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ABSTRACT

NON-PARAMETRIC ALGORITHMS FOR EVALUATING GENE EXPRESSION
IN CANCER USING DNA MICROARRY TECHNOLOGY

by
Virginie Aris

Microarray technology has transformed the field of cancer biology by enabling the

simultaneous evaluation of tens of thousands mRNA expression levels in a single

experiment. This technology has been applied to medical science in order to find gene

expression markers that cluster diseased and normal tissues, genes affected by treatments,

and gene network interactions. All methods of microarray data analysis can be

summarized as a study of differential gene expression. This study addresses three

questions, 1) the roles of selectively expressed genes for the classification of cancer, 2)

issues of accounting for both experimental and biological noise, and 3) issues of

comparing data derived from different research groups using the Affymetrix GeneChip Tm

platform. A key finding of this study is that selectively expressed genes are very

powerful when used for disease classification. A model was designed to reduce noise

and eliminate false positives from true results. With this approach, data from different

research groups can be integrated to increase information and enable a better

understanding of cancer.
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CHAPTER 1

INTRODUCTION

1.1 Cancer Background

The term cancer encompasses many conditions charactenzed by uncontrolled

proliferation of cells. Almost all organs and cell types can undergo oncogenic

transformations, with an array of mechanisms and outcomes. Cancer anses through a

succession of events making it more preeminent in the aging population. The causes are

many and vaned including: genetic predisposition, environmental influences, diet,

cigarette smoking, infectious agents and aging. The complexity and diversity of the

regulatory and downstream effector pathways affected by cancer has hindered the

development of effective and specific therapies.

Cancer accounts for 23% of the deaths in the United States annually. It is the

second leading cause of death behind heart disease (Jemal et al., 2003; Simmonds, 2003).

Approximately 1,334,100 new cases of invasive cancer were diagnosed in 2003, more

than one million cases of squamous cell skin cancer, 55,700 cases of breast carcinoma,

and 37,700 cases of melanoma. An estimated 556,500 people died from cancer in 2003.

The three most commonly diagnosed cancers for men are: prostate (33%), lung (14%),

and colon (11%). For women, the three most commonly diagnosed cancers are: breast

(33%), lung (12%) and colon (11%). The leading causes of cancer deaths are the same

three as above for each gender. More specifically, lung cancer surpasses all other cancers

in terms of fatalities being responsible for 31% of the death by cancer for men, and 25%

for women. Prostate cancer accounts for 10% of the cancer death toll for men, and breast

1
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cancer accounts for 15% of the death by cancer in women. Colon cancer accounts for

10% of the deaths for men and 11% for women. Cancer is the pnmary cause of death

among women aged from 40 to 79 and men aged from 60 to 79.

Due to early detection through increased screening, the survival rate has increased

and the death toll decreased slightly in the last few years (Black and Welch, 1993).

Eighty-five percent of the prostate cancers are diagnosed at the local or regional stage

with a five-year survival rate of 100%. Unfortunately, most cancer therapies have a

limited efficacy when the disease is treated in its later stages.

To improve survival, the key points are: 1) early diagnosis 2) more effective drugs

to treat later stages 3) a better prediction of the treatment response and 4) chemo-

prevention of tumorgenesis (Ochs and Godwin, 2003). Biomarkers can help with all

those key points. Gene expression markers, by definition, are genes that are consistently

up-regulated or down-regulated in cancer samples compared to normal samples. The

hypothesis is that the consistency is the sign that the genes in question are part or

downstream of regulatory pathways necessary for tumorgenesis. Gene markers are

obviously important for early diagnosis and can help define the therapeutic course of

action i.e. treatment for tumor with hormone receptors in breast cancer (Shenkier et al.,

2004). Biomarkers can become targets for drug development and can help predict

treatment response. A detailed study of their function might explain the events leading to

their de-regulation and help to design chemo-prevention therapies. Two factors are

important in identifying biomarkers: the ability to define the cancer group and subgroups

and the use of high-through-put methods such as microarray technology to discover genes
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that are consistently up-regulated or down regulated. The second issue is discussed in

this dissertation.

The normal cell can be viewed as a system in which functions are tightly

regulated. There are even fail-safe and redundant checks balances to ensure that the cell

functions the way it should. In contrast cancer cells present an accumulation of

replication disorders ansing through gradual accumulation of genetic changes. Typical

cancer cells contain combinations of genetic changes that alter gene expression causing

the cell to escape the checks and controls that prevent proliferation and metastasis. A

single mutation event is generally not enough to circumvent all the different safeguards a
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complex organism has built in. Instead, two or more sequential events are needed to

initiate the transformation of a normal to a malignant cell (Vogelstein and Kindlier, 1993).

Cancer is thought to anse from the clonal proliferation of a single cell, requinng

the activation of the cell cycle and the overnding of some cell functions, in particular the

cell death program (apoptosis). Dunng proliferation, mutations, deletions and

amplifications of chromosomes occur due to genomic instabilities. Specific cellular

malfunctions associated with cancer are the loss of the tumor suppressor p53 gene (Sherr,

2004) thereby preventing apoptosis, the gain of function or amplification of the cell

growth regulators such as c-KIT (Muller-Tidow et al., 2004), and the activation of proto-

oncogenes such as c-MYC (Nilsson and Cleveland, 2003). Dunng these changes, the

RNA levels of other genes are also affected, thereby disturbing the normal cellular

equilibnum within the background of the other process and stochastic events. The cell as

a result obtains another state of equilibnum in which it becomes "immortal".

Specifically, it becomes independent of its environment for survival and proliferation.

However, this is not enough for the development of a solid tumor. Many people carry in

situ tumors, that are very small and do not develop into disease (Folkman and Kallun,

2004). In order to proliferate, tumors need to recruit their own blood supply through

angiogenesis (Hanahan and Folkman, 1996).

A major problem when studying a few genes in a pathway is that these genes are

also influenced by others omitted in the study. This results in sometimes inconsistent

findings where the same perturbation can lead to two different outcomes in different

cells: i.e. over-expression of Myc can lead to cell proliferation or cell death (Nilsson and

Cleveland, 2003). The knowledge of pathways is too incomplete to omit the other genes.
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To be able to comprehend cancer, a global approach at the genome expression level must

be taken. Microarray technology is particularly well suited for this holistic approach as it

analyzes the expression of thousands of genes at the same time.

Genetic changes associated with cancer can involve chromosomal deletion,

amplification, mutation, or deregulation of expression. Cancers can nse from a multitude

of cellular events, and have very heterogeneous genetic changes. Cancer cells that seem

histologically identical may respond differently to therapy, and may evolve very

differently from indolent tumors to invasive metastatic tumors. Many of these changes

can be observed at the mRNA level. Current cancer classification techniques and

treatment decisions rely on subjective judgments of tumor histology by pathologists.

Multiple DNA microarray studies have been proven useful for classification (Golub et al.,

1999) and prognosis (Shipp et al., 2002; van 't Veer et al., 2003; van 't Veer et al., 2002).

Global analysis of gene expression will allow classification of morphologically similar

human cancer and will help tailor treatment maximizing the therapeutic effect and

minimizing the toxicity (van 't Veer and De Jong, 2002). Another way microarray data

can help treatment of cancer is through the screening of new drugs. It should be possible

to observe the effect of a drug on gene expression profiles and create a model to predict

the expected therapeutic response (Hughes et al., 2000).

However, the holistic approach of using microarray technology has brought up

some issues. In addition to the significant cost of performing microarray expenments,

there is a signal to noise issue as most genes are not involved in the processJcondition

studied. Also problematic, on the hardwareJsoftware level, are the data storage and the

handling of large datasets. In order to be able to save the information in a format that can
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be mined, databases and standard annotations were created. Also data analysis packages

and methods were developed to handle the amount of data collected. Another limitation

of microarray technology is the punty of the sample. Tumors are a mixture of

heterogeneous cell types with malignant cells at different stages of differentiation, normal

epithelial cells, blood vessels and cells involved in the inflammatory process. This mix

can mask the differences from one cancer to another. Laser-capture-microdissection

resolves this problem but creates the need to amplify the RNA sample to be able to detect

the different mRNAs, with the nsk of introducing bias in the measurements.

Once produced in a cell, RNA is stabilized, spliced, polyadenylated, exported

towards the cytoplasm, translated into proteins and ultimately degraded (Lodish et al.,

1995a). The regulation of mRNA decay rate is important for determining transcnpt

abundance. The decay rate of individual mRNAs vanes greatly form a short half life of a

few minutes to half lives spanning several life cycles (Hernck et al., 1990; Wilusz et al.,

2001). This difference may be important if samples are not processed in a consistent

manner. Another unresolved issue in microarray data results is the effect of cross

hybndization. This phenomenon occurs when there is non specific binding or binding of

related sequence to the wrong microarray probes. This affects greatly the estimated

mRNA levels.
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1.2 Tools Available for Cancer Study at the DNAIRNA Level

Many tools were available to the study of cancer before the advent of microarrays. Most

of our knowledge about cancer today still stems from expenments done with traditional

techniques. The most utilized techniques for discovenng mutations at the genome level

are Fluorescence In Situ Hybndization (FISH) and Comparative Genomic Hybndization

(CGH). Fluorescence In Situ Hybndization analysis uses either whole chromosome

probes or specific probes to label chromosomes and see if there is any obvious deletion or

amplification of the genetic matenal. Using this method, gain or loss of chromosomes

can be shown (Bernell et al., 1998). Comparative Genomic Hybndization also helps

detect regions of gain or loss of DNA at the genomic scale. The DNA of a cancer cell

and a normal cell in metaphase, are labeled with a different fluorochrome and hybndized

to each other. Differences in the ratio of intensity of the two fluorochromes along the

chromosomes, helps detect the regions where amplification or deletion occurred

(Kallioniemi et al., 1992).

Another commonly used technique for looking at DNA mutations is Restnction

Fragment Length Polymorphism (RFLP). Initially DNA is digested into fragments using

a cocktail of restnction enzymes and then run on a gel. By studying multiple samples on

a gel, one can find particular fragments (bands) that are specific to either normal or

cancer samples (Dracopoli et al., 1985). Once such markers are found, the gel "bands"

can be cut out and sequenced to find out the identity of the genes involved. A denvative

from this technique the amplified restnction fragment polymorphism (AFLP) has an extra

step of amplification after the restnction of the DNA, helping with the issue of small

sample amounts. A vanant, the cDNA-AFLP first transcnbes the mRNA into cDNA and
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then the standard AFLP protocol is applied (Bachem et al., 1996). This last technique

allows the identification of multiple differentially regulated transcnpts at a time.

Another method designed to locate a particular sequence of DNA within a

complex mixture is the Southern blot, named after Edward M. Southern. The method is

as follows: first DNA fragments are separated by electrophoresis on an agarose gel, then

the fragments are transferred (blotted) onto a membrane, the membrane is then soaked in

a solution with a labeled probe of sequence complementary to DNA that needs to be

located, and then after washing and imaging one can see if the particular sequence sought

was in the sample (Southern, 1975).

The major techniques to study mRNA expression levels are: Northern blotting, in

situ hybndization and quantitative PCR. The Northern blot uses the same basic concept

as Southern blotting on RNA. This method locates specific sequences that the

expenmenter has a probe for. Even though one can look at a few samples at a time, only

two genes are usually probed: the gene sequence of interest and one for a control

sequence (Actin, GAPDH). In situ hybndization helps locate the intracellular

localization of a specific mRMA or protein (Korabiowska et al., 2004). For this, a

radioactively labeled probe is hybndized to a fixed cell, and the result is developed on x-

ray sensitive film. Quantitative polymerase chain reaction (PCR), after reverse

transcnption of mRNA into cDNA, can help find if a particular mRNA is present in the

sample (Kondo et al., 1992; Myers and Gelfand, 1991). An improvement of this

technique: the quantitative real-time PCR, is the most precise technique so far for the

quantization of mRNA (Bernard and Wittwer, 2002; Mocellin et al., 2003).
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With the sequencing of the human genome, more genes and predicted gene

sequences are now available. This changes the approach of molecular biology from the

study of a single gene to the study of a system of thousands of genes. The Senal

Analysis of Gene Expression (SAGE) amplify tag sequences from known and unknown

genes, and sequences them (Velculescu et al., 1995). The advantages of this technique

are many, the instrumentation cost is small if the facility already has a sequencer and it

isolates and quantitates known and unknown transcnpts. The disadvantages are also

numerous as some of the tags are not specific to one gene and might differ in length

posing problems when analyzing the sequenced concatenated tags.

Another very powerful method to select differentially regulated mRNA and

isolate rare mRNA species is the subtractive hybndization technique (Lee et al., 1991).

The mRNA from the investigated cells is reversed transcnbed into cDNA. Common

mRNA sequences between the studied cells and the chosen standard are subtracted. The

standard cells have their mRNA reverse transcnbed and biotinylated. cDNA that

hybndize to the mRNA of the studied cells and are separated from the rest of the mRNAs

by binding to streptavidin. The resulting subset of subtracted mRNA is then cloned into a

library for further screens and investigation. This powerful method is very lengthy; two

to three months of work is required in order to obtain a subtracted library.

DNA microarrays are rapidly becoming a fundamental tool in genomic research.

Publications based on microarray findings increase each year (Ochs and Godwin, 2003).

This technique is fast; less than a week is needed from isolation of the RNA to the

acquisition of the results, and multiple samples can be processed at the same time. The

descnption of the technology is going to be explained in detail in the next section.
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1.3 Microarrays: The Fundamentals

Deoxynbonucleic acid (DNA) is the cellular molecule that carnes the information

required to build a cell or an organism. This information is transcnbed into nbonucleic

acid (RNA), which carnes the instructions from the DNA for the correct amino acid

sequence to synthesize proteins, the main effectors of cellular functions. Proteins are

involved in cell processes from DNA replication to the regulation of cell structure and

function. Proteins can be regulated by a tightly controlled production,

activationJinactivation and degradation in the cell. Ubiquitinization and degradation of

mRNAs can also lead to a regulation of the amount of proteins in a cell. The cell has a

tight quantitative and qualitative control on transcnption of genes (DNA -+ mRNA).

These messenger RNA levels in a cell can give an indication of which proteins in the

cells are being produced at the time of sampling and can also reflect changes in the

genetic code due to disease (Lodish et al., 1995b). Cancer cells can have deletion or

amplification of DNA resulting in change of gene expression. Gene expression can also

be modulated through methylation or mutation of the promoter sequence, deregulation of

transcnption factors (Jones, 1996; Lodish et al., 1995b).

The DNA microarrays technology estimates the amount of mRNA for thousands of genes

at the same time in contrast to the "one gene in one expenment" approach. An array

consists of an orderly arrangement of gene specific poly-nucleotides strand that match

known and unknown nucleotide strands of DNA (i.e. human, rat...). There are design

considerations in choosing the oligonucleotides for hybndization on microarrays. First,

the oligonucleotides must have a common thermodynamic profile of melting temperature,

in order to properly hybndize or bind to the target while reducing non-specific binding.
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As the melting temperature increases with the length of the oligonucleotides and GC

content, the hybndization temperature will have to be adjusted depending on these

factors. A second consideration is to avoid probe that might form secondary structures

preventing the hybndization of the target. And the last consideration is to find probe that

are not homologues to other sequences. As the probe length shortens, there is an increase

in the probability to find an homology to another sequence. A 75-80% homology or

more than 15 continuous complementary bases in non targeted sequence will produce a

false signal as it hybndizes partially to the probe. One way to remedy this is to use

BLAST' software to select probes in parts of the genes that do not have homology to

other genes. These considerations are the same as the ones for designing PCR pnmers.

Temperature and salt concentration can be optimized for a given set of pnmers for PCR,

but with microarrays these conditions need to be the same and close to optimal for

thousands of probes at the same time.

Two microarrays technologies are dominating the field: the Affymetrix GeneChip

(Lockhart et al., 1995) and the in-house pnnted arrays (Schena et al., 1995).

1.3.1 AffymetriD GeneChip Technology

Affymetrix GeneChips are manufactured by synthesizing oligonucleotides of defined

sequences on a glass substrate chip. The synthesis technology is a light directed solid

phase DNA synthesis. This technique allows the synthesis of tens of thousands of unique

oligonucleotides per square centimeter on a glass surface (Fodor et al., 1991). A probe

cell is a specific area on the chip containing millions of copies of a specific 25-nucleotide

http:JJwww.ncbi.nlm.nih.govJBLASTJ March 2004
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long oligonucleotide. Arrays are manufactured in a series of cycles represented in Figure

1.2. The glass substrate is first coated with linkers containing photolabile protective

groups. Then, a mask is applied exposing selected portions of the probe array to

ultraviolet light which removes the photolabile protecting groups. This enables selective

nucleoside phosphoramidite addition only at the exposed sites. This is repeated to allow

specific sets of oligonucleotide probes to be synthesized for each probe cell.

Labeling of the RNA sample is achieved by first reverse transcription of the

mRNA into cDNA and then into cRNA through in-vitro transcription with biotin labeled

nucleotides. The cRNA is then fragmented and hybridized overnight onto the probe

array. The hybridized probe array is then stained with streptavidin phycoerythrin
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conjugate and scanned with a laser emitting a wavelength of 488 nm and the amount of

light emitted at 570 nm is recorded as proportional to the bound target (Figure 1.3). The

signal can be amplified with a second round of staining with goat anti-streptavidin

antibody and biotinylated Goat IgG.

These arrays are able to measure the absolute expression of genes in cells or

tissues with the precision of one transcript in 1,000,000 (Lipshutz et al., 1999). The

disadvantages of the Affymetrix GeneChip technology are a high cost per array and the

inability to compare two samples on the same chip rending comparison susceptible to

normalization processes.

