interaction database at MIPS: http://mips.gsf.de/), two benchmarking sets was created. 
These sets comprised 71 and 30 mutant experiments, respectively. The KEGG category cell 
cycle was assigned to six additional genes, recently found to be involved in yeast cell cycle 
(de Lichtenberg, et al., 2005). For the KEGG dataset, 619 proteins were associated by 
common KEGG category, among a total of 2485 possible between-mutant associations. For 
the MIPS dataset, 35 associations by MIPS interactions were present among a total of 435 
possible between-mutant associations.  

Statistical Significance 
The statistical significance of the response overlap, in terms of overlap in differentially 
expressed genes, was estimated using Fisher’s exact test (Fisher, 1922). Overlaps were 
ranked by minus log10 p-values (FARO score). The statistical significance of congruence in 
up/down regulation of overlapping genes was determined using an exact test in the binomial 
distribution (Conover, 1971; Hollander and Wolfe, 1973), where the hypothesized probability 
of success was fixed at 0.5.  

With regard to an optimal number of top ranking genes to include in a comparison between 
experimental factors, we found it optimal to include genes that ranked higher than the 
median number of significant genes at a significance level lower than 0.05. While the 
inclusion of an increasing number of response specific genes will strengthen a true response 
overlap signature, including too many excessive genes may disturb the expression 
associations.  
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ABSTRACT 
Motivation: Array comparative genomic hybridization (CGH) allows detection and mapping 
of copy number of DNA segments. A challenge is to make inferences about the copy 
number structure of the genome. Several statistical methods have been proposed to 
determine genomic segments with different copy number levels. However, to date, no 
comprehensive comparison of various characteristics of these methods exists. Moreover, 
the segmentation results have not been utilized in downstream analyses.  

Results: We describe a comparison of three popular and publicly available methods for the 
analysis of array CGH data and we demonstrate how segmentation results may be utilized 
in the downstream analyses such as testing and classification, yielding higher power and 
prediction accuracy. Since the methods operate on individual chromosomes, we also 
propose a novel procedure for merging segments across the genome, which results in an 
interpretable set of copy number levels, and thus facilitating identification of copy number 
alterations in each genome. 

Availability: http://www.bioconductor.org 

Contact: Hanni@cbs.dtu.dk or jfridlyand@cc.ucsf.edu  

Supplementary Information: http://www.cbs.dtu.dk/~hanni/aCGH/ 
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INTRODUCTION 
Development of solid tumors is associated with acquisition of complex genetic alterations. 
The particular types of genomic derangement seen in tumors reflect underlying failures in 
maintenance of genetic stability, as well as selection for changes that provide growth 
advantages. Comparative genomic hybridization (CGH) is a technique by which it is possible 
to detect and map genetic changes that involve gain or loss of segments of genomic DNA. 
Microarray formats of CGH provide copy number information at thousands of locations 
distributed throughout the genome. For a review of existing array platforms see (Pinkel and 
Albertson, 2005). 

Genomic profiles greatly vary in their complexity. Depending on the instability present in the 
tumor and the selection environment, tumor cells may acquire alterations ranging from large 
segments with single copy number alterations to narrow homozygous deletions or high level 
amplifications. In many tumors the magnitude of measurable changes is reduced because 
the cell population is heterogeneous, thus frequently containing a significant proportion of 
normal cells. For a given genomic profile, the initial computational step is commonly referred 
to as segmentation and it involves reliable identification of locations with copy number 
transitions, or breakpoints. An example of how a genomic profile may look is illustrated in 
Figure 6-1 (A and B). Downstream analyses involve classifying the samples and finding 
copy number alterations that are associated with known biological markers. Thus, additional 
opportunities arise in the analysis of array CGH data compared to the established analyses 
of gene expression microarrays. In particular, one wants to make efficient use of the 
physical dependency of nearby clones. 

Several segmentation methods have been proposed for partitioning clones into sets with the 
same copy number. Performances of a Hidden Markov Models (HMM) approach (Fridlyand 
et al., 2004), a non-parametric change-point method (DNAcopy) (Olshen et al., 2004) and a 
Gaussian model-based approach (GLAD) (Hupe et al., 2004) are compared in this article 
and these approaches are described in the Method section in detail. Additional 
segmentation methods involve building hierarchical Clustering-style trees along each 
chromosome (CLAC) (Wang, et al., 2005), using a penalized likelihood criterion to estimate 

 
Figure 6-1. A+B: Genomic profiles for oral cancer samples segmented by DNAcopy and merged by 
MergeLevels. The observed log2-ratios are ordered according to their physical mapping along the 
genome C+D: Discretized log2-ratios by segmentation and merging. Log2-ratios are sorted according 
to predicted log2-ratios. Observed log2-ratios are shown in grey. Log2-ratios predicted by DNAcopy are 
shown in red and log2-ratios following the application of MergeLevels are shown in blue. The merged 
profiles yield better interpretability. 
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breakpoints (Picard, et al., 2005); or applying an expectation–maximization-based method 
(Myers, et al., 2004). Other proposals include a Bayesian model that uses parameterized 
prior distributions and a prior-less maximum a posteriori (MAP) technique to estimate the 
underlying model (Daruwala, et al., 2004), a wavelet approach (Hsu, et al., 2005) and use of 
a genetic local search algorithm to identify potential breakpoints and perform data smoothing 
(Jong, et al., 2004).   

To date, most proposed segmentation methods have been evaluated on a simple simulation 
model and/or a small set of karyotyped Coriell cell lines containing a limited spectrum of 
one-copy number alterations. Some approaches to simulate array CGH data were to 
randomly and uniformly select breakpoints throughout the genome (Daruwala, et al., 2004); 
assign loss, normal or gain according to a fixed probability transition matrix (Hupe, et al., 
2004); or to draw lengths of segments from a theoretical distribution and then assign either 
normal or one-copy gain (Hsu, et al., 2005). Some additional variations have been used to 
make the simulation resemble real data, e.g. adding a trend parameter (Olshen, et al., 2004) 
or simply adding random Gaussian noise to karyotyped Coriell cell lines (Fridlyand, et al., 
2004). However, many of these simulations produce unrealistically simple array CGH data 
involving few copy number changes. Moreover, until recently, no formal comparisons had 
been made among proposed algorithms except for (Hsu, et al., 2005) who compare their 
method with a previous method in terms of its breakpoint detection ability. A very recent 
paper (Lai, et al., 2005) describes an extensive study that compares the ability of a large 
number of methods to assign copy number alterations. However, they did not specifically 
examine the behavior of aberrations at the boundaries and their simulation model does not 
lead to sufficiently complicated genomic profiles. With the explosion of interest in copy 
number microarrays and of published computational approaches, there is a need for 
establishing a standard for systematic comparison of computational segmentation 
approaches. Here, we create a simulation schema that generates genomic profiles of 
comparable complexity to real life data. This is achieved by re-sampling segments from a 
large set of primary tumors. We use the simulated data to compare three original published 
segmentation methods that were chosen on the basis of free access and ability to output 
appropriate and comparable segmentation information.  

All available methods operate on individual chromosomes. Thus, as a result of 
segmentation, profiles are partitioned into numerous copy number levels with varying 
means. This presents a problem when identifying regions of gain or loss. It is currently done 
on a clone-by-clone basis either by considering normal range using normal/normal 
hybridizations (Veltman, et al., 2003; Wang, et al., 2005) or by estimating the level of 
experimental noise for a given profile and considering all clones with values outside x times 
standard deviation range to be altered (Hodgson, et al., 2001; Nakao, et al., 2004) where x 
is frequently set to 3. In this paper, we present a novel level-merging algorithm. The merging 
step does not compromise detection accuracy of the breakpoints and is indispensable as it 
allows us to identify a genomic base level, if present, and thereby easily assign regions of 
copy number gain and loss to characterize individual genomes in terms of the number of 
copy number levels and to describe regions with respect to their relative copy number level.  

Similarly, the physical positions of clones are ignored when identifying regions where the 
copy number is significantly associated with a phenotype of interest, e.g. a cancer subtype. 
A standard approach to the problem is to individually test each clone for the association on a 
“clone-by-clone” basis. In this paper, we evaluate the benefits of segmenting data before 
performing downstream analyses and introduce a novel idea of segmenting test statistics to 
identify entire genomic regions of interest, facilitating the interpretation of results. Thus we 
compare the downstream analyses such as testing and classification using simulated and 
real datasets by applying clone-by-clone and region-based approaches.  
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This paper is organized as follows: in the Methods section, we provide details on the three 
methods under comparison and on a novel level-merging algorithm. We also present novel 
approaches to incorporate segmentation into downstream analyses such as genome-wide 
testing and gain/loss detection. The simulation model and the primary tumor dataset are 
described in the Study Design section. In the Simulation Results section, we compare the 
ability of the three segmentation methods to detect breakpoints, identify altered regions and 
detect copy number associations with a phenotype of interest. In the Real Data Example 
section, we show a case study using a primary tumor array CGH dataset. Finally, in the 
Discussion and Conclusions, we discuss the limitations of the study and future work. 

METHODS 
The methods to be compared are available for the R statistical language from Bioconductor 
(http://www.bioconductor.org/) and have copy number level assignments as their main 
output.  

aCGH: This package contains a HMM-based method that assigns clones to underlying 
states with constant copy number, thus allowing for determination of breakpoints. It fits an 
unsupervised HMM in which any state is reachable from any other state.  

The state emission distributions are Gaussian with state-specific means and fixed variance. 
The re-estimation is done with a backward-forward algorithm. For a given number of states 
(k), the initialization is performed using k-means partitioning and transition probabilities are 
set to be proportional to the copy number distance between the pair of states. The number 
of states, k, is selected using a model selection criterion, e.g. Akaike Information Criterion 
(AIC) (Fridlyand, et al., 2004). The HMM outputs two types of segmented values: predicted 
and smoothed log2-ratios, where the predicted values are state medians and smoothed 
values are state medians weighted by the estimated probability of being in each state. Here, 
we use aCGH version 1.1.4 and refer to the method as “HMM”. 

DNAcopy: This entirely non-parametric method is based on Circular Binary Segmentation 
(CBS), which is a modification of a change-point approach allowing for tertiary splits by 
connecting the two chromosomal ends. It splits the chromosomes into contiguous regions of 
equal copy number by modeling discrete copy number gains and losses. Using a 
permutation reference distribution, it bypasses parametric modeling of the data for 
assessing significance of the proposed splits (Olshen, et al., 2004). The model selection is 
done in the forward way by repeatedly splitting each contiguous segment until no significant 
splits are found. As predicted values, DNAcopy outputs mean log2-ratios of each predicted 
segment. Here, we use DNAcopy version 1.1.0 and we refer to the method as “DNAcopy”.  

GLAD: This Gaussian-based approach detects chromosomal breakpoints by estimating a 
piecewise constant function that is based on adaptive weights smoothing (AWS). A local 
constant Gaussian regression model Yi= θ(Xi)+εi is considered where the εi are 
independently and identically distributed as N(0,σ2), and θ(Xi) is a piecewise constant 
function, where the disjoint regions and the total number of regions are unknown. AWS is 
based on local-likelihood modeling and is an iterative algorithm that, around every location 
Xi, finds the maximal possible neighborhood in which the θ parameter is constant (Hupe, et 
al., 2004). GLAD contains a procedure for merging segmented levels by iteratively removing 
excessive breakpoints and subsequently cluster segments across chromosomes to assign 
levels of copy number gain and loss (Hupe, et al., 2004). We use the median of the original 
log2-ratios of each initial predicted level as unmerged GLAD data; and the median of the 
original log2-ratios for each predicted cluster as the GLADmerge values. Since we used 
GLAD version 1.0.1, it was modified slightly to optimize its performance in our comparison 
study (see supplementary material for details). We refer to this method as “GLAD”, and 
“GLADmerge” for its level-merging procedure. 
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Merging of the copy number levels 
As an alternative to model-based GLADmerge, which is not easily combined with other 
segmentation methods, we propose the following novel method (referred to as 
“MergeLevels”) for merging copy number levels across the genome. The method merges 
two segmented levels if the distributions of the log2-ratios of the clones mapped to those 
segments are not significantly different or if the predicted level values are closer than a 
dynamically determined threshold. The algorithm performs the following steps: (1) Order 
distances between predicted levels using copy number scale (2level value), where level value is 
the predicted value of the segment. (2) Starting from the smallest distance, test if two levels 
should be merged according to either of two criteria: (a) Wilcoxon rank sum test P-value > 
1e-4 between observed values for two states or (b) distance less than a given threshold. 
States with <3 clones in each may only be merged based on the threshold criterion (b). (3) 
After a successful merge, step 1 and 2 are repeated until no two adjacent levels can be 
merged. (4) Step 1-3 is repeated for increasing thresholds. (5) For each threshold, we use 
Ansari-Bradley 2-sample test (Bauer, 1972) to determine whether the distribution of the 
current residuals (current merged values minus observed log2-ratios) is significantly different 
from the distribution of the original residuals (original segmented values minus observed 
log2-ratios). (6) Optimal threshold is chosen as the largest threshold where the Ansari-
Bradley P-value > 0.05, i.e. where two types of residuals do not differ significantly. The 
Ansari-Bradley and Wilcoxon rank sum test significance thresholds were chosen based on 
an independent simulation data set. See supplementary information for details. 

Using segmentation results for identifying regions of gain and loss, testing 
and classification 
We test the application of segmentation followed by merging for identification of copy 
number alterations by defining the level of no alteration as the level with predicted log2-ratio 
closest to 0. Thus, all clones belonging to the remaining segments are either gained or lost. 
For comparison, we estimate experimental variability as the median absolute deviation 
(MAD) of difference between the observed and predicted log2-ratios and define threshold for 
determining gain and loss as 3 times MAD (factor of 2.5 is used in real data example). 

We also introduce a region-based method for copy number association studies, which 
allows us to compute test statistics for entire regions rather than for individual clones. 
Student's t-test (equal variance) was used as a test statistic. For multiple testing corrections, 
we use a permutation based single-step maxT procedure to control the family-wise error rate 
(FWER) (Westfall, et al., 1993). Thus, the reference distribution was estimated by repeatedly 
permuting a phenotype with respect to the copy number data, re-computing relevant 
statistics and recording a permutation absolute maximum. A total of 100 permutations were 
used for simulation data and 1000 for primary tumor data. Adjusted P-values were derived 
by comparing an observed statistic with the distribution of the permutation maxima. The 
significance was declared at maxT adjusted P-value < 0.05. Finally, we investigated whether 
using segmented values improved prediction accuracy for a phenotype predictor (e.g. TP53 
mutational status). For simplicity we used a linear discriminant analysis classifier with 
diagonal covariance matrix (DLDA) which has previously demonstrated very good 
performance in microarray studies (Dudoit, et al., 2002a). Performance was assessed using 
leave-one-out cross validation for a varying number of input variables which were ranked by 
their F-statistic within each cross-validation. 

STUDY DESIGN 
Simulation model 
The ratio profiles for array CGH data were simulated to emulate the complexity of real tumor 
profiles. To accomplish that, we segmented a primary breast tumor dataset of 145 samples 
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(Chin et al., unpublished data) using DNAcopy and randomly sampled copy number levels 
from the empirical distribution of segment mean values, where mean values were binned 
into the intervals less than -.4 (0 copies), between -.2 and -.4 (1 copy), between -.2 and .2 (2 
copies), >.2 but < .4 (3 copies), between .4 and .6 (4 copies), and >.6 (5 copies). Note that 
defined intervals enrich for more extreme copy number changes and are not intended to 
present a realistic log2-ratio-copy number relationship but rather were constructed to 
increase complexity of the simulated genomes allowing for higher copy number diversity.  

The lengths for normal levels (copy number 2) were assigned by sampling from the 
empirical length distribution of levels falling into the [-.2, .2] bin. Similarly, we assigned 
lengths to the altered segments by sampling from the length distribution for segments with 
levels outside that bin, i.e. altered segments, without distinguishing among length 
distributions with different copy numbers. Thus, the “true” breakpoints were derived and 
recorded. Each sample was assumed to be diploid and was assigned a proportion of tumor 
cells (Pt), which was drawn from a uniform distribution between 0.3 and 0.7 to resemble the 
proportion of tumor cells often seen in tumor biopsies and to incorporate this into our 
simulation model in a controlled way. Consequently, the expected log2-ratio for each clone 
was computed as log2[(c × Pt +2×(1- Pt))/2] where c was the assigned copy number. 

Finally, Gaussian noise of mean 0 and varying variance were added to each sample. 
Appropriateness of the Gaussian distribution has previously been demonstrated using 
samples with limited number of alterations (Hodgson, et al., 2001). Since hybridization 
quality and thus experimental variability of the samples may vary greatly, a sample-specific 
variance was added to each profile by drawing a standard deviation from a uniform 
distribution with range between 0.1 and 0.2. This variability reflects what is typically 
observed in the lower quality examples of UCSF BAC array hybridizations (data not shown). 
A total of 500 samples with 20 chromosomes containing 100 clones each were simulated 
with lengths of the edge segments truncated. This simulation was used to compare 
sensitivity and specificity of the three segmentation methods with regards to the breakpoint 
detection, to compare the two level-merging algorithms and to evaluate merging-based 
approach for identification of copy number alterations. 

We created a different set of simulations to emulate real data sets with samples from two 
tumor classes. These datasets were used to specifically test whether the segmentation 
approach was more powerful than a univariate clone-by-clone approach for testing of copy 
number associations with a phenotype. For this simulation, we created 500 data sets each 
consisting of 20 samples drawn at random from either of two genome templates constructed 
as described above with a few exceptions: Without loss of generality the length of each 
genomic profile was reduced to 500 clones placed on just one chromosome and each 
sample was only assigned a probability of 0.7 of having a given aberration (i.e. in all 
samples approximately 30% of segments with copy number gains or losses were re-
assigned a normal copy number of 2). Because the proportion of segments with copy 
number changes in each sample was decreased thereby, we doubled the probability of 
drawing altered segments from the copy number/segment length distribution. Segments with 
differences in copy number between the two classes were recorded. On average, each data 
set had 211 clones in such segments.  