Figure 1.3 Labeling of the RNA sample and hybridization of the Affymetrix GeneChips.
The RNA sample is transcribed into double stranded eDNA using a T7-oligo dT primer.
After clean up and in vitro transcription is performed using a T7 RNA polymerase and
biotin labeled nucleotides, the cRNA is then fragmented and hybridized overnight onto
the probe array. The hybridized probe array is then stained with streptavidin
phycoerythrin conjugate. A second round of staining with goat anti-streptavidin antibody
and biotinylated Goat IgG is used to amplify the signal received when scanning.
(Figure courtesy of Affymetrix, Inc.)
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1.3.2 Spotted Microarrays

The other widely used technology is the spotted microarray. Synthetic oligonucleotides

or PCR products derived from cDNA are spotted onto a microscopic glass slide coated

with poly-L-lysine, Amino Silane, Super Amine, or Super Aldehyde. Those arrays are

usually printed using a high density arrayer (Cheung et al., 1999). Spatial resolution of

the arrayer determines the density of the array. Most instruments use pins or needles to

transferJspot oligonucleotides or cDNA probes from 96 or 384 microtiter plates. The pin

shape, diameter and the spotting solution determine the size of the spot on the array. The

final array is no bigger than 3 square inch and the spot diameter is of the order of 0.1mm

to 70 microns. The labeling of total mRNA is typically done by synthesizing single

stranded DNA with a reverse transcripts incorporating nucleotides with a fluorescent

molecule attached to them. Cyanine 3 and Cyanine 5 dUTP are the most commonly

incorporated fluorescent molecules. Two samples, each labeled with a different dye are

hybridized to the array (usually overnight). Labeled gene products bind to their

complementary sequences in the spots. The array is then washed and the dyes enable the

amount of sample bound to a spot to be measured by the level of fluorescence emitted

when excited by laser. From the fluorescence intensities in the channels scanned for each

spot, the relative expression levels of the genes in both samples can be estimated.

Spotted microarrays are usually analyzed with the ratio of relative expression between the

samples hybridized on the slide.
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1.4 Summary

Microarray technology is a powerful tool to analyze the changes at the mRNA levels in

cancer. This technology allows the analysis of thousands of genes in a single experiment

in less than a week. It is thus considered to be the best technology to find gene

expression markers in cancer. However the development of microarrays has preceded

statistical methods for analysis of the results. Major problems due to signal estimation,

normalization, and multi-testing are still the topic of many publications each year.



CHAPTER 2

CURRENT STATUS OF M1CROARRAY DATA ANALYSIS

The use of microarrays has become common in biological sciences. The query "DNA

microarray and cancer" yielded 226 papers in the literature search engine Pubmed 2. In

this Chapter, the different steps and methods in the analysis of microarray data are going

to be presented. First, a signal intensity has to be extracted from the image for each

geneJfeature and the transcript expression level has to be estimated. Then, the results

from each array have to be normalized in order to be able to compare the results from one

array to another. Finally, analysis methods can be applied to find the genes that are

differentially regulated between conditions.

2.1 Image Analysis and Signal EDtraction

For both types of microarray, a specialized scanner is used to asses the hybridization

signal. Analysis of gene expression data is usually done in a two-step process: image

processing and data analysis. There has been a plethora of techniques and software

developed for detecting and delineating the target spots on the array, eliminating

background from the intensity, correcting for bias due to different dye affinities, and

scaling or normalization in order to compare multiple arrays (Bolster et al., 2003; Li and

Wong, 2001a; Quackenbush, 2002; Yang et al., 2001). These techniques are usually

specific to the array platform although some correspondence can be drawn between them.

2 http:JJwww.ncbi.nlm.nih.govJentrezJquery.fcgi March 23 rd 2004
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For spotted arrays, cDNA or oligonucleotides corresponding to the

complementary sequence of the cDNA obtained by in vitro reverse transcription are

deposited on slides as spots. A lot of emphasis has been placed on the featureJspot

recognition with different ways to identify the arrayed spots on the chip and measure the

background. In most cases the spots are circled and the pixel intensities for each

wavelength within the circle are averaged, or a median is taken, and intensities outside

the circle are also averaged for local background estimation i.e. GenePix® Pro 4.0 from

Axon Instruments Inc. A newer version of this software allows the delineation of spots

that are not shaped into circles (GenePix® Pro 5.0). Another software package,

ImaGene® from BioDiscovery Inc. allows the detection of pixel artifacts inside the spots

and removes them from the intensity estimation of the spot. There are multiple software

packages and methods for extracting the signal intensity. Future software must place

more emphasis on the quality assessment of spots and arrays. In the image processing

step, the quality of the printing, the alignment of the grid, the annotation, and scanner

calibration are essential for the reproducibility of the experiment (Johnson and Lin,

2003).

Affymetnx GeneChips are hybridized with only one sample per chip. The

dynamic intensity of the probes range from 0 to 65,000. As the oligonucleotide sequence

is short: 25 nucleotides, a gene is represented by a probe-set composed of a series of

preferably non-overlapping nucleotides. A probe set, usually contains between 16 to 20

probe pairs. A probe pair is composed of 2 probe cells. One of the probe-cells contains

DNA sequences complementary to specific mRNA sequences and is called the perfect

match probe or PM probe. The other probe cell is composed of an oligomer identical to
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the PM probe except for a single base difference in the central position (mismatch or MM

probe). The mismatch probe is used to estimate the background hybridization. Many

different software packages have been developed for the estimation of gene intensity.

The Microarray Analysis Suite 4.0 (MAS 4), produced by Affymetrix Inc, is empirical in

nature (Affymetrix, 2000). Subsequently a model-based estimate for the expression

levels of genes (MBEI) was designed by Li and Wong, in 2001, as an alternative to MAS

4. In 2002 Affymetnx Inc. released a new version of its Microarray Analysis Suite, MAS

5, based on statistical algorithms (Affymetrix, 2001; Affymetrix, 2002a; Hubbell et al.,

2002). Another method called robust multi-array average (RMA) was developed in Dr.

Speed's lab (Irizarry et al., 2003), and is basically a PM only model with a local

background subtraction. These commonly used techniques are reviewed in the following

sections.

2.1.1 MAS 4

The MAS4 software first extracts the intensity for all probe cells by aligning a grid to

match the delimitation of the features and then averages the pixel intensity within a

delineated probe cell (Affymetrix, 2000). With MAS4 the Average difference (Avg Diff)

is calculated for each probe set as the average of the differences between every PM probe

cell and its control MM probe cell. This is considered to be directly related to the level of

expression of the transcript. However, this method can give negative values for a probe

set if there is more hybridization signal in the mismatched sequences than in the perfectly

matched ones. The software also estimates the presence or absence of each transcript by

giving an absolute call using a decision matnx. For example, in order for a gene to be
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called present, the positive fraction, number of time PM>MM in the probe set divided by

the number of probe pairs used, has to be above 0.43, the ratio of positive to negative

probe pairs has to be above 4.0 and the Log Avg Ratio of the PM to MM intensities for

each probe pair has to be above 1.3. All these default threshold values have been

established through empirical testing (Affymetnx, 2000).

2.1.2 MAS 5

The updated version of MAS 4.0 released in 2002 and designated Microarray Analysis

Suite 5.0 (MAS 5) uses a statistical inference of the signal of a transcript and its presence

or absence insteer of an empirical one (Hubbell et al., 2002). Their detection call is

based on the Wilcoxon signed rank test to determine whether the discriminant score

(R=(PM-MM)J(PM+MM)) of the probe set is greater than 0.015. For the expression

value, if few MM probe intensities exceed the PM probe intensity in the probe set, the

algorithm creates an adjusted MM value based on the average difference intensity

between log2PM and log2MM. When most of the MM probe intensities exceed the PM

value, the adjusted MM value is set to some fraction of PM and the transcript is

considered absent. This eliminates the negative signal. Then MAS 5.0 uses the One-Step

Tukey's Biweight Estimate as a quantitative measure of the mean mRNA abundance for

each gene. This weighted estimate is less sensitive to outliers. The log of the

background-erjusted PM-MM difference for each probe pair is weighted by its distance

from the median value for the entire probe set. The weighted log(PM-MM) values are

then used to calculate the overall mean of the probe set. The signal output in MAS 5 is

this adjusted mean converted back into linear scale.
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2.1.3 MBEI

Li and Wong designed, in 2001, a model-based estimate for the expression levels of

genes as an alternative to MAS 4. They observed using an Analysis of Variance analysis

(ANOVA) that the residual mean squares at the probe level is greater than the ones

between replicate arrays. Their model accounts for this probe variability. For 1 arrays

hybridized with different samples, each gene has J probe pairs (10-16 depending on the

arrays) associated with it, giving x(2xJ) probe intensities ( PM + MM) intensity values.

They assumed that the intensity for a particular probe increases linearly with the

concentration of the transcript in the sample, that this rate of increase can be different

from one probe to another, and that the rate of increase is higher in the PM probes instead

of the MM probes (Li and Wong, 2001a). With Oil representing the concentration of a

transcript in the ith sample they formulated the following model for the PM and MM

intensities:

bb represents the background intensity for jth probe, ail the rate of increase of the jth MM

probe due to non specific hybridization, i is the specific rate of increase for the jth PM

probe due to the target concentration in the sample and & represents random error

following a normal distribution N(0,62). By subtracting the MM intensities from the PM

we obtain:

The average difference is a linear function of the target concentration plus or

minus a random error. Given replicate data, we can estimate the mean and standard
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errors of the 0 and 9 of each probe set. Given the standard error, we can identify outlier

arrays and probes and exclude them from the analysis for the estimation of the target

concentration. They also noticed that cross-hydridization is more likely to occur on the

MM probes than with the PM probes. The target not only hybridizes to the PM probe but

also cross-hybridizes with the MM probe. They erded an option to the dChip 1.1 program

for a PM-only model (Li and Wong, 2001a), which is more robust to cross-hybridization

than the PM-MM difference model as it does not subtract the MM probe to the PM signal

intensities.

The PM-only model estimates the expression value 0 and the probe sensitivity

index (PSI) 9 using an iterative algorithm, and eliminates the outliers using the same

method as the PM-MM model. The Li and Wong model was found to give a more

accurate estimation of the signal intensity than the Average Differences given by the

Affymetrix MAS4 software (Lemon et al., 2002). However, Rajagoplan demonstrated

that the dChip algorithm gave inferior results than MASS for estimating true changes and

presented a higher percentage of false positive on the Latin square dataset (Hubbell et al.,

2002; Rajagopalan, 2003). He also found the dChip algorithm PM only to be very weak

at estimating lower target concentrations because it does not subtract the background

hybridization.
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2.1.4 RMA

The Robust Multi-array Average (RMA), developed in Dr. Speed's lab (Irizarry et al.,

2003), corrects the arrays by first using a signal dependant background estimate, then

normalizes the arrays using quantile normalization and then fits each normalized, log2

based background corrected probe set to a linear model:

Where aji is the probe affinity effect for the probe set n, IA represents the log scale

expression level for array i, and ii is a random error (with a mean of 0). They use a

median polish method to estimate the parameters in a robust manner. This method is

available in the Bioconductor package, an open source and open development software

project for the analysis and comprehension of genomic data (Ihaka and Gentleman,

1996). The authors showed that RMA reduced the variance and bias compared to MASS

and Li and Wong PM-MM model (Irizarry et al., 2003). It also showed greater

sensitivity in detection of differential expression.

2.2 Normalization Strategies

After image processing, it is necessary to normalize the data obtained, in order to

compare the different sample intensities. In the GeneChip system, samples are

hybridized on different chips and normalization is applied to enable comparison of one

chip to another. For spotted arrays, two samples are labeled with different dyes resulting

in a need to do a within-chip normalization to eliminate bias due to uneven starting RNA

level, difference in labeling efficiency due to a dye bias or RNA quality, and systematic

bias when measuring the expression levels.
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GeneChips are frequently normalized using a global scaling procedure. Every

gene-expression value is multiplied by a constant so that the median intensity on the array

equals a set threshold. Affymetrix MAS 4 trims the top and bottom 2% of intensities in

order to take a more robust mean measure. MAS 5 uses a global normalization to a set

baseline intensity and perturbs it by multiplying or dividing by 1.1. This helps overcome

the fact that a normalization factor does not necessarily fit all the probe sets. A related

approach in spotted arrays is to fit the two color intensities on a line with a slope of 1 and

an intercept of 0. These approaches rely on the fact that a cell will express about the

same amount of RNA at any given time or conditions, and that most of the genes

expressed are not changing. This assumption might not be true in a lot of cases, for

example, if you compare different cell types that expresses less RNA than the other or if

the treatment has an effect on the production or degreration of RNA. Another problem

with the global scaling is that it does not account for the non-linearity of the data. The

highly expressed RNA levels might need a different scaling factor than the lower

expressed ones. This can be seen when plotting the intensities of the two samples (two

Genechips, or one two color spotted) against each other and the result has a non linear

trend, and in the case of most spotted array a bias towards the Cy3 in the low expression

range (green tail). In order to better see the bias, one can use an M-A plot (Dudoit et al.,

2000) where M represents the log ratio of the two dyes; M=log (Cy5JCy3), and A is the

average of the logarithm of the intensities; A=[log (Cy5)+log (Cy3)]J2. This plot is a

rescaled 45-degree rotation compared to Cy3 plotted against Cy5. In the case of no bias,

one should see an even scatter of the spots around zero on the x-axis. If the bias is
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intensity dependant, the cloud of points will not be evenly distributed and will have a

curved shape.

To correct for the non linearity of global scaling approach, non linear scaling

methods (Li and Hung Wong, 2001; Li and Wong, 2001a); (Stuart et al., 2001) can be

performed with the assumption that an "invariant set" of genes exists, and that their rank

in expression within a chip does not change significantly. They use this invariant set for

the non-linear regression at either the feature (Li and Hung Wong, 2001; Li and Wong,

2001a) or the probe set level (Stuart et al., 2001). This method corresponds roughly to

the Lowess normalization used on spotted microarrays; the genes found in the invariant

set follow the Lowess normalization curve (Yang et al., 2002b). The global

normalization Lowess (Dudoit et al., 2000; Quackenbush, 2002; Yang et al., 2002a; Yang

and Speed, 2002) performs a locally weighted linear regression as a function of the

log(Cy3* Cy5) and correct the log ratios to an average of zero in that local region. This

method performs a linear approximation of a non-linear regression. The user can define

the fraction of data used for smoothing each point, usually 40%, rendering the linear

approximation robust to a small percentage of differentially expressed genes. Another

variant of this method uses a rank invariant method to select the genes that are not

differentially expressed and applied the Lowess normalization to the chip using this set of

genes (Tseng et al., 2001). This algorithm can also be applied locally to each sub arrays

produced by individual pins, correcting for spatial variation such as gradient and

differences between the pins (Yang et al., 2002b).

Another approach is to scale to a set of controls that can be either genes whose

expression is not affected by the treatment or spike-in controls. The problem with these
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methods is that: 1) there is no gene whose RNA levels never fluctuate, 2) spiking RNA or

DNA is subject to pipeting errors and the end result may not correlate with the quality of

the RNA that influenced the hybridization.

The normalization procedure has a greater effect on the subsequent detection of

differentially expressed genes than was anticipated in the past (Hoffmann et al., 2002).

In their study Hoffman et al., 2002, found that the effect of the normalization was greater

than the effect of the analysis algorithm for finding differentially expressed genes.

2.3 Analysis of AffymetriD GeneChips

Analysis methods for microarray data can be classified in two categories: supervised and

unsupervised learning. Unsupervised methods can be applied without the prior

knowledge of the sample states: i.e. cancer or normal. They identify patterns in the gene

expression profile and group similar samples together. For example, hierarchical

clustering (Eisen and Brown, 1999) is an agglomerative process in which expression

profiles are joined in function of their distance into a tree. The distances between

members of a tree, clusters or single expression profiles, can be computed in many ways

(Quackenbush, 2001). Because of its simplicity, and graphical display, this method has

become one of the most widely used analysis of gene-expression data. Other preeminent

unsupervised classification techniques are k-means clustering (Tavazoie et al., 1999),

self-organizing maps (SOM) (Kohonen, 1990) and the principle component analysis

(PCA) (Raychaudhuri et al., 2000). Principle Component Analysis is a mathematical

technique to reduce the dimensionality of the data without a significant loss of

information. It reduces the redundant information. This method is sometimes used
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before the k-means clustering and self-organizing maps as it provides an estimate of the

number of clusters. K-means clustering and self-organizing maps use iterative

approaches to find clusters, increasing the distance between clusters while decreasing the

distances of the gene expression profiles within the cluster. With unsupervised

clustering, sometimes the classification of the samples does not correspond to expected

classification. This can happen, for example, when cancer and normal samples are taken

from the same patient. Although there is a difference in the state of the samples, cancer

samples can cluster with their respective patient normal sample, because most of the

background genes stay unaffected by the change of state (normal to tumor).

The supervised methods for analysis present a powerful alternative when sample

stateJtreatment is known. Those methods are very useful for finding gene markers. Each

gene is evaluated for its ability to separate the sample states. Genes that are consistently

differentially regulated between the conditions are very good candidate markers.

Methods to find differentially regulated genes are presented below.

2.3.1 Standard Supervised Analysis Methods

The most straightforward approach is to define a fold change threshold or cut-off that

needs to be exceeded in order to consider a gene differentially expressed. The problem

with this method is that it is arbitrary and does not account for noise in the data. This

method, therefore, generally yields a greater number of false positives.

Affymetnx MAS 5 has its own algorithm for finding differentially regulated

genes. MASS performs three global normalizations: to a set baseline intensity and the

same baseline perturbed by multiplying or dividing by an error factor. Then a Wilcoxon
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signed rank tests is performed on the probe level data, on for the three different

normalizations (Liu et al., 2002). Finally, a difference call (increase or decrease) is

issued only if the three p-values from the Wilcoxon signed rank tests fall under a user

defined threshold.

Another method frequently used (Roberts et al., 2000) is the Student's t-test for

comparison between two experimental conditions. If the samples come from two

populations that are normal and with equal variance, the t value for testing the difference

between to two population means is computed as follows:

With TC 1 — 5C 2 being the differences of the means and S',7 _i-2 is the standard error (Zar,

1999). The hypothesis of no differences in the means is rejected when It is above the

thresholds of the t distribution for a specific Type I error rate a (false positive rate) and

degree of freedom. This test assumes that the samples came at random from a normal

population with equal variance. This assumption is often wrong, it has been observed

that some genes behave normally while others do not (Hoffmann et al., 2002). The test is

however quite robust to the normality assumption especially when the number of samples

of the conditions are equal and numerous. Due to the expensive nature of the technology,

many experiments contain few samples and an unequal number of them per condition.

Adapting a parametric test to analysis of microarray data violates the theory on which the

test was based.

Non-parametric tests do not require the estimation of the population variance or

mean and do not state any hypothesis about the nature of their distribution. The most
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commonly used two sample rank test is Mann-Whitney test. The actual measurements

are not used but their rank is. The data is ranked from the highest value to the lowest and

average ranks R1 and R2 are taken for each population of ni and n2 samples. The Mann-

Whitney statistic is calculated as follow:

U is then compared to the table of the critical values of the Mann-Whitney U distribution

at the Type I error rate a and number of samples in each population. Non-parametric

statistics can be used for the analysis of microarray data but require a greater number of

replicates to obtain the same probability of Type II error (false negative) than a

parametric test for the same significant p-values (Zar, 1999). These tests used alone

produce a high rate of false positives due to multiple comparisons performed on the data.

With a type I error a equal to 0.01, one hundred genes out of 10,000 can identified as

significant just by chance. One hundred false positive genes in the result set are too

many and require tedious follow up and confirmatory experiments to be able to find the

true positives.

2.3.2 Correction for Multiple Testing

Multiple comparison procedures are designed to control the familywise error rate, i.e. the

combination of the type I errors from the multiple tests. The most commonly used

technique, the Bonferroni correction consists in dividing a by the number of comparisons

and use this value as the cut-off for the significant p-values (Bonferroni, 1936).

However, this simple correction method has attracted many criticisms (Pemeger, 1998).

The Bonferroni correction is too conservative, each comparison is held to an
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unreasonable standard. In the case of a microarray with 12,000 genes, the p-value cut off

would be 0.001 or 0.05 divided by 12,000, 8* 10 -g and 4 *10 -6 respectively. This might be

an unreasonable high standard and it definitely increases the Type II error were legitimate

results are failed to be detected. Other methods have tried to control the false discovery

rate in a little less stringent manner. The Simes and the Hochberg procedures have been

shown to increase the power of the false discovery rate control compared to the

Bonferroni correction (Benjamini and Hochberg, 1995). For both procedures the p-

valuers are ordered in ascending order and the rejection of the null hypothesis depends in

part on the rank of the p-value. For the Simes procedure a gene is considered

significantly up or down regulated if its p-value is below or equal to its p-value rank

divided by the total number of comparisons and multiplied by the type I error a.

A gene ranked i is significant if:

With Bo) being the p-value of the ordered i t" gene, m the total number of tests performed

on the data and a the type I error rate. Similarly for the Hochberg procedure a gene

ranked i is significant if:

Those methods might still be too stringent when the common number of tests on

micoarray data is between 12,000 and 20,000.

The significance analysis of microarrays method (SAM) (Tusher et al., 2001) has

been described for finding differentially expressed genes. In this method the means and
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standard deviations are used to compute the relative difference in gene expression. This

relative difference d(i) (for a gene i) is very similar to the t value of a student t-test.

Where mA(i) and mB(i) are the mean expressions of the gene i for the state or treatment A

and B respectively, s(i) is the standard deviation and so is a small constant. The small

constant s o helps ensure that the distribution of d(i) is independent of expression,

preventing genes with a very small standard deviation and expression from being

considered differentially expressed. The standard deviation is computed as follow:

Where Ea and Ei are the sum over the samples in A and B, c=(1Jn+1Jm)J(n+m-2) with n

and m being the number of samples in A and B. The novelty of this method is that they

use balanced permutations of the dataset to estimate the relative difference of those genes

in a random case. Genes are ranked in descending order of their d(i) value (i.e.: d(1) is

the largest value in the dataset) and the same is done for the permutation d (i) and

averaged. The average of the d(i) is the expected relative difference. By plotting the

relative difference (from the treatment effect) against the expected relative difference we

can observe that for most genes those values are equal. When the difference between

those two measures exceeds a certain threshold A, the genes are considered differentially

expressed. One can substitute one of the balanced comparisons to the treatment

comparison, compare it to the expected relative difference and count how many genes

cross the threshold. By repeating this procedure for all balanced comparisons, one can

obtain an average number of false positives. This method provides the flexibility of an
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asymmetric cut-off for significant genes due to the comparison with random effects. This

method can also be extended to the analysis of 3 or more statesJtreatments using a

Fisher's linear discriminant to obtain the parameter d(i).

2.4 Analysis of Spotted Arrays (two or more samples per arrays)

When analyzing two or more samples per array, one is really looking at the hybridization

of those samples for the different spots (i.e: for example normal vs. malignant). The

amount of oligonucleotides spotted on the chips is in excess of the samples to be probed.

Ratios are inherently independent from the quantities of cDNA or oligo spotted which

can be quite variable from the first slide printed to the last one, or from one slide lot to

another. The question, regardless of the experiment, is still finding genes that are

differentially expressed. Reducing the dataset to the genes that are differentially

expressed helps eliminate noise that could perturb further analysis such as clustering.

Fixed fold change cut-offs of 2 or more can be used but as was observed many times, the

variation in fold-change increases as the signal decreases. A more powerful way to

identify the genes that are differentially expressed within a slide is to calculate a z score

with the mean and standard deviation of the log(ratio). This method defines a global

standard for the chip for fold change difference and confidence. It has the same

inconvenience as the fold change method for it does not take into account the greater

variability of the measurements at lower expression. An altemative approach is to

calculate the z-score in a local manner. Using a sliding window, the mean and standard

deviation of the genes surrounding each data point Ti can be calculated, and the local z-

score can be computed:
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Genes with an absolute local z-score above 1.96 are considered significantly

differentially expressed (95% confidence level) (Quackenbush, 2002).

2.5 Synopsis on Current Status of Microarray Data Analysis

There are many combinations of the methods described above for the analysis of

microarray data from signal estimation, normalization to analysis of significant genes.

The major problem with analysis is that standard statistical tests are ill adapted to the

data. Standard analysis produces too many false positives and when correction for

multiple testing is applied, due to the high number of tests, the corrections tend to be too

conservative. A different approach to analysis is presented in Chapters 3, 4 and 5. In

Chapter 3, a nonparametric method is used to separate cancer samples according to their

selectively expressed genes. This method disregards the normalization techniques that

influence the results by changingJcorrecting signal intensities. In Chapter 4, a noise

boundary model is described, to eliminate spurious fold change, reducing the number of

false positives in further analysis. The issue of using data from different sources to

identify differentially specific cancer biomarkers will be examined in Chapter 5.



CHAPTER 3

ANALYSIS OF THE ROLE OF SELECTIVE
EXPRESSION IN CLASSIFICATION

3.1 Introduction

Application of microarray technology depends on accurate comparison of the level of

gene expression across a set of microarrays. In general, this process requires

normalization or scaling of measurements mere on each microarray, so that differential

changes in gene expression can be observed. In the most frequently used normalization

method, the data are scaled by the ratio of the mean of the frequency distribution of gene

expression levels on one microarray to that on a control microarray. This method works

well as long as the gene expression distributions are linear and have a similar form on all

microarrays. Furthermore, the dependence on the accuracy of this normalization process

is exacerbated by the magnitude of the corrections, which often increase or decrease

measured expression level values by a multiplication factor larger than 6.

This dissertation presents non-parametric methods for microarray data analysis.

This Chapter describes the role of selectively expressed genes for classification as an

altemative method for comparison of gene expression across a set of microarrays that is

not dependent on the standard normalization process. Insteer of using differential gene

expression, the usefulness of selective expression was evaluated. Selectively expressed

genes are generally present in microarrays from one group, and are less likely to be

present in the group that is being distinguished from. This method was tested on data

from the Golub et al (1999) study, whose aim was to classify and predict classes of

leukemia by determining which genes have expression levels that are most correlated
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with different disease states (Golub et al., 1999). Their analysis method was based on the

differential expression levels of all the genes on the microarrays. The expression data

was derived from bone marrow and peripheral blood samples from patients suffering with

acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). These

childhood acute leukemia are blood related cancers arising in the bone marrow. These

cancers are progressing rapidly resulting in the accumulation of immature cells in the

bone marrow and blood. The bone marrow is saturated and can no longer produce

enough normal red blood cells, white blood cells and platelets, leading to anemia, the

lack of immune defense and easy bruising and bleeding. The acute lymphoblastic

leukemia are comprised of two subtypes: B-cell and B-cell leukemia. The original

dataset was split into two sets, a training set and an independent evaluation set. The

training set was used to develop a statistical separation of the two groups, and was

composed only of bone marrow samples. The independent set was then used to evaluate

the separation, but some of the independent set samples were derived from peripheral

blood and therefore erded heterogeneity to the analysis. All of the samples were

hybridized on GeneChips, produced by Affymetnx Inc.

The Affymetnx software MAS 4 employs a decision matrix based on metrics

comparing the intensity of the PM to the MM to determine if a transcript is present (P),

marginal (M) or absent (A). The Golub et al. (1999) study did not take into consideration

the present and absent calls. Using a neighborhood analysis, they were able to classify 36

of the 38 samples in the training set and 29 of the 34 independent samples. They also

used self-organizing maps (Kohonen, 1990) for automatic discovery of the classes. In
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contrast, in this study, present and absent calls were used as indicator of selective

expression, and evaluated for separation of the two types of leukemia.

3.2 Methodology Development

In the initial analysis, the level of gene expression is not used. The samples in the

training set are placed into two groups (27 ALL, 11 AML) and the absent and present

calls of each of the genes in each group are converted into binary numbers, with one

corresponding to present and zero corresponding to absent. Marginal genes and the

present genes with an average difference below zero were also considered to be absent.

The selectivity of each of the genes is computed as the absolute value of the difference

between the real-valued averages of the (expressedJnot expressed) binary values for each

of the two disease groups. With this metric, a gene that is present in all of the samples in

one group and absent in all of the samples in the other group is maximally selective, with

a selectivity of one. In contrast a gene that is absent in both groups, present in both

groups, or present in the same percentage in each of the two groups is not selective at all,

and has a selectivity of zero. A gene would be considered significant if it is twice as

likely to be expressed in one group as in the other. In other words, a gene is considered

significant if it has a selectivity, or absolute difference, that is larger than 0.5. The group

average represents the ideal behavior of a sample from this group and is called an

exemplar. The 7129 genes are sorted into a ranked list from the most selective to the

least selective, and the most selective genes are used to construct an exemplar vector for

each of the two groups. The dimensionality of the exemplar vector is set by the number

of genes that have been included in its definition.
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The likelihood of selective genes occurring by chance was evaluated by randomly

shuffling the data. The samples were randomly assigned to the two groups, which her

the same size as the true AMLJALL groups and the same process was used to construct a

ranked list of selective genes. The average selectivity for each rank on this list was

computed for 45 shuffles of the data, and this is compared with the selectivity of the

genes in the true AMLJALL groups.

The usefulness of selective genes as a method for classifying samples was

evaluated by computing the Euclidian distance from each microarray to each of the two

exemplar vectors. These distances were computed for all of the microarrays in both the

training and independent sets. Members of a group should be closer (smaller distance) to

the exemplar of that group than to the exemplar of the other group. The exemplars

computed from the training set are used to classify the data from the independent set.

A simple form of normalization can be applied to selectively expressed genes.

This normalization seeks to make corrections to errors in the assignment of absent and

present calls, which may have occurred due to variation in the processing of the samples.

In replicate experiments using the same sample on microarrays, some genes with low

expression levels were found that have absent calls on GeneChips with low hybridization

or high background (data not shown). Samples that are more successfully processed

might be more likely to have an increased number of present calls. This hypothesis is

supported by the correlation shown in Figure 3.1. This Figure shows the relationship

between the number of genes with present calls on a microarray and the scaling factor

computed by the Affymetrix software. There is a linear relationship between the inverse

of the scaling factor and the number of genes expressed in the chips (R 2= 0.51).
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Therefore chips with fewer genes expressed require a larger scaling factor, and chips with

more genes expressed have a smaller scaling factor. In general, higher scaling factors

might be needed if the processing of the microarray was less successful. This implies

that microarrays with lower average expression levels might have genes that should be

present, but their expression level is not discemable from the background. This is a

detection threshold problem; the sensitivity of the microarrays changes depending on the

background noise, quality of the RNA and labeling reaction. Refinements of this

technique might leer to greater detection thresholdJintensity cut-off at the frontier

between an absent and a present gene. For normalization, it is impossible to scale up an

absent call into a present call. Instead, microarrays with more genes expressed can be

scaled down by setting the genes with lowest expression level to absent. Provided that the

genes with the lowest expression are the genes masked in the background noise, this

solves the detection threshold problem. This method bases its trust more in the

comparisons of expression levels within an array than across arrays.

Figure 3.1 Linear regression of the number of expressed genes (on the X-axis) to the
inverse of the scaling factor (on the Y-axis).
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More precisely, the expression levels of all of the genes in each microarray are

ranked from the highest expression level to the lowest expression level. The gene with

the lowest ranked expression level on the microarray with the largest number of genes is

set to absent and the selectivity of the genes is computed. This process can be continued

until the selectivity starts to decrease or until all of the chips have at least as many genes

present as the average number of genes present at the start of the process. The selectivity

of a gene increases if it is usually absent in one group, present in the other group, and one

or more of the present calls in the usually absent group are switched to absent because of

low expression values on microarrays with a larger than average number of genes

expressed. For example, a gene that is absent in all of the ALL microarrays except for

one, and is present in the all of the AML microarrays, has a selectivity that is less than

one. If the one ALL present call has a low expression level on a microarray with more

than the average number of present genes, then this normalization will set the ALL

present call to absent, and the selectivity will increase to be exactly one. This method

also reduces the number of genes poorly detected by the technique from the set of genes

used to classify the samples. Some genes might be better detected as present in some

samples and might gain a spurious selectivity index by chance. By changing the call of

those low expressed genes to absent on arrays with a high number of genes found present,

the selectivity of those low expressed genes will be decreased compared to the selectivity

of genes with higher expression values.

In the initial analysis of the training data, the number of present calls ranges from

1352 to 2877. The normalization is applied in the first instance keeping the highest

ranked 2500 expression levels from each of the microarrays. Any of the microarrays that
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has more than 2500 genes present has the genes with the lowest expression levels now

forced to be absent. The genes with selectivity greater than 0.5 prior to this process are

called the selective genes. The difference between the number of selective genes that

increase their selectivity and the number of selective genes that decrease their selectivity

is computed. The same process is repeated in which the highest ranked 2250, 2000,

1750, 1500, and 1352 genes are kept as present, and find the number of genes that

optimizes the selectivity of the selective genes.

3.3 Results

It can be observed in Figure 3.2 that a substantial fraction of the genes are absent and this

suggests that selective expression might usefully distinguish between groups of samples.

If the majority of the genes are always present then the data must be normalized to look

for differential expression. Also, there is a large variation in the number of genes present

from one slide to another, from 1352 genes found present in sample 27 to 2890 in sample

5, with an average of approximately 2000 out of over 7000 genes.
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When the selectivity metric described above, is applied to the two leukemia

groups, 121 genes are found to be selective. This included several genes that were also

found to be important in the distinction between the two types of leukemia by Golub et

al. (1999); MB-I required for the B-cell antigen receptor (Payelle-Brogard et al., 1999),

zyxin, HOXA9 involved in myeloid differentiation (Casas et al., 2003; Zeisig et al.,

2004), and cyclin D3 involved in cell cycle and proliferation (Table 3.1). In the list of the

24 most selective genes we see that some genes, such as the myosin light chain, are more

expressed in the ALL leukemia. Others, such as zyxin, are expressed more often in the

AML group. As described in the methods section, this selectivity was compared to 45

random shuffling of the samples into the two groups. Those selective genes had

significantly higher difference in expression than the randomly shuffled sets (last column

on the table). Figure 3.3 shows the selectivity of the genes, after normalization. The x-

axis is the position of the gene in this ranked list, and the y-axis is the selectivity.

Figure 3.3 The selectivity level is the absolute difference between the ALL exemplar
and the AML exemplar ■ . The selectivity level between the shuffled samples ❑ is
represented as a comparison.
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Table 3.1 Most Selectively Genes Expressed in the AMIJALL Training Set
The average expression for the ALUAML groups and the absolute difference, are
displayed as well as the absolute difference of the shuffled set with the standard deviation
and the number of standard deviation away from the AML-ALL real grouping.

In order to classify the samples in one group or the other, the Euclidian distance

of their binary call (1 for present and 0 for absent) to the exemplar was computed. This

distance among the 10, 20, 30 most selective genes, was then averaged and the closest

exemplar was determined. With the ten most selective genes, the 2 groups in the training

set were completely separated (Figure 3.4).
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After applying the normalization process described above, the selectivity was

maximized by retaining, as present, the 2000 genes on each microarray that have the

highest expression level on that microarray. The lower two panels of Figure 3.4 show

that this normalization improves the separation of the two groups. Using the ten most

selective genes, the AML samples are closer to the AML exemplar and that the ALL

samples are further from the AML exemplar.
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Figure 3.5 shows the effect of changing the dimensionality of the exemplar vector

on cluster separation. The prior analysis was based on the ten most selective genes, or

equivalently on ten dimensional exemplar vectors. The x-axis of this Figure is the

dimensionality of the exemplar vector. Again the included genes have been ranked, and

the genes are erded to the exemplar in rank order from the most selective to the least

selective. The y-axis is the distance of each of the samples from the ALL exemplar.

Each sample is plotted as a distinct line. The top panel shows the distances prior to

applying the normalization process and the lower panel shows the distances after

applying the normalization process. Over most of the range shown in the Figure the

normalization process has increased the separation of the two groups. As more genes are

included in the exemplar vector the graphs gradually move closer together.

The same analysis was applied to the independent set, but the distances were

computed to the exemplar that was computed from the training data. As shown in Figure

3.6, this technique was successful at separating the two groups. Only one sample,

number 66, was incorrectly classified. The top panel shows the distances of the two

groups from the ALL exemplar prior to normalization, and the lower panel shows the

distances after the same normalization process her been applied to the independent

evaluation set. In this normalization no additional optimization was performed, and as

before the 2000 genes with highest expression level from each microarray were kept as

present. Note that again the normalization increases the separation of the two groups.
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Figure 3.5 ALL samples ❑ and AML samples MI , (A) Distance of the training set
samples to the ALL exemplar before normalization. (B) Distance of the training set
samples to the ALL exemplar after normalization.
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Figure 3.6 ALL samples ❑ and AML samples ■ , +++ misclassified sample number
66, (A) Distance of the independent set samples to the ALL exemplar before
normalization. (B) Distance of the independent set samples to the ALL exemplar after
normalization.
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The same method was used to examine other possible classifications of the data.