Breakpoint detection and merging  
We compared the sensitivity and false discovery rate (FDR) of HMM, GLAD and DNAcopy 
to detect and correctly locate breakpoints for originally predicted segments as well as 
merged segments. Here, the sensitivity is the proportion of true breakpoints that were 
identified, whereas the FDR is the proportion of falsely predicted breakpoints among the 
predicted ones. Additionally, MergeLevels and GLADmerge were compared based on the 
precision of their predicted values relative to expected log2-ratios and the accuracy of 
identifying altered clones. We also considered all pair-wise combinations of the clones and 
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determined the proportion of clone pairs that were incorrectly assigned to the same or 
different states, referred to as discordant pairs. 

Copy number association study: testing for differential copy number 
A standard approach to identifying genomic regions associated with a particular phenotype, 
e.g. a cancer subtype, is to individually test each clone for an association, i.e. on a “clone-
by-clone” basis. Here, comparisons were done between the standard approach and “region-
based” approaches which included either performing t-tests on segmented log2-ratios or on 
the observed log2-ratios followed by segmenting the resulting statistic. Here, for HMM the 
segmented values corresponded to the HMM-smoothed values (weighted means of the 
state means). The performance of the methods was evaluated by sensitivity and specificity 
using a multiple testing corrected significance threshold and by comparing ROC curves.  

Application to primary tumor data 
Real array CGH data from BAC arrays with formalin-fixed primary oral squamous cell 
carcinomas (SCCs) (Snijders, et al., 2005) were re-analyzed using the approaches 
introduced in this manuscript. The dataset consisted of 14 TP53 mutant samples and 61 
wildtype samples. The scientific question of interest was the comparison of genomic 
features between TP53 mutant and TP53 wildtype tumor samples. TP53 status was 
determined by sequencing. Based on the methods’ comparative performance assessment 
on simulated data, we chose to apply DNAcopy to the tumor data followed by merging with 
MergeLevels. The two tumor types were compared in terms of their overall genomic 
instability measured using the total number of breakpoints in each genome. We also 
assigned gain and loss status to each clone using threshold and segmentation based 
methods; and displayed an example of a typical disagreement between the two approaches. 
Furthermore, we tested for copy number associations with phenotypes using clone-by-clone 
and region-based approaches. Finally, we build a predictor of the TP53 phenotype and 
demonstrate that providing segmented data as an input to a classifier greatly improves 
prediction accuracy estimated using leave-one-out cross-validation error rate.  

SIMULATION RESULTS  
Breakpoint identification and merging 
From the output of each method, it is possible to infer predicted breakpoints. These were 
compared to the location of known breakpoints for the simulated data (15 breakpoints per 
sample on average). Figure 6-2 illustrates how the methods perform with regard to 
breakpoint detection at the correct position (w=0) or with an offset (localization error) of one 
or two clones, w=[1,2], within which a predicted breakpoint was assigned as correctly 
identified. As expected, the sensitivity increased while FDR decreases with larger accepted 
offsets. By merging, some true breakpoints were removed and consequently, sensitivity 
decreased slightly. Since many excessive breakpoints were removed as well, the FDR 
greatly decreased, especially for HMM and GLAD. 

Of the compared methods, DNAcopy was most sensitive while having the lowest FDR (P-
value < 2.2e-16, paired Wilcoxon rank-sum test). GLAD was least sensitive and HMM had 
the highest FDR. Not surprisingly, both merging procedures decreased FDR while reducing 
sensitivity for DNAcopy and GLAD (P-value < 2.2e-16, paired Wilcoxon rank-sum test). 
MergeLevels was less aggressive than GLADmerge in removing breakpoints resulting not 
only in higher sensitivity but also in higher FDR. Notice that DNAcopy is very sensitive and 
has a low FDR when applied alone, and thus benefits least from merging with regard to 
breakpoints. As an example, when accepting an offset of two clones, DNAcopy has a 
median sensitivity of 88% while having a median FDR of 6%. This corresponds to 1.8 
missed breakpoints on average and 0.8 false breakpoints. Both HMM and GLAD had 
significantly more trouble identifying precise breakpoint locations than DNAcopy based on 
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examination of the offset for predicted breakpoints. The comparative performance between 
methods was independent of the magnitude of the signal/noise ratio defined as the ratio of 
the proportion of the tumor cells to the variability of noise (Pt/sd), i.e. DNAcopy consistently 
performed the best while GLAD was least sensitive and HMM had the highest FDR (see 
supplementary material). 

Additional studies indicated that the comparative performance did not change when 
introducing a larger proportion of smaller segments in the simulated data using empirical 
length distributions generated by either HMM or GLAD using the same primary breast tumor 
data set as for DNAcopy. However, further examination of the spatial resolution of the three 
segmentation methods revealed that HMM had the greatest power to detect the shortest 
segments with DNAcopy surpassing HMM for longer segments. However, DNAcopy had by 
far the lowest FDR for all segment lengths. GLAD consistently performed worse than the 
other two methods except for the detection of the longest segments (see supplementary 
information for details).  

The merging step allows us to identify segments on different chromosomes corresponding to 
the same copy number. As an example, Figure 6-3 shows simulated data overlaid with 
known log2-ratios and with either HMM-segmented log2-ratios before merging (A) or after 
application of MergeLevels (B). For this example, merging clarifies the genomic profile and 
is able to correctly identify the base (no change) level as well as other copy number levels. 
This is also true for most other samples (see supplementary Figure S1). Note that for highly 
aberrant genomes, such a base level does not exist and it is not possible to infer gain and 
loss reliably.  

To verify that merging performed reasonably, 4 different measures were considered: (1) sum 
of squared (SSQ) distance; (2) MAD between predicted log2-ratios and known log2-ratios; (3) 
accuracy of assigning copy number gain and loss; and (4) the proportion of discordant pairs 
(Table 6-1). Here, the SSQ distance and MAD were calculated with respect to the residuals 
between the observed (predicted, merged) values and the expected log2-ratios computed as 
a function of the copy number and the proportion of the tumor cells. All the clones with the 
true copy number not equal to 2 were considered to be “altered” and the “accuracy” was 
calculated as the proportion of the clones correctly assigned to altered or unaltered states. 

(a)   (b)

 
Figure 6-2. Results from simulation identifying breakpoints using either HMM, DNAcopy or GLAD or 
after removal of excessive breakpoints by MergeLevels or GLADmerge following segmentation. (a) It 
shows the median sensitivity and corresponding average number of false negatives (FN). (b)  FDR for 
breakpoint detection with error bars depicting the interquartile range. Breakpoints were classified as 
correctly identified at its exact location (w=0) or if within an offset of 1 – 2 clones (w=1-2) of a correct 
breakpoint. 



 Paper III - A comparison study: applying segmentation to array CGH data... 57 

 

To calculate the proportion of the discordant pairs, all pair-wise combinations of the clones 
were considered and the proportion of clone pairs that were incorrectly assigned to the 
same or different copy number levels, referred to as discordant pairs was determined. 
Segmentation alone improved all 4 measures and both types of merging further decreased 
MAD, and as expected, further increased the accuracy of assigning copy number alterations 

 
Figure 6-3. An example of simulated array CGH data with 100 clones on each of 20 chromosomes. 
The figure shows simulated log2-ratios in grey, ordered by position and chromosome. "True" log2-ratios 
were recorded from the simulations prior to the addition of Gaussian noise and are overlaid in red. (A) 
Predicted or merged log2-ratio levels are overlaid in blue for HMM predicted log2-ratios before merging 
and (B) after applying MergeLevels. Merging brings predicted values closer to their true copy numbers. 

Table 6-1. Result using 4 difference performance measures for the array CGH analyses.  
 Original Predicted MergeLevels GLADmerge 

SSQ distance 47.38 5.08 4.88 7.25 

MAD 0.104 0.015 0.0044 0.0047 

Accuracy 0.93 0.93 0.97 0.98 

Proportion of discordant pairs - 0.73 0.04 0.04 
Median of each performance measure for original log2-ratios, HMM-predicted log2-ratios, and HMM-predicted 
log2-ratios merged by MergeLevels or by GLADmerge. Results are based on 500 simulated samples. SSQ and 
MAD are calculated with respect to the residuals between the observed (predicted, merged) values and the 
expected log2-ratios. Accuracy refers to the proportion of correctly assigned copy number alterations. The 
proportion of discordant pairs is the proportion of clone pairs that were incorrectly assigned to the same or 
different states relative to their true state. 
The same four measures were used to assess the benefits from merging DNAcopy and GLAD segmented data 
and similar overall results were obtained. Moreover, to ascertain that our results and conclusions were not an 
artifact of our data simulation model or the DNAcopy segmentation results for determination of the empirical 
length distribution used in our simulation model, a second set of simulated data was generated using the 
model for high-rearrangement profiles as described by (Hupe, et al., 2004) without their outlier addition. Their 
model led to much simpler datasets than the data simulated using our model, and consequently improved 
results for all methods. However, the comparative performance of the three methods was similar (see 
supplementary material for details). 
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and dramatically decreased the proportion of discordant clone pairs. No significant 
difference was observed between the performance of MergeLevels and GLADmerge except 
for the SSQ distance where the application of GLADmerge resulted in significantly larger 
squared error compared with those obtained when only applying segmentation. Thus, while 
some merging is beneficial – ‘over-merging’ may occur, which is also reflected in the 
sensitivity/specificity trade-off in Figure 6-2.  

Copy number association power study: testing  
We tested copy number associations of individual clones and of the genomic segments with 
the simulated binary phenotype, by testing whether a clone had a significantly different log2-
ratio in samples from one subgroup (class 1 template) as compared with the log2-ratio for 
the same clone in samples from the other subgroup (class 2 template). Thus, we assessed 
the sensitivity and specificity of the clone-by-clone approach and the region-based 
approaches. The latter used segmented log2-ratios or segmented test statistics as described 
in Methods. For segmented test statistics, all clones assigned to the same segment would 
have the same test statistics. Here, the sensitivity is the proportion of known differential 
clones that were identified, while the specificity is the proportion of known non-differential 
clones identified as such. 

ROC curves were used to evaluate the power to detect associations of the genomic 
alterations with a phenotype. Thus, in Figure 6-4, we plotted the median sensitivity over all 
datasets for small binned intervals of ‘1-specificity’ corresponding to a sequence of different 
significance thresholds. It shows a combined ROC curve based on results from all 500 
simulations. Application of any of the three methods resulted in greatly improved 
performance, which is evident by a higher sensitivity for any given specificity. Both region-
based approaches are superior to the clone-by-clone (original) approach for all three 
segmentation methods with DNAcopy performing significantly better than HMM and GLAD 
(see also supplementary Figure S8). For HMM and GLAD, the family wise multiple testing 
cutoff was often driven by single extreme values. The levels were predicted correctly in most 
cases, but the cutoff derived from the maxT reference permutation distribution was too 
conservative, resulting in many distinct segments being classified as non-differential. We 
refer to (Westfall, et al., 1993) and Supplementary material for details on the permutation-

 
Figure 6-4. ROC curve illustrating the results from the copy number association power study. For 
varying thresholds, it shows the sensitivities versus “1-specificity” (false positive rate). Results are 
based on 500 simulations and binned median sensitivities are depicted. A: T-statistics based on 
segmented log2-ratios. B: Segmented T-statistics based on raw log2-ratios. 
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based single-step maxT procedure to control the FWER. Alternatively, when applying a 
gFWER(k)-controlling single-step common-cutoff augmentation procedure to define 
significance thresholds, the sensitivity increased greatly, especially for HMM and GLAD, 
whereas the specificity only decreased slightly (see supplementary information for details).   

REAL DATA EXAMPLE: ORAL SQUAMOUS CELL CARCINOMA 
Experimental data are inherently variable and segmentation involves bias/variance trade-off.  
We used DNAcopy and MergeLevels to re-analyze 75 oral SCC samples from a recently 
published study (Snijders, et al., 2005) and demonstrate how segmentation may improve the 
analysis. The aim was to quantitatively compare the TP53 mutant and wildtype tumor 
samples in terms of their genomic instability as measured by the number of breakpoints, to 
identify specific genomic regions associated with the TP53 mutation and to use copy 
number data to predict mutation status of tumor samples. 

Figure 6-1A and B illustrates profiles of a wildtype and a mutant sample showing original 
log2-ratios overlaid by segmented and merged log2-ratios. Figure 6-1C and D shows the 
effect of segmenting and merging, with merged and original log2-ratios sorted according to 
the values of predicted levels. A median of 17 and 28 breakpoints were identified in TP53 
wildtype and mutant samples, respectively. Thus, TP53 mutant tumors were significantly 
more unstable genomically (P-value < 0.03). Similarly to simulations, merging only removed 
a small number of breakpoints for DNAcopy (final median of breakpoints: 16 and 24, 
respectively).  

Now, recall that assigning alterations could be done either on a clone-by-clone basis by 
drawing a genome-specific threshold or by using merged segments. The difference between 
the proportions of autosomal clones declared to be altered was dramatic between these two 
approaches: median value of 5 versus 33%, respectively (see supplementary Figure S11). 
The large difference arose partly because of significant heterogeneity of the SCC samples 
combined with high experimental noise for paraffin-embedded tumors such as the samples 

 
Figure 6-5. Identification of gained and lost clones using threshold-based and region-based 
approaches. A threshold for calling aberrations is indicated by a dashed horizontal line at -0.31 and 
0.31. The solid curves indicate the segmented values. The baseline is at 0, thus all clones are altered 
according to the region-based approach with only a small proportion of clones altered with the 
threshold-based method.



60 Part III  COMPARATIVE GENOMICS 

 

in the SCC study. For these, a threshold-based approach is likely to miss many clones 
within real alterations. For instance, if the threshold is near a true copy number level, half of 
the clones with that copy number will be incorrectly declared unaltered. Figure 6-5 
demonstrates the threshold-based and segmentation/merging-based methods for calling 
alterations. The dashed horizontal lines indicate the tumor-specific threshold. Thus, only 
clones above and below this threshold would be assigned an altered state. However, 
following segmentation and merging, assignment of the breakpoints agreed with the 
segmentation done using visual inspection and all clones on this chromosome can be 
assigned to an altered state. Of course, the threshold for the first method may be decreased; 
however, this would occur at the expense of a higher false positive rate as illustrated in 
Figure 6-6 (Note, the figure is based on results from breakpoint simulation study). This figure 
shows an ROC curve for assigning alterations on a clone-by-clone basis using original log2-
ratios or those from a DNAcopy segmentation, and compares it with the results obtained by 
applying each of the level-merging algorithms. Segmentation by DNAcopy alone improves 
the results significantly; however, the merging approach is far superior to any threshold for 
the clone-by-clone approach illustrated by points to the left of both ROC curves. 

Next, clones with significant differences in copy numbers between TP53 mutants and 
wildtype samples were identified (see supplementary Figure S12 for resulting t-statistics). 
Only 29 clones were significantly differential for original log2-ratios. Using segmented log2-
ratios for testing, 66 clones were found to be significant, and when using segmented T-
statistics a total of 139 clones were identified as differential. These 139 clones were 
concentrated in segments on chromosome 8p, 8q, 11q and 18q. Compared to the 29 clones 
originally identified, only 4 were missing. They corresponded to a single clone on 
chromosome 2, and a small cluster of 3 clones separated by single non-significant clones on 
chromosome 10. Thus, the segments picked by region-based approaches produced more 
biologically meaningful results than traditional univariate testing method. Note that 
segmentation of the test statistic outputs entire regions of interest and thus eases the 
interpretation of the results. 

Finally, to investigate whether noise reduction via segmentation would allow for more 
accurate classification, we constructed a predictor for TP53 mutants versus wildtypes based 

 
Figure 6-6. Simulation study results: ROC curve of calling gains and losses are shown for DNAcopy for 
varying log2-ratio thresholds. Median sensitivity based on 500 simulated samples is shown for bins of “1 
minus specificity”. Dots for merged results are shown for median sensitivity and median “1 minus 
specificity” for MergeLevels and GLADmerge.  
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on observed log2-ratios, predicted segmented log2-ratios, or segmented and merged log2-
ratios as input to the classifier. Figure 6-7 illustrates the resulting error rate curve and 
demonstrates that segmentation decreases prediction error rate, while use of merged data 
result in inferior results compared with use of segmented data alone. However, this was to 
be expected as we have observed that merging occasionally removed a true breakpoint. It is 
also possible that the DLDA classifier is a suboptimal choice for the merged data which is 
discretized. 

Discussion and Conclusion 
Numerous methods have been proposed for segmentation of array CGH data, thus allowing 
for identification of copy number transitions. However, no comprehensive comparison or 
even basic evaluation of the performance of the proposed methods in terms of their 
breakpoint detection ability has been attempted; nor have the segmentation results been 
utilized in downstream analyses. Here, we have presented a realistic simulation study 
comparing three popular algorithms designed to segment array CGH data. Moreover, we 
have evaluated a novel merging algorithm linking segmentation output to downstream 
analyses. Finally, we have proposed a region-based testing algorithm and demonstrated its 
superior performance. 

Our results have indicated that segmentation by any of the three methods aids downstream 
analyses of array CGH data. Of the methods under comparison, DNAcopy has the best 
operational characteristics in terms of its sensitivity and FDR for breakpoint detection. 
However, it should be noted that it is not able to identify single clone aberrations. While our 
comparison was limited to only three methods, albeit widely used, our study sets an 
example as a reference point for evaluating future algorithms. Also, our simulation model 
successfully emulates the complexity of real array CGH data. Moreover, our results agree 
well with the recently published results by (Lai, et al., 2005), where they used a limited 
number of simple data simulations to demonstrate that DNAcopy generally performed better 
than GLAD and HMM with regard to detection of copy number alterations. Their results also 
indicated that HMM performed the best for small aberrations given a sufficient signal/noise 
ratio and GLAD did better than HMM for wider aberrations. 

 
Figure 6-7. Misclassification error rate for DLDA classifier using original or segmented and merged 
data with an increasing number of variables re-selected at each leave-one-out cross-validation step. 
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Merging of the resulting segments is of paramount importance in downstream use of the 
segmentation results. This aspect of the analysis has been largely ignored up to now except 
for a post-processing procedure in GLAD. We have introduced a novel merging algorithm 
and evaluated its performance against the existing one obtaining comparable results. We 
have also demonstrated that level-merging improves gain/loss detection, quantification of 
genomic instability for a tumor, and assignment of clones to the same copy number classes. 
However, small reductions in sensitivity brought on by merging may hurt some downstream 
analyses such as testing and classification since these analyses are very sensitive to the 
removal of even a few true breakpoints. Ideally, a merging step could be incorporated into 
the initial segmentation.  

Currently, identifying regions with differential copy number is done using the same 
approaches as in transcriptional microarray studies without special consideration for known 
physical dependence. We have introduced a novel method for identifying such regions 
which explicitly uses segmentation results. The new approach delivers great improvements 
in detection power as demonstrated by our analysis.  

In this paper we have demonstrated the superior performance of DNAcopy. However, an 
HMM approach is adaptable to perform a whole genome fit by doing constrained 
optimization of the segment means and variances across the entire genome, and thus 
consistently improving its performance with more observations. Moreover, in problems 
where simultaneous inferences need to be made, e.g. copy number and methylation, it may 
be of an advantage to use more model-based approaches such as an HMM and its 
extensions. Several papers on this have already been published, e.g. see (Zhao, et al., 
2004) and we are continuing working on evaluating and extending exciting methods to such 
problems. 
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ABSTRACT 
We describe the design and evaluate the use of a high density oligonuclotide microarray 
covering seven sequenced E. coli genomes in addition to several sequenced E. coli 
plasmids, bacteriophages, pathogenicity islands and virulence genes. Its utility is 
demonstrated for comparative genomic profiling of two unsequenced strains, O175:H16 D1 
and O157:H7 3538 (Δstx2::cat) as well as two well-known control strains, K-12 W3110 and 
O157:H7 EDL933. By using fluorescently labelled genomic DNA to query the microarrays 
and subsequently analyse common virulence genes and phage elements, and perform 
whole genome comparisons, we observed that O175:H16 D1 is a K-12 like strain and 
confirmed that its φ3538 (Δstx2::cat) phage element originated from the E. coli 3538 
(Δstx2::cat) strain with which it shares a substantial proportion of phage elements. Moreover, 
a number of genes involved in DNA transfer and recombination was identified in both new 
strains providing a likely explanation for their capability to transfer φ3538 (Δstx2::cat) 
between them. Analyses of control samples demonstrated that results using our custom 
designed microarray were representative of the true biology, e.g. by confirming the presence 
of all known chromosomal phage elements as well as 98.8 and 97.7 percent of queried 
chromosomal genes for the two control strains. Finally, we demonstrate that use of spatial 
information, in terms of the physical chromosomal locations of probes, improves the 
analysis. 
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INTRODUCTION 
Escherichia coli is a complex group of bacteria comprising several intestinal and extra-
intestinal pathogroups as well as commensal bacteria that are normal inhabitants of the 
intestinal tract of all warm-blooded animals and humans. Shiga toxin-producing E. coli 
(STEC) have emerged as important food borne pathogens causing diarrhea, hemorrhagic 
colitis and hemolytic uremic syndrome. Healthy ruminants such as cattle and sheep are 
regarded as the primary reservoir of STEC, which may be pathogenic to humans depending 
on their genomic content and combination of pathogenicity factors.  

The Shiga toxins (Stx) are the main pathogenicity factors of STEC. Stx encoding genes (stx) 
are located on lamboid bacteriophages known as stx phages (Miao and Miller, 1999; Shaikh 
and Tarr, 2003). The stx phages are not only passive vectors for the dissemination of stx, 
but genetic entities where the characteristics of the phage itself may influence toxin 
production and thus, virulence of the host bacteria (Wagner, et al., 1999; Wagner, et al., 
2001). Dissemination of stx genes by transduction is the most likely mechanism for intra- 
and intergenic spread of stx and subsequent development of new STEC. The host range of 
stx phages is highly variable, and phage transduction into E. coli and Shigella strains has 
been shown in different laboratory and animal experiments (Acheson, et al., 1998; Gamage, 
et al., 2004; James, et al., 2001; Schmidt, et al., 1999; Toth, et al., 2003). Evidence for 
transduction of the bacteriophage φ3538 (stx2::cat) from E. coli O157:H7 3538 (Δstx2::cat) 
(Schmidt, et al., 1999) has been shown in porcine loops (Toth, et al., 2003) and recently by 
feeding sheep with E. coli O157:H7 3538 (Δstx2::cat) (C. Sekse, H. Solheim, A. M. Urdahl, 
and Y. Wasteson et al., unpublished data). This latter experiment resulted in the isolation of 
a transductant, E. coli O175:H16 D1 from sheep feces. Consequently, E. coli O157:H7 3538 
(Δstx2::cat) and E. coli O175:H16 D1 both contain Φ3538 (Δstx2::cat), a detoxified derivative 
of an stx2 phage from a human E. coli O157:H7 type strain, in which most of the stx2 is 
replaced by a chloramphenicol acetyltransferase gene, cat (Schmidt, et al., 1999). However, 
little is known about host specificity of the stx phages, and similarities and differences of E. 
coli donor and recipient strains taking part in the transduction event. 

Genome sizes among natural isolates of E. coli varies considerably, ranging by more than a 
million bp (Bergthorsson and Ochman, 1998). Furthermore, substantial diversity and genetic 
polymorphism exists even within the set of “core genes” found in most E. coli genomes 
(Anjum, et al., 2003; Dobrindt, et al., 2003; Fukiya, et al., 2004; Ochman and Jones, 2000). 
Comparative genomic profiling  using microarray chips designed to cover entire genomes is 
one strategy to obtain information about the variability between different strains of the same 
species and indications of horizontal gene transfer (Anjum, et al., 2003; Fukiya, et al., 2004; 
Ogura, et al., 2006). Many commercial chips contain oligonucleotides from only one 
genome, such as the C. jejuni and S. pneumoniae chips and the E. coli K-12 chip (Ocimum 
Biosolutions, Affymetrix). The new E. coli Genome 2.0 array from Affymetrix covers four 
genomes; K-12 MG1655 and three pathogenic E. coli strains (CFT073, and two O157:H7 
type strains). With at least seven E. coli genome sequences now publicly available, it is 
possible to design high density microarrays covering all seven of the fully sequenced 
genomes, in addition to selected genes for virulence factors, plasmids, phages, and mobile 
elements. 

High-density oligonucleotide arrays provide large amounts of data. Consequently, 
automated analysis tools are necessary to identify probes corresponding to the presence or 
absence of specific genomic segments. Comparative genomic DNA hybridization 
experiments of bacterial genomes typically use either simple cut-off values to partition data 
points into present and absent DNA sequence segments, e.g. based on estimates from 
known reference hybridizations (Anjum, et al., 2003) or based on standard deviation 
estimates (Gagne, et al., 2005). However, the physical chromosomal position (mapping) of a 
probe is often ignored when analyzing this type of data. Statistical approaches for this 
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purpose have been widely developed for copy number analyses in cancer research. These 
methods use statistics for partitioning probes into sets with the same copy number 
(corresponding to the same level of DNA). Recent advances and evaluation of their 
performance, demonstrate their usefulness and superiority compared to one-probe-at-a-time 
approaches (Willenbrock and Fridlyand, 2005).  

In early 2005, when this study began, seven completely sequenced E. coli genomes were 
publicly available, including both pathogenic and non-pathogenic strains. These genomes 
vary in size from approximately 4.6 Mbp to 5.5 Mbp, and among these, there is a 
considerable amount of diversity as illustrated by the matrix shown in Figure 7-1A, which 
compares the coding sequence overlap between the seven different E. coli genomes. 
Moreover, next to the matrix, their relatedness is illustrated by a phylogenetic tree, based on 
their 16S rRNAs. The low relatedness of CFT073 to the other strains may also be illustrated 
by several large distinct chromosomal regions that contain genes unique to the CFT073 
genome compared to other E. coli genomes (Figure 7-1B).  

Here we describe the design and use of a high density oligonuclotide microarray covering 
seven sequenced E. coli genomes as well as several sequenced E. coli plasmids, 
bacteriophages, pathogenicity islands and virulence genes. The performance of this 
microarray is evaluated and its utility is illustrated for the hybridization of genomic DNA in 
order to compare two uncharacterised E. coli strains which have not been sequenced, with 
the seven known, sequenced E. coli strains. Recent advances in analysis of genomic DNA 
hybridization data were exploited. In particular, the physical mapping information was used 
to classify genes detected in the hybridization data into present and absent chromosomal 
segments.  

MATERIALS AND METHODS 
In this paper, we distinguish between the sequenced E. coli strains for which probes were 
designed on our custom made microarray chip and the genomic DNA from E. coli 
experimental strains that were actually hybridized to the custom designed microarrays. 

 
Figure 7-1. Comparison of sequenced E. coli genomes. A. Blast matrix comparing the 7 known 
genomes; the diagonal (red) represents internal homologues, and the other boxes (green) show the 
number and percentage of homologues for E. coli genomes in columns found in E. coli genomes in 
rows. On the right side: phylogenetic tree of the strains based on alignment of 16S rRNAs. B. Blast 
Atlas comparing the seven sequenced E. coli genomes. Here, the CFT073 genome is used as a 
reference and for each gene in this genome, the best match in the other genomes is plotted in the 
various circles. 
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Microarray Probe Design  
For probe design, the following sequences were considered (Table 7-1): whole genome 
sequences of seven E. coli strains - K-12 MG1655 (Blattner, et al., 1997), K-12 W3110 
(Hayashi, et al., 2006), O157:H7 EDL933 (Perna, et al., 2001), O157:H7 RIMD0509952 
(Hayashi, et al., 2001), CFT073 (Welch, et al., 2002), 042 (Sanger Institute, unpublished), 
and E2348/69 (Sanger Institute, unpublished). These strains will be referred to as MG1655, 
W3110, EDL933, RIMD0509952, CFT073, 042 and E2348, respectively. Additionally, 104 E. 
coli genes involved in virulence (Dobrindt, et al., 2003), 39 E. coli bacteriophages, 29 E. coli 
plasmids, 3 genomic islands from E. coli strain Nissle 1917 (Grozdanov, et al., 2004) and 4 
pathogenic islands from E. coli strain 536 (Dobrindt, et al., 2002; Schneider, et al., 2004) 
were extracted from Genbank release 146 (see supplementary material for a detailed list).  

The probe design software, OligoWiz (Nielsen, et al., 2003), was used to place probes both 
within unique areas and conserved areas of sequences shared by two or more open reading 
frames predicted by EasyGene (Larsen and Krogh, 2003). Conservation scores for aligned 
sequences were used by OligoWiz to place probes in the most conserved areas. Additional 
probes were placed in the 200 bp upstream regions of E. coli MG1655. A total of 271,693 E. 
coli specific probes were designed based on these sequences.  

E. coli Experimental Strains and Culture Conditions 
Experimentally, we examined the four E. coli strains - W3110 (Hayashi, et al., 2006), 
EDL933 (O'Brien, et al., 1984), O157:H7 3538 (Δstx2::cat) (referred to in the following as 
strain 3538) (Schmidt, et al., 1999), O175:H16 D1 (referred to in the following as strain D1) 
(C. Sekse, H. Solheim, A. M. Urdahl, and Y. Wasteson et al., unpublished data), and 
bacteriophage Φ3538 (Δstx2::cat). The strains were grown overnight in Luria-Bertani (LB) 
broth with continuous agitation (Sambrook, et al., 1989), and DNA was isolated using the 
Qiagen Genomic Tip 500/G (Qiagen, Hilden, Germany) and the Genomic DNA Buffer set 
(Qiagen). Independent triplicates of genomic DNA from each strain were prepared according 
to the manufacturer’s protocol. The Φ3538 (Δstx2::cat) were induced from E. coli 3538 
(Δstx2::cat) with mitomycin C, and DNA was extracted and purified as described by Muniesa 
et al. (Muniesa, et al., 2003). Independent duplicates of the phage DNA were prepared. 

Microarray Labelling and Hybridization 
Seven micrograms of genomic DNA were fragmented with 0.7 Units of DNAseI (Amersham 
Biosciences) for 10-12 minutes at 37oC in 1 x One-Phor All Plus buffer (Amersham 
Biosciences) to obtain fragments of 50-200 bp. Fragmented DNA was labeled according to 
the manufacturer’s instructions (Affymetrix Inc.) for terminal labeling fragmented cDNA 
derived from mRNA for prokaryotic arrays. The labeled DNA was hybridized to custom-
made NimbleExpress arrays (Affymetrix) for 15-17 hours at 45oC. Standard protocols from 
Affymetrix for hybridization, washing and staining were followed using a hybridization oven, 
a Fluidics Station 450 and a GeneChip® Scanner 3000 (Affymetrix). 

Table 7-1. Overview of known sequenced E. coli genomes considered for the microarray probe design. 
Strain Isolate Size bp # easygene genes # probes Reference 

MG1655 4,639,675 4,122 141,483 (Blattner, et al., 1997) K-12 
W3110 4,641,433 4,153 141,285 (Hayashi, et al., 2006) 
EDL933 5,528,445 4,990 139,445 (Perna, et al., 2001) O157:H7 
RIMD0509952 5,498,450 4,986 141,691 (Hayashi, et al., 2001) 

CFT073 - 5,231,428 4,653 127,261 (Welch, et al., 2002) 
O42 - 5,241,977 4,607 130,869 Sanger Institute, unpublished 
E2348/69 - 5,074,835 4,599 124,103 Sanger Institute, unpublished 
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Data Analysis 
Exact sequence matching was used to map each probe to specific chromosomal locations in 
the 7 E. coli design genomes and to specific locations within the 39 bacteriophage elements, 
26 EDL933 or MG1655 genomic phage elements, 4 pathogenicity islands and 104 virulence 
genes. In the subsequent data analysis, a position dependent segmentation algorithm was 
employed to partition data points into present and absent sequence segments. For this, we 
used circular binary segmentation (Olshen, et al., 2004) as implemented in DNAcopy 
developmental version 1.2.1 available for the R statistical language (http://bioconductor.org/). 
As recommended by the authors, the data was first smoothed and subsequently segmented. 
Segmentation was followed by merging the output with MergeLevels (Willenbrock, et al., 
2005). In cases where the algorithm was not able to find an optimal threshold, the threshold 
was fixed at the median absolute difference between segmented values assigned by 
DNAcopy and observed log2-intensities.  

For the analysis of specific chromosomal genes, phage elements and virulence genes, only 
genes or phage elements to which at least 5 probes mapped were considered. Log2-
intensities were analysed using the above described segmentation approach. For 
chromosomal genes, it was safe to assume that a majority of them were present. Thereby, 
the present level was determined as the median value of merged segment means. For the 
analyses, segments with mean values at or above the level closest to the median for 
experimental strains and to the median of probes located in the known BP-933W phage 
sequence for φ3538  (Δstx2::cat) experiments were classified as present (BP-933W is the 
known sequenced equivalent of φ3538  (Δstx2::cat)). Chromosomal genes were considered 
present if at least two of the three replicate experiments had present probes spanning at 
least 90 % of the covered gene sequence. Virulence genes and phage elements were 
inspected visually if they met one of the following three criteria in at least one analyzed 
sample: (1) at least 10 percent of sequence in present segments, (2) a continuous segment 
spanning at least 100 bps (3) at least 5 percent of present probes in the largest segment.  

Hierarchical cluster analysis was based on measurements for all probes using Pearson 
correlation distances and complete linkage. To reduce experimental data for replicate 
experiments into one set of probe values for each experimental strain, a one sided Student’s 
T-test was used to estimate a P-value between 0 and 1 for each probe, where a P-value 
close to 0 corresponded to a probe being significantly below the median intensity for the 3 
replicate experiments for a given experimental strain, and consequently, significantly absent. 
Corresponding sets of theoretical binary P-values of either 0 or 1 were constructed for each 
of the 7 known E. coli strains, where 0 corresponded to no match anywhere in the 
sequenced genome, and 1 corresponded to at least one match.  

Atlases were created using the Genewiz software (Pedersen, et al., 2000). The blast atlases 
were constructed as described previously (Skovgaard, et al., 2002). Common E. coli genes 
as well as strain specific genes were identified by BLASTP  version 2.2.11 (Altschul, et al., 
1997), using 1e-10 as E-value cut-off and minimum alignment ratio of 0.75 (ALR: the 
alignment length divided by the length of the longest compared gene). 