There was information in the data about the sub grouping of the ALL samples into T-cell

and B-cell type leukemia. Just as was found in the ALL-AML classification, genes were

identified in the T-cell to B-cell groups that are more selective than expected by chance,

as evaluated by shuffling the samples. The resulting exemplar vectors were able to

completely separate the T-cell and B-cell groups in the training set without error. In the

independent set, one out of the 20 ALL independent samples, number 67, which was a

peripheral blood sample, was misclassified. The method was also applied to the

classification of success and failure of treatment and to female and male subjects. In both

of these two cases there was no significant difference between the selectivity of genes

found in the real groups from that found in the randomized groups. The absence of a

correlation in the treatment response case may be due in part to the small number of

samples (11 in the training set).

3.4 Conclusion

Selective gene expression is sufficient for separating the AML vs. ALL samples, and T-

cell vs. B-cell samples. Selective expression does not have the same dependency as

differential expression on normalization of microarray data, and for this reason it may be

more robust regardless of variations in processing. Some of the most selective genes

were differentially expressed in the Golub et al. (1999) study (e.g. MB-1, zyxin, HOXA9,

cyclin D3). Other genes like Catalase (X04085) which were differentially expressed in

both ALL and AML, but not selectively expressed were not selected by this method.
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However, TCL1 was not found to be differentially expressed in the prior study, and was

found to be selectively expressed with this method.

The shuffling method provided a useful verification of the use of selective genes

to classify the data into groups. The AML and ALL groups, and the T-cell the B-cell

groups were far from the randomly constructed datasets, while the success—failure

classification and female—male classification was close to chance.

This approach is orthogonal to prior studies and complementary, since it focuses

on genes that are selectively expressed rather than on differential expression levels. This

simple approach is very robust, powerful and easy to use in diagnostic microarray

development as it contains strongly expressed genes. A synthesis of the qualitative and

quantitative methods should improve the classification performance, and add

understanding to the mechanism of action of the genes involved in some pathology.

This work demonstrated the possibility of circumventing the normalization

problems by using only selectively expressed genes. However, it then raises the issue of

definition of the expression versus no expression. There is no real cut-off and finding

expression depends on the background noise and sensitivity of the technique. There is

also quantitative information overlooked with this method. In the next Chapter a noise

boundary model is presented. This model is designed to enable the analyses of

differential gene expression.



CHAPTER 4

ASSESSING THE NOISE LEVEL AND TRUST THRESHOLD FOR
DIFFERENTIAL EXPRESSION ON AFFYMETRIX GENECHIPS.

4.1 Introduction

In this Chapter the characteristics of the noise of the GeneChip microarray data is

evaluated. When noise is consistent and reproducible it can be filtered from the data, and

some false positives can be eliminated. There are two major sources of noise in

microarray data. The first source of noise is biological which comprises variations

between different patients, tumor location, variation of cellular composition among

tumors, heterogeneity of the genetic material within tumor due to genomic instability, and

differences in sample preparation. Biological noise cannot be corrected but it can be

accounted for with statistics using replicates of the treatment conditions. The second

source of noise is the microarray technical noise that comprises nonspecific cross

hybridization, efficiency of the labeling reaction and differences between microarrays.

The noise derived from experimental technique is reproducible and the boundary of the

noise can be modeled. It has been observed, that in differential comparisons of any given

gene, there is a greater variance in the fold-change calculation at lower signal intensities

(Mutch et al., 2002; Tu et al., 2002). When comparing replicate samples, lower

expression values tend to have the greatest variance in signal intensity. This suggests that

larger errors can occur when lower signals are used to compute fold-changes in

differential comparisons. Fold change, computed in this way, can leer to extraneous

inclusions in lists of significantly up-regulated or down regulated genes. For example, a

fold change of two calculated from intensities of 25 and 50 may not be as trustworthy as
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a fold-change of two determined between intensity values of 2,000 and 4,000. Thus, the

purpose of error boundary modeling is to reduce the influence of less trustworthy fold-

change calculations in the differential analysis of microarray data. The technique of

coupling a noise boundary model to an analysis method has previously been shown to be

useful for two color cDNA arrays (Baggerly et al., 2001; Hughes et al., 2000; Ideker et

al., 2002; Yang et al., 2002a).

4.2 Development of a Noise Boundary Model

It would be ideal to construct the noise model to measure the technological noise with

replicated data, but this type of data is not always available. One can use replicates for

the same condition: i.e. different normal biopsies of tissues from different patients. In

this case the noise model not only measures the technique error but also some of the

biological variability. This could be useful in the sense that it accounts for tissue

variability in the design of the error model. This approach is in a way similar to the work

done by Mutch et al., 2002. Their analysis relied on 2 assumptions: 1) the signal is more

variable closer to the low intensity detection threshold, 2) empirically, from the literature,

regardless of the method of gene selection, only a few percent of genes change due to

treatment (less than 5%). Based on these assumptions, they have created a limit fold

change model by making a histogram of absolute fold changes as a function of minimum

intensity. Absolute fold changes were binned in the size of 200. Only the top 5% probe

sets of each bin were selected to be considered differentially regulated. Their data

contained no biological replicates, insteer they pooled samples, and they her only one

technical replicate. Their method of selecting the up-regulated or down-regulated genes
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consisted in taking the top 5% of the absolute fold changes in a uniform manner across

the intensity range. In contrast, the error boundary model was created to eliminate

untrustworthy fold changes from the analysis. This boundary was designed to be used as

a preprocessing step before evaluation of the data. In Chapter 5, publicly available data

(Bhattacharjee et al., 2001; Su et al., 2001; Toruner et al., 2004; Welsh et al., 2001a;

Welsh et al., 2001b) is going to be used to find cancer markers. This Chapter is going to

describe how the noise boundary model was designed for those data sets. First, two

questions were asked: which probe-set intensity measurement method should be used,

and can a noise boundary model be designed for each method? It was noticed that for

each method, MASS, dChip PM-only and RMA, for any combination of normal biopsies,

there was an increase of the fold changes for a decrease in the average intensity of the

probe-set. Figure 4.1 displays a scatter plot of the fold-change plotted against the average

intensity for each probe set from arrays from two normal lung tissues using MASS for

signal estimation. This plot, commonly named a volcano plot due to its shape, shows a

considerable increase in signal variation at smaller signal amplitudes. The initial

broerening in fold change starts at a signal intensity of 200 with 61.6% of the genes

having an average signal intensity lower than this value. Significant broerening occurs

for signal values with less than an average signal amplitude of 100, which corresponds to

over 44.8% of the measurements of a chip scaled at 300.

To model the noise, a fold-change threshold boundary was drawn for each

comparison between normal biopsies for each cancer studied. This was accomplished by

binning the data into fixed width bins. Each bin was set to include 200 expression values.

A percentile of the fold-change was calculated for each bin, and considered to be the
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error boundary. Figure 4.2 shows the 80 th percentile error boundary values for each of

the bins of the replicate data displayed in Figure 4.1.

Figure 4.2 The 80 th percentile of the absolute fold change (y-axis), from two lung
normal samples, is plotted against the average signal (x-axis) for each bin of 200 genes.
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For modeling purposes, the percentile was plotted against the inverse of the

average bin revealing a linear relationship that can be characterized with a slope and

intercept. This linear relationship was seen with all the probe-set signal estimation

methods (MASS, dChip PM-only and RMA). In Figure 4.3, this linear relationship can

be seen for the same two lung samples as Figure 4.2. The linearity stops for an average

bin intensity of 25 (1J0.04) at which point the gene expression may not be reliable

because it is too close to the detection limit of the technology. Because of this, a

minimum intensity cutoff is going to be set to preserve the linearity. This minimum

intensity cutoff is another parameter, after the percentile, which is going to greatly

influence the model. The next section will present a sensitivity analysis on these two

parameters; expression cut off and percentiles.

Figure 4.3 The 80 th percentile of the absolute fold change (y-axis), from two lung
normal samples, is plotted against the inverse of the average bin signal intensity (x-axis).
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4.3 Sensitivity Analysis of the Parameters (cut off and percentile)
and the Probe Set Intensity EDtraction Methods

To be able to perform a sensitivity analysis on the parameters, a standard dataset was

chosen. The Latin square replicate data set (Hubbell et al., 2002) was used for this

purpose as it contains genes replicated for their expression levels and spiked in genes

with different concentrations on different chips. Since the concentration of these genes

was the only difference between the arrays, the true and false positive rates could be

accurately determined. The 16 samples of the replicate set in the Latin square dataset

were considered replicates for modeling the noise as the number of probe-sets spiked in

represents only a small portion, less than 0.0012%, of the total number of probe-sets. For

this replicate set, a sensitivity analysis was performed around two parameters: percentile

taken for each bin for regression and minimum intensity cutoff. This sensitivity analysis

was also performed for the different methods of probe set intensity extraction: dChip PM

only, MAS 5 and RMA. The sensitivity analysis consists in observing the variation of

the slope and intercept obtained from the linear regression on the boundary defined by the

percentile and cut-off. The average slopes and intercepts were then graphed as a function

of those two parameters.

For dChip PM only and RMA, the parameter that influences most the average

slope is the minimum intensity cutoff (Figure 4.4 and 4.5). Only the highest percentiles,

above 94, have an effect on the slope and decrease it drastically due to the introduction of

noisy data. On the other hand, the slopes increase steerily with the minimum intensity

cutoff for RMA and with a delay for dChip PM only. This can be due to non linear

increase of the absolute fold change with the decrease in bin intensity. The increase has

concave shape just like in Figure 4.2, the more the low end data is cut, the higher the
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slope of the regression. Also as an artifact of the transformation of the x-axis, inverse of

the average bin intensity, there is also a non-equidistant repartition of the bin percentile

fold change. This result in bin with a low average intensity having more weight on the

regression than the bins with higher intensities: i.e. more bins are regrouped in the 0 to

0.02 range than 0.02 and 0.04 range. As the average intensity gets higher, the differences

of the fold change percentiles decrease and the inverse of the average intensity decreases

further. Eliminating the low intensity bins has a greater effect on the slope. Also, slopes

with a cut-off higher than 500 are probably not reliable as the regressions were performed

on less than 20% of the original data.

Figure 4.4 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the slope of the regressed percentile to the average intensity of the bins,
with data obtained with the RMA (Ihaka and Gentleman, 1996).



55

Figure 4.5 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the slope of the regressed percentile to the average intensity of the bins,
with data obtained with the dChip PM only.

In Figure 4.6, MAS 5 average derived slopes are both influenced by the minimum

intensity cutoff and the percentile. The slope increases in a step like manner increasing

with a larger percentile and a larger minimum intensity cutoff. The magnitude of the

slope is also very different between MAS 5, dChip PM only and RMA. For the 80 th

percentile and a minimum intensity cutoff of 100, the average slope is 157.6 for MAS 5,

7.7 for dChip PM only and 2.15 for RMA. Since the regression is performed on the

inverse of the average intensity, the slope gives an indication of the noise in the low
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intensity range. Because the Latin square GeneChips can be considered as replicates, it

can be inferred that RMA and dChip PM only are better controlling the noise in the low

intensity range compared to MAS 5. One explanation could be the fact that dChip PM

only and RMA attenuates the signal compared to MASS, reducing both noise and true

fold change (unpublished data, appendix A). In all three cases there are conditions where

the slope is stable for minor variations of the cutoff or percentile.
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For all three methods of probe-set intensity extraction, the average intercept is

insensitive to the percentile and the minimum value cutoff except for the extreme values

of those parameters: i.e. 98 percentile and no minimum value cutoff (see Figures 4.7, 4.8,

4.9). For the 80 th percentile and a minimum intensity cutoff of 100, the average intercept

is also very similar between the methods: 1.08 for MAS 5, 1.13 for dChip PM only and

1.12 for RMA.

Figure 4.7 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
with data obtained using RMA (Ihaka and Gentleman, 1996).
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Figure 4.8 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
with data obtained using dChip PM only.
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Figure 4.9 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
with data obtained using MASS (Affymetrix).

To evaluate the performance of the noise boundary model to identify the two fold

change spiked-in genes in the results and eliminate false positives from the results, the

sum of the rank of 12 out of the 14 spiked probes was evaluated. Two out of the 14

spiked genes were omitted because either their concentration was too low to be detectable

(1597_at was spiked at the concentration of 0 to 0.25 pm) or the amount had saturated

(1708_at was spiked at 256 and 512 pm). The noise boundary model was applied to any

combination of the chips spiked at one concentration to all the other chips spiked at the

other concentration. For every gene, up-regulation or down-regulation was then recorded
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as the fold change was compared to the noise boundary. The maximum number of fold

change directions was then divided by the number of comparisons. This resulted in an

index called the Event ratio (Er) which is discussed in more detail in Chapter 5. Those

probe-sets were ranked in descending order according to their Er score (Highest Er score

is assigned the number 12626: i.e. the number of genes in the chip). The scores obtained

were summed for the 12 spiked probe-sets and the results were normalized. The perfect

score is 1. The result with the probe signal estimated with MAS 5 is presented in Figure

4.10. A plateau can be observed at 0.99 for most of the range for percentile and cutoff

values. However there is a sharp decrease for a low cutoff, i.e. zero. The percentile also

her little effect until a percentile higher than 94% was reached. The high percentile and

low cutoff introduce more noise in the data setting the noise boundary model too high,

therefore reducing the Er score of the spiked-in genes. The graph (Figure 4.11) for the

signal estimation with RMA is similar to the MAS 5 in that most of the area covered by

the simulation for the percentile and cutoff is a plateau at 0.99 for the sum of rank of the

spiked in genes. In the same manner, the sum of ranks decreases for higher percentiles

(above 96%). However, in this case, the rank is insensitive to low intensity cutoffs but

decreases with higher cutoffs, with a first dip with gene intensities lower than 1600, and a

second for intensities of 2100. The higher cutoffs are actually cutting most of the data to

construct the model. For perspective, the chips are scaled to an average intensity of 300.

The dChip PM only algorithm did not seem to perform as well as MAS 5 and

RMA, as its plateau was smaller and more sensitive to the parameters (Figure 4.12). The

plateau average is also 0.99, but it is limited to percentiles lower than 90% and a



61

minimum intensity cutoff lower than 1100. Overall, MAS 5 seemed to be more robust, as

the noise boundary model performance gradually decreased with the percentile.

Figure 4.10 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the score of the spiked in genes of the replicate set of the Latin square
dataset, with data obtained using MASS (Affymetrix).
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Figure 4.11 Three dimensional graph of the effect of the minimum intensity cutoff and
percentile on the score of the spiked in genes of the replicate set of the Latin square
dataset, with data obtained using RMA (Ihaka and Gentleman, 1996).
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A compromise has to be made between setting a noise boundary model to low,

finding all the spiked genes with a lot of false positives and setting the noise model too

high. At this point the model is so conservative that only a few spiked in genes are

found. Figure 4.13 displays the false positive rate when an Er cutoff is set to 0.9,

equivalent to a gene being consistently over or under expressed in 90% of the

comparisons. The false positive rate is very high for a percentile of 0.98. This artifact is

due to the presence of only one gene which is a false positive in the result set. The false

positive rate decreases sharply with the percentiles and then increases again as the

boundary model becomes less conservative.
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4.4 Sensitivity Analysis Discussion

Noise modeling can be performed for all of the methods. MAS 5 was shown to be noisier

for low intensities but the correction using the noise model seemed to perform very well

as its performance decreased gracefully for finding spiked genes. MAS 5 will be used in

further studies because of its wide use for signal intensity estimation and its robustness

for the two parameters tested. A cutoff for the minimum intensity of 100 and the 80 th

percentile was selected for the model parameters as they are in regions where the slope,



65

intercept and rank are not very sensitive to change, and where the false positive rate is

reasonable.

4.5 Evaluation of the Noise Model on Real Data

Figure 4.14 displays the 80 th percentile error boundaries for five different normal tissues

as a function of the inverse average bin intensity. Bins with an average intensity lower

than 100 (above 0.01 in the Figure) were not displayed. They are below the minimum

intensity cutoff and hinder the linearity relation of the percentile to bin intensity. A

leveling off of the fold changes at high was also noticed; this leveling is due to saturation

on the chip. To decrease the effect of the saturation on the regression, the top 8% of the

genes were eliminated i.e. top 5 bins with lowest inverse average intensity. The slope

and intercept were then calculated for each cancer dataset as they give an indication of

the noise level at low and high expression values respectively. For each comparison of

normal samples in a tissue, the slope and intercept were averaged (Table 4.1). There

seems to be a negative correlation between the slopes and intercepts. The higher the

intercept the lower the slope. If a dataset contains an inherent high background, the

signal to noise ratio is decreased. The intercept will increase as the 80 th percentile is

going to be higher. The slope on the other hand is not going to increase, and might even

decrease as the low intensity background noise remains constant. Before using this noise

boundary model in Chapter 5 to find cancer markers, the stability of the slope and

intercept for the different datasets must be evaluated. One of the differences with the

Latin square replicate data set is that these public data consist of biological replicates of

normal tissue insteer of technical replicates. The cancer biopsies were not used in
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designing the noise model as they might be more variable than normal tissue. The first

two simulations were then performed for all normal tissue samples to confirm that the

minimum intensity cutoff and percentile selected were also in regions where their slope

was also insensitive to small changes (Figures 4.15, 4.16, 4.17, 4.18, 4.19). Figures for

the simulation of the effect of the cut-off value and percentile on the intercepts are

presented in Appendix B. For all the normal tissue, the results from the simulation are

very similar.
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Table 4.1 Average Slopes and Intercepts for the Different Tissue Types
This table displays the average slope and intercept of the regression of the 80 th percentile
of the bins by the inverse of the average expression per bin. The bin size was 200 and the
minimum intensity cutoff was 100.

Figure 4.15 Three-dimensional graph of the effect of the minimum intensity cutoff and
percentile selected on the slope of the regressed percentile to the average intensity of the
bins for the prostate normal biopsies.