Data Availability 
The microarray data have been deposited in the Gene Expression Omnibus database 
(GEO: http://www.ncbi.nlm.nih.gov/geo/) with the series accession number GSE4690. 
Supplementary information and figures may be found at http://www.cbs.dtu.dk/~hanni/ 
Ecolichip1. 
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RESULTS AND DISCUSSION  
Visualization 
Probe intensities were visualized in whole genome hybridization atlases, as shown in Figure 
7-2, for each of the seven known E. coli genomes considered in this study. Probes were 
mapped to each of the seven fully sequenced E. coli strains by sequence similarity to the 
known sequence and the resulting probe coverage patterns are visible in the innermost 
circle (grey). The probes appeared well distributed for all strains while several distinct 
regions existed for individual strains. Corresponding median intensities were visualized for 
each experimental E. coli strain (2nd to 5th circles) as well as φ3538 (Δstx2::cat) phage 

 
Figure 7-2. Hybridization Atlases, visualizing median probe intensities for the 4 experimental strains 
and the phage Φ3538 (Δstx2::cat), mapped to the 7 known E. coli genomes. Log intensities were 
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experiments (outermost circle). It was possible to identify true distinct regions while 
neglecting gaps in the outer circles that were due to poor probe coverage. This allowed us to 
identify areas unique to each experimental strain. For instance, all experimental strains were 
missing large portions of the CFT073 genome at various sites (Figure 7-2C). As expected 
from the comparison to known sequenced genomes in Figure 7-1B, these regions were also 
missing in the two known E. coli strains included as control experiments (W3110 and 
EDL933). 

Many probes were unique for individual strains, as evident by several gaps in the measured 
intensities. For example, EDL933 mapped to W3110 has gaps, whilst W3110 probe 
intensities covered the entire W3110 genome (Figure 7-2B). Moreover, both intensity 
patterns for the two control strains, EDL933 and W3110, closely resembled their 
corresponding probe coverage patterns, as expected (Figure 7-2B and Figure 7-2E). 

Experimental strains D1 and 3538 (Δstx2::cat) possesses the same bacteriophage, φ3538 
(Δstx2::cat), which has been transferred from strain 3538 (Δstx2::cat) to strain D1 (C. Sekse, 
H. Solheim, A. M. Urdahl, and Y. Wasteson et al., unpublished data). This phage is very 
similar to the BP-933W phage element in E. coli EDL933 located at ~1.33 to ~1.39 Mbp, and 
a region of extremely high similarity is clearly visible in the atlases for both E. coli O157:H7 
type strains (red outermost circles in Figure 7-2D and E). A zoom of the BP-933W phage 
area on EDL933 clarifies the closer resemblance of phage φ3538 (Δstx2::cat) with the 
corresponding phage element from 3538 (Δstx2::cat) and D1, rather than with the BP-933W 
phage element from E. coli EDL933 (Figure 7-3).  

Strain Comparison 
To investigate how the E. coli D1, W3110, 3538  (Δstx2::cat) and EDL933 strains were 
related to each other, an unsupervised cluster analysis of all 3 replicate experiments for 

 
Figure 7-3. Zoom of the BP-933W phage area on EDL933 with known genes indicated. Intensity 
measurements for EDL933 experiments (C) are clearly as expected from the probe coverage pattern 
(G) and both the experimental strains 3538 (Δstx2::cat) (C) and D1 (F) has intensity patterns clearly 
similar to that of φ3538 (Δstx2::cat) (A).    
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each of the four experimental strains was performed, based on intensities for all probes on 
the microarray, as shown in  Figure 7-4A. Here, D1 appears closer related to W3110 than to 
the other experimental strains while 3538 clusters with EDL933. Since the 3538 (Δstx2::cat) 
strain has been serotyped as 0157:H7 (same as EDL933), we expected these two to be 
more closely related to each other than to the other experimental strains. 

Because experimental data to characterize the strains further with regard to their 
resemblance to other E. coli strains were not available, we attempted to construct theoretical 
data, based on all seven known E. coli strains considered in this study (see methods for 
details). In this cluster analysis, control strains clustered as expected from their phylogenetic 
tree based on their 16S rRNAs (Figure 7-1A), although experimental noise was significant. 
Thus, based on experimentally determined probe values, the K-12 type strains (and 
O157:H7 type strains) were more closely clustered than with corresponding theoretical 
strains (Figure 7-4B). However, since the two K-12 strains, MG1655 and W3110 are almost 
indistinguishable in terms of their genomic sequence, this result was expected. Moreover, 
this analysis confirms that D1 is much more related to K-12 strains than to other known 
strains such as E2348 and CFT073. 

Analysis of Strain D1 and Strain 3538 Genes 
Among the 7 E. coli strains used for chip design, 3475 genes were found to be in common 
by Blast analysis (the complete list may be found in the supplementary material). Of these E. 
coli ‘core’ genes, ~3100 were identified in D1 and 3538 samples, indicating that the D1 and 
3538 strains have slightly different subsets of E. coli core genes than the 7 E. coli design 
strains. This is consistent with the observation that the number of E. coli core genes tend to 
decrease as the full genomic sequences of new E. coli strains continue to become available 
(Tipmann and Ussery, unpublished results). A thorough discussion of E. coli core genes will 
be presented elsewhere since there is now at least 20 sequenced E. coli genomes available 
for such an analysis (Binnewies, et al., 2006). 

Among non-core genes, we searched for genes specific to each of the 7 E. coli design 
strains, where genes specific to either the K-12 or the 0157:H7 type strains were combined 

 
Figure 7-4. (A) Hierarchical Cluster Analysis based on all probe intensities for the 3 replicate 
experiments for each of the 4 experimental E. coli strains. (B) Cluster analysis based on continuous p-
values between 0 and 1 (T-test) for the 4 experimental E. coli strains (indicated in bold and with postfix: 
“exp”) and binary values of either 0 or 1 based on theoretical probe absence or presence for all 7 
sequenced E. coli strains considered in this study. Both cluster analyses are based on Pearson 
correlation distances and complete linkage. 
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into lists of K-12 and 0157 specific genes (i.e. present in either W3110, MG1655 or both, but 
differing from non K-12 strains; or present in either EDL933, RIMD0509952 or both, but 
differing from non-0157:H7 strains).  

D1 genes specific to the 7 E. coli design strains were analyzed further. A total of 150 K-12 
specific genes were found, supporting the previous finding that D1 resembles the K-12 
strains. Furthermore, the finding of 210 genes specific to 0157:H7, indicates that D1 has 
acquired many 0157:H7 specific genes in accordance with the known transfer of the 3538 
phage. Although D1 has many 0157:H7 specific genes, it has much less than the known 
0157:H7 type strain E. coli 3538, for which a total of 543 genes specific to 0157:H7 were 
identified.  

Identified D1 and 3538 genes specific to the 7 E. coli design strains were annotated by 
Blastp comparison to the NCBI’s non-redundant database (nr) (http://www.ncbi.nlm.nih.gov). 
Predicted genes, for which a reliable match was found, were examined closer (refer to 
supplementary for a detailed list). For the D1 genes specific to the 7 E. coli design strains, 
we identified a large number of 0157:H7 chromosomal phage genes (discussed further in 
the ‘Benchmarking’ section), while the majority of K-12 specific genes were unrelated to 
pathogenicity, e.g. genes in the phenylacetic acid degradation operon, genes involved in 
energy/metabolism, and membrane proteins. The CFT073 specific genes mainly consisted 
of genes involved in metabolism (e.g. pyruvate dehydrogenase) or translation/transcription 
(e.g. rpoC, RpoD, DNA polymerase 1). Among the 042 specific genes were 8 putative phage 
elements, a putative IS element, two putative transposases and the cat gene. The latter was 
expected since a similar cat gene is present in Φ3538 (Δstx2::cat). Finally, a whole series of 
conjugal transfer proteins (7 of TrbA - TrbJ, 17 of TraB - TraQ) were identified among E2348 
specific genes. These genes comprise a large section of the E2348 chromosome and are 
clearly visible for D1 samples in the 5 Mb region of Figure 7-2F. This demonstrates that D1 
is susceptible to foreign DNA, and might have facilitated the uptake of the E. coli 3538 
genomic phage, Φ3538 (Δstx2::cat). Moreover, we found that for strain 3538, all but two of 
its 30 genes specific to E. coli E2348 were transposases, indicative of elevated levels of 
recombination in E. coli 3538 compared to other 0157:H7 type strains. This further provides 
a likely explanation for the observed transfer of Φ3538 (Δstx2::cat) from strain 3538 to strain 
D1. 

D1 Pathogenicity   
To further characterize the experimental strains - D1 and 3538 (Δstx2::cat), the data for 
probes covering known virulence genes and phage elements were analyzed. A minimum of 
5 probes mapped within 96 of the 104 known virulence genes; and within all 39 non-
MG1655 and non-EDL933 bacteriophages and all 4 pathogenicity islands.  

After removal of sequences absent in all samples (see methods for details on filtering 
criteria), the numbers of sequences were further decreased to 21 (of 96) virulence genes, 14 
(of 39) bacteriophages, and 2 (of 4) pathogenicity islands.  

Results were illustrated for these remaining virulence genes (Figure 7-5) and for phage 
sequences + pathogenicity islands (supplementary Figure S1), by which present and 
missing fragments were clearly visible. While W3110 had few virulence factors, EDL933 had 
many, including the stx genes. Based on virulence genes, D1 clustered with the K-12 type 
strain (W3110) as when clustering based on all probe data Figure 7-4A), indicating that D1 
and W3110 have more virulence genes in common with each other than with the other 
strains. Furthermore, as expected EDL933 and 3538 (Δstx2::cat) have more common 
virulence gene segments than with the other strains.  

By further analyzing the virulence genes present in strain D1, we found that it did not have 
any hemolysin genes (ehxA), or type III secretion genes, which are located at the locus of 
enterocyte effacement in E. coli O157:H7 (espA, B, D and tir), and the eae gene which were 
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present in EDL933 and 3538 (Δstx2::cat), as expected since they are human pathogens, 
EHECs (Caprioli, et al., 2005; O'Brien, et al., 1984). Almost the complete sequence of the 
bacteriophage V from Shigella flexneri was found in the genome of D1 and may be 
responsible for transferring the φ3538 (Δstx2::cat) to D1 as the V bacteriophage plays an 
important role in serotype conversion, and is associated with antigenic variation.  

Although D1 has acquired genes often found in emerging pathogens, it is evident from the 
analysis of virulence genes that D1 is probably still a commensal E. coli and not yet a 
pathogen due to its relatedness to K-12 strains. While the K-12 strain is a commensal 
bacterium originally found in a stool sample from a diptheria patient in 1922, it has later 
developed into different sub-strains, none of which have been reported to cause illnesses. 
D1 is from a stool sample from a sheep, and its serotype O175:H16 has only been reported 
in the literature on a few occasions. While it can belong to a Shiga toxin producing E. coli, no 
illness have been related to this serotype (Pradel, et al., 2000; Scheutz, et al., 2004; 
Stephan and Hoelzle, 2000a; Stephan, et al., 2000b), consistent with our findings. 

Interestingly, based on the phage analysis (supplementary Figure S1), the D1 genome 
clusters with the phage φ3538 (Δstx2::cat) and 3538 (Δstx2::cat) samples rather than with 
W3110 samples, in this case disregarding EDL933 and MG1655 specific genomic phage 
elements. This indicates that D1 shares a significant proportion of phage elements with 3538 

 
Figure 7-5. E. coli virulence genes. Illustration of log2-probe intensities (grey dots) overlaid with 
segmentation/merging results. Red lines correspond to segments identified as present in the 
experiment. Dark grey lines are those segments identified as not present. Only virulence genes with a 
segment present in at least one sample are included. Experiments are clustered according to 
segmentation and merging results (left). The sample is indicated to the right. Note: the order in which 
the virulence genes are concatenated does not signify importance.
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(Δstx2::cat). Supporting this, is the pattern of present segments in common for the Shiga 
toxin related phage elements, Stx1, Stx2-I, Stx2-II and VT2-Sa. Especially noticeable is the 
fact that although the same phage elements are present for EDL933 samples, the exact 
pattern differs, indicating obvious divergence in the phage sequence and confirming that a 
transfer of the phage Φ3538 (Δstx2::cat) element has taken place from 3538 (Δstx2::cat) to 
D1.  

Hence, based on the above results, we can conclude that D1 is a non-pathogenic K-12 like 
strain with an increased ability to obtain foreign DNA, of which it has acquired a significant 
amount of 3538 (Δstx2::cat) phage elements. Nonetheless, the present analysis does not 
include potential virulence genes encoded on plasmids but only chromosomal genes. 
Therefore, D1 plasmids have to be purified and analyzed in a similar fashion with regard to 
potential virulence genes in order to say more about their possible role in pathogenicity. 

Benchmarking 
To estimate whether the above results reflected actual true biology, a number of quality 
issues were explored, including variability between replicate experiments and comparisons 
of results from control experiments to their known sequence.   

First, the performance of the custom designed DNA microarray was evaluated further by 
analyzing the control strains, W3110 and EDL933, after mapping them to each other. By 
varying the threshold cutoff for calling absence/presence on raw data, a detailed 
performance analysis on the probe level could be achieved (Figure 7-6). In this way, it was 
possible to view how a gain in sensitivity (fraction of present probes that were identified) 
would concurrently increase the false positives rate (solid lines). The performance when 
using segmentation and merging (solid circles) was clearly above the ROC-curve for the 
simple threshold approach, indicating a superior performance and confirming that 
segmentation approaches improved the analysis. 

Next, the 25 control EDL933 and MG1655 genomic phage elements were analyzed in the 
same way that virulence genes and non-EDL933 and non-MG1655 genomic phages were 
analyzed (supplementary Figure S2). Analysis of these genomic phage elements confirmed 
the reliability of our analysis approach, as they were all identified as present in the expected 
experimental strain. Thus, all K-12 isolate MG1655 phage elements where identified in their 
full length in the K-12 isolate W3110 samples, and also all O157:H7 isolate EDL933 phage 

Figure 7-6. ROC curve showing the 
performance for different analysis 
approaches. Blue dotted lines and 
triangles: W3110 samples mapped to 
the EDL933 genome. Red solid line 
and dots: EDL933 samples mapped to 
the W3110 genome. The plot shows 
the performance when applying a 
threshold to log2 intensities (solid and 
dotted lines) and when segmenting and 
merging log2 intensities (solid dots and 
triangles).  
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elements were identified for the EDL933 samples. Only the end fragment of CP-933R was 
missing both in EDL933 and 3538 (Δstx2::cat) samples. However, since this fragment was 
part of an unstable cryptic prophage, it may easily have been lost since it is not useful to the 
bacteria. 

Generally, the variability between replicate DNA samples was low, i.e. only a small fraction 
of genes were not found to be present or absent consistently across all replicates. For 
example, between replicate W3100 samples mapped to the EDL933 genome, the number of 
genes identified only differed by 0.9 percent. For the control strains, W3110 and EDL933, 
98.8 and 97.7 percent of all genes were identified as present in their corresponding 
samples, respectively. Moreover, sensitivities of 0.92 and 0.94 were obtained when 
confirming the presence of W3110 genes in EDL933 samples and EDL933 genes in W3110 
samples, respectively, while maintaining a false discovery rate (FDR) at 0.05. A closer 
examination of the false positives revealed that a majority of these corresponded to genes 
which might have been misclassified as negative by Blastp (e.g. an E-value close to the cut-
off) while false negatives were most likely falsely predicted genes. Consequently, results 
obtained using our 7 E. coli genomes microarray platform are highly accurate and reflect 
true biology.  Moreover, if repeating with high quality gene annotations when they become 
available, the sensitivity and FDR may even prove better than initially anticipated.   

ACKNOWLEDGEMENTS 
The authors would like to thank Peter Hallin for assistance with probe design and the Blast matrix; and 
the Sanger Institute for providing sequence data for E. coli strains produced by the Microbial 
Sequencing Group at the Sanger Institute (http://www.sanger.ac.uk/Projects/ Escherichia_Shigella/).  

This study was supported partly by grant no. 147145 from the Research Council of Norway (AP, CS, 
YW); and The Danish Center for Scientific Computing and The Danish Technical Research Council 
(HW, KK, DWU). 



 

 

 

Part IV  

SEQUENCE DEPENDENT 

GENE EXPRESSION 



 

 



 

77 

Chapter 8 Paper V 
 

Minireview:  

Chromatin architecture and gene expression in 
Escherichia coli 
 

Hanni Willenbrock and David W. Ussery 

 

Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby. Denmark.  

 

 

 

ABSTRACT 
Two recent genome-scale analyses underscore the importance of DNA topology and 
chromatin structure in regulating transcription in Escherichia coli.  
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LOCATION, LOCATION, LOCATION 
Expression of a gene is in a sense a bit like purchasing a new home – the value is strongly 
dependent on location. This value is context-dependent: it depends on who your neighbors 
are and also on the larger geographical picture. Two recent studies have analyzed DNA 
topology and chromatin structure on a genome-wide scale in Escherichia coli (Jeong, et al., 
2004; Peter, et al., 2004). Both show that an important factor in determining transcription 
profiles – when and to what extent a gene is expressed - is the location of the gene within 
the context of the E. coli K-12 chromosome. Whereas this is old news for those who are 
interested mainly in eukaryotic chromosomes, it is an important concept that has often been 
overlooked (in our opinion) in bacterial transcriptomics. In eukaryotes, it is well known that 
there are two types of chromatin: heterochromatin, which remains condensed for the most 
part throughout the cell cycle and contains few genes, and euchromatin, which, on the other 
hand, contains gene-rich regions, and in some cases clusters of highly expressed genes.   

Jeong et al. (Jeong, et al., 2004) analyzed similarities in transcriptional activities of E. coli 
genes as a function of their position on the chromosome. An autocorrelation function 
identified three levels of spatial correlations of expressed genes: short-range (7-16 kilobase-
pairs, kb), medium-range (approximately 100 kb) and long-range (over 700 kb). Figure 8-1 
shows the gene expression data obtained by Jeong et al. (Jeong, et al., 2004) together with 
that of Peter et al. (Peter, et al., 2004), mapped onto the circular E. coli chromosome, with 
four circles (circles 3-6) corresponding to values obtained from the four experiments of 
Jeong et al. (Jeong, et al., 2004). They took into account the transcription levels of nearly all 
genes, although only the more highly expressed genes are visible in Figure 8-1. Most of the 
genes in E. coli are transcribed around the time of replication (Dworkin and Losick, 2002), 
and only a small fraction (typically around 10%) of the genes are highly transcribed. These 
“clumps” or regions of highly expressed genes can be seen as dark bands in Figure 8-1, and 
some of these regions differ in the various experiments. The shortest level of spatial 
correlation found by Jeong et al. (Jeong, et al., 2004) corresponds to between 7 and 15 
genes that exhibit an apparently coherent transcriptional activity. These groups are larger 
than operons, and are likely to reflect small clusters of co-regulated genes, of between 
roughly three and five operons (assuming about three genes per operon), including the 
clusters of highly expressed genes mentioned above. This is the first level of the ‘bigger 
picture’ of spatial correlations, and is also the most clearly affected by DNA supercoiling, 
given that correlations at this level are significantly reduced by the addition of norfloxacin, a 
gyrase and topoisomerase IV inhibitor (data shown in circle 5 in Figure 8-1). Having said 
that, it should also be pointed out that all the correlations, including the longer range ones, 
were affected by gyrase mutations (circle 6 in Figure 8-1).  

The results reported by Jeong et al. (Jeong, et al., 2004) are slightly different from previous 
findings by Sousa et al. (Sousa, et al., 1997), who looked at the expression of a reporter 
gene when it was inserted at different positions around the chromosome. Sousa et al. 
(Sousa, et al., 1997) found that gene expression varies along the chromosome in a 
somewhat linear manner, forming a gradient in which the more highly expressed genes are 
localized near the replication origins and the region around the replication terminus contains 
few highly expressed genes. This was thought to be the result of gene dosage associated 
with the distance to the origin of replication: during the replication of the chromosome, there 
are more likely to be multiple copies of genes that are close to the replication origin. As can 
be seen in Figure 8-1, regions with highly expressed genes are not limited to the area close 
to the origin but are distributed in clumps throughout the chromosome, although there are 
few highly expressed regions around the replication terminus. Thus, in contrast to the 
predictions of Sousa et al. (Sousa, et al., 1997), the experimental results of Jeong et al. 
(Jeong, et al., 2004) show that a gene does not necessarily have to be located close to the 
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origin of replication to be highly expressed but its expression level is rather dependent on its 
location within a smaller confined sub-domain.  

The long range correlations (several hundred thousand bp) found by Jeong et al. (Jeong, et 
al., 2004) are more interesting than the short-range correlations and also have precedents in 
eukaryotic systems, where such clustering of highly expressed genes was postulated a very 
long time ago for the Drosophila polytene chromosomes a very long time ago (Ananiev and 
Gvozdev, 1974). More recently, there have been two studies on gene expression in human 
chromosomes that showed clustering of highly expressed genes (Gilbert, et al., 2004; 
Versteeg, et al., 2003). The topic of chromatin structure and gene expression in eukaryotes 
has generated considerably more interest (and publications) than for bacteria. In fact, at the 

 
Figure 8-1. Expression atlas for the E. coli experimental data of Jeong et al. (Jeong, et al., 2004) and 
Peter et al. (Peter, et al., 2004). The atlas was constructed using the Genewiz software (Pedersen, et 
al., 2000).  DNA topoisomerase genes are marked in red, and the replication origin and terminus are 
marked in blue. The outer circle (1) shows the change in expression of genes in response to 
supercoiling (log P-values), where more negative values correspond to genes that are more 
significantly influenced by DNA relaxation; and circle (2) shows the correlation of these expression 
values with DNA supercoiling, where high absolute values correspond to gene expression levels that 
show most correlation or anti-correlation with measured levels of DNA relaxation; both sets of data are 
from Peter et al. (Peter, et al., 2004). Shown in the next four circles (3-6) are the expression values of 
chosen experimental conditions from Jeong et al. (Jeong, et al., 2004): (3) wild-type cells in rich 
medium (LB), (4) minimal medium (M9), (5) following 30 minutes of treatment with the gyrase inhibitor 
norfloxacin, and (6) cells carrying a mutation (GyrAD82G) in a gyrase gene, respectively. Circle (7) 
shows the location of protein coding sequences on the positive strand (CDS+), on the negative strand 
(CDS-), and the rRNA and tRNA genes. Circle (8) shows a running average of the absolute value of the 
nucleosomal position preference (Satchwell, et al., 1986), and circle (9) the AT content (±3 standard 
deviations from chromosomal average). Expression data from Jeong et al. (Jeong, et al., 2004) were 
centered and scaled. Circle (10) shows distance along the chromosome, in megabases (M), counting 
from the beginning of the GenBank sequence.
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time of writing this article, a paper was recently published showing that the ‘upstream 
binding factor’ for RNA polymerase I causes the chromatin to form a more decondensed, 
open structure, allowing access to the polymerase enzyme for transcription (Chen, et al., 
2004). Although most animals have on the order of a thousand times as much DNA as 
bacteria, the level of compaction by chromatin is similar in both (about 7000-fold). But it is 
likely that the DNA compaction is more dynamic in bacteria, because of the higher coding 
densities. of the chromosome Furthermore, transcription and translation are coupled in 
bacteria, most likely for topological reasons (Gowrishankar and Harinarayanan, 2004). The 
long-range correlations found by Jeong et al. (Jeong, et al., 2004) are consistent with a role 
for chromatin structure in gene expression in bacteria, showing once again that what is true 
for elephants can also apply to E. coli. 

DNA SUPERCOILING AND GENE EXPRESSION 
More than 20 years ago, it was postulated that supercoiling could be used to regulate gene 
expression in E. coli (Smith, 1981), and about a decade later (before microarray technology 
was readily available) the influence of supercoiling on the concentration of 88 proteins in E. 
coli was demonstrated (Steck, et al., 1993). In the recently article by Peter et al. (Peter, et 
al., 2004), the influence of DNA supercoiling on transcription was studied using DNA 
microarrays to systematically probe expression profiles of all E. coli genes. The authors 
(Peter, et al., 2004) demonstrated that supercoiling may act as a’ transcription factor’ and 
that it can have either a negative or a positive effect on transcription of a specific gene. They 
identified 306 ‘supercoiling-sensitive genes’ and the expression of most of these genes 
correlates very well with the amount of chromosomal relaxation in each experiment. The fact 
that most of these supercoiling-sensitive genes were localized in regions of high density 
‘clumps’ that were affected by DNA relaxation agrees well with the findings by Jeong et al. 
(Jeong, et al., 2004) that short-range correlations are dependent on negative supercoiling. 

The outermost two circles in Figure 8-1 are based on data from the paper by Peter et al. 
(Peter, et al., 2004) and show the locations of supercoiling-sensitive genes (log P-values, 
circle 1) and the correlation with chromosomal relaxation (circle 2). Anti-correlations 
corresponding to regions where expression decreases upon DNA relaxation were also 
found. As reported by Peter et al. (Peter, et al., 2004), chromosomal regions with significant 
numbers of supercoiling-sensitive genes generally overlap with regions that are more 
correlated or anti-correlated with the level of chromosomal relaxation than regions with no 
supercoiling-sensitive genes. 

Some of the chromosomal regions that are mostly correlated with supercoiling overlap with 
regions showing differential expression patterns among the experimental conditions used by 
Jeong et al. (Jeong, et al., 2004). For example, gyrA and gyrB at 2.33 megabases and 3.88 
megabases on the chromosome, respectively, are highly expressed in DNA-relaxed cells 
(wild-type cells grown with norfloxacin; circle 6 in Figure 8-1) but hardly expressed in wild-
type cells grown in rich (LB;circle 3) or minimal (M9;circle 4) media. Because of the 
experimental conditions used in both studies, however, this picture is expected for the 
gyrase genes. These genes are known to be sensitive to supercoiling and are involved in 
maintaining a precise level of supercoiling in the cell. Thus the inhibition of these proteins is 
very likely to increase their mRNA expression. Surprisingly, a substantial number of 
additional genes were also affected by gyrase inhibition, indicating that this change in 
expression has to be due to the effect that gyrase inhibition has on DNA supercoiling - that 
is, chromosomal relaxation.  

Peter et al. (Peter, et al., 2004) also found that supercoiling-sensitive genes whose 
expression increased upon DNA relaxation were significantly more AT-rich in their upstream 
and coding regions compared to corresponding regions of genes not sensitive to 
supercoiling; the opposite was true for supercoiling-sensitive genes whose expression 
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decreased upon DNA relaxation. This may, however be due to the fact that AT-rich regions 
tend to be more curved than AT-poor regions. Supercoiling-sensitive genes may, therefore, 
be expected to be more AT-rich in upstream regions than genes that are regulated by 
means other than supercoiling. Nonetheless, these small local variations in upstream 
regions are not visible on the genome-scale atlas plot (Figure 8-1, circle 9). Because these 
supercoiling-sensitive genes are localized to specific regions, one would expect that in some 
cases a region would appear AT-rich if all of its supercoiling-sensitive genes were 
significantly AT-rich in their upstream regions. 

A bit more context is needed here - at the risk of complicating the picture, there are two 
additional pieces of information which can help build a clearer picture of what is going on in 
terms of chromatin structure. The first is DNA curvature and the second is a bit more detail 
about DNA supercoiling.  DNA has sequence-dependent structures, just like proteins, and 
certain sequences tend to coil in three-dimensional space. These ‘DNA curves’ are 
correlated with phased tracts of A residues, and have been found to be localized at the tips 
of supercoils (Pavlicek, et al., 2004). The DNA in E. coli is known to be supercoiled, and 
curved DNA (which tends to be AT-rich) can result in the placement of certain DNA 
sequences at the apical tips of supercoils, as shown in Figure 8-2. The supercoils can be 
divided into two types: plectonemic and toroidal, depending on the shape (Figure 8-2). 
Roughly half of the supercoils in E. coli are toroidal – the DNA is wrapped around proteins 
and it is ‘restrained’, although this is transient in bacteria (but permanent in the form of 

Curved DNA

Plectonemic supercoils

Torroidal supercoil

RNA polymerase
 

Figure 8-2.  An illustration of DNA supercoiling domains in the E. coli chromosome. This is a cartoon of 
the chromosome; in real life there are perhaps as many as 400 different domains.  Plectonemic 
(unrestrained) and toroidal (restrained, for example by wrapping around a protein) supercoiling is 
indicated.  Curved DNA tends to be localized at the tips of supercoils. The illustration is modified with 
permission from (Sinden, 1994). 
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stable nucleosomes in eukaryotes). The other half of supercoils is plectonemic 
(unrestrained) and is under torsional stress, which can be relieved by formation of a bubble 
in the DNA helix. The ratio between plectonemic and toroidal supercoiling might vary along 
the chromosome and also with time, for example, an RNA polymerase can wrap DNA 
around it (a restrained toroidal supercoil) and then release the DNA later, creating an 
unrestrained supercoil. Furthermore, a region that in one set of experimental conditions 
contains mainly restrained supercoils can suddenly have most of the supercoils become 
“free” (plectonemic) in the absence of chromatin proteins.  

From a DNA topology perspective, the plectonemic supercoils contain more potential 
energy, in terms of driving superhelical dependent transitions (such as melting the DNA 
helix). Thus, if there were regions along the chromosome that contained lots of binding sites 
for proteins involved in chromatin structure, most of the supercoiling would be transiently 
restrained, and hence less free energy would be available for transcription. In addition, the 
chromatin proteins can physically block the RNA polymerase from binding to the DNA. 
Because the E. coli chromatin proteins IHF and FIS show some sequence specificity, it is 
possible to predict binding sites throughout the chromosome. On a global scale, there tends 
to be an anti-correlation between these chromatin-binding sites and regions of highly 
expressed genes (Ussery, et al., 2001). Finally, on the more local level of a few kilobases 
(for example, an operon), it is possible to predict regions that tend to exclude chromatin 
proteins, and hence might potentially be highly expressed (Dlakic, et al., 2004). In Figure 
8-1, this “nucleosomal position preference” measure is plotted in circle 8. As expected, 
regions of low position preference tend to correspond to the regions with highly expressed 
genes found by Jeong et al. (Jeong, et al., 2004). However, the majority of cellular DNA is 
compacted transiently by chromatin proteins, and there are many regions that are not highly 
expressed but are nonetheless regulated, with their relative expression levels dependent on 
supercoiling. 

Originally, it was postulated that the chromosome was divided into 12-80 topologically 
isolated loops, so-called domains, in which chromatin could be relaxed independently of 
supercoiling in nearby domains (Worcel and Burgi, 1972). Later this number was estimated 
more exactly at around 50 domains corresponding to a domain size of approximately 100 kb 
(Sinden and Pettijohn, 1981). Recently, Postow et al. (Postow, et al., 2004) presented 
evidence of an even smaller domain size of approximately 10 kb on average, corresponding 
to as many as 400 distinct topologic domains in E. coli. This result corresponds very well 
with the finding by Jeong et al. (Jeong, et al., 2004) that up to 16 genes exhibited apparent 
coherent transcriptional activity and the idea that genes may be organized into confined 
supercoiled domains with a size of up to 16 kb. 

The fact that the genes identified as sensitive to supercoiling have a variety of functions, 
supports the hypothesis that supercoiling may act as a global transcriptional regulation 
mechanism and that the cell may use this mechanism as an environmental sensor because 
the topology of the chromosome may be affected by the surrounding environment. The 
chromatin protein H-NS regulates many environmental genes, probably through DNA 
topological changes (Rimsky, 2004). 

One final aspect of this global view of regulation of transcription at the level of chromatin 
structure is that some of these environmentally regulated and supercoiling-sensitive genes 
are involved in bacterial pathogenesis. For example, in Salmonella, it has been shown that 
regulation of genes involved in invasion is regulated by DNA supercoiling (Leclerc, et al., 
1998). Thus, the global regulation of gene expression by DNA topology could prove to be an 
important aspect of understanding the mechanisms of bacterial virulence (Dorman, 1991). 

ACKNOWLEDGEMENTS 
This work was supported by a grant from the Danish Center for Scientific Computing. 



 

  83 

Chapter 9 Paper VI 
 

An Environmental Signature for 323 Microbial 
Genomes based on Codon Adaptation Indices 
 

Hanni Willenbrock, Carsten Friis, Agnieszka S. Juncker, David W. Ussery 

 

Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby. Denmark.  

 

 

ABSTRACT 
Background: Codon adaptation indices (CAI) represent an evolutionary strategy to 
modulate gene expression and have been widely used to predict potentially highly 
expressed genes within microbial genomes. Here we evaluate and compare two very 
different methods for estimating CAI values, one corresponding to translational codon usage 
bias and the second obtained mathematically by searching for the most dominant codon 
bias.  

Results: The level of correlation between these two CAI measures is a simple and intuitive 
measure of the degree of translational bias in an organism, and from this, we confirm that 
fast replicating bacteria are more likely to have a dominant translational codon usage bias 
than slow replicating bacteria and that this translational codon usage bias may be used for 
prediction of highly expressed genes. By analyzing more than 300 bacterial genomes as 
well as 5 fungal genomes, we are able to show that codon usage preference provides an 
environmental signature by which it is possible to group bacteria according to their lifestyle, 
e.g. soil bacteria and soil symbionts, sporeformers, enteric bacteria, aquatic bacteria and 
intercellular and extra-cellular pathogens. 

Conclusions: The results and the approach may be used to acquire new knowledge 
regarding species lifestyle as well as deducing relationships between organisms originally 
thought to be evolutionary far apart.  
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BACKGROUND 
Differential codon usage represents an evolutionary strategy to modulate gene expression 
and hence mathematical formulations of the codon usage bias have been widely used to 
predict gene expression on a genomic scale. This is based on the assumption that codon 
usage bias is correlated with protein levels. Indeed, highly expressed genes have been 
found to almost exclusively use those codons translated by abundant tRNAs in Escherichia 
coli and budding yeast, while non-highly expressed genes appear to be less biased in their 
codon usage that may be more strongly influenced by mutations than by selection during the 
course of evolution (Sharp and Li, 1987).  

Based on these observations, several approaches to measure codon usage have been 
proposed in order to predict the level of protein expression, such as the frequency of optimal 
codons (Ikemura, 1981), the codon preference statistic (Gribskov, et al., 1984), the codon 
adaptation index (Sharp, et al., 1987), the 'effective number of codons' used in a gene 
(Wright, 1990), and predicted highly expressed genes (Karlin, et al., 2003). Of these, the 
codon adaptation index (CAI), has survived the test of time and has now been cited more 
than 700 times with 58 citations just in 2005. This method is based on a known set of 27 
very highly expressed E. coli genes (Sharp and Li, 1986a), from which a codon bias 
signature was deduced that was most likely to be efficient for translation. This bias was then 
used to derive codon adaptation indices for all genes in E. coli. 

While the first species examined – E. coli and S. cerevisiae -  provided strong evidence of 
high translational codon usage bias, recent studies report of bacterial species with little 
codon usage bias (Carbone, et al., 2005; Carbone, et al., 2003), often species with extreme 
AT or GC content. In these studies, whole genome information was used to obtain a 
universal CAI, applying a mathematical measure to derive the most dominant codon bias 
based on the codons from all potential open reading frames from a genome. This CAI, which 
ignored the codon usage of experimentally determined highly expressed genes, 
demonstrated that codon bias as such is not necessarily translational and correlating with 
gene expression, especially in slow growing bacteria (Carbone, et al., 2003). Consequently, 
it is not trivial to deduce and compare codon usage biases across a vast range of bacterial 
species available in sequence databases, including AT or GC rich species, and to the best 
of our knowledge, this type of large-scale comparison has not been done previously. 