Figure 4.17 Three-dimensional graph of the effect of the minimum intensity cutoff and
percentile selected on the slope of the regressed percentile to the average intensity of the
bins for the ovarian normal biopsies.
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Figure 4.19 Three-dimensional graph of the effect of the minimum intensity cutoff and
percentile selected on the slope of the regressed percentile to the average intensity of the
bins for the oral normal biopsies.
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4.6 Conclusion

There is a characteristic increase in the range of fold change values that occur at lower

expression levels on Affymetrix GeneChips replicate arrays. This occurs with all

techniques for estimating gene expression levels from GeneChips measurements. This

increase in fold change was found to be consistent and could be characterized through

regression analysis in the three different, commonly used, probe set intensities extraction

methods (MASS, dChip PM only and RMA). This noise was also shown to be consistent

not only on replicate arrays but also on normal tissue replicate data. The boundary of this

noise can be modeled for all data extraction methods and is found to fit well with an

inverse linear function. From this observation, a noise boundary model was derived.

This noise boundary is used in the next Chapter to determine if a fold change is above the

noise level and relevant to the analysis, eliminating spurious false positives. It is

essential to eliminate the background level fold changes since the multiplicity of the tests

introduces hundreds of false positives. This model increases the trust and confidence for

identifying differentially expressed gene markers. Another ervantage of the noise

boundary is that it is tailored to the noise level in the different normal tissues. This

Chapter presented an original analysis of the noise. Using this noise boundary as a

preprocessing step to an analysis method will help reduce the number of false positives

obtained. Chapter 5 will apply this noise boundary model to a non-parametric analysis of

microarray data from different research laboratories to delineate cancer markers.



CHAPTER 5

NONPARAMETIC DIRECTIONAL CHANGE ASSESMENT ALGORITHM
IDENTIFIES TISSUE SPECIFIC MARKERS FOR DIFFERENT

CANCER TYPES

5.1 Hypothesis

To be able to find markers, data from different research groups might be needed as each

group has expertise on their cancer studied and access to samples. One particular concem

when using microarray data derived from different labs is that chip-to-chip normalization

cannot eliminate differences in scanner settings, image processing software, labeling, and

hybridization protocols. The laser power on the scanner can be different from one scanner to

another causing saturation of some spots. The quality of the RNA isolated can influence the

mRNA species present and also the success of the labeling reaction in ways that are not well

known, difficult to control and impossible to account for. A few studies (Ramaswamy et al.,

2001; Su et al., 2001) successfully classified different cancers by their molecular profile on

microarrays using hierarchical clustering and support vector machine (SVM) techniques

(Brown et al., 2000). Both studies found that their markers comported a high number of

genes that distinguished the normal tissues of origin.

The approach taken in this Chapter is rerically different from previous efforts. Here,

cancer samples are compared first to corresponding normal tissue, eliminating the tissue

effect genes. Then the most discriminating genes for each cancer vs. normal cells are

compared among cancers. The starting hypothesis is that the most reliable discriminating

markers are transcripts that are differentially regulated in a consistent manner between

normal and cancer biopsies. Also the normalization problems due to lab specific parameters

71
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(scanner settings, labeling) and even tissue specific artifacts are avoided, as each cancer

biopsy is compared to its corresponding normal tissue processed by the same research group,

in the same environment. These environmental parameters and artifacts are assumed to be

the same for the normal and cancer biopsies and should cancel out when compared. This

allows the selection of genes that best separate normal biopsies from tumors. These

classifiers were then evaluated to see if they are specific to the different types of cancers.

Since gene expression measurements of individual Affymetrix GeneChips probe sets do not

always follow a normal distribution, a non-parametric method was used.

The method to find discriminating markers uses an unweighted voting scheme. This non-

parametric method for marker selection was chosen to avoid making any assumptions on the

shape of the data distribution. However, one drawback is that errors in microarray

expression measurements cannot be accounted for as they vary in scale across the dynamic

range of the technique's sensitivity. To remedy this problem, the noise boundary model

described in Chapter 4 was used. The computed boundary for the noise makes the selection

criteria more stringent, eliminating many false positives signals, and highlighting genes that

are consistently differentially expressed in comparisons between a cancer and its

corresponding normal tissue. This integrative approach can highlight sets of distinct

transcripts distinguishing a variety of solid tumors.
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5.2 Materials and Methods

All of the microarray data used in this analysis was derived from RNA isolated from biopsies

and hybridized on Affymetrix GeneChips HG-U95A, HG-U95Av2 or HG-U133A. All the

research groups used the same standard procedure for labeling the cRNA, hybridization and

scanning (Wodicka et al., 1997). The datasets were obtained from several different sources:

Data from 24 breast cancer biopsies were from Su et al.(Su et al., 2001), and the three

corresponding normal breast tissue biopsies were provided by Garret Hampton from the

Genomics Institute of the Novartis Research Foundation. For prostate cancer, the dataset

was derived from 21 tumors and 8 normal biopsies (Welsh et al., 2001a) whereas the ovarian

cancer dataset originated from 14 tumor and four normal biopsies (Welsh et al., 2001b).

Finally, the lung cancer dataset consisted of biopsies from 61 samples of lung

adenocarcinoma, 20 lung carcinoids, six small cell lung cancer, 21 squamous lung cancers,

and 17 normal lung tissues (Bhattacharjee et al., 2001). Out of the 61 adenocarcinoma

samples, 19 were replicates and 52 were sub-divided into five categories according to

Bhattacharjee et al.( 2001) (Bhattacharjee et al., 2001): seven in cluster 1, nine in cluster 2,

15 in cluster 3, 13 in cluster 4, and eight samples of colon metastasis. The oral cancer dataset

consisted of 4 normal and 16 oral cancer biopsies (Toruner et al., 2004). The directional

change assessment and the noise model algorithms were programmed using Python, and the

comparison for markers was performed with Excel. Latest annotations and Gene Ontology

classification were downloered from the NetAffx" M Analysis Center3.

http:JJwww.affymetrix.comJanalysisJindex.affx March 2004
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5.3 Nonparametric Microarray Data Analysis

Several methods have been described for combining data from microarray experiments

where there are replicates for both experimental and control conditions. Often, the numbers

of replicates are small and the distribution is not normal. For the same difference in mean,

depending on the distribution of the data, the overlap of two distributions can be dramatically

different. Our ideal markers would be genes with no overlap in their distribution; the

consistency of change is therefore more interesting than the amplitude. There is still a

problem due to the low number of replicates, the multiple testing of 12,000 genes and the

inherently noisy measurement. For this reason, the noise boundary model was incorporated

with the non-parametric data mining. The noise boundary helps eliminate some of the noise

that is proportional to the probe intensity measured and helps eliminate false positives due to

chance, because we are performing multiple testing on more than 12,000 genes with random

noise. The combination of the non-parametric voting scheme to find consistently

differentially regulated genes with the noise model will be referred as the directional change

assessment algorithm in the rest of this Chapter. For each transcript, the ratio of expression

intensities (fold change) of each cancer biopsy to all normals was determined. If the absolute

value of the ratio is above the noise boundary, up-regulation (+) or down regulation (-) is

recorded. If the ratio is below the value given by the noise boundary for the average of the

intensities, then the fold-change is considered insignificant and a no-change (0) direction is

assigned. The Event ratio (Er) is described by:

The closer the Er is to 1, the more consistent the direction of change is for that gene.

Conversely, if the Er score is close to 0.5, then the gene is inconsistent with regard to its
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directionality, considered noisy and thus cannot be used as a reliable marker for disease

classification. To test the validity of this approach, the samples were shuffled 100 times

between the categories (cancer and normal) and Er computation was repeated. Each time the

data was shuffled, the probe sets were sorted by descending Er scores and the probe set

information was discarded and replaced by its rank. The average and standard deviation of

the ranks was then computed and compared to the results obtained for the cancer versus

normal biopsies. For all the comparisons performed, higher Er scores were obtained in the

case of a cancer versus normal classification than with randomly shuffled sets. These results

confirm that the genes found significant with a high Er score are not just random in this case.

An illustration of the results obtained with the breast cancer versus normal biopsies can be

seen in Figure 5.1, the Figures for the other cancers are in Appendix C.



Figure 5.1 Comparison of the Er score of the 500 top ranked probe sets for breast cancer
versus normal breast biopsies. Er score for the real breast cancer vs. normal biopsies  — ,
Average Er score of the 500 top ranked probe sets of the 100 shuffling sets — , one standard
deviation away form the average shuffled sets .

5.4 Testing the Er Algorithm

To compare the Er algorithm with the noise model to other commonly used analysis

methods, the replicate set from the Latin square dataset was used. In this dataset, fourteen

probe sets were spiked in at a two fold level. The T-test performed on this data found 175

probe sets with a p-value below 0.01, including the fourteen spiked genes. Although this

method collected all the spiked genes, it also highlighted 161 false positives. The percentage

of true to false positives is only 8.6%. There is a multi-testing problem, with 12,000 tests

times the type I error rate: 0.01, 120 probe sets are expected to have a p-value below 0.01.

To correct for the multiple testing, one common method is the Bonferroni (Benjamini and

Hochberg, 1995; Bonferroni, 1936; Perneger, 1998) method which found seven genes to be

significant with six true positives. The methods of Hochberg and Simes (Benjamini and

Hochberg, 1995), both found 16 significant genes with 11 true positive. The SAM (Tusher et
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al., 2001) method also corrects for multiple testing, found 21 genes significant including 12

true positive with a delta of 1.54. Although they were able to find 85% of the spiked genes,

their false positive rate was underestimated; they estimated a median false positive rate of

4.58% when it was 42% insteer. The Er model described above with a cut-off of 0.9 found

12 genes with 8 of them being true positives. Without the noise model, 93 were found with

an Er score above 0.9. The Er model with the noise boundary model is well within the

separation levels of the standard techniques for eliminating spurious false positives. It would

be interesting to compare these methods on multiple datasets as the results and performance

of the different techniques may be dataset dependant. In the Latin square dataset, the spiked

genes are independent, but in a real scenario the genes may not be independent and the result

of one test may depend on the levels and test results of other genes. It is not known how

much this affects the standard multiple test corrections. Also the Latin square data set is a

very clean dataset with very little noise and few differences in scaling between chips

(Affymetrix, 2002b). Under real world situations, data may be noisier and this may affect the

performance of the different methods. It is worth noticing, that the fold change that the probe

sets were spiked at was two fold, but the actual read intensity only shows an average of 1.53

fold. These methods decrease the number of false positives compared to the t-test alone but

some true positive are occasionally missed. This is partly due to the fact that the spiked

genes were erded at a range of concentration testing the limit of detection from very low to

high signal saturation.
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5.5 Differentially Expressed Genes

The Er model was then used to compare each cancer biopsy to its corresponding normal

tissue. In the absence of error modeling, the directional change algorithm identified 1,910

probe-sets that had an Er score above 0.9 in ovarian cancer, 1,355 in breast cancer, 1,730 in

oral cancer and 322 in prostate cancer. In contrast, incorporation of error modeling

dramatically reduced the number of probe-sets with Er scores above 0.9 to 272 for ovarian,

177 for breast, 129 for oral cancer and 2 for prostate cancer. For lung cancer biopsies, the

distinct sub-classes were compared against normal tissues and 15 probe-sets with an Er value

above 0.9 in all comparisons were uncovered. The following sections will present the results

of the algorithm for the different tissues. Some gene markers found are alreery known

markers and or have a biological function that might take part in the oncogenic process.

These markers are reviewed below. Other gene markers may sometimes not seem relevant to

the condition. These might be genes co-regulated or downstream from a pathway affected in

cancer, and they can be very useful for diagnostic and classification. There are many ways to

regulate proteins concentration in a cell and it might not always be seen at the RNA level, but

its effect can be seen on the RNA levels of the downstream genes expression. Although not

reviewed here, these genes are very useful for diagnostic and classification.
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5.5.1 Breast Cancer

The breast cancer dataset is composed of 21 infiltrating ductal carcinoma and 2 normal

biopsy samples, with 2 technical replicates. One hundred and seventy seven probe sets were

found to be differentially regulated between the normal and cancer samples with Er scores

above 0.9, most of them being down regulated (151 out of 171). Thirty two of those probe

sets encoded for different ribosomal proteins, all down-regulated, averaging 2-3 fold down

compared to the normal samples. These genes are located on 19 different chromosomes so a

deletion would not be able to explain this down regulation. Methylation of ribosomal DNA

has been reported in human breast cancer (Yan et al., 2000) and could be the cause of the

decrease in mRNA encoding ribosomal proteins. Other notable genes involved were:

thrombospondin 2 (THBS2), a known marker (Clezardin et al., 1999) involved in

angiogenesis (de Fraipont et al., 2001) was up regulated, and caveolin 1 (CAV1) was down

regulated. Caveolin-1 acts as a tumor suppressor protein. When expressed at high levels, it

inhibits cell proliferation (Fiucci et al., 2002).
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5.5.2 Ovarian Cancer

The ovarian dataset is derived from four normal and 14 tumor biopsies (serous papillary

ovarian carcinoma) (Welsh et al., 2001b). Two hundred and seventy two probe-sets were

identified in the ovarian dataset with an Er score above 0.9, of which the top 30 are presented

in table 5-2. Notably, genes are involved in cell-to-cell adhesion and are epithelial cells

markers, such as the secreted phosphoprotein 1 (SPPI), claudin 3, 4 and 7 (CLDN 3, 4, 7),

keratin 7, 8 and 18 (KRT 7,8,18), agrin, and cahedrin 1 and 6 (CDH 1, 6), were up regulated

by at least 3-fold in ovarian cancer samples. As was previously suggested (Adib et al., 2004)

this might suggest an epithelial origin of the tumors. Eighty to ninety percent of the ovarian

cancers arise from the epithelia (Auersperg et al., 1999). Genes involved in the regulation of

cell growth; v-fos (FOS), quiescin Q6 (QSCN6), protease serine 11 (PRSS11), the mortality

factor like 2 (MORF4L2) as well as the cyclin dependant kinase inhibitor 1A and 1C

(CDKN1A, CDKN1C) were down regulated, whereas cyclin B1 (CCNB1) was up regulated

by at least 30 fold over the normal sample levels. The tumor-associated calcium signal

transducer 2 (TACSTD2) and the CD24 antigen associated with metastasis and angiogenesis

were also up-regulated. These results are in agreement with the results from the original and

a similar study (Welsh et al., 2001b), (Adib et al., 2004).



Table 5.2 Top 30 Most Differentially Expressed Probe-sets in Ovarian Cancer Compared to Normal Ovarian
Biopsies

Probe Set ID	 Description

34343_at	 steroidogenic acute regulatory protein
266_s_at	 CD24 antigen (small cell lung carcinoma cluster 4 antigen)
39701_at	 paternally expressed 3
291_s_at	 tumor-associated calcium signal transducer 2
32275_at	 secretory leukocyte protease inhibitor (antileukoproteinase)
33904_at	 claudin 3
41294_at	 keratin 7
35766_at	 keratin 18
38324_at	 liver-specific bHLH-Zip transcription factor
2094_s_at	 v-fos FBJ murine osteosarcoma viral oncogene homolog
34213_at	 KIBRA protein
37394_at	 complement component 7
36869_at	 paired box gene 8
35717_at	 ATP-binding cassette, sub-family A (ABC!), member 8
41412_at	 ortholog of rat pippin
35276_at	 claudin 4
37247_at	 transcription factor 21
32154_at	 transcription factor AP-2 alpha
1507_s_at	 endothelin receptor type A
38482_at	 claudin 7
36133_at	 desmoplakin
35168_f at	 collagen, type XVI, alpha 1
35389_s_at	 ATP-binding cassette, sub-family A (ABC1), member 6
38291_at	 proenkephalin
35390_at	 ATP-binding cassette, sub-family A (ABC!), member 6
41812_s_at	 nucleoporin 210
36917_at	 laminin, alpha 2 (merosin, congenital muscular dystrophy)
37628_at	 monoamine oxidase B
37985_at	 lamin B1
1897_at	 transforming growth factor, beta receptor III

Symbol Fold Change ER Score

STAR -129.1 1
CD24 118.5 1
PEG3 -97.7 1
TACSTD2 91.9 1
SLPI 73.7 1
CLDN3 66.4 1
KRT7 58.4 1
KRT18 53.4 1
LISCH7 53.1 1
FOS -51.1 1
KIBRA 48.8 1
C7 -48.7 1
PAX8 47.2 1
ABCA8 -46.5 1
PIPPIN -46.1 1
CLDN4 45.8 1
TCF21 -37.5 1
TFAP2A 30.7 1
EDNRA -28.8 1
CLDN7 28.6 1
DSP 27.0 1
COL16A1 -26.3 1
ABCA6 -24.6 1
PENK -24.2 1
ABCA6 -20.4 1
NUP210 19.8 1
LAMA2 -19.6 1
MAOB -18.8 1
LMNB1 18.7 1
TGFBR3 -8.6 1 ott.e
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5.5.3 Oral Cancer

The oral cancer dataset was composed of four normal biopsies and 16 cancerous biopsies.

Unlike the other sets, the RNA was obtained from laser capture and was hybridized on

Affymetrix Hu133A GeneChips. The major gene classes affected are related to cytoskeletton

organization, development and differentiation. Keratin 4 and 13 (KRT4 and 13), sciellin

(SEL), and the small proline-rich protein 1A and 1B (SPPR1A and 1B) involved in

epidermal differentiation, are all down regulated. This result is consistent with the results

from the original study (Toruner et al., 2004) and a study on esophageal squamous cell

carcinoma (Luo et al., 2004), a similar tissue of origin. The down regulation of these genes

indicates a de-differentiation of the cancer cells compared to the normal epithelial cells. The

next family of genes involved included genes having an effect on cell to cell adhesion:

desmoglein 1, 2 and 3 (DSG1, 2 and 3) and claudin 17 (CLDN17). Associated with the up

regulated matrix metalloproteinase 1 and 13 (MMP1 and 13) that encode collagenases,

destroying the interstitial tissue, these changes may allow cells to infiltrate the connective

tissue. Two of the selected up regulated genes MMP1, LGALS1, and the down regulated

gene KRT4 were confirmed by RT-PCR by the original study (Toruner et al., 2004).