Although an early paper found little correlation between mRNA and protein concentration, 
the correlation was considerably higher for highly expressed genes (Gygi, et al., 1999) and a 
recent study found a significant relationship between protein levels and mRNA levels in 
yeast (Ghaemmaghami, et al., 2003). Consequently, microarray gene expression data are 
useful for confirming predicted highly expressed genes - as a substitution for protein levels. 

Here, we calculate and compare a translational codon adaptation index (tCAI) based on that 
proposed by Sharp and Li (Sharp, et al., 1987) with a purely mathematical dominant codon 
adaptation index (dCAI) (Carbone, et al., 2003) for 318 bacterial and 5 fungal genomes with 
their full sequence deposited in Genbank and available from the Genome Atlas Database 
(http://www.cbs.dtu.dk/services/GenomeAtlas/) version 19.1. We compare the ability for both 
types of CAI to estimate the translational codon bias of an organism and show that codon 
usage preferences provides an environmental signature by which it is possible to group 
bacteria according to their lifestyle. Furthermore, we examine how well each CAI measure 
correlates with microarray gene expression data for six selected organisms and show that 
the tCAI measure is generally better for predicting highly expressed genes than dCAI.  

RESULTS AND DISCUSSION 
The two types of codon adaptation indices were calculated for all genes in 318 bacterial 
strains and 5 fungal genomes, and the correlations between the derived tCAI and dCAI 
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values are illustrated for 8 different bacterial phyla, with any remaining bacterial species 
grouped into “Other bacteria”, and fungi depicted separately (Figure 9-1). For most groups, 
the correlation between the two CAI measures is high (median above 0.5). Only for 
Chlamydiae and Spirochaetes are the median correlations below 0.5, indicating that the 
dominating codon biases are not translational for most of the species included in these 
groups. However, it is not surprising that there appears to be little selection for strong tCAI 
bias in these genomes since most of the bacteria in both of these phyla have slow 
replication times. Presumably, fast-replicating bacteria have optimized their replication 
machinery as opposed to slow replicating bacteria where other factors might be more 
important (Carbone, et al., 2005; Carbone, et al., 2003; Rocha, 2004). Consequently, we 
were able to confirm a significant relationship between the level of translational codon 
adaptation and replication time across the entire range of genomes (Spearman’s rank 
correlation, rho ~ 0.46) – using the number of 16S rRNAs as an indirect measure of doubling 
time, as previously suggested (Sharp, et al., 2005), since the number of 16S rRNAs 
indirectly influence replication times (Ussery, et al., 2004).  

Next, the codon preferences, which are measurable by the relative adaptiveness of each 
codon (wij), were compared between tCAI and dCAI and the difference (wij for tCAI minus wij 
for dCAI) was used for cluster analysis of all 318 bacterial strains and the 5 fungal genomes 
(See Figure 9-2A and supplementary Figure S1). The Figure shows a clear separation into 
several clusters with AT-rich bacteria towards the left and GC-rich bacteria towards the right, 
while bacteria with intermediate base composition are in the middle. This is also reflected in 
the clustering of codons which are separated into two distinct clusters, where either a codon 
preference for A/T (lower half) or G/C (upper half) in the third position for dCAI is evident, i.e. 
GC3/AT3 skew dominates over translational bias. However, although the AT content 
appears to be a significant factor in the clustering, merely ordering by AT content does not 
give the same highly distinguishable clusters. Consequently, the correlation between the 
level of translational codon adaptation (measured by the correlation between tCAI and dCAI) 
and the genomic AT content was indeed very low, but still significant (rho ~ -0.14, P-value ~ 

 
Figure 9-1. Boxplot summarizing correlations between tCAI and dCAI for 8 major bacterial phyla and 
fungi. The group “Other bacteria” comprises a number of minor bacterial phyla (Aquificae, Chloroflexi, 
Fusobacteria, Planctomycetes, Acidobacteria and Thermotogae) which could not meaningfully be 
included in any of the other categories. 
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1.5e-2), supporting the minor although unmistakable correlation between AT content and 
clustering order visible in Figure 9-2A.  

The middle area of Figure 9-2A appears most diverse and can be divided into three distinct 
regions (ignoring a few smaller clusters on its left side). This division results in a total of five 
distinct regions as illustrated in Figure 9-2A. Figure 9-2B provides a zoom of the third and 
fourth region from the left. The 3rd region consists mainly of ‘enterics’ (intestinal bacteria) 
living in the human intestine (e.g. Escherichia, Shigella, Salmonella, Bacteroides), the fly 
intestine (Yersinia pestis), and the animal intestine (Yersinia pseudotuberculosis). The yeast 
genome, S. cerevisiae, clusters with the enterics. Although fungi are obviously quite distant 
from bacteria phylogenetically, both can be relatively fast replicating and hence would face 
the same selective pressure on codon usage. Moreover, Kluyveromyces lactis also groups 
with the enterics, including E. coli K-12, with whom it is often grown together in fermentors to 
produce chymosin (rennet) on a commercial scale, reflecting similar preferences on growth 
environment. 

The 4th region mostly consists of bacteria living in aquatic environments such as marine 
waters (Thermotoga maritima, Prochlorococcus marinus, Desulfotalea psychrophila, 
Synechococcus species), groundwater (Dehalococcoides), freshwater (Synechococcus  
elongatus), and hot springs (Thermosynechococcus elongatus). While other P. marinus 
strains cluster in the 1st region, strain MIT9313 is low-light-adapted and has almost as many 
strain specific genes as it has genes in common with its high-light-adapted relative, strain 
MED4 (Rocap, et al., 2003), reflective of differing environmental preferences. 

Looking at the remaining regions in Figure 9-2A, we observe that the 1st (leftmost) region 
consists of slow-growing intracellular pathogens (Mycoplasma, Rickettsia, Chlamydia, etc), 
and other small pathogens (Bartonella, Helicobacter, Ehrlichia, Campylobacter) mostly with 
genome sizes less than or close to 1 Mbp. The content of this region reflects the observation 
that many organisms with reduced genomes have very low GC content and supports the 
speculations that there is a selective pressure in this group of bacteria to lower the nitrogen 
requirement for DNA synthesis (Giovannoni, et al., 2005), by adapting the codon usage to 
favor codons with more A’s and U’s.  

The 2nd region mainly consists of sporeformers, including Gram positive bacteria (e.g. 
Streptococcus, Lactococcus, Lactobacillus, Staphylococcus, Enterococcus, Bacillus, 
Oceanobacillus, Listeria, and Clostridium). Schizosaccharomyces pombe (fission yeast) is 
found in this region and resembles the other microbes in that it can also reproduce by 
sporulation. 

Many of the bacteria in this region can replicate quite fast, and exhibit other evidence of 
selective pressure for optimization of the genome for quick replication on demand. For 
example, the Vibrio (a Gram negative, non-spore former) and Bacillus (a Gram positive 
sporeformer) cluster close together; and they have the largest number of rRNAs and tRNAs 
out of several hundred bacterial genomes sequenced so far. Of the remaining fungal 
genomes, the plant infecting Ashbya gossypii  and the diarrhea causing parasite 
Encephalitozoon cuniculi are found in a somewhat remote cluster in the 2nd region together 
with the soil bacterium, Bacillus licheniformis, which is mainly associated with plant materials 
and is toxinogenic, i.e. causing food poisoning in humans. 

Finally, the 5th (rightmost) region mainly consists of soil bacteria (e.g. Pseudomonas, 
Nocardia, Streptomyces, Desulfovibrio, Burkholderia), and soil symbionts (e.g. 
Xanthomonas, Agrobacterium, Rhizobium) and plant pathogens (Xylella fastidiosa, 
Pseudomonas) as well as a few mammalian pathogens. Among additional bacteria in this 
region, we found an intercellular pathogen, B. melitensis that may have evolved from soil 
and plant associated bacteria (Paulsen, et al., 2002) and a pathogen, Wolinella 
succinogenes, in which several soil related genes have been identified  (Baar, et al., 2003).   
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Figure 9-2. 2D cluster analysis of differential codon preferences for tCAI and dCAI. The differences in 
relative adaptiveness of each codon (wij for tCAI minus wij for dCAI) for each Genbank entry were 
clustered in two dimensions, one clustering codons and the other clustering Genbank entries. The 
clustering was performed as a hierarchical cluster analysis using Euclidian distances and complete 
linkage. Codons preferred relatively more by dCAI are red, while codons preferred relatively more by 
tCAI are green. Equal preference is indicated by white. A. Entire dendrogram. B. Zoom of the 3rd and 
the 4th region. Weights not considered: start codon ‘ATG’ and stop codons ‘TGA’, ‘TAG’ and ‘TAA’. 
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Thus we find that, upon closer inspection, apparently misplaced genomes in a region may 
reflect similar shared ecological niches in the past.  

By the above described approach, we were able to divide the organisms into three overall 
groups reflective of the genomic AT/GC content as previously demonstrated, based on 
distances between binarized codon weights from dCAI (Carbone, et al., 2005). However, 
rather than merely discriminating between classes of lifestyle in terms of mesophily, 
thermophily and hyperthermophily - as previously shown based on either amino acid 
composition (Kreil and Ouzounis, 2001; Tekaia, et al., 2002) or by codon usage (Carbone, et 
al., 2005) - we obtained an environmental signature based on differences in codon weights 
between evolutionary more dominant codons and codons preferred by the translational 
machinery. Consequently, we demonstrate that differences in codon usage bias by tCAI and 
dCAI provide an environmental signature by which it is possible to group bacteria into 
environmental groups, such as soil bacteria, enterics, sporeformer and intracellular 
pathogens. That is, a clear environmental signature is evident in the composition of the 
clusters based on differences in relative adaptiveness of each codon as identified by either 
of the two CAI measures. These results build on a previous finding that GC content of 
microbial communities is influenced by the environment (Foerstner, et al., 2005). 

Prediction of highly expressed genes 
Since tCAI is a “forced” measure of translational bias, while dCAI is a measure of the most 
dominating bias for an organism independently of the type of bias (i.e. GC skew bias, strand 
bias, etc.), the correlation between these two measures is a simple and intuitive, yet strong 
indication of whether the most dominating bias is translational or not, and consequently, how 
well the dCAI values explain gene expression. In this sense, it is not surprising that the 
correlation between the two CAI measures also gives an indication of how well tCAI explain 
the gene expression levels. This trend holds true at least for the six organisms for which we 
compared CAI values to microarray data, where the correlations between the two CAI 
measures are significantly correlated with the degree of how well tCAI correlates with gene 
expression (rho=0.6).  

To further analyze and compare genes predicted as highly expressed by tCAI with genes 
having extreme codon bias according to dCAI values and with the highly expressed genes 
estimated by microarray analysis, the overlap between the top 10 percent genes was found 
and visualized in a Venn diagram (Figure 9-3). For both S. cerevisiae and E. coli, genes with 
high tCAI and dCAI values overlap significantly with each other as well as with genes 
identified as highly expressed in microarray experiments. For B. subtilis, a smaller but 
similar trend is evident. For the remaining bacteria, a significantly higher number of genes 
with high expression values (microarray data) overlap with genes with high tCAI values than 
with genes having high dCAI values. An investigation of the functional categories to which 
the dCAI reference genes (top 1% genes) belonged to, revealed that for S. cerevisiae, E. 
coli and B. subtilis, a significant fraction of ribosomal proteins were included, while for P. 
aeruginosa, C. jejuni and G. sulfurreducens, no ribosomal proteins where found among 
dCAI reference genes. This is in agreement with the ribosomal criterion defined by Carbone 
et al. (Carbone, et al., 2005) saying that ribosomal proteins have significantly higher dCAI 
values than other protein encoding genes in translationally biased organisms. Thus, 
organisms having few or no ribosomal proteins among dCAI reference genes show little 
translational codon usage bias as compared to organisms having many ribosomal proteins 
among dCAI reference genes. 

The above comparison of microarray data with tCAI values demonstrates that even for 
organisms evolutionary far apart from E. coli, it is possible to predict highly expressed genes 
by estimating the translational codon usage adaptation even when the most dominating bias 
in an organism is not translational, by comparing codon usage for each gene to that of 
genes involved in translation using tCAI. The level of confidence, however, decreases with 
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decreasing levels of translational codon adaptation in the dominating codon usage biases 
(as estimated from the correlation between tCAI and dCAI). On the other hand, as also 
observed by (Carbone, et al., 2005), in cases where translational bias is not dominant, dCAI 
would not be useful for predicting gene expression. 

CONCLUSION 
Previously, it has been postulated that fast-growing bacteria share codon usage preferences 
since they have more abundant and similar tRNAs (Rocha, 2004). Here, we offer a 
biological explanation by showing a clear relationship between environment and similarities 
in codon usage biases, i.e. differences in codon preferences of translational codon 
adaptation and dominant codon adaptation provide an environmental signature by which it is 
possible to divide bacteria into groups representing different lifestyles, such as soil bacteria 
and symbionts, enterics, aquatic bacteria, sporeformers and small intercellular and 
extracellular pathogens. 

Moreover, our study confirm across a wide range of bacteria and fungi that the observed 
variations in correlation between codon adaptation and gene expression are related to 
differences in replication times. For organisms with low correlations between tCAI and dCAI, 
the dominant codon bias is not translational, and consequently, the dCAI values do not 
reflect translational bias. Nonetheless, comparisons of microarray data with tCAI values 
indicate that this codon adaptation index is still useful for predicting a set of highly expressed 
genes although the level of confidence decreases along with the magnitude of the 
translational bias. 

Figure 9-3. Overlap between genes with top 10% tCAI, dCAI and microarray gene expression values. 
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METHODS 
All Genbank entries of completely sequenced genomes were taken from version 19.1 (May 
26th, 2006) of the Genome Atlas Database (Hallin and Ussery, 2004). 

Gene Expression Data 
Gene expression data for E. coli was downloaded from Gene Expression Omnibus database 
(GEO, http://www.ncbi.nlm.nih.gov/projects/geo/): GSM18261 (Covert, et al., 2004), and 
gene expression data for C. jejuni, 42oC reference experiments (Stintzi and Whitworth, 
2003), and P. aeruginosa, MHH0122 (Salunkhe, et al., 2005) were provided by the authors. 
For S. cerevisiae, preprocessed expression data were downloaded from GEO for two yeast 
strains, BY4741 (samples GSM6711, GSM6712 and GSM6713) (Bulik, et al., 2003) and 
BY4716 (samples GSM35294, GSM35295 and GSM35296) (Ronald, et al., 2005), both 
strains derived from the S288C strain.  

All raw data were normalized with qspline (Workman, et al., 2002) and expression indices 
were estimated (Li, et al., 2001b). BY4741 expression data were log-transformed and all 
preprocessed S. cerevisiae data were re-normalized by qspline together with 179 additional 
expression profiles for the same Affymetrix YG-S98 chip downloaded from GEO. For C. 
jejuni, the median of normalized data was used and for S. cerevisiae, the mean of the two 
strain medians was used. 

Additional processed expression data were downloaded from ArrayExpress for G. 
sulfurreducens ATCC 51573: GGS23_BR2_2S_12679025 (Methe, et al., 2005), and B. 
subtilis: 25866GENEPIX25866  (Helmann, et al., 2003). No further treatment of this data 
was carried out. 

Translational Codon Adaptation Index (tCAI) 
The CAI measure of translational adaptation was inspired by the original codon adaptation 
index from (Sharp, et al., 1987) and in the following, we will refer to this CAI measure as the 
“translational codon adaptation index” (tCAI). However, although Sharp & Li in their original 
work from 1987 were forced by lack of data to assume a background codon usage 
corresponding to equal usage of the synonymous codons for any given amino acid, we now 
have vast libraries of complete genomic sequences available. Consequently, we calculate 
the relative synonymous codon usage (RSCU) for each organism by comparing the codon 
distribution from a set of highly expressed genes to a background distribution estimated from 
the codon usage of all coding regions in the genome as annotated in the Genbank entries: 
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Here, Xij represents the number of observations of the j'th codon for the i'th amino acid in the 
set of highly expressed genes, whereas Yij is the corresponding number of observations in 
the background set. Furthermore, ni is the number of codons for the i'th amino acid, with 
RSCUi,max being the highest number from the vector of RSCUi = (RSCUij=1,..., RSCUij=ni).  

The relative adaptiveness of a codon (wij) is calculated as: 

max,/ iijij RSCURSCUw =  

Subsequently, codon adaptation indices for individual coding regions were obtained as 
follows: 
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Here, L is the number of codons in a given gene. 
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In order to identify a set of constitutively highly expressed genes for each of the 318 
bacterial genomes analyzed in this work, the reference set of 27 very highly expressed E. 
coli genes originally compiled by (Sharp, et al., 1986a) was aligned at the protein level 
against all genes annotated in the Genbank entry for each genome using BLASTP version 
2.2.9 (Altschul, et al., 1997). For each of these very highly expressed genes, the gene with 
the best alignment was added to a set of very highly expressed genes if it had an E-value 
below 10-6, and these were used as a reference set for the given organism. Similarly for the 
5 fungal genomes, we used the reference set of very highly expressed S. cerevisiae genes 
identified by (Sharp, et al., 1986b), removing the second ribosomal protein 51 gene 
(rbs51B), resulting in a list of 37 genes. 

By this procedure, we were able to construct reference sets containing a minimum of 15 
genes for the Firmicute Clostridium tetani E88, and a maximum of 27 highly expressed E. 
coli reference genes for 26 Proteobacteria strains. Consequently, bacteria more related to E. 
coli showed a higher level of conservation. Thus, the number of identified reference genes 
ranged from a median of 24 for Proteobacteria to a median of 21 for Actinobacteria. For the 
fungal genomes, a median of 36 genes was found in the reference sets. 