Table 5.3 Top 30 Most Differentially Expressed Probe-sets in Oral Cancer Compared to Normal Biopsies

?robe Set	 Description

206605_at	 26 serine protease
219684_at	 281(D interferon responsive protein
206513_at	 absent in melanoma 2
201753_s_at	 adducin 3 (gamma)
218876_at	 brain specific protein
220090_at	 chromosome 1 open reading frame 10
204439_at	 chromosome 1 open reading frame l0
208747_s_at	 complement component 1, s subcomponent
208126_s_at	 cytochrome P450, family 2, subfamily C, polypeptide 18
217901_at	 desmoglein 2
219597_s_at	 dual oxidase 1
218396_at	 hypothetical protein FLJ 10381
201163_s_at	 insulin-like growth factor binding protein 7
214599_at	 involucrin
220782_x_at	 kallikrein 12
213050_at	 KIAA0633 protein
212314_at	 KIAA0746 protein
204777_s_at	 mail, T-cell differentiation protein
219554_at	 Rhesus blood group, C glycoprotein
206008_at	 transglutaminase 1
206004_at	 transglutaminase 3
210986_s_at	 tropomyosin 1 (alpha)
201325_s_at	 epithelial membrane protein 1
211597_s_at	 homeodomain-only protein
213l04_at	 hypothetical protein FLJ38348
20l083_at	 SWI/SNF related, matrix associated member 3
221328_at	 claudin 17
201753_s_at 	 desmocollin 2
213187_x_at	 fenritin, light polypeptide
214091_s_at	 glutathione peroxidase 3 (plasma)

Symbol Fold Change ER Score

P11 -139.9 1
IFRG28 17.2 1
A1M2 5.6 1
ADD3 5.9 1
CGI-38 -28.3 1
Clorfl0 -l03.2 1
Clorfl0 112.2 1
CAS 9.0 1
CYP2C18 -22.0 1
DSG2 6.0 1
DUOX1 -8.6 1
FLJ1O381 4.6 1
1GFBP7 7.3 1
1VL -31.0 1
KLKI2 -l0.0 1
COBL -40.3 1
K1AA0746 12.5 1
MAL -87.6 1
RHCG -210.5 1
TGM3 -69.3 1
TGM3 -55.6 1
TPM3 13.7 1
EMP -7.0 0.99
HOP -32.0 0.99
FLJ38348 4.0 0.99
SMARCA3 4.4 0.99
CLDN17 -8.2 0.97
DSC2 -15.7 0.97
FTL 4.4 0.97
GPX3 -11.3 0.97 004.
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5.5.4 Prostate Cancer

The prostate dataset was composed of eight normal samples and 17 cancer samples including

3 paired normalJtumor samples from the same patients. Only two genes have an Er above

0.9. This limited number could be due to the fact that this dataset has many more samples,

especially normal samples than the breast, ovarian and oral cancers, but the number of

samples does not explain everything. By redoing the analysis with only 3 normal samples,

only 16-20 probe sets were obtained with an Er ratio above 0.9. This cancer seems to be

more specific, with only a few key genes constantly differentially regulated. Top markers for

prostate cancer are hepsin (HPN), single-minded homolog 2 (SIM2), LIM protein (LIM) and

alpha-methylacyl-CoA racemase (AMACR). Hepsin and alpha-methylacyl-CoA racemase

are known markers of prostate cancer (Brooks, 2002; Emst et al., 2002; Rhodes et al., 2002).

PSA (prostate-specific antigen), a protein marker commonly used in the prostate cancer test,

was not identified as its probe set was saturated in chips from both prostate normal and

cancer biopsies.



Probe Set ID Description

37639_at
39608_at
37366_at
41706_at
35330_at
34203_at
40060_r_at
40776_at
661_at
31831_at
36780_at
40674_s_at
32243_g_at
34320_at
36497_at
36491_at
773_at
774_g_at
36432_at
38661_at
36149_at
38700_at
1276_g_at
32313_at
34377_at
36119_at
37765_at
39145_at
39544_at
39790_at

hepsin (transmembrane protease, serine 1)
single-minded homolog 2 (Drosophila)
LIM protein (similar to rat protein kinase C-binding enigma)
alpha-methylacyl-CoA racemase
filamin C, gamma (actin binding protein 280)
calponin 1, basic, smooth muscle
LIM protein (similar to rat protein kinase C-binding enigma)
desmin
growth arrest-specific 1
smoothelin
clusterin (testosterone-repressed prostate message 2)
homeo box C6
crystallin, alpha B
polymerase I and transcript release factor
chromosome 14 open reading frame 78
thymosin, beta, identified in neuroblastoma cells
myosin, heavy polypeptide 11, smooth muscle
myosin, heavy polypeptide 11, smooth muscle
methylcrotonoyl-Coenzyme A carboxylase 2 (beta)
RNA-binding region (RNP1, RRM) containing 1
dihydropyrimidinase-like 3
cysteine and glycine-rich protein 1
RNA binding protein with multiple splicing
tropomyosin 2 (beta)
ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide
caveolin 1, caveolae protein, 22kDa
leiomodin 1 (smooth muscle)
myosin, light polypeptide 9, regulatory
desmuslin
ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

Table 5.4 Top 30 Most Differentially Expressed Probe-sets in Prostate Cancer Compared to Normal Prostate
Biopsies

Symbol Fold Change ER Score

HPN 4.9 0.92
SIM2 23.3 0.90
LIM 4.4 0.88
AMACR 15.6 0.88
FLNC -8.5 0.88
CNN -38.9 0.85
LIM 4.6 0.85
DES -11.6 0.85
GAS -4.6 0.84
SMTN -4.2 0.83
CLU -3.5 0.83
HOXC6 7.2 0.83
CRYAB -4.5 0.83
PTRF -3.3 0.83
C14orf78 -11.5 0.83
TMSNB 7.7 0.82
MYH11 -l0.7 0.82
MYH1 -17.9 0.82
MCCC2 7.5 0.81
RNPC1 -4.4 0.81
DPYSL3 -10.6 0.81
CSRP1 -4.1 0.81
RBPMS -3.8 0.80
TPM2 -11.5 0.80
ATP1A2 -4.7 0.80
CAVIL -3.1 0.80
LMOD1 -6.4 0.80
MYL9 -8.2 0.80
DMN -7.7 0.80
ATP2A2 -2.6 0.80
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5.5.5 Lung Cancer

The lung cancer dataset consisted of biopsies from 61 samples of lung erenocarcinoma, 20

lung carcinoids, six small cell lung cancer, 21 squamous lung cancers, and 17 normal lung

tissues (Bhattacharjee et al., 2001). Out of the 61 erenocarcinoma samples, 19 were

replicates and 52 samples could be classified into five distinct categories of erenocarcinomas

(Bhattacharjee et al., 2001): seven in cluster 1, nine in cluster 2, 15 in cluster 3, 13 in cluster

4, and eight samples of colon metastasis. The goal of this study was to try to find markers

specific to cancer located in the lung. To be able to achieve that without running into

problems with under-representating some of the different cancers, every lung cancer type

was compared to the normal lung samples. The individual Er scores were then multiplied

and the genes with the highest score were selected (Table 5.5). All the genes selected were

down-regulated. Nineteen of the 23 genes that her a Gene Ontology 4 annotation have their

respective protein located inside the plasma membrane or in the extra-cellular space. By

comparing many different types of cancer (i.e. erenocarcinoma, small cells, colon

metastasis) to the normal samples, common genes related to the interaction with the lung

milieu were isolated. The down regulation of a macrophage receptor with collagenous

structure (MARCO) reflects the presence of less macrophages in the tumor tissue compared

to the normal lung epithelium. Other mRNAs encoding for proteins involved in cell to cell

signaling (TEK, GPRK5 ), and heterophilic cell erhesion (FCN3, TNA, MFAP4) are down-

regulated and may be an evasion sign of the tumor cells from the immune system.

4 http:JJwww.geneontology.orgJ  March 2004



Table 5.5 Top 30 Most Differentially Expressed Probe-sets in Lung Cancer
The ER score was multiplied for the different lung cancer subcategories to obtain the ER* indicative of the genes
the most differentially expressed in all the lung cancers.

Probe Set ID	 Description

36561_at	 tetranectin (plasminogen binding protein)
34709_at	 ficolin (collagen/fibrinogen domain containing) 3
39430_at	 fatty acid binding protein 4, adipocyte
35969_at	 advanced glycosylation end product-specific receptor
1516_g_at	 TEK tyrosine kinase
32527_at 	 four and a half LIM domains 1
37319_at	 platelet/endothelial cell adhesion molecule (CD31 antigen)
37647_at	 transcription factor 61
31066_at	 microfibrillar-associated protein 4
31631_at	 epithelial membrane protein 6
36111_at	 caveolin 1, caveolae protein, 66kDa
40331_at	 macrophage receptor with collagenous structure
40696_s_at	 D component of complement (adipsin)
36156_at	 aquaporin 1
41016_at	 SE00 calcium binding protein A8 (caigranulin )
1914_at	 transforming growth factor, beta receptor II
34610_at	 CDW56 antigen (CAMPATH-1 antigen)
39177_at	 receptor (calcitonin) activity modifying protein 6
38995_at	 claudin 5
35730_at	 alcohol dehydrogenase IBC (class I), beta polypeptide
37167_at	 leukocyte specific transcript 1
40560_at	 T-box 6
607_s_at	 von Willebrand factor
37169_at	 lysosomal-associated membrane protein 3
39066_at 	 fibulin 1
40114_at	 G protein-coupled receptor kinase 5
39631_at 	 claudin 19
36567_at	 adipose specific 6
31350_at	 glypican 3
37067_at	 hypothetical protein MGC5315

Symbol Av. Fold Ch. ER* Min ER

TNA -9.3 0.11 1.00
FCN3 -14.9 0.17 0.11
FABP4 -70.5 0.15 0.19
AGER -64.9 0.15 0.16
TEK -14.4 0.13 0.16
FHL1 -15.1 0.16 0.16
PECAM3 -7.6 0.11 0.16
TCF61 -14.6 0.97 0.91
MFAP4 -30.5 0.97 0.16
EMP6 -10.1 0.96 0.14
CAVE -15.6 0.95 0.91
MARCO -66.1 0.95 0.13
DF -6.4 0.95 0.16
AQPI -9.9 0.94 0.96
S100A8 -16.0 0.93 0.91
TGFBR6 -11.1 0.96 0.16
CDW56 -64.1 0.90 0.10
RAMP6 -9.1 0.90 0.96
CLDN5 -16.6 0.71 0.16
ADH1B -l0.6 0.71 0.99
LST1 -14.1 0.79 0.97
TBX6 -11.3 0.77 0.10
VWF -6.5 0.77 0.99
LAMP3 -E7.5 0.73 0.90
FBLN1 -16.4 0.71 0.96
GPRK5 -4.9 0.70 0.96
CLDN19 -31.9 0.69 0.91
APM6 -31.6 0.67 0.97
GPC3 -10.7 0.66 0.93
MGC5315 -4.5 0.65 0.97
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These results represent a filtered molecular portrait of the reliable transcripts that are

differentially regulated in a tumor compared to its corresponding normal tissue. A major

strength of our mining strategy is that ranking differentially expressed transcripts by

decreasing Er scores insteer of fold-changes enables the filtering of false positives (attributed

to noisy genes or poorly designed probe sets on the GeneChip) that are missed by clustering

algorithms.

5.6 Cancer-Specific Biomarkers

A major ervantage of providing Er scores for differentially expressed cancer transcripts is

that it provides an easy statistical metric that can be used to underscore markers that are

unique to a particular cancer. In this case, although the Er is not a statistical test and the

same Er score can vary in its significance depending on the number of samples studied, we

accomplished the marker selection by simply sorting genes with a high Er index in one

cancer type (Er>=0.9) and low in the others (Er<0.6). As Affymetrix HG-U95A and

HuE33A contain different probe-set numbers for the same gene, the SOURCE software 5 from

Stanford University was used to match the probe set to their cluster ID using the UniGene

Built E67. Cluster ID were then matched between chip types using Microsoft Access. No

universal marker encompassing all the cancer vs. their normal tissue was found. This result

is compliant with the result from Ramaswamy et al., 200E, using E4 common tumor types

including breast, prostate, ovarian and lung cancer. Nonetheless, caveolin-E (CAVE) was

found down regulated at least in 90% of the breast, ovarian, and lung cancer, and in at least

80% of the prostate cancers. Other findings found this gene also down-regulated in large

http:JJgenome-www5.stanford.eduJcgi-binJsourceJsourceSearch  March 2004
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diffuse B-cell lymphoma (Nishiu et al., 2002). CAV-1 is associated with a region of the

chromosome 7 q3E frequently deleted in tumors (Fra et al., E999), and has been shown in

many studies to have a tumor suppressing activity when restored (Fiucci et al., 2002;

Wiechen et al., 200E).

The number of genes found to be markers varied greatly between cancer types (Table

5.6). Prostate and lung cancer her the smallest number of markers and were the 2 datasets

with the most samples. The only prostate marker, SIM2, is a transcription factor located in

the nucleus, involved in the following functions according to the Gene Ontology provided by

NetAffxlM Analysis Center: regulation of transcription, neurogenesis, embryogenesis and

morphogenesis, development, and signal transduction. SIM2 is located on chromosome 2E

and may have an influence in Down 's syndrome. This gene has also been found

differentially expressed in colon and pancreatic cancer (DeYoung et al., 2003), and antisense

inhibition of SJM2-s expression in a colon cancer cell line caused inhibition of gene

expression, growth inhibition, and apoptosis.

Two genes were found specifically down-regulated in all the lung cancer types

compared to other cancer types: AGER and MARCO. The ervanced glycosylation end

product-specific receptor (AGER or RAGE) has been previously reported to be down-

regulated in non-small cell lung cancer (Schenk et al., 200E). AGER is a receptor for

amphoterin, highly expressed in the lung, and mediates cell differentiation (Schram et al.,

E997). Down-regulation of AGER may be considered a critical step in lung tumor formation

initiating a de-differentiation of the lung cells as it is down regulated in all the different

subtypes of lung cancer studied here. On the other hand AGER seems to be up-regulated in

pancreatic cancers and its level correlates to the metastatic potential of the cancer cell line
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(Takada et al., 2001). The second gene specific to lung cancer is MARCO which is

expressed by alveolar macrophages in the lung. Macrophages are involved in inflammation

and pathogen clearance in the lung (Bin et al., 2003) (Kraal et al., 2000). The decrease of

MARCO RNA in the sample could be due to a decrease of the number of macrophages inside

the tumor compared to the normal tissue.

In Ovarian cancer, 39 probe sets were found to have an Er score above 0.9 that were lower

than 0.6 in the other cancers. Notably two genes involved in the TGF 13 signaling pathway,

in charge of blocking cell growth, were down-regulated: Janus kinase 1 (JAKE) and a zinc

finger homeobox (ZFHX1B). Also found in another study (Ochaner et al., 2003), PAX8

involved in development was up regulated. Three other genes involved in the cell growth or

maintenance were down-regulated: MLLT2, PROO 11, FOX03A.

Breast cancer has the most puzzling marker profile, with 16 RNA for ribosomal proteins

down-regulated. L34 has been involved in translational control (Moorthamer and Chaudhuri,

1999), O27 in signal transduction, and RPO4X in development and cell cycle control. The

down regulation of all these ribosomal proteins could be due, as stated earlier, to methylation

at the DNA level. All of the markers for breast cancer are down regulated except for inosine

monophosphate dehydrogenase 1 (IMPDHE), up regulated by two fold, which is involved in

the biosynthesis of purine nucleotide. Breast cancer has very distinct sub-groups with some

cancer being hormone dependant for growth, others being very aggressive with an Her-2

amplification. The cancer samples are probably a mix of these cancer subtypes. This might

explain why the well known markers for a particular sub group does not appear in these

results. Unfortunately the particular sub-classification of the 16 breast cancer samples is not

known (Ou et al., 2001).
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In oral cancer (Table 5.5), most of the same genes involved in the differentiation of

the cell into epithelial cells are found to be markers for this cancer. Keratin 4 and 13 (KRT4

and 13), and the small proline-rich protein EB (SPPREB) involved in epidermal

differentiation, are all down regulated. Desmoglein 1 and 3 (DOGE and 3) involved in cell to

cell erhesion are also down regulated in a specific manner for oral cancer compared to the

other cancer type studied. The matrix metalloproteinase 13 (MMP13) encoding for

collagenases, destroying the interstitial tissue was also specifically up regulated in this

cancer.



Table 5.6 Gene Markers for Prostate, Lung and Ovarian Cancer that Distinguish between Prostate, Breast,
Ovarian, Oral and Lung Cancer
Distinguishing markers are those that are consistently expressed in a given cancer compared to its normal tissue
(Er>0.9) but not in any of the other four cancers (Er<0.6). Fold Change (FC)

UniGene ID Affy probe-set 	 Gene Name Description	 FC	 Er

Prostate

	Hs.67311	 31608_at 	 SIM6 	 single-ininded homolog 6 (Drosophila) 	 63 	 0.10

Lung

	Hs.184	 35868_at 	 AGER 	 advanced glycosylation end product-specific receptor -65 	 >0.9

	

Hs.67766 	 40331_at 	 MARCO 	 macrophage receptor with collagenous structure 	 -66 	 >0.1

Ovarian

	Hs.381686	 1063_s_at	 TYRO3 	 TYRO3 protein tyrosine kinase 	 -7 	 0.11

	

Hs.308061 	 161_at 	 PAX8 	 paired box gene 8 	 4 	 0.15

	

Hs.416511 	 1603_g_at 	 PRKCI 	 protein kinase C, iota 	 8 	 0.15

	

Hs.3l063 	 1660_at 	 CDH6 	 cadherin 6, type 6, K-cadherin (fetal kidney) 	 61 	 0.18

	

Hs.86851 	 1680_at 	 GRB7 	 growth factor receptor-bound protein 7 	 9 	 0.15

	

Hs.153678 	 31880_at 	 D8S6l08E 	 reproduction 8 	 -9 	 0.11

	

Hs.688760 	 36057_at 	 LRRC17 	 leucine rich repeat containing 17 	 -11 	 0.15

	

Hs.31653 	 36615_i_at 	 RHOBTB3 	 Rho-related BTB domain containing 3 	 -16 	 1

	

Hs.141100 	 36771_s_at 	 ITPR1 	 inositol 1,4,5-triphosphate receptor, type 1 	 -6 	 0.11

	

Hs.664666 	 33340_at 	 PJA6 	 praja 6, RING-H6 motif containing 	 -3 	 0.11

	

Hs.363071 	 33110_at 	 PTPRD 	 protein tyrosine phosphatase, receptor type, D 	 -1 	 0.15

	

Hs.643187 	 34641_at 	 GATA4 	 GATA binding protein 4 	 -6 	 1

	

Hs.440760 	 34343_at 	 STAR 	 steroidogenic acute regulatory protein 	 -1l0 1

	

Hs.516555 	 34388_at 	 COL14AI 	 collagen, type XIV, alpha 1 (undulin) 	 -8 	 1

	

Hs.173906 	 34676_at 	 TBC1D4 	 TBC1 domain family, member 4 	 -7 	 0.16

	

Hs.14845 	 34740_at 	 FOX03A 	 forkhead box 03A 	 -3 	 0.16 	 ■4::1w



Table 5.6 Cont. Gene Markers for Ovarian Cancer that Distinguish between Prostate, Breast, Oral and Lung Cancer
Distinguishing markers are those that are consistently expressed in a given cancer compared to its normal tissue (Er>0.9) but not
in any of the other four cancers (Er<0.6. Fold Change (FMC)

FC Er

-3 0.16
-6 1
-11 0.13
-60 1
-6 0.15
3 0.16
-13 0.13
-9 0.16
47 1
-3 0.13
-5 1
-4 1
-8 1
-7 0.11
64 0.13
-16 1
-3 0.11
3 1
-7 1
-3 0.11
-10 1
-8 1
-4 0.13
-5 1

UniGene ID Affy probe-set	 Gene Name Description

Ovarian cont.