Dominating Codon Bias Index (dCAI) 
A purely mathematical CAI measure was proposed by Carbone et al. (2003) and in this 
paper we refer to this CAI measure as “dominant codon adaptation index” (dCAI). It detects 
the most dominant codon bias in the genome, regardless of whether this bias is translational 
or not. The algorithm screens a genome for genes that score the highest values on the CAI 
scale and selects these as its reference set. For dCAI values, we have used the tool 
CAIJava available from the authors (http://www.ihes.fr/~materials/description.html). 

Data treatment 
All DNA and protein sequence information was extracted from each Genbank entry. For 
correlation estimates, we used Spearman’s rank correlation (Best and Roberts, 1975) to 
avoid any problems with possible deviations from normality in compared data (e.g. log-
normal distribution for microarray data). Cluster analysis was based on hierarchical 
clustering of Euclidian distances by complete linkage. 

ADDITIONAL DATA FILES 
The following additional data are available at http://www.cbs.dtu.dk/~hanni/CAI/. Overview of 
the microbial genomes included in this study linked to estimated tCAI and dCAI values. 
Supplementary Figure S1 is a detailed version of the cluster analysis in Figure 9-2, providing 
the full organism names. 

ABBREVIATIONS 
tCAI: translational codon adaptation index 

dCAI: dominant codon adaptation index 

GEO: Gene Expression Omnibus 
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ABSTRACT 
It is well known that gene expression is dependent on chromatin structure in Eukaryotes and 
it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a 
nucleosomal position preference measure of DNA flexibility to predict highly expressed 
genes in microbial genomes, and compare this to genes predicted to be highly expressed 
based on their codon adaptation index (CAI) values. The predictions are compared to 
experimental data for 6 different microbial genomes, with a particular interest in 
experimental data from Escherichia coli. We find that gene expression is not only regulated 
by DNA structural elements such as DNA flexibility in terms of nucleosomal position 
preference, but that absolute gene expression levels are highly correlated with their 
individual level of DNA flexibility in multiple microbial genomes. For these, flexible DNA may 
be more accessible to the transcriptional machinery. This newly gained insight into DNA 
structure dependent gene expression in microbes may be exploited for predicting the 
expression of non-translated genes such as non-coding RNAs that may not be predicted by 
any of the conventional codon usage bias approaches. 
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INTRODUCTION 
The transcription of DNA is highly influenced by the bending and flexibility of the DNA 
double helix. These structural properties are dependant on the base sequence (Baldi, et al., 
1996), which in turn, is reflective of, or may influence the codon usage - also important in 
determining the relative expression of a given gene. Prediction of highly expressed genes 
and elucidation of the physical and biological properties of highly expressed genes has 
recently been addressed by a number of studies (Karlin, et al., 2003; Raghava and Han, 
2005; Sharp, et al., 1987).  

The translational ‘codon adaptation index’ (CAI) is highly correlated with the expression level 
in fast growing bacteria (Carbone, et al., 2005). It is based on the finding that highly 
expressed genes almost exclusively use those codons translated by abundant tRNAs in 
Escherichia coli and budding yeast (Sharp & Li, 1987). Consequently, a codon bias 
signature was deduced that was most likely to be efficient for translation. This bias was then 
used to derive codon adaptation indices for all genes for a given organism, where high CAI 
values correspond to genes most likely to be highly expressed.  

However, using CAI, one is only able to predict highly expressed proteins (translated genes) 
since this measure is based on codon usage bias. Unfortunately, this method cannot 
consider tRNAs, ribosomal RNAs, and other non-coding RNAs. Furthermore, when it comes 
to organisms with low translational bias – typically slow growing organisms - CAI is a less 
effective predictor of highly expressed genes. 

On a more global scale, gene expression may be regulated from specific promoters that are 
sensitive to DNA superhelicity. That is, supercoiling may regulate gene expression at a 
genome-wide level (Peter, et al., 2004; Willenbrock and Ussery, 2004). In this way, an 
organism may react rapidly to changes in growth and nutritional states as well as 
environmental conditions since DNA superhelicity varies with the cellular energy charge, 
which, for example, differs in log phase versus stationary phase or is influenced by 
environmental factors such as temperature or osmotic stress (Hatfield and Benham, 2002). 
Moreover, it is well known that DNA supercoiling can affect gene expression at the level of 
promoter activity by changing the shape of DNA. While negative supercoiling may facilitate 
promoter melting and consequently transcription initiation, it may also repress it (Drolet 
2006). Some of the DNA supercoiling inside cells is restrained by wrapping around proteins 
in torroidal supercoils, and the remaining supercoils are “unrestrained”, in the form of 
plectonemic supercoils. In eukaryotes, most of the supercoiling is thought to be restrained 
around nucleosomes, with little free supercoiling that can drive transitions such as opening 
of the double helix. However, in bacteria, which contain a much higher coding fraction of 
DNA, the ratio between restrained and unrestrained supercoiling is about equal. 

The ‘position preference’ measure was originally derived for Eukaryotes using chicken DNA 
and is a trinucleotide model of nucleosome positioning patterns. It reflects the preference of 
a given trinucleotide for being found in a region where the DNA minor groove faces either 
towards or away from the nucleosome histone core (Satchwell, et al., 1986). Here, we use a 
minor modification of the original nucleosomal positioning trinucleotide scale where absolute 
values reflect the magnitude of position preference (Pedersen, et al., 1998). Thus, high 
absolute position preference reflects a high preference for nucleosomes; while low absolute 
position preferences reflect trinucleotides which tend to exclude nucleosomes. While this 
only makes sense in Eukaryotes since Prokaryotes do not have nucleosomes, these 
preference values are also a measure of DNA flexibility since flexible sequences can occupy 
any rotational position on nucleosomal DNA, while rigid sequences are restricted in their 
rotational location. Consequently, the ‘position preference’ measure may also describe a 
structural property of prokaryotic DNA. As a result, it has been used previously to show 
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structural characteristics in prokaryotic genomes (Pedersen, et al., 1998; Pedersen, et al., 
2000).  

By a cluster analysis of various structural properties including position preference, groups of 
genes were identified that contained all the ribosomal RNAs and a majority of the ribosomal 
proteins from Escherichia coli (Pedersen, et al., 2000). These genes were characterized by 
higher than average DNaseI sensitivity (Brukner, et al., 1995) and low position preference, 
indicating flexible DNA. Since the ribosomal genes are among the most highly expressed in 
actively dividing E. coli cells, it was hypothesized that their common structural features may 
play a role in regulating expression and that there exists a correlation between low position 
preference values and highly expressed genes (Dlakic, et al., 2004). This makes sense 
because regions of DNA that are not condensed by chromatin are more accessible to the 
RNA polymerase. Consequently, transcription is thought to be governed by ‘effective’ 
superhelicity, where topoisomerases, the transcription machinery and chromatin proteins 
compete for available supercoils (Blot, et al., 2006).  

Here, we use the position preference measure to predict highly expressed genes and 
compare it to the CAI measure while evaluating the functional categories of genes with low 
position preference. The predictions are compared to experimental data for 6 different 
microbial genomes, including data from E. coli samples taken at various stages during 
growth, at which varying levels of global supercoiling is expected. 

MATERIALS AND METHODS 
Translational Codon Adaptation Index (CAI) 
The codon adaptation index describes a codon usage bias in an organism (Sharp, et al., 
1987). Here, we use a translational codon adaptation index (CAI), in which a codon bias 
signature is deduced that is most likely to be efficient for translation (Willenbrock et al., 
submitted Genome Biology). In short, this method is based on a known set of 27 very highly 
expressed E. coli genes for bacterial genomes (Sharp, et al., 1986a), and a set of 39 very 
highly expressed Yeast genes for Eukaryotes (Sharp, et al., 1986b). In order to identify a set 
of constitutively highly expressed genes for each of the bacterial genomes analyzed in this 
work, the reference set of very highly expressed E. coli or Yeast genes is aligned at the 
protein level against all genes annotated in the Genbank entry for each genome using 
BLASTP version 2.2.9 (Altschul, et al., 1997). For each of these very highly expressed 
genes, the gene with the best alignment was added to a set of very highly expressed genes 
if it had an E-value below 10-6, and these were used as a reference set for the given 
organism. Using each genome specific reference set, a weight table including all codons is 
derived indicating the most translationally efficient codons. In turn, these weights are used 
for calculating a CAI value for each gene. The higher the CAI score, the more likely a gene 
is to be highly expressed. 

Position Preference 
This is a model of DNA flexibility, which is derived experimentally from the preference 
demonstrated by individual trinucleotides to be positioned in a specific orientation in 
nucleosomal DNA (Satchwell, et al., 1986). The values indicate the preference of triplets for 
being specifically positioned in nucleosomal DNA. High absolute values correspond to 
triplets with a strong preference for having minor grooves facing either towards or away from 
the nucleosome core, while triplets with close-to-zero preference can occupy any rotational 
position on the nucleosomal DNA, and are thus assumed to be flexible. Since the ‘position 
preference’ measure is based on a simple trinucleotide model, values are assigned to every 
nucleotide in the DNA sequence simply by looking up the values for the corresponding 
triplet, in which the nucleotide is centered (Baldi, et al., 1996; Pedersen, et al., 1998; 
Pedersen, et al., 2000).  
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Assigning Cluster of Orthologous Genes (COGs) 
The system for delineation of Clusters of Orthologous Groups of proteins (COGs) is based 
on orthologous relationships between genes and is useful for comparative genomics and 
facilitates the functional annotation of genomes. Here, genes were assigned a COG 
category by AutoFACTS, an automatic functional annotation tool (Koski, et al., 2005) 
utilizing Blastx version 2.2.9 (Altschul, et al., 1997) to blast open reading frames to a 
database of sequences with assigned cog categories available from NCBI 
(ftp://ftp.ncbi.nih.gov/pub/COG/COG/).  

Prediction of ribosomal proteins 
Ribosomal proteins for each Genbank entry were predicted using profile HMMs from Pfam 
(http://www.sanger.ac.uk/Software/Pfam/) since the quality of the annotations available from 
the Genbank entries varies tremendously. Pfam_ls profile HMMs for all ribosomal proteins 
were extracted (94 as per July 24th 2006). Pfam_ls files contain all the Pfam models for 
finding global or complete matches to a domain or family. 

Topological domains 
Starting from the beginning of the genomic sequence, position preference values for 
segments with an initial size of 55000 bp were compared to position preference values for 
the following 1000 bp’s. These bp’s were added to the initial segment unless it was 
significantly different (Kolmogorov-Smirnov P-value < 1e-6). Thereby, segments were 
‘grown’ until no additional bp’s could be added, following which, a new segment was started. 
The parameters (initial size and increment) were chosen by lowest possible SSQ (summed 
squared residuals of differences between original position preference values and region 
mean position preference values) among a number of test runs with varying initial size and 
varying increment size. 

Gene Expression Data 
Microarray based gene expression data were taken from (Willenbrock et al, submitted 
Genome Biology). Briefly, the dataset comprised pre-processed gene expression data for E. 
coli (Covert, et al., 2004), C. jejuni (Stintzi, et al., 2003), P. aeruginosa, S. cerevisiae (Bulik, 
et al., 2003; Ronald, et al., 2005), G. sulfurreducens (Methe, et al., 2005), and B. subtilis 
(Helmann, et al., 2003). Additional microarray gene expression data for E. coli at different 
growth stages were taken from (Tjaden, et al., 2002), where raw data were normalized with 
qspline (Workman, et al., 2002) and expression indices were estimated (Li, et al., 2001a).  

Data Treatment 
All DNA and protein sequence information was extracted from each Genbank entry. For 
correlation estimates, we used Spearman’s rank correlation (Best, et al., 1975) to avoid any 
problems with possible deviations from normality in compared data (e.g. log-normal 
distribution for microarray data). Cluster analysis was based on hierarchical clustering of 
Euclidian distances using complete linkage. 

Supplemental information 
Additional data are available at http://www.cbs.dtu.dk/~hanni/Chromatin/. This website 
contains an overview of the microbial genomes included in this study linked to estimated 
position preference values. Supplementary Figure S1 is a detailed version of the heatmap 
sketched in Figure 10-1, providing the full organism names of all included microbial 
genomes. Supplementary table S1 and S2 provides some statistics for the comparison of 
expression values and CAI and position preference. 
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Figure 10-1. Heatmap of COG categories for genes with low position preference (10% lowest). Over-
represented categories among genes with lowest position preference compared to the genomic 
background is indicated with purple, while green indicates under representation. The kingdom is 
indicated as a vertical color bar to the left of the heatmap and the phyla as a vertical color bar to the 
right. 
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RESULTS AND DISCUSSION 
Functional categories of genes with low position preference  
In fast growing organisms, ribosomal proteins and other proteins involved in translation and 
transcription are often highly expressed and are extremely biased in their codon usage 
preferences, that is, they have high CAI values (Carbone, et al., 2005). Genes involved in 
translation, transcription, replication, and energy production are often encoded by flexible 
DNA in terms of low position preference values which is thought to be correlated with high 
gene expression (Figure 10-1). Figure 10-1 (and supplementary Figure S1) illustrates over-
represented (purple) and under-represented (green) COG categories among genes with low 
position preference relative to the genomic background. The COG categories and the 
microbes are clustered in two dimensions by hierarchical clustering and the microbes do not 
cluster according to AT content (data not shown) as we found when clustering based on 
codon usage bias (Willenbrock et al., submitted Genome Biology). Instead, it is possible to 
see the COG categories of genes encoded by DNA with low position preference. For most 
microbes, DNA with low position preference encodes genes involved in ‘translation, 
ribosomal structure and biogenesis’, ‘energy production and conversion’, ‘transcription’, and 
various types of metabolism. 

It is clear that the clustering brings together organisms which are relatively distant 
phylogenetically (Figure 10-1, right side color bar representing the taxonomic phylum of 
each genome). One possible explanation for the clustering is similar environments as found 
based on CAI (Willenbrock et al., submitted Genome Biology). However, in the present 
analysis, the ordering may also be related to the functionality of the microbe, i.e. pathogen 
versus non pathogen. For example, the COG category ‘replication, recombination and 
repair’ is particularly over represented amongst genes with low position preference for a 
distinct cluster at the top of Figure 10-1, consisting of extremophilic Archaea and Bacteria as 
well as pathogenic bacteria (mainly Yersinia pestis strains). The common feature of these 
organisms is that genes involved in replication, recombination and repair have very low 
position preference (and consequently are potentially highly expressed). Particularly genes 
involved in recombination and repair are essential for pathogens and microbes living under 
extreme conditions making it reasonable for them to be highly expressed. Supporting this 
observation, we find that the same COG category is over represented for pathogenic E. coli 
strains, O157:H7 EDL933, O157:H7 RIMD0509952,  CFT073 and UTI89 as well as the E. 
coli like pathogen, Shigella, whereas, the same COG category is not dominating for the non 
pathogenic E. coli strains K-12 W3110 and K-12 MG1655. This provides us with a possible 
means for distinguishing pathogenic strains from non pathogenic strains. 

Next, we observe that the eukaryotic intracellular parasite, Encephalitozoon cuniculi, 
clusters very close to the Mycobacterium species, also intracellular pathogens and similar in 
that they all have reduced genomes. Moreover, three non-pathogenic fungi are closely 
clustered with certain probiotic bacteria (Lactobacillus); it is interesting to note that these 
organisms can live in a similar ecological niche. Also, a few microbes contain genes with low 
position preference that are involved in carbohydrate transport and metabolism, especially 
the Streptococcus genomes found in the bottom cluster of Figure 10-1. Again, this might be 
reflective of their ecological niche.  

Ribosomal proteins and non-translated RNA 
Examining the ribosomal proteins for E. coli, we confirm that the average position preference 
is lower (mean=0.1399) than for other protein encoding genes (mean=0.1465) (Wilcoxon P-
value 4e-11), and it is even more extreme for non-translated genes. For example, rRNAs, 
tRNAs, and miscellaneous RNAs have significantly lower position preference values than 
translated genes (P-value = 6e-34). This is true especially for rRNAs and some tRNAs, with 
16S rRNAs having values of 0.132 or less and asparagine tRNA genes having values below 
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0.11. Although this difference was observed for a majority of microbial genomes, across a 
vast range of microbial genomes, the ribosomal proteins are not always encoded by flexible 
DNA (Figure 10-2A). However, the difference in position preference of ribosomal proteins 
and non-ribosomal proteins correlated very well with the replication times of the cells using 
the number of 16S rRNAs as an indirect measure of doubling time, as previously suggested 
(Sharp, et al., 2005), since the number of 16S rRNAs indirectly influence replication times 
(Ussery, et al., 2004). Consequently, as for CAI (Willenbrock et al., submitted Genome 
Biology), fast replicating microbes have optimized their translational machinery by increasing 
the expression of proteins such as ribosomal proteins. As a result, their expression is 
optimized both by codon usage and by placing them on easy assessable flexible DNA 
(Wilcoxon P-value ~ 0, rho=0.42). The above results are somewhat in contrast to the 
findings by Segal and coworkers (Segal, et al., 2006). They recently published a more 
refined model for nucleosomal positioning based on a combined experimental and 
computational approach. Although this model predicts a nucleosome pattern strikingly 
similar to that of the model used in our study (Satchwell, et al., 1986; Segal, et al., 2006), at 
least for Eukaryotes, they did not find nucleosome depletion at ribosomal proteins sites in 
Yeast, i.e. they predicted high nucleosome occupancy encoded over these genes, reasoning 
that the expression of these genes must be governed by other factors. However, although 
we only predict a slightly lower than average position preference for yeast ribosomal 
proteins, we find that the general trend observed across a large range of microbial genomes 
is that both DNA encoding ribosomal proteins and non-coding genes have lower position 
preference than the genomic average (Figure 10-2). This indicates a possible regulation of 
ribosomal proteins by DNA structural properties.  