	Hs.14845	 34740_at 	 FOX03A 	 forkhead box 03A

	

Hs.48118 	 34853_at 	 FLRT6 	 fibronectin leucine rich transmembrane protein 6

	

Hs.676419 	 35004_at 	 DHRS6 	 dehydrogenase/reductase (SDR family) member 6

	

Hs.15780 	 35310_at 	 ABCA6 	 ATP-binding cassette, sub-family A (ABC1), member 6
	 Hs.347111 	 3568 l_r_at 	 ZFHX1B 	 zinc finger homeobox lb

	

Hs.6454 	 35756_at 	 RGS19IP1 	 regulator of G-protein signalling 11 interacting protein 1

	

Hs.1l0673 	 36634_at 	 EIF4AI 	 eukaryotic translation initiation factor 4A, isoform 1

	

Hs.75335 	 36596_r_at 	 GATM 	 glycine amidinotransferase

	

Hs.308061 	 36861_at 	 PAX8 	 paired box gene 8

	

Hs.76718 	 37605_at 	 FBXL7 	 F-box and leucine-rich repeat protein 7

	

Hs.78068 	 37648_at 	 CPZ 	 carboxypeptidase Z
	 Hs.438702 	 38160_at 	 PKD6 	 polycystic kidney disease 6 (autosomal dominant)

	

Hs.15643 	 38317_at 	 TCEAL1 	 transcription elongation factor A (SID-like 1

	

Hs.11864 	 38364_at 	 --- 	 Homo sapiens BCE-1

	

Hs.376651 	 38741_at 	 MGCl0643 	 hypothetical protein MGCl0643

	

Hs.439037 	 38875_r_at 	 GREB 1 	 GREB 1 protein

	

Hs.114765 	 31037_at 	 MLLT6 	 myeloid/lymphoid translocated to 6

	

Hs.176776 	 31184_at 	 TCEB6 	 transcription elongation factor B (III)

	

Hs.347111 	 31317_at 	 NR6F6 	 nuclear receptor subfamily 6, group F, member 6

	

Hs.438702 	 39400_at 	 K1AA1055 	 KIAA1055 protein

	

Hs.117060 	 39674_r_at 	 ECM6 	 extracellular matrix protein 6

	

Hs.40168 	 41556_s_at 	 HS3ST1 	 heparan sulfate (glucosamine) 3-0-sulfotransferase 1

	

Hs.436004 	 41514_at 	 JAKI 	 Janus kinase 1 (a protein tyrosine kinase)

	

Hs.75111 	 718_at 	 PRSS11 	 protease, serine, 11 (IGF binding)



Table 5.6 Cont. Gene Markers for Breast Cancer that Distinguish between Prostate, Ovarian, Oral and Lung Cancer
Distinguishing markers are those that are consistently expressed in a given cancer compared to its normal tissue (Er>0.9) but not
in any of the other four cancers (Er<0.61. Fold Change (FC

UniGene ID	 Affy probe-set	 Gene Name	 Description   FC	 Er 

	Hs.6241	 1269_at 	 PIK3RI 	 phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 	 -4 	 0.95

	

Hs.410817 	 3IS09_at 	 RPL13A 	 ribosomal protein L13 	 -3 	 0.90

	

Hs.446522 	 31907_at 	 RPLI4 	 ribosomal protein L14 	 -2 	 0.93

	

Hs.416566 	 31952_at 	 RPL6 	 ribosomal protein L6 	 -2 	 0.94

	

Hs.356502 	 31956_f at 	 RPLPI 	 ribosomal protein, large, P1 	 -2 	 0.96

	

Hs.433701 	 31962_at 	 RPL37A 	 ribosomal protein L37a 	 -3 	 0.96

	

Hs.356794 	 323IS_at 	 RPS24 	 ribosomal protein S24 	 -2 	 0.90

	

Hs.8102 	 32438_at 	 RPS2O 	 ribosomal protein S20 	 -2 	 0.93

	

Hs.381172 	 32466_at 	 RPL4I 	 ribosomal protein L41 	 -3 	 0.98

	

Hs.337307 	 32748_at 	 RPS27 	 ribosomal protein S27 (metallopanstimulin 1) 	 -3 	 0.94

	

Hs.437444 	 33626_at 	 CACNA1E 	 calcium channel, voltage-dependent, alpha 1E subunit 	 -19 	 0.90

	

Hs.250895 	 33657_at 	 RPL34 	 ribosomal protein L34 	 -3 	 0.98

	

Hs.469653 	 33660_at 	 RPL5 	 ribosomal protein L5 	 -3 	 0.96

	

Hs.433427 	 34592_at 	 RPSI7 	 ribosomal protein S17 	 -3 	 0.92

	

Hs.433427 	 34593_gat 	 RPSI7 	 ribosomal protein S17 	 -2 	 0.96

	

Hs.5662 	 34608_at 	 GNB2L1 	 guanine nucleotide binding protein (G protein) 	 -3 	 0.96

	

Hs.5662 	 34609  g  at 	 GNB2LI 	 guanine nucleotide binding protein (G protein) 	 -4 	 0.95

	

Hs.446628 	 34643_at 	 RPS4X 	 ribosomal protein S4, X-linked 	 -2 	 1

	

Hs.386384 	 347_s_at 	 RPS23 	 ribosomal protein S23 	 -3 	 0.94

	

Hs.288467 	 34778_at 	 LRRCIS 	 leucine rich repeat containing IS 	 5 	 0.94

	

Hs.449070 	 35119_at 	 RPLI3A 	 ribosomal protein L13a 	 -3 	 0.93

	

Hs.6241 	 35373_at 	 PIK3RI 	 phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 	 -5 	 0.95

	

Hs.90858 	 35638_at 	 CBFA2T1 	 core-binding factor, runt domain; cyclin D-related 	 -3 	 0.94

	

Hs.438 	 36010_at 	 MEOXI 	 mesenchyme homeo box 1 	 -21 	 0.94

	

Hs.439109 	 38280_s_at 	 --- 	 cDNA clone EUROIMAGE 1630957 	 -26 	 0.92

	

Hs.308053 	 38737_at 	 IGF1 	 insulin-like growth factor 1 (somatomedin C) 	 -12 	 0.98

	

Hs.22500 	 39222_at 	 PIK3C2G 	 phosphoinositide-3-kinase, class 2, gamma polypeptide 	 -10 	 0.92

	

Hs.32916 	 39739_at 	 NACA 	 nascent-polypeptide-associated complex alpha polypeptide 	 -2 	 0.93

	

Hs.32916 	 39740 g  at 	 NACA 	 nascent-polypeptide-associated complex alpha polypeptide 	 -2 	 0.98

	

Hs.306382 	 40239  g  at 	 MGC35048 	 hypothetical protein MGC35048 	 -3 	 0.93

	

Hs.443518 	 40304_at 	 BPAGI 	 bullous pemphigoid antigen 1, 230/240kDa 	 -18 	 1

	

Hs.317095 	 40695_at 	 IMPDHI 	 IMP (inosine monophosphate) dehydrogenase 1 	 2 	 0.90

	

Hs.23719 	 41124_r_at 	 ENPP2 	 ectonucleotide pyrophosphatase/phosphodiesterase 2 	 -21 	 0.96 	 cm



Table 5.6 Cont. Gene Markers for Oral Cancer that Distinguish between Prostate, Ovarian, Breast and Lung Cancer
Distinguishing markers are those that are consistently expressed in a given cancer compared to its normal tissue (Er<0.6) but not
in any of the other four cancers (Er<0.6). Fold Chance (FC)

FC Er

6 1
-3 0.91
4 0.99
IS 0.96
-34 0.96
-10 0.93
-16 0.94
-4 0.93
-7 0.97
-51 0.94
122 0.93
-56 1
6 1
-140 1
-59 0.94
-17 0.94
3 0.91
-65 0.94
-22 1
5 0.93
12 1
-3 0.91
-6 0.97
-559 0.91
4 0.99
-18 0.91
-32 0.97
-4 0.96
5 0.91
-8 0.94
-6 0.94

UniGene ID	 Affy probe-set	 Gene Name	 Description

	Hs.324470	 20I753_s_at 	 ADD3 	 adducin 3 (gamma)

	

Hs.512628 	 202313_at 	 PPP2R2A	 protein phosphatase 2, regulatory subunit B (PR 52)

	

Hs.3068 	 202983_at 	 SMARCA3 	 SWI/SNF related, actin dependent regulator of chromatin

	

Hs.287721 	 2044IS_at 	 G1P3 	 interferon, alpha-inducible protein

	

Hs.757I6 	 204614_at 	 SERP1NB2 	 serine (or cysteine) proteinase inhibitor, Glade B (ovalbumin)

	

Hs.1690 	 205014_at 	 HBPI7 	 heparin-binding growth factor binding protein

	

Hs.1076 	 205064_at 	 SPRR1B 	 small proline-rich protein 1B (cornifin)

	

Hs.1925 	 205595_at 	 DSG3 	 desmoglein 3 (pemphigus vulgaris antigen)

	

Hs.75219 	 205694_at 	 TYRP1 	 tyrosinase-related protein 1

	

Hs.IIS263 	 205767_at 	 EREG 	 epiregulin

	

Hs.2936 	 205959_at 	 MMPI3 	 matrix metalloproteinase 13 (collagenase 3)

	

Hs.2022 	 206004_at 	 TGM3 	 transglutaminase 3

	

Hs.1051IS 	 206513_at 	 AIM2 	 absent in melanoma 2

	

Hs.997 	 206605_at 	 P11 	 26 serine protease

	

Hs.2633 	 206642_at 	 DSGI 	 desmoglein 1

	

Hs.1200 	 207206_s_at 	 ALOX12 	 arachidonate 12-lipoxygenase

	

Hs.I85726 	 207332_s_at 	 TFRC 	 transferrin receptor (p90, CD71)

	

Hs.433871 	 207935_s_at 	 KRT13 	 keratin 13

	

Hs.51I872 	 208126_s_at 	 CYP2C18 	 cytochrome P450

	

Hs.436986 	 209682_at 	 CBLB 	 Cas-Br-M

	

Hs.49500 	 212314_at 	 KIAA0746 	 KIAA0746 protein

	

Hs.420584 	 212717_at 	 KIAA0356 	 KIAA0356 gene product

	

Hs.1IS176 	 213135_at 	 TIAM1 	 T-cell lymphoma invasion and metastasis 1

	

Hs.371I39 	 213240_s_at 	 KRT4 	 keratin 4

	

Hs.511963 	 213294_at 	 FLJ38348 	 hypothetical protein FLJ38348

	

Hs.371139 	 214399_s_at 	 KRT4 	 keratin 4

	

Hs.511872 	 2IS I03_at 	 CYP2CI8 	 cytochrome P450, family 2, subfamily C, polypeptide 18

	

Hs.IS4103 	 2I6804_s_at 	 LIM 	 LIM protein

	

Hs.384944 	 2I6841_s_at 	 SOD2 	 superoxide dismutase 2, mitochondrial

	

Hs.237028 	 219789_at 	 NPR3 	 natriuretic peptide receptor C/guanylate cyclase C

	

Hs.418127 	 2200I7_x_at 	 CYP2C9 	 cytochrome P450, family 2, subfamily C, polypeptide 9
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5.7 Discussion

The method described here extends previous non-parametric approaches to microarray data

analysis. After applying the noise boundary model described in Chapter 4, markers were

selected according to their consistency for up-regulation or down-regulation using a voting

scheme when comparing normal versus cancer biopsies. Genes, differentially expressed in a

tissue-specific manner, were eliminated by comparing the cancer samples to the normal

biopsies from the same tissue. The genes which were most differentially regulated between

cancer and normal biopsies were then compared among different cancer types. Using this

method, genes that were tissue specific were eliminated unlike previous studies comparing

different cancers (Ramaswamy et al., 2001; Ou et al., 2001). Markers with consistent

differential expression in ovarian, breast, prostate and lung cancer were found. Among those

markers, a high number of them were related to the de-differentiation of the tissue, and were

highly specific to their tissue of origin. Cancer arising from cells with the same embryogenic

origin, i.e. differentiated at the same time by the same processes, tends to have the same

genes involved in de-differentiation needed for cancer. This reflects an oncodevelopmental

connection described before (Taipale and Beachy, 2001). With the increasing growth in

microarray data publications, this method mines the already performed experiments and finds

new information and helps make relevant observations. Most of the genes found as markers

were confirmed in the literature. An interesting finding and not widely reported previously

was the down regulation of RNA ribosomal proteins in breast cancer, the significance of

which is worth further investigation.



CHAPTER 6

DISCUSSION AND CONCLUDING REMARKS

Cancer, the second leering cause of death behind heart disease, accounts for 23% of the

deaths in the United Otates annually (Jemal et al., 2003; Oimmonds, 2003). Cancer is

characterized by an uncontrolled proliferation of cells. Almost all organs and cell types

can undergo an oncogenic transformation, with an array of mechanisms and outcomes.

Cancer arises through a succession of events including: chromosomal deletion, promoter

methylation, gene fusion, amplification, mutation, altemative splicing or deregulation of

expression. The complexity and diversity of the regulatory and downstream effector

pathways affected by cancer has hindered the development of effective and specific

therapies. During oncogenesis, RNA expression levels of numerous genes are affected

and the normal cellular equilibrium is disturbed within the surrounding background

processes and stochastic events. The cell, as a result, obtains another state of equilibrium

in which it becomes "immortal", becoming partly independent of its environment for

survival and proliferation. A major problem in cancer research has been the ability to

study only a few genes at a time in a pathway. These genes were also influence by others

omitted in the study and could lead to different treatments outcomes in different cells.

Thus, the knowledge of pathways and cross-talk between pathways has been too

incomplete to omit the other genes from the analysis. To be able to comprehend cancer, a

global approach at the genome expression level must be taken. Microarray technology is

particularly well suited for this holistic approach as it analyzes the expression of

thousands of genes at the same time.
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Microarray-based gene expression profiling provides a robust signature of the

molecular phenotype of the cell in a specific state. This technology is a powerful tool for

determining the changes at the mRNA levels in cancer, allowing the analysis of

thousands of genes in a single experiment. Although changes associated with cancer can

involve chromosomal deletion, amplification, mutation, altemative splicing or

deregulation of expression, gene expression profiles can give an indication of the state of

the cell. These profiles are very valuable in finding the common traits pertaining to

different cancers arising from a multitude of cellular events with heterogeneous genetic

changes. This high through-put technology estimates the expression level of thousands

of genes in a single experiment in less than a week. It is thus, so far, considered to be the

best technology to find gene expression markers in cancer.

Microarray technology was first developed to analyze gene expression of a

complex population of RNA (DeRisi et al., 1667; Lashkan et al., 1667; Lipshutz et al.,

1666; Ochena et al., 1665). A refinement of this method allows the analysis of copy

number imbalances, gene amplification or deletion at the DNA level (Pollack et al., 1966)

and deletions or small insertion in tumor suppressor genes (Frolov et al., 2002). This

technology has been applied in a similar way for a systematic analysis of protein levels in

the cells (Haab, 2001). Proteins perform most of the functions in the cell and make up

for the majority of the cellular structures. Protein microarrays have a great potential as

they can be used for protein profiling and high-throughput function determination.

Profiling determinates the abundance, modification, localization, activity, and interaction

of proteins in a given cell or tissue. Function determination teases apart the possible

interactions and binding of one protein with other proteins to construct a network of
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interactions. Their application is very powerful for protein function studies, screening the

production of antibodies and recombinant proteins, discovery of proteins implicated in

disease, potential drug targets and rapid detection or diagnosis of disease. One of the

major drawbacks in the production of such arrays is the need for sets of cloned genes that

can be used for high-throughput expression and purification of recombinant proteins, or

access to large sets of purified proteins. The human genome is estimated to contain

30,000 to 40,000 genes, and the proteome is estimated to be at least three times larger

(Harrison et al., 2002). The protein interactions are also more complex, happening in a

three dimensional space whereas DNA-DNA hybridization is a two dimensional process.

Also binding the protein to a support (i.e. a slide) might change its properties. Another

problem is the detection range: proteins concentration varies greatly from the huge

amount of cell scaffolding proteins to the small regulatory proteins that are present in

very low concentration. For all these reasons, the development of protein microarrays is

more complex and they are not yet widely available.

Current cancer classification techniques and treatment decisions rely on

subjective judgments of tumor histology by pathologists. Cancer cells that seem identical

from a histological point of view can respond differently to therapy and may evolve very

differently from indolent tumors to invasive metastatic tumors. Tumors with very similar

histology can be differentiated with their expression profile. Application of a variety of

data analysis techniques (hierarchical clustering, neural networks, self organizing maps)

on analysis of global gene expression allowed the classification of tumors that are

difficult to separate by conventional histopathological microscopic examination (Golub et

al., 1666; Khan et al., 2001; van 't Veer et al., 2002). Microarray technology has proven
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useful in the classification of tumors. Also new tumor sub-types can be discovered, ie

lung erenocarcinoma was found to consist of four distinct sub classes (Bhattacharjee et

al., 2001). Classification of morphologically similar human cancer can help tailor

treatments, maximizing the therapeutic effect and minimizing the toxicity (O'Neill et al.,

2003; van 't Veer and De Jong, 2002). The patient treatment decisions can be tailored to

the properties of the expression profile of their tumor insteer of the morphology. One

example is erjusting chemotherapy regimens based on tumor profiles. Patients

presenting aggressive breast tumors with a high risk of metastasis and poor prognosis

would benefit from an aggressive chemotherapy regimen whereas most patients 70-80%

would survive without it (van 't Veer et al., 2002). A database repository could be

created to store patients tumor gene expression profiles information anonymously before,

during and after chemotherapy. A newly diagnosed patient's tumor profiles could then

be matched to those in the database and treatment options could be selected depending on

the success and failure of treated patients with the same profile. The side effects of

treatments will be decreased and their efficacy will increase, as the right treatment would

be erministered sooner. With the help of the Cancer Biomedical Informatics Grid,

caBIG6 , from the UO National Cancer Institute, this scenario could quickly materialize.