Prediction of highly expressed genes 
The above analysis demonstrate that the functional categories of the genes with low position 
preference often resemble the functional categories of genes with high codon usage bias in 
terms of high CAI values (i.e. highly expressed ribosomal proteins). Consequently, we would 
expect a similar correlation between low position preference and high gene expression level. 
Nonetheless, a complete separation of highly expressed genes from the other genes was 

 
Figure 10-2. Position preference differences for 360 microbes. (A) Density plot for differences between 
translated coding sequences (CDSs) and ribosomal proteins or versus ribosomal RNA. (B) Densities of 
the 10% most highly expressed genes, non-highly expressed genes, rRNAs, tRNAs and ribosomal 
proteins in E. coli. 
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not possible using the position preference measure (for example, see Figure 10-2B). 
However, this is hardly surprising since no structural or coding property singularly 
determines the level of gene expression, for which a large number of regulatory steps are 
involved. Consequently, the level of separation may reflect the influence of each measure on 
gene expression. For the five additional microbial genomes where we have examined 
expression levels based on microarrays, a clear difference was also observed between the 
distributions of CAI or position preference values for highly expressed genes and low 
expressed genes (supplementary Table S1). 

As expected from the above analyses, we observe a significant enrichment in highly 
expressed genes among genes with low position preference (Figure 10-3) for all 6 
organisms for which we have microarray gene expression data available. Moreover, the 
correlation between position preference values and microarray gene expression values is 
highly significant (supplementary Table S2). However, the overlap between genes with high 
CAI values and highly expressed genes is even more significant (Figure 10-3). While this is 
expected since codon usage is known to have a strong influence on protein expression, the 
DNA structural properties also influence gene expression, and it seems reasonable that 
DNA which cannot be condensed into tightly wrapped chromatin structures is more 
accessible to RNA polymerase, which is about the same size as a nucleosome. One likely 
explanation is that position preference, as a measure of chromatin structure, might not be 
the most optimal – particularly for bacterial genomes. This might also explain the 
considerably higher enrichment in highly expressed genes among S. cerevisiae genes with 
low position preference than observed for the bacterial genomes (Figure 10-3). 

 
Figure 10-3. Venn diagram of overlap between genes with high CAI values (top 10%), low position 
preference (10%) and high microarray gene expression values (top 10%). The organisms are ordered 
by the significance of the overlap between position preference (PP) and highly expressed genes 
(Fisher’s exact test). 
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While CAI values are better predictors of high expression of proteins, DNA structural 
properties may be used for prediction of gene expression for non-translated genes such as 
transfer RNAs and micro RNAs. For example, for E. coli, gene expression levels were 
further available for some non-translated genes. Including these in the comparison, the 
correlation between gene expression and position preference was even more significant (P-
value= 1.2e-52 compared to P-value = 1.7e-39 for translated genes only) and the overlap 
between genes with low position preference values and genes with high expression values 
were also more significant (p-value: 9.8e-47 compared to 1.3e-37 for translated genes only). 
This demonstrates that not only may the position preference measure be used for predicting 
the gene expression level for this type of coding regions, but since these regions are even 
more correlated with DNA flexibility than translated genes, they may consequently be under 
even more strict regulation by DNA structural properties. This makes sense since regulation 
by codon usage is not an option for these transcripts. 

Topological domains 
The E. coli chromosome is thought to consist of a number of fluid short-range distinct 
topological domains (Postow, et al., 2004; Willenbrock, et al., 2004). The lack of a single key 
component of bacterial chromatin can result in reorganization of these domains and affect 
supercoiling sensitivity dependent genomic transcription (Blot, et al., 2006). On a 
chromosomal level, we observe that, for the E. coli genome, both CAI values and position 
preference values predict the same general regions of highly expressed genes, and indeed 
these regions correspond well with the experimental expression values (Figure 10-4). 
Consequently, our data show that not only is the gene expression regulated by DNA 
structural elements as demonstrated previously (Blot, et al., 2006; Peter, et al., 2004), but 

 
Figure 10-4. Atlas illustration of the E. coli genome. The atlas illustrates CAI values, position 
preference values and gene expression values at various growth stages based on data from (Tjaden, 
et al., 2002). 
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the highly transcribed regions are also correlated with regions of the chromosome having 
low position preference. However, there are two regions where CAI and position preference 
differ significantly – the first is around 0.5 Mbp, where a cluster of highly expressed genes is 
predicted by CAI but not by position preference. This region contains the cyoA-cyoE genes 
involved in aerobic energy metabolism and they predominate during growth at high aeration. 
The second different region is towards the bottom of the atlas, around 2 Mbp, where there is 
a region with low position preference, but close to average CAI values. This region contains 
genes from the flu loci, which can be highly expressed under the appropriate environmental 
conditions (Schembri, et al., 2002). 

As can be seen in Figure 10-4, the gene expression levels vary between the different growth 
stages. To further investigate this apparent correspondence, we used a simple scanning 
statistical approach to divide the genome into distinct topological domains according to 
position preference. By this approach, the E. coli main chromosome was divided into 31 
distinct regions (Figure 10-4, s1-s31) with varying mean position preference.  

Within these topological domains, mean gene expression correlated well with mean position 
preferences of domains during log-phase growth, but were less significantly correlated for E. 
coli cells in stationary phase (Figure 10-5). This is consistent with the fact that genomic 
supercoiling is reduced in stationary phase as compared to the exponential growth phase, 
and that the coordination of growth-phase-dependent transcription involves a mechanism for 
reorganizing the supercoiling sensitivity (Blot, et al., 2006) and regulating the overall 
transcription level. 

CONCLUSION 
We use a nucleosome position preference measure of DNA flexibility to predict highly 
expressed genes in microbial genomes, and compare it to a translational codon adaptation 
index for synonymous codon usage bias of potentially highly expressed genes. We hereby 
demonstrate that absolute gene expression levels are highly correlated with their individual 
level of DNA flexibility in multiple microbial genomes. This newly gained insight into DNA 
structure dependent gene expression may be exploited for predicting the expression of non-
translated genes such as non-coding RNAs that may not be predicted by any of the 
conventional codon usage bias approaches. Genes often encoded by DNA with low position 

 

Figure 10-5. Illustration of the significance 
P-value of the correlation between mean 
position preference of 31 E. coli topological 
domains and the mean gene expression 
values of genes within each of these 
domains. The correlation is most significant 
in log-phase and less significant in stationary 
phase of growth. Gene expression data from 
(Tjaden, et al., 2002). 
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preference values where mostly involved in ‘translation, ribosomal structure and biogenesis’, 
‘energy production and conversion’, and transcription. For pathogens and microbes living in 
extreme environments, the predominant functional category was ‘replication, recombination 
and repair’. In particular, for E. coli pathogenic strains demonstrated this trait while non 
pathogenic strains did not. This provides a likely signature for distinguishing some 
pathogenic strains from non pathogens. 
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Perspectives 
DNA microarrays provide for a much-needed high-throughput genetic methodology in 
biological research by facilitating the exploitation of the vast amount of DNA sequence 
information that is quickly becoming available. Thus, DNA microarrays will continue to play 
an increasing role in both genomic research and in transcriptomics. Nonetheless, the 
technology can still be improved significantly, since microarray data are still very noisy and 
poor reproducibility has been observed. However, the latter may be attributed the attempt to 
compare results from severely under-powered studies (too few replicates) or studies that are 
otherwise flawed in their experimental design or execution. Consequently, the experimental 
design and analysis of this data type requires at least basic statistical knowledge. Even so, 
within the data mining field, increasingly sophisticated algorithms are being published and 
semi-automated analysis tools are being developed both for gene expression analysis 
(Saeed, et al., 2003; Saal, et al., 2002) and comparative genomics (Liva, et al., 2006; 
Menten, et al., 2005; Myers, et al., 2005). In the future, together with improvements in the 
technology to decrease noise levels, this might facilitate dissemination of the technology 
even further and lead to the discovery of even more remarkable biology than is currently 
being reported. 

Gene Expression Microarrays 
Due to the considerable noise levels associated with this kind of data, it has not proven very 
reliable, nor interesting for that matter, to analyze lists of differentially expressed genes by 
looking for ‘interesting’ genes. Consequently, the more successful studies have utilized 
alternative approaches for exploiting the advantages of such high-throughput data. For 
example, in Chapter 4, a classifier is build that utilizes a combination of predictive genes 
from samples from children with acute lymphoblastic leukemia. Hereby, it is possible to 
classify their subtype and to predict how well they respond to treatment. Especially the 
prediction of response to early treatment appears promising and may have clinical 
applications for treatment stratification in the early course of childhood leukemia. The latter 
has recently been supported by similar findings by Cario and coworkers (Cario, et al., 2005). 
In the future, studies should aim at finding diagnostic traits for early and late treatment 
response both in terms of gene expression profiles as well as cytogenetic traits that may, for 
example, be addressed by microarrays directed at the genomic sequence as is the case for 
array CGH. With Affymetrix and FDA recently teaming up with several microarray 
manufacturers to advance the use of microarrays in clinical studies, we are now one step 
closer to actually using the DNA microarray technology clinically and not just in basic 
research. In the future, this could improve the diagnosis and prognosis of individual patients 
and promote the tailoring of individual treatments. 

Currently, the field of gene expression microarray data analyses is moving towards more 
integrative approaches trying to fuse the microarray analysis results with various other data 
types or integrating microarray data from several studies. However, for the latter, only limited 
success has been reported due to high variability between studies as well as poor 
experimental designs.  Even with these restrictions, in a novel study (Chapter 5), we present 
a method that successfully exploits the existing repositories of microarray data from multiple 
studies and various laboratories to derive functional associations between gene expression 
responses from, for instance, a given plant mutant compared to a compendium of gene 
expression responses from plant mutants and plants subjected to various treatments. By this 
approach, an extensive functional characterization of a given mutant may be obtained. The 
same characterization could otherwise be both time consuming and depend on extensive 
background knowledge of the investigated biological system. By limiting the direct 
comparison of samples to within an individual experiment or study, the method benefit from 
the great care with which each experimentalist has ensured comparability within their own 
experimental designs. Thus, this approach demonstrates an excellent capability for 
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promoting between study comparability and consequently, for deriving biologically 
meaningful functional association between experimental factors derived from microarray 
studies of independent laboratories.  

In the future, existing or emerging techniques for gene silencing (Hilson, et al., 2004) may 
provide a much needed short cut for quickly expanding the existing repositories of knockout 
gene expression responses, allowing even more detailed microarray based functional 
studies. Since promising results were obtained for the model plant, Arabidopsis thaliana and 
bakers’ yeast, Saccharomyces cerevisiae, the same approach would be useful for deriving 
functional associations and characterization of other species, for which extensive microarray 
data is available, including both simpler organisms such as E. coli and more complex 
organisms such as humans. For example, the same approach might be useful for 
associating cancer gene expression response phenotypes to a compendium of cancer 
responses for diagnostic purposes. It would also be interesting and highly relevant to 
explore cross-species applications to functionally characterize experimental factors for 
organisms where extensive microarray data repositories are not available. Here, promising 
results have already been obtained in and attempt to characterize Barley experiments with 
regard to functional associations to our Arabidopsis compendium of gene expression 
responses. 

Comparative Genomics 
Several segmentation algorithms for the analysis of array CGH data have been proposed 
and it has been found that the application of many of these improve downstream analysis of 
DNA copy number data. Of the segmentation methods compared in Chapter 6, a non-
parametric change-point method (DNAcopy) (Olshen et al., 2004) was found to have the 
best operational characteristics in terms of its sensitivity and false discovery rate for 
breakpoint detection. Furthermore, by applying the additional merging procedure, 
MergeLevel, copy numbers can be estimated directly across chromosomes.  

Nonetheless, we also speculated that an HMM approach might be more naturally adaptable 
to perform such a whole genome fit and could perform constrained optimization of the 
segment means across the entire genome. Supporting this, a hidden markov model was 
recently proposed that incorporates relevant biological factors such as the distance between 
adjacent probes (Marioni, et al., 2006). Also, a pseudolikelihood approach with a hidden 
Markov dependency structure has been suggested. It borrows strength across 
chromosomes and hybridizations and demonstrated a superior performance to the DNAcopy 
+ MergeLevel approach (Engler, et al., 2006).  

To obtain a realistic and comparable measure of performance for different algorithms, a 
simulation model was developed for generating artificial data with known breakpoints and 
known DNA copy number. The simulation model provides a test data set that may be used 
repeatedly to benchmark the performance of new methods. If every new method was to be 
tested on this simulated data, it would provide an accurate and comparable evaluation of 
new method’s ability to analyze DNA copy number data. Consequently, the literature would 
avoid being swamped by suggestions of new data analysis methods that do not perform 
better than the previous. This would facilitate the choosing of analysis tools for the non-
statistical researcher.  

Our next study shows that analysis methods developed for cancer research may also 
successfully be applied to analyze DNA copy number profiles from bacterial genomes. 
However, here the purpose was to characterize variations in the gene content of various 
strains of the bacteria, Escherichia coli, with regard to genes involved in pathogenesis, and 
to study horizontal gene transfer. Further developments would aim at optimizing the design 
for making high-throughput characterization of multiple strains feasible. For example, 
currently, the complete sequences of more than 20 E. coli strains are available. The 
challenge is then to optimize the microarray design for simultaneously targeting of all these 
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strains without redundancy. That is, to be able to distinguish between all existing strains as 
well as characterize new strains by optimizing consensus sequence design of backbone 
genes and at the same time targeting the between-strain sequence variations that are 
optimal for distinguishing between individual strains of the same species. 

Nonetheless, with the prices on sequencing dropping continuously and the technology fast 
improving both in speed and quality, the array CGH technology may soon be rendered 
obsolete. Much more detailed information could quickly be obtained by merely sequencing 
the full sequence of an organism or even a cancer genome in the far future. However, use of 
super computers and advanced statistics to process this data and interpret the results would 
then become even more imperative. 

Sequence Dependent Gene Expression 
Gene expression is regulated by a large number of regulatory elements both at the 
transcriptional and translational level, and may consequently be influenced by, for example, 
DNA/RNA structural properties and codon usage. Gene expression may be measured both 
at the transcriptional level in form of RNA abundance and at the translational level in form of 
protein abundance. Often, we are most interested in the protein abundance since this is 
where a difference in abundance will usually have the largest impact on phenotype. 
However, the use of high quality experimental protein abundance measurements has been 
hampered by the fact that such data are not readily available. Consequently, we found that 
microarray gene expression data can be useful for confirming predicted highly expressed 
genes - as a substitution for protein levels, although they were – at best – very rough 
estimates of the true protein concentrations.  

The newly gained insight into sequence dependent gene expression may be explored 
further for developing a reliable predictor of gene expression levels. This has already been 
attempted with promising results (Raghava, et al., 2005). However, if available, high-
throughput protein abundance data would assist in developing such a predictor even further, 
since a prediction method can never be better than the data. That is, if microarray gene 
expression data is only 60% correlated with the actual protein abundance levels, then the 
predictions will at the most also be 60% correlated with the true protein abundance. Recent 
developments in technologies measuring protein abundance, e.g. mass spectrometry, may 
result in an upcoming explosion in available proteomics data as seen for transcriptomics and 
genomics data during the past few years. This may facilitate the development of the above 
described predictor and improve our understanding of sequence dependent gene 
expression. 

The prediction of DNA structure dependent gene expression is less optimal than predictions 
based on codon usage bias, especially for prokaryotic genomes. However, the used position 
preference measure of DNA flexibility was based on measurements in eukaryotes (chicken). 
In the future, development of a corresponding measure of DNA flexibility or chromatin 
structure specifically for prokaryotes, may improve the prediction of highly expressed genes 
in these microbes based on DNA structural properties. 

A Look into the Future 
In the future, DNA microarrays directed at the genomic sequence may become obsolete, at 
least for small microbial genomes due to reduced costs of sequencing. However, new 
applications of microarrays are constantly being sought after. For example, the new field of 
‘metagenomics’ is currently expanding to ‘meta-transcriptomics’ for which, a high-throughput 
analysis methods such as DNA microarrays would be highly useful. Although data from 
gene expression microarrays are still considered quite noisy and while this would restrict 
such analyses, the technology constantly goes through major refinements and new sources 
of variation and how to deal with them are continuously being discovery. Consequently, in 
the future, microarray techniques with minimal experimental noise might evolve. On the 
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other hand, with the increasing amount of sequence data being published, microarray 
designs may become even more sophisticated in the attempt to cover multiple strains of the 
same species or even several different species. Discovery of whole pathogenicity networks 
may lead the way for designing a microarray aimed at identifying emerging pathogenic 
strains even before they become dangerous or for identification of pathogens in 
environmental samples. Multi-genome microarrays may also become efficient for 
environmental purposes, for example to determine degrees of pollution or certain 
environmental changes, since the specific composition of a microbial community largely 
depends on the surrounding environment. 

New applications also include microarrays for proteomics. Exploitation of this technique in 
combination with existing techniques for transcriptomics and genomics, might aid in bridging 
the gap from transcription to translation and aid in discovering new regulatory elements in 
these mechanisms as well as improve our understanding of gene expression as a whole. 
Also, further advancements in this technology may allow protein science to enter a true 
‘omics’ age as we have seen first for genomics and later for transcriptomics. In the future, 
this may result in extensive the analyses of the whole human proteome. 
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