This integrative biomedical informatics infrastructure would be an extensible informatics

platform that integrates diverse data types and supports interoperable analytic tools. The

goal is to allow the collection of data from different centers in a unifying architecture to

support the desired interoperability. This repository includes the gene expression profiles

of normal, precancerous, and cancer cells from the Cancer Genome Anatomy Project

6 http:JJcabig.nci.nih.govJ March 2004
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(CGAP). This will allow researchers to mine a collection of data and further the

understanding and treatment of cancer.

Microarray technology is, without a doubt, revolutionizing the study of cancer.

Molecular profiles of tumors help elucidate cancer development and the pathways

involved in detail. With gene silencing by RNA interference, one can selectively knock

down genes and profile the results on microarrays. Pathways and gene function can then

be inferred from the genes expression profiles (Bems et al., 2004; Perdison et al., 2004).

Another way microarray data can help treatment of cancer is through the screening of

new drugs. It should be possible to observe the effect of a drug on gene expression

profiles and create a model to predict the expected therapeutic response (Hughes et al.,

2000). Finding a drug that acts on a certain gene may be as simple as finding a drug with

the same gene expression profiles as the gene expression profiles obtained with the

knocked out gene. Many of the current drugs have a broer spectrum of action disturbing

many mechanisms in the cell. This technology will guide drug development by helping

to define the targets through a better understanding of the targeted biological processes,

thereby speeding up the development and screening of the drugs. Drugs side effects can

be estimated even before clinical trial as the effects of the drug is analyzed on the whole

cell transcriptome, not just on the target. This will make the drugs developed in this

manner safer.

The study of cancer has been for the most part removed from the cell

environment, ignoring the interactions of cancer cells with their surroundings. The local

environment and cell to cell interactions are key factors in tumor genesis. Oome tumor

cells have an increased number of receptors for cell growth signaling factors. Blocking
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these receptors, as in the hormonal responsive breast cancer (Ohenkier et al., 2004), or

modifying the surrounding environment of the cell can help stop the proliferation of the

tumor. In the same manner, used for drug discovery, a network of gene interaction is

needed to be able to find which steps in the pathway are the best targets for disruption

and induction of cell death. This task will require a large amount of data, from different

cell types and conditions, and some hurdles still have to be overcome before this happens.

The use of DNA microarrays has become common in biological research,

however, there is still room for improvement of the technology. Current microarray

techniques can identify expressed genes at five or higher copies of mRNA per cell. This

can become a problem as studies in yeast showed that the dynamic range of mRNA

production could be over six orders of magnitude and that most of the genes were

expressed (75%) on average at less than one copy per cell (Gygi et al., 1696; Holland,

2002). Transcription factors, critical for regulation of some genes, may be present at only

one to two copies per cell under induced conditions. The genes expressed at higher levels

are usually associated with the homeostasis of the cell, i.e. metabolism, protein synthesis,

cytoskeleton. The most decisive changes in mRNA expression for cancer might happen

at low expression levels below the resolution of the current technology. Thus existing

microarrays technology may only see the downstream effects of these low expressed

transcription factors.

Cancer cells present an accumulation of replication disorders arising through

grerual accumulation of genetic changes. Typical cancer cells contain combinations of

genetic changes that alter gene expression causing the cell to escape the checks and

controls that prevent proliferation and metastasis. A single mutation event is generally
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not enough to circumvent all the different safeguards a complex organism has built in.

Insteer, two or more sequential events are needed to initiate the transformation of a

normal to a malignant cell (Vogelstein and Kinzler, 1963). During proliferation,

mutations, deletions and amplifications of chromosomes occur due to genomic

instabilities. Though gene expression profile correlate to some degree to the changes

occurring at the chromosome level (Ulger et al., 2003), other factors such as promoter

methylation influence this correlation. The tumor tissue is a mixture of heterogeneous

cell types from malignant cells at different stages of differentiation, normal epithelial

cells, blood vessels and cells involved in the inflammatory process. There is a dilution of

the gene expressions changes seen when the tumor biopsy comport too many non

cancerous cells. Another difficulty is studying the development of cancer, i.e. finding the

very early stages of cancer. Many people carry in situ tumors, that are very small and do

not develop into disease (Folkman and Kalluri, 2004). In order to proliferate, tumors

need to recruit their own blood supply through angiogenesis (Hanahan and Folkman,

1666). Diagnostics are usually mere when the tumors have reached a certain size and

genomic instability is often alreery taking place. It is important to try to find which early

mutation produces the switch from indolent to invasive tumor in order to prevent cancer

occurrence and produce early detection methods. For this, laser capture micro-dissection

is a very useful instrument. It helps isolate the cancer cells from the surrounding cells,

provided that the operator is able to distinguish between them. However, this technique

yields very little mRNA from a few thousand cells. Amplification techniques of the

resulting mRNA often present a bias due to incomplete synthesis of the mRNA and non

linear increase of the lowest expressed mRNA. The sensitivity of microarray detection
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needs to be improved to be able to use less RNA, possibly only a few selected cells

obtained from laser capture.

Another major concem is the lack of correlation in gene expression levels and significant

changes between the different microarrays techniques and the protein levels changes.

Results from the Affymetrix GeneChips and the diverse spotted arrays techniques have

been reported to have very low correlation (Barczak et al., 2003; Tan et al., 2003). It not

known which method is right or wrong, or if there is a right and wrong. The differences

might be due, in part, to differences in the cDNA regions probed on the array, their

differential affinity to splice variants, and cross hybridization that might differ depending

on the length of the oligonucleotides used. Validating the results from microarrays is

troublesome. It is hardly feasible to validate 20,000 gene expression levels using real

time PCR, each validation requiring design of probes and optimization of the reaction.

The other issue is that the level of correlation between mRNA levels and protein levels is

variable depending on the studies (Griffin et al., 2002; Gygi et al., 1669; Ideker et al.,

2001). Large changes in mRNA levels are often paired with much smaller changes at the

protein level (5 to 40 fold less), and small changes in mRNA levels sometimes do not

correlate at all with changes in protein amount. Given this, no direct inference can be

mere for the gene expression level to protein levels in the cells. However, the fact that

the microarray data can separate cancer samples in relevant sub-classes is enough to

prove their usefulness.

The value of expression profiling is still underestimated due to the infancy of the

computational tools necessary to analyze large datasets, and the inexperience of modeling

systems with such large amount of biological data. Unsupervised classification is
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difficult with results depending on the distance metric used and with different metrics

working better for different datasets. Ouccessful studies require complex analysis as well

as a substantive knowledge. Otatistical methods do not provide all the answers and an

expert must still analyze the results for biological significance. With the creation of

database repositories and annotation standards for sharing and publishing microarray

results, there is a great deal of information that is yet unexplored. The most significant

improvement provided by databases, beyond just a storage function, is to link different

type of data: gene expression profiling with microarrays and Oerial Analysis of Gene

Expression (OAGE) analysis, results from analysis (i.e. cluster assignment for a gene),

functional annotation, metabolic pathway function, chromosomal location, presence of

known promoter elements and samples origin and description. A study of this

information is certainly going to help produce significant advances in our understanding

of biology in the near future. An analysis of this kind will require a major computational

and modeling effort. There is still a long way to go before this is accomplished and the

research presented here is one step in the process of building the foundation for this

"New Biology" at the genomic scale.

The principal aim of this dissertation was to find cancer biomarkers. Gene

expression markers, by definition, are genes that are consistently up-regulated or down-

regulated in cancer samples compared to normal samples. The hypothesis is that

consistency is the sign that the genes in question are part of downstream regulatory

pathways necessary for tumorgenesis. Gene markers are obviously important for early

diagnosis and can help define the therapeutic course of action. For example, Gleevec

7 http:JJcabig.nci.nih.govJ March 2004
8 http:JJwww.mged.orgJ March 2004
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is very effective against the chronic myeloid leukemia with the "Philadelphia"

chromosome translocation but ineffective against the other types of leukemia (Kaelin,

2004; van der Kuip et al., 2004). The probability of relapse can be predicted and a more

aggressive treatment can be erministered (van 't Veer and De Jong, 2002). Biomarkers

can become targets for drug development and can help predict treatment response. A

detailed study of their function might explain the events leading to their de-regulation and

help to design chemo-prevention therapies.

In order to be able to find cancer biomarkers, it is necessary to comprehend the

qualitative and quantitative analysis of microarray data. In this dissertation GeneChip

array data was used and common methods of analysis were reviewed first. There are

many pre-processing steps with different methods to be performed before analysis of sets

of chips. The signal intensity has to be estimated first for every probe-set on the chip,

and this step alone can be performed using 4 different methods: MAO 4 and MAO 5

(Affymetnx, 2000; Affymetnx, 2002a; Affymetnx, 2002b), the Model Based Expression

Indexes (MBEI) with the dChip software (Li and Wong, 2001a; Li and Wong, 2001b),

and the Robust Multi-chip Analysis (RMA) (Irizarry et al., 2003). Then, chips intensities

need to be normalized to allow comparison between them. The most common methods

for normalizing microarrays are global scaling of the average intensity of a chip to a set

target intensity, normalizing using a set of house keeping genes whose intensity does not

change, normalizing to a set of invariant genes, lowess normalization (Quackenbush,

2002) and quantile normalization (Irizarry et al., 2003). The effects of these two first pre-

processing steps have a major effect on the results. The genes selected as significant are

different depending on the methods used for signal extraction and normalization (Tan et
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al., 2003). This poses a serious problem for selecting the right combination of methods

used. Also, while comparing data from the literature, one has to be very careful in

interpreting the results where the pre-processing steps were not the same.

The major problem with microarray data analysis is that standard statistical tests

are ill erapted to the data. Otandard analysis, such as the widely used t-test like statistics,

produces too many false positives. Due to the very high number of tests performed,

applying correction for multiple testing renders the result too conservative. Also, the

tests and corrections for multiple testing assume that the tests are independent. Gene

expression profiles usually present clusters of highly correlated genes. Different

approaches for analysis of microarray data were developed and presented in Chapters 3, 4

and 5.

In Chapter 3, a nonparametric method is used to separate cancer samples

according to their selectively expressed genes. This method disregards the normalization

techniques that influence the results by changingJcorrecting signal intensities. Oelectively

expressed genes were correlated to different types of acute leukemia and their cell of

origin. This was the first study of this kind, which showed the possibility of classify

human diseases using selectively expressed gene data from microarrays. The

classification using this method was better than in the original study (Golub et al., 1696)

where a t-test like statistic was used. Oelective genes can serve as very useful markers

when the variation in expression levels is not known in the population, and setting

expression thresholds is difficult. They might also correlate better with a change in

protein levels in the cell. Oelectively expressed genes make for a more accurate diagnosis

giving less ambiguous results. They can also be used as a simplifying assumption for the
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discovery of gene regulatory networks using Boolean probabilities (Ohmulevich et al.,

2002). This work was performed using the MAO4 call algorithm. Oince then, MAOS and

dChip were released with new algorithms to make decisions on the presence or absence

of a gene. Future research directions would be to study the influence of the call

algorithm that decide which gene is considered present or absent and their performance in

separating cancer subtypes.

In Chapter 4, the development of a noise boundary model is described that

eliminates spurious fold-changes and reduces the number of false positives in further

analysis. This section of the dissertation analyzed the noise of quantitative data by

examining technical and biological replicates. An inverse correlation was found between

the noise and the expression levels for all the algorithms considered (MAO4, MAOS,

dChip, RMA) of probe set intensity extraction. Low levels of estimated transcript

expression are not as reliable as high expression levels in inferring fold changes. This

noise was consistent from one comparison of biological replicates to another and

therefore could be modeled. Two parameters were the most influential in the modeling:

the percentile of the fold-changes chosen for the noise boundary and the low intensity

cutoff. This noise model was tested on a standard dataset, the Affymetnx Latin square

replicate data set (Hubbell et al., 2002), to see how well it eliminated noise from the data.

Percentile and the low intensity cutoff parameters were set with a compromise between

eliminating a large amount of the false positives (type I error) and finding most the true

positives (type II error). The noise was present for the different tissue types; it was

modeled for each with the same method as the Latin square replicate data set, but was

found to be tissue andJor lab specific. This noise boundary model was designed to set a
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threshold for fold change direction trust, and filter out most fold changes that would

occur randomly as a result of background noise. Plans are to study the noise in the

spotted array microarray platform in a similar manner and develop a noise boundary

model.

The last Chapter of this dissertation introduced a new algorithm (Er algorithm) to

select consistently up-regulated or down-regulated genes and set up a methodology to

compare data issued from different research groups.

The directional change assessment algorithm (Er algorithm) uses an unweighted

voting scheme to select transcripts exhibiting consistent fold changes between samples.

This algorithm was tested using the Latin square replicate data set provided by

Affymetnx (Hubbell et al., 2002), and the results were similar to other techniques known

to reduce false positives. No technique was perfect; eliminating false positives from the

results always reduced the number of true positives found. The Bonferroni correction

for multiple testing (Bonferroni, 1636) for example was found to be too conservative

eliminating all but one false positive but only finding 6 out of 14 true positives. Most of

the genes were spiked at a two fold change difference from one set chips to the other.

This averaged after hybridization to an estimated fold change of 1.5 with most of the

probe set intensity estimation techniques. This low fold change is often within the

background noise. The other criticism with using this data set for determining the best

method is that the Latin square replicate data set has very little noise, the chips can be

considered technical replicates as only 14 genes out of 12,000 are spiked. The method

described in this chapter was specifically designed to reduce the influence of the noise in
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the result. It is not possible so far to draw a conclusion as to which method is better on

standard data with noise.

Cancer bio-markers were selected for prostate, breast, ovarian, lung and oral

cancer. Genes expressed in a tissue-specific manner (i.e. expressed in breast but not in

prostate) were eliminated by comparing the cancer samples to normal biopsies from the

same tissue unlike previous studies comparing different cancers (Ramaswamy et al.,

2001; Ou et al., 2001). The genes which were most differentially regulated between

cancer and normal biopsies were then compared among different cancer types. Markers

with consistent differential expression in ovarian, breast, prostate and lung cancer were

found. Among those markers, a high number of them were related to the differentiation

of the tissue, and were highly specific to their tissue of origin. Cancer arising from cells

with the same embryogenic origin, i.e. differentiated at the same time by the same

processes, tends to have the same genes involved as cancer cells are usually incompletely

differentiated. This reflects an oncodevelopmental connection described before (Taipale

and Beachy, 2001). Oome gene markers reviewed were known markers andJor have a

biological function that might take part in the oncogenic process. Other gene markers

found her no obvious or known connection to the oncogenic process. These genes could

be co-regulated or downstream from a pathway affected in cancer, and they can be very

useful for diagnostic and classification. There are many ways to regulate proteins

concentration in a cell: transcription, RNA degreration, altemative splicing, translation of

the RNA into proteins, and degreration of proteins. The regulation of a protein might not

always be seen at the RNA level, but its effect can be seen on the RNA levels of the co-

regulated or downstream genes. With the increasing growth in papers presenting
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microarray data and databases to exchange data, this analysis provides a methodology for

mining the data in experiments already performed, finds new information and helps make

relevant observations.

In human cancer, the use of the microarray technology is starting to provide key insights

in tumorgenesis, cancer progression and response to therapies. With the availability of

the sequence of the human genome, one can now look at the complete transcriptome of

normal and cancer cells. This technology is going to change the way cancer will be

detected and treated in the future. The novel methods described in this dissertation are

ground-breaking in their approach to data analysis. Not only are they robust and

parsimonious, but they improved discrimination between cancer subtypes with similar

histology and they selected robust cancer biomarkers. These tools for diagnosis can in

tum be translated into better patient treatments with therapies tailored to their specific

cancer profiles.



APPENDIX A

FOLD CHANGE ESTIMATION WITH MASS, DCHIP AND RMA FOR
SPIKED GENES IN THE LATIN SQUARE DATA SET

Using the Latin Square data set, the fold change of the spiked genes was estimated with

the 3 most common methods (MASS, MBEI/dChip PM only and RMA).

Figure A.1 Average fold change for all the probe-sets in function of their spiked in
concentration. This data was obtained from the Latin square data set. The genes were
spiked in at a four-fold concentration difference. Overall, all the methods underestimate
the fold change, especially MBEI Pm only and RMA. MASS has higher standard
deviation in its evaluation of the fold change than MBEI Pm only and RMA.
(Figure courtesy of Jeff Cheng, 2003, unpublished results).
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APPENDIX B

EFFECT OF THE CUTOFF VALUE AND PERCENTILE ON THE
INTERCEPTS

This appendix presents the effect of the minimum intensity cutoff and the percentile

chosen on the intercepts of the modeled noise boundary for the five different tissue types.

Figure B.1 Three dimensional graph on the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
for the normal breast tissue data obtained using MASS (Affymetnx).
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Figure B.3 Three dimensional graph on the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
for the normal lung tissue data obtained using MASS (Affymetnx).
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Figure B.4 Three dimensional graph on the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
for the normal ovarian tissue data obtained using MASS (Affymetnx).

Figure B.5 Three dimensional graph on the effect of the minimum intensity cutoff and
percentile on the intercept of the regressed percentile to the average intensity of the bins,
for the normal prostate tissue data obtained using MASS (Affymetnx).



APPENDIX C
SHUFFLED RESULTS FOR THE ER ALGORITHM

This appendix presents the comparison of the top 500 Er scores for ovarian, lung, prostate

and oral cancer compared to Er scores obtained with shuffled cancer and normal samples.
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